WO2021085469A1 - Plant processing method and plant processing system - Google Patents

Plant processing method and plant processing system Download PDF

Info

Publication number
WO2021085469A1
WO2021085469A1 PCT/JP2020/040414 JP2020040414W WO2021085469A1 WO 2021085469 A1 WO2021085469 A1 WO 2021085469A1 JP 2020040414 W JP2020040414 W JP 2020040414W WO 2021085469 A1 WO2021085469 A1 WO 2021085469A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
liquid
plant treatment
plants
crushing
Prior art date
Application number
PCT/JP2020/040414
Other languages
French (fr)
Japanese (ja)
Inventor
戸田 龍樹
正敏 岸
伸二郎 佐藤
岡村 和夫
敏光 小寺
睦実 関根
藤原 正明
明日香 金田
Original Assignee
学校法人 創価大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 創価大学 filed Critical 学校法人 創価大学
Priority to JP2021553649A priority Critical patent/JP7204263B2/en
Publication of WO2021085469A1 publication Critical patent/WO2021085469A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention relates to plant treatment, and more particularly to a plant treatment method and a plant treatment system for treating aquatic plants containing water, which are frequently damaged by mass overgrowth.
  • FIG. 15 shows aquatic plants (water hyacinth, water hyacinth, elodea nuttallii) that thrived in various countries around the world. As shown in FIG. 15, when aquatic plants grow excessively, sunlight does not reach the water, and as a result, photosynthesis is blocked and water pollution due to hypoxia occurs.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-184783
  • aquatic plants are rotted and squeezed, and the juice is methane-fermented.
  • a technique for aerobic treatment of methane fermentation residue (digestive juice) and pressed solid residue has been proposed.
  • An object of the present invention is to solve the above-mentioned problems of the prior art.
  • the present inventors have crushed, left and squeezed aquatic plants, processed the liquid by high-speed methane fermentation, and used the digested liquid as a valuable resource. Cultivates microalgae and vegetables, which are the raw materials for. High-speed, low-cost and high-efficiency aquatic plant treatment method and aquatic plant treatment of aquatic plants that produce solid fuel, activated carbon, building materials, compost materials, soil conditioners, etc. while rapidly treating the pressed fibrous solids by carbonization. We have completed the system.
  • the present invention is a plant treatment method for treating a plant.
  • a processing system for processing plants Means to crush plants and Means for leaving the crushed plant and A means for squeezing the abandoned plant to separate it into a fibrous solid content and a liquid content.
  • a plant treatment system including means for producing methane gas and digestive juice by fermenting the liquid with methane and separating methane gas and digestive juice is provided.
  • FIG. 1 is a schematic flowchart of the aquatic plant treatment method of the present embodiment.
  • FIG. 2 is a schematic view of the aquatic plant treatment system of the first embodiment.
  • FIG. 3 is a graph showing weight loss, with the vertical axis representing the weight of the solid (t) and the horizontal axis representing the solid before and after treatment.
  • FIG. 4 is a graph showing the volume reduction, where the vertical axis is the volume of the solid (m 3 ) and the horizontal axis is the solid before and after the treatment.
  • the vertical axis represents the amount of liquid discharged from the crushed product as a ratio (%) to the water content of the crushed product
  • the horizontal axis represents the crushing and squeezing conditions.
  • FIG. 1 is a schematic flowchart of the aquatic plant treatment method of the present embodiment.
  • FIG. 2 is a schematic view of the aquatic plant treatment system of the first embodiment.
  • FIG. 3 is a graph showing weight loss, with the vertical axis representing the weight of the solid (t) and the
  • FIG. 6 is a graph of methane production efficiency in which the vertical axis represents the cumulative amount of methane produced per dissolved organic carbon (mL / g-DOC) and the horizontal axis represents the operating time (days).
  • FIG. 7 is a graph showing the total nitrogen concentration (mg-N / L) on the vertical axis and the liquid content and digestive juice on the horizontal axis.
  • FIG. 8 is a graph in which the vertical axis represents total phosphorus concentration (mg-P / L) and the horizontal axis represents liquid content and digestive juice.
  • FIG. 12 is a schematic view of the aquatic plant treatment system of the second embodiment.
  • FIG. 13 is a diagram showing a configuration of an experimental device used for verifying the effect of the pretreatment.
  • FIG. 14 is a graph of the dissolved organic carbon concentration in which the vertical axis represents the dissolved organic carbon concentration (mg-DOC / L) and the horizontal axis represents the operating time (days). The figure which showed the aquatic plant overgrowth state in each country of the world.
  • FIG. 1 is a schematic flowchart of the aquatic plant treatment method of the present embodiment.
  • the treatment of this embodiment starts from step S100, and the aquatic plants are collected in step S101.
  • the aquatic plants to be recovered include hoteiaoi as shown in FIG. 15, wet plants, wet plants, water-extracting plants whose roots are completely below the surface of the water, and stems and leaves extending from the water to the surface of the water.
  • Floating plants that float on the surface of the water and are exposed to the air, overgrown aquatic plants such as submerged plants whose plants are completely underwater, and land such as Yoshi and Mitsuba Examples include, but are not limited to, agricultural residues and food wastes derived from plants and plant biomass.
  • aquatic plant an aquatic plant containing a large amount of water and to which the solid-liquid separation treatment can be applied without adding water or with a small amount of water is preferable, but there is no particular limitation.
  • method of collection such as cutting and dredging by machine.
  • step S102 the collected aquatic plants are crushed by a crushing means such as a crusher.
  • the crushing means is not particularly limited, for example, mortar / pestle, mortar, food processor, tornado mill, sanitary crusher, rotary crusher, hammer crusher, wing mol, impact mill, mighty mill, roll hammer crusher, planetary mill, etc. Can be mentioned.
  • step S103 after leaving the crushed aquatic plant at room temperature for a certain period of time, it is transferred to a squeezing means in step S104, a squeezing treatment is applied, and solid-liquid separation is performed in step S105.
  • the means of leaving is not particularly limited.
  • the squeezing means is also not particularly limited, but any squeezing means known so far, such as a manual type, a hydraulic type, a screw type, a piston type, and a centrifugal type, can be appropriately selected according to the scale of processing. ..
  • the fixed time can be about 6 hours or more and about 48 hours.
  • the aquatic plants After squeezing, the aquatic plants are separated into fibrous solids and liquids. Since the fibrous solid content is a carbonic component mainly composed of cellulose, the fibrous solid content is recovered in step S106, transferred to a carbonization means for applying the volume reduction treatment, and hypoxic or oxygen-blocked in step S107. Carbonize under the conditions.
  • the carbonization means used for the carbonization treatment is not particularly limited, and an electric furnace, a heating furnace using fossil fuel, wood, or the like, or a charcoal kiln can be used.
  • the volume reduction treatment for the fibrous solid content is the most beneficial treatment for carbonization, but depending on the plant, volume reduction treatment such as drying, incineration, pressing, and molding is also possible.
  • the fixed amount is recovered as carbide in step S108.
  • Carbides can be used, for example, as solid fuels, activated carbon raw materials, building materials, compost materials, soil conditioners and the like.
  • the liquid content recovered by the solid-liquid separation treatment in step S105 is treated with an organic substance by recovering the liquid content in step S109 and then fermenting the liquid content with methane in step S110.
  • Methanogenesis can be performed by using a flora that allows methanogenesis, specifically Methanomicrobia, such as archaea that synthesize methane under anaerobic conditions, such as Methanogen. , Methanogens, Methanomicrobia, Archaea belonging to Methanogens, and bacteria involved in hydrolysis or acidity, or flora.
  • the temperature of methane fermentation can be appropriately set in the range of 20 ° C. to 60 ° C.
  • the means and equipment for performing methane fermentation are not particularly limited, in the exemplary embodiment, the liquid content is contained in a high-speed methane fermentation tank such as an upward flow anaerobic sludge tank (UASB) containing a bacterial flora. It was found that methane fermentation can be efficiently stabilized by supplying methane fermentation.
  • UASB upward flow anaerobic sludge tank
  • the methane gas generated in the methane fermentation in step S110 is recovered in step S112 and can be used as a heat source for methane fermentation, and can also be used as electric power by generating electricity.
  • the liquid after methane fermentation is used as digestive liquid. If it is necessary to separate the methane bacteria in step S111, appropriate solid-liquid separation such as filtration is applied and the digested juice is recovered in step S111.
  • the use of the digestive juice can include, for example, chlorella, euglena, spirulina, microalgae, a medium for other high-value-added microorganisms, liquid fertilizer, and the like, but is not particularly limited.
  • the process of FIG. 1 can be a continuous process or a batch process. According to this embodiment, the treatment of aquatic plants can be efficiently achieved with the minimum amount of carbon released.
  • FIG. 2 shows a schematic diagram of the aquatic plant treatment system of the first embodiment.
  • the aquatic plant treatment system shown in FIG. 2 includes a crusher 200 as a crushing means, a leaving device 210 as a leaving means, a squeezing machine 220 as a squeezing means, and a carbonizing furnace 230 as a carbonizing means.
  • valves, pumps and other means used for processing are omitted.
  • the collected plants are put into the crusher 200 and crushed by a cutter member or the like arranged inside. Since the size of the crushed material affects the efficiency of the subsequent squeezing step, the crushing of aquatic plants can be optimized in advance including the crushing time and crushing conditions according to the characteristics of the crushing means to be used.
  • the crushed material is transferred to the leaving device 210, charged into the squeezing machine 220, and solid-liquid separation is performed.
  • the elution amount of the component is increased by repeating squeezing twice after leaving for 12 hours.
  • the method of leaving is not limited as long as the crushed material does not dry and is at room temperature or above room temperature.
  • the squeezing machine is not limited to a pressurizing mechanism or method such as a manual type, a mechanical type, or a hydraulic type as long as it can pressurize the crushed material and squeeze out the water contained in the crushed material. By squeezing, the crushed material is separated into a fibrous solid content containing carbon and a liquid content.
  • the fibrous solid content is put into the carbonization furnace 230 and carbonized as an exemplary volume reduction treatment.
  • a crushing means for further crushing the carbide and a means for recovering the carbide may be provided.
  • the carbonization furnace 230 can be an electric furnace, a gas furnace, a simple carbonization furnace, etc., and is heated to a maximum temperature of 350 to 900 ° C. at a heating rate of 5 to 10 ° C./min and held for 1 to 4 hours. Carbonize. After that, it is naturally cooled.
  • methane gas produced by methane fermentation can be directly used.
  • the electric furnace can be heated by the generated electric power.
  • the aquatic plant treatment system further includes a high-speed methane fermentation treatment tank 240 and a separation means such as a solid-liquid separation device 250 in a preferred embodiment.
  • the high-speed methane fermentation treatment tank 240 is filled with an anaerobic flora containing methanogens, and liquids are supplied from the lower part, and the liquids are sequentially transported upward.
  • the liquid component may be circulated using an appropriate discharge port and return port of the high-speed methane fermentation treatment tank 240, or the flow rate of one pass can be controlled so as to secure a predetermined treatment time.
  • the methane gas produced by methane fermentation is sent as produced methane to the biogas refining unit 270 composed of hydrogen sulfide treatment means and the like, and is processed for power generation, heating, drying, storage or subsequent use. To.
  • the digested juice after the treatment is periodically or continuously discharged from the high-speed methane fermentation treatment tank 240, preferably after passing through a solid-liquid separator 250 for separating methanogens and the like, and then the digestive juice. Is stored in the digestive juice storage tank 260.
  • the digestive juice in the digestive juice storage tank 260 is provided as a liquid product such as a medium for microalgae and a liquid fertilizer after pH adjustment and other appropriate treatments.
  • the aquatic plant treatment method and the aquatic plant treatment apparatus of the present embodiment it is possible to efficiently produce an environmentally beneficial product from aquatic plants containing a large amount of water while satisfying the requirements for low carbon emission. Is possible.
  • Example 1 (Examination of squeezing efficiency) By crushing and squeezing aquatic plants, liquids containing highly degradable dissolved organic matter and fibrous solids containing cell walls with low degradability are separated. In Example 1, it was demonstrated how much the volume of aquatic plants is reduced by the aquatic plant treatment of this embodiment.
