WO2021084803A1 - 加熱調理用固形状ペースト組成物及びその製造方法 - Google Patents

加熱調理用固形状ペースト組成物及びその製造方法 Download PDF

Info

Publication number
WO2021084803A1
WO2021084803A1 PCT/JP2020/026288 JP2020026288W WO2021084803A1 WO 2021084803 A1 WO2021084803 A1 WO 2021084803A1 JP 2020026288 W JP2020026288 W JP 2020026288W WO 2021084803 A1 WO2021084803 A1 WO 2021084803A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mass
less
frozen
present
Prior art date
Application number
PCT/JP2020/026288
Other languages
English (en)
French (fr)
Inventor
徳浩 日比
Original Assignee
株式会社Mizkan Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Mizkan Holdings filed Critical 株式会社Mizkan Holdings
Priority to JP2021517057A priority Critical patent/JP6948098B2/ja
Priority to CA3159765A priority patent/CA3159765C/en
Priority to EP20880430.2A priority patent/EP4039104A4/en
Priority to TW109137820A priority patent/TWI813915B/zh
Publication of WO2021084803A1 publication Critical patent/WO2021084803A1/ja
Priority to US17/734,570 priority patent/US20220264917A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/109Types of pasta, e.g. macaroni or noodles
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/04Products made from materials other than rye or wheat flour
    • A21D13/045Products made from materials other than rye or wheat flour from leguminous plants
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/13General methods of cooking foods, e.g. by roasting or frying using water or steam
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a solid paste composition for cooking and a method for producing the same.
  • various ingredients such as cereal flour and starch are used as raw materials, and water and salt are added to this and kneaded to obtain dough, and a wide variety of solid pastes for cooking are molded into various shapes.
  • the composition is present.
  • the shape is generally elongated (for example, pasta / noodle-like food), but there are also those molded into strips, plates, strips, cylinders, dumplings, granules, and the like.
  • compositions for cooking are eaten after cooking in both raw and dry states, but the composition is difficult to soften during cooking and it takes time to cook.
  • the composition having improved softening suitability during cooking has a problem that it becomes difficult to cook because the composition during cooking tends to bind.
  • noodles are produced by mixing a dough raw material containing a noodle wire loosening improving agent with water.
  • Patent Document 1 contains noodle string loosening improving agents such as emulsified fats and oils, the taste of those improving agents is felt and it is not preferable. In addition, there is a problem that it is not possible to meet the recent needs for food additive-free.
  • the composition for cooking with starch as a main component has a problem that when the surface is hardened in order to enhance the texture, the elasticity becomes strong and a rubber-like texture is given.
  • ⁇ Item [1] A solid paste composition for cooking that satisfies all of the following (1) to (4). (1) Contains 19% by mass or more of starch in terms of dry mass. (2) Contains 4.0% by mass or more of protein in terms of dry mass. (3) A composition frozen section X obtained by heating the composition in water at 90 ° C. for 6 minutes and then freezing the frozen composition at ⁇ 25 ° C. along a certain cut surface X to a thickness of 30 ⁇ m. , The value of the following [ ⁇ ] (hereinafter referred to as “ ⁇ 1”) when measured under the following [Condition A] is 16.0 or less.
  • ⁇ Item [3] Item 6. The composition according to Item [1] or [2], wherein the cut surface X in the [Condition A] is a cross section orthogonal to the longitudinal direction of the composition.
  • ⁇ Item [4] The composition according to any one of items [1] to [3], further satisfying the following (5) and (6).
  • the composition was heated in water at 90 ° C. for 6 minutes, and then the frozen composition frozen at ⁇ 25 ° C. was cut to a thickness of 30 ⁇ m along a cut surface Y orthogonal to the cut surface X.
  • the value of the [ ⁇ ] (hereinafter referred to as “ ⁇ 2”) when the composition frozen section Y is measured under the above [Condition A] is 16.0 or less.
  • composition according to any one of Items [1] to [5], wherein the starch grain structure observed when a 6% suspension of the pulverized product of the composition is observed is 300 or less / mm 2.
  • Stuff. ⁇ Item [7] The composition according to any one of items [1] to [6], which comprises a component derived from an edible plant.
  • composition according to item [9] wherein the beans are made from one or more kinds of beans selected from the genus Peas, the genus Wild bean, the genus Cajanuses, the genus Vigna, the genus Vetches, the genus Cicers, the genus Glycine and the genus Lentil. Stuff.
  • -Item [11] Item 2.
  • -Item [12] The composition according to any one of Items [7] to [11], wherein the ratio of the starch content derived from the edible plant to the total starch content in the composition is 10% by mass or more.
  • -Item [13] The composition according to any one of Items [7] to [12], wherein the ratio of the protein content derived from the edible plant to the total protein content in the composition is 10% by mass or more.
  • -Item [14] The composition according to any one of items [1] to [13], which is not a swelling product.
  • -Item [15] The composition according to any one of Items [1] to [14], wherein the dry content standard moisture content is 60% by mass or less.
  • ⁇ Item [16] A pulverized composition obtained by pulverizing the composition according to any one of items [1] to [15].
  • ⁇ Item [17] A pulverized composition agglomerate obtained by aggregating the pulverized composition according to Item [16].
