WO2021085492A1 - Stereoscopic display - Google Patents

Stereoscopic display Download PDF

Info

Publication number
WO2021085492A1
WO2021085492A1 PCT/JP2020/040498 JP2020040498W WO2021085492A1 WO 2021085492 A1 WO2021085492 A1 WO 2021085492A1 JP 2020040498 W JP2020040498 W JP 2020040498W WO 2021085492 A1 WO2021085492 A1 WO 2021085492A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
reference axis
light
rays
generators
Prior art date
Application number
PCT/JP2020/040498
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 吉田
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2021085492A1 publication Critical patent/WO2021085492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/20Stereoscopic photography by simultaneous viewing using two or more projectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/39Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material

Definitions

  • the present invention relates to a stereoscopic display that presents a stereoscopic image.
  • a stereoscopic image is generally presented in a space such as in front of or above the screen.
  • the stereoscopic display described in Patent Document 1 includes a plurality of light ray generators provided so as to be arranged along a circle about a reference axis.
  • a reflective member provided so as to surround the reference shaft is provided.
  • the reflective member has an inner peripheral surface centered on a reference axis as a reflective surface.
  • a group of light rays composed of a plurality of light rays is emitted from each of the plurality of light ray generators.
  • the emitted light beam group is reflected by the reflecting surface of the reflecting member.
  • the group of light rays reflected by the reflecting member presents a stereoscopic image visible from a predetermined observation area in a predetermined image presentation space.
  • An object of the present invention is to provide a stereoscopic display capable of presenting a high-definition stereoscopic image while suppressing an increase in size and complexity of the configuration.
  • the three-dimensional display is a three-dimensional display for presenting a three-dimensional image based on three-dimensional shape data, and is a reflection having a reflecting surface surrounding the reference axis centered on a reference axis extending in the vertical direction.
  • a reference unit provided with a member, a plurality of ray generators configured to be capable of emitting a group of rays composed of a plurality of rays, and arranged so as to surround a reference axis, and a control unit for controlling the plurality of ray generators.
  • An annular viewing area centered on the axis is defined, and the reflective member is configured such that the reflective surface has a substantially circular shape centered on the reference axis in any cross section perpendicular to the reference axis.
  • Each of the ray generators is provided so that each ray of the ray group is reflected multiple times on the reflecting surface, and the control unit is a plurality of rays emitted from the plurality of ray generators and reflected multiple times on the reflecting surface. Controls a plurality of ray generators so as to present a stereoscopic image visible from the annular visual field.
  • a group of rays emitted from one of the plurality of ray generators reaches the annular viewing region after being reflected multiple times by the reflecting surface.
  • the range in which the ray group can reach in the annular visual range is the annular view in which the ray group emitted from one ray generator is not reflected by the reflection surface. It is larger than when it reaches the area directly.
  • the range in which the ray group can reach in the annular vision area reaches the annular vision area directly after the ray group emitted from one ray generator is reflected once by the reflection surface. It will be larger than when you do.
  • the density of light rays referred to here means the number of light rays per unit angle that reaches the annular visual range in a plan view in the direction of the reference line.
  • the reflecting member and the plurality of light ray generators may be provided so that the light ray group after being emitted from each light ray generator and reflected a plurality of times by the reflecting surface reaches the entire annular visual range.
  • the density of the light rays reaching each position in the circular visual field can be increased.
  • the reflecting surface of the reflecting member directly receives and reflects the light group emitted from each light generator, and directly receives and reflects the light group reflected by the first part.
  • the position of the first part and the position of the second part are different from each other in the direction of the reference axis, and the distance between the reference axis and the second part is the reference axis. The distance between and the first part may be different.
  • the distance between the reference axis and the second part is larger or smaller than the distance between the reference axis and the first part.
  • the ray group reflects the size of the first and second parts in the reflective member. It can be set larger in the order of operation. Thereby, it is possible to set a large area for presenting the stereoscopic image inside the second portion of the reflective member. Therefore, in order to present a larger stereoscopic image to the observer, the traveling path of each ray emitted from the plurality of ray generators can be appropriately determined.
  • the configuration of the peripheral member of the region where the stereoscopic image should be presented is reduced. Can be transformed into.
  • the plurality of light beam generators may be located outside the reflecting surface of the reflecting member in a plan view in the direction of the reference axis.
  • a plurality of light beam generators can be arranged outside the reflecting surface of the reflecting member in a plan view. Therefore, when a plurality of ray generators are arranged on a circle centered on a reference axis, a plurality of ray generators are arranged inside the reflection surface of the reflection member in a plan view.
  • the radius of the circle in which the ray generator is placed can be made larger. In this case, the circumference of the circle in which the plurality of ray generators are arranged becomes long. Thereby, a larger number of ray generators can be arranged on the circle.
  • the size of each ray generator is large so that the two ray generators arranged adjacent to each other do not interfere with each other. Is allowed.
  • the group of rays emitted from each of the plurality of ray generators has a row of rays arranged in a plane parallel to the direction of the reference axis and a row of rays arranged in a plane parallel to the direction perpendicular to the reference axis.
  • the number of rays forming a ray row may be larger than the number of rays forming a ray sequence.
  • the density in the circumferential direction centered on the reference axis of the ray group can be increased as compared with the case where the number of rays forming the ray sequence is less than or equal to the number of rays forming the ray row.
  • the ray group referred to here is a ray group that constitutes a stereoscopic image that can be visually recognized from the annular viewing region.
  • the three-dimensional display further includes a ray controller that controls while transmitting each ray of a group of rays emitted from each of the plurality of ray generators and reflected multiple times by the reflecting surface, and the ray controller is a reflection. It may be located between the reflective surface of the member and the annular viewing area.
  • each ray traveling from the reflective member toward the annular visual region is controlled by the ray controller.
  • the ray controller controls to diffuse each ray of a group of rays emitted from each of a plurality of ray generators and reflected a plurality of times by a reflecting surface in a plane including a reference axis.
  • each light ray traveling from the reflective member toward the annular visual region spreads in the direction of the reference axis.
  • the width of the annular visual region in the direction of the reference axis can be set larger than that in the case where the ray controller is not used.
  • the present invention it is possible to present a high-definition stereoscopic image while suppressing the increase in size and complexity of the configuration.
  • FIG. 1 is a schematic cross-sectional view of a stereoscopic display according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the stereoscopic display of FIG.
  • FIG. 3 is a schematic plan view for explaining a traveling path of a group of rays emitted from each of a plurality of ray generators.
  • FIG. 4 is a schematic cross-sectional view for explaining a traveling path of a group of rays emitted from each of a plurality of ray generators.
  • FIG. 5 is a diagram for explaining a method of presenting a stereoscopic image by a stereoscopic display.
  • FIG. 6 is a diagram for explaining a method of presenting a stereoscopic image by a stereoscopic display.
  • FIG. 7 is a plan view for explaining a range within a visible range in which a group of light rays emitted from one light ray generator can reach in a stereoscopic display.
  • FIG. 8 is a schematic plan view of a stereoscopic display for explaining a preferred condition setting example for a plurality of components of the stereoscopic display.
  • FIG. 9 is a schematic plan view of a stereoscopic display for explaining other condition setting examples for a plurality of components of the stereoscopic display.
  • FIG. 10 is a diagram for explaining a specific presentation example of a stereoscopic image using a stereoscopic display corresponding to the example of FIG. FIG.
  • FIG. 11 is a plan view for explaining a positional relationship peculiar to a stereoscopic display according to an embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing an example of the reflective member according to another embodiment.
  • FIG. 13 is a schematic cross-sectional view showing another example of the reflective member according to another embodiment.
  • FIG. 14 is a schematic cross-sectional view showing still another example of the reflective member according to another embodiment.
  • FIG. 1 is a schematic cross-sectional view of a stereoscopic display according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of the stereoscopic display of FIG.
  • the stereoscopic display 1 is composed of a plurality of ray generators 2, a control device 3, a storage device 4, two reflecting members 7, 8 and a ray controller 9.
  • the control device 3 includes, for example, a personal computer, a circuit board, an embedded system, or the like.
  • the storage device 4 includes, for example, a hard disk, a memory card, a RAM (random access memory), or the like.
  • the storage device 4 stores stereoscopic shape data for presenting the stereoscopic image 300. In FIGS. 1 and 2 and 8 and 9 described later, the stereoscopic image 300 presented to the plurality of observers 10 by the stereoscopic display 1 is virtually shown.
  • the table 5 includes a circular top plate 51 and a plurality of legs 52.
  • the top plate 51 has a circular hole 51h at the center.
  • the axis extending in the vertical direction through the center of the top plate 51 is referred to as a reference axis ra.
  • the center of the hole 51h exists on the reference axis ra.
  • the light ray controller 9 has a conical shape with an open bottom, and is fitted into the hole 51h so that the bottom opening faces upward. With the ray controller 9 attached to the top plate 51, the central axis of the ray controller 9 coincides with the reference axis ra.
  • the light ray controller 9 is configured so that the light rays incident on the outer peripheral surface are largely diffused in an arbitrary virtual plane including the reference axis ra, and are diffused while being diffused small in the circumferential direction R centered on the reference axis ra. ing. More specifically, in the light ray controller 9, when a light ray is incident on the outer peripheral surface in an arbitrary virtual surface including the reference axis ra, the light ray passing through the light ray controller 9 on the virtual surface has a viewing area of 500. It is configured to extend over the area including the vertical direction.
  • the light ray controller 9 is configured so that when a light ray is incident on the outer peripheral surface, the light ray incident on the outer peripheral surface of the light ray controller 9 can be regarded as being linearly transmitted in a plan view.
  • the circumferential direction R is a direction orthogonal to the virtual plane including the reference axis ra.
  • the observer 10 around the table 5 can observe the inner peripheral surface of the light ray controller 9 from diagonally above the table 5.
  • a configuration in which light rays are mainly diffused in one direction is realized by, for example, preparing a conical base member made of a transparent sheet-like resin and providing a plurality of annular lenses on the inner peripheral surface or the outer peripheral surface of the base member. can do.
  • a configuration in which light rays are diffused mainly in one direction can also be realized by providing a hologram sheet or a diffraction grating having a predetermined diffusion pattern on the above-mentioned sheet-shaped resin.
  • the reflective member 8 has a cylindrical shape and is provided so as to surround the reference axis ra at a position below the top plate 51. In this example, the upper end of the reflective member 8 is attached to the lower surface of the top plate 51. In this state, the light ray controller 9 is located in the internal space of the reflective member 8.
  • the reflective member 8 has an inner peripheral surface centered on the reference axis ra as the reflective surface 8a. In the plane perpendicular to the reference axis ra (in the horizontal plane), the reflection surface 8a has a circular shape centered on the reference axis ra.
  • the reflective member 7 has a cylindrical shape and is provided at a position below the reflective member 8 so as to surround the reference axis ra.
  • the upper end of the reflective member 7 is attached to the lower end of the reflective member 8.
  • the reflective member 7 has an inner peripheral surface centered on the reference axis ra as the reflective surface 7a.
  • the reflection surface 7a In the plane perpendicular to the reference axis ra (in the horizontal plane), the reflection surface 7a has a circular shape centered on the reference axis ra.
  • the inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a. That is, the distance between the reference axis ra and an arbitrary portion of the reflection surface 8a is larger than the distance between the reference axis ra and an arbitrary portion of the reflection surface 7a.
  • the plurality of light beam generators 2 are fixedly provided below the top plate 51 of the table 5 so as to surround the circumference of the reference axis ra.
  • the plurality of ray generators 2 are arranged on a circle 600 centered on the reference axis ra.
  • the circle 600 is defined on a virtual plane below the reflective members 7 and 8 and perpendicular to the reference axis ra.
  • the circle 600 is represented by a dashed line.
  • the circle 600 is located outside the reflection surfaces 7a and 8a with respect to the reference axis ra in a plan view of the stereoscopic display 1 in the direction of the reference axis ra.
  • the plurality of ray generators 2 are arranged in an annular shape along the circle 600. In the example of FIG. 2, the number of the plurality of ray generators 2 is 18.
  • the plurality of ray generators 2 are fixedly provided with respect to the table 5, the reflecting members 7, 8 and the ray controller 9.
  • the plurality of ray generators 2 may be integrally provided as a ray generator array.
  • each ray generator 2 has a ray emitting unit P that emits a group of rays composed of a plurality of rays.
  • the light emitting portion P of each light generator 2 is directed to the reflecting surface 7a of the reflecting member 7.
  • the group of light rays emitted from the light beam emitting unit P is reflected by the reflecting surface 7a toward the reflecting surface 8a of the reflecting member 8, and further reflected by the reflecting surface 8a toward the outer peripheral surface of the light ray controller 9.
  • at least a part of the ray group emitted from the ray emitting portion P passes through the reference axis ra.
  • the light ray means a light represented by a straight line that does not diffuse.
  • the scanning projector can emit light rays and deflect the light rays in a horizontal plane and a vertical plane. The details of the traveling path of the ray group emitted from each ray generator 2 will be described later.
  • the color of each ray is set according to the stereoscopic image 300 to be presented.
  • the color of the light beam is set for each light emission direction.
  • a group of light rays can be formed in a pseudo manner.
  • the ray generator 2 may be a general projector including a spatial light modulator and a projection system such as a lens array composed of one or a plurality of lenses.
  • a projection system such as a lens array composed of one or a plurality of lenses.
  • One or more lenses include projection lenses.
  • Spatial light modulators are, for example, DMD (Digital Micromirror Device), LCD (Liquid Crystal Display) or LCOS (Liquid Crystal on Silicon).
  • the region where the observer 10's eyes should be located when the observer 10 observes the stereoscopic image 300 is defined in advance as the viewing area 500.
  • the viewing area 500 has a specific positional relationship with respect to the plurality of light generators 2, the reflecting members 7, 8 and the light controller 9.
  • the viewing area 500 of this example is defined in an annular shape so as to surround the reference axis ra at a position above the top plate 51 of the table 5. Further, the viewing area 500 of this example is located outside the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 and the circle 600 with respect to the reference axis ra in a plan view in the direction of the reference axis ra.
  • the viewing area 500 is indicated by a chain double-dashed line, but the viewing area 500 may have a constant width in the vertical direction and the horizontal direction.
  • the control device 3 controls a plurality of ray generators 2 based on the three-dimensional shape data stored in the storage device 4.
  • a stereoscopic image 300 that can be visually recognized from an arbitrary position in the viewing area 500 is presented in the space above the light ray controller 9.
  • the spherical space capable of presenting the stereoscopic image 300 over the entire viewing area 500 on the stereoscopic display 1 is referred to as an image presentation space RS.
  • the image presentation space RS is uniquely determined based on, for example, the shape and dimensions of the ray controller 9, the shape and dimensions of the viewing area 500, and the positional relationship between the light ray controller 9 and the viewing area 500.
  • FIG. 3 is a schematic plan view for explaining a path of travel of a group of rays emitted from each of the plurality of ray generators 2.
  • FIG. 4 is a schematic cross-sectional view for explaining the traveling path of a group of light rays emitted from each of the plurality of light ray generators 2.
  • 3 and 4 show one ray generator 2 arranged on the circle 600, respectively.
  • some components of the stereoscopic display 1 required for explanation are shown in order to facilitate understanding of the traveling path of the ray group.
  • the light ray controller 9 is illustrated by a dotted line.
  • the ray group emitted from each ray generator 2 includes a plurality of rays L arranged in a plurality of columns and a plurality of rows.
  • the columns are arranged vertically and the rows are arranged horizontally. That is, the plurality of rays in each column are arranged on a plane parallel to the vertical direction, and the plurality of rays in each row are arranged on a plane parallel to the horizontal direction.
  • the arrangement of a plurality of rays L in each column is referred to as a ray column
  • the arrangement of a plurality of rays L in each row is referred to as a ray row.
  • the group of light rays emitted from the light ray generator 2 on the circle 600 is reflected by the reflecting surface 7a having a circular horizontal cross section.
  • the plurality of light rays L reflected by the reflecting surface 7a are further reflected by the reflecting surface 8a having a circular horizontal cross section.
  • the plurality of light rays L reflected by the reflecting surface 8a enter the outer peripheral surface of the light ray controller 9, pass through the light ray controller 9, and head toward the plurality of positions within the viewing range 500.
  • the plurality of light rays L included in the common light ray line travel in different directions in a plan view and are incident over a wide range of the visual range 500.
  • the group of light rays emitted from the light ray generator 2 on the circle 600 is reflected by the reflecting surface 7a extending linearly in the vertical direction.
  • the plurality of light rays L reflected by the reflecting surface 7a are reflected by the reflecting surface 8a extending linearly in the vertical direction.
  • the plurality of light rays L reflected by the reflecting surface 8a enter the outer peripheral surface of the light ray controller 9, pass through the light ray controller 9, and head toward the viewing area 500.
  • each of the plurality of portions of the light ray controller 9 in the ridge line direction T transmits the light ray L so that the light ray L incident from the reflecting member 8 is diffused in the vertical direction.
  • a part of the light diffused by each of the plurality of light rays L included in the common light ray sequence reaches a substantially common position in the visual range 500.
  • the state in which the light beam L passing through the visual range 500 is diffused is indicated by a dotted line, and a part of the diffused light reaching a substantially common position is indicated by a alternate long and short dash line.
  • the observer 10 has a plurality of rays L included in a common ray sequence among the ray groups emitted from one ray generator 2 arranged on the circle 600 at an arbitrary position in the visual range 500. Can be visually recognized.
  • the number of rays L forming a ray row is preferably larger than the number of rays L forming a ray sequence.
  • the number of light rays L incident on the visual range 500 in order to form the stereoscopic image 300 in the horizontal direction is smaller than the number of light rays L forming the ray train. The density can be increased. Thereby, the fineness of the stereoscopic image 300 can be increased.
  • the density of the ray L in the ray row is higher than the density of the ray L in the ray sequence.
  • the density of the light rays L referred to here means the number of light rays per unit angle at the angle of view projected from each light ray generator 2.
  • the density of the ray train is the number of rays per unit angle among the plurality of rays L spreading in the vertical direction
  • the density of the ray rows is the number of rays per unit angle among the plurality of rays L spreading in the horizontal direction. is there. That is, it is preferable that the number of rays per unit angle in the ray row is larger than the number of rays per unit angle in the ray train. In this case, since the distance between the plurality of light rays L reaching the viewing range 500 can be shortened, the definition of the stereoscopic image 300 can be improved.
  • FIGS. 5 and 6 are diagrams for explaining a method for presenting a stereoscopic image 300 on the stereoscopic display 1.
  • a schematic plan view of the stereoscopic display 1 is shown in the upper row.
  • the 18 ray generators 2 shown in FIG. 2 are distinguished from each other, the plurality of ray generators 2 are referred to as ray generators 2a to 2r, respectively.
  • the light ray generator 2j when a red voxel is presented to the position PR of the image presentation space RS, for example, the light ray generator 2j is reflected twice by the two reflecting surfaces 7a and 8a and passes through the position PR. A red color is given to the light beam Lj0 emitted from the light beam Lj0. Further, the light ray generator 2i imparts red color to the light ray Li0 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PR. Further, the light ray generator 2h imparts red color to the light ray Lh0 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PR.
  • a red voxel is presented as if there is a red point light source at the intersection of the red rays Lj0, Li0, Lh0.
  • the observer 10 can see red voxels at the position PR.
  • the positions ej0, ei0, and eh0 are different positions within the viewing range 500.
  • the portions of the rays Lj0, Li0, Lh0 from the ray generators 2j, 2i, 2h to the reflection by the reflection surface 7a are dotted lines so that the traveling paths of the rays Lj0, Li0, Lh0 can be easily understood. Indicated by. Further, the portions of the light rays Lj0, Li0, and Lh0 from being reflected by the reflecting surface 7a to being reflected by the reflecting surface 8a are indicated by a alternate long and short dash line. Further, the portions of the light rays Lj0, Li0, and Lh0 that are reflected by the reflecting surface 8a and reach the viewing area 500 are shown by thick solid lines.
  • the light beam generator 2j when a green voxel is presented at the position PG of the image presentation space RS, for example, the light beam generator 2j is reflected twice by the two reflecting surfaces 7a and 8a and is positioned. A green color is given to the light ray Lj1 emitted so as to pass through the PG. Further, the light ray generator 2i imparts green color to the light ray Li1 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PG. Further, the light ray generator 2h imparts green color to the light ray Lh1 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PG.
  • a green voxel is presented as if there is a green point light source at the intersection of the green rays Lj1, Li1, Lh1.
  • the observer 10 can see a green voxel at the position PG.
  • the positions ej1, ei1, and eh1 are different positions within the viewing range 500.
  • FIG. 6 similarly to the example of FIG. 5, the portion of the light rays Lj1, Li1, Lh1 from the light beam generators 2j, 2i, 2h to the reflection by the reflection surface 7a is shown by a dotted line. Further, the portion of the light rays Lj1, Li1 and Lh1 from being reflected by the reflecting surface 7a to being reflected by the reflecting surface 8a is indicated by a dashed line. Further, the portions of the light rays Lj1, Li1 and Lh1 that are reflected by the reflecting surface 8a and reach the viewing area 500 are shown by thick solid lines.
  • the light rays L of the colors to be presented are emitted from each of the plurality of light ray generators 2a to 2r in the direction of passing through each position of the stereoscopic image 300. It is assumed that the image presentation space RS is sufficiently densely filled with the intersection group by the plurality of light rays L emitted from the plurality of light ray generators 2a to 2r and reflected twice by the two reflecting surfaces 7a and 8a. In this case, when observing the image presentation space RS from any position within the visual range 500, an appropriate light ray L passing through the positions PR and PG is incident on the eyes of the observer 10. Thereby, the observer 10 recognizes that there is a point light source there.
  • the surface of the object can be regarded as a set of point light sources. That is, by appropriately reproducing the colors of the plurality of positions where the surface of the object should exist by the plurality of light rays L emitted from the plurality of light beam generators 2a to 2r, it is possible to observe at any position within the visual range 500. 3D image 300 can be presented.
  • the stereoscopic image 300 visually recognized from the positions ej0, ei0, and eh0 in the visual range 500 is shown.
  • the appearance of the stereoscopic image 300 visually recognized from the different positions ej0, ei0, and eh0 in the viewing area 500 is different from each other depending on the type of the shape to be represented by the stereoscopic shape data.
  • the red voxels presented at the intersections of the red rays Lj0, Li0, and Lh0 are visually recognized as existing at a common position PR in the image presentation space RS from the plurality of positions ej0, ei0, and eh0.
  • the stereoscopic image 300 visually recognized from the positions ej1, ei1, and eh1 in the visual range 500 is further shown.
  • the appearance of the stereoscopic image 300 visually recognized from the different positions ej1, ei1, eh1 in the viewing area 500 is different from each other depending on the type of the shape to be represented by the stereoscopic shape data.
  • the green voxels presented at the intersections of the green rays Lj1, Li1, and Lh1 are visually recognized from the plurality of positions ej1, ei1, eh1 as if they exist at a common position PG in the image presentation space RS.
  • the position of the right eye and the position of the left eye of the observer 10 are different from each other.