  • the experimental conditions are as follows.
  • Substrate Water hyacinth (Eichhornia crassipes) Crushing conditions: No crushing, 0.5 cm, 3.0 cm Squeezing pressure: 20MPa, 40MPa (squeezing pressure is changed and squeezing treatment is performed twice) Carbonization temperature: 800 ° C Carbonization time: 2 hours
  • FIG. 3 shows the result as a graph.
  • the vertical axis represents the weight (t) of the solid
  • the horizontal axis represents the solid before and after the treatment, indicating the weight loss.
  • the weight of water hyacinth after cutting is 100 tons
  • the weight of the fibrous solid content after crushing and pressing is reduced to 33 tons.
  • the weight is reduced to about 1.5 tons after carbonization, and according to this embodiment, the aquatic plants are crushed / pressed or carbonized in a short time to effectively reduce the volume. It was shown to be possible.
  • FIG. 4 shows a graph of the volume loss of the solid, corresponding to the graph of weight loss in FIG.
  • the vertical axis is the volume of the solid (m 3 )
  • the horizontal axis is the solid before and after the treatment, indicating the volume reduction.
  • the volume of water hyacinth after cutting is 100 m 3
  • the fibrous solid content after crushing and pressing is reduced to about 8.5 m 3
  • the volume of water hyacinth after carbonization is further reduced. that volume to 0.4 m 3 of less than 2% decrease was observed against. From this, it was shown that the volume can be significantly reduced.
  • Example 2 (Examination of juice squeezing rate) As Example 2, the size and squeezing pressure of the crushed product prepared under the conditions of Example 1 were changed, and the squeezing condition dependence of the squeezed amount, that is, the squeezing efficiency dependence was examined. The result is shown in FIG. FIG. 5 is a graph showing the amount of liquid discharged from the crushed material on the vertical axis as a ratio (%) to the water content of water hyacinth, and the horizontal axis as crushing and squeezing conditions. As shown in FIG. 5, it was confirmed that the smaller the crushing size than the larger one, the better the squeezing efficiency, and the higher the squeezing pressure, the better the squeezing efficiency.
  • Substrate Water hyacinth (Eichhornia crassipes) crushing / pressing liquid Crushing: 0.5 cm Squeezing pressure: 50 MPa Reaction tank: A 500 mL medium bottle (effective volume 300 mL) in which a high-speed methane fermentation tank is simulated.
  • Seed sludge Medium-temperature anaerobic digested sludge distributed by the Northern Sludge Recycling Center, Environmental Creation Bureau, Yokohama City, Kanagawa Prefecture
  • FIG. 6 shows the amount of methane produced by methane fermentation as a graph.
  • the vertical axis represents the integrated methane production amount (mL / g-DOC), and the horizontal axis represents the operating time (days).
  • methane fermentation of the liquid in a treatment tank simulating a high-speed methane fermentation treatment tank methane production is substantially completed in about 4 to 5 days, and high-speed methane fermentation treatment is performed. It was shown that it can be done. Therefore, in the present embodiment, it has been found that the residence period of the liquid in the high-speed methane fermentation treatment tank 240 can be reduced to about several days.
  • the liquid contains nitrogen and phosphorus, which have a fertilizer effect and are possessed by water hyacinth. Since digestive juice is produced by methane fermentation of the liquid content, whether or not the amounts of nitrogen and phosphorus components, which are the active components, are preserved in the digestive liquid, the total nitrogen concentration and total phosphorus in the liquid content and digestive juice It was examined by quantitative analysis of the concentration. The analysis conditions are as follows.
  • the total nitrogen concentration was measured by the total method (industrial wastewater test method JIS K 0102 45.2), and the total phosphorus concentration was measured by the potassium perioxosulfate decomposition method (factory wastewater test method JIS K 0102 46.3.1).
  • FIG. 7 shows the analysis result of the total nitrogen concentration.
  • FIG. 7 is a graph showing the total nitrogen concentration (mg-N / L) on the vertical axis and the liquid content and digestive juice on the horizontal axis. Note that FIG. 7 shows the confidence limit (95%) for the total nitrogen concentration. As shown in FIG. 7, it was confirmed that the total nitrogen concentration did not change substantially before and after the methane fermentation.
  • FIG. 8 shows the analysis result of the total phosphorus concentration.
  • FIG. 8 is a graph in which the vertical axis represents total phosphorus concentration (mg-P / L) and the horizontal axis represents liquid content and digestive juice. Note that FIG. 8 shows the confidence limit (95%) for the total phosphorus concentration. As shown in FIG. 8, it was confirmed that the total phosphorus concentration did not substantially change before and after the methane fermentation.
  • the digestive juice after methane fermentation contains a sufficient amount of fertilizer components for plants, and zooplankton that grows by digesting the plant itself, chlorella, phytoplankton or phytoplankton. It was confirmed that it can be provided as fertilizer or culture solution.
  • Substrate Water hyacinth (Eichhornia crassipes) crushing / pressing liquid Crushing: 0.5 cm Squeezing pressure: 50 MPa Standing time: 0 hours, 12 hours, 24 hours, and 12 hours, then squeezing and then leaving the fiber solids again for 12 hours
  • Reaction tank 500 mL medium bottle (effective volume 300 mL) in which a high-speed methane fermentation tank was simulated.
  • FIG. 9 shows a graph showing the amount of methane produced by methane fermentation when the neglected treatment is added to the process.
  • the vertical axis represents the integrated methane production amount (mL / g-DOC), and the horizontal axis represents the operating time (days).
  • mL / g-DOC integrated methane production amount
  • days the operating time
  • the liquid contains nitrogen and phosphorus, which have a fertilizer effect and are possessed by water hyacinth. It was examined by quantitative analysis of the total nitrogen concentration and total phosphorus concentration of the liquid. The analysis conditions are as follows.
  • the total nitrogen concentration was measured by the total method (industrial wastewater test method JIS K 0102 45.2), and the total phosphorus concentration was measured by the potassium perioxosulfate decomposition method (factory wastewater test method JIS K 0102 46.3.1).
  • FIG. 10 shows the analysis result of the total nitrogen concentration.
  • FIG. 10 is a graph of total nitrogen concentration in which the vertical axis represents the total nitrogen concentration (mg—N / L) and the horizontal axis represents the standing time.
  • the total nitrogen concentration to be eluted increased by performing the leaving treatment.
  • the elution amount was significantly increased by repeating the standing for 12 hours and the pressing twice (12h ⁇ 12h in FIG. 10). Therefore, it can be seen that the total nitrogen concentration in the digestive juice can be increased and the amount of microalgae recovered can be increased by performing the pretreatment for leaving.
  • FIG. 11 shows the analysis result of the total phosphorus concentration.
  • FIG. 11 is a graph in which the vertical axis represents the total phosphorus concentration (mg-P / L) and the horizontal axis represents the standing time.
  • the total phosphorus concentration to be eluted increased by performing the leaving treatment.
  • the elution amount was significantly increased by repeating the leaving and pressing for 12 hours twice (12h ⁇ 12h in FIG. 11). Therefore, it can be seen that the total phosphorus concentration in the digestive juice can be increased and the amount of microalgae recovered can be increased by performing the pretreatment for leaving.
  • the liquid (squeezed liquid) containing highly decomposable soluble organic matter obtained by crushing and squeezing may be sent to the high-speed methane fermentation treatment tank 240 and treated as it is, but pretreatment of the squeezed liquid is carried out. It was found that it is expected that the operation efficiency will be improved. Therefore, pretreatment such as pH adjustment can be carried out.
  • FIG. 12 shows a schematic diagram of the aquatic plant treatment system of the second embodiment.
  • the aquatic plant treatment system shown in FIG. 12 has almost the same configuration as the system shown in FIG. 2, but the pH is adjusted as an example of a pretreatment device between the press 220 and the high-speed methane fermentation treatment tank 240.
  • Device 280 has been added.
  • the crusher 200, the leaving device 210, the squeezing machine 220, the carbonization furnace 230, the high-speed methane fermentation treatment tank 240, the solid-liquid separation device 250, the digestive juice storage tank 260, and the biogas purification unit 270 have already been described. Is omitted.
  • the pH adjuster 280 accepts the liquid that is discharged from the upper part of the high-speed methane fermentation treatment tank 240 and circulates, and the liquid that is supplied from the squeezer 220 after merging, and receives the pH of calcium hydroxide or the like.
  • a regulator is used to adjust the pH of the liquid supplied to the high speed methane fermentation treatment tank 240.
  • the pH of the liquid is adjusted to, for example, 6 to 8, preferably 6.5 to 7.5.
  • the pH adjusting device 280 includes, for example, a liquid storage tank for storing liquid, a container for storing a pH adjusting liquid such as an aqueous solution of calcium hydroxide, a pH measuring device for measuring pH in the liquid storage tank, and pH. It includes a regulating valve that adjusts the amount of pH adjusting liquid supplied from the container based on the pH measured by the measuring instrument.
  • the pH adjusting device 280 may include a stirrer for stirring the inside of the liquid content storage tank.
  • the pH adjusting device 280 is not limited to this configuration as long as the pH of the liquid can be adjusted.
  • pH adjustment is given as an example of the pretreatment of the liquid component, but the pretreatment may be solubilization, heat treatment, addition of a trace amount of metal, or the like, and is not limited to pH adjustment.
  • the liquid content obtained by squeezing hotiaoi under the following conditions is pH-adjusted, and the pH-adjusted liquid content is a bacterium that enables methane fermentation with a pump 300 such as a Perista pump (registered trademark).
  • a pump 300 such as a Perista pump (registered trademark).
  • the hydraulic residence time is the average time from the inflow of the liquid into the reaction tank 310 to the outflow.
  • the crushing, squeezing pressure, and seed sludge were the same as in the examples shown in FIG.
  • the biogas generated by methane fermentation was discharged from the top of the reaction tank 310, and the waste water was discharged by overflow.
  • the experimental conditions are as follows.
  • Substrate Water hyacinth (Eichhornia crassipes) crushing / pressing solution Temperature: 37 ⁇ 1 ° C pH adjustment: Ca (OH) 2 Reaction tank: Effective volume 6.5 m 3 Hydraulic dwell time (HRT): Operating period (days) 0-12: 5 days 12-44: 4 days 44-77: 3 days 77-120: 2 days The pH was adjusted to 6.5-7.5.
  • FIG. 14 is a graph showing the DOC concentration.
  • the DOC concentration is the DOC concentration contained in the substrate before pH adjustment and the waste water discharged from the reaction tank 310, using the combustion catalytic oxidation method by TOC-L CPH / CPN (manufactured by Shimadzu Corporation) every two days. Measured.
  • FIG. 14 is a graph of the DOC concentration in which the vertical axis represents the DOC concentration (mg-DOC / L) and the horizontal axis represents the operation period (days).
  • the hydraulic residence time was set to 5 days, the amount of the pH-adjusted treatment liquid supplied into the reaction vessel 310 was reduced, and after the 12th day, the above number of days was increased.
  • the experiment was conducted by shortening the hydraulic residence time by one day and increasing the supply amount of the treatment liquid each time.
  • aquatic plants are crushed, left to stand, and squeezed, and the liquid content is subjected to high-speed methane fermentation treatment to recover biogas, and the digestive juice is used as a raw material for valuable resources.
  • High-speed, low-cost, and highly efficient aquatic plant treatment methods and aquatic plants capable of producing solid fuels, building materials, etc. while culturing certain microalgae and rapidly treating pressed fibrous solid residues by carbonization.
  • a plant processing system can be provided. Further, by carrying out pretreatment such as pH adjustment, the hydraulic residence time can be reduced to 2 days, and the operating efficiency can be improved.
  • the numerical provisions used in the present embodiment should be understood as median, average, and representative values including a certain range, and the numerical values disclosed in the present disclosure exceed the numerical values by 20%. It should also be understood to define a numerical range that is 20% below the numerical value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided are a plant processing method and a plant processing system. A plant processing system according to this invention includes: a crushing machine 200 that crushes plants; a compressing machine 220 that compresses the crushed plants and separates the same into a fibrous solid component and a liquid component, after the crushed plants have been held in a holding device 210 that is for holding the crushed plants; a carbonizing furnace 230 that reduces the volume of the fibrous solid component and manufactures a solid fuel or the like; and a processing tank 240 that causes the liquid component to undergo methane fermentation to separate the methane gas and the digestion liquid, producing methane gas and a digestion liquid. The volume-reduced solid, the digestion liquid, and the methane gas that are produced can be utilized effectively.