  • (I) Prepare a paste dough composition having a starch content of 10.0% by mass or more in terms of dry mass, a protein content of 4% by mass or more in terms of dry mass, and a dry mass-based moisture content of 20% by mass or more. stage.
  • (Ii) A step of kneading the prepared composition of the step (i) under the conditions of applying a temperature of 110 ° C. or higher and 190 ° C. or lower, an SME value of 400 kJ / kg or higher, and a pressure of 0.1 MPa or higher.
  • Item 3 The production method according to Item [18], wherein the kneading treatment of the step (ii) is carried out for 0.1 minutes or more and 60 minutes or less.
  • -Item [20] The production method according to item [18] or [19], further comprising the following step (iii) after the step (ii).
  • step (Iii) A step of lowering the temperature of the composition after the kneading treatment of the step (ii) to a temperature at which the composition does not swell.
  • the dough composition is continuously maintained for 0.02 hours or more from the time when the temperature of the dough composition is lowered to less than 90 ° C.
  • a solid paste composition for cooking and a method for producing the same, which is excellent in softening of the composition during cooking and has reduced binding property of the composition during cooking.
  • Solid paste composition for cooking One aspect of the present invention relates to a solid paste composition for cooking (hereinafter, may be referred to as “solid paste composition of the present invention” or “composition of the present invention”).
  • heating generally refers to heating a food directly using fire or microwaves or indirectly through a medium such as water or air to increase the temperature of the food.
  • the cooking method to raise Generally, it means cooking at a heating temperature of, for example, about 80 ° C. to 99 ° C. for a time of, for example, 1 minute or more and 60 minutes or less. Examples of such a cooking method include, but are not limited to, baking, simmering, frying, and steaming.
  • solid state means having a solid state that can retain its shape even when cooked.
  • the "paste composition” represents a food composition produced by kneading foodstuffs, more preferably a food composition produced by kneading foodstuffs derived from edible plants, and further preferably edible plants. Represents a food composition produced by kneading.
  • the composition of the present invention has a property of suppressing the elution of components in water, and is therefore used for cooking in liquid (particularly in water), which is a cooking environment in which components are easily eluted.
  • the solid paste composition for cooking is a noodle string or noodle strip-shaped composition such as noodles or pasta
  • it is cooked in water for eating (for example, after being cooked in water at 90 ° C. or higher for 5 minutes or longer).
  • it since it has a property of maintaining an edible shape, it is preferably a noodle string or noodle strip-shaped composition such as noodles or pasta.
  • composition of the present invention are not limited to these, but are limited to pasta, Chinese noodles, udon noodles, Inaniwa udon noodles, kishimen noodles, hoto noodles, sweet noodles, hiyamugi noodles, noodles, soba noodles, soba noodles, rice noodles, pho, and cold noodles.
  • examples include noodles, vermicelli, oatmeal, kusukusu, kishimen, tok, and rice noodles.
  • Examples of pasta include long pasta and short pasta.
  • Long pasta is usually a general term for elongated pasta, but in the present invention, it is a concept that includes udon noodles, soba noodles, and the like. Specific examples include, but are not limited to, spaghetti (diameter: 1.6 mm to 1.7 mm), spaghettini (diameter: 1.4 mm to 1.5 mm), vermicelli (diameter: 2.0 mm). ⁇ 2.2mm), capellini (diameter: 0.8mm ⁇ 1.0mm), linguine (minor axis 1mm, major axis 3mm), tagliatelle or fettuccine (flat noodles with width 7mm ⁇ 8mm), pappardelle (width 10mm ⁇ Flat noodles of about 30 mm) and the like. It is useful and preferable to use the composition of the present invention because long pasta has a large contact area between the compositions and tends to have commercial characteristics that are easily bound as a result of loss of smoothness.
  • Short pasta is usually a general term for short pasta, but in the present invention, it is a concept that includes those processed into smaller sizes after molding such as fragora (granular pasta) and couscous.
  • Specific examples include, but are not limited to, macaroni (cylindrical shape with a diameter of about 3 mm to 5 mm), penne (cylindrical shape with both ends cut diagonally like a pen tip), and farfalle (a cylindrical shape with a diameter of about 3 mm to 5 mm).
  • Examples include butterfly-like shape), conchiglie (shell-like shape), orecchiette (ear-like dome shape), and the like.
  • the present invention is particularly useful when applied to a solid paste composition for cooking in a dry state.
  • the "dry” state refers to a state in which the dry content standard moisture content is less than 25% by mass and the water activity value is 0.85 or less.
  • the composition of the present invention in such a dry embodiment preferably has a moisture content of less than 20% by mass, more preferably less than 15% by mass, and has a water activity value of 0.80 or less, further 0. It is preferably 75 or less.
  • the water content in the solid paste composition can be measured by subjecting the dried powder to a vacuum heating drying method described later, and the water activity value can be measured by a general water activity measuring device (for example, electricity). It is possible to measure according to a standard method using "LabMaster-aw NEO” manufactured by Novacina Co., Ltd. using a resistance type (electrolyte type) humidity sensor.
  • the "composition softening property during cooking” indicates the degree to which the composition tends to swell during cooking, and the quality is such that the composition is quickly softened and easily cooked.
  • composition binding property during cooking indicates the degree to which the compositions stick to each other during cooking.
