WO2021085005A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2021085005A1
WO2021085005A1 PCT/JP2020/036756 JP2020036756W WO2021085005A1 WO 2021085005 A1 WO2021085005 A1 WO 2021085005A1 JP 2020036756 W JP2020036756 W JP 2020036756W WO 2021085005 A1 WO2021085005 A1 WO 2021085005A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
region
regions
stud pins
stud
Prior art date
Application number
PCT/JP2020/036756
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to FI20225425A priority Critical patent/FI130329B/en
Priority to CN202080074749.4A priority patent/CN114599528B/en
Publication of WO2021085005A1 publication Critical patent/WO2021085005A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1625Arrangements thereof in the tread patterns, e.g. irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1643Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile with special shape of the plug-body portion, i.e. not cylindrical

Definitions

  • the present invention relates to a pneumatic tire in which a stud pin is planted on the tread of a tread portion.
  • studless tires are mainly used as winter tires.
  • a plurality of implantation holes for implanting the stud pins are provided in the tread portion, and the stud pins are implanted in these implantation holes (see, for example, Patent Document 1).
  • Such a stud pin exerts an effect of scratching the ice-snow road surface when traveling on the ice-snow road surface, so that the performance on ice can be improved.
  • the impact of the hard stud pin hitting the paved road surface is transmitted as a shock feeling, which may cause deterioration of riding comfort.
  • An object of the present invention is to provide a pneumatic tire in which a stud pin is planted on a tread portion of a tread portion, which makes it possible to improve riding comfort performance on a dry road surface while improving performance on ice. There is.
  • the pneumatic tire of the present invention that achieves the above object has a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire of these sidewall portions.
  • the distance on the tire equatorial line is arranged so as to be 1/4 of the tire contact length.
  • the region partitioned between the pair of tire meridional lines is defined as a band-shaped region and the plurality of strip-shaped regions are arranged over the entire circumference of the tire by shifting the angle by 1 degree along the tire circumferential direction, the plurality of strip-shaped regions
  • the number n of stud pins included in each band-shaped region in all of the regions is 4.0% or less of the total number N of stud pins in the entire circumference of the tire, and the strip-shaped region is 2/3 or more of the plurality of strip-shaped regions.
  • the number n of stud pins included in the above is 2.0% or more of the total number N.
  • the stud pin as described above, it is possible to effectively enhance the performance on ice and to satisfactorily exhibit the riding comfort performance on a dry road surface. Specifically, in all the strip-shaped regions, the ratio of the number n of the stud pins to the total number N of the stud pins is suppressed to 4.0% or less, so that the stud pins come into contact with the road surface when traveling on a dry road surface. It is possible to suppress the feeling of shock when doing so, and it is possible to improve the riding comfort performance.
  • the ratio of the number n of stud pins to the total number N of stud pins N is set to an appropriate range of 2.0% or more, and a strip-shaped region is sufficiently provided all around the tire, so that the performance on ice is good. Can be demonstrated.
  • the total number of stud pins is preferably 135 to 250.
  • the present invention among the plurality of strip-shaped regions, there is one or more concentrated regions in which the number n of stud pins included in the strip-shaped region is 3.0% or more of the total number of N, and among the plurality of strip-shaped regions. It is preferably present in 1/3 or less of. In this way, by providing a concentrated region having a large number of stud pins and excellent on-ice performance, it is possible to further improve the on-ice performance. On the other hand, since the number of concentrated regions is suppressed to 1/3 or less of the plurality of strip-shaped regions, the riding comfort performance on a dry road surface can be satisfactorily exhibited even if the concentrated regions are provided.
  • the dense region there are two or more dense regions in which the number n of stud pins included in the strip-shaped region is 3.5% or more of the total number N, and the dense regions adjacent to each other in the tire circumferential direction. It is preferable that the interval between the tires is 100% or more of the tire contact length. Since the dense area is particularly excellent in the performance on ice among the concentrated areas, it is possible to further improve the performance on ice. On the other hand, since the distance between the dense areas is larger than the tire contact patch length, the number of dense areas existing in the contact patch when the tire rolls is always one or less, and even if the dense area is provided, riding on a dry road surface Comfortable performance can be exhibited well.
  • the average protrusion amount Px of the stud pins included in the concentrated region and the average protrusion amount Pav of the stud pins in the region excluding the concentrated region satisfy the relationship of Px ⁇ 0.9 ⁇ Pav.
  • the region located on the equator of the tire is defined as the center region, and the pair of regions located on both sides of the center region in the tire width direction are shoulder shoulders.
  • the region it is preferable that at least one stud pin is present in each of the center region and the pair of shoulder regions in the band-shaped region in which the number n of stud pins is 3 or more.
  • the "ground contact length” is the tire equatorial line of the ground contact region formed when the tire is rim-assembled on the regular rim, placed vertically on a flat surface with the regular internal pressure charged, and a regular load is applied. Is the length in the tire circumferential direction. Further, the “ground contact ends” are both ends of the above-mentioned ground contact region in the tire axial direction.
  • a “regular rim” is a rim defined for each tire in a standard system including a standard on which a tire is based. For example, a standard rim for JATTA, a "Design Rim” for TRA, or an ETRTO. If so, use “Measuring Rim".
  • Regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum air pressure, and if it is TRA, it is the table “TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES", if it is ETRTO, it is “INFRATION PRESSURE", but if the tire is for a passenger car, it is 250 kPa.
  • Regular load is the load defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum load capacity, and if it is TRA, it is the table “TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES" is "LOAD CAPACITY" in the case of ETRTO, but when the tire is for a passenger car, the load is equivalent to 80% of the above load.
  • FIG. 1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of a stud pin planted in a tread portion.
  • FIG. 4 is an explanatory diagram schematically showing a change in the number of stud pins for each strip-shaped region.
  • the pneumatic tire of the present invention is arranged inside the tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and the sidewall portion 2 in the tire radial direction. It is provided with a pair of bead portions 3.
  • reference numeral CL indicates a tire equator
  • reference numeral E indicates a ground contact end.
  • FIG. 1 is a cross-sectional view of the meridian, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape, whereby the pneumatic tire is formed.
  • the toroidal basic structure of is constructed.
  • the description using FIG. 1 is basically based on the illustrated meridian cross-sectional shape, but each tire component extends in the tire circumferential direction to form an annular shape.
  • a carcass layer 4 is mounted between the pair of left and right bead portions 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the inside to the outside of the vehicle around the bead cores 5 arranged in each bead portion 3.
  • a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by a main body portion and a folded portion of the carcass layer 4.
  • a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • Each belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 ° to 40 °.
  • a belt reinforcing layer 8 is provided on the outer peripheral side of the belt layer 7.
  • the belt reinforcing layer 8 contains an organic fiber cord oriented in the tire circumferential direction.
  • the angle of the organic fiber cord with respect to the tire circumferential direction is set to, for example, 0 ° to 5 °.
  • the present invention is applied to a pneumatic tire having such a general cross-sectional structure, but the basic structure thereof is not limited to the above. Further, since the present invention relates to the arrangement of the stud pin P in the pneumatic tire in which the stud pin P is planted on the tread surface of the tread portion 1, the structure of the groove and the land portion formed on the surface of the tread portion 1 (Tread pattern) is not particularly limited.
  • the pneumatic tire shown in FIG. 2 has a plurality of lug grooves 11 extending along the tire width direction and a plurality of circumferential grooves 12 extending along the tire circumferential direction.
  • the portion 13 has a partitioned tread pattern.
  • the lug groove 11 extends inclined with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the ground contact end E on one side in the tire width direction.
  • the existing first lug groove 11a extends at an angle with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the contact end E on the other side in the tire width direction.
  • the second lug groove 11b is included.
  • first lug groove 11a and the second lug groove 11b one end of the first lug groove 11a and one end of the second lug groove 11b are alternately arranged in the tire circumferential direction on the tire equator CL, and the first lug groove 11a and the second lug groove 11b are arranged in the tire circumferential direction.
  • the 11a and the second lug groove 11b are arranged so as to form a substantially V shape.
  • the circumferential groove 12 extends so as to be inclined with respect to the tire circumferential direction so as to connect the adjacent lug grooves 11 in the tire circumferential direction in the middle portion of each lug groove 11 in the length direction.
  • the center land portion 13a is partitioned inside the tire width direction of the circumferential groove 12, and the shoulder land portion 13b (shoulder block) is partitioned outside the tire width direction of the circumferential groove 12. Further, in the illustrated example, one end communicates with the circumferential groove 12 in the middle portion in the length direction of each circumferential groove 12, extends from the circumferential groove 12 toward the tire equator CL side, and the other end ends.
  • An auxiliary groove 14 is provided that terminates within the center land portion 13a.
  • each land portion 13 is provided with a plurality of sipes 14.
  • the stud pin P can be planted on any land portion 13.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the stud pin P is planted in the implantation hole of the tread portion 1.
  • the double flange type stud pin P is described as the stud pin P, but a stud pin P having a different structure such as a single flange type can also be used.
  • the stud pin P is composed of a columnar body portion P1, a tread side flange portion P2, a bottom side flange portion P3, and a tip portion P4.
