WO2021085282A1 - Claw pump - Google Patents

Claw pump Download PDF

Info

Publication number
WO2021085282A1
WO2021085282A1 PCT/JP2020/039646 JP2020039646W WO2021085282A1 WO 2021085282 A1 WO2021085282 A1 WO 2021085282A1 JP 2020039646 W JP2020039646 W JP 2020039646W WO 2021085282 A1 WO2021085282 A1 WO 2021085282A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
pump
end wall
exhaust port
pump chamber
Prior art date
Application number
PCT/JP2020/039646
Other languages
French (fr)
Japanese (ja)
Inventor
智之 小出
恵一 丸山
小林 和也
Original Assignee
オリオン機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリオン機械株式会社 filed Critical オリオン機械株式会社
Priority to KR1020217018198A priority Critical patent/KR20220081950A/en
Priority to CN202110849425.XA priority patent/CN113357146B/en
Priority to CN202080006096.6A priority patent/CN113260791B/en
Priority to DE112020000151.2T priority patent/DE112020000151T5/en
Publication of WO2021085282A1 publication Critical patent/WO2021085282A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet

Definitions

  • the present invention relates to a claw pump including a pump chamber having a cross-sectional shape in which a part of two circles is overlapped, and two rotors having hook-shaped claws formed so that the inhaled gas can be compressed and exhausted. ..
  • a cylinder forming a pump chamber, one side plate that closes one end face of the cylinder, and the other side plate that closes the other end face of the cylinder are located parallel to each other in the cylinder.
  • the gas in the cylinder is compressed by both the one side plate and the other side plate so that the compressed gas is discharged from both sides through the intake port communicating with the portion of the pump chamber and both end faces of the cylinder.
  • Applicants have proposed one provided with an exhaust port that opens in a portion of the pump chamber (see Patent Document 1).
  • the opening area of the intake port can be doubled to reduce the ventilation resistance of the exhaust, so that the exhaust efficiency can be improved.
  • the pump performance can be improved, and the degree of freedom in design can be further improved. This effect is more effective when used in a region where the degree of vacuum is low.
  • the problem to be solved regarding the claw pump is that when the vacuum pump is used in a high vacuum range where the ultimate vacuum is closer to the absolute vacuum, the pump chamber is overheated and the pump efficiency is improved. It's difficult. That is, when the claw pump is used in a high vacuum range, the pressure inside the pump is lower than the external pressure (for example, atmospheric pressure), so that the exhaust gas discharged at the exhaust port may flow back. is there. Then, the backflow exhaust gas is heated and discharged by being compressed in the pump chamber, and is originally at a high temperature, and is recompressed and reheated in the inflowing pump chamber by the backflow. As a result, the pump chamber is further overheated.
  • the external pressure for example, atmospheric pressure
  • an object of the present invention is to provide a claw pump as a vacuum pump, which can prevent the pump chamber from being overheated and improve the pump efficiency even when used in a range of high vacuum degree. ..
  • the present invention includes the following configurations in order to achieve the above object.
  • the cylinder portion and one end surface of the cylinder portion are provided so as to form a pump chamber having a cross-sectional shape in which a part of two circles is overlapped.
  • Two rotating shafts provided with an end wall portion and the other end wall portion provided on the other end surface of the cylinder portion, arranged in parallel in the pump chamber and rotated at the same speed in opposite directions, and the two.
  • Two rotors provided in each of the two rotating shafts, arranged in the pump chamber, and having hook-shaped claws formed so that the inhaled gas can be compressed and exhausted by rotating in a non-contact state with each other.
  • An exhaust side opening provided at least one of the one end wall portion and the other end wall portion at a position facing the portion where the gas is compressed in the pump chamber.
  • a claw pump including the above, wherein the exhaust side opening communicates with the outside of the pump chamber in the pre-stage where the compression ratio of gas is maximized by the claws of the two rotors.
  • the rear stage exhaust is provided by a rear stage exhaust port that is communicated with the claws of the two rotors so as to exhaust the gas to the outside of the pump chamber including a step in which the compression ratio of the gas is maximized as compared with the previous stage.
  • the front vent is closed by the rotor at the stage where the port is communicated to the outside of the pump chamber to maximize the compression ratio of the gas.
  • the front stage vent is provided on the one end wall portion, and the rear stage exhaust port is provided on the other end wall portion. can do.
  • the two rotors are arranged at one ends of the two rotating shafts and supported in a cantilevered state, and the one end wall portion is the two. It can be characterized in that it is located on the side of the bearing portion that supports one of the rotating shafts.
  • the front-stage vent and the rear-stage exhaust port overlap each other in a state in which they are overlapped with each other in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a divided form so as not to fit.
  • both are virtual in a state in which the front-stage vent and the rear-stage exhaust port are overlapped in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a form formed by dividing one of the exhaust side openings.
  • both are described in a state in which the front-stage vent and the rear-stage exhaust port are overlapped with each other in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a form in which a part of the rear exhaust port on the low compression ratio side overlaps.
  • the compression of both of the front-stage vent and the rear-stage exhaust port in a state of being overlapped in the extension direction of the axis of the rotation shaft can be characterized in that the boundary lines forming the rim on the side with the lower ratio are provided so as to overlap each other in the same shape.
  • the front-stage ventilation port and the rear-stage exhaust port are overlapped with each other in a state in which they are overlapped with each other in the extension direction of the axis of the rotation shaft. It is provided in a form divided so as not to fit, and both the front-stage ventilation port and the rear-stage exhaust port are provided on either the one end wall portion or the other end wall portion. Can be a feature.
  • the two rotors are arranged at one end of the two rotating shafts and supported in a cantilever state, and the front-stage vent and the rear-stage exhaust port are connected to each other. Both can be characterized in that they are provided on the other end wall portion located on the side opposite to the one end wall portion located on the side of the bearing portion that supports the two rotating shafts. ..
  • a pump chamber body portion provided by a cylinder portion and end wall portions provided on both end surfaces of the cylinder portion so as to form the pump chamber.
  • the pump body may be provided in a divided structure so as to form a cooling gap.
  • the claw pump according to the present invention even when the vacuum pump is used in a high degree of vacuum, it is possible to prevent the pump chamber from being overheated and to significantly improve the pump efficiency, which is a special advantage. It has a great effect.
  • the cylinder portion 10a is formed so as to form a pump chamber 10 (see FIG. 3 and the like) having a cross-sectional shape in which a part of two circles is overlapped.
  • a pump chamber 10 see FIG. 3 and the like
  • One end wall portion 10b provided on one end face of the cylinder portion 10a
  • the other end wall portion 10c provided on the other end face of the cylinder portion 10a.
  • the two rotating shafts 20A and 20B are arranged in parallel in the pump chamber 10 and are provided so as to be rotated at the same speed in opposite directions.
  • the two rotating shafts 20A and 20B are integrally fixed with gears 21A (drive side gear) and 21B (driven side gear), respectively.
  • the pair of gears 21A and 21B are meshed in a gear box 45 provided in the bearing portion body portion 200.
  • two rotors 30A and 30B are provided in each of the two rotating shafts 20A and 20B and arranged in the pump chamber 10, and are rotated and sucked in a non-contact state with each other.
  • a hook-shaped claw is formed so that the gas can be compressed and exhausted.
  • the exhaust side opening 50 is at least one of the one end wall portion 10b and the other end wall portion 10c, and the gas in the pump chamber 10 is compressed. It is provided with an opening at a position facing the site.
  • a claw pump which is a kind of biaxial rotary pump, is configured.
  • Reference numeral 15 denotes an intake port, which is opened and provided at a position in the pump chamber 10 facing a portion where the gas is not compressed (in this embodiment, a wall portion forming the cylinder portion 10a).
  • the exhaust side opening 50 is communicated to the outside of the pump chamber 10 in the pre-stage where the compression ratio of the gas is maximized by the claws of the two rotors 30A and 30B.
  • a port 51 and a rear-stage exhaust port 52 communicated with each other so as to exhaust the gas to the outside of the pump chamber 10 including a step in which the compression ratio of the gas is maximized by the claws of the two rotors 30A and 30B as compared with the previous stage.
  • the state of communicating with the outside of the pump chamber 10 is a state of communicating with and opening to the atmosphere, which is the outside air.
  • the claw pump according to the present invention even when the vacuum pump is used in a high vacuum range where the ultimate vacuum is closer to the absolute vacuum, the pump chamber can be prevented from being overheated, and the pump can be used.
  • the efficiency can be significantly improved. That is, the exhaust side opening 50 is composed of a front-stage ventilation port 51 and a rear-stage exhaust port 52 that are separately opened and provided. Therefore, when used at a high degree of vacuum, the unheated outside air is sucked into the front ventilation port 51, and the backflow of exhaust gas as in the conventional case can be reduced at the rear exhaust port 52, so that the pump chamber can be used. It is possible to prevent overheating.
  • the pressure may be negative even in the part where the inside of the pump chamber is compressed, and the pre-stage ventilation is performed.
  • unheated outside air for example, cooling air at atmospheric pressure at room temperature
  • the overheated gas for example, air
  • the vent that opens to the inside of the pump chamber 10 where compression is performed is the peripheral wall of the cylinder portion 10a so as to communicate with the outside in a situation where the compression ratio is low, which is the initial stage of the start of compression of the pump cycle. It is also conceivable to install it in a department or the like. However, if air is taken in through a vent that opens in such an early stage of compression, the amount of air processed may increase too much and power consumption may increase.
  • the pump chamber 10 is a cylinder case 11 in which a cylinder portion 10a and one end wall portion 10b are integrally provided. It is formed by a cylinder structure wall composed of a side plate 12 provided as the other end wall portion 10c.
  • the pump chamber 10 has a structure mainly composed of two members, but the present invention is not limited to this, for example, the cylinder portion 10a, one end wall portion 10b, and the other. Of course, it may be formed mainly by a member divided into three with the end wall portion 10c of the above.
  • the present invention is not limited to the form in which the two rotors 30A and 30B are bearing and supported in a cantilever state, and is also applied to a claw pump in which the rotating shafts 20A and 20B are rotatably supported at both ends. It is configured so that it can be done.
  • the front-stage ventilation port 51 is provided on one end wall portion 10b, and the rear-stage exhaust port 52 is provided on the other end wall portion 10c. That is, both of the pair of end wall portions 10b and 10c are provided with openings that communicate with the outside air (atmosphere in this embodiment) outside the pump chamber. According to this, the front-stage ventilation port 51 and the rear-stage exhaust port 52 can be reasonably and easily provided in an appropriate shape and at an appropriate position. Therefore, the degree of freedom in designing the claw pump corresponding to the required performance can be reasonably increased.
  • the claw pump of the present embodiment when it is used in a range (for example, in the range of 60 to 95 kPa) where a predetermined high degree of vacuum is generated so that a negative pressure is generated even in a portion where the pump chamber 10 is compressed.
  • a range for example, in the range of 60 to 95 kPa
  • pre-stage ventilation port 51 cooling secondary intake is performed
  • the side plate 12 the other end wall portion 10c side exhaust port.
  • the pump is exhausted from (post-stage exhaust port 52). That is, when the compression ratio of the front ventilation port 51, which is the opening on the one end wall portion 10b side, is equal to or lower than the compression ratio of the rear exhaust port 52, which is the opening of the other end wall portion 10c. It is provided in a shape that communicates with the outside.
  • the pump chamber 10 when a predetermined high degree of vacuum (for example, 80 kPa or more) is generated, the pump chamber 10 has a compression ratio lower than the final compression ratio in a predetermined range. Negative pressure is maintained even at the site where internal compression is performed.
  • the front-stage vent 51 is opened to communicate with the outside air (for example, atmospheric pressure air), and cooling secondary intake air is performed. After that, the intake cooling air is added and compressed to the final compression ratio, and the air is exhausted from the rear exhaust port 52. That is, at the stage when the rear exhaust port 52 is opened and the final exhaust is performed, the cooling air is sucked in, so that the negative pressure in the compressed portion inside the pump chamber 10 is eliminated, and the subsequent exhaust is performed.
  • both the front ventilation port 51 and the rear exhaust port 52 are closed by one of the rotors 30A. That is, the large diameter regions of the main body of one of the rotors 30A are located in an overlapping state, and both the front ventilation port 51 and the rear exhaust port 52 are closed. Therefore, at this stage (section), neither exhaust nor intake is performed at the portion where the inside of the pump chamber 10 is compressed.
  • the front ventilation port 51 is opened, and the rear exhaust port 52 is closed by one rotor 30A. That is, only the rear exhaust port 52 is blocked by the large diameter region of the main body of one of the rotors 30A.
  • the front-stage vent 51 of this embodiment is connected to a portion where the inside of the pump chamber 10 is compressed, and the compression ratio thereof is, for example, 2.0 to 2.4. Then, as described above, the front-stage vent 51 functions as a cooling secondary intake port into which the outside air is taken in when the portion of the pump chamber 10 where compression is performed has a negative pressure.
  • the front-stage vent 51 of this embodiment is formed by a groove 51a (see FIG. 3 and the like) and a through hole 51b continuous with the groove 51a, and by opening even a part of the groove 51a, the through hole 51b It is shaped so that it can communicate with the outside through. That is, it is composed of a groove portion 51a provided within the plate thickness range of the member, and a through hole portion 51b formed by penetrating the groove portion 51a so as to communicate with the outside.
