WO2021085004A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2021085004A1
WO2021085004A1 PCT/JP2020/036755 JP2020036755W WO2021085004A1 WO 2021085004 A1 WO2021085004 A1 WO 2021085004A1 JP 2020036755 W JP2020036755 W JP 2020036755W WO 2021085004 A1 WO2021085004 A1 WO 2021085004A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
stud pins
regions
region
concentrated
Prior art date
Application number
PCT/JP2020/036755
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 芝井
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to FI20225419A priority Critical patent/FI130328B/en
Priority to CN202080074781.2A priority patent/CN114599531B/en
Publication of WO2021085004A1 publication Critical patent/WO2021085004A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1625Arrangements thereof in the tread patterns, e.g. irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1643Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile with special shape of the plug-body portion, i.e. not cylindrical

Definitions

  • the present invention relates to a pneumatic tire in which a stud pin is planted on the tread of a tread portion.
  • studless tires are mainly used as winter tires.
  • a plurality of implantation holes for implanting the stud pins are provided in the tread portion, and the stud pins are implanted in these implantation holes (see, for example, Patent Document 1).
  • Such a stud pin is a factor for improving the running performance on an icy and snowy road surface, but may cause road surface damage when traveling on a road surface other than the icy and snowy road surface (general paved road surface). And even in the winter of the severe winter area, there is an opportunity to drive on paved roads other than ice and snow roads at a considerable frequency. Therefore, in stud tires, measures are required to suppress road surface damage while effectively exhibiting running performance (particularly, traction performance on ice) on ice and snow road surfaces.
  • An object of the present invention is to provide a pneumatic tire in which a stud pin is planted on the tread of a tread portion, which makes it possible to suppress road surface damage while improving on-ice performance.
  • the pneumatic tire of the present invention that achieves the above object has a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire of these sidewall portions.
  • the distance on the tire equatorial line is 0.8% of the tire circumference.
  • the strip-shaped region includes a concentrated region in which the number of stud pins included in the strip-shaped region is 4 or more, and a scattered region in which the number of stud pins included in the strip-shaped region is 3 or less. It is characterized in that a plurality of the concentrated regions are intermittently present along the tire circumferential direction in the plurality of strip-shaped regions.
  • the stud pin as described above, it is possible to suppress road surface damage while effectively improving the performance on ice. Specifically, since the number of stud pins is large in the concentrated area, the traction performance on ice can be improved, and in the scattered area, the number of stud pins is small, so that road surface damage can be suppressed. Since these concentrated regions and scattered regions coexist in the tire circumferential direction and the concentrated regions exist intermittently, road surface damage can be effectively suppressed without impairing the traction performance on ice.
  • the total number of stud pins is preferably 135 to 250.
  • the distance between the concentrated regions adjacent to each other in the tire peripheral direction is 1.0% to 30.0% of the tire peripheral length.
  • the dense area is particularly excellent in traction performance on ice among the concentrated areas, it is possible to further improve the traction performance on ice.
  • the number of dense regions is limited to 3 to 7, road surface damage can be sufficiently suppressed even if the dense regions are provided.
  • the distance between the dense regions adjacent to each other in the tire peripheral direction is 5.0% to 60.0% of the tire peripheral length.
  • the dense regions are present on the tire circumference at appropriate intervals, which is advantageous in suppressing road surface damage while effectively exhibiting traction performance on ice.
  • the average protrusion amount Px of the stud pins included in the concentrated region and the average protrusion amount Pav of the stud pins included in the scattered region satisfy the relationship of Px ⁇ 0.9 ⁇ Pav.
  • the "ground contact end” is the tire axial direction of the ground contact region formed when a tire is rim-assembled on a regular rim, placed vertically on a flat surface with a regular internal pressure applied, and a regular load is applied. Both ends of.
  • a “regular rim” is a rim defined for each tire in a standard system including a standard on which a tire is based. For example, a standard rim for JATTA, a "Design Rim” for TRA, or an ETRTO. If so, use “Measuring Rim”.
  • Regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which the tire is based.
  • FIG. 1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of a stud pin planted in a tread portion.
  • FIG. 4 is an explanatory diagram schematically showing a change in the number of stud pins for each strip-shaped region.
  • the pneumatic tire of the present invention is arranged inside the tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and the sidewall portion 2 in the tire radial direction. It is provided with a pair of bead portions 3.
  • reference numeral CL indicates a tire equator
  • reference numeral E indicates a ground contact end.
  • FIG. 1 is a cross-sectional view of the meridian, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape, whereby the pneumatic tire is formed.
  • the toroidal basic structure of is constructed.
  • the description using FIG. 1 is basically based on the illustrated meridian cross-sectional shape, but each tire component extends in the tire circumferential direction to form an annular shape.
  • a carcass layer 4 is mounted between the pair of left and right bead portions 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the inside to the outside of the vehicle around the bead cores 5 arranged in each bead portion 3.
  • a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by a main body portion and a folded portion of the carcass layer 4.
  • a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • Each belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 ° to 40 °.
  • a belt reinforcing layer 8 is provided on the outer peripheral side of the belt layer 7.
  • the belt reinforcing layer 8 contains an organic fiber cord oriented in the tire circumferential direction.
  • the angle of the organic fiber cord with respect to the tire circumferential direction is set to, for example, 0 ° to 5 °.
  • the present invention is applied to a pneumatic tire having such a general cross-sectional structure, but the basic structure thereof is not limited to the above. Further, since the present invention relates to the arrangement of the stud pin P in the pneumatic tire in which the stud pin P is planted on the tread surface of the tread portion 1, the structure of the groove and the land portion formed on the surface of the tread portion 1 (Tread pattern) is not particularly limited.
  • the pneumatic tire shown in FIG. 2 has a plurality of lug grooves 11 extending along the tire width direction and a plurality of circumferential grooves 12 extending along the tire circumferential direction.
  • the portion 13 has a partitioned tread pattern.
  • the lug groove 11 extends inclined with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the ground contact end E on one side in the tire width direction.
  • the existing first lug groove 11a extends at an angle with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the contact end E on the other side in the tire width direction.
  • the second lug groove 11b is included.
  • first lug groove 11a and the second lug groove 11b one end of the first lug groove 11a and one end of the second lug groove 11b are alternately arranged in the tire circumferential direction on the tire equator CL, and the first lug groove 11a and the second lug groove 11b are arranged in the tire circumferential direction.
  • the 11a and the second lug groove 11b are arranged so as to form a substantially V shape.
  • the circumferential groove 12 extends so as to be inclined with respect to the tire circumferential direction so as to connect the adjacent lug grooves 11 in the tire circumferential direction in the middle portion of each lug groove 11 in the length direction.
  • the center land portion 13a is partitioned inside the tire width direction of the circumferential groove 12, and the shoulder land portion 13b (shoulder block) is partitioned outside the tire width direction of the circumferential groove 12. Further, in the illustrated example, one end communicates with the circumferential groove 12 in the middle portion in the length direction of each circumferential groove 12, extends from the circumferential groove 12 toward the tire equator CL side, and the other end ends.
  • An auxiliary groove 14 is provided that terminates within the center land portion 13a.
  • each land portion 13 is provided with a plurality of sipes 14.
  • the stud pin P can be planted on any land portion 13.
  • FIG. 3 is a cross-sectional view schematically showing a state in which the stud pin P is planted in the implantation hole of the tread portion 1.
  • the double flange type stud pin P is described as the stud pin P, but a stud pin P having a different structure such as a single flange type can also be used.
  • the stud pin P is composed of a columnar body portion P1, a tread side flange portion P2, a bottom side flange portion P3, and a tip portion P4.
  • the tread side flange portion P2 and the bottom side flange portion P3 have a larger diameter than the body portion P1, and the tread side flange portion P2 is formed on the tread surface side (outside in the tire radial direction) of the body portion P1 and the bottom side flange portion.
  • P3 is formed on the bottom side (inside in the tire radial direction) of the body portion P1.
  • the tip portion P4 protrudes outward in the tire radial direction from the tread side flange portion P2 on the pin shaft (center of the stud pin P).
  • the tip portion P4 protrudes from the tread surface in a state where the stud pin P is planted in the tread portion 1, it can bite into the ice and snow road surface and exhibits traction on ice.
  • the tip portion P4 is made of a material (for example, a tungsten compound) that is harder than other portions (body portion P1, tread side flange portion P2, bottom side flange portion P3) made of, for example, aluminum or the like.
  • the number of stud pins P included in the strip-shaped region described later is defined, but if at least a part of the tip portion P4 is present in the strip-shaped region described later, the number is counted as the number included in the strip-shaped region. To do.
  • the present invention is partitioned between a pair of tire meridians arranged so that the distance on the tire equator CL is 0.8% of the tire circumference, regardless of the tread pattern formed on the surface of the tread portion 1.
  • the area is defined as a band-shaped area A (see, for example, the shaded area in FIG. 2).
  • a plurality of strip-shaped regions A (A1, A2, A3 ...) are arranged over the entire circumference of the tire by shifting the angles by 1 degree along the tire circumferential direction.
  • the number of stud pins P included in each band-shaped region A (A1, A2, A3 ...) Is measured. Note that FIG.
  • FIG. 4 schematically shows the arrangement of the band-shaped region A, and the details of the tread pattern formed in the tread portion 1 and the specific arrangement of the stud pins P are omitted. Further, the strip-shaped region A after the reference numeral A3 is omitted.
  • the reference numeral R in the figure represents the tire circumferential direction.
  • the region in which the number of stud pins included in the strip-shaped region A is 4 or more is the concentrated region A', and the stud pins included in the strip-shaped region A.
  • these concentrated regions A'and the scattered regions a are provided in a mixed manner in the tire circumferential direction.
  • a plurality of concentrated regions A' are intermittently present along the tire circumferential direction in the plurality of strip-shaped regions A. Since the concentration region A'has a large number of stud pins P, the traction performance on ice can be improved.
  • the dense regions A" exist at 3 to 7 locations. Since the dense area A "is particularly excellent in traction performance on ice among the concentrated areas A', it is possible to further improve the traction performance on ice. On the other hand, the number of dense areas A" is reduced to 3 to 7 locations. Since it is suppressed, road surface damage can be sufficiently suppressed even if the dense area A "is provided. If the number of the dense areas A" is less than three, the effect of improving the traction performance on ice becomes insufficient. .. If the number of dense areas A "exceeds seven, road surface damage cannot be sufficiently suppressed.
  • the tread portion 1 when the tread portion 1 is provided with three rows of land portions including a center land portion 13a and a pair of shoulder land portions 13b, a concentrated region A ′ in which four or more stud pins are provided.
  • a dense area A "where 5 or more stud pins are provided it is preferable to provide at least one stud pin in each land portion.
  • the tread portion 1 is provided with, for example, 5 rows of land portions (center land portion and the center land portion). , A pair of shoulder land areas and a middle land area partitioned between the center land area and the shoulder land area), each land area in the dense area A ′′ where five or more stud pins are provided. Is preferably provided with at least one stud pin.
  • the stud pins P may be arranged as described above, but the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200.
  • the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200.
  • the distance L1 between the concentrated regions A'adjacent in the tire peripheral direction is 1.0% to 30.0% of the tire peripheral length.
  • the distance L1 between the concentrated regions A' is, as illustrated in FIG. 2, a length along the tire circumferential direction between the adjacent tire meridians between the adjacent concentrated regions A'. Since the dense region A ′′ also corresponds to the concentrated region A ′, the distance between the dense region A ′′ and the concentrated region A ′ is shown as the distance L1 between the concentrated regions A ′ in FIG.
  • the distance L2 between the dense regions A "adjacent to each other in the tire peripheral direction is 5.0% to 60.0% of the tire peripheral length. Therefore, the dense region A" is appropriate on the tire circumference. Since it exists at intervals, it is advantageous in suppressing road surface damage while effectively exerting traction performance on ice. If the distance L2 between adjacent dense areas A ′′ in the tire circumferential direction is less than 5.0% of the tire circumference, the dense areas A ′′ are arranged close to each other in the tire circumferential direction, so that road surface damage is sufficient. It cannot be suppressed.
  • the dense region A "distance L2 (not shown)" is the same as the above-mentioned concentration region A'distance L1 along the tire circumferential direction between the adjacent tire meridians between the adjacent dense regions A ". The length.
  • the protrusion amount h of the stud pin may be uniform, but the average value of the protrusion amount h of the stud pin included in the concentrated region A'is the average protrusion amount Px, and the protrusion amount h of the stud pin included in the scattered region a.
  • the average value of is taken as the average protrusion amount Pav
  • the tire size is 205 / 55R16 94T, it has the basic structure illustrated in FIG. 1, and based on the tread pattern of FIG. 2, the maximum number of stud pins included in the dense area, the number of concentrated areas, and the dense area.
  • the ratio Px / Pav of the average protrusion amount Px of the stud pins included in the concentrated region to the average protrusion amount Pav of the included stud pins is set as shown in Table 1, respectively. Eight 11 types of pneumatic tires were produced.
  • the length of the band-shaped region in the tire circumference direction (0.8% of the tire circumference) is 15.8 mm.