  • the tread side flange portion P2 and the bottom side flange portion P3 have a larger diameter than the body portion P1, and the tread side flange portion P2 is formed on the tread surface side (outside in the tire radial direction) of the body portion P1 and the bottom side flange portion.
  • P3 is formed on the bottom side (inside in the tire radial direction) of the body portion P1.
  • the tip portion P4 protrudes outward in the tire radial direction from the tread side flange portion P2 on the pin shaft (center of the stud pin P).
  • the tip portion P4 protrudes from the tread surface in a state where the stud pin P is planted in the tread portion 1, it can bite into the ice and snow road surface and exhibits traction on ice.
  • the tip portion P4 is made of a material (for example, a tungsten compound) that is harder than other portions (body portion P1, tread side flange portion P2, bottom side flange portion P3) made of, for example, aluminum or the like.
  • the number of stud pins P included in the strip-shaped region described later is defined, but if at least a part of the tip portion P4 is present in the strip-shaped region described later, the number is counted as the number included in the strip-shaped region. To do.
  • the present invention is partitioned between a pair of tire meridians arranged so that the distance on the tire equator CL is 1/4 of the tire contact length, regardless of the tread pattern formed on the surface of the tread portion 1.
  • the region is defined as a tread region A (see, for example, the shaded area in FIG. 2).
  • a plurality of strip-shaped regions A (A1, A2, A3 ...) are arranged over the entire circumference of the tire by shifting the angles by 1 degree along the tire circumferential direction.
  • the number n of the stud pins P included in each band-shaped region A (A1, A2, A3 ...) Is measured. Note that FIG.
  • FIG. 4 schematically shows the arrangement of the band-shaped region A, and the details of the tread pattern formed in the tread portion 1 and the specific arrangement of the stud pins P are omitted. Further, the strip-shaped region A after the reference numeral A3 is omitted.
  • the reference numeral R in the figure represents the tire circumferential direction.
  • the number n of stud pins P included in each strip-shaped region A is set to 4.0% or less of the total number N of stud pins P in the entire circumference of the tire. ..
  • the number n of the stud pins P is 7 or less.
  • the number n of the stud pins P is 7 or less in each of the three strip-shaped regions A (hatched lines) surrounded by the alternate long and short dash line, which is described above. Meet the conditions of.
  • the above condition is satisfied.
  • the ratio of the number n of the stud pins P to the total number N of the stud pins P is suppressed to 4.0% or less, so that the stud pins P are suppressed when traveling on a dry road surface. It is possible to suppress the feeling of shock when the vehicle comes into contact with the road surface, and it is possible to improve the riding comfort performance.
  • the band-shaped region A in which the ratio of the number n of the stud pins P to the total number N of the stud pins P is set to an appropriate range of 2.0% or more is sufficiently provided on the entire circumference of the tire, it is on ice. The performance can be exhibited well.
  • a region in which the number n of stud pins P included in the strip-shaped region A is 3.0% or more of the total number N of stud pins P is distinguished as a concentrated region A'. It is preferable that the region A'is present at one or more locations on the tire circumference.
  • the total number N 190 is assumed as described above, and 3.0% of the total number N is 5.7. Therefore, in the example of FIG. 4, 6 or more are used.
  • the band-shaped region A provided with the stud pin P corresponds to the concentrated region A'. Further, in the three strip-shaped regions A (hatched portions) shown in FIG.
  • the locations where the number n of the stud pins P is 6 or 7 correspond to the concentrated region A'.
  • the portion where the number n of the stud pins P is 7 also corresponds to the dense region A ′′ described later, so the reference numeral in the figure is indicated as A (A ′′), but this portion is also concentrated.
  • region A' Corresponds to region A'.
  • the number n of stud pins P is larger than that of the other strip-shaped regions A, and the performance on ice is excellent. Therefore, by providing such a concentrated region A', the performance on ice can be further improved.
  • the number of concentrated regions A' is suppressed to 1/3 or less of the plurality of strip-shaped regions A, even if the concentrated regions A'are provided, the riding comfort performance on a dry road surface can be satisfactorily exhibited. ..
  • the concentrated area A' When the number of concentrated areas A'exceeds 1/3 of the plurality of strip-shaped areas A, the concentrated area A'where many stud pins P that can cause a feeling of shock during running increases, so that the riding comfort performance It becomes difficult to exert well.
  • the dense region A if the region in which the number n of the stud pins P included in the band-shaped region is 3.5% or more of the total number N of the stud pins P is distinguished as the dense region A ′′, the dense region A It is preferable that "" is present at one or more locations on the tire circumference.
  • the total number N 190 is assumed as described above, and 3.5% of the total number N is 6.7. Therefore, in the example of FIG. 4, 7 or more are used.
  • the band-shaped region A provided with the stud pin P corresponds to the concentrated region A'. Further, in the three strip-shaped regions A (hatched portions) shown in FIG.
  • the portion where the number n of the stud pins P is 7 corresponds to the concentrated region A ′′.
  • the tire It is preferable that the distance between the dense regions A "adjacent to each other in the circumferential direction is 100% or more of the tire contact length.
  • the dense region A" is particularly excellent in the on-ice performance among the concentrated regions A', so that the on-ice performance can be improved. Can be improved.
  • the distance between the dense areas A is larger than the tire contact patch length, the dense area A" existing in the contact patch when the tire rolls is reduced to one or less, and the dense area A "is provided.
  • the riding comfort performance on a dry road surface can be satisfactorily exhibited.
  • the distance between the dense areas A is less than 100% of the ground contact length, there are many stud pins P that can cause a feeling of shock during running. Since there may be a plurality of dense areas A ′′ in the ground plane, it is difficult to achieve good riding comfort. Note that the distance between the dense areas A ′′ is the distance between adjacent dense areas A ′′. It is the length along the tire circumferential direction between the tire meridians facing each other.
  • the stud pins P may be arranged as described above, but the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200.
  • the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200.
  • the region located on the tire equator CL is the center region.
  • Ce is defined and the pair of regions located on both sides of the center region Ce in the tire width direction are shoulder regions Sh, the center region Ce and the pair of shoulders are formed in the band-shaped region A in which the number n of stud pins P is 3 or more. It is preferable that at least one stud pin P is present in each of the regions Sh.
  • the stud pins By arranging the stud pins in a dispersed manner in the tire width direction in this way, it is possible to efficiently obtain a force for scratching the ice and snow road surface in the entire area in the tire width direction, which is advantageous for improving the performance on ice.
  • At least one stud pin P is provided in each of the center region Ce and the pair of shoulder regions Sh in two-thirds or more of the plurality of strip-shaped regions A. It will be distributed and arranged. Therefore, it is very effective for improving the performance on ice.
  • the protruding amount h of the stud pin P may be uniform, but the average value of the protruding amount h of the stud pin P included in the concentrated region A'is provided in the region excluding the average protruding amount Px and the concentrated region A'.
  • the average value of the protrusion amount h of the stud pin P is the average protrusion amount Pav
  • the protruding amount h of the stud pin P By setting the protruding amount h of the stud pin P in this way, the protruding amount of the stud pin can be suppressed low in the concentrated region A'in which the number of stud pins is relatively large, and the riding comfort performance can be improved. It will be advantageous. Further, from the viewpoint of ensuring sufficient performance on ice, it is preferable to satisfy the relationship of Px ⁇ 0.7 ⁇ Pav.
  • Example 1 Comparative Examples 1 and 2, which have a tire size of 205 / 55R16 94T, have the basic structure illustrated in FIG. 1, and have the structure set as shown in Table 1 based on the tread pattern of FIG. Eleven types of pneumatic tires of Examples 1 to 8 were produced.
  • total number N is the total number of stud pins provided on the entire tire
  • n is the number of stud pins included in each dense area.
  • the measured value in each tire, and the magnitude relationship between them are displayed. did.
  • the magnitude relationship the case where the measured value is equal to or less than the upper limit condition (0.04N) is indicated by “ ⁇ ”, and the case where the measured value exceeds the upper limit condition (0.04N) is indicated by “x”.
  • the “standard arrangement area” means a band-shaped area in which the number n of stud pins satisfies 2.0% or more of the total number N of stud pins N.
  • Arrangement of stud pins in the width direction means arrangement of stud pins in the tire width direction in a band-shaped region having three or more studs n, and at least one stud in each of a center region and a pair of shoulder regions. The case where the pin is present is indicated as “dispersion”, and the case where the stud pin is not present in either the center area or the pair of shoulder areas is indicated as “uneven distribution”.
  • Px / Pav is the ratio of the average protrusion amount Px of the stud pins included in the concentrated region to the average protrusion amount Pav of the stud pins provided in the region excluding the concentrated region.