  • the through hole portion 51b of this embodiment is provided in an L-shaped bent shape (see FIG. 1 and the like) so as to open downward to the outside.
  • the opening facing the outer side of the through hole portion 51b is formed in a circular shape, and for example, a pipe or the like may be connected as a connecting portion. Then, if a pipe as a continuous passage can be connected to the circular opening, the portion where the front ventilation port 51 is opened to the outside can be selectively moved to a position away from the rear exhaust port 52, and more. Can inhale gas such as low temperature air.
  • the front-stage vent 51 functions as an exhaust port by being opened as shown in FIG. 7 (b) during operation at a low degree of vacuum. That is, until the inside of the pump chamber 10 has a predetermined high degree of vacuum, the part where the compression is performed inside the pump chamber 10 does not have a negative pressure, and in that situation, the compressed gas (for example, air) is released. , It will be exhausted from this front stage vent 51 as well. Therefore, at that time, the front-stage ventilation port 51 is a front-stage exhaust port. According to this, since the ventilation resistance of the exhaust gas can be reduced, the consumption of power can be suppressed.
  • the compressed gas for example, air
  • the rear exhaust port 52 is opened, and the front vent 51 is closed by one rotor 30A. That is, only the side of the front vent 51 is closed by the main body including the claw portion of one rotor 30A. Further, the small diameter region portion of the main body of one rotor 30A is positioned so that the one rotor 30A and the rear exhaust port 52 do not overlap each other, and the rear exhaust port 52 is in an open state. Then, in the portion where the inside of the pump chamber 10 communicating with the opened rear exhaust port 52 is compressed, the outside air is sucked and cooled by the front vent 51, and the compression ratio becomes high, so that the outside air becomes high.
  • the latter-stage exhaust port 52 of this embodiment is connected to a portion where the inside of the pump chamber 10 is compressed and whose compression ratio is, for example, 2.4 or more or 3.0 or more. According to this, as described above, the pump performance can be remarkably improved.
  • two rotors 30A and 30B are arranged at one end of two corresponding rotating shafts 20A and 20B, respectively, and are supported in a cantilever state, and one end wall is provided.
  • the portion 10b is located on the side of the bearing portion 40 that supports the two rotating shafts 20A and 20B.
  • FIG. 8 shows a first example of the exhaust side opening 50, which is a configuration adopted in the above-described morphological examples (see FIGS. 1 to 7), in order to make the morphological appearance easier to understand.
  • the opened space is described by hatching. That is, in this first example, the front-stage ventilation port 51 and the rear-stage exhaust port 52 are divided so as not to overlap each other in a state in which they are overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B. It is provided in the above-mentioned form.
  • the front-stage ventilation port 51 and the rear-stage exhaust port 52 are provided in a divided form by being arranged at a predetermined slight interval so that they do not overlap with each other. Therefore, in this case, as shown in FIG. 7B, the continuity of the exhaust side opening 50 formed by the front-stage ventilation port 51 and the rear-stage exhaust port 52 is momentarily interrupted.
  • FIG. 9 shows a second example of the exhaust side opening 50, in which the front ventilation port 51 and the rear exhaust port 52 are overlapped with each other in the extension direction of the axes of the rotating shafts 20A and 20B. Both are provided in a form formed by dividing one virtual exhaust side opening 50. That is, the front-stage ventilation port 51 and the rear-stage exhaust port 52 are provided in a form in which one virtual exhaust side opening 50 is cut out, so that the first-stage ventilation port 51 and the rear-stage exhaust port 52 are formed in a divided manner.
  • FIG. 10 shows a third example of the exhaust side opening 50, in which the front ventilation port 51 and the rear exhaust port 52 are overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B. Both are provided so as to overlap each other on a part of the rear exhaust port 52 on the lower compression ratio side.
  • FIG. 11 shows a fourth example of the exhaust side opening 50, in which the front vent 51 and the rear exhaust 52 are overlapped with each other in the extension direction of the axes of the rotating shafts 20A and 20B.
  • the boundary line 50a forming the rim on the side where the compression ratio of both is low is provided so as to overlap each other in the same shape.
  • both of the front-stage vents 51 and the rear-stage exhaust ports 52 are viewed as being overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B.
  • the two rotors 30A and 30B are provided at one ends of the two rotating shafts 20A and 20B and are supported in a cantilevered state by being provided in a form in which they are separated so as not to overlap each other. Both of these are provided on the other end wall portion 10c located on the side opposite to the one end wall portion 10b located on the side of the bearing portion 40 that supports the two rotating shafts 20A and 20B. You can also do it.
  • the front-stage ventilation port 51 and the rear-stage exhaust port 52 can be rationally arranged only on one surface of the end wall portion, and the optimum form can be obtained according to the usage conditions.
  • the degree of freedom in design can be increased, including the relationship with the device. That is, since there is a predetermined distance between the front-stage ventilation port 51 and the rear-stage exhaust port 52, both can be separated, and as shown in FIG. 12, the opening of the front-stage ventilation port 51 to the outside and the rear-stage exhaust port 52 It can be separated from the opening to the outside (the opening provided via the exhaust pipe 55). Therefore, the front-stage vent 51 can take in unheated gas, and as described above, the performance of the claw pump can be improved.
  • the claw pump of the present invention is not limited to the above-mentioned form, and both the front-stage vent 51 and the rear-stage exhaust port 52 are arranged only on one end wall portion 10b, the front-stage vent 51 and the rear-stage exhaust. Both of the ports 52 are arranged on both the one end wall portion 10b and the other end wall portion 10c, the front stage vent 51 is arranged on both end wall portions, and the rear stage exhaust port 52 is arranged on one end. It is also possible to use either a form in which the front ventilation port 51 is arranged on one end wall portion or a form in which the rear exhaust port 52 is arranged on both end wall portions. These forms may be appropriately and selectively adopted according to various usage conditions. When both end walls of the front ventilation port 51 and the rear exhaust port 52 are arranged, the size, shape, or combination thereof may be appropriately and selectively designed according to the usage conditions, and have the same form. Of course, there is no need.
  • Reference numeral 100 denotes a pump chamber body portion, and the pump chamber body portion 100 is provided by end wall portions 10b and 10c provided on each of the cylinder portion 10a and both end faces of the cylinder portion 10a so as to form the pump chamber 10. Has been done.
  • Reference numeral 200 denotes a bearing portion body portion.
  • two rotors 30A (driving side rotor) and 30B (driven rotor) have two rotating shafts 20A (driving side rotating shaft) and 20B (driven).
  • a bearing portion 40 that supports the rotating shafts 20A and 20B is provided so as to be arranged at one end of the side rotating shaft) and supported in a cantilevered state.
  • the pump main body is composed of the bearing portion body portion 200 and the pump chamber body portion 100.
  • the claw pump according to the present invention has a pump chamber body portion 100 and a bearing portion body portion so that a cooling gap 60 is formed between the pump chamber body portion 100 and the bearing portion body portion 200.
  • the pump body is provided in a structure divided into 200 and 200.
  • the rotary pump according to the present invention it is possible to reduce the heat generated by driving from being transmitted to the bearing portion body portion 200, and to achieve a special advantageous effect that the functional parts constituting the bearing portion 40 and the like can be extended in life. .. That is, according to the present invention, heat conduction can be minimized by dividing the pump chamber body portion 100 and the bearing portion body portion 200. Further, by flowing cooling air between the pump chamber body portion 100 and the bearing portion body portion 200, heat transfer can be suppressed and cooling by heat dissipation can be promoted. As a result, the temperature rise of the bearing portion body portion 200 can be suppressed, and the life of the functional component can be extended.
  • the functional parts are constituent members including the bearing 41 and the oil seal 42, and are treated as consumable parts. By extending the life of these functional parts, running costs can be reduced.
  • the columnar connecting portion 101 for connecting so that both the portion of the pump chamber body portion 100 and the portion of the bearing portion body 200 are paired with each other. 201 (see FIGS. 1 to 3) is provided.
  • four pairs of columnar connecting portions 101 and 201 are provided, and in this embodiment, as is clear from FIG. 3 and the like, the columnar connecting portions 101 and 201 are arranged at the four corners of the body. ing.
  • the fastening means for connecting in this embodiment is a screw connection using bolts.
  • the present invention is not limited to the present embodiment, and the form of the portion where the cooling gap 60 is formed may be formed in an integral structure. For example, in the case of manufacturing by casting molding, the cooling gap 60 may be formed by the core.
  • cooling air (see the arrow in FIG. 13) is generated in the coupling portion 73 (see FIG. 2) that connects the other end of the rotating shaft 20A and the drive shaft 71 of the drive motor 70.
  • the blower blades 75 are integrally fixed and arranged, and as shown in FIG. 13, the cooling air generated by the rotation of the blower blades 75 flows on the surface of the pump chamber body 100 to cool the pump chamber 10.
  • a blower guide unit 80 for guiding the flow of the cooling air is provided. According to this, the cooling air can be efficiently applied to the surface of the pump chamber body 100, and the cooling performance can be improved.
  • the cooling air is blown upward from the lower side of the pump chamber body portion 100 to the blower guide portion 80 to cover the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100.
  • a bottom air passage 81 is formed as a passage on the lower side of the bearing portion body portion 200 and the pump chamber body portion 100 so as to flow, and guides the flow of the cooling air.
  • both end wall portions 10b and 10c of the pump chamber body portion 100 can be cooled at the same time, and the exhaust pipe 55 can also be cooled, so that the cooling can be performed efficiently.
  • a rational flow path that does not raise dust on the floor of the cooling air can be appropriately configured.
  • the blower guide portion 80 of this embodiment is a coupling portion 73 (in which the pump chamber body portion 100, the bearing portion body portion 200, and the blower blade 75 are integrally fixed and arranged. It is composed of a box-shaped cover 90 formed of a plate-shaped member so as to cover the entire surface (see FIG. 2). That is, a suction port 91 for introducing cooling air is provided in the vicinity of the blower blade 75 of the box-shaped cover 90, and the cooling air discharged from the blower blade 75 is directed in the direction of the bearing portion body portion 200 and the pump chamber.
  • the bottom air passage 81 that guides the flow of the cooling air is provided in a form that is bulged downward by a plate-shaped member (a form in which the cross section of the flow path is wide) so as to be smoothly directed to the side of the body portion 100. There is. Then, in order to improve the cooling performance by increasing the flow velocity of the cooling air flow through the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100, the flow path of the bottom blower passage 81 is the pump chamber. The shape is narrowed as it approaches the body portion 100 (the cross section of the flow path is narrow).
  • the discharge port 92 and the discharge port are placed on the upper part of the box-shaped cover 90 so that the cooling air that has passed through the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100 can be smoothly blown from the lower side to the upper side.
  • 93 is provided.
  • the suction port 91, the discharge port 92, and the discharge port 93 of this embodiment are provided in a louver shape.
  • the claw pump can be reasonably and appropriately configured, and the cooling performance can be improved. Further, in the claw pump according to the present invention, the lower side of the pump chamber 10 is likely to overheat, and a structure in which cooling air is applied from the lower side can be appropriately formed as described above. Therefore, the pump chamber 10 can be efficiently cooled, the pump performance can be improved, and the life of the functional component can be extended, which is a special advantageous effect.
  • the front-stage vent 51 is provided below the rotating shafts 20A and 20B, it becomes easy to suck in the cooling air that has not been heated yet, and the inside of the pump chamber 10 can be efficiently cooled. Therefore, the pump performance can be improved.
  • the surface of one end wall portion 10b forming the cooling gap 60 and the wall portion forming the bearing portion 40 facing the end wall portion 10b is used for cooling.
  • Ribs 17 and 47 are provided. These cooling ribs 17 and 47 are provided in a form extending in the vertical direction, and can guide the cooling air flowing from the bottom to the top without obstructing the flow, and can improve the cooling efficiency.
  • Cooling rib Exhaust side opening 50a Boundary line forming the rim on the side with a low compression ratio 51 Front vent 51a Groove 51b Through hole 52 Rear exhaust 55 Exhaust Piping 60 Cooling gap 70 Drive motor 73 Coupling part 75 Blower blade 80 Blower guide part 81 Bottom air passage 90 Box-shaped cover 91 Suction port 92 Outlet port 93 Outlet port 100 Pump room body part 101 Columnar connection part 200 Bearing part body Part 201 Columnar connection part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a claw pump that enables a pump chamber to be prevented from overheating even when the pump is used in a high range of degrees of vacuum, as a vacuum pump, and that enables remarkable improvement of pump efficiency. The present invention is provided with: a pump chamber 10 that is formed by a cylinder part 10a, one end wall part 10b, and another end wall part 10c; two rotary shafts 20A, 20B; two rotors 30A, 30B having hook-shaped claw parts formed therein such that suctioned gas can be compressed and exhausted; and an exhaust-side opening part 50 that is provided in at least one portion of the one end wall part 10b and the other end wall part 10c to be open at a position facing a portion where gas in the pump chamber 10 is compressed. The exhaust-side opening part 50 is obtained by disposing a former-step ventilation hole 51 connected to the outside of the pump chamber 10 at a former step in which the gas compression ratio is maximized and a latter-step exhaust hole 52 that includes a stage where the gas compression ratio is maximized as compared with that at the former step and that is connected for exhaust to the outside of the pump chamber 10.