  • the observer 10 sees one point light source, among the plurality of light rays L forming the point light source, light rays L in different directions are incident on the right eye and the left eye, respectively. Therefore, the observer 10 can see each point light source in different line-of-sight directions for the right eye and the left eye. That is, there is a convergence angle between the line-of-sight direction of the right eye and the line-of-sight direction of the left eye.
  • the positional relationship of the plurality of point light sources viewed by the right eye is different from the positional relationship of the plurality of point light sources viewed by the left eye. That is, parallax occurs.
  • the observer 10 can stereoscopically view the image formed by the group of light rays.
  • a plurality of light rays L included in a common light beam sequence are incident on substantially a common position in the viewing area 500.
  • a plurality of light rays L included in a light ray sequence common to the light ray Lj0 among the light ray group emitted from the light ray generator 2j reach the position ej0 in FIG. This makes it possible to reproduce a plurality of colors representing the surface of an object in the vertical direction.
  • the voxel is a point light source in the image presentation space RS that emits light with the same intensity in all directions. Therefore, a common color is given to the plurality of light rays L used for presenting one voxel to a plurality of positions in the visual range 500 regardless of the direction.
  • the colors given to each of the plurality of rays for presenting one voxel to the plurality of positions in the field of view 500 may be modified based on various rendering techniques used in computer graphics.
  • a process of selecting a color as a color to be given to the light beam may be performed (hidden surface process).
  • the plurality of light rays L for presenting the voxels may be given a color to which a white component is added in consideration of, for example, specular reflection.
  • FIG. 7 shows the view range 500 within the reachable range of the ray group emitted from the one ray generator in the stereoscopic display 1. It is a top view for demonstrating the range in.
  • attention will be paid to a group of light rays emitted from one light ray generator 2j.
  • the group of light rays emitted from the light ray generator 2j of this example is emitted so as to spread from the light ray emitting portion P at a horizontal angle of view (for example, 30 °) peculiar to the light ray generator 2j in a plan view.
  • a horizontal angle of view for example, 30 °
  • the ray group emitted from the ray generator 2j is a ray generator as shown in the upper part of FIG.
  • the field of view 500 is reached directly from 2j.
  • the range that the ray group of the ray generator 2j in the visual range 500 can reach is called the direct reach range cr0.
  • the region in which the light ray group emitted from one light ray generator 2j can travel is widened. Shown by thin hatching.
  • the light beam group emitted from the light beam generator 2j is the reflective member 7 (FIG. 1) as shown in the middle stage of FIG.
  • the rear viewing area 500 is reached after being reflected by the reflecting surface 7a of the above.
  • the range that the light ray group of the light ray generator 2j in the visual range 500 can reach is called the first reflection reachable range cr1.
  • the group of light rays reflected by the reflecting surface 7a has an angle of view of the light beam generator 2j because the reflecting surface 7a has a constant curvature in the circumferential direction in the horizontal plane.
  • the ratio occupied by the first reflection reachable range cr1 in the visual range 500 is larger than the ratio occupied by the direct reachable range cr0 in the visual range 500.
  • about half of the viewing area 500 is the first reflection reach range cr1.
  • the hatching in which the traveling region of the ray group emitted from one ray generator 2j is dark. Indicated by.
  • the group of light rays emitted from the light beam generator 2j is generated twice by the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 (FIG. 1) as shown in the lower part of FIG. After being reflected, it reaches the viewing range of 500. At this time, the range that the light ray group of the light ray generator 2j in the visual range 500 can reach is called the second reflection reachable range cr2.
  • the light rays reflected from the reflecting surface 8a are reflected by the reflecting surface 7a because the reflecting surface 8a has a constant curvature in the circumferential direction in the horizontal plane. It spreads beyond the spread of the group.
  • the ratio occupied by the second reflection reachable range cr2 in the visual range 500 is larger than the ratio occupied by the first reflection reachable range cr1 in the visual range 500.
  • the entire area of the viewing area 500 is the second reflection reach range cr2.
  • the group of light rays emitted from the light ray generator 2j is 360 ° in the circumferential direction of the visual range 500 centered on the reference axis ra in a plan view. It has reached a range exceeding (in this example, a range of about 430 °).
  • the progressive region of the ray group emitted from one ray generator 2j in the stereoscopic display 1 of FIG. 1 is shown by a dot pattern.
  • the group of light rays emitted from one light ray generator 2j is reflected twice by the reflecting surfaces 7a and 8a and reaches the viewing area 500.
  • the range in which the ray group can reach the viewing area 500 from the ray generator 2j is larger than that in the case where the ray group emitted from one ray generator 2j directly reaches the viewing area 500. can do.
  • the range that can be made can be increased.
  • the light rays L emitted from each of the plurality of light ray generators 2a to 2r can reach a wider range in the visual range 500. Therefore, it is possible to form the stereoscopic image 300 presented to the observer 10 at each of the plurality of positions within the visual range 500 by using a larger number of ray generators among the plurality of ray generators 2a to 2r. Become.
  • FIG. 8 is a schematic plan view of the stereo display 1 for explaining a preferred example of setting conditions for a plurality of components of the stereo display 1.
  • the first virtual straight line bl1 is a straight line passing through the light emitting portion P of the light ray generator 2j of one of the plurality of light ray generators 2a to 2r and the reference axis ra in a plan view. Is defined as.
  • the position in the visual range 500 that intersects the first virtual straight line bl1 in the plan view is referred to as a representative position rp as a representative of the positions in the visual range 500.
  • the conditions of the plurality of components of the stereoscopic display 1 are set so that the stereoscopic image 300 visibly presented from the representative position rp is formed by a plurality of light rays emitted from all the light ray generators 2a to 2r. Is preferable.
  • all the ray generators 2a to 2r are hatched as a plurality of ray generators that contribute to the formation of the stereoscopic image 300 visually recognized from the representative position rp.
  • the conditions to be set include the shape and size of the reflecting surfaces 7a and 8a, the angles of view of the respective ray generators 2a to 2r, and the plurality of ray generators 2a to 2r, the reflecting surfaces 7a and 8a and Includes the positional relationship of the field of view 500.
  • the fact that the stereoscopic image 300 corresponding to the representative position rp is formed by a plurality of light rays emitted from all the light ray generators 2a to 2r is that the reflection surfaces 7a and 8a are emitted from each light ray generator. It means that the group of light rays after being reflected twice by the light beam reaches the entire area of the viewing area 500. Thereby, the density of the light ray L reaching an arbitrary position in the visual range 500 can be increased. Therefore, it is possible to present a higher-definition stereoscopic image 300 that can be visually recognized at an arbitrary position within the viewing range 500.
  • FIG. 9 is a schematic plan view of the stereoscopic display 1 for explaining other condition setting examples for the plurality of components of the stereoscopic display 1.
  • the straight line passing through the ray emitting portion P of the ray generator 2j and the reference axis ra in a plan view is defined as the first virtual straight line bl1.
  • the position in the viewing area 500 that intersects the first virtual straight line bl1 in a plan view is called a representative position rp.
  • a straight line perpendicular to the first virtual straight line bl1 in the plan view and passing through the reference axis ra is defined as the second virtual straight line bl2, and is divided by the second virtual straight line bl2 in the plan view.
  • the two spaces are called the first space sp1 and the second space sp2.
  • the first space sp1 is a space in which the light ray generator 2j is not arranged
  • the second space sp2 is a space in which the light ray generator 2j is arranged.
  • the condition of the plurality of components of the stereoscopic display 1 is that all the ray generators 2a to 2e, 2o to 2r and the second space sp2 in which the stereoscopic image 300 corresponding to the representative position rp is arranged in the first space sp1. It may be set to be formed by a plurality of rays L emitted from some of the arranged ray generators.
  • FIG. 9 as a plurality of ray generators that contribute to the formation of the stereoscopic image 300 visually recognized from the representative position rp, some of the ray generators 2a to 2f and 2n to 2r among the plurality of ray generators 2a to 2r are used. Shown by hatching.
  • the viewing range is within 500 as compared with the case where the stereoscopic image 300 is formed without using the reflective members 7 and 8 and the case where the stereoscopic image 300 is formed by using one of the reflective members 7 and 8. It is possible to increase the density of the light beam L that reaches an arbitrary position of. Therefore, it is possible to present a high-definition stereoscopic image 300 that can be visually recognized at an arbitrary position within the viewing range 500.
  • FIG. 10 is a diagram for explaining a specific presentation example of the stereoscopic image 300 using the stereoscopic display 1 corresponding to the example of FIG. Here, how the stereoscopic image 300 visible from the representative position rp (FIG. 8) is presented in the stereoscopic display 1 corresponding to the example of FIG. 8 will be described.
  • a plurality of ray groups 2a to a plurality of ray groups for forming the stereoscopic image 300 are presented. It is emitted from each of 2r.
  • An image formed by a group of light rays emitted from each of the light beam generators 2a to 2r is called an emitted image.
  • the portion of the emitted image including the light ray L used to form the stereoscopic image 300 that can be visually recognized at an arbitrary position within the visual range 500 is determined according to the position of the light ray generator in the circle 600. Be done.
  • a part of a ray group of light rays emitted from each of the plurality of light ray generators 2a to 2r is incident.
  • a plurality of ray sequences emitted from the plurality of ray generators 2a to 2r and incident on the representative position rp are used to form the stereoscopic image 300 corresponding to the representative position rp.
  • the outlines of the emitted images i2a to i2r of the plurality of light beam generators 2a to 2r are shown by dotted lines.
  • the image portion of the ray sequence reaching the representative position rp of the emitted images i2a to i2r is shown in the solid line frame.
  • the image portions of a plurality of ray trains emitted from the plurality of ray generators 2a to 2r and reaching the representative position rp are presented so as to be continuously arranged in the horizontal direction in the image presentation space RS.
  • the stereoscopic image 300 corresponding to the representative position rp is formed.
  • the portion other than the solid line frame reaches another position in the visual range 500 for each ray sequence.
  • the image portions of the plurality of ray trains emitted from the plurality of ray generators 2a to 2r and reaching the positions are continuous in the horizontal direction in the image presentation space RS. It is presented to line up. As a result, the stereoscopic image 300 corresponding to the position is formed.
  • the inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a.
  • the reflecting surfaces 7a and 8a can be set larger in the order in which the light rays emitted from each of the plurality of light beam generators 2 are reflected.
  • the image presentation space RS can be set to be larger than when the inner diameter of the reflecting surface 8a is smaller than the inner diameter of the reflecting surface 7a. Therefore, in order to present the larger stereoscopic image 300 to the observer 10, the traveling paths of various light rays in the stereoscopic display 1 can be appropriately determined.
  • the plurality of light beam generators 2 are located outside the reflection surface 8a in a plan view in the direction of the reference axis ra. In this case, the installation space is less likely to be limited as compared with the case where a plurality of light beam generators 2 are arranged inside the reflection member 8 in a plan view. Therefore, the degree of freedom in arranging the plurality of light beam generators 2 is improved.
  • the light ray controller 9 is provided between the reflecting surface 8a and the viewing area 500, and each light ray L of the light ray group incident on the outer peripheral surface is in-plane including the reference axis ra. Make it transparent while diffusing with. In this case, each light ray L traveling from the reflecting surface 8a toward the viewing area 500 spreads in the direction of the reference axis ra. As a result, the width of the viewing area 500 in the direction of the reference axis ra can be set larger than that in the case where the light ray controller 9 is not used.
  • FIG. 11 is a plan view for explaining a positional relationship peculiar to the stereoscopic display 1 according to the embodiment of the present invention. As shown in FIG. 11, it is assumed that a blue voxel is presented at the position PB of the image presentation space RS by one ray generator 2j in a plan view of the stereoscopic display 1. In this case, the light ray generator 2j emits a blue light ray LB so as to be reflected twice by the two reflecting surfaces 7a and 8a and pass through the position PB.
  • the light ray LB is a straight line portion LB1 incident on the reflection surface 7a from the light ray generator 2j, a straight line portion LB2 incident on the reflection surface 8a from the reflection surface 7a, and a straight line portion incident on the viewing area 500 from the reflection surface 8a. It is composed of LB3.
  • the reflecting surfaces 7a and 8a have a circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra.
  • the plurality of light beam generators 2a to 2r are arranged on a circle 600 centered on the reference axis ra.
  • the ray controller 9 has a conical shape, and the central axis of the ray controller 9 coincides with the reference axis ra.
  • the center of the inscribed sphere IB of the three linear portions LB1, LB2, LB3 of the above-mentioned ray LB is located on the reference axis ra.
  • the density distributions of the plurality of ray lines arriving from the plurality of ray generators 2a to 2r over the entire viewing area 500 become equal. Therefore, it is possible to present a homogeneous stereoscopic image 300 over the entire viewing area 500 defined in the stereoscopic display 1.
  • the position of the voxel to be presented as a part of the stereoscopic image 300 needs to be set in the image presentation space RS.
  • the stereoscopic image 300 is presented in the image presentation space RS by a plurality of light rays reflected twice by the two reflecting surfaces 7a and 8a.
  • the stereoscopic image 300 may be presented in the image presentation space RS by a plurality of light rays reflected three or more times by at least one of the two reflecting surfaces 7a and 8a.
  • the stereoscopic display that presents the stereoscopic image 300 by the plurality of light rays reflected three times or more may include three or more individually produced reflecting members.
  • the first reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect a group of light rays emitted from each light ray generator 2 on its inner peripheral surface.
  • the second reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect a group of light rays reflected by the first reflecting member on the inner peripheral surface thereof.
  • the third reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect the light rays group reflected by the second reflecting member on the inner peripheral surface thereof.
  • the range within the range 500 that can be reached by the group of light rays emitted from one light beam generator and reflected three or more times is within the range 500 within the range 500 that the group of light rays reflected twice by the reflecting surfaces 7a and 8a can reach. Larger than the range of. Thereby, the stereoscopic image 300 visually recognized by the observer 10 at each of the plurality of positions in the visual range 500 can be formed by a larger number of light rays by using a larger number of light ray generators. As a result, the stereoscopic image 300 can be further improved in definition.
  • FIG. 12 is a schematic cross-sectional view showing an example of the reflective member according to another embodiment
  • FIG. 13 is a schematic cross-sectional view showing another example of the reflective member according to another embodiment.
  • FIG. I is a schematic cross-sectional view showing still another example of the reflective member according to another embodiment.
  • the reflecting surface 8a of the reflecting member 8 is inclined with respect to the direction of the reference axis ra in the side view. In this way, by inclining at least one of the reflecting members 7 and 8 with respect to the direction of the reference axis ra, a group of light rays reflected from each light generator 2 toward the viewing area 500. The direction of travel can be adjusted. Thereby, the height of the viewing range 500 can be adjusted without changing the size of the reflective member 8 in the vertical direction.
  • the reflecting member 71 that reflects the group of light rays emitted from the light ray generator 2 twice is composed of a single cylindrical member.
  • the reflecting member 71 has an inner peripheral surface centered on the reference axis ra as the reflecting surface 71a.
  • the inner diameter of the reflective member 71 is constant. According to the reflection member 71 of FIG. 13, the configuration for reflecting the light ray group generated from each light ray generator 2 is simplified.
  • the reflection member 72 that reflects the light beam group emitted from the light beam generator 2 twice is composed of a single cylindrical member, as in the example of FIG.
  • the reflective member 72 has a configuration in which a large diameter portion 72a, an intermediate portion 72b, and a small diameter portion 72c are arranged downward from the lower surface of the top plate 51 in this order, and is provided so as to surround the reference axis ra. There is. Further, the reflective member 72 has an inner peripheral surface centered on the reference axis ra as the reflective surface 72s.
  • the large diameter portion 72a and the small diameter portion 72c each have a substantially constant inner diameter.
  • the inner diameter of the large diameter portion 72a is larger than the inner diameter of the small diameter portion 72c.
  • the intermediate portion 72b is formed so as to connect the large diameter portion 72a and the small diameter portion 72c. Therefore, the inner diameter of the intermediate portion 72b changes so as to transition from the small diameter portion 72c to the large diameter portion 72a. Specifically, the inner diameter of the intermediate portion 72b is gradually increased from the lower side to the upper side.
  • the reflection member 72 of FIG. 14 the number of parts for reflecting the light ray group generated from each light ray generator 2 is reduced, and the configuration is simplified. Further, by appropriately setting the portion where the inner diameter changes in the direction of the reference axis ra, the traveling direction of the ray group reflected from each ray generator 2 toward the viewing area 500 can be determined regardless of the ray controller 9. Can be adjusted.
  • the reflecting surface 72s of at least one of the large diameter portion 72a and the small diameter portion 72c may be formed so as to be concavely curved from the lower side to the upper side in the virtual surface including the reference axis ra. That is, the vertical cross section of at least one of the large-diameter portion 72a and the small-diameter portion 72s of the reflecting surface 72s may have a concave shape. In this case, a part of the light ray group emitted from each light ray generator 2 is reflected by at least one reflecting surface 72s of the large diameter portion 72a and the small diameter portion 72c, so that each light ray generator is reflected in the vertical direction. It is also possible to collect the ray trains emitted from No. 2 at each position in the viewing area 500.
  • the stereoscopic display 1 is provided with the light ray controller 9, but the light ray controller 9 may not be provided.
  • the image presentation space RS is, for example, the shape and size of the reflecting surface 8a of the reflecting member 8, the size of the hole 51h of the top plate 51, the shape and size of the viewing area 500, and the reflecting member 8 and the viewing area 500. It can be uniquely determined based on the positional relationship between them.
  • the light ray controller 9 having a conical shape is attached to the table 5, but the present invention is not limited to this.
  • the light ray controller 9 may have a truncated cone shape or a cylindrical shape. Further, the light ray controller 9 may be provided so as to be in contact with any of the reflecting surfaces 7a and 8a.
  • the viewing area 500 is defined at a position above the top plate 51 of the table 5, and the reflecting members 7 and 8 and the plurality of light beam generators 2 are the top plate 51.
  • the stereoscopic display 1 may have a configuration that is inverted in the vertical direction with respect to the top plate 51 of the table 5. In this case, the observer 10 can visually recognize the stereoscopic image 300 by looking at the light ray controller 9 obliquely upward from below at an arbitrary position within the viewing range 500.
  • the image presentation space RS is set above the inner peripheral surface of the light ray controller 9, but the present invention is not limited to this.
  • the image presentation space RS may be set below the inner peripheral surface of the light ray controller 9.
  • the light ray controller 9 is fitted into the hole 51h so that the bottom opening faces downward. More specifically, the bottom of the light ray controller 9 is fitted into the hole 51h so that its apex and most of its outer peripheral surface are located above the top plate 51.
  • the stereoscopic image 300 is presented below the light ray controller 9.
  • the ray controller 9 is made of a translucent material. As a result, the observer 10 can visually recognize the stereoscopic image 300 through the light ray controller 9 by looking at the light ray controller 9 from the visual range 500.
  • Each of the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 has a circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra.
  • Each of the reflecting surfaces 7a and 8a may have a substantially circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra. That is, each of the reflecting surfaces 7a and 8a may have a horizontal cross section having a polygonal shape that can be regarded as a substantially circular shape.
  • each of the reflecting surfaces 7a and 8a may have a circular shape (elliptical shape) including a distortion that can be regarded as a substantially circular shape.
  • the horizontal cross sections of the reflecting surfaces 7a, 8a may have seams or breaks (chips) to the extent that they can be regarded as substantially circular.
  • the plurality of light beam generators 2 are arranged on a circle 600 centered on the reference axis ra in a plan view, but the present invention is not limited thereto.
  • the plurality of ray generators 2 may be provided so as to surround the reference axis ra in a plan view. Therefore, a part of the plurality of ray generators 2 does not have to be arranged on the circle 600.
  • the stereoscopic display 1 includes 18 ray generators 2 as a plurality of ray generators 2, but the number of ray generators 2 included in the stereoscopic display 1 may be a plurality. It may be 10 pieces or 30 pieces. Alternatively, the number of light beam generators 2 may be about 200 to 300. It is preferable that the plurality of light beam generators 2 are provided at equiangular intervals or substantially equiangular intervals with reference to the reference axis ra in a plan view.
  • the light beam generator 2 may have a configuration in which a point light source or a laser pointer and a slide film are combined (a configuration corresponding to a so-called projector).
  • the storage device 4 becomes unnecessary by preparing in advance a slide film representing an image for presenting the stereoscopic image 300.
  • the inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a, but the inner diameters of the reflecting surfaces 7 and 8 are smaller than the inner diameter of the reflecting surface 7a. It may be configured in. In this case, the configuration of the peripheral members of the image presentation space RS can be miniaturized. Further, since the large configuration can be arranged at a lower position on the stereoscopic display 1, the installation state of the stereoscopic display 1 is stable.
  • the light ray controller 9 provided in the stereoscopic display 1 according to the above embodiment is such that the light rays incident on the outer peripheral surface are diffused while being largely diffused in the ridgeline direction T and smallly diffused in the circumferential direction R.
  • the light ray controller 9 may have the following functions in addition to the function of diffusing the transmitted light beam L in one direction or in addition to the function of diffusing the transmitted light ray L in one direction.
  • the ray controller 9 may have a function of changing or limiting the traveling direction of the transmitted ray L. In this case, by changing or limiting the traveling direction of the transmitted light beam L, the light ray sequence transmitted through the light ray controller 9 can be focused on the viewing range 500 at a desired height.
  • the ray controller 9 that changes or limits the traveling direction of the transmitted ray L can be realized by using, for example, a prism, a member having a parallax barrier structure, a diffraction grating, a hologram, or the like.
  • a prism the configuration for changing the traveling direction of the transmitted light beam L is, for example, to prepare a conical base member formed of a transparent sheet-like resin, and to prepare a plurality of conical base members on the inner peripheral surface or the outer peripheral surface of the base member. This can be achieved by providing an annular prism.
  • a member having a variable parallax barrier structure is used as a configuration for changing or limiting the traveling direction of the light ray L transmitted through the light ray controller 9, a plurality of parallax barrier structures are controlled. It is also possible to appropriately change the focusing position of the light beam L.
  • the light ray controller 9 may have a function of changing the characteristics of the light ray L to be transmitted. In this case, the amount of light and the hue of the presented stereoscopic image 300 can be adjusted by changing the characteristics of the transmitted light beam L.
  • the ray controller 9 that changes the characteristics of the transmitted ray L can be realized by using, for example, an ND (neutral density) filter, a color filter, or the like.
  • the number of light ray controllers 9 provided in the stereoscopic display 1 according to the above embodiment is one, but the present invention is not limited to this.
  • the number of light ray controllers 9 provided in the stereoscopic display 1 may be 2 or more.
  • a circular diffusion plate may be provided so as to close the hole 51h of the top plate 51. In this case, the uneven brightness of the stereoscopic image 300 is reduced, and the image quality of the stereoscopic image 300 is further improved.
  • the three-dimensional display 1 is an example of a three-dimensional display
  • the reference axis ra is an example of a reference axis
  • the reflection surfaces 7a and 8a are examples of reflection surfaces
  • the reflection members 7 and 8 are reflections.
  • members, light generators 2, 2a to 2r are examples of light generators
  • control device 3 is an example of a control unit
  • viewing area 500 is an example of annular viewing area
  • reflecting surface 7a is an example.
  • the first portion of the reflective surface is an example
  • the reflective surface 8a is an example of the second portion of the reflective surface
  • the ray controller 9 is an example of a ray controller.