  • the above-mentioned 11 types of pneumatic tires (conventional example 1, comparative examples 1 to 2, and examples 1 to 8) had a common ground contact length of 120 mm. That is, in each example, the length of the strip-shaped region in the tire circumferential direction (1/4 of the tire contact length) is 30 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a pneumatic tire that has stud pins implanted on a tread surface of a tread part and that enables improvement of performance on ice and improvement of ride quality performance on a dry road surface. This pneumatic tire has stud pins P implanted on a tread surface of a tread part 1. When a region demarcated between a pair of tire meridians arranged such that a gap therebetween on a tire center line CL is 1/4 of a tire ground contact length is defined as a belt-like region A and a plurality of the belt-like regions A are arranged on the whole tire circumference at an angular interval of 1 degree along a tire circumferential direction, a number n of the stud pins P included in each belt-like region A of all the plurality of belt-like regions A is not more than 4.0% of a total number N of the stud pins P in the whole tire circumference and the number n of the stud pins included in each belt-like region A of not less than 2/3 of the plurality of belt-like regions A is not less than 2.0% of the total number N.

Description

空気入りタイヤPneumatic tires
 本発明は、トレッド部の踏面にスタッドピンが植設された空気入りタイヤに関する。 The present invention relates to a pneumatic tire in which a stud pin is planted on the tread of a tread portion.
 北欧やロシア等の厳冬地域では、冬季タイヤとしてスタッドタイヤが主に使用されている。スタッドタイヤでは、トレッド部にスタッドピンを植設するための複数の植え込み穴を設け、これら植え込み穴に対してスタッドピンを植設するようにしている(例えば、特許文献1を参照)。このようなスタッドピンは、氷雪路面を走行する際は、氷雪路面を掻く効果を発揮するので、氷上性能を向上することができる。一方で、氷雪路面以外(特に乾燥した舗装路面)を走行する場合には、硬いスタッドピンが舗装路面に当たる衝撃がショック感として伝わるため、乗心地を悪化させる要因になる虞がある。そして、厳冬地域の冬季であっても、少なくない頻度で氷雪路面以外の舗装路面(乾燥路面)を走行する機会がある。そのため、スタッドタイヤにおいて、氷雪路面における走行性能(特に、氷上トラクション性能)を効果的に発揮しながら、乾燥路面における乗心地性能を向上するための対策が求められている。 In severe winter areas such as Scandinavia and Russia, studless tires are mainly used as winter tires. In the stud tire, a plurality of implantation holes for implanting the stud pins are provided in the tread portion, and the stud pins are implanted in these implantation holes (see, for example, Patent Document 1). Such a stud pin exerts an effect of scratching the ice-snow road surface when traveling on the ice-snow road surface, so that the performance on ice can be improved. On the other hand, when traveling on a road surface other than ice and snow (particularly on a dry paved road surface), the impact of the hard stud pin hitting the paved road surface is transmitted as a shock feeling, which may cause deterioration of riding comfort. And even in the winter season in the severe winter region, there is an opportunity to drive on paved road surfaces (dry road surfaces) other than ice and snow road surfaces at a considerable frequency. Therefore, in stud tires, measures are required to improve the riding comfort performance on a dry road surface while effectively exhibiting the running performance (particularly, the traction performance on ice) on an ice-snow road surface.
日本国特開2018‐187960号公報Japanese Patent Application Laid-Open No. 2018-187960
 本発明の目的は、トレッド部の踏面にスタッドピンが植設された空気入りタイヤにおいて、氷上性能を向上しながら、乾燥路面における乗心地性能を向上することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire in which a stud pin is planted on a tread portion of a tread portion, which makes it possible to improve riding comfort performance on a dry road surface while improving performance on ice. There is.
 上記目的を達成する本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、前記トレッド部の踏面にスタッドピンを植設した空気入りタイヤにおいて、タイヤ赤道線上における間隔がタイヤ接地長の1/4となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域とし、複数の帯状領域をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列したとき、前記複数の帯状領域のすべてにおいて各帯状領域に含まれるスタッドピンの本数nはタイヤ全周におけるスタッドピンの総数Nの4.0%以下であり、且つ、前記複数の帯状領域の2/3以上において当該帯状領域に含まれるスタッドピンの本数nは前記総数Nの2.0%以上であることを特徴とする。 The pneumatic tire of the present invention that achieves the above object has a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire of these sidewall portions. In a pneumatic tire having a pair of bead portions arranged radially inside and stud pins planted on the tread of the tread portion, the distance on the tire equatorial line is arranged so as to be 1/4 of the tire contact length. When the region partitioned between the pair of tire meridional lines is defined as a band-shaped region and the plurality of strip-shaped regions are arranged over the entire circumference of the tire by shifting the angle by 1 degree along the tire circumferential direction, the plurality of strip-shaped regions The number n of stud pins included in each band-shaped region in all of the regions is 4.0% or less of the total number N of stud pins in the entire circumference of the tire, and the strip-shaped region is 2/3 or more of the plurality of strip-shaped regions. The number n of stud pins included in the above is 2.0% or more of the total number N.
 本発明では、上述のようにスタッドピンが設けられることで、氷上性能を効果的に高めながら、乾燥路面における乗心地性能を良好に発揮することができる。具体的には、すべての帯状領域において、スタッドピンの総数Nに対するスタッドピンの本数nの割合が4.0%以下に抑えられているので、乾燥路面を走行する際にスタッドピンが路面と接触するときのショック感を抑えることができ、乗心地性能を向上することができる。その一方で、スタッドピンの総数Nに対するスタッドピンの本数nの割合が2.0%以上という適度な範囲に設定された帯状領域がタイヤ全周に十分に設けられているので、氷上性能を良好に発揮することができる。 In the present invention, by providing the stud pin as described above, it is possible to effectively enhance the performance on ice and to satisfactorily exhibit the riding comfort performance on a dry road surface. Specifically, in all the strip-shaped regions, the ratio of the number n of the stud pins to the total number N of the stud pins is suppressed to 4.0% or less, so that the stud pins come into contact with the road surface when traveling on a dry road surface. It is possible to suppress the feeling of shock when doing so, and it is possible to improve the riding comfort performance. On the other hand, the ratio of the number n of stud pins to the total number N of stud pins N is set to an appropriate range of 2.0% or more, and a strip-shaped region is sufficiently provided all around the tire, so that the performance on ice is good. Can be demonstrated.
 本発明においては、スタッドピンの総数が135本~250本であることが好ましい。このように適度な本数のスタッドピンを設けることで、氷上性能を効果的に発揮しながら、乾燥路面における乗心地性能を向上するには有利になる。 In the present invention, the total number of stud pins is preferably 135 to 250. By providing an appropriate number of stud pins in this way, it is advantageous to improve the riding comfort performance on a dry road surface while effectively exhibiting the performance on ice.
 本発明においては、複数の帯状領域の中に、当該帯状領域に含まれるスタッドピンの本数nが総数Nの3.0%以上である集中領域が1箇所以上、且つ、複数の帯状領域のうちの1/3以下に存在することが好ましい。このように、スタッドピンの本数が多く氷上性能に優れる集中領域を設けることで、氷上性能の更なる向上を図ることができる。一方で、集中領域の数を複数の帯状領域のうちの1/3以下に抑えているので、集中領域を設けても乾燥路面における乗心地性能を良好に発揮することができる。 In the present invention, among the plurality of strip-shaped regions, there is one or more concentrated regions in which the number n of stud pins included in the strip-shaped region is 3.0% or more of the total number of N, and among the plurality of strip-shaped regions. It is preferably present in 1/3 or less of. In this way, by providing a concentrated region having a large number of stud pins and excellent on-ice performance, it is possible to further improve the on-ice performance. On the other hand, since the number of concentrated regions is suppressed to 1/3 or less of the plurality of strip-shaped regions, the riding comfort performance on a dry road surface can be satisfactorily exhibited even if the concentrated regions are provided.
 このとき、集中領域の中に、当該帯状領域に含まれるスタッドピンの本数nが総数Nの3.5%以上である密集領域が2箇所以上存在し、タイヤ周方向に隣り合う前記密集領域どうしの間隔がタイヤ接地長の100%以上であることが好ましい。密集領域は、集中領域のなかでも特に氷上性能に優れるので、氷上性能の更なる向上を図ることができる。一方で、密集領域どうしの間隔をタイヤ接地長よりも大きくしているので、タイヤ転動時に接地面内に存在する密集領域は常に1箇所以下になり、密集領域を設けても乾燥路面における乗心地性能を良好に発揮することができる。 At this time, in the concentrated region, there are two or more dense regions in which the number n of stud pins included in the strip-shaped region is 3.5% or more of the total number N, and the dense regions adjacent to each other in the tire circumferential direction. It is preferable that the interval between the tires is 100% or more of the tire contact length. Since the dense area is particularly excellent in the performance on ice among the concentrated areas, it is possible to further improve the performance on ice. On the other hand, since the distance between the dense areas is larger than the tire contact patch length, the number of dense areas existing in the contact patch when the tire rolls is always one or less, and even if the dense area is provided, riding on a dry road surface Comfortable performance can be exhibited well.