  • compositions for cooking which are mainly composed of starch
  • long pasta-like elongated molded compositions take a long time to cook and are heated if the composition has low softness during cooking. If an attempt is made to increase the softening suitability during cooking, the composition during cooking tends to bind, and thus the above-mentioned problem that cooking becomes difficult tends to occur.
  • the composition of the present invention has physical characteristics that are easy to cook, in which the softness of the composition during cooking is enhanced and the cooking time is shortened, and the binding property of the composition during cooking is suppressed. ..
  • the compositions of the present invention are particularly useful when applied to elongated molded compositions.
  • the composition of the present invention in such an elongated molded embodiment is not particularly limited, but is usually 20 mm or less, preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, still more preferably 2 mm. It preferably has the following diameters.
  • the "diameter" of the solid paste composition is the major axis of the cut surface when the solid paste composition is cut perpendicularly to the longitudinal direction (the maximum length of a line segment connecting any two points in the cross section). ) Means.
  • the cut surface is circular, its diameter, if it is elliptical, its major axis, and if it is rectangular (for example, in the case of a composition molded into a plate), its diagonal line is a solid paste composition. Corresponds to the "diameter" of an object.
  • composition of composition contains starch in a predetermined ratio or more.
  • the lower limit of the starch content in the composition of the present invention is usually 19% by mass or more in terms of dry mass. Above all, it is preferably 20% by mass or more, further 25% by mass or more, further 30% by mass or more, further 35% by mass or more, particularly 40% by mass or more, and particularly preferably 45% by mass or more.
  • the upper limit of the starch content in the composition of the present invention is not particularly limited, but is, for example, 85% by mass or less in terms of dry mass, particularly 80% by mass or less, 70% by mass or less, or 60% by mass. It can be less than or equal to%.
  • the origin of starch in the composition of the present invention is not particularly limited. Examples include those derived from plants and those derived from animals, but plant-derived starch is preferable. Specifically, the ratio of the plant-derived starch content to the total starch content of the entire composition is usually 10% by mass or more, particularly 30% by mass or more, further 50% by mass or more, particularly 70% by mass or more, or It is preferably 90% by mass or more, particularly 100% by mass. Examples of plant-derived starches include those derived from cereals, beans, potatoes, vegetables, nuts and fruits, fruits, and the like.
  • the starch in the composition of the present invention may be blended in the composition as an isolated pure product, but it is preferably blended in the composition in a state of being contained in an edible plant.
  • the ratio of the starch content contained in the edible plant to the total starch content of the entire composition is usually 10% by mass or more, particularly 20% by mass or more, and further 30% by mass. % Or more, particularly 40% by mass or more, or 50% by mass or more, or 60% by mass or more, particularly 70% by mass or more, or 80% by mass or more, or 90% by mass or more, particularly 100% by mass.
  • the starch content in the solid paste composition affects the measured value by 80% ethanol extraction treatment according to the method of AOAC996.11 according to the Japanese Food Standard Ingredients Table 2015 (7th edition). Measure by removing soluble carbohydrates (glucose, maltose, maltodextrin, etc.).
  • the composition of the present invention contains a predetermined ratio or more of protein.
  • the composition of the present invention is preferable because the proportion of the low molecular weight component that inhibits the swelling of the starch structure during cooking, which will be described later, is adjusted to a certain range by containing the protein in a predetermined ratio or more.
  • the lower limit of the protein content in the composition of the present invention is usually 4.0% by mass or more in terms of dry mass.
  • It is preferably 0% by mass or more, or 18.0% by mass or more, or 19.0% by mass or more, or 20.0% by mass or more, particularly 21.0% by mass or more.
  • the upper limit of the protein content in the composition of the present invention is not particularly limited, but is usually 85% by mass or less, preferably 80% by mass or less, more preferably 75% by mass or less, further preferably 75% by mass or less in terms of dry mass. It is preferably 70% by mass or less, more preferably 65% by mass or less, still more preferably 60% by mass or less.
  • the origin of the protein in the composition of the present invention is not particularly limited. Examples include those derived from plants and those derived from animals, but protein derived from plants is preferable. Specifically, the ratio of the plant-derived protein content to the total protein content of the entire composition is usually 10% by mass or more, particularly 20% by mass or more, further 30% by mass or more, particularly 40% by mass or more, or It is preferably 50% by mass or more, or 60% by mass or more, particularly 70% by mass or more, or 80% by mass or more, or 90% by mass or more, particularly 100% by mass. Examples of plant-derived proteins include those derived from grains, beans, potatoes, vegetables, nuts and fruits, fruits, and the like, which will be described later.
  • the protein in the composition of the present invention may be blended in the composition as an isolated pure product, but it is preferably blended in the composition in a state of being contained in an edible plant.
  • the ratio of the protein content contained in the edible plant to the total protein content of the entire composition is usually 10% by mass or more, particularly 20% by mass or more, and further 30% by mass. % Or more, particularly 40% by mass or more, or 50% by mass or more, particularly 70% by mass or more, or 90% by mass or more, particularly 100% by mass.
  • the protein and starch in the composition of the present invention are usually 10% by mass or more, particularly 30% by mass or more, further 50% by mass or more, particularly 70% by mass or more, or 90% by mass or more, particularly 100% by mass.