Abstract

Provided is a pneumatic tire in which stud pins are implanted in a tread surface of a tread part, the pneumatic tire being capable of suppressing road surface damage while improving performance on ice. In a pneumatic tire in which stud pins P are implanted in a tread surface of a tread part 1, when band-shaped regions A, each defined between a pair of tire meridians provided so that an interval therebetween along a tire equator CL is 0.8% of the tire circumference, are arranged over the total tire circumference along a tire circumferential direction and at angles shifted one degree at a time, a plurality of the band-shaped regions A include a concentrated region A' having four or more stud pins and a dotted region a having three or fewer stud pins, and in the plurality of band-shaped regions A, a plurality of the concentrated regions A' are present intermittently along the tire circumferential direction.

Description

空気入りタイヤPneumatic tires
 本発明は、トレッド部の踏面にスタッドピンが植設された空気入りタイヤに関する。 The present invention relates to a pneumatic tire in which a stud pin is planted on the tread of a tread portion.
 北欧やロシア等の厳冬地域では、冬季タイヤとしてスタッドタイヤが主に使用されている。スタッドタイヤでは、トレッド部にスタッドピンを植設するための複数の植え込み穴を設け、これら植え込み穴に対してスタッドピンを植設するようにしている(例えば、特許文献1を参照)。このようなスタッドピンは、氷雪路面における走行性能を向上する要因にはなるが、氷雪路面以外(一般的な舗装路面)を走行する場合には路面損傷の原因になる虞がある。そして、厳冬地域の冬季であっても、少なくない頻度で氷雪路面以外の舗装路面を走行する機会がある。そのため、スタッドタイヤにおいて、氷雪路面における走行性能(特に、氷上トラクション性能)を効果的に発揮しながら、路面損傷を抑制するための対策が求められている。 In severe winter areas such as Scandinavia and Russia, studless tires are mainly used as winter tires. In the stud tire, a plurality of implantation holes for implanting the stud pins are provided in the tread portion, and the stud pins are implanted in these implantation holes (see, for example, Patent Document 1). Such a stud pin is a factor for improving the running performance on an icy and snowy road surface, but may cause road surface damage when traveling on a road surface other than the icy and snowy road surface (general paved road surface). And even in the winter of the severe winter area, there is an opportunity to drive on paved roads other than ice and snow roads at a considerable frequency. Therefore, in stud tires, measures are required to suppress road surface damage while effectively exhibiting running performance (particularly, traction performance on ice) on ice and snow road surfaces.
日本国特開2018‐187960号公報Japanese Patent Application Laid-Open No. 2018-187960
 本発明の目的は、トレッド部の踏面にスタッドピンが植設された空気入りタイヤにおいて、氷上性能を向上しながら、路面損傷を抑制することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire in which a stud pin is planted on the tread of a tread portion, which makes it possible to suppress road surface damage while improving on-ice performance.
 上記目的を達成する本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、前記トレッド部の踏面にスタッドピンを植設した空気入りタイヤにおいて、タイヤ赤道線上における間隔がタイヤ周長の0.8%となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域とし、複数の帯状領域をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列したとき、前記複数の帯状領域は、当該帯状領域内に含まれるスタッドピンの本数が4本以上である集中領域と、当該帯状領域内に含まれるスタッドピンの本数が3本以下である点在領域とを含み、前記複数の帯状領域の中に複数の前記集中領域がタイヤ周方向に沿って間欠的に存在することを特徴とする。 The pneumatic tire of the present invention that achieves the above object has a tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire of these sidewall portions. In a pneumatic tire having a pair of bead portions arranged radially inside and stud pins planted on the tread of the tread portion, the distance on the tire equatorial line is 0.8% of the tire circumference. When a region partitioned between a pair of arranged tire meridional lines is defined as a band-shaped region, and a plurality of strip-shaped regions are arranged over the entire circumference of the tire by shifting the angle by 1 degree along the tire circumferential direction, the plurality of strip-shaped regions are described. The strip-shaped region includes a concentrated region in which the number of stud pins included in the strip-shaped region is 4 or more, and a scattered region in which the number of stud pins included in the strip-shaped region is 3 or less. It is characterized in that a plurality of the concentrated regions are intermittently present along the tire circumferential direction in the plurality of strip-shaped regions.
 本発明では、上述のようにスタッドピンが設けられることで、氷上性能を効果的に高めながら、路面損傷を抑制することができる。具体的には、集中領域では、スタッドピン本数が多いため、氷上トラクション性能を向上することができ、点在領域では、スタッドピン本数が少ないことで、路面損傷を抑制できる。そして、これら集中領域と点在領域とがタイヤ周方向に混在し、集中領域が間欠的に存在するので、氷上トラクション性能を損なうことなく、路面損傷を効果的に抑制できる。 In the present invention, by providing the stud pin as described above, it is possible to suppress road surface damage while effectively improving the performance on ice. Specifically, since the number of stud pins is large in the concentrated area, the traction performance on ice can be improved, and in the scattered area, the number of stud pins is small, so that road surface damage can be suppressed. Since these concentrated regions and scattered regions coexist in the tire circumferential direction and the concentrated regions exist intermittently, road surface damage can be effectively suppressed without impairing the traction performance on ice.
 本発明においては、スタッドピンの総数が135本~250本であることが好ましい。このように適度な本数のスタッドピンを設けることで、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。 In the present invention, the total number of stud pins is preferably 135 to 250. By providing an appropriate number of stud pins in this way, it is advantageous to suppress road surface damage while effectively exhibiting traction performance on ice.
 本発明においては、タイヤ周方向に隣り合う集中領域どうしの間隔がタイヤ周長の1.0%~30.0%であることが好ましい。これにより、集中領域を間欠的に設けるにあたって、集中領域がタイヤ周上に適度な間隔で存在することになり、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。 In the present invention, it is preferable that the distance between the concentrated regions adjacent to each other in the tire peripheral direction is 1.0% to 30.0% of the tire peripheral length. As a result, when the concentrated areas are provided intermittently, the concentrated areas are present on the tire circumference at appropriate intervals, which is advantageous for suppressing road surface damage while effectively exerting traction performance on ice. ..
 本発明においては、複数の集中領域の中に、スタッドピンの本数が5本以上である密集領域が3箇所~7箇所存在することが好ましい。密集領域は、集中領域のなかでも特に氷上トラクション性能に優れるので、氷上トラクション性能の更なる向上を図ることができる。一方で、密集領域の数を3箇所~7箇所に抑えているので、密集領域を設けても路面損傷を十分に抑制することができる。 In the present invention, it is preferable that there are 3 to 7 dense regions in which the number of stud pins is 5 or more in the plurality of concentrated regions. Since the dense area is particularly excellent in traction performance on ice among the concentrated areas, it is possible to further improve the traction performance on ice. On the other hand, since the number of dense regions is limited to 3 to 7, road surface damage can be sufficiently suppressed even if the dense regions are provided.