Description

植物処理方法および植物処理システムPlant treatment methods and plant treatment systems
 本発明は、植物処理に関し、より詳細には、大量繁茂により被害が頻発している水分を含む水生植物を処理する植物処理方法および植物処理システムに関する。 The present invention relates to plant treatment, and more particularly to a plant treatment method and a plant treatment system for treating aquatic plants containing water, which are frequently damaged by mass overgrowth.
 近年、内水面の富栄養化に伴い、大量の水生植物が異常繁殖を続け、生態系を破壊するとともに、船の航行、上水及び灌漑の取水を妨げる等の障害が発生している。例えば、ホテイアオイといった水生植物は、湖沼に繁茂すると、水中に光が届かなくなり他の水生植物の光合成に影響を与える。また、水生植物は、腐敗すると貧酸素状態を作り出し、水中環境に悪影響を与えるなどの問題がある。図15には、世界各国において繁茂した水生植物(ホテイアオイ、ウォーターレタス、コカナダモ)を示す。図15に示すように、水生植物が過剰に繁茂すると、日光が水中に届かなくなり、この結果、光合成が遮られ、貧酸素化に伴う水質汚染が発生する。 In recent years, along with the eutrophication of the inland water surface, a large amount of aquatic plants have continued to overgrow, destroying the ecosystem and causing obstacles such as hindering ship navigation, water supply and irrigation intake. For example, when water hyacinth grows in lakes and marshes, light does not reach the water and affects the photosynthesis of other aquatic plants. In addition, aquatic plants have problems such as creating an oxygen-deficient state when they rot and adversely affecting the aquatic environment. FIG. 15 shows aquatic plants (water hyacinth, water hyacinth, elodea nuttallii) that thrived in various countries around the world. As shown in FIG. 15, when aquatic plants grow excessively, sunlight does not reach the water, and as a result, photosynthesis is blocked and water pollution due to hypoxia occurs.
 上述した水生植物による環境悪化を改善するべく検討を続けており、例えば、特開昭59-184783号公報(特許文献1)では、水生植物を腐敗・圧搾し、搾汁液をメタン発酵し、そのメタン発酵残渣(消化液)および圧搾固形残渣を好気処理する技術が提案されている。 We are continuing to study to improve the environmental deterioration caused by the above-mentioned aquatic plants. For example, in Japanese Patent Application Laid-Open No. 59-184783 (Patent Document 1), aquatic plants are rotted and squeezed, and the juice is methane-fermented. A technique for aerobic treatment of methane fermentation residue (digestive juice) and pressed solid residue has been proposed.
 しかし、腐敗や好気処理は時間がかかり、またスペースを要するため、水生植物の大量処理のために適したものとは言えなかった。すなわち、水生植物を大量にかつ効率よく処理するための水生植物処理方法および水生植物処理システムが依然として必要とされていた。 However, spoilage and aerobic treatment take time and space, so it was not suitable for mass treatment of aquatic plants. That is, there is still a need for aquatic plant treatment methods and aquatic plant treatment systems for treating aquatic plants in large quantities and efficiently.
特開昭59-184783号公報JP-A-59-184783
 本発明は、上記従来技術の問題点を解決することを課題とする。 An object of the present invention is to solve the above-mentioned problems of the prior art.
 本発明者等は、上記従来技術の問題点に鑑み鋭意検討を行った結果、水生植物を破砕・放置・圧搾処理し、液分を高速メタン発酵処理するとともに、その消化液を用いて有価物の原料である微細藻類の培養や野菜の栽培を行う。圧搾繊維質固形分は炭化により迅速に処理しつつ固形燃料、活性炭や建築資材、堆肥資材、土壌改良剤等を生産する水生植物の高速、低コストおよび高効率の水生植物処理方法および水生植物処理システムを完成するに至った。 As a result of diligent studies in view of the above-mentioned problems of the prior art, the present inventors have crushed, left and squeezed aquatic plants, processed the liquid by high-speed methane fermentation, and used the digested liquid as a valuable resource. Cultivates microalgae and vegetables, which are the raw materials for. High-speed, low-cost and high-efficiency aquatic plant treatment method and aquatic plant treatment of aquatic plants that produce solid fuel, activated carbon, building materials, compost materials, soil conditioners, etc. while rapidly treating the pressed fibrous solids by carbonization. We have completed the system.
 すなわち、本発明によれば
 植物を処理するための植物処理方法であって、
 植物を破砕する工程と、
 破砕した前記植物を放置する工程と、
 放置した前記植物を圧搾して、繊維質固形分と、液分とに分離する工程と、
 前記繊維質固形分を炭化により減容処理する工程と、
 前記液分をメタン発酵させて、メタンガスと前記消化液とを生成する工程と、
 を含む植物処理方法が提供される。
That is, according to the present invention, it is a plant treatment method for treating a plant.
The process of crushing plants and
The process of leaving the crushed plant and
A step of squeezing the abandoned plant to separate it into a fibrous solid content and a liquid content.
The step of reducing the volume of the fibrous solid content by carbonization and
A step of methane fermentation of the liquid to produce methane gas and the digestive juice,
Plant treatment methods including.
 また、本発明の他の局面によれば、
 植物を処理するための処理システムであって、
 植物を破砕する手段と、
 破砕した前記植物を放置する手段と、
 放置した前記植物を圧搾して、繊維質固形分と、液分とに分離する手段と、
 前記繊維質固形分を炭化により減容処理する手段と、
 前記液分をメタン発酵させて、メタンガスと消化液とを分離してメタンガスおよび消化液を製造する手段と
 を含む植物処理システムが提供される。
Also, according to other aspects of the invention,
A processing system for processing plants
Means to crush plants and
Means for leaving the crushed plant and
A means for squeezing the abandoned plant to separate it into a fibrous solid content and a liquid content.
A means for reducing the volume of the fibrous solid content by carbonization and
A plant treatment system including means for producing methane gas and digestive juice by fermenting the liquid with methane and separating methane gas and digestive juice is provided.
 本発明によれば、植物処理を高速化および高効率で処理することを可能とする植物処理方法および植物処理システムを提供することができる。 According to the present invention, it is possible to provide a plant treatment method and a plant treatment system that enable high-speed and high-efficiency treatment of plants.
図1は、本実施形態の水生植物処理方法の概略的フローチャート。FIG. 1 is a schematic flowchart of the aquatic plant treatment method of the present embodiment. 図2は、第1の実施形態の水生植物処理システムの概略図。FIG. 2 is a schematic view of the aquatic plant treatment system of the first embodiment. 図3は、縦軸を固体の重量(t)とし、横軸を処理前後の固体として、重量減少を示すグラフ。FIG. 3 is a graph showing weight loss, with the vertical axis representing the weight of the solid (t) and the horizontal axis representing the solid before and after treatment. 図4は、縦軸を固体の体積(m)とし、横軸を処理前後の固体として、体積減少を示すグラフ。FIG. 4 is a graph showing the volume reduction, where the vertical axis is the volume of the solid (m 3 ) and the horizontal axis is the solid before and after the treatment. 図5は、縦軸に破砕物から排出された液分の量を、破砕物の水分量に対する割合(%)とし、横軸を破砕および圧搾条件として、示したグラフ。In FIG. 5, the vertical axis represents the amount of liquid discharged from the crushed product as a ratio (%) to the water content of the crushed product, and the horizontal axis represents the crushing and squeezing conditions. 図6は、縦軸を溶存有機炭素あたり積算メタン生成量(mL/g-DOC)とし、横軸を運転時間(日)として示したメタン生成効率のグラフ。FIG. 6 is a graph of methane production efficiency in which the vertical axis represents the cumulative amount of methane produced per dissolved organic carbon (mL / g-DOC) and the horizontal axis represents the operating time (days). 図7は、縦軸を全窒素濃度(mg-N/L)とし、横軸を液分および消化液として示したグラフ。FIG. 7 is a graph showing the total nitrogen concentration (mg-N / L) on the vertical axis and the liquid content and digestive juice on the horizontal axis. 図8は、縦軸を全燐濃度(mg-P/L)とし、横軸を液分および消化液として示したグラフ。FIG. 8 is a graph in which the vertical axis represents total phosphorus concentration (mg-P / L) and the horizontal axis represents liquid content and digestive juice. 縦軸を積算メタン生成量(mL/g-DOC)とし、横軸を運転時間(日)として示した放置処理を用いた場合のメタン生成効率を示した図。The figure which showed the methane production efficiency at the time of using the neglected treatment which showed the integrated methane production amount (mL / g-DOC) on the vertical axis and the operation time (day) on the horizontal axis. 縦軸を全窒素濃度(mg-N/L)とし、横軸を放置時間として示した全窒素濃度のグラフ。The graph of the total nitrogen concentration where the vertical axis shows the total nitrogen concentration (mg-N / L) and the horizontal axis shows the leaving time. 縦軸を全燐濃度(mg-P/L)とし、横軸に放置時間として示した全燐濃度のグラフ。The vertical axis is the total phosphorus concentration (mg-P / L), and the horizontal axis is the graph of the total phosphorus concentration shown as the leaving time. 図12は、第2の実施形態の水生植物処理システムの概略図。FIG. 12 is a schematic view of the aquatic plant treatment system of the second embodiment. 図13は、前処理の効果を検証するために使用した実験装置の構成を示した図。FIG. 13 is a diagram showing a configuration of an experimental device used for verifying the effect of the pretreatment. 図14は、縦軸を溶存有機炭素濃度(mg-DOC/L)とし、横軸を運転時間(日)として示した溶存有機炭素濃度のグラフ。FIG. 14 is a graph of the dissolved organic carbon concentration in which the vertical axis represents the dissolved organic carbon concentration (mg-DOC / L) and the horizontal axis represents the operating time (days). 世界各国における水生植物繁茂状態を示した図。The figure which showed the aquatic plant overgrowth state in each country of the world.
 以下、本発明を例示的な実施形態により説明するが、本発明は、実施形態に限定されるものではない。図1は、本実施形態の水生植物処理方法の概略的フローチャートである。本実施形態の処理は、ステップS100から開始し、ステップS101で水生植物を回収する。回収する水生植物としては、図15に示したようなホテイアオイの他、湿地植物、湿生植物、根が完全に水面下にあり、茎や葉が水中から水面上に伸びる抽水性植物、葉が水面に浮かんで、その表面が空気に触れている浮葉性植物(または浮遊植物)、植物体が、完全に水中にある沈水性植物などの過剰繁茂している水生植物や、ヨシやミツバといった陸上植物、植物バイオマス由来の農業残渣や食品廃棄物を挙げることができるが、限定しない。 Hereinafter, the present invention will be described with reference to exemplary embodiments, but the present invention is not limited to the embodiments. FIG. 1 is a schematic flowchart of the aquatic plant treatment method of the present embodiment. The treatment of this embodiment starts from step S100, and the aquatic plants are collected in step S101. The aquatic plants to be recovered include hoteiaoi as shown in FIG. 15, wet plants, wet plants, water-extracting plants whose roots are completely below the surface of the water, and stems and leaves extending from the water to the surface of the water. Floating plants (or floating plants) that float on the surface of the water and are exposed to the air, overgrown aquatic plants such as submerged plants whose plants are completely underwater, and land such as Yoshi and Mitsuba Examples include, but are not limited to, agricultural residues and food wastes derived from plants and plant biomass.