  • both are preferably derived from beans, more preferably derived from beans of the same species, and even more preferably derived from beans of the same individual.
  • each of the protein and the starch in the composition of the present invention is usually 10% by mass or more, particularly 20% by mass or more, further 30% by mass or more, particularly 40% by mass or more, or 50% by mass or more, or 60% by mass.
  • 70% by mass or more, 80% by mass or more, or 90% by mass or more, particularly 100% by mass are blended together in a state of being contained in an edible plant. The same applies to proteins and starches in the dough composition.
  • the protein content in the solid paste composition is the amount of nitrogen quantified by the improved Kjeldahl method according to the Standard Tables of Food Composition in Japan 2015 (7th edition), and the "nitrogen-protein conversion coefficient" is used. Measure by multiplying and calculating.
  • the total fat content in the composition of the present invention is not limited, but is usually less than 17% by mass, particularly less than 15% by mass, and further less than 13% by mass, particularly 10% by mass in terms of dry mass. Less than, or less than 8% by mass, or less than 7%, or less than 6%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, In particular, it is preferably less than 0.8% by mass.
  • the lower limit of the total fat content is not particularly limited, but is usually preferably 0.01% by mass or more in terms of dry mass.
  • the total fat content in the solid paste composition is measured by the Soxhlet extraction method using diethyl ether according to the Standard Tables of Food Composition in Japan 2015 (7th edition).
  • Dry content standard moisture content Among the conventional solid paste compositions for cooking, those having a low dry content standard moisture content are likely to bind to the composition during cooking due to the heat load during drying. Therefore, the present invention is particularly dry. It is useful when applied to a composition having a water content based on a certain amount or less.
  • the dry content-based moisture content in the composition of the present invention is not limited, but is, for example, 60% by mass or less, particularly 50% by mass or less, 40% by mass or less, or 30% by mass or less. Alternatively, it may be 20% by mass or less, or 15% by mass or less.
  • the lower limit of the dry content-based moisture content in the composition of the present invention is not limited, but from the viewpoint of industrial production efficiency, for example, 0.5% by mass or more, or 1% by mass or more, or It can be 2% by mass or more.
  • the dry content-based moisture content in the composition of the present invention may be derived from various components of the composition, or may be derived from water further added.
  • the "dry content-based moisture content” means the ratio of the total amount of water derived from the raw material of the composition of the present invention and the separately added water content to the total amount of solid content.
  • the value is measured by heating to 90 ° C. by the vacuum heating and drying method according to the Standard Tables of Food Composition in Japan 2015 (7th edition). Specifically, an appropriate amount of sample was collected in a pre-constant weight measuring container (W0), weighed up to 0.1 mg (W1), and adjusted to a predetermined temperature (more specifically, 90 ° C.) at normal pressure.
  • a decompression electric constant temperature dryer remove the lid of the scale container or put it with the mouth open, close the door, operate the vacuum pump, dry for a certain period of time at a predetermined decompression degree, stop the vacuum pump, Send dry air to return to normal pressure, take out the scale container, cover it, allow it to cool in a desiccator, and then weigh it. In this way, drying, allowing to cool, and measuring the mass are repeated until the constant amount (W2, weighs up to 0.1 mg) is repeated, and the dry amount-based moisture content (mass%) is calculated by the following formula.
  • W0 indicates the mass (g) of the scale container containing the sample
  • W1 indicates the mass (g) of the scale container containing the sample before drying
  • W2 indicates the mass (g) of the scale container containing the sample after drying. Indicates mass (g).
  • the beans when beans are used as edible plants, the beans include beans, beans, wild beans, wild beans, sardines, lentils, chicks, lentils, lupinus, lentils, clusters. It is preferable to use one or more species selected from legumes of the genus Mame, Tobikazura, Inagomame and Parkia, especially the genus Pea, the genus Wild bean, the genus Kimame, the genus Sasage, the genus Solamame, the genus Chrysanthemum, the genus Soybean, and the genus Lentil. It is preferable to use one or more kinds of beans selected from the above beans.
  • legumes include, but are not limited to, pea (especially yellow pea, white pea, green peas which are immature seeds), green beans (hidden beans), kidney beans, red green beans, white green beans, etc. Black beans, quail beans, tora beans, lye beans, benivana green beans, kimame, green beans, sage, azuki beans, soybeans, soybeans (especially soybeans harvested together with their pods in an immature state, giving the beans a green appearance.
  • pea especially yellow pea, white pea, green peas which are immature seeds
  • green beans hidden beans
  • kidney beans red green beans, white green beans, etc.
  • the beans of the present invention may have a mode that does not contain the seed coat of beans, or may have a mode that contains the seed coat of beans.
  • the seed coat of beans does not mean a sheath containing beans, but a skin having a film-like structure that covers the surface layer of the beans themselves.
  • the seed coat of beans can be separated from beans by a general molting machine or the like. As the seed coat of beans, beans with seed coat may be used, or seed coat separated from beans may be used separately.
  • the particle size of the bean powder is preferably less than 500 ⁇ m, for example, less than 450 ⁇ m, particularly less than 400 ⁇ m. Further, it is more preferably less than 300 ⁇ m. n.