 このとき、タイヤ周方向に隣り合う密集領域どうしの間隔がタイヤ周長の5.0%~60.0%であることが好ましい。これにより、密集領域がタイヤ周上に適度な間隔で存在することになり、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。 At this time, it is preferable that the distance between the dense regions adjacent to each other in the tire peripheral direction is 5.0% to 60.0% of the tire peripheral length. As a result, the dense regions are present on the tire circumference at appropriate intervals, which is advantageous in suppressing road surface damage while effectively exhibiting traction performance on ice.
 本発明においては、集中領域に含まれるスタッドピンの平均突出量Px と、点在領域に含まれるスタッドピンの平均突出量Pavとが、Px ≦0.9×Pavの関係を満たすことが好ましい。このようにスタッドピンの突出量を設定することで、スタッドピンの本数が相対的に多い集中領域ではスタッドピンの突出量を低く抑えることができ、路面損傷を抑制するには有利になる。また、乗心地を向上することもできる。 In the present invention, it is preferable that the average protrusion amount Px of the stud pins included in the concentrated region and the average protrusion amount Pav of the stud pins included in the scattered region satisfy the relationship of Px ≦ 0.9 × Pav. By setting the protruding amount of the stud pins in this way, the protruding amount of the stud pins can be suppressed to a low level in a concentrated region where the number of stud pins is relatively large, which is advantageous in suppressing road surface damage. It is also possible to improve the riding comfort.
 本発明において、「接地端」とは、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときに形成される接地領域のタイヤ軸方向の両端部である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には250kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車用である場合には前記荷重の80%に相当する荷重とする。 In the present invention, the "ground contact end" is the tire axial direction of the ground contact region formed when a tire is rim-assembled on a regular rim, placed vertically on a flat surface with a regular internal pressure applied, and a regular load is applied. Both ends of. A "regular rim" is a rim defined for each tire in a standard system including a standard on which a tire is based. For example, a standard rim for JATTA, a "Design Rim" for TRA, or an ETRTO. If so, use "Measuring Rim". "Regular internal pressure" is the air pressure defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum air pressure, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES", if it is ETRTO, it is "INFRATION PRESSURE", but if the tire is for a passenger car, it is 250 kPa. "Regular load" is the load defined for each tire in the standard system including the standard on which the tire is based. If it is JATTA, it is the maximum load capacity, and if it is TRA, it is the table "TIRE LOAD LIMITED AT VARIOUS". The maximum value described in "COLD INFLATION PRESSURES" is "LOAD CAPACITY" in the case of ETRTO, but when the tire is for a passenger car, the load is equivalent to 80% of the above load.
図1は、本発明の実施形態からなる空気入りタイヤの子午線断面図である。FIG. 1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention. 図2は、本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である。FIG. 2 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention. 図3は、トレッド部に植設したスタッドピンの一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a stud pin planted in a tread portion. 図4は、帯状領域ごとのスタッドピンの本数の変化を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing a change in the number of stud pins for each strip-shaped region.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
 図1に示すように、本発明の空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示し、符号Eは接地端を示す。尚、図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。 As shown in FIG. 1, the pneumatic tire of the present invention is arranged inside the tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and the sidewall portion 2 in the tire radial direction. It is provided with a pair of bead portions 3. In FIG. 1, reference numeral CL indicates a tire equator, and reference numeral E indicates a ground contact end. Although FIG. 1 is a cross-sectional view of the meridian, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape, whereby the pneumatic tire is formed. The toroidal basic structure of is constructed. Hereinafter, the description using FIG. 1 is basically based on the illustrated meridian cross-sectional shape, but each tire component extends in the tire circumferential direction to form an annular shape.
 左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。更に、ベルト層7の外周側にはベルト補強層8が設けられている。ベルト補強層8は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層8において、有機繊維コードはタイヤ周方向に対する角度が例えば0°~5°に設定されている。 A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the inside to the outside of the vehicle around the bead cores 5 arranged in each bead portion 3. Further, a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by a main body portion and a folded portion of the carcass layer 4. On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each belt layer 7 includes a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In these belt layers 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10 ° to 40 °. Further, a belt reinforcing layer 8 is provided on the outer peripheral side of the belt layer 7. The belt reinforcing layer 8 contains an organic fiber cord oriented in the tire circumferential direction. In the belt reinforcing layer 8, the angle of the organic fiber cord with respect to the tire circumferential direction is set to, for example, 0 ° to 5 °.
 本発明は、このような一般的な断面構造の空気入りタイヤに適用されるが、その基本構造は上述のものに限定されない。また、本発明は、トレッド部1の踏面にスタッドピンPが植設された空気入りタイヤにおけるスタッドピンPの配置に関するものであるので、トレッド部1の表面に形成される溝や陸部の構造(トレッドパターン)は特に限定されない。 The present invention is applied to a pneumatic tire having such a general cross-sectional structure, but the basic structure thereof is not limited to the above. Further, since the present invention relates to the arrangement of the stud pin P in the pneumatic tire in which the stud pin P is planted on the tread surface of the tread portion 1, the structure of the groove and the land portion formed on the surface of the tread portion 1 (Tread pattern) is not particularly limited.
 尚、図2に示す空気入りタイヤは、タイヤ幅方向に沿って延在する複数本のラグ溝11と、タイヤ周方向に沿って延在する複数本の周方向溝12とによって、複数の陸部13が区画されたトレッドパターンを有する。図示の例において、ラグ溝11は、タイヤ幅方向に対して傾斜して延在し、一端がタイヤ赤道CL上に位置し、他端がタイヤ幅方向の一方側の接地端Eを超えて延在する第一ラグ溝11aと、タイヤ幅方向に対して傾斜して延在し、一端がタイヤ赤道CL上に位置し、他端がタイヤ幅方向の他方側の接地端Eを超えて延在する第二ラグ溝11bとを含む。第一ラグ溝11aおよび第二ラグ溝11bは、タイヤ赤道CL上において、第一ラグ溝11aの一端と第二ラグ溝11bの一端とがタイヤ周方向に交互に並び、且つ、第一ラグ溝11aと第二ラグ溝11bとが略V字状を成すように配置されている。周方向溝12は、各ラグ溝11の長さ方向の中途部において、タイヤ周方向に隣り合うラグ溝11どうしを連結するように、タイヤ周方向に対して傾斜して延在している。周方向溝12のタイヤ幅方向内側にはセンター陸部13aが区画され、周方向溝12のタイヤ幅方向外側にはショルダー陸部13b(ショルダーブロック)が区画される。更に、図示の例では、各周方向溝12の長さ方向の中途部に、一端が周方向溝12に連通し、周方向溝12からタイヤ赤道CL側に向かって延在し、他端がセンター陸部13a内で終端する補助溝14が設けられている。また、各陸部13には複数本のサイプ14が設けられている。スタッドピンPは、任意の陸部13に植設することができる。 