Abstract

This stereoscopic display is provided with a reflection member and a plurality of beam generators. The reflection member has a reflection surface surrounding a reference axis with the reference axis as a center. The reflection surface has a circular shape centered at the reference axis in an arbitrary cross section perpendicular to the reference axis. The plurality of beam generators are disposed so as to surround the reference axis. Each of the beam generators emits a plurality of beams to the reflection surface. Each of the beams emitted from the beam generator is reflected by the reflection surface multiple times. An annular field of view is defined with the reference axis as a center. A control device controls the plurality of beam generators such that a stereoscopic image visually recognizable from the field of view is presented by the plurality of beams emitted from the plurality of beam generators and reflected multiple times by the reflection surface.

Description

立体ディスプレイStereoscopic display
 本発明は、立体画像を提示する立体ディスプレイに関する。 The present invention relates to a stereoscopic display that presents a stereoscopic image.
 立体画像を提示する種々の立体ディスプレイが開発されている。立体ディスプレイでは、一般に、スクリーンの前方または上方等の空間に立体画像が提示される。 Various stereoscopic displays that present stereoscopic images have been developed. In a stereoscopic display, a stereoscopic image is generally presented in a space such as in front of or above the screen.
 特許文献1に記載された立体ディスプレイは、基準軸を中心とする円に沿って並ぶように設けられた複数の光線発生器を備える。また、基準軸を取り囲むように設けられた反射部材を備える。反射部材は、基準軸を中心とする内周面を反射面として有する。その立体ディスプレイにおいては、複数の光線発生器の各々から、複数の光線からなる光線群が出射される。出射された光線群は、反射部材の反射面で反射される。反射部材により反射された光線群により、予め定められた観察領域から視認可能な立体画像が予め定められた画像提示空間に提示される。
特開2019-020663号公報
The stereoscopic display described in Patent Document 1 includes a plurality of light ray generators provided so as to be arranged along a circle about a reference axis. In addition, a reflective member provided so as to surround the reference shaft is provided. The reflective member has an inner peripheral surface centered on a reference axis as a reflective surface. In the stereoscopic display, a group of light rays composed of a plurality of light rays is emitted from each of the plurality of light ray generators. The emitted light beam group is reflected by the reflecting surface of the reflecting member. The group of light rays reflected by the reflecting member presents a stereoscopic image visible from a predetermined observation area in a predetermined image presentation space.
Japanese Unexamined Patent Publication No. 2019-020663
 特許文献1に記載された立体ディスプレイに関して、立体画像のさらなる高精細化を実現するために、光線発生器の数を増やすことが考えられる。しかしながら、光線発生器の数を増やすと、立体ディスプレイが大型化する。また、光線発生器の数を増やす代わりに、複数の光線発生器を基準軸の周りで回転させ、時分割で各光線発生器からの光線群の出射を制御することが考えられる。しかしながら、この場合、立体ディスプレイの構成が複雑化する。 Regarding the stereoscopic display described in Patent Document 1, it is conceivable to increase the number of light beam generators in order to realize further high definition of the stereoscopic image. However, increasing the number of ray generators increases the size of the stereoscopic display. Further, instead of increasing the number of ray generators, it is conceivable to rotate a plurality of ray generators around a reference axis and control the emission of ray groups from each ray generator in a time division manner. However, in this case, the configuration of the stereoscopic display becomes complicated.
 本発明の目的は、構成の大型化および複雑化を抑制しつつ高精細な立体画像を提示することが可能な立体ディスプレイを提供することである。 An object of the present invention is to provide a stereoscopic display capable of presenting a high-definition stereoscopic image while suppressing an increase in size and complexity of the configuration.
 (1)本発明の一局面に従う立体ディスプレイは、立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、上下方向に延びる基準軸を中心として基準軸を取り囲む反射面を有する反射部材と、複数の光線からなる光線群を各々出射可能に構成されるとともに基準軸を取り囲むように配置される複数の光線発生器と、複数の光線発生器を制御する制御部とを備え、基準軸を中心とする円環状の環状視域が定義され、反射部材は、基準軸に垂直な任意の断面において反射面が基準軸を中心とする実質的な円形を有するように構成され、複数の光線発生器の各々は、光線群の各光線が反射面で複数回反射されるように設けられ、制御部は、複数の光線発生器から出射されて反射面で複数回反射された複数の光線により環状視域から視認可能な立体画像が提示されるように複数の光線発生器を制御する。 (1) The three-dimensional display according to one aspect of the present invention is a three-dimensional display for presenting a three-dimensional image based on three-dimensional shape data, and is a reflection having a reflecting surface surrounding the reference axis centered on a reference axis extending in the vertical direction. A reference unit provided with a member, a plurality of ray generators configured to be capable of emitting a group of rays composed of a plurality of rays, and arranged so as to surround a reference axis, and a control unit for controlling the plurality of ray generators. An annular viewing area centered on the axis is defined, and the reflective member is configured such that the reflective surface has a substantially circular shape centered on the reference axis in any cross section perpendicular to the reference axis. Each of the ray generators is provided so that each ray of the ray group is reflected multiple times on the reflecting surface, and the control unit is a plurality of rays emitted from the plurality of ray generators and reflected multiple times on the reflecting surface. Controls a plurality of ray generators so as to present a stereoscopic image visible from the annular visual field.
 その立体ディスプレイにおいては、複数の光線発生器のうち一の光線発生器から出射される光線群は、反射面で複数回反射された後、環状視域に到達する。この場合、基準軸の方向に見た平面視で、環状視域のうち光線群が到達可能な範囲は、一の光線発生器から出射される光線群が反射面で反射されることなく環状視域に直接的に到達する場合に比べて大きくなる。また、平面視で、環状視域のうち光線群が到達可能な範囲は、一の光線発生器から出射される光線群が反射面で一回反射された後、環状視域に直接的に到達する場合に比べて大きくなる。 In the stereoscopic display, a group of rays emitted from one of the plurality of ray generators reaches the annular viewing region after being reflected multiple times by the reflecting surface. In this case, in the plan view in the direction of the reference axis, the range in which the ray group can reach in the annular visual range is the annular view in which the ray group emitted from one ray generator is not reflected by the reflection surface. It is larger than when it reaches the area directly. Further, in the plan view, the range in which the ray group can reach in the annular vision area reaches the annular vision area directly after the ray group emitted from one ray generator is reflected once by the reflection surface. It will be larger than when you do.
 それにより、環状視域内の複数の位置の各々で観察者により視認される立体画像を、複数の光線発生器のうちより多数の光線発生器を用いて形成することが可能になる。したがって、光線発生器の数を増加させることおよび複数の光線発生器を移動させる構成を設けることなく、環状視域内の各位置に到達する光線の密度を高くすることができる。なお、ここでいう光線の密度とは、基準線の方向に見た平面視で、環状視域に到達する単位角度当たりの光線の数を意味する。その結果、構成の大型化および複雑化を抑制しつつ高精細な立体画像を提示することが可能になる。 Thereby, it becomes possible to form a stereoscopic image visually recognized by the observer at each of a plurality of positions in the annular visual field using a larger number of ray generators among the plurality of ray generators. Therefore, it is possible to increase the density of light rays reaching each position in the annular visual field without increasing the number of light ray generators and providing a configuration for moving a plurality of light ray generators. The density of light rays referred to here means the number of light rays per unit angle that reaches the annular visual range in a plan view in the direction of the reference line. As a result, it becomes possible to present a high-definition stereoscopic image while suppressing the increase in size and complexity of the configuration.
 (2)反射部材および複数の光線発生器は、各光線発生器から出射されて反射面により複数回反射された後の光線群が環状視域の全域に到達するように設けられてもよい。 (2) The reflecting member and the plurality of light ray generators may be provided so that the light ray group after being emitted from each light ray generator and reflected a plurality of times by the reflecting surface reaches the entire annular visual range.
 この場合、環状視域内の各位置に到達する光線の密度をより高くすることができる。それにより、環状視域内の各位置で視認可能なより高精細な立体画像を提示することが可能になる。 In this case, the density of the light rays reaching each position in the circular visual field can be increased. As a result, it becomes possible to present a higher-definition stereoscopic image that can be visually recognized at each position in the annular visual field.
 (3)反射部材の反射面は、各光線発生器から出射された光線群を直接的に受けるとともに反射する第1の部分と、第1の部分で反射された光線群を直接的に受けるとともに反射する第2の部分とを含み、基準軸の方向において、第1の部分の位置と第2の部分の位置とは互いに異なり、基準軸と第2の部分との間の距離は、基準軸と第1の部分との間の距離とは異なっていてもよい。 (3) The reflecting surface of the reflecting member directly receives and reflects the light group emitted from each light generator, and directly receives and reflects the light group reflected by the first part. Including the reflecting second part, the position of the first part and the position of the second part are different from each other in the direction of the reference axis, and the distance between the reference axis and the second part is the reference axis. The distance between and the first part may be different.
 上記の構成によれば、基準軸と第2の部分との間の距離は、基準軸と第1の部分との間の距離に比べて大きいかまたは小さい。基準軸と第2の部分との間の距離が基準軸と第1の部分との間の距離に比べて大きい場合には、反射部材における第1および第2の部分のサイズを光線群が反射する順に大きく設定することができる。それにより、反射部材の第2の部分の内側で立体画像を提示するための領域を大きく設定することができる。したがって、より大きい立体画像を観察者に提示するために、複数の光線発生器から出射される各光線の進行経路を適切に定めることができる。一方、基準軸と第2の部分との間の距離が基準軸と第1の部分との間の距離に比べて小さい場合には、立体画像が提示されるべき領域の周辺部材の構成を小型化することができる。 According to the above configuration, the distance between the reference axis and the second part is larger or smaller than the distance between the reference axis and the first part. When the distance between the reference axis and the second part is larger than the distance between the reference axis and the first part, the ray group reflects the size of the first and second parts in the reflective member. It can be set larger in the order of operation. Thereby, it is possible to set a large area for presenting the stereoscopic image inside the second portion of the reflective member. Therefore, in order to present a larger stereoscopic image to the observer, the traveling path of each ray emitted from the plurality of ray generators can be appropriately determined. On the other hand, when the distance between the reference axis and the second portion is smaller than the distance between the reference axis and the first portion, the configuration of the peripheral member of the region where the stereoscopic image should be presented is reduced. Can be transformed into.
 (4)複数の光線発生器は、基準軸の方向に見た平面視で反射部材の反射面よりも外方に位置してもよい。 (4) The plurality of light beam generators may be located outside the reflecting surface of the reflecting member in a plan view in the direction of the reference axis.
 この場合、平面視で複数の光線発生器を反射部材の反射面の外方に配置することができる。そのため、複数の光線発生器を基準軸を中心とする円上に配置する場合には、平面視で複数の光線発生器を反射部材の反射面の内方に配置する場合に比べて、複数の光線発生器が配置される円の半径をより大きくすることができる。この場合、複数の光線発生器が配置される円の周長が長くなる。それにより、円上により多数の光線発生器を配置することができる。あるいは、円上に配置されるべき光線発生器の個数が予め定められている場合には、隣り合って配置される各2つの光線発生器が干渉しない程度に、各光線発生器のサイズの大型化が許容される。このように、上記の構成によれば、複数の光線発生器の設置条件が制限されにくい。したがって、複数の光線発生器の配置の自由度および複数の光線発生器の種類の選定の自由度が向上する。 In this case, a plurality of light beam generators can be arranged outside the reflecting surface of the reflecting member in a plan view. Therefore, when a plurality of ray generators are arranged on a circle centered on a reference axis, a plurality of ray generators are arranged inside the reflection surface of the reflection member in a plan view. The radius of the circle in which the ray generator is placed can be made larger. In this case, the circumference of the circle in which the plurality of ray generators are arranged becomes long. Thereby, a larger number of ray generators can be arranged on the circle. Alternatively, if the number of ray generators to be arranged on a circle is predetermined, the size of each ray generator is large so that the two ray generators arranged adjacent to each other do not interfere with each other. Is allowed. As described above, according to the above configuration, it is difficult to limit the installation conditions of the plurality of light beam generators. Therefore, the degree of freedom in arranging the plurality of ray generators and the degree of freedom in selecting the types of the plurality of ray generators are improved.
 (5)複数の光線発生器の各々から出射される光線群は、基準軸の方向に平行な面内で並ぶ光線列および基準軸の方向に垂直な方向に平行な面内で並ぶ光線行を含み、光線列を形成する光線数よりも光線行を形成する光線数が大きくてもよい。 (5) The group of rays emitted from each of the plurality of ray generators has a row of rays arranged in a plane parallel to the direction of the reference axis and a row of rays arranged in a plane parallel to the direction perpendicular to the reference axis. Including, the number of rays forming a ray row may be larger than the number of rays forming a ray sequence.
 この場合、光線列を形成する光線数が光線行を形成する光線数以下である場合に比べて、光線群の基準軸を中心とする周方向の密度を大きくすることができる。それにより、立体画像の精細度をより高めることができる。なお、ここでいう光線群は、環状視域から視認可能な立体画像を構成する光線群である。 In this case, the density in the circumferential direction centered on the reference axis of the ray group can be increased as compared with the case where the number of rays forming the ray sequence is less than or equal to the number of rays forming the ray row. Thereby, the fineness of the stereoscopic image can be further improved. The ray group referred to here is a ray group that constitutes a stereoscopic image that can be visually recognized from the annular viewing region.
 (6)立体ディスプレイは、複数の光線発生器の各々から出射されて反射面で複数回反射された光線群の各光線を透過させつつ制御する光線制御子をさらに含み、光線制御子は、反射部材の反射面と環状視域との間に位置してもよい。 (6) The three-dimensional display further includes a ray controller that controls while transmitting each ray of a group of rays emitted from each of the plurality of ray generators and reflected multiple times by the reflecting surface, and the ray controller is a reflection. It may be located between the reflective surface of the member and the annular viewing area.
 この場合、反射部材から環状視域に向かって進行する各光線が光線制御子により制御される。それにより、光線制御子の制御に応じたより適切な立体画像の提示が可能になる。例えば、光線制御子が、複数の光線発生器の各々から出射されて反射面で複数回反射された光線群の各光線を基準軸を含む面内で拡散させる制御を行う場合を仮定する。この場合、反射部材から環状視域に向かって進行する各光線が基準軸の方向に広がる。それにより、基準軸の方向における環状視域の幅を光線制御子が用いられない場合に比べて大きく設定することができる。 In this case, each ray traveling from the reflective member toward the annular visual region is controlled by the ray controller. As a result, it becomes possible to present a more appropriate stereoscopic image according to the control of the ray controller. For example, suppose that the ray controller controls to diffuse each ray of a group of rays emitted from each of a plurality of ray generators and reflected a plurality of times by a reflecting surface in a plane including a reference axis. In this case, each light ray traveling from the reflective member toward the annular visual region spreads in the direction of the reference axis. Thereby, the width of the annular visual region in the direction of the reference axis can be set larger than that in the case where the ray controller is not used.
 本発明によれば、構成の大型化および複雑化を抑制しつつ高精細な立体画像を提示することが可能となる。 According to the present invention, it is possible to present a high-definition stereoscopic image while suppressing the increase in size and complexity of the configuration.
図1は本発明の一実施の形態に係る立体ディスプレイの模式的断面図である。FIG. 1 is a schematic cross-sectional view of a stereoscopic display according to an embodiment of the present invention. 図2は図1の立体ディスプレイの模式的平面図である。FIG. 2 is a schematic plan view of the stereoscopic display of FIG. 図3は複数の光線発生器の各々から出射される光線群の進行経路を説明するための模式的平面図である。FIG. 3 is a schematic plan view for explaining a traveling path of a group of rays emitted from each of a plurality of ray generators. 図4は複数の光線発生器の各々から出射される光線群の進行経路を説明するための模式的断面図である。FIG. 4 is a schematic cross-sectional view for explaining a traveling path of a group of rays emitted from each of a plurality of ray generators. 図5は立体ディスプレイによる立体画像の提示方法を説明するための図である。FIG. 5 is a diagram for explaining a method of presenting a stereoscopic image by a stereoscopic display. 図6は立体ディスプレイによる立体画像の提示方法を説明するための図である。FIG. 6 is a diagram for explaining a method of presenting a stereoscopic image by a stereoscopic display. 図7は立体ディスプレイにおいて一の光線発生器から出射される光線群が到達可能な視域内の範囲を説明するための平面図である。FIG. 7 is a plan view for explaining a range within a visible range in which a group of light rays emitted from one light ray generator can reach in a stereoscopic display. 図8は立体ディスプレイの複数の構成要素についての好ましい条件設定例を説明するための立体ディスプレイの模式的平面図である。FIG. 8 is a schematic plan view of a stereoscopic display for explaining a preferred condition setting example for a plurality of components of the stereoscopic display. 図9は立体ディスプレイの複数の構成要素についての他の条件設定例を説明するための立体ディスプレイの模式的平面図である。FIG. 9 is a schematic plan view of a stereoscopic display for explaining other condition setting examples for a plurality of components of the stereoscopic display. 図10は図8の例に対応する立体ディスプレイを用いた立体画像の具体的な提示例を説明するための図である。FIG. 10 is a diagram for explaining a specific presentation example of a stereoscopic image using a stereoscopic display corresponding to the example of FIG. 図11は本発明の一実施の形態に係る立体ディスプレイに特有の位置関係について説明するための平面図である。FIG. 11 is a plan view for explaining a positional relationship peculiar to a stereoscopic display according to an embodiment of the present invention. 図12は他の実施の形態に係る反射部材の一例を示す模式的断面図である。FIG. 12 is a schematic cross-sectional view showing an example of the reflective member according to another embodiment. 図13は他の実施の形態に係る反射部材の他の例を示す模式的断面図である。FIG. 13 is a schematic cross-sectional view showing another example of the reflective member according to another embodiment. 図14は他の実施の形態に係る反射部材のさらに他の例を示す模式的断面図である。FIG. 14 is a schematic cross-sectional view showing still another example of the reflective member according to another embodiment.
 以下、本発明の実施の形態に係る立体ディスプレイについて図面を参照しながら説明する。 Hereinafter, the stereoscopic display according to the embodiment of the present invention will be described with reference to the drawings.
 [1]立体ディスプレイの構成
 図1は本発明の一実施の形態に係る立体ディスプレイの模式的断面図であり、図2は図1の立体ディスプレイの模式的平面図である。図1に示すように、立体ディスプレイ1は、複数の光線発生器2、制御装置3、記憶装置4、2つの反射部材7,8および光線制御子9により構成される。制御装置3は、例えばパーソナルコンピュータ、サーキットボードまたは組み込みシステム等からなる。記憶装置4は、例えばハードディスク、メモリカードまたはRAM(ランダムアクセスメモリ)等からなる。記憶装置4には、立体画像300を提示するための立体形状データが記憶される。図1および図2ならびに後述する図8および図9では、立体ディスプレイ1により複数の観察者10に提示される立体画像300が仮想的に示される。
[1] Configuration of Stereoscopic Display FIG. 1 is a schematic cross-sectional view of a stereoscopic display according to an embodiment of the present invention, and FIG. 2 is a schematic plan view of the stereoscopic display of FIG. As shown in FIG. 1, the stereoscopic display 1 is composed of a plurality of ray generators 2, a control device 3, a storage device 4, two reflecting members 7, 8 and a ray controller 9. The control device 3 includes, for example, a personal computer, a circuit board, an embedded system, or the like. The storage device 4 includes, for example, a hard disk, a memory card, a RAM (random access memory), or the like. The storage device 4 stores stereoscopic shape data for presenting the stereoscopic image 300. In FIGS. 1 and 2 and 8 and 9 described later, the stereoscopic image 300 presented to the plurality of observers 10 by the stereoscopic display 1 is virtually shown.
 立体ディスプレイ1の一部は、テーブル5に取り付けられる。テーブル5は、円形の天板51および複数の脚52からなる。天板51は中心に円形の孔部51hを有する。以下の説明では、天板51の中心を通って上下方向に延びる軸を基準軸raと呼ぶ。孔部51hの中心は基準軸ra上に存在する。 A part of the stereoscopic display 1 is attached to the table 5. The table 5 includes a circular top plate 51 and a plurality of legs 52. The top plate 51 has a circular hole 51h at the center. In the following description, the axis extending in the vertical direction through the center of the top plate 51 is referred to as a reference axis ra. The center of the hole 51h exists on the reference axis ra.
 光線制御子9は、底部が開口した円錐形状を有し、底部開口が上方を向くように孔部51hに嵌め込まれている。光線制御子9が天板51に取り付けられた状態で、光線制御子9の中心軸は基準軸raに一致している。 The light ray controller 9 has a conical shape with an open bottom, and is fitted into the hole 51h so that the bottom opening faces upward. With the ray controller 9 attached to the top plate 51, the central axis of the ray controller 9 coincides with the reference axis ra.
 光線制御子9は、外周面に入射した光線が基準軸raを含む任意の仮想面内で大きく拡散するとともに基準軸raを中心とする円周方向Rで小さく拡散しつつ透過するように構成されている。より具体的には、光線制御子9は、基準軸raを含む任意の仮想面内で外周面に光線が入射する場合に、当該仮想面において光線制御子9を透過する光線が視域500を含む上下方向の領域に広がるように構成されている。また、光線制御子9は、外周面に光線が入射する場合に、平面視で光線制御子9の外周面に入射した光線が直線状に透過していると見なせるように構成されている。なお、円周方向Rは、基準軸raを含む仮想面に直交する方向である。テーブル5の周囲にいる観察者10は、テーブル5の斜め上方から光線制御子9の内周面を観察することができる。光線を主として一方向に拡散させる構成は、例えば透明なシート状樹脂で形成された円錐形状のベース部材を用意し、そのベース部材の内周面または外周面に複数の環状レンズを設けることにより実現することができる。光線を主として一方向に拡散させる構成は、上記のシート状樹脂に予め定められた拡散用のパターンを有するホログラムシートまたは回折格子を設けることにより実現することも可能である。 The light ray controller 9 is configured so that the light rays incident on the outer peripheral surface are largely diffused in an arbitrary virtual plane including the reference axis ra, and are diffused while being diffused small in the circumferential direction R centered on the reference axis ra. ing. More specifically, in the light ray controller 9, when a light ray is incident on the outer peripheral surface in an arbitrary virtual surface including the reference axis ra, the light ray passing through the light ray controller 9 on the virtual surface has a viewing area of 500. It is configured to extend over the area including the vertical direction. Further, the light ray controller 9 is configured so that when a light ray is incident on the outer peripheral surface, the light ray incident on the outer peripheral surface of the light ray controller 9 can be regarded as being linearly transmitted in a plan view. The circumferential direction R is a direction orthogonal to the virtual plane including the reference axis ra. The observer 10 around the table 5 can observe the inner peripheral surface of the light ray controller 9 from diagonally above the table 5. A configuration in which light rays are mainly diffused in one direction is realized by, for example, preparing a conical base member made of a transparent sheet-like resin and providing a plurality of annular lenses on the inner peripheral surface or the outer peripheral surface of the base member. can do. A configuration in which light rays are diffused mainly in one direction can also be realized by providing a hologram sheet or a diffraction grating having a predetermined diffusion pattern on the above-mentioned sheet-shaped resin.
 反射部材8は、円筒形状を有し、天板51の下方の位置で基準軸raを取り囲むように設けられている。本例では、反射部材8は、その上端部が天板51の下面に取り付けられている。この状態で、光線制御子9は、反射部材8の内部空間に位置する。反射部材8は、基準軸raを中心とする内周面を反射面8aとして有する。基準軸raに垂直な面内(水平面内)で、反射面8aは基準軸raを中心とする円形状を有する。 The reflective member 8 has a cylindrical shape and is provided so as to surround the reference axis ra at a position below the top plate 51. In this example, the upper end of the reflective member 8 is attached to the lower surface of the top plate 51. In this state, the light ray controller 9 is located in the internal space of the reflective member 8. The reflective member 8 has an inner peripheral surface centered on the reference axis ra as the reflective surface 8a. In the plane perpendicular to the reference axis ra (in the horizontal plane), the reflection surface 8a has a circular shape centered on the reference axis ra.
 反射部材7は、反射部材8と同様に、円筒形状を有し、反射部材8の下方の位置で、基準軸raを取り囲むように設けられている。本例では、反射部材7は、その上端部が反射部材8の下端部に取り付けられている。反射部材7は、基準軸raを中心とする内周面を反射面7aとして有する。基準軸raに垂直な面内(水平面内)で、反射面7aは基準軸raを中心とする円形状を有する。反射面8aの内径は、反射面7aの内径に比べて大きい。すなわち、基準軸raと反射面8aの任意の部分との間の距離は、基準軸raと反射面7aの任意の部分との間の距離に比べて大きい。 Like the reflective member 8, the reflective member 7 has a cylindrical shape and is provided at a position below the reflective member 8 so as to surround the reference axis ra. In this example, the upper end of the reflective member 7 is attached to the lower end of the reflective member 8. The reflective member 7 has an inner peripheral surface centered on the reference axis ra as the reflective surface 7a. In the plane perpendicular to the reference axis ra (in the horizontal plane), the reflection surface 7a has a circular shape centered on the reference axis ra. The inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a. That is, the distance between the reference axis ra and an arbitrary portion of the reflection surface 8a is larger than the distance between the reference axis ra and an arbitrary portion of the reflection surface 7a.