 また、水生植物としては、水分を多く含み、固液分離処理を、水を追加することなくまたは少量の追加で適用することができる水生植物が好ましいが、特に限定はない。また、回収の仕方についても刈取り、機械による浚渫など特に限定はない。 Further, as the aquatic plant, an aquatic plant containing a large amount of water and to which the solid-liquid separation treatment can be applied without adding water or with a small amount of water is preferable, but there is no particular limitation. In addition, there are no particular restrictions on the method of collection, such as cutting and dredging by machine.
 ステップS102では、回収した水生植物を破砕機といった破砕手段で破砕する。破砕手段にも特に限定は無く、例えば、乳鉢・乳棒、すり鉢、フードプロセッサ、トルネードミル、サニタリークラッシャー、ロータリークラッシャー、ハンマークラッシャー、ウィングモル、インパクトミル、マイティミル、ロール・ハンマークラッシャー、遊星ミルなどを挙げることができる。 In step S102, the collected aquatic plants are crushed by a crushing means such as a crusher. The crushing means is not particularly limited, for example, mortar / pestle, mortar, food processor, tornado mill, sanitary crusher, rotary crusher, hammer crusher, wing mol, impact mill, mighty mill, roll hammer crusher, planetary mill, etc. Can be mentioned.
 ステップS103では、破砕した水生植物を常温で一定時間放置した後、ステップS104で圧搾手段に移送して、圧搾処理を適用し、ステップS105で固液分離を行う。放置は、破砕した水生植物が乾燥せず、常温以上であれば、放置手段は特に限定しない。圧搾手段についても特に限定はないが、手動式、油圧式、ネジ式、ピストン式、遠心分離式など、これまで知られた圧搾手段であれば、処理のスケールに応じて適宜選択することができる。一定時間とは、6時間以上48時間程度とすることができる。 In step S103, after leaving the crushed aquatic plant at room temperature for a certain period of time, it is transferred to a squeezing means in step S104, a squeezing treatment is applied, and solid-liquid separation is performed in step S105. As long as the crushed aquatic plants are not dried and are left at room temperature or higher, the means of leaving is not particularly limited. The squeezing means is also not particularly limited, but any squeezing means known so far, such as a manual type, a hydraulic type, a screw type, a piston type, and a centrifugal type, can be appropriately selected according to the scale of processing. .. The fixed time can be about 6 hours or more and about 48 hours.
 圧搾後、水生植物は、繊維質固形分と、液分とに分離される。繊維質固形分は、セルロースを主体とする炭素質成分なので、ステップS106で繊維質固形分を回収した後、減容処理を適用するための炭化手段に移送し、ステップS107で低酸素または酸素遮断条件で炭化処理を行う。炭化処理のために使用する炭化手段にも特に限定は無く、電気炉や化石燃料・木材などを使用する加熱炉、または炭窯などを使用することができる。なお、繊維質固形分の減容処理は、炭化処理が最も有益な処理であるが、その他植物によっては、乾燥、焼却、プレス、成型などの減容処理も可能である。 After squeezing, the aquatic plants are separated into fibrous solids and liquids. Since the fibrous solid content is a carbonic component mainly composed of cellulose, the fibrous solid content is recovered in step S106, transferred to a carbonization means for applying the volume reduction treatment, and hypoxic or oxygen-blocked in step S107. Carbonize under the conditions. The carbonization means used for the carbonization treatment is not particularly limited, and an electric furnace, a heating furnace using fossil fuel, wood, or the like, or a charcoal kiln can be used. The volume reduction treatment for the fibrous solid content is the most beneficial treatment for carbonization, but depending on the plant, volume reduction treatment such as drying, incineration, pressing, and molding is also possible.
 ステップS107の炭化処理の後、固定分は、ステップS108で炭化物として回収される。炭化物は、例えば固形燃料、活性炭原料、建築資材、堆肥資材、土壌改良剤などとして使用することができる。また、ステップS105の固液分離処理で回収された液分は、ステップS109で液分を回収した後、ステップS110で液分をメタン発酵させることで、有機物の処理を行う。 After the carbonization treatment in step S107, the fixed amount is recovered as carbide in step S108. Carbides can be used, for example, as solid fuels, activated carbon raw materials, building materials, compost materials, soil conditioners and the like. Further, the liquid content recovered by the solid-liquid separation treatment in step S105 is treated with an organic substance by recovering the liquid content in step S109 and then fermenting the liquid content with methane in step S110.
 メタン発酵は、メタン発酵を可能とする菌叢を使用することにより行うことができ、具体的には、嫌気条件でメタンを合成する古細菌、例えばメタン菌(Methanogen)など、メタノミクロビウム綱、メタノコックス綱、メタノビュルス綱、メタノバクテリウム綱に属する古細菌、および加水分解や酸性性に関わる細菌、または菌叢であれば特に限定はない。またメタン発酵の温度は、20℃~60℃の範囲で適宜設定することができる。 Methanogenesis can be performed by using a flora that allows methanogenesis, specifically Methanomicrobia, such as archaea that synthesize methane under anaerobic conditions, such as Methanogen. , Methanogens, Methanomicrobia, Archaea belonging to Methanogens, and bacteria involved in hydrolysis or acidity, or flora. The temperature of methane fermentation can be appropriately set in the range of 20 ° C. to 60 ° C.
 また、メタン発酵を行うための手段・装置にも特に限定はないものの、例示的な実施形態では、菌叢を収容した上向流嫌気性汚泥槽(UASB)などの高速メタン発酵槽に液分を供給してメタン発酵を行うことで、効率的にメタン発酵を安定化させることができることが見出された。 Further, although the means and equipment for performing methane fermentation are not particularly limited, in the exemplary embodiment, the liquid content is contained in a high-speed methane fermentation tank such as an upward flow anaerobic sludge tank (UASB) containing a bacterial flora. It was found that methane fermentation can be efficiently stabilized by supplying methane fermentation.
 他の嫌気性汚泥槽を使用した場合、メタン発酵が完了するまでに従来では、数十日を要する場合もあるところ、本実施形態では、メタン発酵は、2~5日程度で完了し、効率的なメタン発酵が可能となることが見出された。 When another anaerobic sludge tank is used, it may take several tens of days to complete the methane fermentation in the past, but in the present embodiment, the methane fermentation is completed in about 2 to 5 days, which is efficient. It has been found that typical methane fermentation is possible.
 ステップS110のメタン発酵で発生したメタンガスは、ステップS112で回収され、メタン発酵用の熱源として利用できる他、発電を行うことで電力として利用することができる。また、メタン発酵が終了した液分は消化液として利用される。ステップS111でメタン細菌を分離する必要がある場合、ろ過などの適切な固液分離を適用し、ステップS111で消化液が回収される。消化液の利用は、ステップS114に示すように例えばクロレラ、ミドリムシ、スピルリナ、微細藻類、その他高付加価値微生物の培地、液体肥料などを挙げることができるが、特に限定されるものではない。 The methane gas generated in the methane fermentation in step S110 is recovered in step S112 and can be used as a heat source for methane fermentation, and can also be used as electric power by generating electricity. In addition, the liquid after methane fermentation is used as digestive liquid. If it is necessary to separate the methane bacteria in step S111, appropriate solid-liquid separation such as filtration is applied and the digested juice is recovered in step S111. As shown in step S114, the use of the digestive juice can include, for example, chlorella, euglena, spirulina, microalgae, a medium for other high-value-added microorganisms, liquid fertilizer, and the like, but is not particularly limited.
 炭化物の回収、高付加価値微生物や液体製品の回収、およびメタンガスの回収が終了した時点で、一連の処理を終了する。なお、図1の処理は、連続式処理でも可能であるし、回分式処理でも可能である。本実施形態によれば、水生植物の処理を、放出炭素量を最小限として、効率的に達成することができる。 When the recovery of carbides, the recovery of high-value-added microorganisms and liquid products, and the recovery of methane gas are completed, the series of treatments is completed. The process of FIG. 1 can be a continuous process or a batch process. According to this embodiment, the treatment of aquatic plants can be efficiently achieved with the minimum amount of carbon released.
 図2は、第1の実施形態の水生植物処理システムの概略図を示す。図2に示す水生植物処理システムは、破砕手段である破砕機200と、放置手段である放置装置210と、圧搾手段である圧搾機220と、炭化手段である炭化炉230とを含んでいる。なお、図2では、処理のために使用されるバルブ、ポンプその他の手段を省略して示す。破砕機200には、回収した植物が投入され、内部に配置されたカッター部材などにより破砕される。水生植物の破砕は、破砕物のサイズなどが以後の圧搾工程の効率に影響を与えるので、使用する破砕手段の特性に応じて予め破砕時間、破砕条件を含めて最適化することができる。 FIG. 2 shows a schematic diagram of the aquatic plant treatment system of the first embodiment. The aquatic plant treatment system shown in FIG. 2 includes a crusher 200 as a crushing means, a leaving device 210 as a leaving means, a squeezing machine 220 as a squeezing means, and a carbonizing furnace 230 as a carbonizing means. In FIG. 2, valves, pumps and other means used for processing are omitted. The collected plants are put into the crusher 200 and crushed by a cutter member or the like arranged inside. Since the size of the crushed material affects the efficiency of the subsequent squeezing step, the crushing of aquatic plants can be optimized in advance including the crushing time and crushing conditions according to the characteristics of the crushing means to be used.
 破砕工程の後、破砕物は、放置装置210に移送され、圧搾機220に投入され、固液分離が行われる。放置および圧搾は、12時間の放置後に圧搾することを2回繰り返すことで成分の溶出量が増加する。しかし、放置は、破砕物が乾燥せず、常温あるいは常温以上であれば、方法に限定はしない。また圧搾機は、破砕物を加圧し、破砕物中に含まれる水分を搾り出すことができれば、手動式、機械式、または油圧式など加圧機構、方法に限定はない。圧搾により破砕物は、炭素分を含む繊維質固形分と、液分とに分離される。 After the crushing step, the crushed material is transferred to the leaving device 210, charged into the squeezing machine 220, and solid-liquid separation is performed. In the standing and squeezing, the elution amount of the component is increased by repeating squeezing twice after leaving for 12 hours. However, the method of leaving is not limited as long as the crushed material does not dry and is at room temperature or above room temperature. Further, the squeezing machine is not limited to a pressurizing mechanism or method such as a manual type, a mechanical type, or a hydraulic type as long as it can pressurize the crushed material and squeeze out the water contained in the crushed material. By squeezing, the crushed material is separated into a fibrous solid content containing carbon and a liquid content.