The pneumatic tire shown in FIG. 2 has a plurality of lug grooves 11 extending along the tire width direction and a plurality of circumferential grooves 12 extending along the tire circumferential direction. The portion 13 has a partitioned tread pattern. In the illustrated example, the lug groove 11 extends inclined with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the ground contact end E on one side in the tire width direction. The existing first lug groove 11a extends at an angle with respect to the tire width direction, one end is located on the tire equatorial CL, and the other end extends beyond the contact end E on the other side in the tire width direction. The second lug groove 11b is included. In the first lug groove 11a and the second lug groove 11b, one end of the first lug groove 11a and one end of the second lug groove 11b are alternately arranged in the tire circumferential direction on the tire equator CL, and the first lug groove 11a and the second lug groove 11b are arranged in the tire circumferential direction. The 11a and the second lug groove 11b are arranged so as to form a substantially V shape. The circumferential groove 12 extends so as to be inclined with respect to the tire circumferential direction so as to connect the adjacent lug grooves 11 in the tire circumferential direction in the middle portion of each lug groove 11 in the length direction. The center land portion 13a is partitioned inside the tire width direction of the circumferential groove 12, and the shoulder land portion 13b (shoulder block) is partitioned outside the tire width direction of the circumferential groove 12. Further, in the illustrated example, one end communicates with the circumferential groove 12 in the middle portion in the length direction of each circumferential groove 12, extends from the circumferential groove 12 toward the tire equator CL side, and the other end ends. An auxiliary groove 14 is provided that terminates within the center land portion 13a. Further, each land portion 13 is provided with a plurality of sipes 14. The stud pin P can be planted on any land portion 13.
 スタッドピンPは、トレッド部1の踏面に設けられたスタッドピン用の植え込み穴に植設される。スタッドピンPの植設は、植え込み穴を拡張した状態でその穴内にスタッドピンPを挿入した後、植え込み穴の拡張を解除することで行われる。図3は、スタッドピンPをトレッド部1の植え込み穴に植設した状態を模式的に示す断面図である。図示の例はスタッドピンPとして、ダブルフランジタイプのスタッドピンPを記載しているが、シングルフランジタイプ等の別の構造のスタッドピンPを使用することもできる。 The stud pin P is planted in the stud pin implantation hole provided on the tread surface of the tread portion 1. The stud pin P is planted by inserting the stud pin P into the hole with the planting hole expanded and then releasing the expansion of the planting hole. FIG. 3 is a cross-sectional view schematically showing a state in which the stud pin P is planted in the implantation hole of the tread portion 1. In the illustrated example, the double flange type stud pin P is described as the stud pin P, but a stud pin P having a different structure such as a single flange type can also be used.
 図3に例示するように、スタッドピンPは、円柱状の胴部P1、踏面側フランジ部P2、底側フランジ部P3、およびチップ部P4により構成されている。踏面側フランジ部P2と底側フランジ部P3は胴部P1よりも径が大きくなっており、踏面側フランジ部P2は胴部P1の踏面側(タイヤ径方向外側)に形成され、底側フランジ部P3は胴部P1の底側(タイヤ径方向内側)に形成されている。チップ部P4は、ピン軸(スタッドピンPの中心)において踏面側フランジ部P2からタイヤ径方向外側に突き出している。チップ部P4は、スタッドピンPがトレッド部1に植設された状態で踏面よりも突き出るため、氷雪路面に対して食い込むことができ、氷上トラクション性を発揮する。チップ部P4は、例えばアルミニウム等で構成される他の部分(胴部P1、踏面側フランジ部P2、底側フランジ部P3)よりも硬質な材料(例えばタングステン化合物)で構成されている。本発明では、後述の帯状領域に含まれるスタッドピンPの本数を規定するが、チップ部P4の少なくとも一部が後述の帯状領域内に存在すれば、当該帯状領域に含まれる本数として数えるものとする。 As illustrated in FIG. 3, the stud pin P is composed of a columnar body portion P1, a tread side flange portion P2, a bottom side flange portion P3, and a tip portion P4. The tread side flange portion P2 and the bottom side flange portion P3 have a larger diameter than the body portion P1, and the tread side flange portion P2 is formed on the tread surface side (outside in the tire radial direction) of the body portion P1 and the bottom side flange portion. P3 is formed on the bottom side (inside in the tire radial direction) of the body portion P1. The tip portion P4 protrudes outward in the tire radial direction from the tread side flange portion P2 on the pin shaft (center of the stud pin P). Since the tip portion P4 protrudes from the tread surface in a state where the stud pin P is planted in the tread portion 1, it can bite into the ice and snow road surface and exhibits traction on ice. The tip portion P4 is made of a material (for example, a tungsten compound) that is harder than other portions (body portion P1, tread side flange portion P2, bottom side flange portion P3) made of, for example, aluminum or the like. In the present invention, the number of stud pins P included in the strip-shaped region described later is defined, but if at least a part of the tip portion P4 is present in the strip-shaped region described later, the number is counted as the number included in the strip-shaped region. To do.
 本発明では、トレッド部1の表面に形成されるトレッドパターンに依らず、タイヤ赤道CL上における間隔がタイヤ周長の0.8%となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域Aと定義する(例えば、図2の斜線部を参照)。そして、図4に模式的に示すように、複数の帯状領域A(A1,A2,A3・・・)をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列し、各帯状領域A(A1,A2,A3・・・)の中に含まれるスタッドピンPの本数を測定する。尚、図4は、帯状領域Aの配列を模式的に示すものであり、トレッド部1に形成されるトレッドパターンの詳細やスタッドピンPの具体的な配置は省略している。また、符号A3以降の帯状領域Aは省略している。図中の符号Rはタイヤ周方向を表す。 In the present invention, it is partitioned between a pair of tire meridians arranged so that the distance on the tire equator CL is 0.8% of the tire circumference, regardless of the tread pattern formed on the surface of the tread portion 1. The area is defined as a band-shaped area A (see, for example, the shaded area in FIG. 2). Then, as schematically shown in FIG. 4, a plurality of strip-shaped regions A (A1, A2, A3 ...) Are arranged over the entire circumference of the tire by shifting the angles by 1 degree along the tire circumferential direction. The number of stud pins P included in each band-shaped region A (A1, A2, A3 ...) Is measured. Note that FIG. 4 schematically shows the arrangement of the band-shaped region A, and the details of the tread pattern formed in the tread portion 1 and the specific arrangement of the stud pins P are omitted. Further, the strip-shaped region A after the reference numeral A3 is omitted. The reference numeral R in the figure represents the tire circumferential direction.
 このように定義された複数の帯状領域Aのうち、当該帯状領域A内に含まれるスタッドピンの本数が4本以上である領域を集中領域A′、当該帯状領域A内に含まれるスタッドピンの本数が3本以下である領域を点在領域aとすると、本発明では、これら集中領域A′と点在領域aとがタイヤ周方向に混在して設けられている。言い換えると、複数の帯状領域Aの中に複数の集中領域A′が、タイヤ周方向に沿って間欠的に存在している。集中領域A′は、スタッドピンPの本数が多いため、氷上トラクション性能を向上することができる。点在領域aは、スタッドピンPの本数が少ないことで、路面損傷を抑制できる。従って、これら集中領域A′と点在領域aとがタイヤ周方向に混在し、集中領域A′が間欠的に存在することで、氷上トラクション性能を損なうことなく、路面損傷を効果的に抑制できる。 Of the plurality of strip-shaped regions A defined in this way, the region in which the number of stud pins included in the strip-shaped region A is 4 or more is the concentrated region A', and the stud pins included in the strip-shaped region A. Assuming that the region where the number of tires is 3 or less is the scattered region a, in the present invention, these concentrated regions A'and the scattered regions a are provided in a mixed manner in the tire circumferential direction. In other words, a plurality of concentrated regions A'are intermittently present along the tire circumferential direction in the plurality of strip-shaped regions A. Since the concentration region A'has a large number of stud pins P, the traction performance on ice can be improved. Since the number of stud pins P is small in the scattered region a, road surface damage can be suppressed. Therefore, these concentrated regions A'and scattered regions a coexist in the tire circumferential direction, and the concentrated regions A'are intermittently present, so that road surface damage can be effectively suppressed without impairing the traction performance on ice. ..