 複数の光線発生器2は、テーブル5の天板51の下方において、基準軸raの周囲を取り囲むように固定的に設けられる。本例において、複数の光線発生器2は、基準軸raを中心とする円600上に配置される。円600は、反射部材7,8よりも下方でかつ基準軸raに垂直な仮想面上に定義される。図1および図2では、円600が一点鎖線で示される。 The plurality of light beam generators 2 are fixedly provided below the top plate 51 of the table 5 so as to surround the circumference of the reference axis ra. In this example, the plurality of ray generators 2 are arranged on a circle 600 centered on the reference axis ra. The circle 600 is defined on a virtual plane below the reflective members 7 and 8 and perpendicular to the reference axis ra. In FIGS. 1 and 2, the circle 600 is represented by a dashed line.
 円600は、図2に示すように、立体ディスプレイ1を基準軸raの方向に見た平面視で基準軸raに関して反射面7a,8aよりも外方に位置する。複数の光線発生器2は、円600に沿って円環状に並べられる。図2の例においては、複数の光線発生器2の数は18個である。複数の光線発生器2は、テーブル5、反射部材7,8および光線制御子9に対して固定的に設けられる。複数の光線発生器2は、光線発生器アレイとして一体的に設けられてもよい。 As shown in FIG. 2, the circle 600 is located outside the reflection surfaces 7a and 8a with respect to the reference axis ra in a plan view of the stereoscopic display 1 in the direction of the reference axis ra. The plurality of ray generators 2 are arranged in an annular shape along the circle 600. In the example of FIG. 2, the number of the plurality of ray generators 2 is 18. The plurality of ray generators 2 are fixedly provided with respect to the table 5, the reflecting members 7, 8 and the ray controller 9. The plurality of ray generators 2 may be integrally provided as a ray generator array.
 各光線発生器2は、図1に示すように、複数の光線からなる光線群を出射する光線出射部Pを有する。各光線発生器2の光線出射部Pは、反射部材7の反射面7aに向けられる。光線出射部Pから出射される光線群は、反射面7aにより反射部材8の反射面8aに向けて反射され、さらに反射面8aにより光線制御子9の外周面に向けて反射される。また、光線出射部Pから出射される光線群の少なくとも一部は、基準軸raを通る。ここで、光線とは、拡散しない直線で表される光をいう。光線発生器2としては、例えば走査型プロジェクタが用いられる。走査型プロジェクタは、光線を出射するとともにその光線を水平面内および垂直面内で偏向させることができる。各光線発生器2から出射される光線群の進行経路の詳細は後述する。 As shown in FIG. 1, each ray generator 2 has a ray emitting unit P that emits a group of rays composed of a plurality of rays. The light emitting portion P of each light generator 2 is directed to the reflecting surface 7a of the reflecting member 7. The group of light rays emitted from the light beam emitting unit P is reflected by the reflecting surface 7a toward the reflecting surface 8a of the reflecting member 8, and further reflected by the reflecting surface 8a toward the outer peripheral surface of the light ray controller 9. Further, at least a part of the ray group emitted from the ray emitting portion P passes through the reference axis ra. Here, the light ray means a light represented by a straight line that does not diffuse. As the light beam generator 2, for example, a scanning projector is used. The scanning projector can emit light rays and deflect the light rays in a horizontal plane and a vertical plane. The details of the traveling path of the ray group emitted from each ray generator 2 will be described later.
 各光線の色は、提示されるべき立体画像300に応じて設定される。光線発生器2として走査型プロジェクタを用いる場合には、光線の出射方向ごとに光線の色が設定される。これにより、擬似的に光線群を形成することができる。 The color of each ray is set according to the stereoscopic image 300 to be presented. When a scanning projector is used as the light beam generator 2, the color of the light beam is set for each light emission direction. As a result, a group of light rays can be formed in a pseudo manner.
 光線発生器2は、空間光変調器および1または複数のレンズからなるレンズアレイ等の投影系を備えた一般的なプロジェクタであってもよい。1または複数のレンズは、投射レンズを含む。ここで、投影系のアパーチャ(開口)が十分に小さい場合には、走査型プロジェクタと同様に光線群を形成することができる。空間光変調器は、例えばDMD(Digital Micromirror Device)、LCD(Liquid Crystal Display)またはLCOS(Liquid Crystal on Silicon)である。 The ray generator 2 may be a general projector including a spatial light modulator and a projection system such as a lens array composed of one or a plurality of lenses. One or more lenses include projection lenses. Here, when the aperture of the projection system is sufficiently small, a group of light rays can be formed in the same manner as in a scanning projector. Spatial light modulators are, for example, DMD (Digital Micromirror Device), LCD (Liquid Crystal Display) or LCOS (Liquid Crystal on Silicon).
 立体ディスプレイ1においては、観察者10が立体画像300を観察する際に観察者10の眼が位置すべき領域が視域500として予め定義される。視域500は、複数の光線発生器2、反射部材7,8および光線制御子9に対して特定の位置関係を有する。本例の視域500は、テーブル5の天板51よりも上方の位置で基準軸raを取り囲むように円環状に定義される。また、本例の視域500は、基準軸raの方向に見た平面視で基準軸raに関して反射部材7,8の反射面7a,8aおよび円600よりも外方に位置する。図1および図2においては、視域500が一点鎖線で示されるが、視域500は上下方向および水平方向において一定の幅を有してもよい。 In the stereoscopic display 1, the region where the observer 10's eyes should be located when the observer 10 observes the stereoscopic image 300 is defined in advance as the viewing area 500. The viewing area 500 has a specific positional relationship with respect to the plurality of light generators 2, the reflecting members 7, 8 and the light controller 9. The viewing area 500 of this example is defined in an annular shape so as to surround the reference axis ra at a position above the top plate 51 of the table 5. Further, the viewing area 500 of this example is located outside the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 and the circle 600 with respect to the reference axis ra in a plan view in the direction of the reference axis ra. In FIGS. 1 and 2, the viewing area 500 is indicated by a chain double-dashed line, but the viewing area 500 may have a constant width in the vertical direction and the horizontal direction.
 制御装置3は、記憶装置4に記憶される立体形状データに基づいて複数の光線発生器2を制御する。それにより、光線制御子9の上方の空間に視域500の任意の位置から視認可能な立体画像300が提示される。ここで、立体ディスプレイ1において視域500の全域に立体画像300を提示可能な球形の空間を画像提示空間RSと呼ぶ。画像提示空間RSは、例えば、光線制御子9の形状および寸法と、視域500の形状および寸法と、光線制御子9および視域500間の位置関係とに基づいて一義的に定められる。 The control device 3 controls a plurality of ray generators 2 based on the three-dimensional shape data stored in the storage device 4. As a result, a stereoscopic image 300 that can be visually recognized from an arbitrary position in the viewing area 500 is presented in the space above the light ray controller 9. Here, the spherical space capable of presenting the stereoscopic image 300 over the entire viewing area 500 on the stereoscopic display 1 is referred to as an image presentation space RS. The image presentation space RS is uniquely determined based on, for example, the shape and dimensions of the ray controller 9, the shape and dimensions of the viewing area 500, and the positional relationship between the light ray controller 9 and the viewing area 500.
 [2]複数の光線発生器2の各々から出射される光線群の進行経路
 図3は複数の光線発生器2の各々から出射される光線群の進行経路を説明するための模式的平面図であり、図4は複数の光線発生器2の各々から出射される光線群の進行経路を説明するための模式的断面図である。図3および図4には、円600上に配置される1つの光線発生器2がそれぞれ示される。なお、図3および図4では、光線群の進行経路の理解を容易にするために、立体ディスプレイ1のうち説明に要する一部の構成要素が図示されている。また、図3では、光線制御子9が点線で図示されている。
[2] Travel path of a group of light rays emitted from each of the plurality of ray generators 2 FIG. 3 is a schematic plan view for explaining a path of travel of a group of rays emitted from each of the plurality of ray generators 2. Yes, FIG. 4 is a schematic cross-sectional view for explaining the traveling path of a group of light rays emitted from each of the plurality of light ray generators 2. 3 and 4 show one ray generator 2 arranged on the circle 600, respectively. In addition, in FIG. 3 and FIG. 4, some components of the stereoscopic display 1 required for explanation are shown in order to facilitate understanding of the traveling path of the ray group. Further, in FIG. 3, the light ray controller 9 is illustrated by a dotted line.
 各光線発生器2から出射される光線群は、複数列および複数行に並ぶ複数の光線Lを含む。列は上下方向の並びであり、行は水平方向の並びである。すなわち、各列の複数の光線は上下方向に平行な面上に並び、各行の複数の光線は水平方向に平行な面上に並ぶ。以下、各列の複数の光線Lの並びを光線列と呼び、各行の複数の光線Lの並びを光線行と呼ぶ。 The ray group emitted from each ray generator 2 includes a plurality of rays L arranged in a plurality of columns and a plurality of rows. The columns are arranged vertically and the rows are arranged horizontally. That is, the plurality of rays in each column are arranged on a plane parallel to the vertical direction, and the plurality of rays in each row are arranged on a plane parallel to the horizontal direction. Hereinafter, the arrangement of a plurality of rays L in each column is referred to as a ray column, and the arrangement of a plurality of rays L in each row is referred to as a ray row.
 図3に示すように、水平方向において、円600上の光線発生器2から出射される光線群は、円形状の水平断面を有する反射面7aで反射される。反射面7aで反射された複数の光線Lは、さらに円形状の水平断面を有する反射面8aで反射される。反射面8aで反射された複数の光線Lは、光線制御子9の外周面に入射し、光線制御子9を透過して視域500内の複数の位置に向かう。それにより、共通の光線行に含まれる複数の光線Lは、平面視で互いに異なる方向に進行し、視域500の広い範囲に渡って入射する。 As shown in FIG. 3, in the horizontal direction, the group of light rays emitted from the light ray generator 2 on the circle 600 is reflected by the reflecting surface 7a having a circular horizontal cross section. The plurality of light rays L reflected by the reflecting surface 7a are further reflected by the reflecting surface 8a having a circular horizontal cross section. The plurality of light rays L reflected by the reflecting surface 8a enter the outer peripheral surface of the light ray controller 9, pass through the light ray controller 9, and head toward the plurality of positions within the viewing range 500. As a result, the plurality of light rays L included in the common light ray line travel in different directions in a plan view and are incident over a wide range of the visual range 500.
 また、図4に示すように、上下方向において、円600上の光線発生器2から出射される光線群は、上下方向に直線状に延びる反射面7aで反射される。また、反射面7aで反射された複数の光線Lは、上下方向に直線状に延びる反射面8aで反射される。さらに、反射面8aで反射された複数の光線Lは、光線制御子9の外周面に入射し、光線制御子9を透過して視域500に向かう。このとき、光線制御子9の稜線方向Tにおける複数の部分の各々は、反射部材8から入射する光線Lが上下方向において拡散されるようにその光線Lを透過させる。この場合、共通の光線列に含まれる複数の光線Lの各々が拡散した光の一部は、視域500内のほぼ共通の位置に到達する。なお、図4では、視域500を透過する光線Lが拡散している状態が点線で示され、ほぼ共通の位置に到達する拡散光の一部が一点鎖線で示される。 Further, as shown in FIG. 4, in the vertical direction, the group of light rays emitted from the light ray generator 2 on the circle 600 is reflected by the reflecting surface 7a extending linearly in the vertical direction. Further, the plurality of light rays L reflected by the reflecting surface 7a are reflected by the reflecting surface 8a extending linearly in the vertical direction. Further, the plurality of light rays L reflected by the reflecting surface 8a enter the outer peripheral surface of the light ray controller 9, pass through the light ray controller 9, and head toward the viewing area 500. At this time, each of the plurality of portions of the light ray controller 9 in the ridge line direction T transmits the light ray L so that the light ray L incident from the reflecting member 8 is diffused in the vertical direction. In this case, a part of the light diffused by each of the plurality of light rays L included in the common light ray sequence reaches a substantially common position in the visual range 500. In FIG. 4, the state in which the light beam L passing through the visual range 500 is diffused is indicated by a dotted line, and a part of the diffused light reaching a substantially common position is indicated by a alternate long and short dash line.
 よって、観察者10は、視域500内の任意の位置において、円600上に配置された1つの光線発生器2から出射される光線群のうち、共通の光線列に含まれる複数の光線Lを視認することができる。 Therefore, the observer 10 has a plurality of rays L included in a common ray sequence among the ray groups emitted from one ray generator 2 arranged on the circle 600 at an arbitrary position in the visual range 500. Can be visually recognized.
 なお、図3に示すように、各光線発生器2から出射される光線行は、反射面7a,8aで反射されることによって進行方向が分散する。そのため、水平方向においては、視域500に到達する複数の光線Lの間隔が大きくなりやすい。そこで、各光線発生器2から出射される光線群について、光線行を形成する光線Lの数は、光線列を形成する光線Lの数よりも大きいことが好ましい。この場合、光線列を形成する光線Lの数が光線行を形成する光線Lの数以下である場合に比べて、水平方向において立体画像300を形成するために視域500に入射する光線Lの密度を大きくすることができる。それにより、立体画像300の精細度を高めることができる。 As shown in FIG. 3, the light rays emitted from each light beam generator 2 are reflected by the reflecting surfaces 7a and 8a, so that the traveling directions are dispersed. Therefore, in the horizontal direction, the distance between the plurality of light rays L that reach the viewing area 500 tends to be large. Therefore, for the ray group emitted from each ray generator 2, the number of rays L forming a ray row is preferably larger than the number of rays L forming a ray sequence. In this case, the number of light rays L incident on the visual range 500 in order to form the stereoscopic image 300 in the horizontal direction is smaller than the number of light rays L forming the ray train. The density can be increased. Thereby, the fineness of the stereoscopic image 300 can be increased.
 さらに、光線行における光線Lの密度は、光線列における光線Lの密度よりも高いことが好ましい。ここでいう光線Lの密度とは、各光線発生器2から投射される画角における単位角度当たりの光線数を意味する。また、光線列の密度は、上下方向に拡がる複数の光線Lのうち単位角度当たりの光線数であり、光線行の密度は、水平方向に広がる複数の光線Lのうち単位角度当たりの光線数である。すなわち、光線列における単位角度当たりの光線数より光線行における単位角度当たりの光線数が多いことが好ましい。この場合、視域500に到達する複数の光線Lの間隔を縮めることができるので、立体画像300の精細度を高めることができる。 Further, it is preferable that the density of the ray L in the ray row is higher than the density of the ray L in the ray sequence. The density of the light rays L referred to here means the number of light rays per unit angle at the angle of view projected from each light ray generator 2. Further, the density of the ray train is the number of rays per unit angle among the plurality of rays L spreading in the vertical direction, and the density of the ray rows is the number of rays per unit angle among the plurality of rays L spreading in the horizontal direction. is there. That is, it is preferable that the number of rays per unit angle in the ray row is larger than the number of rays per unit angle in the ray train. In this case, since the distance between the plurality of light rays L reaching the viewing range 500 can be shortened, the definition of the stereoscopic image 300 can be improved.
 [3]立体画像の提示方法
 図5および図6は、立体ディスプレイ1による立体画像300の提示方法を説明するための図である。図5および図6では、上段に立体ディスプレイ1の模式的平面図が示される。以下の説明では、図2に示される18個の光線発生器2をそれぞれ区別する場合に、複数の光線発生器2をそれぞれ光線発生器2a~2rと呼ぶ。
[3] Method for Presenting a Stereoscopic Image FIGS. 5 and 6 are diagrams for explaining a method for presenting a stereoscopic image 300 on the stereoscopic display 1. In FIGS. 5 and 6, a schematic plan view of the stereoscopic display 1 is shown in the upper row. In the following description, when the 18 ray generators 2 shown in FIG. 2 are distinguished from each other, the plurality of ray generators 2 are referred to as ray generators 2a to 2r, respectively.
 図5に示すように、画像提示空間RSの位置PRに赤色のボクセルを提示する場合には、例えば光線発生器2jは、2つの反射面7a,8aにより2回反射されて位置PRを通るように出射される光線Lj0に赤色を付与する。また、光線発生器2iは、2つの反射面7a,8aにより2回反射されて位置PRを通るように出射される光線Li0に赤色を付与する。さらに、光線発生器2hは、2つの反射面7a,8aにより2回反射されて位置PRを通るように出射される光線Lh0に赤色を付与する。 As shown in FIG. 5, when a red voxel is presented to the position PR of the image presentation space RS, for example, the light ray generator 2j is reflected twice by the two reflecting surfaces 7a and 8a and passes through the position PR. A red color is given to the light beam Lj0 emitted from the light beam Lj0. Further, the light ray generator 2i imparts red color to the light ray Li0 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PR. Further, the light ray generator 2h imparts red color to the light ray Lh0 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PR.
 それにより、赤色の光線Lj0,Li0,Lh0の交点にあたかも赤色の点光源があるかのように赤色のボクセルが提示される。具体的には、観察者10の眼が、視域500内の位置ej0,ei0,eh0にある場合に、観察者10は位置PRに赤色のボクセルを見ることができる。位置ej0,ei0,eh0は、視域500内の互いに異なる位置である。 Thereby, a red voxel is presented as if there is a red point light source at the intersection of the red rays Lj0, Li0, Lh0. Specifically, when the eyes of the observer 10 are at positions ej0, ei0, eh0 within the visual range 500, the observer 10 can see red voxels at the position PR. The positions ej0, ei0, and eh0 are different positions within the viewing range 500.
 なお、図5では、光線Lj0,Li0,Lh0の進行経路が理解しやすいように、光線発生器2j,2i,2hから反射面7aで反射されるまでの光線Lj0,Li0,Lh0の部分が点線で示される。また、反射面7aで反射されて反射面8aで反射されるまでの光線Lj0,Li0,Lh0の部分が一点鎖線で示される。さらに、反射面8aで反射されて視域500に到達するまでの光線Lj0,Li0,Lh0の部分が太い実線で示される。 In FIG. 5, the portions of the rays Lj0, Li0, Lh0 from the ray generators 2j, 2i, 2h to the reflection by the reflection surface 7a are dotted lines so that the traveling paths of the rays Lj0, Li0, Lh0 can be easily understood. Indicated by. Further, the portions of the light rays Lj0, Li0, and Lh0 from being reflected by the reflecting surface 7a to being reflected by the reflecting surface 8a are indicated by a alternate long and short dash line. Further, the portions of the light rays Lj0, Li0, and Lh0 that are reflected by the reflecting surface 8a and reach the viewing area 500 are shown by thick solid lines.
 同様にして、図6に示すように、画像提示空間RSの位置PGに緑色のボクセルを提示する場合には、例えば光線発生器2jは、2つの反射面7a,8aにより2回反射されて位置PGを通るように出射される光線Lj1に緑色を付与する。また、光線発生器2iは、2つの反射面7a,8aにより2回反射されて位置PGを通るように出射される光線Li1に緑色を付与する。さらに、光線発生器2hは、2つの反射面7a,8aにより2回反射されて位置PGを通るように出射される光線Lh1に緑色を付与する。 Similarly, as shown in FIG. 6, when a green voxel is presented at the position PG of the image presentation space RS, for example, the light beam generator 2j is reflected twice by the two reflecting surfaces 7a and 8a and is positioned. A green color is given to the light ray Lj1 emitted so as to pass through the PG. Further, the light ray generator 2i imparts green color to the light ray Li1 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PG. Further, the light ray generator 2h imparts green color to the light ray Lh1 which is reflected twice by the two reflecting surfaces 7a and 8a and emitted so as to pass through the position PG.
 それにより、緑色の光線Lj1,Li1,Lh1の交点にあたかも緑色の点光源があるかのように緑色のボクセルが提示される。具体的には、観察者10の眼が、視域500内の位置ej1,ei1,eh1にある場合に、観察者10は位置PGに緑色のボクセルを見ることができる。位置ej1,ei1,eh1は、視域500内の互いに異なる位置である。 Thereby, a green voxel is presented as if there is a green point light source at the intersection of the green rays Lj1, Li1, Lh1. Specifically, when the eyes of the observer 10 are at positions ej1, ei1, eh1 within the visual range 500, the observer 10 can see a green voxel at the position PG. The positions ej1, ei1, and eh1 are different positions within the viewing range 500.
 図6においても、図5の例と同様に、光線発生器2j,2i,2hから反射面7aで反射されるまでの光線Lj1,Li1,Lh1の部分が点線で示される。また、反射面7aで反射されて反射面8aで反射されるまでの光線Lj1,Li1,Lh1の部分が一点鎖線で示される。さらに、反射面8aで反射されて視域500に到達するまでの光線Lj1,Li1,Lh1の部分が太い実線で示される。 Also in FIG. 6, similarly to the example of FIG. 5, the portion of the light rays Lj1, Li1, Lh1 from the light beam generators 2j, 2i, 2h to the reflection by the reflection surface 7a is shown by a dotted line. Further, the portion of the light rays Lj1, Li1 and Lh1 from being reflected by the reflecting surface 7a to being reflected by the reflecting surface 8a is indicated by a dashed line. Further, the portions of the light rays Lj1, Li1 and Lh1 that are reflected by the reflecting surface 8a and reach the viewing area 500 are shown by thick solid lines.
 上記のようにして、複数の光線発生器2a~2rの各々から立体画像300の各位置を通る方向に提示すべき色の光線Lが出射される。複数の光線発生器2a~2rから出射されて2つの反射面7a,8aで2回反射された複数の光線Lにより、画像提示空間RSが十分に密に交点群で満たされる場合を想定する。この場合、視域500内のいずれの位置から画像提示空間RSを観察しても位置PR,PGを通過する適切な光線Lが観察者10の眼に入射する。それにより、観察者10は、そこに点光源があることを認識する。 As described above, the light rays L of the colors to be presented are emitted from each of the plurality of light ray generators 2a to 2r in the direction of passing through each position of the stereoscopic image 300. It is assumed that the image presentation space RS is sufficiently densely filled with the intersection group by the plurality of light rays L emitted from the plurality of light ray generators 2a to 2r and reflected twice by the two reflecting surfaces 7a and 8a. In this case, when observing the image presentation space RS from any position within the visual range 500, an appropriate light ray L passing through the positions PR and PG is incident on the eyes of the observer 10. Thereby, the observer 10 recognizes that there is a point light source there.
 実物体の表面において反射または拡散された光を人は物体として認識するので、物体の表面は点光源の集合とみなすことができる。すなわち、物体の表面が存在すべき複数の位置の色を複数の光線発生器2a~2rから出射される複数の光線Lによって適切に再現することにより、視域500内の任意の位置で観察可能な立体画像300を提示することができる。 Since a person recognizes the light reflected or diffused on the surface of a real object as an object, the surface of the object can be regarded as a set of point light sources. That is, by appropriately reproducing the colors of the plurality of positions where the surface of the object should exist by the plurality of light rays L emitted from the plurality of light beam generators 2a to 2r, it is possible to observe at any position within the visual range 500. 3D image 300 can be presented.
 図5の下段には、視域500内の位置ej0,ei0,eh0からそれぞれ視認される立体画像300が示されている。立体形状データにより表されるべき形状の種類によっては、図5に示すように、視域500内の互いに異なる位置ej0,ei0,eh0から視認される立体画像300の見た目は互いに異なる。赤色の光線Lj0,Li0,Lh0の交点に提示される赤色のボクセルは、複数の位置ej0,ei0,eh0から画像提示空間RS内の共通の位置PRに存在するように視認される。 In the lower part of FIG. 5, the stereoscopic image 300 visually recognized from the positions ej0, ei0, and eh0 in the visual range 500 is shown. As shown in FIG. 5, the appearance of the stereoscopic image 300 visually recognized from the different positions ej0, ei0, and eh0 in the viewing area 500 is different from each other depending on the type of the shape to be represented by the stereoscopic shape data. The red voxels presented at the intersections of the red rays Lj0, Li0, and Lh0 are visually recognized as existing at a common position PR in the image presentation space RS from the plurality of positions ej0, ei0, and eh0.
 図6においては、図5の例と同様に、視域500内の位置ej1,ei1,eh1からそれぞれ視認される立体画像300がさらに示される。立体形状データにより表されるべき形状の種類によっては、図6に示すように、視域500内の互いに異なる位置ej1,ei1,eh1から視認される立体画像300の見た目は互いに異なる。緑色の光線Lj1,Li1,Lh1の交点に提示される緑色のボクセルは、複数の位置ej1,ei1,eh1から画像提示空間RS内の共通の位置PGに存在するように視認される。 In FIG. 6, similarly to the example of FIG. 5, the stereoscopic image 300 visually recognized from the positions ej1, ei1, and eh1 in the visual range 500 is further shown. As shown in FIG. 6, the appearance of the stereoscopic image 300 visually recognized from the different positions ej1, ei1, eh1 in the viewing area 500 is different from each other depending on the type of the shape to be represented by the stereoscopic shape data. The green voxels presented at the intersections of the green rays Lj1, Li1, and Lh1 are visually recognized from the plurality of positions ej1, ei1, eh1 as if they exist at a common position PG in the image presentation space RS.
 ところで、視域500内において、観察者10の右眼の位置と左眼の位置とは互いに異なる。観察者10が1つの点光源を見る場合、その点光源をなす複数の光線Lのうち、異なる方向の光線Lが右眼および左眼にそれぞれ入射する。そのため、観察者10は、右眼と左眼とで異なる視線方向に各点光源を見ることができる。すなわち右眼の視線方向と左眼の視線方向との間には輻輳角がある。また、右眼で見る複数の点光源の位置関係と、左眼で見る複数の点光源の位置関係とは異なる。すなわち視差が発生する。これらにより、観察者10は、光線群により形成される画像を立体視することができる。 By the way, in the field of view 500, the position of the right eye and the position of the left eye of the observer 10 are different from each other. When the observer 10 sees one point light source, among the plurality of light rays L forming the point light source, light rays L in different directions are incident on the right eye and the left eye, respectively. Therefore, the observer 10 can see each point light source in different line-of-sight directions for the right eye and the left eye. That is, there is a convergence angle between the line-of-sight direction of the right eye and the line-of-sight direction of the left eye. Further, the positional relationship of the plurality of point light sources viewed by the right eye is different from the positional relationship of the plurality of point light sources viewed by the left eye. That is, parallax occurs. As a result, the observer 10 can stereoscopically view the image formed by the group of light rays.
 上下方向においては、共通の光線列に含まれる複数の光線Lが視域500のほぼ共通の位置に入射する。例えば、図5の位置ej0には、光線発生器2jから出射される光線群のうち、光線Lj0と共通の光線列に含まれる複数の光線Lが到達する。これにより、上下方向において物体の表面を表す複数の色を再現することができる。 In the vertical direction, a plurality of light rays L included in a common light beam sequence are incident on substantially a common position in the viewing area 500. For example, a plurality of light rays L included in a light ray sequence common to the light ray Lj0 among the light ray group emitted from the light ray generator 2j reach the position ej0 in FIG. This makes it possible to reproduce a plurality of colors representing the surface of an object in the vertical direction.