  • particle size d90 means the ratio of the cumulative value of the particle frequency% on the larger side when the particle size distribution of the measurement target is measured on a volume basis and divided into two from a certain particle size. The ratio of the cumulative value of the particle frequency% on the smaller side to the ratio is defined as the particle size of 10:90.
  • ultrasonic processing means processing ultrasonic waves having a frequency of 40 kHz at an output of 40 W for 3 minutes unless otherwise specified.
  • the measurement conditions for the particle size d90 after ultrasonic treatment shall be as described below.
  • the composition of the present invention may contain any one or more ingredients.
  • foodstuffs include vegetable foodstuffs (vegetables, potatoes, mushrooms, fruits, algae, grains, nuts and seeds, etc.), animal foodstuffs (seafood, meat, eggs, milk, etc.), Examples include microbial foods.
  • the content of these ingredients can be appropriately set within a range that does not impair the object of the present invention.
  • Seasonings, food additives, etc . The composition of the present invention may contain any one or more seasonings, food additives and the like.
  • seasonings, food additives, etc. include soy sauce, miso, alcohols, sugars (for example, glucose, sucrose, fructose, glucose fructose syrup, glyceride glucose syrup, etc.), sugar alcohols (eg, xylitol, erythritol, mulch).
  • artificial sweeteners eg, sclarose, aspartame, saccharin, assesulfam K, etc.
  • minerals eg, calcium, potassium, sodium, iron, zinc, magnesium, etc., and salts thereof, etc.
  • fragrances eg, etc.
  • pH adjusters eg, etc.
  • cyclodextrin antioxidants (eg vitamin E, vitamin C, tea extract, raw coffee bean extract, chlorogenic acid, spices) Extracts, caffeic acid, rosemary extract, vitamin C palmitate, rutin, quercetin, yamamomo extract, sesame extract, etc.)
  • emulsifiers eg, glycerin fatty acid ester, acetate monoglyceride, lactic acid monoglyceride, citric acid monoglyceride, diacetyl tartaric acid Monogly
  • the composition of the present invention is a so-called emulsifier, colorant, thickening stabilizer (for example, food additive labeling pocket book (2011 edition) "Food additive for labeling”. It is preferable not to contain any one selected from “colorant”, “thickening stabilizer (particularly” modified starch ”)", and “emulsifier” in the "material name table”. It is more preferable that two are not contained, and it is further preferable that all three are not contained.
  • the composition of the present invention preferably does not contain a gelling agent in order to impart elasticity to the composition without containing a gelling agent and to prevent excessive elasticity.
  • the composition of the present invention preferably does not contain an emulsifier.
  • the composition of the present invention uses food additives (for example, the substances listed in the "Food Additive Substance Name Table for Labeling" in the Food Additive Labeling Pocket Book (2011 edition) as food additives. It is especially desirable that it does not contain (used for use).
  • the composition of the present invention contains sugars (particularly refined sugars such as glucose, sucrose, fructose, fructose-fructose liquid sugar, and fructose-glucose liquid sugar). It is preferable not to add.
  • the conventional solid paste composition for cooking retains the elasticity of the composition by containing sodium chloride, but it may affect the taste.
  • 3% by mass or more of sodium chloride is usually used to maintain the elasticity of the composition, so that such a problem is remarkable.
  • the amount of sodium chloride used is extremely small, or even if sodium chloride is not added, the composition can be obtained in which the decrease in elasticity is suppressed, and the composition has good quality. It is preferable because it becomes a thing.
  • sodium chloride is added to a solid paste composition for cooking such as pasta, udon, and bread, which normally has adhesiveness and elasticity due to network structure of gluten and sodium chloride. It is preferable because a composition of good quality can be obtained without any problem.
  • the content of sodium chloride in the composition of the present invention is usually 3% by mass or less, particularly 2% by mass or less, further 1% by mass or less, and further 0.7% by mass or less in terms of dry mass. In particular, it is preferably 0.5% by mass or less.
  • the lower limit of the content of sodium chloride in the composition of the present invention is not particularly limited and may be 0% by mass.
  • composition of the present invention has the characteristics described below when the frozen section obtained under specific conditions is analyzed by an imaging mass spectrometry method using MALDI-TOFMS.
  • the composition is heated in water at 90 ° C. for 6 minutes, and then the frozen composition frozen at ⁇ 25 ° C. is cut to a thickness of 30 ⁇ m along a specific cut surface to prepare a frozen section. This is analyzed by an imaging mass spectrometry method using MALDI-TOFMS.
  • the preparation of frozen sections of the composition and the analysis by the imaging mass spectrometry method using MALDI-TOFMS are not limited, but are preferably performed by, for example, the following procedure. That is, after treating the composition in 1000 times the amount of water (more specifically, 90 ° C. water) heated to 90 ° C. or higher for 6 minutes, Kawamoto, "Use of a new adhesive film for the preparation of multi- purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants ", Arch. Histor. Cytol., (2003), 66 [2]: Thickness at -25 ° C according to the Kawamoto method described in 123-43.
  • Frozen sections are prepared by cutting to 30 ⁇ m. The frozen section of the composition thus obtained is subjected to analysis by an imaging mass spectrometry method using MALDI-TOFMS described later.