Description

クローポンプClaw pump
 本発明は、二つの円の一部を重ね合わせた断面形状のポンプ室と、吸入した気体を圧縮して排気できるように鉤形の爪部が形成された二つのロータとを備えるクローポンプに関する。 The present invention relates to a claw pump including a pump chamber having a cross-sectional shape in which a part of two circles is overlapped, and two rotors having hook-shaped claws formed so that the inhaled gas can be compressed and exhausted. ..
 従来のクローポンプとしては、ポンプ室を形成するシリンダと、該シリンダの一方の端面を塞ぐ一方のサイドプレート及び該シリンダの他方の端面を塞ぐ他方のサイドプレートと、シリンダ内で平行に位置するように配されて反対方向に同一速度で回転される二つの回転軸と、該二つの回転軸のそれぞれに一体的に固定されて前記シリンダ内に配され、相互に非接触状態で噛合って吸入した気体を圧縮できるように鉤形の爪部が形成された二つのロータと、該二つのロータを前記二つの回転軸を介して回転駆動させる回転駆動装置と、前記シリンダ内の気体が圧縮されないポンプ室の部分に連通する吸気口と、前記シリンダの両端面を通して圧縮気体を両側から排出させるように、前記一方のサイドプレート及び前記他方のサイドプレートの両方に前記シリンダ内の気体が圧縮されるポンプ室の部分に開口する排気口とを具備する(特許文献1参照)ものが、本出願人によって提案されている。 In a conventional claw pump, a cylinder forming a pump chamber, one side plate that closes one end face of the cylinder, and the other side plate that closes the other end face of the cylinder are located parallel to each other in the cylinder. Two rotating shafts that are arranged in the same direction and rotate at the same speed in opposite directions, and two rotating shafts that are integrally fixed to each of the two rotating shafts and arranged in the cylinder, mesh with each other in a non-contact state and suck. Two rotors having hook-shaped claws formed so that the gas can be compressed, a rotary drive device for rotationally driving the two rotors via the two rotating shafts, and a rotary driving device in which the gas in the cylinder is not compressed. The gas in the cylinder is compressed by both the one side plate and the other side plate so that the compressed gas is discharged from both sides through the intake port communicating with the portion of the pump chamber and both end faces of the cylinder. Applicants have proposed one provided with an exhaust port that opens in a portion of the pump chamber (see Patent Document 1).
 この従来のクローポンプによれば、吸気口の開口面積を倍にして排気の通気抵抗を低減できるため、排気効率を高めることができる。これによって、ポンプ性能を向上させることができ、設計の自由度をより向上できるという効果を奏する。この効果は、真空度が低い領域で使用される場合に、より有効に顕れる。 According to this conventional claw pump, the opening area of the intake port can be doubled to reduce the ventilation resistance of the exhaust, so that the exhaust efficiency can be improved. As a result, the pump performance can be improved, and the degree of freedom in design can be further improved. This effect is more effective when used in a region where the degree of vacuum is low.
特開2011-38476号公報(第1頁、請求項1)Japanese Unexamined Patent Publication No. 2011-38476 (page 1, claim 1)
 クローポンプに関して解決しようとする問題点は、真空ポンプとして、到達真空度が絶対真空により近い値となる真空度が高い範囲で使用される場合、ポンプ室が過熱されてしまい、ポンプ効率を向上させることが難しいことにある。すなわち、クローポンプでは、真空度が高い範囲で使用される場合、ポンプ室内の圧力が外部の圧力(例えば大気圧)よりも低下するため、排気口において排出された排気が逆流してしまうことがある。そして、その逆流された排気は、ポンプ室内で圧縮されることで加熱されて排出されたもので、元々高温であって、逆流することで流入したポンプ室内で再度圧縮されて再度加熱される。その結果、ポンプ室がさらに過熱されることになる。ポンプ室が過熱されると、熱膨張によって、回転するロータ同士やそのロータとポンプ室を形成するシリンダなどの構成部材とが干渉することになり、故障の原因となる。これを防止するためには、構成部材の相互のクリアランスを大きくする必要性が生じ、ポンプ性能を高めることができない。 The problem to be solved regarding the claw pump is that when the vacuum pump is used in a high vacuum range where the ultimate vacuum is closer to the absolute vacuum, the pump chamber is overheated and the pump efficiency is improved. It's difficult. That is, when the claw pump is used in a high vacuum range, the pressure inside the pump is lower than the external pressure (for example, atmospheric pressure), so that the exhaust gas discharged at the exhaust port may flow back. is there. Then, the backflow exhaust gas is heated and discharged by being compressed in the pump chamber, and is originally at a high temperature, and is recompressed and reheated in the inflowing pump chamber by the backflow. As a result, the pump chamber is further overheated. When the pump chamber is overheated, thermal expansion causes the rotating rotors and the rotors to interfere with each other and constituent members such as a cylinder forming the pump chamber, which causes a failure. In order to prevent this, it becomes necessary to increase the mutual clearance of the constituent members, and the pump performance cannot be improved.
 そこで本発明の目的は、真空ポンプとして、真空度が高い範囲で使用される場合でも、ポンプ室が過熱されることを防止でき、ポンプ効率を向上させることができるクローポンプを提供することにある。 Therefore, an object of the present invention is to provide a claw pump as a vacuum pump, which can prevent the pump chamber from being overheated and improve the pump efficiency even when used in a range of high vacuum degree. ..
 本発明は、上記目的を達成するために次の構成を備える。
 本発明に係るクローポンプの一形態によれば、二つの円の一部を重ね合わせた断面形状のポンプ室を形成するように、シリンダ部、該シリンダ部の一方の端面に設けられた一方の端壁部、及び該シリンダ部の他方の端面に設けられた他方の端壁部を備え、前記ポンプ室内で平行に配されて反対方向に同一速度で回転される二つの回転軸と、該二つの回転軸のそれぞれに設けられて前記ポンプ室内に配され、相互に非接触状態で回転されて吸入した気体を圧縮して排気できるように鉤形の爪部が形成された二つのロータと、前記一方の端壁部と前記他方の端壁部との少なくともどちらかの部位であって、前記ポンプ室内における気体が圧縮される部位に面する位置に、開口されて設けられた排気側開口部とを備えるクローポンプであって、前記排気側開口部が、前記二つのロータの前記爪部同士によって気体の圧縮比が最大化する前段で前記ポンプ室の外部に連通される前段通気口と、前記二つのロータの前記爪部同士によって前記前段よりも気体の圧縮比が最大化する段階を含んで前記ポンプ室の外部へ排気するように連通される後段排気口とによって設けられ、前記後段排気口が前記ポンプ室の外部に連通されて気体の圧縮比が最大化する段階で、前記前段通気口が前記ロータによって閉じられるように設けられている。
The present invention includes the following configurations in order to achieve the above object.
According to one form of the claw pump according to the present invention, the cylinder portion and one end surface of the cylinder portion are provided so as to form a pump chamber having a cross-sectional shape in which a part of two circles is overlapped. Two rotating shafts provided with an end wall portion and the other end wall portion provided on the other end surface of the cylinder portion, arranged in parallel in the pump chamber and rotated at the same speed in opposite directions, and the two. Two rotors provided in each of the two rotating shafts, arranged in the pump chamber, and having hook-shaped claws formed so that the inhaled gas can be compressed and exhausted by rotating in a non-contact state with each other. An exhaust side opening provided at least one of the one end wall portion and the other end wall portion at a position facing the portion where the gas is compressed in the pump chamber. A claw pump including the above, wherein the exhaust side opening communicates with the outside of the pump chamber in the pre-stage where the compression ratio of gas is maximized by the claws of the two rotors. The rear stage exhaust is provided by a rear stage exhaust port that is communicated with the claws of the two rotors so as to exhaust the gas to the outside of the pump chamber including a step in which the compression ratio of the gas is maximized as compared with the previous stage. The front vent is closed by the rotor at the stage where the port is communicated to the outside of the pump chamber to maximize the compression ratio of the gas.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口が前記一方の端壁部に設けられ、前記後段排気口が前記他方の端壁部に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the front stage vent is provided on the one end wall portion, and the rear stage exhaust port is provided on the other end wall portion. can do.
 また、本発明に係るクローポンプの一形態によれば、前記二つのロータが、前記二つの回転軸の一端にそれぞれ配されて片持ち状態に支持され、前記一方の端壁部が、前記二つの回転軸を支持する軸受部の側に位置することを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the two rotors are arranged at one ends of the two rotating shafts and supported in a cantilevered state, and the one end wall portion is the two. It can be characterized in that it is located on the side of the bearing portion that supports one of the rotating shafts.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the front-stage vent and the rear-stage exhaust port overlap each other in a state in which they are overlapped with each other in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a divided form so as not to fit.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が仮想の一つの前記排気側開口部を分割して形成された形態に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, both are virtual in a state in which the front-stage vent and the rear-stage exhaust port are overlapped in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a form formed by dividing one of the exhaust side openings.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が前記後段排気口の圧縮比の低い側の一部で重なり合う形態に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, both are described in a state in which the front-stage vent and the rear-stage exhaust port are overlapped with each other in the extension direction of the axis of the rotation shaft. It can be characterized in that it is provided in a form in which a part of the rear exhaust port on the low compression ratio side overlaps.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者の圧縮比が低い側の口縁を形成する境界線が一致された形状に重なり合う形態に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the compression of both of the front-stage vent and the rear-stage exhaust port in a state of being overlapped in the extension direction of the axis of the rotation shaft. It can be characterized in that the boundary lines forming the rim on the side with the lower ratio are provided so as to overlap each other in the same shape.
 また、本発明に係るクローポンプの一形態によれば、前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられ、前記前段通気口と前記後段排気口との両者が、前記一方の端壁部と前記他方の端壁部とのどちらかに設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the front-stage ventilation port and the rear-stage exhaust port are overlapped with each other in a state in which they are overlapped with each other in the extension direction of the axis of the rotation shaft. It is provided in a form divided so as not to fit, and both the front-stage ventilation port and the rear-stage exhaust port are provided on either the one end wall portion or the other end wall portion. Can be a feature.
 また、本発明に係るクローポンプの一形態によれば、前記二つのロータが、前記二つの回転軸の一端に配されて片持ち状態に支持され、前記前段通気口と前記後段排気口との両者が、前記二つの回転軸を支持する軸受部の側に位置する前記一方の端壁部とは反対側に位置する前記他方の端壁部に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, the two rotors are arranged at one end of the two rotating shafts and supported in a cantilever state, and the front-stage vent and the rear-stage exhaust port are connected to each other. Both can be characterized in that they are provided on the other end wall portion located on the side opposite to the one end wall portion located on the side of the bearing portion that supports the two rotating shafts. ..
 また、本発明に係るクローポンプの一形態によれば、前記ポンプ室を形成するようにシリンダ部及び該シリンダ部の両端面のそれぞれに設けられた端壁部によって設けられたポンプ室ボディ部と、前記二つのロータが前記二つの回転軸の一方の端にそれぞれ配されて片持ち状態に支持されるように該二つの回転軸を軸受けする軸受部が設けられた軸受部ボディ部との間に、冷却用の隙間が形成されるように、ポンプ本体が分割された構造に設けられていることを特徴とすることができる。 Further, according to one form of the claw pump according to the present invention, a pump chamber body portion provided by a cylinder portion and end wall portions provided on both end surfaces of the cylinder portion so as to form the pump chamber. , Between the two rotors and the body of the bearing, which is provided with a bearing that supports the two rotating shafts so that the two rotors are arranged at one end of the two rotating shafts and are supported in a cantilevered state. In addition, the pump body may be provided in a divided structure so as to form a cooling gap.
 本発明に係るクローポンプによれば、真空ポンプとして、真空度が高い範囲で使用される場合でも、ポンプ室が過熱されることを防止でき、ポンプ効率を格段に向上させることができるという特別有利な効果を奏する。 According to the claw pump according to the present invention, even when the vacuum pump is used in a high degree of vacuum, it is possible to prevent the pump chamber from being overheated and to significantly improve the pump efficiency, which is a special advantage. It has a great effect.
本発明に係るクローポンプの形態例の要部を示す断面図である。It is sectional drawing which shows the main part of the form example of the claw pump which concerns on this invention. 本発明に係るクローポンプの形態例の全体外観を示す斜視図である。It is a perspective view which shows the whole appearance of the form example of the claw pump which concerns on this invention. 本発明に係るクローポンプの形態例の要部を示す分解図である。It is an exploded view which shows the main part of the form example of the claw pump which concerns on this invention. ポンプ室を形成する部材(シリンダケース及びサイドプレート)の形態例を示す斜視図である。It is a perspective view which shows the form example of the member (cylinder case and side plate) which forms a pump chamber. A矢印(図4参照)方向から見たサイドプレートの正面図(a)とシリンダケースの正面図(b)である。It is a front view (a) of a side plate and a front view (b) of a cylinder case seen from the direction of the arrow A (see FIG. 4). 前段通気口(実線)と後段排気口(点線)とに分断された排気側開口部を回転軸の軸方向に重ねた形態例を示す正面図である。It is a front view which shows the example of the form in which the exhaust side opening divided into the front-stage ventilation port (solid line) and the rear-stage exhaust port (dotted line) is overlapped in the axial direction of the rotation shaft. 回転動作中の二つのロータと、前段通気口と後段排気口との位置関係の形態例を示す動作図((a)、(b)、(c)の3つの回転位置に関する状態)である。It is an operation diagram (state about three rotation positions of (a), (b), (c)) which shows the morphological example of the positional relationship between two rotors in rotation operation, a front-stage ventilation port and a rear-stage exhaust port. 排気側開口部の分断型の形態例を示す説明図である。It is explanatory drawing which shows the form example of the division type of the exhaust side opening. 排気側開口部の分割型の形態例を示す説明図である。It is explanatory drawing which shows the form example of the split type of the exhaust side opening. 排気側開口部のオーバーラップ型の形態例を示す説明図である。It is explanatory drawing which shows the form example of the overlap type of the exhaust side opening. 排気側開口部の境界一致型の形態例を示す説明図である。It is explanatory drawing which shows the form example of the boundary matching type of the exhaust side opening. サイドプレートの一面に、分断された排気側開口部(前段通気口及び後段排気口)が設けられた形態例を示す斜視図である。It is a perspective view which shows the form example which provided the divided exhaust side opening (front stage ventilation port and rear stage exhaust port) on one surface of a side plate. 本発明に係るクローポンプの冷却風流路の形態例を示す断面を含む側面図である。It is a side view which includes the cross section which shows the form example of the cooling air flow path of the claw pump which concerns on this invention. 本発明に係るクローポンプの形態例の要部を示す断面を含む斜視図である。It is a perspective view which includes the cross section which shows the main part of the form example of the claw pump which concerns on this invention.