 以上の説明においては、ボクセルは、全方向に向かって同じ強度で発光する画像提示空間RS内の点光源であると仮定している。そのため、一のボクセルを視域500の複数の位置に提示するために用いられる複数の光線Lには、方向によらず共通の色が付与されている。しかしながら、一のボクセルを視域500の複数の位置にそれぞれ提示するための複数の光線にそれぞれ付与される色は、コンピュータグラフィクスで用いられる各種レンダリング技法に基づいて修正されてもよい。例えば、光線Lが立体画像データにより設定された複数のボクセルにそれぞれ対応する複数の位置を通過する場合に、その光線が通過する複数のボクセルの位置のうち最も視域500に近い位置のボクセルの色をその光線に付与すべき色として選択する処理が行われてもよい(隠面処理)。あるいは、ボクセルを提示するための複数の光線Lには、例えば鏡面反射を考慮して、白色成分が加算された色が付与されてもよい。 In the above description, it is assumed that the voxel is a point light source in the image presentation space RS that emits light with the same intensity in all directions. Therefore, a common color is given to the plurality of light rays L used for presenting one voxel to a plurality of positions in the visual range 500 regardless of the direction. However, the colors given to each of the plurality of rays for presenting one voxel to the plurality of positions in the field of view 500 may be modified based on various rendering techniques used in computer graphics. For example, when the light ray L passes through a plurality of positions corresponding to the plurality of voxels set by the stereoscopic image data, the voxel at the position closest to the viewing range 500 among the positions of the plurality of voxels through which the light ray passes. A process of selecting a color as a color to be given to the light beam may be performed (hidden surface process). Alternatively, the plurality of light rays L for presenting the voxels may be given a color to which a white component is added in consideration of, for example, specular reflection.
 [4]一の光線発生器から出射される光線群が到達可能な視域500内の範囲
 図7は、立体ディスプレイ1において一の光線発生器から出射される光線群が到達可能な視域500内の範囲を説明するための平面図である。以下の説明においては、一の光線発生器2jから出射される光線群に着目する。本例の光線発生器2jから出射される光線群は、平面視において、その光線発生器2jに固有の水平方向の画角(例えば30°)で光線出射部Pから広がるように出射されるものとする。
[4] Range within the reachable range 500 of the ray group emitted from the one ray generator FIG. 7 shows the view range 500 within the reachable range of the ray group emitted from the one ray generator in the stereoscopic display 1. It is a top view for demonstrating the range in. In the following description, attention will be paid to a group of light rays emitted from one light ray generator 2j. The group of light rays emitted from the light ray generator 2j of this example is emitted so as to spread from the light ray emitting portion P at a horizontal angle of view (for example, 30 °) peculiar to the light ray generator 2j in a plan view. And.
 この場合、立体ディスプレイ1に2つの反射部材7,8(図1)が設けられないと仮定すると、光線発生器2jから出射される光線群は、図7の上段に示すように、光線発生器2jから直接視域500に到達する。このとき、視域500内の光線発生器2jの光線群が到達可能な範囲を直接到達範囲cr0と呼ぶ。なお、図7の上段に示される平面図では、立体ディスプレイ1に反射部材7,8が設けられないと仮定した場合に、一の光線発生器2jから出射される光線群の進行可能な領域が薄いハッチングで示される。 In this case, assuming that the stereoscopic display 1 is not provided with the two reflecting members 7 and 8 (FIG. 1), the ray group emitted from the ray generator 2j is a ray generator as shown in the upper part of FIG. The field of view 500 is reached directly from 2j. At this time, the range that the ray group of the ray generator 2j in the visual range 500 can reach is called the direct reach range cr0. In the plan view shown in the upper part of FIG. 7, assuming that the stereoscopic display 1 is not provided with the reflecting members 7 and 8, the region in which the light ray group emitted from one light ray generator 2j can travel is widened. Shown by thin hatching.
 次に、立体ディスプレイ1に反射部材8(図1)が設けられないと仮定すると、光線発生器2jから出射される光線群は、図7の中段に示すように、反射部材7(図1)の反射面7aにより反射された後視域500に到達する。このとき、視域500内の光線発生器2jの光線群が到達可能な範囲を第1の反射到達範囲cr1と呼ぶ。反射面7aにおいて光線群が反射される際には、反射面7aが水平面内で周方向に一定の曲率を有することにより、反射面7aで反射された光線群が光線発生器2jの画角を超えて広がる。それにより、視域500において第1の反射到達範囲cr1が占める割合は、視域500において直接到達範囲cr0が占める割合に比べて大きくなる。本例では、視域500のうち約半分の領域が第1の反射到達範囲cr1となっている。なお、図7の中段に示される平面図では、立体ディスプレイ1に反射部材7が設けられないと仮定した場合に、一の光線発生器2jから出射される光線群の進行可能な領域が濃いハッチングで示される。 Next, assuming that the stereoscopic display 1 is not provided with the reflective member 8 (FIG. 1), the light beam group emitted from the light beam generator 2j is the reflective member 7 (FIG. 1) as shown in the middle stage of FIG. The rear viewing area 500 is reached after being reflected by the reflecting surface 7a of the above. At this time, the range that the light ray group of the light ray generator 2j in the visual range 500 can reach is called the first reflection reachable range cr1. When a group of light rays is reflected by the reflecting surface 7a, the group of light rays reflected by the reflecting surface 7a has an angle of view of the light beam generator 2j because the reflecting surface 7a has a constant curvature in the circumferential direction in the horizontal plane. Spread beyond. As a result, the ratio occupied by the first reflection reachable range cr1 in the visual range 500 is larger than the ratio occupied by the direct reachable range cr0 in the visual range 500. In this example, about half of the viewing area 500 is the first reflection reach range cr1. In the plan view shown in the middle of FIG. 7, when it is assumed that the stereoscopic display 1 is not provided with the reflecting member 7, the hatching in which the traveling region of the ray group emitted from one ray generator 2j is dark. Indicated by.
 次に、図1の立体ディスプレイ1において、光線発生器2jから出射される光線群は、図7の下段に示すように、反射部材7,8(図1)の反射面7a,8aにより2回反射された後視域500に到達する。このとき、視域500内の光線発生器2jの光線群が到達可能な範囲を第2の反射到達範囲cr2と呼ぶ。反射面8aにおいて光線群が反射される際には、反射面8aが水平面内で周方向に一定の曲率を有することにより、反射面8aから反射された光線群が反射面7aで反射された光線群の広がりを超えて広がる。それにより、視域500において第2の反射到達範囲cr2が占める割合は、視域500において第1の反射到達範囲cr1が占める割合に比べて大きくなる。本例では、視域500の全域が第2の反射到達範囲cr2となっている。より具体的には、光線発生器2jから出射される光線群は、平面視で基準軸raを中心とする視域500の周方向において360°
を超える範囲(本例では、430°程度の範囲)に到達している。なお、図7の下段に示される平面図では、図1の立体ディスプレイ1において一の光線発生器2jから出射される光線群の進行可能な領域がドットパターンで示される。
Next, in the stereoscopic display 1 of FIG. 1, the group of light rays emitted from the light beam generator 2j is generated twice by the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 (FIG. 1) as shown in the lower part of FIG. After being reflected, it reaches the viewing range of 500. At this time, the range that the light ray group of the light ray generator 2j in the visual range 500 can reach is called the second reflection reachable range cr2. When a group of light rays is reflected by the reflecting surface 8a, the light rays reflected from the reflecting surface 8a are reflected by the reflecting surface 7a because the reflecting surface 8a has a constant curvature in the circumferential direction in the horizontal plane. It spreads beyond the spread of the group. As a result, the ratio occupied by the second reflection reachable range cr2 in the visual range 500 is larger than the ratio occupied by the first reflection reachable range cr1 in the visual range 500. In this example, the entire area of the viewing area 500 is the second reflection reach range cr2. More specifically, the group of light rays emitted from the light ray generator 2j is 360 ° in the circumferential direction of the visual range 500 centered on the reference axis ra in a plan view.
It has reached a range exceeding (in this example, a range of about 430 °). In the plan view shown in the lower part of FIG. 7, the progressive region of the ray group emitted from one ray generator 2j in the stereoscopic display 1 of FIG. 1 is shown by a dot pattern.
 上記のように、本実施の形態に係る立体ディスプレイ1においては、一の光線発生器2jから出射される光線群は、反射面7a,8aにより2回反射されて視域500に到達する。それにより、一の光線発生器2jから出射される光線群を直接視域500に到達させる場合に比べて、その光線発生器2jから視域500に光線群を到達させることが可能な範囲を大きくすることができる。また、一の光線発生器2jから出射される光線群を反射面7aにより1回のみ反射させて視域500に到達させる場合に比べて、その光線発生器2jから視域500に光線群を到達させることが可能な範囲を大きくすることができる。 As described above, in the stereoscopic display 1 according to the present embodiment, the group of light rays emitted from one light ray generator 2j is reflected twice by the reflecting surfaces 7a and 8a and reaches the viewing area 500. As a result, the range in which the ray group can reach the viewing area 500 from the ray generator 2j is larger than that in the case where the ray group emitted from one ray generator 2j directly reaches the viewing area 500. can do. Further, as compared with the case where the ray group emitted from one ray generator 2j is reflected only once by the reflecting surface 7a to reach the viewing area 500, the ray group reaches the viewing area 500 from the ray generator 2j. The range that can be made can be increased.
 それにより、複数の光線発生器2a~2rの各々から出射される光線Lを、視域500におけるより広い範囲に到達させることができる。したがって、視域500内の複数の位置の各々で観察者10に提示される立体画像300を、複数の光線発生器2a~2rのうちより多数の光線発生器を用いて形成することが可能になる。 Thereby, the light rays L emitted from each of the plurality of light ray generators 2a to 2r can reach a wider range in the visual range 500. Therefore, it is possible to form the stereoscopic image 300 presented to the observer 10 at each of the plurality of positions within the visual range 500 by using a larger number of ray generators among the plurality of ray generators 2a to 2r. Become.
 [5]立体ディスプレイ1の複数の構成要素についての条件設定例
 図8は、立体ディスプレイ1の複数の構成要素についての好ましい条件設定例を説明するための立体ディスプレイ1の模式的平面図である。図8に示すように、本例では、平面視で複数の光線発生器2a~2rのうち一の光線発生器2jの光線出射部Pと基準軸raとを通る直線を第1の仮想直線vl1と定義する。さらに、平面視で第1の仮想直線vl1に交差する視域500内の位置を、視域500内の位置の代表として代表位置rpと呼ぶ。
[5] Example of Condition Setting for Multiple Components of Stereo Display 1 FIG. 8 is a schematic plan view of the stereo display 1 for explaining a preferred example of setting conditions for a plurality of components of the stereo display 1. As shown in FIG. 8, in this example, the first virtual straight line bl1 is a straight line passing through the light emitting portion P of the light ray generator 2j of one of the plurality of light ray generators 2a to 2r and the reference axis ra in a plan view. Is defined as. Further, the position in the visual range 500 that intersects the first virtual straight line bl1 in the plan view is referred to as a representative position rp as a representative of the positions in the visual range 500.
 立体ディスプレイ1の複数の構成要素の条件は、代表位置rpから視認可能に提示される立体画像300が全ての光線発生器2a~2rから出射される複数の光線で形成されるように設定されることが好ましい。図8では、代表位置rpから視認される立体画像300の形成に寄与する複数の光線発生器として、全ての光線発生器2a~2rがハッチングで示される。 The conditions of the plurality of components of the stereoscopic display 1 are set so that the stereoscopic image 300 visibly presented from the representative position rp is formed by a plurality of light rays emitted from all the light ray generators 2a to 2r. Is preferable. In FIG. 8, all the ray generators 2a to 2r are hatched as a plurality of ray generators that contribute to the formation of the stereoscopic image 300 visually recognized from the representative position rp.
 設定されるべき条件は、具体的には、反射面7a,8aの形状および大きさ、各光線発生器2a~2rの画角、ならびに複数の光線発生器2a~2r、反射面7a,8aおよび視域500の位置関係を含む。 Specifically, the conditions to be set include the shape and size of the reflecting surfaces 7a and 8a, the angles of view of the respective ray generators 2a to 2r, and the plurality of ray generators 2a to 2r, the reflecting surfaces 7a and 8a and Includes the positional relationship of the field of view 500.
 上記のように、代表位置rpに対応する立体画像300が全ての光線発生器2a~2rから出射される複数の光線で形成されることは、各光線発生器から出射されて反射面7a,8aにより2回反射された後の光線群が視域500の全域に到達することを意味する。これにより、視域500内の任意の位置に到達する光線Lの密度をより高くすることができる。したがって、視域500内の任意の位置で視認可能なより高精細な立体画像300を提示することが可能になる。 As described above, the fact that the stereoscopic image 300 corresponding to the representative position rp is formed by a plurality of light rays emitted from all the light ray generators 2a to 2r is that the reflection surfaces 7a and 8a are emitted from each light ray generator. It means that the group of light rays after being reflected twice by the light beam reaches the entire area of the viewing area 500. Thereby, the density of the light ray L reaching an arbitrary position in the visual range 500 can be increased. Therefore, it is possible to present a higher-definition stereoscopic image 300 that can be visually recognized at an arbitrary position within the viewing range 500.
 図9は、立体ディスプレイ1の複数の構成要素についての他の条件設定例を説明するための立体ディスプレイ1の模式的平面図である。図9に示すように、本例においても、図8の例と同様に、平面視で光線発生器2jの光線出射部Pと基準軸raとを通る直線を第1の仮想直線vl1と定義し、平面視で第1の仮想直線vl1に交差する視域500内の位置を代表位置rpと呼ぶ。さらに、本例では、平面視で第1の仮想直線vl1に垂直でありかつ基準軸raを通る直線を第2の仮想直線vl2と定義するとともに、平面視で第2の仮想直線vl2により分割される2つの空間を第1の空間sp1および第2の空間sp2と呼ぶ。第1の空間sp1は光線発生器2jが配置されない空間であり、第2の空間sp2は光線発生器2jが配置される空間である。 FIG. 9 is a schematic plan view of the stereoscopic display 1 for explaining other condition setting examples for the plurality of components of the stereoscopic display 1. As shown in FIG. 9, in this example as well, as in the example of FIG. 8, the straight line passing through the ray emitting portion P of the ray generator 2j and the reference axis ra in a plan view is defined as the first virtual straight line bl1. The position in the viewing area 500 that intersects the first virtual straight line bl1 in a plan view is called a representative position rp. Further, in this example, a straight line perpendicular to the first virtual straight line bl1 in the plan view and passing through the reference axis ra is defined as the second virtual straight line bl2, and is divided by the second virtual straight line bl2 in the plan view. The two spaces are called the first space sp1 and the second space sp2. The first space sp1 is a space in which the light ray generator 2j is not arranged, and the second space sp2 is a space in which the light ray generator 2j is arranged.
 立体ディスプレイ1の複数の構成要素の条件は、代表位置rpに対応する立体画像300が第1の空間sp1に配置される全ての光線発生器2a~2e,2o~2rおよび第2の空間sp2に配置される一部の光線発生器から出射される複数の光線Lで形成されるように設定されてもよい。図9では、代表位置rpから視認される立体画像300の形成に寄与する複数の光線発生器として、複数の光線発生器2a~2rのうち一部の光線発生器2a~2f,2n~2rがハッチングで示される。この場合においても、反射部材7,8を用いることなく立体画像300を形成する場合、および反射部材7,8のうち1つを用いて立体画像300を形成する場合に比べて、視域500内の任意の位置に到達する光線Lの密度を高くすることができる。したがって、視域500内の任意の位置で視認可能な高精細な立体画像300を提示することが可能になる。 The condition of the plurality of components of the stereoscopic display 1 is that all the ray generators 2a to 2e, 2o to 2r and the second space sp2 in which the stereoscopic image 300 corresponding to the representative position rp is arranged in the first space sp1. It may be set to be formed by a plurality of rays L emitted from some of the arranged ray generators. In FIG. 9, as a plurality of ray generators that contribute to the formation of the stereoscopic image 300 visually recognized from the representative position rp, some of the ray generators 2a to 2f and 2n to 2r among the plurality of ray generators 2a to 2r are used. Shown by hatching. Even in this case, the viewing range is within 500 as compared with the case where the stereoscopic image 300 is formed without using the reflective members 7 and 8 and the case where the stereoscopic image 300 is formed by using one of the reflective members 7 and 8. It is possible to increase the density of the light beam L that reaches an arbitrary position of. Therefore, it is possible to present a high-definition stereoscopic image 300 that can be visually recognized at an arbitrary position within the viewing range 500.
 [6]立体画像300の具体的な提示例
 図10は、図8の例に対応する立体ディスプレイ1を用いた立体画像300の具体的な提示例を説明するための図である。ここでは、図8の例に対応する立体ディスプレイ1において、代表位置rp(図8)から視認可能な立体画像300がどのようにして提示されるかを説明する。
[6] Specific Presentation Example of Stereoscopic Image 300 FIG. 10 is a diagram for explaining a specific presentation example of the stereoscopic image 300 using the stereoscopic display 1 corresponding to the example of FIG. Here, how the stereoscopic image 300 visible from the representative position rp (FIG. 8) is presented in the stereoscopic display 1 corresponding to the example of FIG. 8 will be described.
 図8の画像提示空間RSに視域500内の複数の位置からそれぞれ視認される立体画像300を提示する際には、その立体画像300を形成するための光線群が複数の光線発生器2a~2rの各々から出射される。各光線発生器2a~2rから出射される光線群により形成される画像を出射画像と呼ぶ。この場合、出射画像のうち、視域500内の任意の位置で視認可能な立体画像300を構成するために用いられる光線Lを含む部分は、円600における当該光線発生器の位置に応じて定められる。 When presenting a stereoscopic image 300 visually recognized from a plurality of positions in the viewing area 500 to the image presentation space RS of FIG. 8, a plurality of ray groups 2a to a plurality of ray groups for forming the stereoscopic image 300 are presented. It is emitted from each of 2r. An image formed by a group of light rays emitted from each of the light beam generators 2a to 2r is called an emitted image. In this case, the portion of the emitted image including the light ray L used to form the stereoscopic image 300 that can be visually recognized at an arbitrary position within the visual range 500 is determined according to the position of the light ray generator in the circle 600. Be done.
 ここで、代表位置rpには、複数の光線発生器2a~2rの各々から出射される光線群の一部の光線列が入射する。それにより、複数の光線発生器2a~2rから出射されて代表位置rpに入射する複数の光線列が、代表位置rpに対応する立体画像300を形成するために用いられる。図10の上段に、複数の光線発生器2a~2rの出射画像i2a~i2rの外形が点線で示される。図10の各出射画像i2a~i2rにおいては、出射画像i2a~i2rのうち代表位置rpに到達する光線列の画像部分が実線の枠内に示される。 Here, at the representative position rp, a part of a ray group of light rays emitted from each of the plurality of light ray generators 2a to 2r is incident. As a result, a plurality of ray sequences emitted from the plurality of ray generators 2a to 2r and incident on the representative position rp are used to form the stereoscopic image 300 corresponding to the representative position rp. In the upper part of FIG. 10, the outlines of the emitted images i2a to i2r of the plurality of light beam generators 2a to 2r are shown by dotted lines. In each of the emitted images i2a to i2r of FIG. 10, the image portion of the ray sequence reaching the representative position rp of the emitted images i2a to i2r is shown in the solid line frame.
 複数の光線発生器2a~2rから出射されて代表位置rpに到達する複数の光線列の画像部分が画像提示空間RSで水平方向に連続して並ぶように提示される。それにより、図10の下段に示すように、代表位置rpに対応する立体画像300が形成される。なお、図10の各出射画像i2a~i2rのうち実線の枠以外の部分は、光線列ごとに視域500における他の位置に到達する。したがって、視域500における代表位置rp以外の各位置においても、複数の光線発生器2a~2rから出射されて当該位置に到達する複数の光線列の画像部分が画像提示空間RSで水平方向に連続して並ぶように提示される。それにより、当該位置に対応する立体画像300が形成される。 The image portions of a plurality of ray trains emitted from the plurality of ray generators 2a to 2r and reaching the representative position rp are presented so as to be continuously arranged in the horizontal direction in the image presentation space RS. As a result, as shown in the lower part of FIG. 10, the stereoscopic image 300 corresponding to the representative position rp is formed. In each of the emitted images i2a to i2r of FIG. 10, the portion other than the solid line frame reaches another position in the visual range 500 for each ray sequence. Therefore, even at each position other than the representative position rp in the visual range 500, the image portions of the plurality of ray trains emitted from the plurality of ray generators 2a to 2r and reaching the positions are continuous in the horizontal direction in the image presentation space RS. It is presented to line up. As a result, the stereoscopic image 300 corresponding to the position is formed.
 [7]効果
 (1)上記の立体ディスプレイ1においては、複数の光線発生器2のうち一の光線発生器2から出射される光線群は、2つの反射面7a,8aで2回反射された後、光線制御子9を通過して円環状の視域500に到達する。この場合、視域500内の光線群が到達可能な範囲は、一の光線発生器から出射される光線群が反射面7a,8aで反射されることなく視域500に直接的に到達する場合に比べて大きくなる。また、視域500のうち光線群が到達可能な範囲は、一の光線発生器から出射される光線群が反射面7a,8aのいずれか1つにより一回反射された後、視域500に直接的に到達する場合に比べて大きくなる。
[7] Effect (1) In the stereoscopic display 1 described above, a group of light rays emitted from one of the plurality of light ray generators 2 is reflected twice by the two reflecting surfaces 7a and 8a. After that, it passes through the light ray controller 9 and reaches the annular viewing area 500. In this case, the reachable range of the ray group in the visibility range 500 is the case where the ray group emitted from one ray generator directly reaches the visibility range 500 without being reflected by the reflecting surfaces 7a and 8a. It will be larger than. Further, in the range 500, the range in which the light group can reach is the range 500 after the light group emitted from one light generator is reflected once by any one of the reflecting surfaces 7a and 8a. It will be larger than when it reaches directly.
 それにより、視域500内の複数の位置の各々で観察者10により視認される立体画像300を、より多数の光線発生器2を用いて形成することが可能になる。したがって、光線発生器2の数を増加させることおよび複数の光線発生器2を移動させる構成を設けることなく、視域500内の各位置に到達する光線Lの密度を高くすることができる。その結果、構成の大型化および複雑化を抑制しつつ高精細な立体画像300を提示することが可能になる。 Thereby, it becomes possible to form the stereoscopic image 300 visually recognized by the observer 10 at each of the plurality of positions in the visual range 500 by using a larger number of light beam generators 2. Therefore, it is possible to increase the density of the light rays L reaching each position in the visual range 500 without increasing the number of light ray generators 2 and providing a configuration for moving the plurality of light ray generators 2. As a result, it becomes possible to present a high-definition stereoscopic image 300 while suppressing the increase in size and complexity of the configuration.
 (2)上記の立体ディスプレイ1においては、反射面8aの内径が反射面7aの内径よりも大きい。この場合、複数の光線発生器2の各々から出射される光線群が反射される順に反射面7a,8aを大きく設定することができる。それにより、反射面8aの内径が反射面7aの内径よりも小さい場合に比べて、画像提示空間RSをより大きく設定することができる。したがって、より大きい立体画像300を観察者10に提示するために、立体ディスプレイ1における各種光線の進行経路を適切に定めることができる。 (2) In the stereoscopic display 1 described above, the inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a. In this case, the reflecting surfaces 7a and 8a can be set larger in the order in which the light rays emitted from each of the plurality of light beam generators 2 are reflected. As a result, the image presentation space RS can be set to be larger than when the inner diameter of the reflecting surface 8a is smaller than the inner diameter of the reflecting surface 7a. Therefore, in order to present the larger stereoscopic image 300 to the observer 10, the traveling paths of various light rays in the stereoscopic display 1 can be appropriately determined.
 (3)複数の光線発生器2は、基準軸raの方向に見た平面視で反射面8aよりも外方に位置する。この場合、平面視で複数の光線発生器2を反射部材8の内方に配置する場合に比べて、設置スペースが制限されにくい。したがって、複数の光線発生器2の配置の自由度が向上する。 (3) The plurality of light beam generators 2 are located outside the reflection surface 8a in a plan view in the direction of the reference axis ra. In this case, the installation space is less likely to be limited as compared with the case where a plurality of light beam generators 2 are arranged inside the reflection member 8 in a plan view. Therefore, the degree of freedom in arranging the plurality of light beam generators 2 is improved.
 (4)上記の立体ディスプレイ1においては、光線制御子9は、反射面8aと視域500との間に設けられ、外周面に入射する光線群の各光線Lを基準軸raを含む面内で拡散させつつ透過させる。この場合、反射面8aから視域500に向かって進行する各光線Lが基準軸raの方向に広がる。それにより、基準軸raの方向における視域500の幅を光線制御子9が用いられない場合に比べて大きく設定することができる。 (4) In the stereoscopic display 1, the light ray controller 9 is provided between the reflecting surface 8a and the viewing area 500, and each light ray L of the light ray group incident on the outer peripheral surface is in-plane including the reference axis ra. Make it transparent while diffusing with. In this case, each light ray L traveling from the reflecting surface 8a toward the viewing area 500 spreads in the direction of the reference axis ra. As a result, the width of the viewing area 500 in the direction of the reference axis ra can be set larger than that in the case where the light ray controller 9 is not used.
 [8]立体ディスプレイ1に特有の位置関係
 図11は、本発明の一実施の形態に係る立体ディスプレイ1に特有の位置関係について説明するための平面図である。図11に示すように、立体ディスプレイ1の平面視で、一の光線発生器2jにより画像提示空間RSの位置PBに青色のボクセルを提示することを仮定する。この場合、光線発生器2jは、2つの反射面7a,8aにより2回反射されて位置PBを通るように青色の光線LBを出射する。このとき、光線LBは、光線発生器2jから反射面7aに入射する直線部分LB1と、反射面7aから反射面8aに入射する直線部分LB2と、反射面8aから視域500に入射する直線部分LB3とで構成される。