 繊維質固形分は、炭化炉230に投入され、例示的な減容処理として炭化処理が行われる。炭化物の状態に応じてさらに炭化物を破砕する破砕手段や、回収する手段が備えられていてもよい。炭化炉230は、電気炉、ガス炉、簡易炭化炉などを使用することができ、5~10℃/minの昇温速度で最高温度350~900℃まで加熱し、1~4時間保持して炭化を行う。その後、自然冷却する。また、具体的な実施形態では、炭化炉を加熱するため、メタン発酵で生成したメタンガスを直接使用することができる。また生成したメタンガスを使用してバイオ発電を行う場合、発電した電力で電気炉を加熱することができる。メタン発酵で生成したメタンガスを炭化炉の加熱のために使用することで、低炭素化処理が可能となる。 The fibrous solid content is put into the carbonization furnace 230 and carbonized as an exemplary volume reduction treatment. Depending on the state of the carbide, a crushing means for further crushing the carbide and a means for recovering the carbide may be provided. The carbonization furnace 230 can be an electric furnace, a gas furnace, a simple carbonization furnace, etc., and is heated to a maximum temperature of 350 to 900 ° C. at a heating rate of 5 to 10 ° C./min and held for 1 to 4 hours. Carbonize. After that, it is naturally cooled. Further, in a specific embodiment, since the carbonization furnace is heated, methane gas produced by methane fermentation can be directly used. Further, when bioelectric power generation is performed using the generated methane gas, the electric furnace can be heated by the generated electric power. By using the methane gas produced by methane fermentation for heating the carbonization furnace, low carbonization treatment becomes possible.
 水生植物処理システムは、さらに、高速メタン発酵処理槽240と、好ましい実施形態では固液分離装置250といった分離手段とを含んでいる。高速メタン発酵処理槽240は、内部にメタン生成菌を含む嫌気性の菌叢が充填されていて、下部から液分が供給され、順次上向きに液分が輸送される。液分は、高速メタン発酵処理槽240の適切な排出口、戻し口を使用して循環処理してもよいし、所定の処理時間を確保するようにワンパスの流量を制御することもできる。また、メタン発酵により生成したメタンガスは、生成メタンとして硫化水素処理手段などを含んで構成されるバイオガス精製部270へと送られ、発電、加熱、乾燥、貯蔵またはその後の使用のために処理される。 The aquatic plant treatment system further includes a high-speed methane fermentation treatment tank 240 and a separation means such as a solid-liquid separation device 250 in a preferred embodiment. The high-speed methane fermentation treatment tank 240 is filled with an anaerobic flora containing methanogens, and liquids are supplied from the lower part, and the liquids are sequentially transported upward. The liquid component may be circulated using an appropriate discharge port and return port of the high-speed methane fermentation treatment tank 240, or the flow rate of one pass can be controlled so as to secure a predetermined treatment time. Further, the methane gas produced by methane fermentation is sent as produced methane to the biogas refining unit 270 composed of hydrogen sulfide treatment means and the like, and is processed for power generation, heating, drying, storage or subsequent use. To.
 また、高速メタン発酵処理槽240からは、処理後の消化液が定期的または連続的に排出され、好ましくは、メタン生成菌その他を分離するための固液分離装置250を通った後、消化液として消化液貯留槽260に貯留される。消化液貯留槽260内の消化液は、pH調整その他の適切な処理の後、微細藻類の培地、液体肥料などの液体製品として提供される。 Further, the digested juice after the treatment is periodically or continuously discharged from the high-speed methane fermentation treatment tank 240, preferably after passing through a solid-liquid separator 250 for separating methanogens and the like, and then the digestive juice. Is stored in the digestive juice storage tank 260. The digestive juice in the digestive juice storage tank 260 is provided as a liquid product such as a medium for microalgae and a liquid fertilizer after pH adjustment and other appropriate treatments.
 以上のとおり、本実施形態の水生植物処理方法および水生植物処理装置によれば、効率的に水分を多く含む水生植物から環境上有益な製品を、低炭素放出の要求を満たしつつ、製造することが可能となる。 As described above, according to the aquatic plant treatment method and the aquatic plant treatment apparatus of the present embodiment, it is possible to efficiently produce an environmentally beneficial product from aquatic plants containing a large amount of water while satisfying the requirements for low carbon emission. Is possible.
 以下、本発明を具体的な実施例により説明する。 Hereinafter, the present invention will be described with reference to specific examples.
 (圧搾効率の検討)
 水生植物に破砕・圧搾処理を施すことにより、分解性の高い溶存性有機物を含有する液分と、分解性の低い細胞壁を含有する繊維質固形分とに分離される。実施例1では、本実施形態の水生植物処理により水生植物の体積がどの程度減少するかについて実証した。実験条件は、以下のとおりである。
(Examination of squeezing efficiency)
By crushing and squeezing aquatic plants, liquids containing highly degradable dissolved organic matter and fibrous solids containing cell walls with low degradability are separated. In Example 1, it was demonstrated how much the volume of aquatic plants is reduced by the aquatic plant treatment of this embodiment. The experimental conditions are as follows.
 基質:ホテイアオイ(Eichhornia crassipes)
 破砕処理条件:無破砕、0.5cm、3.0cm
 圧搾圧力:20MPa、40MPa(圧搾圧を変えて2回圧搾処理を実施)
 炭化温度:800℃
 炭化時間:2時間
Substrate: Water hyacinth (Eichhornia crassipes)
Crushing conditions: No crushing, 0.5 cm, 3.0 cm
Squeezing pressure: 20MPa, 40MPa (squeezing pressure is changed and squeezing treatment is performed twice)
Carbonization temperature: 800 ° C
Carbonization time: 2 hours
 図3には、その結果をグラフとして示す。図3のグラフは、縦軸を固体の重量(t)とし、横軸を処理前後の固体として、重量減少を示す。図3に示されるように、刈取後のホテイアオイの重量を、100tとしたとき、破砕・圧搾後の繊維質固形分で33tまで重量が減少する。また、炭化後には、約1.5tまで重量が減少するのが認められ、本実施形態により、短時間で水生植物を破砕・圧搾処理や炭化処理を行うことで、効果的な減容化が可能であることが示された。 FIG. 3 shows the result as a graph. In the graph of FIG. 3, the vertical axis represents the weight (t) of the solid, and the horizontal axis represents the solid before and after the treatment, indicating the weight loss. As shown in FIG. 3, when the weight of water hyacinth after cutting is 100 tons, the weight of the fibrous solid content after crushing and pressing is reduced to 33 tons. Further, it is observed that the weight is reduced to about 1.5 tons after carbonization, and according to this embodiment, the aquatic plants are crushed / pressed or carbonized in a short time to effectively reduce the volume. It was shown to be possible.
 図4に、図3の重量減少のグラフに対応する、その固体の体積減少のグラフを示す。図4のグラフは、縦軸を固体の体積(m)とし、横軸を処理前後の固体として、体積減少を示す。図4に示されるように、刈取後のホテイアオイの体積を、100mとしたとき、破砕・圧搾後の繊維質固形分で約8.5mまで減少し、さらに、炭化後には、ホテイアオイの体積に対して2%以下の0.4mまで体積が減少するのが認められた。このことから、大幅な減容化が可能であることが示された。 FIG. 4 shows a graph of the volume loss of the solid, corresponding to the graph of weight loss in FIG. In the graph of FIG. 4, the vertical axis is the volume of the solid (m 3 ), and the horizontal axis is the solid before and after the treatment, indicating the volume reduction. As shown in FIG. 4, when the volume of water hyacinth after cutting is 100 m 3 , the fibrous solid content after crushing and pressing is reduced to about 8.5 m 3 , and the volume of water hyacinth after carbonization is further reduced. that volume to 0.4 m 3 of less than 2% decrease was observed against. From this, it was shown that the volume can be significantly reduced.
 (搾汁率の検討)
 実施例2として、実施例1の条件で作成した破砕物のサイズおよび搾汁圧を変えて、搾汁量の圧搾条件依存性、すなわち搾汁効率依存性を検討した。その結果を図5に示す。図5は、縦軸に破砕物から排出された液分の量を、ホテイアオイの水分量に対する割合(%)とし、横軸を破砕および圧搾条件として、示したグラフである。図5に示すように、破砕サイズは、大きいよりも小さい方が、搾汁効率が良く、また搾汁圧は、高い方が、搾汁効率が良いことが確認できた。
(Examination of juice squeezing rate)
As Example 2, the size and squeezing pressure of the crushed product prepared under the conditions of Example 1 were changed, and the squeezing condition dependence of the squeezed amount, that is, the squeezing efficiency dependence was examined. The result is shown in FIG. FIG. 5 is a graph showing the amount of liquid discharged from the crushed material on the vertical axis as a ratio (%) to the water content of water hyacinth, and the horizontal axis as crushing and squeezing conditions. As shown in FIG. 5, it was confirmed that the smaller the crushing size than the larger one, the better the squeezing efficiency, and the higher the squeezing pressure, the better the squeezing efficiency.
 (圧搾のメタン発酵処理)
 以下の条件で、ホテイアオイを圧搾して得た液分を使用してメタン発酵を行い、メタン発酵速度について検討した。実験条件は以下のとおりである。
(Compressed methane fermentation process)
Under the following conditions, methane fermentation was carried out using the liquid obtained by pressing water hyacinth, and the methane fermentation rate was examined. The experimental conditions are as follows.
 基質:ホテイアオイ(Eichhornia crassipes)の破砕・圧搾処理液
 破砕:0.5 cm
 圧搾圧力:50 MPa
 反応槽:高速メタン発酵槽を模擬的に形成した500 mLメジウム瓶(有効容積 300 mL)
 種汚泥:神奈川県横浜市環境創造局北部汚泥資源化センターより分与された中温嫌気性消化汚泥
 基質投入条件:種汚泥:基質=2g-VS:1g-DOC
 温度:37±1℃
 撹拌:100rpm
Substrate: Water hyacinth (Eichhornia crassipes) crushing / pressing liquid Crushing: 0.5 cm
Squeezing pressure: 50 MPa
Reaction tank: A 500 mL medium bottle (effective volume 300 mL) in which a high-speed methane fermentation tank is simulated.
Seed sludge: Medium-temperature anaerobic digested sludge distributed by the Northern Sludge Recycling Center, Environmental Creation Bureau, Yokohama City, Kanagawa Prefecture Substrate input conditions: Seed sludge: Substrate = 2g-VS: 1g-DOC
Temperature: 37 ± 1 ° C
Stirring: 100 rpm