 更に、複数の集中領域A′の中でも、スタッドピンの本数が5本以上である領域を密集領域A″として区別すると、この密集領域A″が3箇所~7箇所存在することが好ましい。密集領域A″は、集中領域A′のなかでも特に氷上トラクション性能に優れるので、氷上トラクション性能の更なる向上を図ることができる。一方で、密集領域A″の数を3箇所~7箇所に抑えているので、密集領域A″を設けても路面損傷を十分に抑制することができる。密集領域A″の数が3箇所未満であると、氷上トラクション性能を向上する効果が不十分になる。密集領域A″の数が7箇所を超えると、路面損傷を十分に抑制することができない。 Further, among the plurality of concentrated regions A', if the region in which the number of stud pins is 5 or more is distinguished as the dense region A ", it is preferable that the dense regions A" exist at 3 to 7 locations. Since the dense area A "is particularly excellent in traction performance on ice among the concentrated areas A', it is possible to further improve the traction performance on ice. On the other hand, the number of dense areas A" is reduced to 3 to 7 locations. Since it is suppressed, road surface damage can be sufficiently suppressed even if the dense area A "is provided. If the number of the dense areas A" is less than three, the effect of improving the traction performance on ice becomes insufficient. .. If the number of dense areas A "exceeds seven, road surface damage cannot be sufficiently suppressed.
 図2の例のように、トレッド部1にセンター陸部13aと一対のショルダー陸部13bとからなる3列の陸部が設けられる場合は、4本以上のスタッドピンが設けられる集中領域A′や5本以上のスタッドピンが設けられる密集領域A″では、各陸部に少なくとも1本のスタッドピンを設けることが好ましい。同様に、トレッド部1に例えば5列の陸部(センター陸部と、一対のショルダー陸部と、センター陸部とショルダー陸部との間に区画されるミドル陸部)が設けられる場合は、5本以上のスタッドピンが設けられる密集領域A″では、各陸部に少なくとも1本のスタッドピンを設けることが好ましい。 As in the example of FIG. 2, when the tread portion 1 is provided with three rows of land portions including a center land portion 13a and a pair of shoulder land portions 13b, a concentrated region A ′ in which four or more stud pins are provided. In a dense area A "where 5 or more stud pins are provided, it is preferable to provide at least one stud pin in each land portion. Similarly, the tread portion 1 is provided with, for example, 5 rows of land portions (center land portion and the center land portion). , A pair of shoulder land areas and a middle land area partitioned between the center land area and the shoulder land area), each land area in the dense area A ″ where five or more stud pins are provided. Is preferably provided with at least one stud pin.
 スタッドピンPは上述のように配列すればよいが、タイヤ全体におけるスタッドピンの総数が好ましくは135本~250本、より好ましくは135本~200本であるとよい。このようにタイヤ全体に適度な本数のスタッドピンPを設けることで、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。スタッドピンの総数が135本未満であると、氷上トラクション性能を十分に向上することができない。スタッドピンの総数が250本を超えると、路面損傷を十分に抑制することができない。 The stud pins P may be arranged as described above, but the total number of stud pins in the entire tire is preferably 135 to 250, more preferably 135 to 200. By providing an appropriate number of stud pins P on the entire tire in this way, it is advantageous to suppress road surface damage while effectively exhibiting traction performance on ice. If the total number of stud pins is less than 135, the traction performance on ice cannot be sufficiently improved. If the total number of stud pins exceeds 250, road surface damage cannot be sufficiently suppressed.
 上述のように集中領域A′を間欠的に配列するにあたって、タイヤ周方向に隣り合う集中領域A′どうしの間隔L1がタイヤ周長の1.0%~30.0%であることが好ましい。このような配置にすることで、集中領域A′がタイヤ周上に適度な間隔で存在することになり、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。タイヤ周方向に隣り合う集中領域A′どうしの間隔L1がタイヤ周長の1.0%未満であると、集中領域A′がタイヤ周方向に近接して配置されるため、路面損傷を十分に抑制することができない。タイヤ周方向に隣り合う集中領域A′どうしの間隔L1がタイヤ周長の30.0%を超えると、接地面内に集中領域A′が十分に存在しなくなる虞があり、氷上トラクション性能を十分に確保することが難しくなる。集中領域A′どうしの間隔L1とは、図2に例示するように、隣り合う集中領域A′の間で対向するタイヤ子午線間のタイヤ周方向に沿った長さである。尚、密集領域A″は集中領域A′にも該当するので、図2では、密集領域A″と集中領域A′との距離を集中領域A′どうしの間隔L1として示している。 In arranging the concentrated regions A'intermittently as described above, it is preferable that the distance L1 between the concentrated regions A'adjacent in the tire peripheral direction is 1.0% to 30.0% of the tire peripheral length. With such an arrangement, the concentrated regions A'are present on the tire circumference at appropriate intervals, which is advantageous in suppressing road surface damage while effectively exhibiting traction performance on ice. If the distance L1 between the concentrated regions A'adjacent to each other in the tire peripheral direction is less than 1.0% of the tire peripheral length, the concentrated regions A'are arranged close to each other in the tire peripheral direction, so that the road surface damage is sufficient. It cannot be suppressed. If the distance L1 between the concentrated regions A'adjacent in the tire circumferential direction exceeds 30.0% of the tire peripheral length, there is a risk that the concentrated region A'will not sufficiently exist in the ground contact surface, and the traction performance on ice will be sufficient. It becomes difficult to secure it. The distance L1 between the concentrated regions A'is, as illustrated in FIG. 2, a length along the tire circumferential direction between the adjacent tire meridians between the adjacent concentrated regions A'. Since the dense region A ″ also corresponds to the concentrated region A ′, the distance between the dense region A ″ and the concentrated region A ′ is shown as the distance L1 between the concentrated regions A ′ in FIG.
 更に、タイヤ周方向に隣り合う密集領域A″どうしの間隔L2がタイヤ周長の5.0%~60.0%であることが好ましい。これにより、密集領域A″がタイヤ周上に適度な間隔で存在することになり、氷上トラクション性能を効果的に発揮しながら、路面損傷を抑制するには有利になる。タイヤ周方向に隣り合う密集領域A″どうしの間隔L2がタイヤ周長の5.0%未満であると、密集領域A″がタイヤ周方向に近接して配置されるため、路面損傷を十分に抑制することができない。タイヤ周方向に隣り合う密集領域A″どうしの間隔L2がタイヤ周長の60.0%を超えると、接地面内に密集領域A″が十分に存在しなくなる虞があり、氷上トラクション性能を十分に確保することが難しくなる。密集領域A″どうしの間隔L2(不図示)とは、前述の集中領域A′どうしの間隔L1と同様に、隣り合う密集領域A″の間で対向するタイヤ子午線間のタイヤ周方向に沿った長さである。 Further, it is preferable that the distance L2 between the dense regions A "adjacent to each other in the tire peripheral direction is 5.0% to 60.0% of the tire peripheral length. Therefore, the dense region A" is appropriate on the tire circumference. Since it exists at intervals, it is advantageous in suppressing road surface damage while effectively exerting traction performance on ice. If the distance L2 between adjacent dense areas A ″ in the tire circumferential direction is less than 5.0% of the tire circumference, the dense areas A ″ are arranged close to each other in the tire circumferential direction, so that road surface damage is sufficient. It cannot be suppressed. If the distance L2 between adjacent dense areas A in the tire circumferential direction exceeds 60.0% of the tire circumference, there is a risk that the dense area A ″ will not sufficiently exist in the ground contact surface, and the traction performance on ice will be sufficient. It becomes difficult to secure it. The dense region A "distance L2 (not shown)" is the same as the above-mentioned concentration region A'distance L1 along the tire circumferential direction between the adjacent tire meridians between the adjacent dense regions A ". The length.