[8] Positional Relationship Unique to Stereo Display 1 FIG. 11 is a plan view for explaining a positional relationship peculiar to the stereoscopic display 1 according to the embodiment of the present invention. As shown in FIG. 11, it is assumed that a blue voxel is presented at the position PB of the image presentation space RS by one ray generator 2j in a plan view of the stereoscopic display 1. In this case, the light ray generator 2j emits a blue light ray LB so as to be reflected twice by the two reflecting surfaces 7a and 8a and pass through the position PB. At this time, the light ray LB is a straight line portion LB1 incident on the reflection surface 7a from the light ray generator 2j, a straight line portion LB2 incident on the reflection surface 8a from the reflection surface 7a, and a straight line portion incident on the viewing area 500 from the reflection surface 8a. It is composed of LB3.
 ここで、上記の立体ディスプレイ1においては、反射面7a,8aは、基準軸raに垂直な面内で基準軸raを中心とする円形状を有する。また、複数の光線発生器2a~2rは、基準軸raを中心とする円600上に配置されている。さらに、光線制御子9は、円錐形状を有し、光線制御子9の中心軸は基準軸raに一致している。 Here, in the above-mentioned stereoscopic display 1, the reflecting surfaces 7a and 8a have a circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra. Further, the plurality of light beam generators 2a to 2r are arranged on a circle 600 centered on the reference axis ra. Further, the ray controller 9 has a conical shape, and the central axis of the ray controller 9 coincides with the reference axis ra.
 この構成によれば、上記の光線LBの3つの直線部分LB1,LB2,LB3の内接球IBの中心は、基準軸ra上に位置することになる。この位置関係が満たされる場合には、複数の光線発生器2a~2rから視域500の全域にそれぞれ到達する複数の光線行の密度分布が等しくなる。したがって、立体ディスプレイ1において定義される視域500の全域に均質な立体画像300を提示することが可能になる。なお、立体画像300の一部として提示されるべきボクセルの位置は画像提示空間RS内に設定される必要がある。 According to this configuration, the center of the inscribed sphere IB of the three linear portions LB1, LB2, LB3 of the above-mentioned ray LB is located on the reference axis ra. When this positional relationship is satisfied, the density distributions of the plurality of ray lines arriving from the plurality of ray generators 2a to 2r over the entire viewing area 500 become equal. Therefore, it is possible to present a homogeneous stereoscopic image 300 over the entire viewing area 500 defined in the stereoscopic display 1. The position of the voxel to be presented as a part of the stereoscopic image 300 needs to be set in the image presentation space RS.
 [9]他の実施の形態
 (1)上記実施の形態に係る立体ディスプレイ1においては、2つの反射面7a,8aにより2回反射された複数の光線により画像提示空間RSに立体画像300が提示されるが、本発明はこれに限定されない。2つの反射面7a,8aのうち少なくとも一方の反射面により3回以上反射された複数の光線により画像提示空間RSに立体画像300が提示されてもよい。なお、3回以上反射された複数の光線により立体画像300を提示する立体ディスプレイは、個別に作製された3個以上の反射部材を備えてもよい。例えば、3回反射された複数の光線により立体画像300を提示する立体ディスプレイは、上記の反射部材7,8に代えて、個別に作製された別体の3個の反射部材を第1、第2および第3の反射部材として備えてもよい。この場合、第1の反射部材は、基準軸raを取り囲む円筒形状を有し、その内周面で各光線発生器2から出射される光線群を直接受けて反射するように設けられる。また、第2の反射部材は、基準軸raを取り囲む円筒形状を有し、その内周面で第1の反射部材により反射された光線群を直接受けて反射するように設けられる。さらに、第3の反射部材は、基準軸raを取り囲む円筒形状を有し、その内周面で第2の反射部材により反射された光線群を直接受けて反射するように設けられる。
[9] Other Embodiments (1) In the stereoscopic display 1 according to the above embodiment, the stereoscopic image 300 is presented in the image presentation space RS by a plurality of light rays reflected twice by the two reflecting surfaces 7a and 8a. However, the present invention is not limited to this. The stereoscopic image 300 may be presented in the image presentation space RS by a plurality of light rays reflected three or more times by at least one of the two reflecting surfaces 7a and 8a. The stereoscopic display that presents the stereoscopic image 300 by the plurality of light rays reflected three times or more may include three or more individually produced reflecting members. For example, in a stereoscopic display that presents a stereoscopic image 300 by a plurality of light rays reflected three times, instead of the above-mentioned reflecting members 7 and 8, three separately produced reflective members are first and first. It may be provided as the second and third reflective members. In this case, the first reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect a group of light rays emitted from each light ray generator 2 on its inner peripheral surface. Further, the second reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect a group of light rays reflected by the first reflecting member on the inner peripheral surface thereof. Further, the third reflecting member has a cylindrical shape surrounding the reference axis ra, and is provided so as to directly receive and reflect the light rays group reflected by the second reflecting member on the inner peripheral surface thereof.
 一の光線発生器から出射されて3回以上反射された光線群が到達可能な視域500内の範囲は、反射面7a,8aにより2回反射された光線群が到達可能な視域500内の範囲に比べて大きい。それにより、視域500内の複数の位置の各々で観察者10により視認される立体画像300を、さらに多数の光線発生器を用いてより多くの光線で形成することが可能になる。その結果、立体画像300のさらなる高精細化が可能になる。 The range within the range 500 that can be reached by the group of light rays emitted from one light beam generator and reflected three or more times is within the range 500 within the range 500 that the group of light rays reflected twice by the reflecting surfaces 7a and 8a can reach. Larger than the range of. Thereby, the stereoscopic image 300 visually recognized by the observer 10 at each of the plurality of positions in the visual range 500 can be formed by a larger number of light rays by using a larger number of light ray generators. As a result, the stereoscopic image 300 can be further improved in definition.
 (2)複数の光線発生器2a~2rから出射される複数の光線の各々を2回反射するための構成として、上記実施の形態に係る反射部材7,8に代えて以下の反射部材を用いてもよい。 (2) As a configuration for reflecting each of the plurality of light rays emitted from the plurality of light beam generators 2a to 2r twice, the following reflecting members are used instead of the reflecting members 7 and 8 according to the above embodiment. You may.
 図12は他の実施の形態に係る反射部材の一例を示す模式的断面図であり、図13は他の実施の形態に係る反射部材の他の例を示す模式的断面図であり、図14は他の実施の形態に係る反射部材のさらに他の例を示す模式的断面図である。 FIG. 12 is a schematic cross-sectional view showing an example of the reflective member according to another embodiment, and FIG. 13 is a schematic cross-sectional view showing another example of the reflective member according to another embodiment. FIG. Is a schematic cross-sectional view showing still another example of the reflective member according to another embodiment.
 図12の例では、反射部材8の反射面8aが側面視で基準軸raの方向に対して傾斜している。このように、反射部材7,8のうち少なくとも一方の反射面7a,8aを基準軸raの方向に対して傾斜させることにより、各光線発生器2から視域500に向けて反射される光線群の進行方向を調整することができる。それにより、反射部材8の上下方向のサイズを変更することなく視域500の高さを調整することができる。 In the example of FIG. 12, the reflecting surface 8a of the reflecting member 8 is inclined with respect to the direction of the reference axis ra in the side view. In this way, by inclining at least one of the reflecting members 7 and 8 with respect to the direction of the reference axis ra, a group of light rays reflected from each light generator 2 toward the viewing area 500. The direction of travel can be adjusted. Thereby, the height of the viewing range 500 can be adjusted without changing the size of the reflective member 8 in the vertical direction.
 図13の例では、光線発生器2から出射される光線群を2回反射させる反射部材71が単一の円筒部材で構成される。この反射部材71は、基準軸raを中心とする内周面を反射面71aとして有する。反射部材71の内径は一定である。図13の反射部材71によれば、各光線発生器2から発生される光線群を反射するための構成が単純化する。 In the example of FIG. 13, the reflecting member 71 that reflects the group of light rays emitted from the light ray generator 2 twice is composed of a single cylindrical member. The reflecting member 71 has an inner peripheral surface centered on the reference axis ra as the reflecting surface 71a. The inner diameter of the reflective member 71 is constant. According to the reflection member 71 of FIG. 13, the configuration for reflecting the light ray group generated from each light ray generator 2 is simplified.
 図14の例では、図13の例と同様に、光線発生器2から出射される光線群を2回反射させる反射部材72が単一の円筒部材で構成される。この反射部材72は、径大部72a、中間部72bおよび径小部72cがこの順で天板51の下面から下方に向かって並んだ構成を有し、基準軸raを取り囲むように設けられている。また、反射部材72は、基準軸raを中心とする内周面を反射面72sとして有する。 In the example of FIG. 14, the reflection member 72 that reflects the light beam group emitted from the light beam generator 2 twice is composed of a single cylindrical member, as in the example of FIG. The reflective member 72 has a configuration in which a large diameter portion 72a, an intermediate portion 72b, and a small diameter portion 72c are arranged downward from the lower surface of the top plate 51 in this order, and is provided so as to surround the reference axis ra. There is. Further, the reflective member 72 has an inner peripheral surface centered on the reference axis ra as the reflective surface 72s.
 径大部72aおよび径小部72cは、それぞれ略一定の内径を有する。径大部72aの内径は、径小部72cの内径よりも大きい。中間部72bは、径大部72aと径小部72cとを繋ぐように形成されている。そのため、中間部72bの内径は径小部72cから径大部72aへ遷移するように変化している。具体的には、中間部72bの内径は、下方から上方に向かうにつれて漸次拡大されている。図14の反射部材72によれば、各光線発生器2から発生される光線群を反射するための部品点数が低減され、構成が単純化する。また、基準軸raの方向において内径が変化する部分を適切に設定することにより、各光線発生器2から視域500に向けて反射される光線群の進行方向を、光線制御子9によらず調整することができる。 The large diameter portion 72a and the small diameter portion 72c each have a substantially constant inner diameter. The inner diameter of the large diameter portion 72a is larger than the inner diameter of the small diameter portion 72c. The intermediate portion 72b is formed so as to connect the large diameter portion 72a and the small diameter portion 72c. Therefore, the inner diameter of the intermediate portion 72b changes so as to transition from the small diameter portion 72c to the large diameter portion 72a. Specifically, the inner diameter of the intermediate portion 72b is gradually increased from the lower side to the upper side. According to the reflection member 72 of FIG. 14, the number of parts for reflecting the light ray group generated from each light ray generator 2 is reduced, and the configuration is simplified. Further, by appropriately setting the portion where the inner diameter changes in the direction of the reference axis ra, the traveling direction of the ray group reflected from each ray generator 2 toward the viewing area 500 can be determined regardless of the ray controller 9. Can be adjusted.
 なお、径大部72aおよび径小部72cのうち少なくとも一方の反射面72sは、基準軸raを含む仮想面内で、下方から上方に向かって凹状に湾曲するように形成されてもよい。すなわち、径大部72aおよび径小部72cのうち少なくとも一方の反射面72sの鉛直断面は、凹状を有してもよい。この場合、各光線発生器2から出射される光線群の一部を、径大部72aおよび径小部72cのうち少なくとも一方の反射面72sで反射させることにより、上下方向において、各光線発生器2から出射される光線列を視域500の各位置に集光することも可能になる。 The reflecting surface 72s of at least one of the large diameter portion 72a and the small diameter portion 72c may be formed so as to be concavely curved from the lower side to the upper side in the virtual surface including the reference axis ra. That is, the vertical cross section of at least one of the large-diameter portion 72a and the small-diameter portion 72s of the reflecting surface 72s may have a concave shape. In this case, a part of the light ray group emitted from each light ray generator 2 is reflected by at least one reflecting surface 72s of the large diameter portion 72a and the small diameter portion 72c, so that each light ray generator is reflected in the vertical direction. It is also possible to collect the ray trains emitted from No. 2 at each position in the viewing area 500.
 (3)上記実施の形態に係る立体ディスプレイ1には光線制御子9が設けられるが、光線制御子9は設けられなくてもよい。この場合、画像提示空間RSは、例えば、反射部材8の反射面8a形状および寸法と、天板51の孔部51hの寸法と、視域500の形状および寸法と、反射部材8および視域500間の位置関係とに基づいて一義的に定めることができる。 (3) The stereoscopic display 1 according to the above embodiment is provided with the light ray controller 9, but the light ray controller 9 may not be provided. In this case, the image presentation space RS is, for example, the shape and size of the reflecting surface 8a of the reflecting member 8, the size of the hole 51h of the top plate 51, the shape and size of the viewing area 500, and the reflecting member 8 and the viewing area 500. It can be uniquely determined based on the positional relationship between them.
 (4)上記実施の形態に係る立体ディスプレイ1においては、円錐形状を有する光線制御子9がテーブル5に取り付けられるが、本発明はこれに限定されない。光線制御子9は、円錐台形状を有してもよいし、円筒形状を有してもよい。また、光線制御子9は反射面7a,8aのいずれかに接するように設けられてもよい。 (4) In the stereoscopic display 1 according to the above embodiment, the light ray controller 9 having a conical shape is attached to the table 5, but the present invention is not limited to this. The light ray controller 9 may have a truncated cone shape or a cylindrical shape. Further, the light ray controller 9 may be provided so as to be in contact with any of the reflecting surfaces 7a and 8a.
 (5)上記実施の形態に係る立体ディスプレイ1においては、視域500がテーブル5の天板51よりも上方の位置に定義され、反射部材7,8および複数の光線発生器2が天板51の下方に設けられるが、本発明はこれに限定されない。立体ディスプレイ1は、テーブル5の天板51を基準として上下方向に反転された構成を有してもよい。この場合、観察者10は、視域500内の任意の位置で下方から斜め上方に向かって光線制御子9を見ることにより立体画像300を視認することができる。 (5) In the stereoscopic display 1 according to the above embodiment, the viewing area 500 is defined at a position above the top plate 51 of the table 5, and the reflecting members 7 and 8 and the plurality of light beam generators 2 are the top plate 51. Although provided below, the invention is not limited to this. The stereoscopic display 1 may have a configuration that is inverted in the vertical direction with respect to the top plate 51 of the table 5. In this case, the observer 10 can visually recognize the stereoscopic image 300 by looking at the light ray controller 9 obliquely upward from below at an arbitrary position within the viewing range 500.
 (6)上記実施の形態に係る立体ディスプレイ1においては、光線制御子9の内周面の上方に画像提示空間RSが設定されるが、本発明はこれに限定されない。光線制御子9の内周面の下方に画像提示空間RSが設定されてもよい。この場合、光線制御子9は、底部開口が下方を向くように孔部51hに嵌め込まれる。より具体的には、光線制御子9は、その頂点とその外周面の大部分とが天板51よりも上方に位置するように、その底部が孔部51hに嵌め込まれる。この状態で、光線制御子9の下方に立体画像300が提示される。光線制御子9は、透光性を有する材料で形成される。それにより、観察者10は、視域500から光線制御子9を見ることにより光線制御子9を通して立体画像300を視認することができる。 (6) In the stereoscopic display 1 according to the above embodiment, the image presentation space RS is set above the inner peripheral surface of the light ray controller 9, but the present invention is not limited to this. The image presentation space RS may be set below the inner peripheral surface of the light ray controller 9. In this case, the light ray controller 9 is fitted into the hole 51h so that the bottom opening faces downward. More specifically, the bottom of the light ray controller 9 is fitted into the hole 51h so that its apex and most of its outer peripheral surface are located above the top plate 51. In this state, the stereoscopic image 300 is presented below the light ray controller 9. The ray controller 9 is made of a translucent material. As a result, the observer 10 can visually recognize the stereoscopic image 300 through the light ray controller 9 by looking at the light ray controller 9 from the visual range 500.
 (7)上記実施の形態に係る反射部材7,8の反射面7a,8aの各々は、基準軸raに垂直な面内で基準軸raを中心とする円形状を有するが、本発明はこれに限定されない。反射面7a,8aの各々は、基準軸raに垂直な面内で基準軸raを中心とする実質的な円形状を有すればよい。すなわち、各反射面7a,8aは、実質的に円形状と見なすことが可能な程度の多角形状の水平断面を有してもよい。また、各反射面7a,8aの水平断面は、実質的に円形状と見なすことが可能な程度のゆがみを含む円形状(楕円形状)を有してもよい。あるいは、各反射面7a,8aの水平断面は、実質的に円形状と見なすことが可能な程度の継ぎ目または途切れ(欠け)を有してもよい。 (7) Each of the reflecting surfaces 7a and 8a of the reflecting members 7 and 8 according to the above embodiment has a circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra. Not limited to. Each of the reflecting surfaces 7a and 8a may have a substantially circular shape centered on the reference axis ra in a plane perpendicular to the reference axis ra. That is, each of the reflecting surfaces 7a and 8a may have a horizontal cross section having a polygonal shape that can be regarded as a substantially circular shape. Further, the horizontal cross section of each of the reflecting surfaces 7a and 8a may have a circular shape (elliptical shape) including a distortion that can be regarded as a substantially circular shape. Alternatively, the horizontal cross sections of the reflecting surfaces 7a, 8a may have seams or breaks (chips) to the extent that they can be regarded as substantially circular.
 (8)上記実施の形態に係る立体ディスプレイ1においては、複数の光線発生器2は平面視で基準軸raを中心とする円600上に配置されるが、本発明はこれに限定されない。複数の光線発生器2は、平面視で基準軸raを取り囲むように設けられていればよい。そのため、複数の光線発生器2の一部は、円600上に配置されなくてもよい。 (8) In the stereoscopic display 1 according to the above embodiment, the plurality of light beam generators 2 are arranged on a circle 600 centered on the reference axis ra in a plan view, but the present invention is not limited thereto. The plurality of ray generators 2 may be provided so as to surround the reference axis ra in a plan view. Therefore, a part of the plurality of ray generators 2 does not have to be arranged on the circle 600.
 (9)上記実施の形態に係る立体ディスプレイ1は、複数の光線発生器2として18個の光線発生器2を備えるが、立体ディスプレイ1が備える光線発生器2の数は複数であればよく、10個であってもよいし、30個であってもよい。あるいは、光線発生器2の数は、200個~300個程度であってもよい。なお、複数の光線発生器2は、平面視で基準軸raを基準として等角度間隔または略等角度間隔に設けられることが好ましい。 (9) The stereoscopic display 1 according to the above embodiment includes 18 ray generators 2 as a plurality of ray generators 2, but the number of ray generators 2 included in the stereoscopic display 1 may be a plurality. It may be 10 pieces or 30 pieces. Alternatively, the number of light beam generators 2 may be about 200 to 300. It is preferable that the plurality of light beam generators 2 are provided at equiangular intervals or substantially equiangular intervals with reference to the reference axis ra in a plan view.
 (10)上記実施の形態に係る立体ディスプレイ1においては、光線発生器2として電気的に制御可能なプロジェクタ等が用いられるが、本発明はこれに限定されない。立体ディスプレイ1においては、点光源またはレーザポインタとスライドフィルムとを組み合わせた構成(いわゆる映写機に相当する構成)を光線発生器2としてもよい。この場合、立体画像300を提示するための画像を表すスライドフィルムを予め作製することにより、記憶装置4が不要となる。 (10) In the stereoscopic display 1 according to the above embodiment, an electrically controllable projector or the like is used as the light beam generator 2, but the present invention is not limited thereto. In the stereoscopic display 1, the light beam generator 2 may have a configuration in which a point light source or a laser pointer and a slide film are combined (a configuration corresponding to a so-called projector). In this case, the storage device 4 becomes unnecessary by preparing in advance a slide film representing an image for presenting the stereoscopic image 300.
 (11)上記の立体ディスプレイ1においては、反射面8aの内径が反射面7aの内径よりも大きいが、反射部材7,8は、反射面8aの内径が反射面7aの内径よりも小さくなるように構成されてもよい。この場合、画像提示空間RSの周辺部材の構成を小型化することができる。また、大きな構成を立体ディスプレイ1におけるより下方の位置に配置することができるので、立体ディスプレイ1の設置状態が安定する。 (11) In the stereoscopic display 1 described above, the inner diameter of the reflecting surface 8a is larger than the inner diameter of the reflecting surface 7a, but the inner diameters of the reflecting surfaces 7 and 8 are smaller than the inner diameter of the reflecting surface 7a. It may be configured in. In this case, the configuration of the peripheral members of the image presentation space RS can be miniaturized. Further, since the large configuration can be arranged at a lower position on the stereoscopic display 1, the installation state of the stereoscopic display 1 is stable.
 (12)上記実施の形態に係る立体ディスプレイ1に設けられる光線制御子9は、外周面に入射した光線がその稜線方向Tにおいて大きく拡散しかつ円周方向Rで小さく拡散しつつ透過するように構成されるが、本発明はこれに限定されない。光線制御子9は、透過する光線Lを一方向に拡散させる構成に代えて、または透過する光線Lを一方向に拡散させる機能に加えて、以下の機能を有してもよい。 (12) The light ray controller 9 provided in the stereoscopic display 1 according to the above embodiment is such that the light rays incident on the outer peripheral surface are diffused while being largely diffused in the ridgeline direction T and smallly diffused in the circumferential direction R. However, the present invention is not limited to this. The light ray controller 9 may have the following functions in addition to the function of diffusing the transmitted light beam L in one direction or in addition to the function of diffusing the transmitted light ray L in one direction.
 光線制御子9は、透過する光線Lの進行方向を変更または制限する機能を有してもよい。この場合、透過する光線Lの進行方向を変更または制限することにより、光線制御子9を透過する光線列を所望の高さの視域500に集光することができる。 The ray controller 9 may have a function of changing or limiting the traveling direction of the transmitted ray L. In this case, by changing or limiting the traveling direction of the transmitted light beam L, the light ray sequence transmitted through the light ray controller 9 can be focused on the viewing range 500 at a desired height.
 透過する光線Lの進行方向を変更または制限する光線制御子9は、例えばプリズム、パララックスバリア構造を有する部材、回折格子またはホログラム等を用いることにより実現可能である。プリズムを用いる場合、透過する光線Lの進行方向を変更する構成は、例えば透明なシート状樹脂で形成された円錐形状のベース部材を用意し、そのベース部材の内周面または外周面に複数の環状プリズムを設けることにより実現することができる。 The ray controller 9 that changes or limits the traveling direction of the transmitted ray L can be realized by using, for example, a prism, a member having a parallax barrier structure, a diffraction grating, a hologram, or the like. When a prism is used, the configuration for changing the traveling direction of the transmitted light beam L is, for example, to prepare a conical base member formed of a transparent sheet-like resin, and to prepare a plurality of conical base members on the inner peripheral surface or the outer peripheral surface of the base member. This can be achieved by providing an annular prism.
 なお、光線制御子9において透過する光線Lの進行方向を変更または制限するための構成として、可変のパララックスバリア構造を有する部材を用いる場合には、パララックスバリア構造を制御することにより複数の光線Lの集光位置を適宜変更することも可能になる。 When a member having a variable parallax barrier structure is used as a configuration for changing or limiting the traveling direction of the light ray L transmitted through the light ray controller 9, a plurality of parallax barrier structures are controlled. It is also possible to appropriately change the focusing position of the light beam L.
 また、光線制御子9は、透過する光線Lの特性を変更する機能を有してもよい。この場合、透過する光線Lの特性を変更することにより、提示される立体画像300の光量、色合いを調整することができる。 Further, the light ray controller 9 may have a function of changing the characteristics of the light ray L to be transmitted. In this case, the amount of light and the hue of the presented stereoscopic image 300 can be adjusted by changing the characteristics of the transmitted light beam L.
 透過する光線Lの特性を変更する光線制御子9は、例えばND(ニュートラルデンシティ)フィルタまたはカラーフィルタ等を用いることにより実現可能である。 The ray controller 9 that changes the characteristics of the transmitted ray L can be realized by using, for example, an ND (neutral density) filter, a color filter, or the like.
 (13)上記実施の形態に係る立体ディスプレイ1に設けられる光線制御子9の数は1つであるが、本発明はこれに限定されない。立体ディスプレイ1に設けられる光線制御子9の数は、2以上であってもよい。2以上の光線制御子9を用いることにより、立体画像300の画質の調整が容易になる。なお、天板51の孔部51hを塞ぐように、円形の拡散板が設けられてもよい。この場合、立体画像300の輝度むらが低減され、立体画像300の画質がさらに向上する。 (13) The number of light ray controllers 9 provided in the stereoscopic display 1 according to the above embodiment is one, but the present invention is not limited to this. The number of light ray controllers 9 provided in the stereoscopic display 1 may be 2 or more. By using two or more ray controllers 9, the image quality of the stereoscopic image 300 can be easily adjusted. A circular diffusion plate may be provided so as to close the hole 51h of the top plate 51. In this case, the uneven brightness of the stereoscopic image 300 is reduced, and the image quality of the stereoscopic image 300 is further improved.
 [10]実施の形態の各部と請求項の各構成要素との対応関係
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明する。
[10] Correspondence relationship between each part of the embodiment and each component of the claim Hereinafter, an example of correspondence between each component of the claim and each component of the embodiment will be described.
 上記の実施の形態においては、立体ディスプレイ1が立体ディスプレイの例であり、基準軸raが基準軸の例であり、反射面7a,8aが反射面の例であり、反射部材7,8が反射部材の例であり、光線発生器2,2a~2rが光線発生器の例であり、制御装置3が制御部の例であり、視域500が環状視域の例であり、反射面7aが反射面の第1の部分の例であり、反射面8aが反射面の第2の部分の例であり、光線制御子9が光線制御子の例である。 In the above embodiment, the three-dimensional display 1 is an example of a three-dimensional display, the reference axis ra is an example of a reference axis, the reflection surfaces 7a and 8a are examples of reflection surfaces, and the reflection members 7 and 8 are reflections. Examples of members, light generators 2, 2a to 2r are examples of light generators, control device 3 is an example of a control unit, viewing area 500 is an example of annular viewing area, and reflecting surface 7a is an example. The first portion of the reflective surface is an example, the reflective surface 8a is an example of the second portion of the reflective surface, and the ray controller 9 is an example of a ray controller.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。 As each component of the claim, various other components having the configuration or function described in the claim can also be used.