 以下、本発明に係るクローポンプの形態例を添付図面(図1~7)に基づいて詳細に説明する。 Hereinafter, a form example of the claw pump according to the present invention will be described in detail based on the attached drawings (FIGS. 1 to 7).
 図1及び図3などに示すように、本発明に係るクローポンプでは、二つの円の一部を重ね合わせた断面形状のポンプ室10(図3など参照)を形成するように、シリンダ部10a、そのシリンダ部10aの一方の端面に設けられた一方の端壁部10b、及びそのシリンダ部10aの他方の端面に設けられた他方の端壁部10cを備えている。 As shown in FIGS. 1 and 3, in the claw pump according to the present invention, the cylinder portion 10a is formed so as to form a pump chamber 10 (see FIG. 3 and the like) having a cross-sectional shape in which a part of two circles is overlapped. , One end wall portion 10b provided on one end face of the cylinder portion 10a, and the other end wall portion 10c provided on the other end face of the cylinder portion 10a.
 また、図3などに示すように、二つの回転軸20A、20Bは、ポンプ室10内で平行に配されて、反対方向に同一速度で回転されるように設けられている。本形態例では、この二つの回転軸20A、20Bには、それぞれに歯車21A(駆動側歯車)、21B(従動側歯車)が一体的に固定されて設けられている。その一対の歯車21A、21Bは、軸受部ボディ部200に設けられたギヤボックス45内で噛合されている。 Further, as shown in FIG. 3 and the like, the two rotating shafts 20A and 20B are arranged in parallel in the pump chamber 10 and are provided so as to be rotated at the same speed in opposite directions. In this embodiment, the two rotating shafts 20A and 20B are integrally fixed with gears 21A (drive side gear) and 21B (driven side gear), respectively. The pair of gears 21A and 21B are meshed in a gear box 45 provided in the bearing portion body portion 200.
 また、図3などに示すように、二つのロータ30A、30Bが、二つの回転軸20A、20Bのそれぞれに設けられてポンプ室10内に配され、相互に非接触状態で回転されて吸入した気体を圧縮して排気できるように鉤形の爪部が形成されている。 Further, as shown in FIG. 3 and the like, two rotors 30A and 30B are provided in each of the two rotating shafts 20A and 20B and arranged in the pump chamber 10, and are rotated and sucked in a non-contact state with each other. A hook-shaped claw is formed so that the gas can be compressed and exhausted.
 また、各図に示すように、排気側開口部50が、一方の端壁部10bと他方の端壁部10cとの少なくともどちらかの部位であって、ポンプ室10内における気体が圧縮される部位に面する位置に、開口されて設けられている。これによって、二軸回転ポンプの一種であるクローポンプが、構成されている。なお、15は吸気口であり、ポンプ室10内における気体が圧縮されない部位に面する位置(本形態例ではシリンダ部10aを形成する壁部)に、開口されて設けられている。 Further, as shown in each figure, the exhaust side opening 50 is at least one of the one end wall portion 10b and the other end wall portion 10c, and the gas in the pump chamber 10 is compressed. It is provided with an opening at a position facing the site. As a result, a claw pump, which is a kind of biaxial rotary pump, is configured. Reference numeral 15 denotes an intake port, which is opened and provided at a position in the pump chamber 10 facing a portion where the gas is not compressed (in this embodiment, a wall portion forming the cylinder portion 10a).
 そして、本発明に係るクローポンプでは、排気側開口部50が、二つのロータ30A、30Bの前記爪部同士によって気体の圧縮比が最大化する前段でポンプ室10の外部に連通される前段通気口51と、二つのロータ30A、30Bの前記爪部同士によって前記前段よりも気体の圧縮比が最大化する段階を含んでポンプ室10の外部へ排気するように連通される後段排気口52とによって設けられている。なお、本形態例において、ポンプ室10の外部に連通される状態とは、外気である大気に連通・開放される状態になっている。 Then, in the claw pump according to the present invention, the exhaust side opening 50 is communicated to the outside of the pump chamber 10 in the pre-stage where the compression ratio of the gas is maximized by the claws of the two rotors 30A and 30B. A port 51 and a rear-stage exhaust port 52 communicated with each other so as to exhaust the gas to the outside of the pump chamber 10 including a step in which the compression ratio of the gas is maximized by the claws of the two rotors 30A and 30B as compared with the previous stage. Is provided by. In this embodiment, the state of communicating with the outside of the pump chamber 10 is a state of communicating with and opening to the atmosphere, which is the outside air.
 この本発明に係るクローポンプによれば、真空ポンプとして、到達真空度が絶対真空により近い値となる真空度が高い範囲で使用される場合でも、ポンプ室が過熱されることを防止でき、ポンプ効率を格段に向上させることができる。すなわち、排気側開口部50が、別々に開口されて設けられた前段通気口51と後段排気口52とによって構成されている。このため、高い真空度で使用される場合、前段通気口51において、過熱されていない外気が吸入され、後段排気口52において、従来のような排気の逆流を減らすことができるため、ポンプ室が過熱されることを防止できる。 According to the claw pump according to the present invention, even when the vacuum pump is used in a high vacuum range where the ultimate vacuum is closer to the absolute vacuum, the pump chamber can be prevented from being overheated, and the pump can be used. The efficiency can be significantly improved. That is, the exhaust side opening 50 is composed of a front-stage ventilation port 51 and a rear-stage exhaust port 52 that are separately opened and provided. Therefore, when used at a high degree of vacuum, the unheated outside air is sucked into the front ventilation port 51, and the backflow of exhaust gas as in the conventional case can be reduced at the rear exhaust port 52, so that the pump chamber can be used. It is possible to prevent overheating.
 つまり、本発明に係るクローポンプは、真空度が一定以上の高い範囲で使用される場合、ポンプ室の内部の圧縮がなされる部位であっても負圧になっていることがあり、前段通気口51が開くことで過熱されていない外気(例えば常温の大気圧の冷却用空気)が取り入れられる構成になっている。このため、後で開く後段排気口52で、過熱された気体(例えば空気)が逆流することを防止或いは抑制できることになり、ポンプ室の内部温度上昇を抑制できる。すなわち、前段通気口51を備える構成が、冷却二次吸気機構になっている。このように、冷却二次吸気がなされ、外気(冷却用空気)をポンプ室10の内部に取り込むことで、その見かけの空気量(体積)は逆流する空気量と同等であるため、動力が変化することはなく、ポンプ室10の内部温度を下げることができる。従って、クローポンプのメリットである高真空側での省エネルギー性を損ねることなく、ポンプ室10の過熱を抑制することができ、ポンプ性能を格段に高めることができる。 That is, when the claw pump according to the present invention is used in a range where the degree of vacuum is higher than a certain level, the pressure may be negative even in the part where the inside of the pump chamber is compressed, and the pre-stage ventilation is performed. By opening the mouth 51, unheated outside air (for example, cooling air at atmospheric pressure at room temperature) can be taken in. Therefore, it is possible to prevent or suppress the backflow of the overheated gas (for example, air) at the post-stage exhaust port 52 which is opened later, and it is possible to suppress an increase in the internal temperature of the pump chamber. That is, the configuration including the front-stage vent 51 is the cooling secondary intake mechanism. In this way, cooling secondary intake is performed, and by taking in the outside air (cooling air) inside the pump chamber 10, the apparent amount of air (volume) is equivalent to the amount of backflow air, so the power changes. The internal temperature of the pump chamber 10 can be lowered without doing so. Therefore, overheating of the pump chamber 10 can be suppressed without impairing the energy saving property on the high vacuum side, which is an advantage of the claw pump, and the pump performance can be remarkably improved.
 なお、ポンプ室10の内部の圧縮がなされる部位に開口する通気口としては、ポンプサイクルの圧縮が始まる初期の段階である圧縮比が低い状況で外部に連通するように、シリンダ部10aの周壁部などに設けることも考えられる。しかしながら、そのように圧縮が始まる初期の段階で開口する通気口を通して空気が取り入れられた場合は、処理される空気量が増え過ぎて動力消費が大きくなる場合がある。 The vent that opens to the inside of the pump chamber 10 where compression is performed is the peripheral wall of the cylinder portion 10a so as to communicate with the outside in a situation where the compression ratio is low, which is the initial stage of the start of compression of the pump cycle. It is also conceivable to install it in a department or the like. However, if air is taken in through a vent that opens in such an early stage of compression, the amount of air processed may increase too much and power consumption may increase.
 また、図1~7に示した形態例では、図3~5などに示すように、ポンプ室10が、シリンダ部10aと一方の端壁部10bとが一体的に設けられたシリンダケース11と、他方の端壁部10cとして設けられたサイドプレート12とによって構成されたシリンダ構造壁によって形成されている。なお、本形態例では、ポンプ室10が、主に二つに分割した部材によって構成される構造となっているが、これに限定されず、例えばシリンダ部10aと一方の端壁部10bと他方の端壁部10cとの主に三つに分割した部材によって形成されても良いのは勿論である。 Further, in the examples shown in FIGS. 1 to 7, as shown in FIGS. 3 to 5, the pump chamber 10 is a cylinder case 11 in which a cylinder portion 10a and one end wall portion 10b are integrally provided. It is formed by a cylinder structure wall composed of a side plate 12 provided as the other end wall portion 10c. In this embodiment, the pump chamber 10 has a structure mainly composed of two members, but the present invention is not limited to this, for example, the cylinder portion 10a, one end wall portion 10b, and the other. Of course, it may be formed mainly by a member divided into three with the end wall portion 10c of the above.
 さらに、本発明は、二つのロータ30A、30Bが片持ち状態に軸受・支持されている形態に限定されず、回転軸20A、20Bを両端で回転自在に軸受けする形態のクローポンプにも、適用できる構成になっている。 Further, the present invention is not limited to the form in which the two rotors 30A and 30B are bearing and supported in a cantilever state, and is also applied to a claw pump in which the rotating shafts 20A and 20B are rotatably supported at both ends. It is configured so that it can be done.
 また、本形態例では、図1~7に示すように、前段通気口51が一方の端壁部10bに設けられ、後段排気口52が他方の端壁部10cに設けられている。すなわち、一対の端壁部10b、10cの両方に、ポンプ室の外部である外気(本形態例では大気)に連通する開口が設けられている。これによれば、前段通気口51と後段排気口52とを、適正な形状で、適正な位置に、合理的且つ容易に設けることができる。従って、要求性能に対応したクローポンプに係る設計の自由度を、合理的に高めることができる。 Further, in this embodiment, as shown in FIGS. 1 to 7, the front-stage ventilation port 51 is provided on one end wall portion 10b, and the rear-stage exhaust port 52 is provided on the other end wall portion 10c. That is, both of the pair of end wall portions 10b and 10c are provided with openings that communicate with the outside air (atmosphere in this embodiment) outside the pump chamber. According to this, the front-stage ventilation port 51 and the rear-stage exhaust port 52 can be reasonably and easily provided in an appropriate shape and at an appropriate position. Therefore, the degree of freedom in designing the claw pump corresponding to the required performance can be reasonably increased.
 次に、本形態例のクローポンプによってポンプ室10が過熱されることを防止できるメカニズムについて、以下に詳細に説明する。
 従来のクローポンプでは、ある一定真空度以上において排気口が開いた際、ポンプ室の内部は負圧であり、排気口から排気(例えば大気圧の空気)の逆流が発生してしまう。すなわち、従来のクローポンプでは、排気口に接続されている静音用マフラ内部(排気配管55を含む空間(図13参照))の高温空気(排気)が、排気口から逆流することがあり、ポンプ室の内部温度が上昇する要因になっていた。そこで、従来は、逆流空気量の低減方法として、排気口の形状で排気の圧縮比を高くする方式を用いてきた。つまり、排気口の面積を小さく形成し、排気の圧縮比が所定以上に高くならないと、排気口が開かないように設計されてきた。このように、圧縮比を高く設定するほど逆流防止についての効果はあるが、低真空度側での稼働については動力上昇が大きくなり、使用できる真空度範囲が限定されていた。すなわち、排気口の面積を小さくすると、低真空度の範囲での使用では、排気の通気抵抗が大きくなるため、大きな動力が必要となってエネルギー消費量が増大してしまう。
Next, a mechanism capable of preventing the pump chamber 10 from being overheated by the claw pump of the present embodiment will be described in detail below.
In a conventional claw pump, when the exhaust port is opened at a certain degree of vacuum or higher, the inside of the pump chamber is negative pressure, and backflow of exhaust (for example, atmospheric pressure air) is generated from the exhaust port. That is, in the conventional claw pump, the high temperature air (exhaust) inside the silent muffler connected to the exhaust port (the space including the exhaust pipe 55 (see FIG. 13)) may flow back from the exhaust port, and the pump It was a factor that caused the internal temperature of the room to rise. Therefore, conventionally, as a method of reducing the amount of backflow air, a method of increasing the compression ratio of the exhaust gas by the shape of the exhaust port has been used. That is, it has been designed so that the area of the exhaust port is made small and the exhaust port does not open unless the compression ratio of the exhaust becomes higher than a predetermined value. In this way, the higher the compression ratio is set, the more effective it is in preventing backflow, but when operating on the low vacuum degree side, the power rise becomes large, and the usable vacuum degree range is limited. That is, if the area of the exhaust port is reduced, the ventilation resistance of the exhaust becomes large when used in a low vacuum range, so that a large amount of power is required and the energy consumption increases.
 これに対し、本形態例のクローポンプでは、ポンプ室10の圧縮がなされる部位でも負圧になるような所定の高い真空度を発生させる範囲(例えば、60~95kPaの範囲)で使用する場合において、シリンダケース11(一方の端壁部10b)側の冷却二次吸気口(前段通気口51)によって、冷却二次吸気を行い、サイドプレート12(他方の端壁部10c)側の排気口(後段排気口52)から、ポンプ排気を行う構成になっている。つまり、一方の端壁部10b側の開口である前段通気口51は、他方の端壁部10cの開口である後段排気口52に係る圧縮比と比較して同等かより低い圧縮比の際に外部と連通する形状に設けられている。 On the other hand, in the claw pump of the present embodiment, when it is used in a range (for example, in the range of 60 to 95 kPa) where a predetermined high degree of vacuum is generated so that a negative pressure is generated even in a portion where the pump chamber 10 is compressed. In the cylinder case 11 (one end wall portion 10b) side cooling secondary intake port (pre-stage ventilation port 51), cooling secondary intake is performed, and the side plate 12 (the other end wall portion 10c) side exhaust port. The pump is exhausted from (post-stage exhaust port 52). That is, when the compression ratio of the front ventilation port 51, which is the opening on the one end wall portion 10b side, is equal to or lower than the compression ratio of the rear exhaust port 52, which is the opening of the other end wall portion 10c. It is provided in a shape that communicates with the outside.