 更に、集中領域に含まれるスタッドピンの平均突出量Px と、集中領域を除いた領域におけるスタッドピンの平均突出量Pavとが、Px ≦0.9×Pavの関係を満たすことが好ましい。このようにスタッドピンの突出量を設定することで、スタッドピンの本数が相対的に多い集中領域ではスタッドピンの突出量を低く抑えることができ、乾燥路面における乗心地性能を良好に発揮するには有利になる。 Further, it is preferable that the average protrusion amount Px of the stud pins included in the concentrated region and the average protrusion amount Pav of the stud pins in the region excluding the concentrated region satisfy the relationship of Px ≦ 0.9 × Pav. By setting the amount of protrusion of the stud pins in this way, the amount of protrusion of the stud pins can be kept low in the concentrated region where the number of stud pins is relatively large, and the riding comfort performance on a dry road surface can be exhibited well. Will be advantageous.
 本発明においては、トレッド部の踏面をタイヤ幅方向に3等分した領域のうち、タイヤ赤道上に位置する領域をセンター領域とし、センター領域のタイヤ幅方向両側に位置する一対の領域をそれぞれショルダー領域としたとき、スタッドピンの本数nが3本以上である帯状領域ではセンター領域および一対のショルダー領域のそれぞれに少なくとも1本のスタッドピンが存在することが好ましい。このようにタイヤ幅方向にスタッドピンを分散して配置することで、タイヤ幅方向の全域で効率的に氷雪路面を掻く力を得ることができ、氷上性能を向上するには有利になる。また、タイヤ幅方向のユニフォミティを良好にすることもできる。 In the present invention, among the regions in which the tread portion of the tread portion is divided into three equal parts in the tire width direction, the region located on the equator of the tire is defined as the center region, and the pair of regions located on both sides of the center region in the tire width direction are shoulder shoulders. In terms of the region, it is preferable that at least one stud pin is present in each of the center region and the pair of shoulder regions in the band-shaped region in which the number n of stud pins is 3 or more. By arranging the stud pins in a dispersed manner in the tire width direction in this way, it is possible to efficiently obtain a force for scratching the ice and snow road surface in the entire area in the tire width direction, which is advantageous for improving the performance on ice. In addition, the uniformity in the tire width direction can be improved.
 本発明において、「接地長」とは、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときに形成される接地領域のタイヤ赤道上におけるタイヤ周方向の長さである。また、「接地端」とは、前述の接地領域のタイヤ軸方向の両端部である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には250kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車用である場合には前記荷重の80%に相当する荷重とする。 In the present invention, the "ground contact length" is the tire equatorial line of the ground contact region formed when the tire is rim-assembled on the regular rim, placed vertically on a flat surface with the regular internal pressure charged, and a regular load is applied. Is the length in the tire circumferential direction. Further, the "ground contact ends" are both ends of the above-mentioned ground contact region in the tire axial direction. A "regular rim" is a rim defined for each tire in a standard system including a standard on which a tire is based. For example, a standard rim for JATTA, a "Design Rim" for TRA, or an ETRTO. If so, use "Measuring Rim". "Regular internal pressure" is the air pressure defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum air pressure, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES", if it is ETRTO, it is "INFRATION PRESSURE", but if the tire is for a passenger car, it is 250 kPa. "Regular load" is the load defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum load capacity, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES" is "LOAD CAPACITY" in the case of ETRTO, but when the tire is for a passenger car, the load is equivalent to 80% of the above load.
図1は、本発明の実施形態からなる空気入りタイヤの子午線断面図である。FIG. 1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention. 図2は、本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である。FIG. 2 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention. 図3は、トレッド部に植設したスタッドピンの一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a stud pin planted in a tread portion. 図4は、帯状領域ごとのスタッドピンの本数の変化を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing a change in the number of stud pins for each strip-shaped region.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
 図1に示すように、本発明の空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示し、符号Eは接地端を示す。尚、図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。 As shown in FIG. 1, the pneumatic tire of the present invention is arranged inside the tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and the sidewall portion 2 in the tire radial direction. It is provided with a pair of bead portions 3. In FIG. 1, reference numeral CL indicates a tire equator, and reference numeral E indicates a ground contact end. Although FIG. 1 is a cross-sectional view of the meridian, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape, whereby the pneumatic tire is formed. The toroidal basic structure of is constructed. Hereinafter, the description using FIG. 1 is basically based on the illustrated meridian cross-sectional shape, but each tire component extends in the tire circumferential direction to form an annular shape.
 左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。更に、ベルト層7の外周側にはベルト補強層8が設けられている。ベルト補強層8は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層8において、有機繊維コードはタイヤ周方向に対する角度が例えば0°~5°に設定されている。 A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the inside to the outside of the vehicle around the bead cores 5 arranged in each bead portion 3. Further, a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by a main body portion and a folded portion of the carcass layer 4. On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In these belt layers 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 ° to 40 °. Further, a belt reinforcing layer 8 is provided on the outer peripheral side of the belt layer 7. The belt reinforcing layer 8 contains an organic fiber cord oriented in the tire circumferential direction. In the belt reinforcing layer 8, the angle of the organic fiber cord with respect to the tire circumferential direction is set to, for example, 0 ° to 5 °.
 本発明は、このような一般的な断面構造の空気入りタイヤに適用されるが、その基本構造は上述のものに限定されない。また、本発明は、トレッド部1の踏面にスタッドピンPが植設された空気入りタイヤにおけるスタッドピンPの配置に関するものであるので、トレッド部1の表面に形成される溝や陸部の構造(トレッドパターン)は特に限定されない。 The present invention is applied to a pneumatic tire having such a general cross-sectional structure, but the basic structure thereof is not limited to the above. Further, since the present invention relates to the arrangement of the stud pin P in the pneumatic tire in which the stud pin P is planted on the tread surface of the tread portion 1, the structure of the groove and the land portion formed on the surface of the tread portion 1 (Tread pattern) is not particularly limited.
 尚、図2に示す空気入りタイヤは、タイヤ幅方向に沿って延在する複数本のラグ溝11と、タイヤ周方向に沿って延在する複数本の周方向溝12とによって、複数の陸部13が区画されたトレッドパターンを有する。図示の例において、ラグ溝11は、タイヤ幅方向に対して傾斜して延在し、一端がタイヤ赤道CL上に位置し、他端がタイヤ幅方向の一方側の接地端Eを超えて延在する第一ラグ溝11aと、タイヤ幅方向に対して傾斜して延在し、一端がタイヤ赤道CL上に位置し、他端がタイヤ幅方向の他方側の接地端Eを超えて延在する第二ラグ溝11bとを含む。第一ラグ溝11aおよび第二ラグ溝11bは、タイヤ赤道CL上において、第一ラグ溝11aの一端と第二ラグ溝11bの一端とがタイヤ周方向に交互に並び、且つ、第一ラグ溝11aと第二ラグ溝11bとが略V字状を成すように配置されている。周方向溝12は、各ラグ溝11の長さ方向の中途部において、タイヤ周方向に隣り合うラグ溝11どうしを連結するように、タイヤ周方向に対して傾斜して延在している。周方向溝12のタイヤ幅方向内側にはセンター陸部13aが区画され、周方向溝12のタイヤ幅方向外側にはショルダー陸部13b(ショルダーブロック)が区画される。更に、図示の例では、各周方向溝12の長さ方向の中途部に、一端が周方向溝12に連通し、周方向溝12からタイヤ赤道CL側に向かって延在し、他端がセンター陸部13a内で終端する補助溝14が設けられている。また、各陸部13には複数本のサイプ14が設けられている。スタッドピンPは、任意の陸部13に植設することができる。 The pneumatic tire shown in FIG. 2 has a plurality of lug grooves 11 extending along the tire width direction and a plurality of circumferential grooves 12 extending along the tire circumferential direction. The portion 13 has a partitioned tread pattern. In the illustrated example, the lug groove 11 extends inclined with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the ground contact end E on one side in the tire width direction. The existing first lug groove 11a extends at an angle with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the contact end E on the other side in the tire width direction. The second lug groove 11b is included. In the first lug groove 11a and the second lug groove 11b, one end of the first lug groove 11a and one end of the second lug groove 11b are alternately arranged in the tire circumferential direction on the tire equator CL, and the first lug groove 11a and the second lug groove 11b are arranged in the tire circumferential direction. The 11a and the second lug groove 11b are arranged so as to form a substantially V shape. The circumferential groove 12 extends so as to be inclined with respect to the tire circumferential direction so as to connect the adjacent lug grooves 11 in the tire circumferential direction in the middle portion of each lug groove 11 in the length direction. The center land portion 13a is partitioned inside the tire width direction of the circumferential groove 12, and the shoulder land portion 13b (shoulder block) is partitioned outside the tire width direction of the circumferential groove 12. Further, in the illustrated example, one end communicates with the circumferential groove 12 in the middle portion in the length direction of each circumferential groove 12, extends from the circumferential groove 12 toward the tire equator CL side, and the other end ends. An auxiliary groove 14 is provided that terminates within the center land portion 13a. Further, each land portion 13 is provided with a plurality of sipes 14. The stud pin P can be planted on any land portion 13.