Claims (6)

  1. 立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、
     上下方向に延びる基準軸を中心として前記基準軸を取り囲む反射面を有する反射部材と、
     複数の光線からなる光線群を各々出射可能に構成されるとともに前記基準軸を取り囲むように配置される複数の光線発生器と、
     前記複数の光線発生器を制御する制御部とを備え、
     前記基準軸を中心とする円環状の環状視域が定義され、
     前記反射部材は、前記基準軸に垂直な任意の断面において前記反射面が前記基準軸を中心とする実質的な円形を有するように構成され、
     前記複数の光線発生器の各々は、光線群の各光線が前記反射面で複数回反射されるように設けられ、
     前記制御部は、前記複数の光線発生器から出射されて前記反射面で複数回反射された複数の光線により前記環状視域から視認可能な立体画像が提示されるように前記複数の光線発生器を制御する、立体ディスプレイ。
    A stereoscopic display for presenting a stereoscopic image based on stereoscopic shape data.
    A reflective member having a reflective surface that surrounds the reference axis with a reference axis extending in the vertical direction as a center.
    A plurality of ray generators configured to be capable of emitting a group of rays composed of a plurality of rays and arranged so as to surround the reference axis.
    It is provided with a control unit that controls the plurality of ray generators.
    An annular circular vision centered on the reference axis is defined.
    The reflective member is configured such that the reflective surface has a substantially circular shape centered on the reference axis in any cross section perpendicular to the reference axis.
    Each of the plurality of ray generators is provided so that each ray of the ray group is reflected a plurality of times by the reflecting surface.
    The control unit is the plurality of ray generators so that a stereoscopic image visible from the annular visual region is presented by the plurality of rays emitted from the plurality of ray generators and reflected a plurality of times by the reflecting surface. A stereoscopic display that controls.
  2. 前記反射部材および前記複数の光線発生器は、各光線発生器から出射されて前記反射面により複数回反射された後の光線群が前記環状視域の全域に到達するように設けられる、請求項1記載の立体ディスプレイ。 The reflecting member and the plurality of ray generators are provided so that a group of rays emitted from each ray generator and reflected a plurality of times by the reflecting surface reaches the entire area of the annular visual region. The stereoscopic display according to 1.
  3. 前記反射部材の反射面は、
     各光線発生器から出射された光線群を直接的に受けるとともに反射する第1の部分と、
     前記第1の部分で反射された光線群を直接的に受けるとともに反射する第2の部分とを含み、
     前記基準軸の方向において、前記第1の部分の位置と前記第2の部分の位置とは互いに異なり、
     前記基準軸と前記第2の部分との間の距離は、前記基準軸と前記第1の部分との間の距離とは異なる、請求項2記載の立体ディスプレイ。
    The reflective surface of the reflective member is
    The first part that directly receives and reflects the group of rays emitted from each ray generator,
    Includes a second portion that directly receives and reflects the light beam group reflected by the first portion.
    In the direction of the reference axis, the position of the first portion and the position of the second portion are different from each other.
    The stereoscopic display according to claim 2, wherein the distance between the reference axis and the second portion is different from the distance between the reference axis and the first portion.
  4. 前記複数の光線発生器は、前記基準軸の方向に見た平面視で前記反射部材の反射面よりも外方に位置する、請求項1~3のいずれか一項に記載の立体ディスプレイ。 The stereoscopic display according to any one of claims 1 to 3, wherein the plurality of light ray generators are located outside the reflection surface of the reflection member in a plan view in the direction of the reference axis.
  5. 前記複数の光線発生器の各々から出射される光線群は、前記基準軸の方向に平行な面内で並ぶ光線列および前記基準軸の方向に垂直な方向に平行な面内で並ぶ光線行を含み、
     前記光線列を形成する光線数よりも前記光線行を形成する光線数が大きい、請求項1~4のいずれか一項に記載の立体ディスプレイ。
    The group of rays emitted from each of the plurality of ray generators has a row of rays arranged in a plane parallel to the direction of the reference axis and a row of rays arranged in a plane parallel to the direction perpendicular to the reference axis. Including
    The three-dimensional display according to any one of claims 1 to 4, wherein the number of rays forming the row of rays is larger than the number of rays forming the row of rays.
  6. 前記複数の光線発生器の各々から出射されて前記反射面で複数回反射された光線群の各光線を透過させつつ制御する光線制御子をさらに含み、
     前記光線制御子は、前記反射部材の前記反射面と前記環状視域との間に位置する、請求項1~5のいずれか一項に記載の立体ディスプレイ。
    Further including a ray controller that controls while transmitting each ray of a group of rays emitted from each of the plurality of ray generators and reflected a plurality of times by the reflecting surface.
    The stereoscopic display according to any one of claims 1 to 5, wherein the light ray controller is located between the reflecting surface of the reflecting member and the annular viewing area.
PCT/JP2020/040498 2019-10-30 2020-10-28 Stereoscopic display WO2021085492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-197134 2019-10-30
JP2019197134A JP7334954B2 (en) 2019-10-30 2019-10-30 3D display