 この本形態例のクローポンプによれば、所定の高い真空度(例えば、80kPa以上)を発生させる際で、最終的な圧縮比よりも低い圧縮比である所定範囲の時点では、ポンプ室10の内部の圧縮がなされる部位においても、負圧が維持される。その段階で、前段通気口51が開いて外気(例えば大気圧の空気)に連通され、冷却二次吸気がなされることになる。その後、その吸気された冷却空気を加えて最終的な圧縮比まで圧縮されて、後段排気口52からの排気がなされることになる。つまり、後段排気口52が開いて最終的に排気がなされる段階では、冷却空気が吸気されているため、ポンプ室10の内部の圧縮がなされる部位での負圧が解消され、その後の排気工程で、後段排気口52での逆流が防止或いは抑制される。従って、ポンプ室10の過熱を抑制でき、実施例において約100℃もの温度上昇が抑制されることが確認されており、ポンプ効率を向上できる。 According to the claw pump of this embodiment, when a predetermined high degree of vacuum (for example, 80 kPa or more) is generated, the pump chamber 10 has a compression ratio lower than the final compression ratio in a predetermined range. Negative pressure is maintained even at the site where internal compression is performed. At that stage, the front-stage vent 51 is opened to communicate with the outside air (for example, atmospheric pressure air), and cooling secondary intake air is performed. After that, the intake cooling air is added and compressed to the final compression ratio, and the air is exhausted from the rear exhaust port 52. That is, at the stage when the rear exhaust port 52 is opened and the final exhaust is performed, the cooling air is sucked in, so that the negative pressure in the compressed portion inside the pump chamber 10 is eliminated, and the subsequent exhaust is performed. In the process, backflow at the rear exhaust port 52 is prevented or suppressed. Therefore, it has been confirmed that overheating of the pump chamber 10 can be suppressed and a temperature rise of about 100 ° C. is suppressed in the examples, and the pump efficiency can be improved.
 以下、図1~6に示した形態例について、図7に基づいて、ポンプ室10の過熱を防止できる排気の工程について、段階的に詳細に説明する。
 図7(a)の段階では、前段通気口51及び後段排気口52の両方が一方のロータ30Aによって閉じられている。すなわち、一方のロータ30Aの本体大径域部が、重なった状態に位置し、前段通気口51及び後段排気口52の両方が塞がれた状態になっている。従って、この段階(区間)では、ポンプ室10の内部の圧縮がなされる部位について、排気も吸気も行われていない。
Hereinafter, with respect to the examples shown in FIGS. 1 to 6, the exhaust process capable of preventing overheating of the pump chamber 10 will be described in detail step by step based on FIG. 7.
At the stage of FIG. 7A, both the front ventilation port 51 and the rear exhaust port 52 are closed by one of the rotors 30A. That is, the large diameter regions of the main body of one of the rotors 30A are located in an overlapping state, and both the front ventilation port 51 and the rear exhaust port 52 are closed. Therefore, at this stage (section), neither exhaust nor intake is performed at the portion where the inside of the pump chamber 10 is compressed.
 図7(b)の段階では、前段通気口51が開かれており、後段排気口52が一方のロータ30Aによって閉じられている。すなわち、後段排気口52のみが、一方のロータ30Aの本体大径域部によって塞がれている。
 本形態例の前段通気口51は、ポンプ室10の内部の圧縮がなされる部位であって、その圧縮比が例えば2.0から2.4までとなる部位に連通されている。そして、この前段通気口51は、以上に説明したように、ポンプ室10の内部の圧縮がなされる部位が負圧になっているときには、外気が吸気される冷却二次吸気口として機能する。
At the stage of FIG. 7B, the front ventilation port 51 is opened, and the rear exhaust port 52 is closed by one rotor 30A. That is, only the rear exhaust port 52 is blocked by the large diameter region of the main body of one of the rotors 30A.
The front-stage vent 51 of this embodiment is connected to a portion where the inside of the pump chamber 10 is compressed, and the compression ratio thereof is, for example, 2.0 to 2.4. Then, as described above, the front-stage vent 51 functions as a cooling secondary intake port into which the outside air is taken in when the portion of the pump chamber 10 where compression is performed has a negative pressure.
 また、本形態例の前段通気口51は、溝部51a(図3など参照)とこれに連続する貫通孔部51bとによって形成されており、溝部51aの一部でも開くことによって、貫通孔部51bを介して外部と連通できる形状になっている。すなわち、部材の板厚の範囲で設けられた溝部51aと、その溝部51aに連続される部位であって外部まで連通するように貫通されて形成された貫通孔部51bとによって構成されている。なお、本形態例の貫通孔部51bは、下方に向かって外部側へ開口するように、L字状に屈曲された形状(図1など参照)に設けられている。また、この貫通孔部51bの外部側に面する開口が、円形に形成されており、例えば、接続部として管などを接続できる形態としてもよい。そして、その円形の開口に、連通路としての管を接続できれば、後段排気口52とは離れた位置に、前段通気口51が外部に開放される部位を選択的に移動させることができ、より低温の空気などの気体を吸入できる。 Further, the front-stage vent 51 of this embodiment is formed by a groove 51a (see FIG. 3 and the like) and a through hole 51b continuous with the groove 51a, and by opening even a part of the groove 51a, the through hole 51b It is shaped so that it can communicate with the outside through. That is, it is composed of a groove portion 51a provided within the plate thickness range of the member, and a through hole portion 51b formed by penetrating the groove portion 51a so as to communicate with the outside. The through hole portion 51b of this embodiment is provided in an L-shaped bent shape (see FIG. 1 and the like) so as to open downward to the outside. Further, the opening facing the outer side of the through hole portion 51b is formed in a circular shape, and for example, a pipe or the like may be connected as a connecting portion. Then, if a pipe as a continuous passage can be connected to the circular opening, the portion where the front ventilation port 51 is opened to the outside can be selectively moved to a position away from the rear exhaust port 52, and more. Can inhale gas such as low temperature air.
 また、この前段通気口51は、低い真空度での運転中については、図7(b)のように開口されることで、排気口として機能することになる。すなわち、ポンプ室10内が所定の高い真空度になるまでは、ポンプ室10の内部の圧縮がなされる部位は負圧になっておらず、その状況では、圧縮された気体(例えば空気)が、この前段通気口51からも排気されることになる。従って、そのときに、この前段通気口51は、前段排気口となっている。これによれば、排気の通気抵抗を低減できるため、動力の消費を抑制することができる。 Further, the front-stage vent 51 functions as an exhaust port by being opened as shown in FIG. 7 (b) during operation at a low degree of vacuum. That is, until the inside of the pump chamber 10 has a predetermined high degree of vacuum, the part where the compression is performed inside the pump chamber 10 does not have a negative pressure, and in that situation, the compressed gas (for example, air) is released. , It will be exhausted from this front stage vent 51 as well. Therefore, at that time, the front-stage ventilation port 51 is a front-stage exhaust port. According to this, since the ventilation resistance of the exhaust gas can be reduced, the consumption of power can be suppressed.
 図7(c)の段階では、後段排気口52が開かれており、前段通気口51が一方のロータ30Aによって閉じられている。すなわち、前段通気口51の側だけが、一方のロータ30Aの爪部を含めた本体部によって閉じられている。また、一方のロータ30Aの本体小径域部によって、一方のロータ30Aと後段排気口52とが重ならないように位置しており、後段排気口52が開いた状態になっている。そして、その開かれた後段排気口52に連通しているポンプ室10の内部の圧縮がなされる部位は、前段通気口51で外気が吸入されて冷却された上で圧縮比が高くなり、外気と比較して高圧になるため、後段排気口52では逆流が生じることなく適切に排気がなされる。なお、本形態例の後段排気口52は、ポンプ室10の内部の圧縮がなされる部位であって、その圧縮比が例えば2.4以上又は3.0以上となる部位に連通されている。
 これによれば、前述したように、ポンプ性能を格段に高めることができる。
At the stage of FIG. 7C, the rear exhaust port 52 is opened, and the front vent 51 is closed by one rotor 30A. That is, only the side of the front vent 51 is closed by the main body including the claw portion of one rotor 30A. Further, the small diameter region portion of the main body of one rotor 30A is positioned so that the one rotor 30A and the rear exhaust port 52 do not overlap each other, and the rear exhaust port 52 is in an open state. Then, in the portion where the inside of the pump chamber 10 communicating with the opened rear exhaust port 52 is compressed, the outside air is sucked and cooled by the front vent 51, and the compression ratio becomes high, so that the outside air becomes high. Since the pressure is higher than that of the above, the exhaust port 52 in the subsequent stage is properly exhausted without causing backflow. The latter-stage exhaust port 52 of this embodiment is connected to a portion where the inside of the pump chamber 10 is compressed and whose compression ratio is, for example, 2.4 or more or 3.0 or more.
According to this, as described above, the pump performance can be remarkably improved.
 さらに、本形態例では、図3などに示すように、二つのロータ30A、30Bが、それぞれ対応する二つの回転軸20A、20Bの一端に配されて片持ち状態に支持され、一方の端壁部10bが、二つの回転軸20A、20Bを支持する軸受部40の側に位置している。この構造によって、部品点数が少なくよりシンプルな片持ち支持のクローポンプが、適正に構成されている。 Further, in this embodiment, as shown in FIG. 3 and the like, two rotors 30A and 30B are arranged at one end of two corresponding rotating shafts 20A and 20B, respectively, and are supported in a cantilever state, and one end wall is provided. The portion 10b is located on the side of the bearing portion 40 that supports the two rotating shafts 20A and 20B. This structure allows a simpler cantilevered claw pump with fewer parts to be properly configured.
 図8は、排気側開口部50の第1例を示しており、以上に説明した形態例(図1~7)参照)に採用されている構成であって、その形態をより分かり易く見せるために、図1~7と比較して拡大すると共に、開口されたスペースをハッチングで記載してある。すなわち、この第1例では、前段通気口51と後段排気口52とが、回転軸20A、20Bの軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられている。すなわち、前段通気口51と後段排気口52とが、両者が重なり合わないように、所定の僅かな間隔を置いて配されることで、分断された形態に設けられている。従って、この場合、図7(b)に示すように、前段通気口51と後段排気口52とによって構成される排気側開口部50の連続性が一瞬途絶えることになっている。 FIG. 8 shows a first example of the exhaust side opening 50, which is a configuration adopted in the above-described morphological examples (see FIGS. 1 to 7), in order to make the morphological appearance easier to understand. In addition to being enlarged as compared with FIGS. 1 to 7, the opened space is described by hatching. That is, in this first example, the front-stage ventilation port 51 and the rear-stage exhaust port 52 are divided so as not to overlap each other in a state in which they are overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B. It is provided in the above-mentioned form. That is, the front-stage ventilation port 51 and the rear-stage exhaust port 52 are provided in a divided form by being arranged at a predetermined slight interval so that they do not overlap with each other. Therefore, in this case, as shown in FIG. 7B, the continuity of the exhaust side opening 50 formed by the front-stage ventilation port 51 and the rear-stage exhaust port 52 is momentarily interrupted.
 図9は、排気側開口部50の第2例を示しており、前段通気口51と後段排気口52とが、回転軸20A、20Bの軸心の延長方向に重ね合わせて見た状態の形態について、両者が仮想の一つの排気側開口部50を分割して形成された形態に設けられている。すなわち、前段通気口51と後段排気口52とが、仮想の一つの排気側開口部50を切り分けた形態に設けられることで、分割して形成された形態に設けられている。 FIG. 9 shows a second example of the exhaust side opening 50, in which the front ventilation port 51 and the rear exhaust port 52 are overlapped with each other in the extension direction of the axes of the rotating shafts 20A and 20B. Both are provided in a form formed by dividing one virtual exhaust side opening 50. That is, the front-stage ventilation port 51 and the rear-stage exhaust port 52 are provided in a form in which one virtual exhaust side opening 50 is cut out, so that the first-stage ventilation port 51 and the rear-stage exhaust port 52 are formed in a divided manner.
 図10は、排気側開口部50の第3例を示しており、前段通気口51と後段排気口52とが、回転軸20A、20Bの軸心の延長方向に重ね合わせて見た状態の形態について、両者が後段排気口52の圧縮比の低い側の一部で重なり合う形態に設けられている。 FIG. 10 shows a third example of the exhaust side opening 50, in which the front ventilation port 51 and the rear exhaust port 52 are overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B. Both are provided so as to overlap each other on a part of the rear exhaust port 52 on the lower compression ratio side.
 図11は、排気側開口部50の第4例を示しており、前段通気口51と後段排気口52とが、回転軸20A、20Bの軸心の延長方向に重ね合わせて見た状態の形態について、両者の圧縮比が低い側の口縁を形成する境界線50aが一致された形状に重なり合う形態に設けられている。 FIG. 11 shows a fourth example of the exhaust side opening 50, in which the front vent 51 and the rear exhaust 52 are overlapped with each other in the extension direction of the axes of the rotating shafts 20A and 20B. The boundary line 50a forming the rim on the side where the compression ratio of both is low is provided so as to overlap each other in the same shape.
 なお、以上の排気側開口部50の形態例において、後段排気口52の開口面積が小さく形成されている場合ほど、高い真空度を発生させるクローポンプの性能をより向上できる。また、前段通気口51と後段排気口52とを合わせた開口面積が大きく形成されている場合ほど、より大きな風量を処理するクローポンプの性能を向上できる。 In the above example of the form of the exhaust side opening 50, the smaller the opening area of the rear exhaust port 52 is, the more the performance of the claw pump that generates a high degree of vacuum can be improved. Further, the larger the opening area of the front-stage ventilation port 51 and the rear-stage exhaust port 52 is formed, the better the performance of the claw pump that processes a larger air volume can be improved.
 また、本発明においては、図12に示すように、前段通気口51と後段排気口52とが、回転軸20A、20Bの軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられ、二つのロータ30A、30Bが、二つの回転軸20A、20Bの一端に配されて片持ち状態に支持され、前段通気口51と後段排気口52との両者が、二つの回転軸20A、20Bを支持する軸受部40の側に位置する一方の端壁部10bとは反対側に位置する他方の端壁部10cに設けられている構成にすることもできる。 Further, in the present invention, as shown in FIG. 12, both of the front-stage vents 51 and the rear-stage exhaust ports 52 are viewed as being overlapped with each other in the extension direction of the axial centers of the rotating shafts 20A and 20B. The two rotors 30A and 30B are provided at one ends of the two rotating shafts 20A and 20B and are supported in a cantilevered state by being provided in a form in which they are separated so as not to overlap each other. Both of these are provided on the other end wall portion 10c located on the side opposite to the one end wall portion 10b located on the side of the bearing portion 40 that supports the two rotating shafts 20A and 20B. You can also do it.
 これによれば、端壁部の一面だけに、前段通気口51と後段排気口52とを合理的に配することができ、使用条件に合わせて最適な形態とすることができるなど、他の装置との関係を含めて、設計の自由度を高めることができる。すなわち、前段通気口51と後段排気口52との間に所定の間隔があるため、両者を分断でき、図12に示すように、前段通気口51の外部への開口と、後段排気口52の外部への開口(排気配管55を介して設けられる開口)とを分離できる。このため、前段通気口51では、過熱されていない気体を吸気でき、上述したように、クローポンプの性能を向上できる。 According to this, the front-stage ventilation port 51 and the rear-stage exhaust port 52 can be rationally arranged only on one surface of the end wall portion, and the optimum form can be obtained according to the usage conditions. The degree of freedom in design can be increased, including the relationship with the device. That is, since there is a predetermined distance between the front-stage ventilation port 51 and the rear-stage exhaust port 52, both can be separated, and as shown in FIG. 12, the opening of the front-stage ventilation port 51 to the outside and the rear-stage exhaust port 52 It can be separated from the opening to the outside (the opening provided via the exhaust pipe 55). Therefore, the front-stage vent 51 can take in unheated gas, and as described above, the performance of the claw pump can be improved.