 スタッドピンの突出量hは均一であってもよいが、集中領域A′に含まれるスタッドピンの突出量hの平均値を平均突出量Px 、点在領域aに含まれるスタッドピンの突出量hの平均値を平均突出量Pavとしたとき、これらがPx ≦0.9×Pavの関係を満たすことが好ましい。このようにスタッドピンの突出量hを設定することで、スタッドピンの本数が相対的に多い集中領域A′ではスタッドピンの突出量を低く抑えることができ、路面損傷を抑制するには有利になる。また、乗心地を向上することもできる。更に、氷上トラクション性能を確保する観点からは、Px ≧0.7×Pavの関係を満たすことが好ましい。 The protrusion amount h of the stud pin may be uniform, but the average value of the protrusion amount h of the stud pin included in the concentrated region A'is the average protrusion amount Px, and the protrusion amount h of the stud pin included in the scattered region a. When the average value of is taken as the average protrusion amount Pav, it is preferable that these satisfy the relationship of Px ≦ 0.9 × Pav. By setting the protrusion amount h of the stud pins in this way, the protrusion amount of the stud pins can be suppressed to a low level in the concentrated region A'in which the number of stud pins is relatively large, which is advantageous for suppressing road surface damage. Become. It is also possible to improve the riding comfort. Further, from the viewpoint of ensuring the traction performance on ice, it is preferable to satisfy the relationship of Px ≧ 0.7 × Pav.
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to Examples, but the scope of the present invention is not limited to these Examples.
 タイヤサイズが205/55R16 94Tであり、図1に例示する基本構造を有し、図2のトレッドパターンを基調とし、密集領域に含まれるスタッドピンの本数の最大値、集中領域の個数、密集領域の個数、スタッドピンの総数、タイヤ周方向に隣り合う集中領域どうしの間隔(最小値および最大値)、タイヤ周方向に隣り合う密集領域どうしの間隔(最小値および最大値)、点在領域に含まれるスタッドピンの平均突出量Pavに対する集中領域に含まれるスタッドピンの平均突出量Px の比Px /Pavをそれぞれ表1のように設定した従来例1、比較例1~2、実施例1~8の11種類の空気入りタイヤを作製した。 The tire size is 205 / 55R16 94T, it has the basic structure illustrated in FIG. 1, and based on the tread pattern of FIG. 2, the maximum number of stud pins included in the dense area, the number of concentrated areas, and the dense area. Number of tires, total number of stud pins, spacing between concentrated areas adjacent to each other in the tire circumferential direction (minimum value and maximum value), spacing between dense areas adjacent to each other in the tire circumferential direction (minimum value and maximum value), scattered areas The ratio Px / Pav of the average protrusion amount Px of the stud pins included in the concentrated region to the average protrusion amount Pav of the included stud pins is set as shown in Table 1, respectively. Eight 11 types of pneumatic tires were produced.
 尚、上述のサイズの空気入りタイヤのタイヤ周長は1980mmであるので、帯状領域のタイヤ周方向長さ(タイヤ周長の0.8%)は15.8mmである。 Since the tire circumference of the pneumatic tire of the above size is 1980 mm, the length of the band-shaped region in the tire circumference direction (0.8% of the tire circumference) is 15.8 mm.
 これら空気入りタイヤについて、下記の評価方法により、氷上操縦安定性能、氷上制動性能、路面損傷抑制性能を評価し、その結果を表1に併せて示した。 For these pneumatic tires, the stability performance on ice, braking performance on ice, and road surface damage suppression performance were evaluated by the following evaluation methods, and the results are also shown in Table 1.
   氷上操縦安定性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、車両指定空気圧を充填し、排気量1.4Lの前輪駆動車に装着し、氷雪路面からなるテストコース(旋回場)にて操縦安定性能についてテストドライバーによる官能評価を行った。評価結果は、従来例1の値を100とする指数にて示した。この指数値が大きいほど氷上操縦安定性能に優れることを意味する。
Stability on ice Steering performance Each test tire is assembled to a wheel with a rim size of 16 x 6.5J, filled with the specified air pressure of the vehicle, mounted on a front-wheel drive vehicle with a displacement of 1.4L, and a test course (turning field) consisting of ice and snow road surfaces. A sensory evaluation was performed by a test driver on the steering stability performance at. The evaluation result is shown by an index with the value of Conventional Example 1 as 100. The larger this index value is, the better the stability performance on ice is.
   氷上制動性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、車両指定空気圧を充填し、排気量1.4Lの前輪駆動車に装着し、氷雪路面からなるテストコース(直線路)にて、初速25km/hにおいてブレーキをかけて、速度が20km/hから5km/mになるまでの制動距離を測定した。評価結果は、測定値の逆数を用い、従来例1の値を100とする指数にて示した。この指数値が大きいほど制動距離が短く、氷上制動性能に優れることを意味する。
Braking performance on ice Each test tire is assembled on a wheel with a rim size of 16 x 6.5J, filled with the specified air pressure of the vehicle, mounted on a front-wheel drive vehicle with a displacement of 1.4L, and on a test course (straight road) consisting of ice and snow road surfaces. Then, the brake was applied at an initial speed of 25 km / h, and the braking distance from 20 km / h to 5 km / m was measured. The evaluation result is shown by an index in which the value of Conventional Example 1 is 100, using the reciprocal of the measured value. The larger the index value, the shorter the braking distance and the better the braking performance on ice.
   路面損傷抑制性能
 各試験タイヤをリムサイズ16×6.5Jのホイールに組み付けて、空気圧を250kPaとし、排気量1.4Lの前輪駆動車に装着し、路面に設置した花崗岩の上を速度100km/hで200回走行させて、摩耗量を試験前後の花崗岩の重量差によって計測して、路面摩耗量を測定した。評価結果は、測定値の逆数を用いて、従来例1の値を100とする指数にて示した。この指数値が大きいほど路面摩耗量が小さく、路面損傷抑制性能に優れることを意味する。尚、指数値が「85」以上であれば良好な路面損傷抑制性能が得られたことを意味する。
Road surface damage suppression performance Each test tire is assembled to a wheel with a rim size of 16 x 6.5J, the air pressure is 250 kPa, it is mounted on a front-wheel drive vehicle with a displacement of 1.4 L, and the speed is 100 km / h on the granite installed on the road surface. The amount of wear was measured by the weight difference of the granite before and after the test, and the amount of road surface wear was measured. The evaluation result is shown by an index with the value of Conventional Example 1 as 100 using the reciprocal of the measured value. The larger the index value, the smaller the amount of road surface wear, which means that the road surface damage suppressing performance is excellent. If the index value is "85" or more, it means that good road surface damage suppression performance has been obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~8はいずれも、従来例1と比較して、氷上操縦安定性能および氷上制動性能を向上し、且つ、路面損傷抑制性能を良好に維持した。一方、比較例1,2は、集中領域が1箇所のみであるため、氷上性能の向上と路面損傷の抑制とを両立することができなかった。 As is clear from Table 1, in each of Examples 1 to 8, the on-ice steering stability performance and the on-ice braking performance were improved, and the road surface damage suppression performance was maintained well as compared with the conventional example 1. On the other hand, in Comparative Examples 1 and 2, since there was only one concentrated area, it was not possible to achieve both improvement of performance on ice and suppression of road surface damage.
1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 ベルト補強層
11 ラグ溝
12 周方向溝
13 陸部
14 補助溝
15 サイプ
P スタッドピン
A 帯状領域
a 点在領域
A′ 集中領域
A″ 密集領域
CL タイヤ赤道
E 接地端
1 Tread part 2 Side wall part 3 Bead part 4 Carcus layer 5 Bead core 6 Bead filler 7 Belt layer 8 Belt reinforcement layer 11 Rug groove 12 Circumferential groove 13 Land part 14 Auxiliary groove 15 Sipe P Stud pin A Band-shaped area a Dotted area A ′ Concentrated area A ″ Dense area CL Tire equator E Grounding edge