  • a rapiflex (Bruker) is used as the MALDI-TOFMS analyzer for imaging mass spectrometry, and a scanner GT-X830 (EPSON) is used for image capture under the condition of 6400 dpi, and the analysis software flexControl (Bruker) is used.
  • the measurement conditions are set to laser frequency 10 kHz, laser power 100, number of shots 500, sensitivity gain26x (2905V), Scanrange: X5 ⁇ mY5 ⁇ m, and ResultingField size: X9 ⁇ mY9 ⁇ m, and imaging is performed so as to surround the entire cross section of the composition. Set the area.
  • the matrix for analysis a matrix corresponding to the measurement target is used, and TM-Sprayer (HTX Technologies, manufactured by LLC) is used for spraying the matrix, and the spraying conditions are 70 ° C. and 10 sprays.
  • sinapinic acid was dissolved in ethanol (10 mg / mL), 2 mL was sprayed on an IOT slide glass to which a frozen section was attached, dried in a desiccator under reduced pressure for 10 minutes, and then sinapinic acid was dissolved in 30% acetonitrile ( 60 mg / mL) is sprayed on 2 mL and dried in a vacuum desiccator for 10 minutes before use.
  • Signal intensity analysis is performed with Fleximage. Specifically, the signal intensity of m / z ⁇ 0.1 of each target substance is displayed in a shade of white in the image, and the signal intensity of each target substance is measured by measuring the intensity of white in the cross-sectional image of the composition. Measure the intensity (hence the black background with no signal). More specifically, imageJ is used as image analysis software, and the signal intensity is measured by designating the measurement points so as to surround the entire cross-sectional image of the composition. That is, the signal intensity in the present invention represents the total signal intensity in the range of m / z median ⁇ 0.1 of each target substance.
  • the composition of the present invention exhibits the property that the composition easily swells during cooking, so that the composition is quickly softened to a quality that is easy to cook, and by extension, the outflow of components due to cooking is suppressed. It is preferable because the composition has an excellent taste when eaten. The principle is unknown, but it is thought that the proportion of low-molecular-weight components that inhibit the swelling of the starch structure decreases during cooking, and the swelling progresses rapidly. The composition has an excellent taste.
  • the numerical values of the value [ ⁇ ] represented and measured under different conditions may be referred to as ⁇ 1, ⁇ 2, ..., Etc., respectively.
  • the value [ ⁇ ] when measured under the condition A described later was 16. It is 0 or less. Among them, 13.0 or less, further 10.0 or less, especially 8.0 or less, or 7.0 or less, or 6.0 or less, or 5.0 or less, or 4.0 or less, or 3.0 or less, in particular. It is preferably 2.5 or less.
  • the lower limit of such a ratio is not particularly limited, but is usually preferably 0.01 or more from the viewpoint of industrial productivity.
  • the composition of the present invention is a frozen section according to the above procedure.
  • one of the features is that it is equal to or less than a predetermined value (feature (b)).
  • the numerical values of the value [ ⁇ ] measured under different conditions may be referred to as ⁇ 1, ⁇ 2, ..., Respectively.
  • the value [ ⁇ ] when measured under the condition B described later and the above-mentioned is preferably 7.0 or less.
  • the composition of the present invention exhibits a characteristic that the composition during cooking is difficult to bind, so that the quality becomes easier to cook, and the individual compositions become uniform during cooking. It is preferable because the composition is cooked in the same manner and has an excellent taste when eaten.
  • the lower limit of such a ratio is not particularly limited, but is usually preferably 0.01 or more from the viewpoint of industrial productivity.
  • the composition of the present invention has one of more preferable features that the above-mentioned value [ ⁇ ] is not more than a predetermined value (feature (c)). Specifically, when the composition of the present invention was frozen-intercepted according to the above procedure and analyzed by an imaging mass spectrometry method using MALDI-TOFMS, the value [ ⁇ ] was 1. It is preferably 70 or less. By having such physical properties, the composition of the present invention exhibits a characteristic that the composition during cooking is more difficult to bind, so that the quality is more easily cooked, and by extension, the composition is excellent in taste at the time of eating. Therefore, it is preferable.
  • the principle is unknown, but it is thought that this is because the proportion of polymer components that impart viscosity to the starch structure during cooking is reduced.
  • the lower limit of such a ratio is not particularly limited, but is usually preferably 0.01 or more from the viewpoint of industrial productivity.
  • the composition of the present invention satisfies the above-mentioned features (a) and (b), preferably in addition to them, when it is freeze-sectioned according to the above procedure and analyzed by an imaging mass spectrometry method using MALDI-TOFMS.
  • the feature (c) is satisfied.
  • the composition of the present invention refers to the above-mentioned features (a) and (b) (preferably, the above-mentioned features (c) in addition to the above-mentioned features (a) and (b) (preferably, the above-mentioned features (c)) for frozen sections obtained by cutting a frozen product of the composition at an arbitrary cut surface. )) Satisfaction is sufficient.
  • the composition of the present invention has the above-mentioned features (a) and (b) (preferably, in addition to the above-mentioned features (c), for frozen sections obtained by cutting at least on a cut plane orthogonal to the longitudinal direction of the composition. )) Is preferably satisfied.