 なお、本発明のクローポンプでは、以上の形態に限定されず、前段通気口51と後段排気口52との両者が一方の端壁部10bのみに配される形態、前段通気口51と後段排気口52との両者が一方の端壁部10bと他方の端壁部10cとの両方に配される形態、前段通気口51が両方の端壁部に配されて後段排気口52が片方の端壁部に配される形態、前段通気口51が片方の端壁部に配されて後段排気口52が両方の端壁部に配される形態のいずれかにすることも可能である。これらの形態は、種々の使用条件に応じて適宜選択的に採用すればよい。なお、前段通気口51や、後段排気口52を、両方の端壁部を配する場合、その大きさや形状又はその組合せは、使用条件によって適宜選択的に設計されればよく、同一形態とする必要がないのは勿論である。 The claw pump of the present invention is not limited to the above-mentioned form, and both the front-stage vent 51 and the rear-stage exhaust port 52 are arranged only on one end wall portion 10b, the front-stage vent 51 and the rear-stage exhaust. Both of the ports 52 are arranged on both the one end wall portion 10b and the other end wall portion 10c, the front stage vent 51 is arranged on both end wall portions, and the rear stage exhaust port 52 is arranged on one end. It is also possible to use either a form in which the front ventilation port 51 is arranged on one end wall portion or a form in which the rear exhaust port 52 is arranged on both end wall portions. These forms may be appropriately and selectively adopted according to various usage conditions. When both end walls of the front ventilation port 51 and the rear exhaust port 52 are arranged, the size, shape, or combination thereof may be appropriately and selectively designed according to the usage conditions, and have the same form. Of course, there is no need.
 次に、図13及び14に基づいて、本形態例のクローポンプの外装に係る冷却形態について説明する。
 100はポンプ室ボディ部であり、このポンプ室ボディ部100は、ポンプ室10を形成するようにシリンダ部10a及びそのシリンダ部10aの両端面のそれぞれに設けられた端壁部10b、10cによって設けられている。
Next, a cooling mode related to the exterior of the claw pump of this embodiment will be described with reference to FIGS. 13 and 14.
Reference numeral 100 denotes a pump chamber body portion, and the pump chamber body portion 100 is provided by end wall portions 10b and 10c provided on each of the cylinder portion 10a and both end faces of the cylinder portion 10a so as to form the pump chamber 10. Has been done.
 200は軸受部ボディ部であり、この軸受部ボディ部200には、二つのロータ30A(駆動側ロータ)、30B(従動側ロータ)が二つの回転軸20A(駆動側回転軸)、20B(従動側回転軸)の一方の端にそれぞれ配されて片持ち状態に支持されるように、回転軸20A、20Bを軸受けする軸受部40が設けられている。この軸受部ボディ部200とポンプ室ボディ部100とによって、ポンプ本体が構成されている。 Reference numeral 200 denotes a bearing portion body portion. In the bearing portion body portion 200, two rotors 30A (driving side rotor) and 30B (driven rotor) have two rotating shafts 20A (driving side rotating shaft) and 20B (driven). A bearing portion 40 that supports the rotating shafts 20A and 20B is provided so as to be arranged at one end of the side rotating shaft) and supported in a cantilevered state. The pump main body is composed of the bearing portion body portion 200 and the pump chamber body portion 100.
 そして、本発明に係るクローポンプは、そのポンプ室ボディ部100と軸受部ボディ部200との間に、冷却用の隙間60が形成されるように、そのポンプ室ボディ部100と軸受部ボディ部200とに、ポンプ本体が分割された構造に設けられている。 The claw pump according to the present invention has a pump chamber body portion 100 and a bearing portion body portion so that a cooling gap 60 is formed between the pump chamber body portion 100 and the bearing portion body portion 200. The pump body is provided in a structure divided into 200 and 200.
 本発明に係る回転ポンプによれば、駆動による発熱が軸受部ボディ部200に伝わることを低減し、軸受部40などを構成する機能部品を長寿命化することができるという特別有利な効果を奏する。すなわち、本発明によれば、ポンプ室ボディ部100と軸受部ボディ部200とに分割することにより、熱伝導を最小限に抑制できる。また、ポンプ室ボディ部100と軸受部ボディ部200との間に冷却風を流すことにより、熱伝達を抑制でき、放熱による冷却を促進できる。これによって、軸受部ボディ部200の温度上昇を抑制することができ、機能部品の長寿命化を実現できる。 According to the rotary pump according to the present invention, it is possible to reduce the heat generated by driving from being transmitted to the bearing portion body portion 200, and to achieve a special advantageous effect that the functional parts constituting the bearing portion 40 and the like can be extended in life. .. That is, according to the present invention, heat conduction can be minimized by dividing the pump chamber body portion 100 and the bearing portion body portion 200. Further, by flowing cooling air between the pump chamber body portion 100 and the bearing portion body portion 200, heat transfer can be suppressed and cooling by heat dissipation can be promoted. As a result, the temperature rise of the bearing portion body portion 200 can be suppressed, and the life of the functional component can be extended.
 なお、機能部品とは、ベアリング41やオイルシール42を含む構成部材のことであり、消耗部品として扱われるものである。これらの機能部品の長寿命化を図ることで、ランニングコストを低減できる。 Note that the functional parts are constituent members including the bearing 41 and the oil seal 42, and are treated as consumable parts. By extending the life of these functional parts, running costs can be reduced.
 また、本形態においては、図1、2などに示すように、ポンプ室ボディ部100の部分と軸受部ボディ部200の部分の双方で対となるように、連結のための柱状連結部101、201(図1~3参照)が設けられている。この連結のために対をなす柱状連結部101、201は、4対が設けられ、本形態例では、図3などに明らかなように、ボディの四隅に相当する部位に配された形態になっている。これによれば、ポンプ室ボディ部100と軸受部ボディ部200とを安定的に連結することができる。なお、本形態例の連結のための締結手段は、ボルトを用いた螺子結合になっている。ところで、本発明は本形態例に限定されるものではなく、冷却用の隙間60が形成される部分の形態については、一体的な構造で形成されていても良い。例えば、鋳物成型によって製造する場合は、中子によって、冷却用の隙間60が形成されるようにすればよい。 Further, in the present embodiment, as shown in FIGS. 1 and 2, the columnar connecting portion 101 for connecting so that both the portion of the pump chamber body portion 100 and the portion of the bearing portion body 200 are paired with each other. 201 (see FIGS. 1 to 3) is provided. For this connection, four pairs of columnar connecting portions 101 and 201 are provided, and in this embodiment, as is clear from FIG. 3 and the like, the columnar connecting portions 101 and 201 are arranged at the four corners of the body. ing. According to this, the pump chamber body portion 100 and the bearing portion body portion 200 can be stably connected. The fastening means for connecting in this embodiment is a screw connection using bolts. By the way, the present invention is not limited to the present embodiment, and the form of the portion where the cooling gap 60 is formed may be formed in an integral structure. For example, in the case of manufacturing by casting molding, the cooling gap 60 may be formed by the core.
 また、本形態例では、回転軸20Aの他方の端と駆動モータ70の駆動軸71とを連結するカップリング部73(図2参照)に、冷却風(図13中の矢印参照)を発生させる送風羽根75が一体的に固定されて配され、図13で示すように、その送風羽根75の回転によって発生された冷却風がポンプ室ボディ部100の表面を流れることでポンプ室10が冷却されるように、前記冷却風の流れを案内する送風ガイド部80が設けられている。これによれば、冷却風をポンプ室ボディ部100の表面へ効率良く当てることができ、冷却性能を高めることができる。 Further, in this embodiment, cooling air (see the arrow in FIG. 13) is generated in the coupling portion 73 (see FIG. 2) that connects the other end of the rotating shaft 20A and the drive shaft 71 of the drive motor 70. The blower blades 75 are integrally fixed and arranged, and as shown in FIG. 13, the cooling air generated by the rotation of the blower blades 75 flows on the surface of the pump chamber body 100 to cool the pump chamber 10. As such, a blower guide unit 80 for guiding the flow of the cooling air is provided. According to this, the cooling air can be efficiently applied to the surface of the pump chamber body 100, and the cooling performance can be improved.
 さらに、本形態例では、送風ガイド部80には、前記冷却風がポンプ室ボディ部100の下側から上方へ吹き付けられてそのポンプ室ボディ部100の両方の端壁部10b、10cの表面を流れるように、軸受部ボディ部200及びポンプ室ボディ部100の下側に通路として形成され、前記冷却風の流れを案内する底部送風通路81が設けられている。 Further, in the example of the present embodiment, the cooling air is blown upward from the lower side of the pump chamber body portion 100 to the blower guide portion 80 to cover the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100. A bottom air passage 81 is formed as a passage on the lower side of the bearing portion body portion 200 and the pump chamber body portion 100 so as to flow, and guides the flow of the cooling air.
 これによれば、ポンプ室ボディ部100の両方の端壁部10b、10cを同時に冷やすことができ、排気配管55も冷やすことができるため、効率良く冷却できる。また、冷却空気の床の塵埃を舞い上げることのない合理的な流路を適正に構成できる。 According to this, both end wall portions 10b and 10c of the pump chamber body portion 100 can be cooled at the same time, and the exhaust pipe 55 can also be cooled, so that the cooling can be performed efficiently. In addition, a rational flow path that does not raise dust on the floor of the cooling air can be appropriately configured.
 また、本形態例の送風ガイド部80は、図13に示すように、ポンプ室ボディ部100、軸受部ボディ部200、及び送風羽根75が一体的に固定されて配されたカップリング部73(図2参照)の全体を覆うように、板状部材によって形成されたボックス状カバー90によって構成されている。すなわち、ボックス状カバー90の送風羽根75の近傍に冷却用の空気が導入される吸入口91が設けられ、送風羽根75から排出された冷却風が、その方向を軸受部ボディ部200及びポンプ室ボディ部100の側へスムースに向けられるように、その冷却風の流れを案内する底部送風通路81が、板状部材によって下側に膨らんだ形態(流路の断面が広い形態)に設けられている。そして、ポンプ室ボディ部100の両方の端壁部10b、10cの表面を、冷却風の流れの流速を高めて通過させることで冷却性能を高めるために、底部送風通路81の流路がポンプ室ボディ部100に近づくに従って絞られた形態(流路の断面が狭い形態)になっている。そして、そのポンプ室ボディ部100の両方の端壁部10b、10cの表面を通過した冷却風が、下側から上側へスムースに吹き抜けるように、ボックス状カバー90の上部に排出口92と排出口93とが設けられている。なお、本形態例の吸入口91、排出口92及び排出口93はルーバー形状に設けられている。 Further, as shown in FIG. 13, the blower guide portion 80 of this embodiment is a coupling portion 73 (in which the pump chamber body portion 100, the bearing portion body portion 200, and the blower blade 75 are integrally fixed and arranged. It is composed of a box-shaped cover 90 formed of a plate-shaped member so as to cover the entire surface (see FIG. 2). That is, a suction port 91 for introducing cooling air is provided in the vicinity of the blower blade 75 of the box-shaped cover 90, and the cooling air discharged from the blower blade 75 is directed in the direction of the bearing portion body portion 200 and the pump chamber. The bottom air passage 81 that guides the flow of the cooling air is provided in a form that is bulged downward by a plate-shaped member (a form in which the cross section of the flow path is wide) so as to be smoothly directed to the side of the body portion 100. There is. Then, in order to improve the cooling performance by increasing the flow velocity of the cooling air flow through the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100, the flow path of the bottom blower passage 81 is the pump chamber. The shape is narrowed as it approaches the body portion 100 (the cross section of the flow path is narrow). Then, the discharge port 92 and the discharge port are placed on the upper part of the box-shaped cover 90 so that the cooling air that has passed through the surfaces of both end wall portions 10b and 10c of the pump chamber body portion 100 can be smoothly blown from the lower side to the upper side. 93 is provided. The suction port 91, the discharge port 92, and the discharge port 93 of this embodiment are provided in a louver shape.
 以上に説明した冷却構造によれば、クローポンプに、合理的に対応して適正に構成でき、冷却性能を高めることができる。また、本発明に係るクローポンプでは、ポンプ室10の下側が過熱し易く、その下側から冷却風を当てる構造を前述のように適切に形成できる。このため、ポンプ室10を効率よく冷却することができ、ポンプ性能を高めることができると共に、機能部品の長寿命化を実現できるという特別有利な効果を奏することができる。 According to the cooling structure explained above, the claw pump can be reasonably and appropriately configured, and the cooling performance can be improved. Further, in the claw pump according to the present invention, the lower side of the pump chamber 10 is likely to overheat, and a structure in which cooling air is applied from the lower side can be appropriately formed as described above. Therefore, the pump chamber 10 can be efficiently cooled, the pump performance can be improved, and the life of the functional component can be extended, which is a special advantageous effect.
 また、前段通気口51は、回転軸20A、20Bよりも下側に設けられているため、未だ加熱されていない冷却空気を吸入しやすいことになり、ポンプ室10の内部を効率よく冷却できる。このため、ポンプ性能を向上できる。 Further, since the front-stage vent 51 is provided below the rotating shafts 20A and 20B, it becomes easy to suck in the cooling air that has not been heated yet, and the inside of the pump chamber 10 can be efficiently cooled. Therefore, the pump performance can be improved.
 さらに、本形態例では、図3及び4に示すように、冷却用の隙間60を形成する一方の端壁部10bとこれに対面する軸受部40を構成する壁部との表面に、冷却用リブ17、47が設けられている。これらの冷却用リブ17、47は、上下方向に延びる形態に設けられており、下から上へ流れる冷却風の流れを妨げることなく案内でき、冷却効率を向上できる。 Further, in this embodiment, as shown in FIGS. 3 and 4, the surface of one end wall portion 10b forming the cooling gap 60 and the wall portion forming the bearing portion 40 facing the end wall portion 10b is used for cooling. Ribs 17 and 47 are provided. These cooling ribs 17 and 47 are provided in a form extending in the vertical direction, and can guide the cooling air flowing from the bottom to the top without obstructing the flow, and can improve the cooling efficiency.
 以上、本発明につき好適な形態例を挙げて種々説明してきたが、本発明はこの形態例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。 Although various examples of the present invention have been described above, the present invention is not limited to the examples of the present invention, and it goes without saying that many modifications can be made without departing from the spirit of the invention. That is.
 10 ポンプ室
 10a シリンダ部
 10b 一方の端壁部
 10c 他方の端壁部
 11 シリンダケース
 12 サイドプレート
 15 吸気口
 17 冷却用リブ
 20A 回転軸(駆動側回転軸)
 20B 回転軸(従動側回転軸)
 21A 歯車(駆動側歯車)
 21B 歯車(従動側歯車)
 30A ロータ(駆動側ロータ)
 30B ロータ(従動側ロータ)
 40 軸受部
 41 ベアリング
 42 オイルシール
 45 ギヤボックス
 47 冷却用リブ
 50 排気側開口部
 50a 圧縮比が低い側の口縁を形成する境界線
 51 前段通気口
 51a 溝部
 51b 貫通孔部
 52 後段排気口
 55 排気配管
 60 冷却用の隙間
 70 駆動モータ
 73 カップリング部
 75 送風羽根
 80 送風ガイド部
 81 底部送風通路
 90 ボックス状カバー
 91 吸入口
 92 排出口
 93 排出口
 100 ポンプ室ボディ部
 101 柱状連結部
 200 軸受部ボディ部
 201 柱状連結部
10 Pump chamber 10a Cylinder part 10b One end wall part 10c The other end wall part 11 Cylinder case 12 Side plate 15 Intake port 17 Cooling rib 20A Rotation shaft (drive side rotation shaft)
20B rotating shaft (driven side rotating shaft)
21A gear (drive side gear)
21B gear (driven gear)
30A rotor (drive side rotor)
30B rotor (driven rotor)
40 Bearing 41 Bearing 42 Oil seal 45 Gear box 47 Cooling rib 50 Exhaust side opening 50a Boundary line forming the rim on the side with a low compression ratio 51 Front vent 51a Groove 51b Through hole 52 Rear exhaust 55 Exhaust Piping 60 Cooling gap 70 Drive motor 73 Coupling part 75 Blower blade 80 Blower guide part 81 Bottom air passage 90 Box-shaped cover 91 Suction port 92 Outlet port 93 Outlet port 100 Pump room body part 101 Columnar connection part 200 Bearing part body Part 201 Columnar connection part