 スタッドピンPは、トレッド部1の踏面に設けられたスタッドピン用の植え込み穴に植設される。スタッドピンPの植設は、植え込み穴を拡張した状態でその穴内にスタッドピンPを挿入した後、植え込み穴の拡張を解除することで行われる。図3は、スタッドピンPをトレッド部1の植え込み穴に植設した状態を模式的に示す断面図である。図示の例はスタッドピンPとして、ダブルフランジタイプのスタッドピンPを記載しているが、シングルフランジタイプ等の別の構造のスタッドピンPを使用することもできる。 The stud pin P is planted in the stud pin implantation hole provided on the tread surface of the tread portion 1. The stud pin P is planted by inserting the stud pin P into the hole with the planting hole expanded and then releasing the expansion of the planting hole. FIG. 3 is a cross-sectional view schematically showing a state in which the stud pin P is planted in the implantation hole of the tread portion 1. In the illustrated example, the double flange type stud pin P is described as the stud pin P, but a stud pin P having a different structure such as a single flange type can also be used.
 図3に例示するように、スタッドピンPは、円柱状の胴部P1、踏面側フランジ部P2、底側フランジ部P3、およびチップ部P4により構成されている。踏面側フランジ部P2と底側フランジ部P3は胴部P1よりも径が大きくなっており、踏面側フランジ部P2は胴部P1の踏面側(タイヤ径方向外側)に形成され、底側フランジ部P3は胴部P1の底側(タイヤ径方向内側)に形成されている。チップ部P4は、ピン軸(スタッドピンPの中心)において踏面側フランジ部P2からタイヤ径方向外側に突き出している。チップ部P4は、スタッドピンPがトレッド部1に植設された状態で踏面よりも突き出るため、氷雪路面に対して食い込むことができ、氷上トラクション性を発揮する。チップ部P4は、例えばアルミニウム等で構成される他の部分(胴部P1、踏面側フランジ部P2、底側フランジ部P3)よりも硬質な材料(例えばタングステン化合物)で構成されている。本発明では、後述の帯状領域に含まれるスタッドピンPの本数を規定するが、チップ部P4の少なくとも一部が後述の帯状領域内に存在すれば、当該帯状領域に含まれる本数として数えるものとする。 As illustrated in FIG. 3, the stud pin P is composed of a columnar body portion P1, a tread side flange portion P2, a bottom side flange portion P3, and a tip portion P4. The tread side flange portion P2 and the bottom side flange portion P3 have a larger diameter than the body portion P1, and the tread side flange portion P2 is formed on the tread surface side (outside in the tire radial direction) of the body portion P1 and the bottom side flange portion. P3 is formed on the bottom side (inside in the tire radial direction) of the body portion P1. The tip portion P4 protrudes outward in the tire radial direction from the tread side flange portion P2 on the pin shaft (center of the stud pin P). Since the tip portion P4 protrudes from the tread surface in a state where the stud pin P is planted in the tread portion 1, it can bite into the ice and snow road surface and exhibits traction on ice. The tip portion P4 is made of a material (for example, a tungsten compound) that is harder than other portions (body portion P1, tread side flange portion P2, bottom side flange portion P3) made of, for example, aluminum or the like. In the present invention, the number of stud pins P included in the strip-shaped region described later is defined, but if at least a part of the tip portion P4 is present in the strip-shaped region described later, the number is counted as the number included in the strip-shaped region. To do.
 本発明では、トレッド部1の表面に形成されるトレッドパターンに依らず、タイヤ赤道CL上における間隔がタイヤ接地長の1/4となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域Aと定義する(例えば、図2の斜線部を参照)。そして、図4に模式的に示すように、複数の帯状領域A(A1,A2,A3・・・)をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列し、各帯状領域A(A1,A2,A3・・・)の中に含まれるスタッドピンPの本数nを測定する。尚、図4は、帯状領域Aの配列を模式的に示すものであり、トレッド部1に形成されるトレッドパターンの詳細やスタッドピンPの具体的な配置は省略している。また、符号A3以降の帯状領域Aは省略している。図中の符号Rはタイヤ周方向を表す。 In the present invention, it is partitioned between a pair of tire meridians arranged so that the distance on the tire equator CL is 1/4 of the tire contact length, regardless of the tread pattern formed on the surface of the tread portion 1. The region is defined as a tread region A (see, for example, the shaded area in FIG. 2). Then, as schematically shown in FIG. 4, a plurality of strip-shaped regions A (A1, A2, A3 ...) Are arranged over the entire circumference of the tire by shifting the angles by 1 degree along the tire circumferential direction. The number n of the stud pins P included in each band-shaped region A (A1, A2, A3 ...) Is measured. Note that FIG. 4 schematically shows the arrangement of the band-shaped region A, and the details of the tread pattern formed in the tread portion 1 and the specific arrangement of the stud pins P are omitted. Further, the strip-shaped region A after the reference numeral A3 is omitted. The reference numeral R in the figure represents the tire circumferential direction.
 このように定義された複数の帯状領域Aのすべてにおいて、各帯状領域Aに含まれるスタッドピンPの本数nはタイヤ全周におけるスタッドピンPの総数Nの4.0%以下に設定されている。例えば、図4に示す例では、スタッドピンPの本数nは7本以下となっている。図4の例では、総数N=190本を想定しており、総数Nの4.0%は7.6本であるので、図4の例は、上述の条件を満たしている。また、図2の例についても、総数N=190本とすると、一点鎖線で囲んだ3箇所の帯状領域A(斜線部)は、いずれもスタッドピンPの本数nは7本以下であり、上述の条件を満たしている。一方で、複数の帯状領域Aのうちの2/3以上において、当該帯状領域Aに含まれるスタッドピンPの本数nはスタッドピンPの総数Nの2.0%以上に設定されている。例えば、総数N=190本の場合、総数Nの2.0%は3.8本であるので、図4の例では、4本以上のスタッドピンPが設けられた帯状領域Aが複数の帯状領域Aのうちの2/3以上であれば上述の条件を満たしていることになる。このように、すべての帯状領域Aにおいて、スタッドピンPの総数Nに対するスタッドピンPの本数nの割合が4.0%以下に低く抑えられているので、乾燥路面を走行する際にスタッドピンPが路面と接触するときのショック感を抑えることができ、乗心地性能を向上することができる。その一方で、スタッドピンPの総数Nに対するスタッドピンPの本数nの割合が2.0%以上という適度な範囲に設定された帯状領域Aがタイヤ全周に十分に設けられているので、氷上性能を良好に発揮することができる。 In all of the plurality of strip-shaped regions A defined in this way, the number n of stud pins P included in each strip-shaped region A is set to 4.0% or less of the total number N of stud pins P in the entire circumference of the tire. .. For example, in the example shown in FIG. 4, the number n of the stud pins P is 7 or less. In the example of FIG. 4, the total number N = 190 is assumed, and 4.0% of the total number N is 7.6. Therefore, the example of FIG. 4 satisfies the above-mentioned condition. Further, also in the example of FIG. 2, assuming that the total number is N = 190, the number n of the stud pins P is 7 or less in each of the three strip-shaped regions A (hatched lines) surrounded by the alternate long and short dash line, which is described above. Meet the conditions of. On the other hand, in two-thirds or more of the plurality of strip-shaped regions A, the number n of stud pins P included in the strip-shaped region A is set to 2.0% or more of the total number N of stud pins P. For example, when the total number N = 190, 2.0% of the total number N is 3.8, so in the example of FIG. 4, the strip-shaped region A provided with four or more stud pins P is a plurality of strips. If it is 2/3 or more of the area A, the above condition is satisfied. As described above, in all the band-shaped regions A, the ratio of the number n of the stud pins P to the total number N of the stud pins P is suppressed to 4.0% or less, so that the stud pins P are suppressed when traveling on a dry road surface. It is possible to suppress the feeling of shock when the vehicle comes into contact with the road surface, and it is possible to improve the riding comfort performance. On the other hand, since the band-shaped region A in which the ratio of the number n of the stud pins P to the total number N of the stud pins P is set to an appropriate range of 2.0% or more is sufficiently provided on the entire circumference of the tire, it is on ice. The performance can be exhibited well.