Claims (6)

  1.  タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、前記トレッド部の踏面にスタッドピンを植設した空気入りタイヤにおいて、
     タイヤ赤道線上における間隔がタイヤ周長の0.8%となるように配置された一対のタイヤ子午線の間に区画される領域を帯状領域とし、複数の帯状領域をタイヤ周方向に沿って角度を1度ずつずらしてタイヤ全周に亘って配列したとき、
     前記複数の帯状領域は、当該帯状領域内に含まれるスタッドピンの本数が4本以上である集中領域と、当該帯状領域内に含まれるスタッドピンの本数が3本以下である点在領域とを含み、前記複数の帯状領域の中に複数の前記集中領域がタイヤ周方向に沿って間欠的に存在することを特徴とする空気入りタイヤ。
    A tread portion extending in the tire circumferential direction to form an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a pair of bead portions arranged inside the tire radial direction of these sidewall portions. In addition, in a pneumatic tire in which a stud pin is planted on the tread of the tread portion,
    The area defined between a pair of tire meridians arranged so that the distance on the tire equatorial line is 0.8% of the tire circumference is defined as a band-shaped area, and a plurality of band-shaped areas are angled along the tire circumference direction. When the tires are staggered once and arranged over the entire circumference of the tire,
    The plurality of strip-shaped regions include a concentrated region in which the number of stud pins included in the strip-shaped region is 4 or more, and a scattered region in which the number of stud pins included in the strip-shaped region is 3 or less. A pneumatic tire including, wherein a plurality of the concentrated regions are intermittently present along the tire circumferential direction in the plurality of strip-shaped regions.
  2.  前記スタッドピンの総数が135本~250本であることを特徴とする請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the total number of the stud pins is 135 to 250.
  3.  タイヤ周方向に隣り合う前記集中領域どうしの間隔がタイヤ周長の1.0%~30.0%であることを特徴とする請求項1または2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the distance between the concentrated regions adjacent to each other in the tire peripheral direction is 1.0% to 30.0% of the tire peripheral length.
  4.  複数の前記集中領域の中に、スタッドピンの本数が5本以上である密集領域が3箇所~7箇所存在することを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein there are 3 to 7 dense regions having 5 or more stud pins in the plurality of concentrated regions.
  5.  タイヤ周方向に隣り合う前記密集領域どうしの間隔がタイヤ周長の5.0%~60.0%であることを特徴とする請求項4に記載の空気入りタイヤ。 The pneumatic tire according to claim 4, wherein the distance between the dense regions adjacent to each other in the tire peripheral direction is 5.0% to 60.0% of the tire peripheral length.
  6.  前記集中領域に含まれる前記スタッドピンの平均突出量Px と、前記点在領域に含まれる前記スタッドピンの平均突出量Pavとが、Px ≦0.9×Pavの関係を満たすことを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。 The average protrusion amount Px of the stud pins included in the concentrated region and the average protrusion amount Pav of the stud pins included in the scattered region satisfy the relationship of Px ≦ 0.9 × Pav. The pneumatic tire according to any one of claims 1 to 5.
PCT/JP2020/036755 2019-11-01 2020-09-29 Pneumatic tire WO2021085004A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI20225419A FI130328B (en) 2019-11-01 2020-09-29 Pneumatic tire
CN202080074781.2A CN114599531B (en) 2019-11-01 2020-09-29 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-199644 2019-11-01
JP2019199644A JP7172953B2 (en) 2019-11-01 2019-11-01 pneumatic tire