Claims (10)

  1.  二つの円の一部を重ね合わせた断面形状のポンプ室を形成するように、シリンダ部、該シリンダ部の一方の端面に設けられた一方の端壁部、及び該シリンダ部の他方の端面に設けられた他方の端壁部を備え、
     前記ポンプ室内で平行に配されて反対方向に同一速度で回転される二つの回転軸と、
     該二つの回転軸のそれぞれに設けられて前記ポンプ室内に配され、相互に非接触状態で回転されて吸入した気体を圧縮して排気できるように鉤形の爪部が形成された二つのロータと、
     前記一方の端壁部と前記他方の端壁部との少なくともどちらかの部位であって、前記ポンプ室内における気体が圧縮される部位に面する位置に、開口されて設けられた排気側開口部とを備えるクローポンプであって、
     前記排気側開口部が、前記二つのロータの前記爪部同士によって気体の圧縮比が最大化する前段で前記ポンプ室の外部に連通される前段通気口と、前記二つのロータの前記爪部同士によって前記前段よりも気体の圧縮比が最大化する段階を含んで前記ポンプ室の外部へ排気するように連通される後段排気口とによって設けられ、
     前記後段排気口が前記ポンプ室の外部に連通されて気体の圧縮比が最大化する段階で、前記前段通気口が前記ロータによって閉じられるように設けられていることを特徴とするクローポンプ。
    On the cylinder portion, one end wall portion provided on one end face of the cylinder portion, and the other end face of the cylinder portion so as to form a pump chamber having a cross-sectional shape in which a part of two circles is overlapped. With the other end wall provided
    Two rotating shafts arranged in parallel in the pump chamber and rotated in opposite directions at the same speed,
    Two rotors provided in each of the two rotating shafts and arranged in the pump chamber, and having hook-shaped claws formed so that the inhaled gas can be compressed and exhausted by rotating in a non-contact state with each other. When,
    An exhaust side opening provided at least one of the one end wall portion and the other end wall portion at a position facing the portion where the gas is compressed in the pump chamber. It is a claw pump equipped with
    The exhaust side opening communicates with the outside of the pump chamber in the pre-stage where the compression ratio of the gas is maximized by the claws of the two rotors, and the claws of the two rotors communicate with each other. It is provided by a rear stage exhaust port that communicates with the outside of the pump chamber so as to exhaust the gas to the outside including the stage where the compression ratio of the gas is maximized as compared with the previous stage.
    A claw pump characterized in that the front-stage exhaust port is provided so as to be closed by the rotor at a stage where the rear-stage exhaust port is communicated with the outside of the pump chamber to maximize the compression ratio of gas.
  2.  前記前段通気口が前記一方の端壁部に設けられ、前記後段排気口が前記他方の端壁部に設けられていることを特徴とする請求項1記載のクローポンプ。 The claw pump according to claim 1, wherein the front-stage vent is provided on the one end wall portion, and the rear-stage exhaust port is provided on the other end wall portion.
  3.  前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられていることを特徴とする請求項2記載のクローポンプ。 Regarding the form in which the front-stage vent and the rear-stage exhaust port are overlapped in the extension direction of the axis of the rotation shaft, they are provided in a separated form so as not to overlap each other. The claw pump according to claim 2, wherein the claw pump is characterized.
  4.  前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が仮想の一つの前記排気側開口部を分割して形成された形態に設けられていることを特徴とする請求項2記載のクローポンプ。 The front-stage ventilation port and the rear-stage exhaust port are formed by dividing one virtual exhaust-side opening in a state in which the front-stage ventilation port and the rear-stage exhaust port are overlapped with each other in the extension direction of the axis of the rotation shaft. The claw pump according to claim 2, wherein the claw pump is provided in a form.
  5.  前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が前記後段排気口の圧縮比の低い側の一部で重なり合う形態に設けられていることを特徴とする請求項2記載のクローポンプ。 Regarding the form in which the front-stage vent and the rear-stage exhaust port are overlapped in the extension direction of the axis of the rotation shaft, both are overlapped at a part of the rear-stage exhaust port on the lower compression ratio side. The claw pump according to claim 2, wherein the claw pump is provided in.
  6.  前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者の圧縮比が低い側の口縁を形成する境界線が一致された形状に重なり合う形態に設けられていることを特徴とする請求項2記載のクローポンプ。 Regarding the form in which the front-stage vent and the rear-stage exhaust port are overlapped with each other in the extension direction of the axis of the rotation shaft, the boundary lines forming the rim on the side where the compression ratio of both is low are matched. The claw pump according to claim 2, wherein the claw pump is provided in a form that overlaps with each other.
  7.  前記二つのロータが、前記二つの回転軸の一端にそれぞれ配されて片持ち状態に支持され、前記一方の端壁部が、前記二つの回転軸を支持する軸受部の側に位置することを特徴とする請求項1~6のいずれかに記載のクローポンプ。 The two rotors are arranged at one end of each of the two rotating shafts and supported in a cantilevered state, and the one end wall portion is located on the side of the bearing portion that supports the two rotating shafts. The claw pump according to any one of claims 1 to 6.
  8.  前記前段通気口と前記後段排気口とが、前記回転軸の軸心の延長方向に重ね合わせて見た状態の形態について、両者が重なり合わないように分断された形態に設けられ、前記前段通気口と前記後段排気口との両者が、前記一方の端壁部と前記他方の端壁部とのどちらかに設けられていることを特徴とする請求項1記載のクローポンプ。 The front-stage ventilation port and the rear-stage exhaust port are provided in a form in which the front-stage ventilation port and the rear-stage exhaust port are divided so as not to overlap each other in a state in which they are overlapped with each other in the extension direction of the axis of the rotation shaft. The claw pump according to claim 1, wherein both the port and the rear exhaust port are provided on either the one end wall portion or the other end wall portion.
  9.  前記二つのロータが、前記二つの回転軸の一端に配されて片持ち状態に支持され、前記前段通気口と前記後段排気口との両者が、前記二つの回転軸を支持する軸受部の側に位置する前記一方の端壁部とは反対側に位置する前記他方の端壁部に設けられていることを特徴とする請求項8記載のクローポンプ。 The two rotors are arranged at one end of the two rotating shafts and supported in a cantilevered state, and both the front vent and the rear exhaust port are on the side of the bearing portion that supports the two rotating shafts. The claw pump according to claim 8, wherein the claw pump is provided on the other end wall portion located on the opposite side of the one end wall portion located in.
  10.  前記ポンプ室を形成するようにシリンダ部及び該シリンダ部の両端面のそれぞれに設けられた端壁部によって設けられたポンプ室ボディ部と、前記二つのロータが前記二つの回転軸の一方の端にそれぞれ配されて片持ち状態に支持されるように該二つの回転軸を軸受けする軸受部が設けられた軸受部ボディ部との間に、冷却用の隙間が形成されるように、ポンプ本体が分割された構造に設けられていることを特徴とする請求項1~9のいずれかに記載のクローポンプ。 A pump chamber body portion provided by a cylinder portion and end wall portions provided on both end faces of the cylinder portion so as to form the pump chamber, and the two rotors are one end of the two rotating shafts. The pump body is provided with a bearing portion that supports the two rotating shafts so as to be supported in a cantilevered state. The claw pump according to any one of claims 1 to 9, wherein the claw pump is provided in a divided structure.
PCT/JP2020/039646 2019-10-28 2020-10-22 Claw pump WO2021085282A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217018198A KR20220081950A (en) 2019-10-28 2020-10-22 claw pump
CN202110849425.XA CN113357146B (en) 2019-10-28 2020-10-22 Claw pump
CN202080006096.6A CN113260791B (en) 2019-10-28 2020-10-22 Claw pump
DE112020000151.2T DE112020000151T5 (en) 2019-10-28 2020-10-22 Claw pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194858 2019-10-28
JP2019194858A JP6749714B1 (en) 2019-10-28 2019-10-28 Claw pump