 図6に、メタン発酵によるメタン生成量をグラフとして示す。図6のグラフは、縦軸を積算メタン生成量(mL/g-DOC)とし、横軸を運転時間(日)として示したメタン生成効率である。図6に示されるように、液分を、高速メタン発酵処理槽を擬した処理槽内でメタン発酵することで、実質的に4~5日程度でメタン生成が完了し、高速にメタン発酵処理できることが示された。したがって、本実施形態では、高速メタン発酵処理槽240内での液分の滞留期間を、数日程度に低減することが可能となることが分かった。 FIG. 6 shows the amount of methane produced by methane fermentation as a graph. In the graph of FIG. 6, the vertical axis represents the integrated methane production amount (mL / g-DOC), and the horizontal axis represents the operating time (days). As shown in FIG. 6, by methane fermentation of the liquid in a treatment tank simulating a high-speed methane fermentation treatment tank, methane production is substantially completed in about 4 to 5 days, and high-speed methane fermentation treatment is performed. It was shown that it can be done. Therefore, in the present embodiment, it has been found that the residence period of the liquid in the high-speed methane fermentation treatment tank 240 can be reduced to about several days.
 (液分と消化液の養分保存性)
 液分は、ホテイアオイが保有する肥料効果を有する窒素、燐を含んでいる。液分のメタン発酵により消化液が生成されるので、消化液中に有効成分である窒素、燐成分の量が保存されているか否かについて、液分および消化液中の全窒素濃度および全燐濃度を定量分析することにより検討した。なお、分析条件は以下のとおりである。
(Nutrient preservation of liquid and digestive juice)
The liquid contains nitrogen and phosphorus, which have a fertilizer effect and are possessed by water hyacinth. Since digestive juice is produced by methane fermentation of the liquid content, whether or not the amounts of nitrogen and phosphorus components, which are the active components, are preserved in the digestive liquid, the total nitrogen concentration and total phosphorus in the liquid content and digestive juice It was examined by quantitative analysis of the concentration. The analysis conditions are as follows.
 全窒素濃度は、総和法(工業排水試験法 JIS K 0102 45.2)、全燐濃度はペリオキソ二硫酸カリウム分解法(工場排水試験法JIS K 0102 46.3.1)により測定した。 The total nitrogen concentration was measured by the total method (industrial wastewater test method JIS K 0102 45.2), and the total phosphorus concentration was measured by the potassium perioxosulfate decomposition method (factory wastewater test method JIS K 0102 46.3.1).
 図7に、全窒素濃度の分析結果を示す。図7は、縦軸を全窒素濃度(mg-N/L)とし、横軸を液分および消化液として示したグラフである。なお、図7には、全窒素濃度についての信頼限界(95%)を示す。図7に示すように、メタン発酵前後で、全窒素濃度は、実質的に変化していないことが確認できた。 FIG. 7 shows the analysis result of the total nitrogen concentration. FIG. 7 is a graph showing the total nitrogen concentration (mg-N / L) on the vertical axis and the liquid content and digestive juice on the horizontal axis. Note that FIG. 7 shows the confidence limit (95%) for the total nitrogen concentration. As shown in FIG. 7, it was confirmed that the total nitrogen concentration did not change substantially before and after the methane fermentation.
 図8に、全燐濃度の分析結果を示す。図8は、縦軸を全燐濃度(mg-P/L)とし、横軸を液分および消化液として示したグラフである。なお、図8には、全燐濃度についての信頼限界(95%)を示す。図8に示すように、メタン発酵前後で、全燐濃度が、実質的に変化していないことが確認できた。 FIG. 8 shows the analysis result of the total phosphorus concentration. FIG. 8 is a graph in which the vertical axis represents total phosphorus concentration (mg-P / L) and the horizontal axis represents liquid content and digestive juice. Note that FIG. 8 shows the confidence limit (95%) for the total phosphorus concentration. As shown in FIG. 8, it was confirmed that the total phosphorus concentration did not substantially change before and after the methane fermentation.
 以上実施例4の結果によれば、メタン発酵後の消化液は、植物に対する肥料成分を十分含有しており、植物自体、クロレラ、植物性プランクトンまたは植物性プランクトンを消化して増殖する動物性プランクトンの肥料または培養液として提供できることが確認できた。 According to the results of Example 4 above, the digestive juice after methane fermentation contains a sufficient amount of fertilizer components for plants, and zooplankton that grows by digesting the plant itself, chlorella, phytoplankton or phytoplankton. It was confirmed that it can be provided as fertilizer or culture solution.
 (放置前処理を実施した後の圧搾のメタン発酵処理および溶出養分)
 以下の条件で、ホテイアオイを放置した後に、圧搾して得た液分を使用してメタン発酵を行い、メタン発酵速度について検討した。また液分の溶出養分を分析し、養分回収性について検討した。実験条件は以下のとおりである。
(Methane fermentation treatment and elution nutrients of squeezing after performing pretreatment for leaving)
After leaving the water hyacinth to stand under the following conditions, methane fermentation was carried out using the liquid obtained by pressing, and the methane fermentation rate was examined. In addition, the eluted nutrients of the liquid were analyzed, and the nutrient recovery was examined. The experimental conditions are as follows.
 基質:ホテイアオイ(Eichhornia crassipes)の破砕・圧搾処理液
 破砕:0.5 cm
 圧搾圧力:50 MPa
 放置時間:0時間、12時間、24時間、および12時間放置後圧搾した後に繊維固形物を再度12時間放置
 反応槽:高速メタン発酵槽を模擬的に形成した500 mLメジウム瓶(有効容積 300 mL)
 種汚泥:神奈川県横浜市環境創造局北部汚泥資源化センターより分与された中温嫌気性消化汚泥
 基質投入条件:種汚泥:基質=2g-VS:1g-DOC
 温度:37±1℃
 撹拌:100rpm
Substrate: Water hyacinth (Eichhornia crassipes) crushing / pressing liquid Crushing: 0.5 cm
Squeezing pressure: 50 MPa
Standing time: 0 hours, 12 hours, 24 hours, and 12 hours, then squeezing and then leaving the fiber solids again for 12 hours Reaction tank: 500 mL medium bottle (effective volume 300 mL) in which a high-speed methane fermentation tank was simulated. )
Seed sludge: Medium-temperature anaerobic digested sludge distributed by the Northern Sludge Recycling Center, Environmental Creation Bureau, Yokohama City, Kanagawa Prefecture Substrate input conditions: Seed sludge: Substrate = 2g-VS: 1g-DOC
Temperature: 37 ± 1 ° C
Stirring: 100 rpm
 図9に、放置処理を工程に追加した場合のメタン発酵によるメタン生成量をグラフとして示す。図9のグラフは、縦軸を積算メタン生成量(mL/g-DOC)とし、横軸を運転時間(日)として示したメタン生成効率である。図9に示されるように、放置処理を施した後に圧搾して得られた液分をメタン発酵することで、より高いメタン生成量が得られることが示された。したがって、本実施形態では、高速メタン発酵処理槽240で生成するメタン生成量を増加することが可能となることが分かった。 FIG. 9 shows a graph showing the amount of methane produced by methane fermentation when the neglected treatment is added to the process. In the graph of FIG. 9, the vertical axis represents the integrated methane production amount (mL / g-DOC), and the horizontal axis represents the operating time (days). As shown in FIG. 9, it was shown that a higher amount of methane production can be obtained by methane fermentation of the liquid content obtained by pressing after the standing treatment. Therefore, it was found that in the present embodiment, it is possible to increase the amount of methane produced in the high-speed methane fermentation treatment tank 240.
 (放置前処理による圧搾後の液分の養分溶出性)
 液分は、ホテイアオイが保有する肥料効果を有する窒素、燐を含んでいる。液分の全窒素濃度および全燐濃度を定量分析することにより検討した。なお、分析条件は以下のとおりである。
(Nutrient elution of liquid after squeezing by pretreatment for leaving)
The liquid contains nitrogen and phosphorus, which have a fertilizer effect and are possessed by water hyacinth. It was examined by quantitative analysis of the total nitrogen concentration and total phosphorus concentration of the liquid. The analysis conditions are as follows.
 全窒素濃度は総和法(工業排水試験法 JIS K 0102 45.2)、全燐濃度はペリオキソ二硫酸カリウム分解法(工場排水試験法JIS K 0102 46.3.1)により測定した。 The total nitrogen concentration was measured by the total method (industrial wastewater test method JIS K 0102 45.2), and the total phosphorus concentration was measured by the potassium perioxosulfate decomposition method (factory wastewater test method JIS K 0102 46.3.1).
 図10に、全窒素濃度の分析結果を示す。図10は、縦軸を全窒素濃度(mg-N/L)とし、横軸を放置時間として示した全窒素濃度のグラフである。図10に示すように、放置処理を施すことで、溶出する全窒素濃度は増加することが確認できた。さらに、12時間の放置と圧搾を二回繰り返すことで溶出量が大幅に増加することが確認できた(図10中、12h→12h)。したがって、放置前処理を施すことで、消化液中の全窒素濃度が増加し、微細藻類回収量を増加することが可能となることが分かる。 FIG. 10 shows the analysis result of the total nitrogen concentration. FIG. 10 is a graph of total nitrogen concentration in which the vertical axis represents the total nitrogen concentration (mg—N / L) and the horizontal axis represents the standing time. As shown in FIG. 10, it was confirmed that the total nitrogen concentration to be eluted increased by performing the leaving treatment. Further, it was confirmed that the elution amount was significantly increased by repeating the standing for 12 hours and the pressing twice (12h → 12h in FIG. 10). Therefore, it can be seen that the total nitrogen concentration in the digestive juice can be increased and the amount of microalgae recovered can be increased by performing the pretreatment for leaving.
 図11に、全燐濃度の分析結果を示す。図11は、縦軸を全燐濃度(mg-P/L)とし、横軸に放置時間として示したグラフである。図11に示すように、放置処理を施すことで、溶出する全燐濃度は増加することが確認できた。さらに、12時間の放置と圧搾を二回繰り返すことで溶出量が大幅に増加することが確認できた(図11中、12h→12h)。したがって、放置前処理を施すことで、消化液中の全燐濃度が増加し、微細藻類回収量を増加することが可能となることが分かる。 FIG. 11 shows the analysis result of the total phosphorus concentration. FIG. 11 is a graph in which the vertical axis represents the total phosphorus concentration (mg-P / L) and the horizontal axis represents the standing time. As shown in FIG. 11, it was confirmed that the total phosphorus concentration to be eluted increased by performing the leaving treatment. Furthermore, it was confirmed that the elution amount was significantly increased by repeating the leaving and pressing for 12 hours twice (12h → 12h in FIG. 11). Therefore, it can be seen that the total phosphorus concentration in the digestive juice can be increased and the amount of microalgae recovered can be increased by performing the pretreatment for leaving.
 実施例5および実施例6に示すように、放置前処理を圧搾前に実施することで、メタン発酵時の回収メタン生成量の増加、および、メタン発酵後の消化液中の肥料成分の増加による微細藻類や野菜の収穫量の増加が確認できる。 As shown in Examples 5 and 6, by carrying out the pretreatment before squeezing, the amount of recovered methane produced during methane fermentation is increased, and the fertilizer component in the digestive juice after methane fermentation is increased. An increase in the yield of microalgae and vegetables can be confirmed.