 更に、複数の帯状領域Aの中でも、当該帯状領域Aに含まれるスタッドピンPの本数nがスタッドピンPの総数Nの3.0%以上である領域を集中領域A′として区別すると、この集中領域A′はタイヤ周上に1箇所以上存在することが好ましい。尚、図4に示す例では、上述のように総数N=190本を想定しており、総数Nの3.0%は5.7本であるので、図4の例では、6本以上のスタッドピンPが設けられた帯状領域Aが集中領域A′に該当することになる。また、図2に示す3箇所の帯状領域A(斜線部)では、スタッドピンPの本数nが6本または7本の箇所が集中領域A′に該当する。尚、図2においてスタッドピンPの本数nが7本の箇所は後述の密集領域A″にも該当するため、図中の符号はA(A″)と表示しているが、この箇所も集中領域A′に該当する。複数の集中領域A′を設ける場合は、集中領域A′を複数の帯状領域Aのうちの1/3以下に抑えることが好ましい。集中領域A′は、スタッドピンPの本数nが他の帯状領域Aよりも多く氷上性能に優れるので、このような集中領域A′を設けることで氷上性能の更なる向上を図ることができる。一方で、集中領域A′の数を複数の帯状領域Aのうちの1/3以下に抑えているので、集中領域A′を設けても乾燥路面における乗心地性能を良好に発揮することができる。集中領域A′の数が複数の帯状領域Aのうちの1/3を超えると、走行時のショック感の原因となり得るスタッドピンPが多く存在する集中領域A′が増加するため、乗心地性能を良好に発揮することが難しくなる。 Further, among the plurality of strip-shaped regions A, a region in which the number n of stud pins P included in the strip-shaped region A is 3.0% or more of the total number N of stud pins P is distinguished as a concentrated region A'. It is preferable that the region A'is present at one or more locations on the tire circumference. In the example shown in FIG. 4, the total number N = 190 is assumed as described above, and 3.0% of the total number N is 5.7. Therefore, in the example of FIG. 4, 6 or more are used. The band-shaped region A provided with the stud pin P corresponds to the concentrated region A'. Further, in the three strip-shaped regions A (hatched portions) shown in FIG. 2, the locations where the number n of the stud pins P is 6 or 7 correspond to the concentrated region A'. In FIG. 2, the portion where the number n of the stud pins P is 7 also corresponds to the dense region A ″ described later, so the reference numeral in the figure is indicated as A (A ″), but this portion is also concentrated. Corresponds to region A'. When a plurality of concentrated regions A'are provided, it is preferable to limit the concentrated region A'to 1/3 or less of the plurality of strip-shaped regions A. In the concentrated region A', the number n of stud pins P is larger than that of the other strip-shaped regions A, and the performance on ice is excellent. Therefore, by providing such a concentrated region A', the performance on ice can be further improved. On the other hand, since the number of concentrated regions A'is suppressed to 1/3 or less of the plurality of strip-shaped regions A, even if the concentrated regions A'are provided, the riding comfort performance on a dry road surface can be satisfactorily exhibited. .. When the number of concentrated areas A'exceeds 1/3 of the plurality of strip-shaped areas A, the concentrated area A'where many stud pins P that can cause a feeling of shock during running increases, so that the riding comfort performance It becomes difficult to exert well.
 更に、集中領域A′の中でも、当該帯状領域に含まれるスタッドピンPの本数nがスタッドピンPの総数Nの3.5%以上である領域を密集領域A″として区別すると、この密集領域A″がタイヤ周上に1箇所以上存在していることが好ましい。尚、図4に示す例では、上述のように総数N=190本を想定しており、総数Nの3.5%は6.7本であるので、図4の例では、7本以上のスタッドピンPが設けられた帯状領域Aが集中領域A′に該当することになる。また、図2に示す3箇所の帯状領域A(斜線部)では、スタッドピンPの本数nが7本の箇所が集中領域A″に該当する。複数の密集領域A″を設ける場合は、タイヤ周方向に隣り合う密集領域A″どうしの間隔がタイヤ接地長の100%以上であることが好ましい。密集領域A″は、集中領域A′のなかでも特に氷上性能に優れるので、氷上性能の更なる向上を図ることができる。一方で、密集領域A″どうしの間隔をタイヤ接地長よりも大きくしているので、タイヤ転動時に接地面内に存在する密集領域A″は1箇所以下になり、密集領域A″を設けても乾燥路面における乗心地性能を良好に発揮することができる。密集領域A″どうしの間隔が接地長の100%未満であると、走行時のショック感の原因となり得るスタッドピンPが多く存在する密集領域A″が接地面内に複数存在する場合が発生するため、乗心地性能を良好に発揮することが難しくなる。尚、密集領域A″どうしの間隔とは、隣り合う密集領域A″の間で対向するタイヤ子午線間のタイヤ周方向に沿った長さである。 Further, among the concentrated regions A', if the region in which the number n of the stud pins P included in the band-shaped region is 3.5% or more of the total number N of the stud pins P is distinguished as the dense region A ″, the dense region A It is preferable that "" is present at one or more locations on the tire circumference. In the example shown in FIG. 4, the total number N = 190 is assumed as described above, and 3.5% of the total number N is 6.7. Therefore, in the example of FIG. 4, 7 or more are used. The band-shaped region A provided with the stud pin P corresponds to the concentrated region A'. Further, in the three strip-shaped regions A (hatched portions) shown in FIG. 2, the portion where the number n of the stud pins P is 7 corresponds to the concentrated region A ″. When a plurality of dense regions A ″ are provided, the tire It is preferable that the distance between the dense regions A "adjacent to each other in the circumferential direction is 100% or more of the tire contact length. The dense region A" is particularly excellent in the on-ice performance among the concentrated regions A', so that the on-ice performance can be improved. Can be improved. On the other hand, since the distance between the dense areas A "is larger than the tire contact patch length, the dense area A" existing in the contact patch when the tire rolls is reduced to one or less, and the dense area A "is provided. However, the riding comfort performance on a dry road surface can be satisfactorily exhibited. If the distance between the dense areas A "is less than 100% of the ground contact length, there are many stud pins P that can cause a feeling of shock during running. Since there may be a plurality of dense areas A ″ in the ground plane, it is difficult to achieve good riding comfort. Note that the distance between the dense areas A ″ is the distance between adjacent dense areas A ″. It is the length along the tire circumferential direction between the tire meridians facing each other.
 スタッドピンPは上述のように配列すればよいが、タイヤ全体におけるスタッドピンの総数が好ましくは135本~250本、より好ましくは135本~200本であるとよい。このようにタイヤ全体に適度な本数のスタッドピンPを設けることで、氷上性能を効果的に発揮しながら、乗心地性能を良好に発揮するには有利になる。スタッドピンの総数が135本未満であると、氷上トラクション性能を十分に向上することができない。スタッドピンの総数が250本を超えるとであると、乗心地性能を十分に発揮することができない。 The stud pins P may be arranged as described above, but the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200. By providing an appropriate number of stud pins P on the entire tire in this way, it is advantageous to effectively exhibit the performance on ice and to exhibit the ride comfort performance well. If the total number of stud pins is less than 135, the traction performance on ice cannot be sufficiently improved. If the total number of stud pins exceeds 250, the riding comfort performance cannot be fully exhibited.
 図2に示すように、トレッド部1の踏面(タイヤ幅方向両側の接地端Eの間の範囲)をタイヤ幅方向に3等分した領域のうち、タイヤ赤道CL上に位置する領域をセンター領域Ceとし、センター領域Ceのタイヤ幅方向両側に位置する一対の領域をそれぞれショルダー領域Shとしたとき、スタッドピンPの本数nが3本以上である帯状領域Aでは、センター領域Ceおよび一対のショルダー領域Shのそれぞれに少なくとも1本のスタッドピンPが存在することが好ましい。このようにタイヤ幅方向にスタッドピンを分散して配置することで、タイヤ幅方向の全域で効率的に氷雪路面を掻く力を得ることができ、氷上性能を向上するには有利になる。また、タイヤ幅方向のユニフォミティを良好にすることもできる。例えば、スタッドピンPの総数Nが135本である場合、スタッドピンPの本数nが総数Nの2.0%以上である帯状領域Aでは、スタッドピンPの本数nは3本以上である(135本×0.020=2.7本)。この場合に、上述のスタッドピンPの分散配置を採用すると、複数の帯状領域Aのうちの2/3以上において、スタッドピンPがセンター領域Ceおよび一対のショルダー領域Shのそれぞれに少なくとも1本ずつ分散して配置されることになる。従って、氷上性能を向上するには非常に有効である。 As shown in FIG. 2, of the regions obtained by dividing the tread surface of the tread portion 1 (the range between the ground contact ends E on both sides in the tire width direction) into three equal parts in the tire width direction, the region located on the tire equator CL is the center region. When Ce is defined and the pair of regions located on both sides of the center region Ce in the tire width direction are shoulder regions Sh, the center region Ce and the pair of shoulders are formed in the band-shaped region A in which the number n of stud pins P is 3 or more. It is preferable that at least one stud pin P is present in each of the regions Sh. By arranging the stud pins in a dispersed manner in the tire width direction in this way, it is possible to efficiently obtain a force for scratching the ice and snow road surface in the entire area in the tire width direction, which is advantageous for improving the performance on ice. In addition, the uniformity in the tire width direction can be improved. For example, when the total number N of the stud pins P is 135, the number n of the stud pins P is 3 or more in the band-shaped region A in which the number n of the stud pins P is 2.0% or more of the total number N (). 135 x 0.020 = 2.7). In this case, if the above-mentioned distributed arrangement of the stud pins P is adopted, at least one stud pin P is provided in each of the center region Ce and the pair of shoulder regions Sh in two-thirds or more of the plurality of strip-shaped regions A. It will be distributed and arranged. Therefore, it is very effective for improving the performance on ice.