Publications (1)

Publication Number Publication Date
WO2021085004A1 true WO2021085004A1 (en) 2021-05-06

Family

ID=75712335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036755 WO2021085004A1 (en) 2019-11-01 2020-09-29 Pneumatic tire

Country Status (4)

Country Link
JP (1) JP7172953B2 (en)
CN (1) CN114599531B (en)
FI (1) FI130328B (en)
WO (1) WO2021085004A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465021A (en) * 2022-09-26 2022-12-13 中策橡胶集团股份有限公司 Nail-embedded snow tire capable of improving grip force

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024027313A (en) 2022-08-17 2024-03-01 Toyo Tire株式会社 pneumatic tires
JP2024027318A (en) 2022-08-17 2024-03-01 Toyo Tire株式会社 pneumatic tires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132706A (en) * 1973-04-21 1974-12-19
JPS5522580A (en) * 1978-08-07 1980-02-18 Moritsugu Koshiba Snow kick tire
JPS61177903U (en) * 1985-04-25 1986-11-06
KR100656790B1 (en) * 2005-06-08 2006-12-13 송기봉 Tire switchable to normal tire and spike tire by single operation as required
CN206884611U (en) * 2017-07-03 2018-01-16 山东丰源轮胎制造股份有限公司 One kind edge nail snow tire
WO2019138792A1 (en) * 2018-01-11 2019-07-18 横浜ゴム株式会社 Studdable tire and pneumatic tire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192143B1 (en) 2008-12-01 2011-09-07 DSM IP Assets B.V. Novel method
JP4677027B2 (en) * 2008-12-24 2011-04-27 住友ゴム工業株式会社 Pneumatic tire and spike tire
JP4656239B2 (en) * 2009-01-23 2011-03-23 横浜ゴム株式会社 Pneumatic tire
JP2014151811A (en) * 2013-02-12 2014-08-25 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2016215727A (en) * 2015-05-15 2016-12-22 横浜ゴム株式会社 Pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132706A (en) * 1973-04-21 1974-12-19
JPS5522580A (en) * 1978-08-07 1980-02-18 Moritsugu Koshiba Snow kick tire
JPS61177903U (en) * 1985-04-25 1986-11-06
KR100656790B1 (en) * 2005-06-08 2006-12-13 송기봉 Tire switchable to normal tire and spike tire by single operation as required
CN206884611U (en) * 2017-07-03 2018-01-16 山东丰源轮胎制造股份有限公司 One kind edge nail snow tire
WO2019138792A1 (en) * 2018-01-11 2019-07-18 横浜ゴム株式会社 Studdable tire and pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465021A (en) * 2022-09-26 2022-12-13 中策橡胶集团股份有限公司 Nail-embedded snow tire capable of improving grip force
CN115465021B (en) * 2022-09-26 2023-07-04 中策橡胶集团股份有限公司 Nail-inlaid snow tire capable of improving ground grabbing force

Also Published As

Publication number Publication date
FI20225419A1 (en) 2022-05-13
JP2021070449A (en) 2021-05-06
JP7172953B2 (en) 2022-11-16
CN114599531A (en) 2022-06-07
FI130328B (en) 2023-06-21
CN114599531B (en) 2023-11-14

Similar Documents

Publication Publication Date Title
US8950452B2 (en) Motorcycle tire for running on rough terrain
WO2021085004A1 (en) Pneumatic tire
AU2017207110A1 (en) Pneumatic tire
JP5841568B2 (en) Pneumatic tire
WO2018150746A1 (en) Pneumatic tire
US20170232799A1 (en) Pneumatic Tire
JPH04232106A (en) Tire tread
JP4180910B2 (en) Heavy duty radial tire
WO2013042023A1 (en) Winter tyre
JP3657934B2 (en) Heavy duty tire
WO2018150742A1 (en) Pneumatic tire
US10232670B2 (en) Pneumatic tire
US11865869B2 (en) Pneumatic tire
JP4255229B2 (en) Pneumatic tire
US11701924B2 (en) Pneumatic tire
WO2021085005A1 (en) Pneumatic tire
WO2021117678A1 (en) Pneumatic tire
JPWO2019138792A1 (en) Studd tires and pneumatic tires
AU2019339359B2 (en) Pneumatic tire
WO2018164072A1 (en) Pneumatic tire
RU2780887C1 (en) Pneumatic tire
RU2797953C1 (en) Air tire
WO2020196415A1 (en) Pneumatic tire
WO2020054767A1 (en) Pneumatic tire
JPH0880712A (en) Heavy load radial tire for winter season

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881802

Country of ref document: EP

Kind code of ref document: A1