Publications (1)

Publication Number Publication Date
WO2021085492A1 true WO2021085492A1 (en) 2021-05-06

Family

ID=75713040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040498 WO2021085492A1 (en) 2019-10-30 2020-10-28 Stereoscopic display

Country Status (2)

Country Link
JP (1) JP7334954B2 (en)
WO (1) WO2021085492A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171008A1 (en) * 2004-08-30 2006-08-03 Frederick Mintz Three-dimensional hologram display system
JP2008064950A (en) * 2006-09-06 2008-03-21 Olympus Corp Visual display device
JP2016014743A (en) * 2014-07-01 2016-01-28 国立研究開発法人情報通信研究機構 Stereoscopic display
JP2017083694A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Display device
JP2019020663A (en) * 2017-07-20 2019-02-07 国立研究開発法人情報通信研究機構 Stereoscopic display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060171008A1 (en) * 2004-08-30 2006-08-03 Frederick Mintz Three-dimensional hologram display system
JP2008064950A (en) * 2006-09-06 2008-03-21 Olympus Corp Visual display device
JP2016014743A (en) * 2014-07-01 2016-01-28 国立研究開発法人情報通信研究機構 Stereoscopic display
JP2017083694A (en) * 2015-10-29 2017-05-18 セイコーエプソン株式会社 Display device
JP2019020663A (en) * 2017-07-20 2019-02-07 国立研究開発法人情報通信研究機構 Stereoscopic display

Also Published As

Publication number Publication date
JP2021071554A (en) 2021-05-06
JP7334954B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP5099554B2 (en) 3D display
JP5694764B2 (en) Multi-user autostereoscopic display
JP3576521B2 (en) Stereoscopic display method and apparatus
US5521724A (en) Real-time automultiscopic 3D video display using holographic optical elements (HOEs)
JP2007519958A (en) 3D display
US20190007677A1 (en) Systems and Methods for Convergent Angular Slice True-3D Display
WO2011024453A1 (en) Three-dimensional display
JPH075455A (en) Display
JP5943273B2 (en) 3D display
JP2010020037A (en) Three-dimensional image display method and three-dimensional image display device
JP6327806B2 (en) Display device
WO2021085492A1 (en) Stereoscopic display
US10110885B2 (en) Three-dimensional image display apparatus
JP5398015B2 (en) 3D display and 3D image presentation method
JP7015033B2 (en) Stereoscopic display
WO2017199854A1 (en) Three-dimensional display
JP2010054917A (en) Naked-eye stereoscopic display device
JP6403466B2 (en) Light controller and stereoscopic display for presenting stereoscopic images
JP2006039335A (en) Projection display device
JP4324845B2 (en) Video display device
WO2021111954A1 (en) Image display device
JP6376862B2 (en) 3D display
JP2015018099A (en) Head-up display device and image projection device
JP5943274B2 (en) 3D display
WO2021149511A1 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882070

Country of ref document: EP

Kind code of ref document: A1