 破砕・圧搾処理を施して得られる分解性の高い溶存性有機物を含有する液分(搾汁液)を高速メタン発酵処理槽240へ送り、そのまま処理してもよいが、搾汁液の前処理を実施したほうが、運転効率の向上が見込まれることが分かった。そこで、pH調整等の前処理を実施することができる。 The liquid (squeezed liquid) containing highly decomposable soluble organic matter obtained by crushing and squeezing may be sent to the high-speed methane fermentation treatment tank 240 and treated as it is, but pretreatment of the squeezed liquid is carried out. It was found that it is expected that the operation efficiency will be improved. Therefore, pretreatment such as pH adjustment can be carried out.
 図12は、第2の実施形態の水生植物処理システムの概略図を示す。図12に示す水生植物処理システムは、図2に示したシステムとほぼ同様の構成であるが、圧搾機220と、高速メタン発酵処理槽240との間に、前処理する装置の一例としてpH調整装置280が追加されている。破砕機200、放置装置210、圧搾機220、炭化炉230、高速メタン発酵処理槽240、固液分離装置250、消化液貯留槽260、バイオガス精製部270については既に説明したので、ここでは説明を省略する。 FIG. 12 shows a schematic diagram of the aquatic plant treatment system of the second embodiment. The aquatic plant treatment system shown in FIG. 12 has almost the same configuration as the system shown in FIG. 2, but the pH is adjusted as an example of a pretreatment device between the press 220 and the high-speed methane fermentation treatment tank 240. Device 280 has been added. The crusher 200, the leaving device 210, the squeezing machine 220, the carbonization furnace 230, the high-speed methane fermentation treatment tank 240, the solid-liquid separation device 250, the digestive juice storage tank 260, and the biogas purification unit 270 have already been described. Is omitted.
 pH調整装置280は、高速メタン発酵処理槽240の上部から排出され、循環する液分と、圧搾機220から供給される搾汁液とが合流した後の液分を受け入れ、水酸化カルシウム等のpH調整剤を使用して、高速メタン発酵処理槽240へ供給する液分のpHを調整する。液分のpHは、例えば6~8に調整され、好ましくは6.5~7.5である。 The pH adjuster 280 accepts the liquid that is discharged from the upper part of the high-speed methane fermentation treatment tank 240 and circulates, and the liquid that is supplied from the squeezer 220 after merging, and receives the pH of calcium hydroxide or the like. A regulator is used to adjust the pH of the liquid supplied to the high speed methane fermentation treatment tank 240. The pH of the liquid is adjusted to, for example, 6 to 8, preferably 6.5 to 7.5.
 pH調整装置280は、例えば、液分を貯留する液分貯留槽と、水酸化カルシウム水溶液等のpH調整液を貯留する容器と、液分貯留槽内のpHを計測するpH計測器と、pH計測器で計測されたpHに基づき、容器から供給するpH調整液の量を調整する調整弁とを含む。pH調整装置280は、液分貯留槽内を撹拌する撹拌機を備えていてもよい。なお、pH調整装置280は、液分のpHを調整できれば、この構成に限定されるものではない。ここでは、液分の前処理として、pH調整を一例として挙げたが、前処理は、可溶化、熱処理、微量金属添加等であってもよく、pH調整に限定されるものではない。 The pH adjusting device 280 includes, for example, a liquid storage tank for storing liquid, a container for storing a pH adjusting liquid such as an aqueous solution of calcium hydroxide, a pH measuring device for measuring pH in the liquid storage tank, and pH. It includes a regulating valve that adjusts the amount of pH adjusting liquid supplied from the container based on the pH measured by the measuring instrument. The pH adjusting device 280 may include a stirrer for stirring the inside of the liquid content storage tank. The pH adjusting device 280 is not limited to this configuration as long as the pH of the liquid can be adjusted. Here, pH adjustment is given as an example of the pretreatment of the liquid component, but the pretreatment may be solubilization, heat treatment, addition of a trace amount of metal, or the like, and is not limited to pH adjustment.
 以下、前処理の効果について実施例により説明する。 Hereinafter, the effect of the pretreatment will be described by way of examples.
 (前処理の効果)
 以下の条件で、ホテイアオイを圧搾して得た液分につき、図13に示すように、pH調整し、pH調整した液分をペリスタポンプ(登録商標)等のポンプ300によりメタン発酵を可能とする菌叢が固定された担体320が充填された反応槽310へ送り、各水理学的滞留時間(HRT)とした場合の基質と反応槽310から排出する排水の溶存有機炭素(DOC)濃度から前処理の効果について検討した。水理学的滞留時間は、反応槽310へ液分が流入してから流出までの平均的な時間である。破砕、圧搾圧力、種汚泥は、図3に示す実施例と同様とした。メタン発酵により発生したバイオガスは、反応槽310の頂部から排出させ、排水は、オーバーフローにより排出させた。実験条件は以下のとおりである。
(Effect of pretreatment)
As shown in FIG. 13, the liquid content obtained by squeezing hotiaoi under the following conditions is pH-adjusted, and the pH-adjusted liquid content is a bacterium that enables methane fermentation with a pump 300 such as a Perista pump (registered trademark). Pretreatment from the dissolved organic carbon (DOC) concentration of the substrate and wastewater discharged from the reaction tank 310 when sent to the reaction tank 310 filled with the carrier 320 on which the flora is fixed and set to each hydraulic residence time (HRT). The effect of was examined. The hydraulic residence time is the average time from the inflow of the liquid into the reaction tank 310 to the outflow. The crushing, squeezing pressure, and seed sludge were the same as in the examples shown in FIG. The biogas generated by methane fermentation was discharged from the top of the reaction tank 310, and the waste water was discharged by overflow. The experimental conditions are as follows.
 基質:ホテイアオイ(Eichhornia crassipes)の破砕・圧搾処理液
 温度:37±1℃
 pH調整:Ca(OH)
 反応槽:有効容積6.5m
 水理学的滞留時間(HRT):
   運転期間(日) 0- 12:5日
          12- 44:4日
          44- 77:3日
          77-120:2日
 pHは、6.5~7.5に調整した。
Substrate: Water hyacinth (Eichhornia crassipes) crushing / pressing solution Temperature: 37 ± 1 ° C
pH adjustment: Ca (OH) 2
Reaction tank: Effective volume 6.5 m 3
Hydraulic dwell time (HRT):
Operating period (days) 0-12: 5 days 12-44: 4 days 44-77: 3 days 77-120: 2 days The pH was adjusted to 6.5-7.5.
 図14に、DOC濃度をグラフに示す。DOC濃度は、pH調整前の基質と、反応槽310から排出される排水とに含まれるDOC濃度として、TOC-L CPH/CPN(島津製作所製)による燃焼触媒酸化法を用いて2日ごとに計測した。図14は、縦軸をDOC濃度(mg-DOC/L)とし、横軸を運転期間(日)として示したDOC濃度のグラフである。運転期間0~12日までは、水理学的滞留時間を5日に設定し、反応槽310内に供給するpH調整後の処理液の供給量を少なくし、12日目以降、上記の日数が経過する毎に水理学的滞留時間を1日ずつ短くし、処理液の供給量を増加させて実験を行った。 FIG. 14 is a graph showing the DOC concentration. The DOC concentration is the DOC concentration contained in the substrate before pH adjustment and the waste water discharged from the reaction tank 310, using the combustion catalytic oxidation method by TOC-L CPH / CPN (manufactured by Shimadzu Corporation) every two days. Measured. FIG. 14 is a graph of the DOC concentration in which the vertical axis represents the DOC concentration (mg-DOC / L) and the horizontal axis represents the operation period (days). During the operation period of 0 to 12 days, the hydraulic residence time was set to 5 days, the amount of the pH-adjusted treatment liquid supplied into the reaction vessel 310 was reduced, and after the 12th day, the above number of days was increased. The experiment was conducted by shortening the hydraulic residence time by one day and increasing the supply amount of the treatment liquid each time.
 実験の結果、水理学的滞留時間を2日に設定しても、DOC濃度を90%以上低下させてメタン生成を完了させることができ、反応槽310内での液分の滞留時間を2日まで低減できることが分かった。 As a result of the experiment, even if the hydraulic residence time was set to 2 days, the DOC concentration could be reduced by 90% or more to complete the methane production, and the residence time of the liquid in the reaction vessel 310 was set to 2 days. It turned out that it can be reduced to.
 以上説明したように、本実施形態によれば、水生植物を破砕・放置・圧搾処理し、液分を高速メタン発酵処理することでバイオガスを回収し、消化液を用いて有価物の原料である微細藻類を培養し、圧搾繊維質固形残渣を炭化により迅速に処理しつつ固形燃料や建築資材などを生産することが可能な水生植物の高速、低コストおよび高効率の水生植物処理方法および水生植物処理システムが提供できる。また、pH調整等の前処理を実施することで、水理学的滞留時間を2日まで低減することができ、運転効率を向上させることができる。 As described above, according to the present embodiment, aquatic plants are crushed, left to stand, and squeezed, and the liquid content is subjected to high-speed methane fermentation treatment to recover biogas, and the digestive juice is used as a raw material for valuable resources. High-speed, low-cost, and highly efficient aquatic plant treatment methods and aquatic plants capable of producing solid fuels, building materials, etc. while culturing certain microalgae and rapidly treating pressed fibrous solid residues by carbonization. A plant processing system can be provided. Further, by carrying out pretreatment such as pH adjustment, the hydraulic residence time can be reduced to 2 days, and the operating efficiency can be improved.
 なお、本実施形態において使用する数値的規定は、一定の範囲を含む中央値、平均値、代表値として理解されるべきであり、本開示中で開示された数値は、数値を20%超え、また数値を20%下回る数値的範囲を規定するものと理解されるべきである。 The numerical provisions used in the present embodiment should be understood as median, average, and representative values including a certain range, and the numerical values disclosed in the present disclosure exceed the numerical values by 20%. It should also be understood to define a numerical range that is 20% below the numerical value.
 これまで本発明を、実施形態をもって説明してきたが、本発明は、実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。 Although the present invention has been described with embodiments so far, the present invention is not limited to the embodiments, and other embodiments, additions, changes, deletions, etc. can be conceived by those skilled in the art. It is included in the scope of the present invention as long as the action / effect of the present invention is exhibited in any of the embodiments.
 200…破砕機
 210…放置装置
 220…圧搾機
 230…炭化炉
 240…高速メタン発酵処理槽
 250…固液分離装置
 260…消化液貯留槽
 270…バイオガス精製
 280…pH調整装置
 300…ポンプ
 310…反応槽
 320…担体
 