  • the "longitudinal direction" of the composition in the present invention represents the long side direction of the virtual rectangular parallelepiped having the minimum volume inscribed by the composition, and the "shortward direction" of the composition means the direction perpendicular to the longitudinal direction.
  • the extrusion direction of the composition corresponds to the longitudinal direction in the state before cutting.
  • the composition of the present invention comprises a frozen section X obtained by cutting a frozen composition on an arbitrary cut surface X and a frozen section Y obtained by cutting the frozen composition on a cut surface Y orthogonal to the cut surface X.
  • the values ( ⁇ 1, ⁇ 1) obtained for the frozen section X of the cut surface X and the values obtained for the frozen section Y of the cut surface Y when each parameter related to the shape of the site to be stained was measured by the above procedure. It is preferable that the average value with ( ⁇ 2, ⁇ 2) satisfies the above-mentioned features (a) and (b) (preferably, the above-mentioned feature (c) in addition to them).
  • both the values ( ⁇ 1, ⁇ 1) obtained for the frozen section X of the cut surface X and the values ( ⁇ 2, ⁇ 2) obtained for the frozen section Y of the cut surface Y are the above-mentioned features (a) and (b). ) (Preferably, in addition to them, the above-mentioned feature (c)) is more preferably satisfied.
  • the cut surface X is a cut surface orthogonal to the longitudinal direction
  • the cut surface Y is a cut surface parallel to the longitudinal direction.
  • the signal intensity of the entire composition can be estimated by measuring the signal intensity of any cross section as a representative site. When bias is observed, the signal intensities of a plurality of cut surfaces are measured, and the results are added up to obtain a measured value of the signal intensities of the entire composition.
  • composition of the present invention has a continuous structure in which the starch in the composition is leached from the inside of the starch granules when the number of starch granule structures observed under specific conditions is less than a predetermined value. preferable.
  • the starch grain structure is a structure having an iodine dyeing property having a circular shape having a diameter of about 1 to 50 ⁇ m in a plan image, and is, for example, a 6% suspension formed by suspending a pulverized composition of a composition in water.
  • the solution can be prepared and observed under a magnified field of view. Specifically, the pulverized composition is classified with a sieve having a mesh size of 150 ⁇ m, and 3 mg of the composition powder of 150 ⁇ m pass is suspended in 50 ⁇ L of water to prepare a 6% suspension of the composition powder.
  • a preparation on which this suspension is placed may be prepared and polarized and observed with a phase-contrast microscope, or an iodine-stained slide may be observed with an optical microscope.
  • the magnification is not limited, but can be, for example, a magnification of 100 times or 200 times. If the distribution of starch grain structure in the preparation is uniform, the proportion of starch grain structure in the entire preparation can be estimated by observing the representative field of view, but if the distribution is biased, it is finite. By observing multiple fields of view and adding up the observation results, it is possible to obtain the measured value of the entire preparation.
  • the number of starch grain structures observed under the above conditions is usually 300 or less / mm 2 , especially 250 or less / mm 2 , and further 200 or less / mm 2 .
  • the "crushed composition”, “crushed composition” or “crushed composition” refers to a composition crushed so that d90 is more than 50 ⁇ m and less than 1000 ⁇ m unless otherwise specified. means.
  • the degree of starch gelatinization in the composition of the present invention is preferably a predetermined value or more from the viewpoint of moldability of the composition.
  • the starch gelatinization degree in the composition of the present invention is usually 30% or more, particularly preferably 40% or more, further 50% or more, particularly 60% or more, and particularly preferably 70% or more.
  • the upper limit of the degree of gelatinization is not particularly limited, but if it is too high, the starch may be decomposed and the composition may have a sticky and unfavorable quality. Therefore, the upper limit of the degree of gelatinization is preferably 99% or less, particularly 95% or less, and more preferably 90% or less.
  • the degree of gelatinization of the composition is measured by using the second method of glucoamylase.
  • the measurement conditions of various parameters related to the particle size distribution of the particle size d90 after the ultrasonic treatment shall be according to the following conditions using a laser diffraction type particle size distribution measuring device.
  • a laser diffraction type particle size distribution measuring device used for the measurement is not particularly limited, and for example, a Microtrac MT3300 EXII system manufactured by Microtrac Bell Co., Ltd. can be used.
  • the measurement application software is not particularly limited, but for example, DMS2 (Data Management System version 2, Microtrack Bell Co., Ltd.) can be used.
  • the cleaning button of the software when measuring, press the cleaning button of the software to perform cleaning, then press the Set zero button of the software to perform zero adjustment, and sample by sample loading.
  • the sample may be directly added until the concentration of is within the appropriate range.
  • a sample that has been subjected to ultrasonic treatment in advance may be charged, or after the sample is charged, ultrasonic treatment may be performed using the above-mentioned measuring device, and then measurement may be performed. In the latter case, a sample that has not been subjected to ultrasonic treatment is input, the concentration is adjusted within an appropriate range by sample loading, and then the ultrasonic treatment button of the same software is pressed to perform ultrasonic treatment.
  • the means for powdering beans is not particularly limited.
  • the temperature during the powdering treatment is not particularly limited, but when the powder is exposed to a high temperature, the elasticity of the composition of the present invention tends to decrease, so that it is preferably dried at a temperature of, for example, 200 ° C. or lower.