 スタッドピンPの突出量hは均一であってもよいが、集中領域A′に含まれるスタッドピンPの突出量hの平均値を平均突出量Px 、集中領域A′を除く領域に設けられたスタッドピンPの突出量hの平均値を平均突出量Pavとしたとき、これらがPx ≦0.9×Pavの関係を満たすことが好ましい。このようにスタッドピンPの突出量hを設定することで、スタッドピンの本数が相対的に多い集中領域A′ではスタッドピンの突出量を低く抑えることができ、乗心地性能を向上するには有利になる。更に、氷上性能を十分に確保する観点からは、Px ≧0.7×Pavの関係を満たすことが好ましい。 The protruding amount h of the stud pin P may be uniform, but the average value of the protruding amount h of the stud pin P included in the concentrated region A'is provided in the region excluding the average protruding amount Px and the concentrated region A'. When the average value of the protrusion amount h of the stud pin P is the average protrusion amount Pav, it is preferable that these satisfy the relationship of Px ≦ 0.9 × Pav. By setting the protruding amount h of the stud pin P in this way, the protruding amount of the stud pin can be suppressed low in the concentrated region A'in which the number of stud pins is relatively large, and the riding comfort performance can be improved. It will be advantageous. Further, from the viewpoint of ensuring sufficient performance on ice, it is preferable to satisfy the relationship of Px ≧ 0.7 × Pav.
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the scope of the present invention is not limited to these Examples.
 タイヤサイズが205/55R16 94Tであり、図1に例示する基本構造を有し、図2のトレッドパターンを基調とし、表1に示すように構造を設定した従来例1、比較例1~2、実施例1~8の11種類の空気入りタイヤを作製した。 Conventional Example 1, Comparative Examples 1 and 2, which have a tire size of 205 / 55R16 94T, have the basic structure illustrated in FIG. 1, and have the structure set as shown in Table 1 based on the tread pattern of FIG. Eleven types of pneumatic tires of Examples 1 to 8 were produced.
 表1において、「総数N」は、タイヤ全体に設けられたスタッドピンの総数であり、「n」は各密集領域に含まれるスタッドピンの本数である。「帯状領域におけるnの最大値」については、本発明で定義される上限値の条件(総数Nの4.0%=0.04N)と、各タイヤにおける測定値と、これらの大小関係を表示した。特に、大小関係については、測定値が上限条件(0.04N)以下である場合を「〇」、測定値が上限条件(0.04N)を超える場合を「×」で示した。「標準配置領域」とは、スタッドピンの本数nがスタッドピンの総数Nの2.0%以上の条件を満たす帯状領域を意味する。この「標準配置領域」については、本発明で定義される下限値の条件(総数Nの2.0%=0.02N)と、標準配置領域の有無と、全帯状領域に対する標準配置領域の割合を表示した。「集中領域」については、本発明で定義される下限値の条件(総数Nの3.0%=0.03N)と、集中領域の有無と、全帯状領域に対する集中領域の割合を表示した。「密集領域」については、本発明で定義される下限値の条件(総数Nの3.5%=0.035N)と、密集領域の有無と、タイヤ周方向に隣り合う密集領域どうしの最小間隔(接地長に対する割合)を表示した。「スタッドピンの幅方向の配置」とは、スタッド本数nが3本以上の帯状領域におけるスタッドピンのタイヤ幅方向の配置を意味し、センター領域および一対のショルダー領域のそれぞれに少なくとも1本のスタッドピンが存在する場合を「分散」、センター領域および一対のショルダー領域のいずれかにスタッドピンが存在しない場合を「偏在」と表示した。「Px /Pav」とは、集中領域を除く領域に設けられたスタッドピンの平均突出量Pavに対する集中領域に含まれるスタッドピンの平均突出量Px の比である。 In Table 1, "total number N" is the total number of stud pins provided on the entire tire, and "n" is the number of stud pins included in each dense area. For the "maximum value of n in the belt-shaped region", the condition of the upper limit value defined in the present invention (4.0% of the total number N = 0.04N), the measured value in each tire, and the magnitude relationship between them are displayed. did. In particular, regarding the magnitude relationship, the case where the measured value is equal to or less than the upper limit condition (0.04N) is indicated by “◯”, and the case where the measured value exceeds the upper limit condition (0.04N) is indicated by “x”. The “standard arrangement area” means a band-shaped area in which the number n of stud pins satisfies 2.0% or more of the total number N of stud pins N. Regarding this "standard arrangement area", the condition of the lower limit value defined in the present invention (2.0% of the total number N = 0.02N), the presence or absence of the standard arrangement area, and the ratio of the standard arrangement area to the total band-shaped area. Was displayed. For the "concentrated region", the condition of the lower limit value defined in the present invention (3.0% of the total number N = 0.03N), the presence or absence of the concentrated region, and the ratio of the concentrated region to the total band-shaped region are displayed. Regarding the "dense region", the condition of the lower limit value defined in the present invention (3.5% of the total number N = 0.035N), the presence or absence of the dense region, and the minimum distance between the dense regions adjacent to each other in the tire circumferential direction. (Ratio to ground contact length) is displayed. "Arrangement of stud pins in the width direction" means arrangement of stud pins in the tire width direction in a band-shaped region having three or more studs n, and at least one stud in each of a center region and a pair of shoulder regions. The case where the pin is present is indicated as "dispersion", and the case where the stud pin is not present in either the center area or the pair of shoulder areas is indicated as "uneven distribution". “Px / Pav” is the ratio of the average protrusion amount Px of the stud pins included in the concentrated region to the average protrusion amount Pav of the stud pins provided in the region excluding the concentrated region.
 尚、上述の11種類の空気入りタイヤ(従来例1、比較例1~2、実施例1~8)については、接地長は120mmで共通であった。即ち、各例において、帯状領域のタイヤ周方向長さ(タイヤ接地長の1/4)は30mmである。 The above-mentioned 11 types of pneumatic tires (conventional example 1, comparative examples 1 to 2, and examples 1 to 8) had a common ground contact length of 120 mm. That is, in each example, the length of the strip-shaped region in the tire circumferential direction (1/4 of the tire contact length) is 30 mm.
 これら空気入りタイヤについて、下記の評価方法により、氷上操縦安定性能、乾燥路面における乗心地性能、乾燥路面における低振動性能を評価し、その結果を表1に併せて示した。 These pneumatic tires were evaluated for stability on ice, riding comfort on dry roads, and low vibration on dry roads by the following evaluation methods, and the results are also shown in Table 1.
   氷上操縦安定性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、車両指定空気圧を充填し、排気量1.4Lの前輪駆動車に装着し、氷雪路面からなるテストコース(旋回場)にて、操縦安定性能についてテストドライバーによる官能評価を行った。評価結果は、従来例1の値を100とする指数にて示した。この指数値が大きいほど氷上操縦安定性能に優れることを意味する。
Stability on ice Steering performance Each test tire is assembled to a wheel with a rim size of 16 x 6.5J, filled with the specified air pressure of the vehicle, mounted on a front-wheel drive vehicle with a displacement of 1.4L, and a test course (turning field) consisting of ice and snow road surfaces. The sensory evaluation of the steering stability performance was performed by a test driver. The evaluation result is shown by an index with the value of Conventional Example 1 as 100. The larger this index value is, the better the stability performance on ice is.
   乾燥路面における乗心地性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、車両指定空気圧を充填し、排気量1.4Lの前輪駆動車に装着し、乾燥路面からなるテストコースにて、乗心地性能(ショック感)についてテストドライバーによる官能評価を行った。評価結果は、従来例1の値を100とする指数にて示した。この指数値が大きいほどショック感が小さく、乾燥路面における乗心地性能に優れることを意味する。
Riding comfort performance on dry roads Each test tire is assembled on a wheel with a rim size of 16 x 6.5J, filled with vehicle-specified air pressure, mounted on a front-wheel drive vehicle with a displacement of 1.4L, and on a test course consisting of dry roads. , The ride comfort performance (shock feeling) was evaluated by a test driver. The evaluation result is shown by an index with the value of Conventional Example 1 as 100. The larger the index value, the smaller the shock feeling, which means that the riding comfort performance on a dry road surface is excellent.
   乾燥路面における低振動性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、車両指定空気圧を充填し、排気量1.4Lの前輪駆動車に装着し、乾燥路面からなるテストコースにて、振動についての官能評価を行った。評価結果は、従来例1の値を100とする指数にて示した。この指数値が大きいほど振動が小さく、乾燥路面における低振動性能に優れることを意味する。尚、この低振動性能に優れるほど、タイヤの重量バランスが良好で、ユニフォミティに優れることを意味する。
Low vibration performance on dry road surface Each test tire is assembled to a wheel with a rim size of 16 x 6.5J, filled with the specified air pressure of the vehicle, mounted on a front-wheel drive vehicle with a displacement of 1.4L, and on a test course consisting of a dry road surface. , Sensory evaluation of vibration was performed. The evaluation result is shown by an index with the value of Conventional Example 1 as 100. The larger the index value, the smaller the vibration, which means that the low vibration performance on a dry road surface is excellent. It should be noted that the better the low vibration performance, the better the weight balance of the tire and the better the uniformity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~8はいずれも、従来例1と比較して、氷上操縦安定性能を良好に発揮しながら、乾燥路面における乗心地性能および低振動性能も良好に発揮し、これら性能を高度に両立した。一方、比較例1は、スタッドピンの本数nがスタッドピンの総数Nの2.0%以上の条件を満たす帯状領域が少ないため、氷上操縦安定性能が悪化した。比較例2は、総数Nの4.0%よりも多い本数のスタッドピンが存在する帯状領域を有するため、乾燥路面における乗心地性能および低振動性能が悪化した。 As is clear from Table 1, all of Examples 1 to 8 exhibit better riding comfort performance and low vibration performance on a dry road surface while exhibiting better steering stability performance on ice as compared with Conventional Example 1. However, these performances are highly compatible. On the other hand, in Comparative Example 1, since there are few band-shaped regions in which the number n of stud pins satisfies 2.0% or more of the total number N of stud pins, the stability performance on ice has deteriorated. Since Comparative Example 2 has a band-shaped region in which a number of stud pins larger than 4.0% of the total number N is present, the riding comfort performance and the low vibration performance on a dry road surface are deteriorated.