Publications (1)

Publication Number Publication Date
WO2021085282A1 true WO2021085282A1 (en) 2021-05-06

Family

ID=72240836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039646 WO2021085282A1 (en) 2019-10-28 2020-10-22 Claw pump

Country Status (5)

Country Link
JP (1) JP6749714B1 (en)
KR (1) KR20220081950A (en)
CN (2) CN113357146B (en)
DE (1) DE112020000151T5 (en)
WO (1) WO2021085282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837950A (en) * 2022-05-27 2022-08-02 山东省章丘鼓风机股份有限公司 Method for calculating area and determining position of countercurrent port of Roots vacuum pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008955B1 (en) 2021-07-16 2022-01-25 オリオン機械株式会社 Claw pump
CN115596665B (en) * 2022-12-09 2023-03-14 中核第七研究设计院有限公司 Exhaust structure of claw-shaped dry-type gas transmission pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513887A (en) * 1998-04-30 2002-05-14 ヴェルナー リートシュレ ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Pressure-suction pump
JP2011196249A (en) * 2010-03-19 2011-10-06 Orion Machinery Co Ltd Two-shaft rotary pump and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9104514D0 (en) * 1991-03-04 1991-04-17 Boc Group Plc Improvements to vacuum pumps
JP4818410B2 (en) 2009-08-11 2011-11-16 オリオン機械株式会社 Claw pump exhaust structure and exhaust method
CN102242709A (en) * 2010-05-11 2011-11-16 淄博特士德真空设备科技有限公司 Vacuum pump for improving pumping speed and vacuum degree
JP6033759B2 (en) * 2013-11-05 2016-11-30 アネスト岩田株式会社 Claw pump
JP5914449B2 (en) * 2013-11-06 2016-05-11 アネスト岩田株式会社 Claw pump
JP6221140B2 (en) * 2015-02-12 2017-11-01 オリオン機械株式会社 Biaxial rotary pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513887A (en) * 1998-04-30 2002-05-14 ヴェルナー リートシュレ ゲーエムベーハー ウント コンパニー コマンディットゲゼルシャフト Pressure-suction pump
JP2011196249A (en) * 2010-03-19 2011-10-06 Orion Machinery Co Ltd Two-shaft rotary pump and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837950A (en) * 2022-05-27 2022-08-02 山东省章丘鼓风机股份有限公司 Method for calculating area and determining position of countercurrent port of Roots vacuum pump

Also Published As

Publication number Publication date
DE112020000151T5 (en) 2021-11-11
JP2021067245A (en) 2021-04-30
CN113260791B (en) 2022-03-29
JP6749714B1 (en) 2020-09-02
CN113357146A (en) 2021-09-07
CN113260791A (en) 2021-08-13
CN113357146B (en) 2023-02-03
KR20220081950A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2021085282A1 (en) Claw pump
JP5452908B2 (en) Oil-free screw compressor
CN102518603A (en) Fan of range hood and range hood provided with same
WO1997014874A1 (en) Engine cooler and construction machines
JP5802967B2 (en) Package type rotary pump unit
TWI518245B (en) Dry vacuum pump apparatus, exhaust unit, and silencer
JP6845596B1 (en) Claw pump
JP2011038476A (en) Exhaust structure and exhaust method of claw pump
JP6221140B2 (en) Biaxial rotary pump
JP2008111417A (en) Air compression device
JP6571422B2 (en) Packaged air-cooled screw compressor
JP6340556B2 (en) Biaxial rotary pump
JP2008088845A (en) Compressor
JP3941484B2 (en) Multistage vacuum pump
WO2015172720A1 (en) Worm-gear transmission device
TW201837395A (en) Air conditioner
JP7109788B2 (en) rotary pump
KR20160011615A (en) Two-shaft rotary pump
JP6340557B2 (en) Biaxial rotary pump
KR101113832B1 (en) Turbo compressor
JP2003240262A (en) Supply and exhaust device for double tube
JP7394470B2 (en) Two-shaft rotary pump and claw pump
JP5604730B2 (en) Exhaust sound deadening structure of rotor non-contact type vacuum pump
JP7008955B1 (en) Claw pump
JP2009275662A (en) Muffler cooling structure of work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20881715

Country of ref document: EP

Kind code of ref document: A1