200 ... Crusher 210 ... Leaving device 220 ... Squeezer 230 ... Carbonization furnace 240 ... High-speed methane fermentation processing tank 250 ... Solid-liquid separation device 260 ... Digestive liquid storage tank 270 ... Biogas purification 280 ... pH adjustment device 300 ... Pump 310 ... Reaction tank 320 ... Carrier

Claims (14)

  1.  植物を処理するための植物処理方法であって、
     植物を破砕する工程と、
     破砕した前記植物を放置する工程と、
     放置した前記植物を圧搾して、繊維質固形分と、液分とに分離する工程と、
     前記繊維質固形分を炭化により減容処理する工程と、
     前記液分をメタン発酵させて、メタンガスと消化液とを生成する工程と、
     を含む植物処理方法。
    It is a plant treatment method for treating plants,
    The process of crushing plants and
    The process of leaving the crushed plant and
    A step of squeezing the abandoned plant to separate it into a fibrous solid content and a liquid content.
    The step of reducing the volume of the fibrous solid content by carbonization and
    A step of methane fermentation of the liquid to produce methane gas and digestive juice,
    Plant treatment methods including.
  2.  前記破砕する工程において、破砕の程度、放置時間および圧搾圧を制御する工程を含む、請求項1に記載の植物処理方法。 The plant treatment method according to claim 1, wherein in the crushing step, a step of controlling the degree of crushing, leaving time and pressing is included.
  3.  前記分離する工程の後であって、前記生成する工程の前に、分離された前記液分を前処理する工程を含む、請求項1または2に記載の植物処理方法。 The plant treatment method according to claim 1 or 2, further comprising a step of pretreating the separated liquid component after the separation step and before the production step.
  4.  前記前処理する工程において、前記液分のpHを6~8に調整する工程を含む、請求項3に記載の植物処理方法。 The plant treatment method according to claim 3, further comprising a step of adjusting the pH of the liquid component to 6 to 8 in the pretreatment step.
  5.  前記メタン発酵を、発酵槽内の水理学的滞留期間を8日以内とする、請求項1~4のいずれか1項に記載の植物処理方法。 The plant treatment method according to any one of claims 1 to 4, wherein the methane fermentation has a hydraulic retention period in the fermenter within 8 days.
  6.  前記炭化を、最高温度350~900℃、保持時間1~4時間で適用する、請求項1~5のいずれか1項に記載の植物処理方法。 The plant treatment method according to any one of claims 1 to 5, wherein the carbonization is applied at a maximum temperature of 350 to 900 ° C. and a holding time of 1 to 4 hours.
  7.  前記植物は、水生植物である、請求項1~6のいずれか1項に記載の植物処理方法。 The plant treatment method according to any one of claims 1 to 6, wherein the plant is an aquatic plant.
  8.  植物を処理するための水生植物処理システムであって、
     植物を処理するための処理システムであって、
     植物を破砕する手段と、
     破砕した前記植物を放置する手段と、
     放置した前記植物を圧搾して、繊維質固形分と、液分とに分離する手段と、
     前記繊維質固形分を炭化により減容処理する手段と、
     前記液分をメタン発酵させて、メタンガスと消化液とを分離してメタンガスおよび消化液を製造する手段と
     を含む植物処理システム。
    An aquatic plant treatment system for treating plants,
    A processing system for processing plants
    Means to crush plants and
    Means for leaving the crushed plant and
    A means for squeezing the abandoned plant to separate it into a fibrous solid content and a liquid content.
    A means for reducing the volume of the fibrous solid content by carbonization and
    A plant treatment system comprising means for producing methane gas and digestive juice by fermenting the liquid with methane and separating methane gas and digestive juice.
  9.  前記破砕する手段は、破砕の程度、放置時間および圧搾圧を制御する、請求項8に記載の植物処理システム。 The plant treatment system according to claim 8, wherein the crushing means controls the degree of crushing, the leaving time, and the squeezing pressure.
  10.  前記分離する手段により分離された前記液分を前処理する手段を含む、請求項8または9に記載の植物処理システム。 The plant treatment system according to claim 8 or 9, which comprises means for pretreating the liquid content separated by the separating means.
  11.  前記前処理する手段は、前記液分のpHを6~8に調整する、請求項10に記載の植物処理システム。 The plant treatment system according to claim 10, wherein the pretreatment means adjusts the pH of the liquid to 6 to 8.
  12.  前記メタン発酵を、発酵槽内の水理学的滞留期間を8日以内で適用する、請求項8~11のいずれか1項に記載の植物処理システム。 The plant treatment system according to any one of claims 8 to 11, wherein the methane fermentation is applied to the hydraulic retention period in the fermenter within 8 days.
  13.  前記炭化を、最高温度350~900℃、保持時間1~4時間で適用する、請求項8~12のいずれか1項に記載の植物処理システム。 The plant treatment system according to any one of claims 8 to 12, wherein the carbonization is applied at a maximum temperature of 350 to 900 ° C. and a holding time of 1 to 4 hours.
  14.  前記植物は、水生植物である、請求項8~13のいずれか1項に記載の植物処理システム。 The plant treatment system according to any one of claims 8 to 13, wherein the plant is an aquatic plant.
PCT/JP2020/040414 2019-10-31 2020-10-28 Plant processing method and plant processing system WO2021085469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553649A JP7204263B2 (en) 2019-10-31 2020-10-28 Plant treatment method and plant treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019198161 2019-10-31
JP2019-198161 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085469A1 true WO2021085469A1 (en) 2021-05-06

Family

ID=75716275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040414 WO2021085469A1 (en) 2019-10-31 2020-10-28 Plant processing method and plant processing system

Country Status (2)

Country Link
JP (1) JP7204263B2 (en)
WO (1) WO2021085469A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070918A (en) * 1998-08-27 2000-03-07 Shimizu Corp Method for carbonizing aquatic plant and method for purifying soil by using carbonized aquatic plant
JP2001011469A (en) * 1999-06-28 2001-01-16 Ishigaki Hiroshi Production of carbonized product
JP2006205087A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Methane fermentation method
WO2016056354A1 (en) * 2014-10-10 2016-04-14 株式会社Ihi環境エンジニアリング Fuel production method using wooden biomass
JP2018145253A (en) * 2017-03-02 2018-09-20 三菱マテリアル株式会社 Production method of solid biomass fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070918A (en) * 1998-08-27 2000-03-07 Shimizu Corp Method for carbonizing aquatic plant and method for purifying soil by using carbonized aquatic plant
JP2001011469A (en) * 1999-06-28 2001-01-16 Ishigaki Hiroshi Production of carbonized product
JP2006205087A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Methane fermentation method
WO2016056354A1 (en) * 2014-10-10 2016-04-14 株式会社Ihi環境エンジニアリング Fuel production method using wooden biomass
JP2018145253A (en) * 2017-03-02 2018-09-20 三菱マテリアル株式会社 Production method of solid biomass fuel

Also Published As

Publication number Publication date
JP7204263B2 (en) 2023-01-16
JPWO2021085469A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CN102227383B (en) Systems and methods for anaerobic digestion and collection of products
CN107971324B (en) Method and device for reducing and recycling kitchen waste anaerobic fermentation biogas residues
CN102489496A (en) Method for carrying out anaerobic digestion on kitchen waste after heat-moisture treatment
AU2005276907A1 (en) Self-sustaining and continuous system and method of anaerobically digesting ethanol stillage
JPS5940518B2 (en) Anaerobic digestion method for cellulose-containing waste
EP2344657A2 (en) Microbial processing of cellulosic feedstocks for fuel
CN1712386A (en) High-temperature aerobic fermentation of organic refuse material
CN103509829A (en) Method for preparing acetic acid and butyric acid by co-fermentation of kitchen waste and excess sludge
KR20230128330A (en) Methods of producing medium chain fatty acids
CN112673078A (en) Method for producing bio-oil and biogas from biomass
JP3694744B2 (en) Biogas resource recovery method
Morand et al. Anaerobic digestion of Ulva sp. 3. Liquefaction juices extraction by pressing and a technico-economic budget
CN103341483B (en) One way of life high temperature garbage high steam dewatering system and method
CN106282245B (en) Novel organic garbage recycling method and system
CN101914576B (en) Method for producing ethanol and methane by mixed fermentation of paper-making sludge and monosodium glutamate waste liquid
WO2021085469A1 (en) Plant processing method and plant processing system
Nair et al. Enhanced degradation of waste grass clippings in one and two stage anaerobic systems
CN111234888A (en) System and method for recycling supercritical water reaction product and wet biomass
WO2014208621A1 (en) Microalga culture method and drainage water treatment method
EP3469086B1 (en) Process for treating and generating energy from biomasses
KR101181834B1 (en) Pre-thermal treatment of microalgae and high temperature and high efficiency hydrogen/methane fermentation process using waste heat of power-plant effluent gas
Denchev et al. Biohydrogen production from lignocellulosic waste with anaerobic bacteria
Shafie et al. The performance study of Ultrasonic-assisted Membrane Anaerobic System (UMAS) for Chemical Oxygen Demand (COD) removal efficiency and methane gas production in Palm Oil Mill Effluent (POME) treatment
CN109355314B (en) Method for producing combustible gas by using kitchen garbage and sludge
US11981878B2 (en) Method for municipal solid waste reclamation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880350

Country of ref document: EP

Kind code of ref document: A1