1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 ベルト補強層
11 ラグ溝
12 周方向溝
13 陸部
14 補助溝
15 サイプ
P スタッドピン
A 帯状領域
A′ 集中領域
A″ 密集領域
Ce センター領域
Sh ショルダー領域
CL タイヤ赤道
E 接地端
1 Tread part 2 sidewall part 3 bead part 4 carcass layer 5 bead core 6 bead filler 7 belt layer 8 belt reinforcement layer 11 lug groove 12 circumferential groove 13 land part 14 auxiliary groove 15 sipe P stud pin A band-shaped area A'concentrated area A ″ Dense area Ce Center area Sh Shoulder area CL Tire equator E Grounding edge

Claims (6)

  1.  タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、前記トレッド部の踏面にスタッドピンを植設した空気入りタイヤにおいて、
     タイヤ赤道線上における間隔がタイヤ接地長の1/4となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域とし、複数の帯状領域をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列したとき、
     前記複数の帯状領域のすべてにおいて各帯状領域に含まれるスタッドピンの本数nはタイヤ全周におけるスタッドピンの総数Nの4.0%以下であり、且つ、前記複数の帯状領域の2/3以上において当該帯状領域に含まれるスタッドピンの本数nは前記総数Nの2.0%以上であることを特徴とする空気入りタイヤ。
    A tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a pair of bead portions arranged inside the tire radial direction of these sidewall portions. In addition, in a pneumatic tire in which a stud pin is planted on the tread of the tread portion,
    The area defined between the pair of tire meridians arranged so that the distance on the tire equatorial line is 1/4 of the tire contact length is defined as a band-shaped area, and the plurality of band-shaped areas are set at an angle of 1 along the tire circumferential direction. When the tires are staggered and arranged over the entire circumference of the tire
    The number n of stud pins included in each of the plurality of strip regions is 4.0% or less of the total number of stud pins N in the entire circumference of the tire, and 2/3 or more of the plurality of strip regions. The pneumatic tire, wherein the number n of stud pins included in the strip-shaped region is 2.0% or more of the total number N.
  2.  前記スタッドピンの総数が135本~250本であることを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the total number of the stud pins is 135 to 250.
  3.  前記複数の帯状領域の中に、当該帯状領域に含まれるスタッドピンの本数nが前記総数Nの3.0%以上である集中領域が1箇所以上、且つ、前記複数の帯状領域のうちの1/3以下に存在することを特徴とする請求項1または2に記載の空気入りタイヤ。 Among the plurality of strip-shaped regions, there is one or more concentrated regions in which the number n of stud pins included in the strip-shaped region is 3.0% or more of the total number N, and one of the plurality of strip-shaped regions. The pneumatic tire according to claim 1 or 2, wherein the tire is present in an amount of / 3 or less.
  4.  前記集中領域の中に、当該帯状領域に含まれるスタッドピンの本数nが前記総数Nの3.5%以上である密集領域が2箇所以上存在し、タイヤ周方向に隣り合う前記密集領域どうしの間隔がタイヤ接地長の100%以上であることを特徴とする請求項3に記載の空気入りタイヤ。 In the concentrated region, there are two or more dense regions in which the number n of stud pins included in the strip-shaped region is 3.5% or more of the total number N, and the dense regions adjacent to each other in the tire circumferential direction. The pneumatic tire according to claim 3, wherein the interval is 100% or more of the tire contact length.
  5.  前記集中領域に含まれる前記スタッドピンの平均突出量Px と、前記集中領域を除いた領域における前記スタッドピンの平均突出量Pavとが、Px ≦0.9×Pavの関係を満たすことを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。 The feature is that the average protrusion amount Px of the stud pin included in the concentrated region and the average protrusion amount Pav of the stud pin in the region excluding the concentrated region satisfy the relationship of Px ≦ 0.9 × Pav. The pneumatic tire according to any one of claims 1 to 4.
  6.  前記トレッド部の踏面をタイヤ幅方向に3等分した領域のうち、タイヤ赤道上に位置する領域をセンター領域とし、前記センター領域のタイヤ幅方向両側に位置する一対の領域をそれぞれショルダー領域としたとき、前記スタッドピンの本数nが3本以上である帯状領域では前記センター領域および一対の前記ショルダー領域のそれぞれに少なくとも1本のスタッドピンが存在することを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。 Of the regions where the tread portion of the tread portion is divided into three equal parts in the tire width direction, a region located on the tire equator is designated as a center region, and a pair of regions located on both sides of the center region in the tire width direction are designated as shoulder regions. When, any of claims 1 to 5, characterized in that at least one stud pin is present in each of the center region and the pair of shoulder regions in a band-shaped region in which the number n of the stud pins is three or more. Pneumatic tires listed in Crab.
PCT/JP2020/036756 2019-11-01 2020-09-29 Pneumatic tire WO2021085005A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20225425A FI130329B (en) 2019-11-01 2020-09-29 Pneumatic tire
CN202080074749.4A CN114599528B (en) 2019-11-01 2020-09-29 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199645A JP7172954B2 (en) 2019-11-01 2019-11-01 pneumatic tire
JP2019-199645 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021085005A1 true WO2021085005A1 (en) 2021-05-06

Family

ID=75712337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036756 WO2021085005A1 (en) 2019-11-01 2020-09-29 Pneumatic tire

Country Status (4)

Country Link
JP (1) JP7172954B2 (en)
CN (1) CN114599528B (en)
FI (1) FI130329B (en)
WO (1) WO2021085005A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548595B1 (en) * 2021-05-25 2023-06-29 넥센타이어 주식회사 Pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132706A (en) * 1973-04-21 1974-12-19
JPS5945203A (en) * 1982-09-03 1984-03-14 Ohtsu Tire & Rubber Co Ltd Spike tyre
JPS628105U (en) * 1985-07-01 1987-01-19
JP2007050718A (en) * 2005-08-15 2007-03-01 Yokohama Rubber Co Ltd:The Pneumatic stud tire
WO2019138792A1 (en) * 2018-01-11 2019-07-18 横浜ゴム株式会社 Studdable tire and pneumatic tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677027B2 (en) * 2008-12-24 2011-04-27 住友ゴム工業株式会社 Pneumatic tire and spike tire
JP6013732B2 (en) * 2011-12-27 2016-10-25 株式会社ブリヂストン Pneumatic tire
JP5945203B2 (en) 2012-09-27 2016-07-05 三和シヤッター工業株式会社 Shutter obstacle detection system
JP2014151811A (en) * 2013-02-12 2014-08-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2016215727A (en) * 2015-05-15 2016-12-22 横浜ゴム株式会社 Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132706A (en) * 1973-04-21 1974-12-19
JPS5945203A (en) * 1982-09-03 1984-03-14 Ohtsu Tire & Rubber Co Ltd Spike tyre
JPS628105U (en) * 1985-07-01 1987-01-19
JP2007050718A (en) * 2005-08-15 2007-03-01 Yokohama Rubber Co Ltd:The Pneumatic stud tire
WO2019138792A1 (en) * 2018-01-11 2019-07-18 横浜ゴム株式会社 Studdable tire and pneumatic tire

Also Published As

Publication number Publication date
FI20225425A1 (en) 2022-05-13
FI130329B (en) 2023-06-21
CN114599528B (en) 2023-11-10
JP7172954B2 (en) 2022-11-16
CN114599528A (en) 2022-06-07
JP2021070450A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2021085004A1 (en) Pneumatic tire
EP3659824B1 (en) Pneumatic tire
US11613145B2 (en) Pneumatic tire
JP2004203343A (en) Radial tire for heavy load
US11865869B2 (en) Pneumatic tire
WO2021085005A1 (en) Pneumatic tire
US11951776B2 (en) Pneumatic tire
US11718130B2 (en) Pneumatic tire
WO2021117678A1 (en) Pneumatic tire
US11760133B2 (en) Pneumatic tire
JP2020045075A (en) Pneumatic tire
JP7293889B2 (en) pneumatic tire
JP6680328B2 (en) Pneumatic tire
US20200031172A1 (en) Pneumatic Tire
JP2020131944A (en) Pneumatic tire
RU2797953C1 (en) Air tire
WO2020196415A1 (en) Pneumatic tire
RU2780884C1 (en) Pneumatic tire
US12005742B2 (en) Pneumatic tire
RU2780887C1 (en) Pneumatic tire
WO2020054767A1 (en) Pneumatic tire
US20220118796A1 (en) Pneumatic tire
EP3929004A1 (en) Motorcycle tire
JP2024027313A (en) pneumatic tires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882437

Country of ref document: EP

Kind code of ref document: A1