  • the method of pulverizing after heating in the state of beans is not particularly limited because the heat load is reduced.
  • the pressure during the miniaturization treatment is not limited, and any of high pressure pulverization, normal pressure pulverization, and low pressure pulverization may be used.
  • Examples of devices for such miniaturization processing include, but are not limited to, devices such as blenders, mixers, mills, kneaders, crushers, crushers, and grinders.
  • a medium stirring mill such as a dry bead mill, a ball mill (rolling type, vibration type, etc.), a jet mill, a high-speed rotary impact type mill (pin mill, etc.), a roll mill, a hammer mill, or the like can be used. ..
  • Non-swelling The composition of the present invention also exerts its effect on swelled foods (particularly swelled foods having a density specific gravity of less than 1.0 due to swelling), but the composition can also be in a non-swelled state.
  • the composition of the present invention can be obtained by lowering the temperature while preventing swelling and then reducing the pressure to about atmospheric pressure.
  • Another aspect of the present invention relates to a method for producing the composition of the present invention (hereinafter, may be referred to as "the production method of the present invention").
  • the method for preparing the composition of the present invention is not particularly limited, and any method can be used as long as a composition satisfying the above-mentioned various requirements can be obtained.
  • the above-mentioned ingredients of the composition of the present invention for example, edible plants such as beans, may be mixed with other foodstuffs, seasonings, and other ingredients optionally used. If necessary, treatments such as heating and molding may be added.
  • the production method of the present invention includes, for example, the following steps (i) to (ii). Furthermore, the production method of the present invention may include, for example, the following step (iii).
  • (I) Prepare a paste dough composition having a starch content of 10.0% by mass or more in terms of dry mass, a protein content of 4% by mass or more in terms of dry mass, and a dry mass-based moisture content of 20% by mass or more. stage.
  • (Iii) A step of lowering the temperature of the composition after the kneading treatment of the step (ii) to a temperature at which the composition does not swell.
  • the production method of the present invention will be described in detail.
  • the dough composition of the present invention contains starch in a predetermined ratio or more so that the starch content in the final composition becomes a predetermined value.
  • the lower limit of the starch content in the composition of the present invention is usually 10% by mass or more in terms of dry mass. Above all, it is preferably 15% by mass or more, further 20% by mass or more, further 25% by mass or more, further 30% by mass or more, particularly 35% by mass or more, and particularly preferably 40% by mass or more.
  • the upper limit of the starch content in the composition of the present invention is not particularly limited, but is, for example, 85% by mass or less in terms of dry mass, particularly 80% by mass or less, 70% by mass or less, or 60% by mass. It can be less than or equal to%.
  • the measuring method is the same as the method in the composition.
  • the dough composition of the present invention contains a predetermined ratio or more of protein.
  • the composition of the present invention is preferable because the proportion of the low molecular weight component that inhibits the swelling of the starch structure during cooking, which will be described later, is adjusted to a certain range by containing the protein in a predetermined ratio or more.
  • the lower limit of the protein content in the composition of the present invention is usually 4.0% by mass or more in terms of dry mass.
  • the upper limit of the protein content in the composition of the present invention is not particularly limited, but is usually 85% by mass or less, preferably 80% by mass or less, more preferably 75% by mass or less, further preferably 75% by mass or less in terms of dry mass. It is preferably 70% by mass or less, more preferably 65% by mass or less, still more preferably 60% by mass or less.
  • the starch and / or protein contained in the paste dough composition of the present invention may be preheated under the condition of containing water. Specifically, at 110 ° C. to 190 ° C. in an environment where the dry content standard moisture content is 20% by mass or more (more preferably 30% by mass or more, further preferably 40% by mass or more, still more preferably 50% by mass or more). It is preferable to use a heated one because the structure in the final paste composition for cooking is easily formed. It is more preferable to use preheated starch and protein (for example, those heated by steam or the like can be used).
  • the starch-containing food material powder is heated in a dry environment with a dry content standard water content of less than 25% by mass. It is not preferable to use a starch heated (for example, 90 ° C. or higher) because the starch is locally heated to promote the solubilization of amylose in its structure and the composition becomes sticky.
  • the composition produced by using such an overheated starch-containing ingredient powder or an overheated ingredient even in the state of the ingredient is a 10-fold amount of iodine solution (0) in the composition.
  • the composition has an absorbance (500 nm) difference of more than 0.70 and an absorbance difference of more than 1.20 in the pulverized composition, resulting in a sticky quality. Therefore, the difference in the composition is 0.
  • a composition adjusted to have a difference of 70 or less and a difference in the powdered composition of 1.20 or less is preferable.
  • the difference is more preferably 0.65 or less, still more preferably 0.60 or less, still more preferably 0.55 or less, still more preferably 0.50 or less, still more preferably 0.45 or less, still more preferably 0.40 or less.
  • the pulverized composition is preferably 1.10 or less, more preferably 1.00 or less, still more preferably 0.90 or less, still more preferably 0.80 or less, still more preferably 0.70 or less, and further. It is preferably 0.60 or less, more preferably 0.50 or less, still more preferably 0.40 or less, and even more preferably 0.30 or less.
  • the lower limit of the difference in absorbance between the composition and the pulverized composition is not particularly limited, but both are usually ⁇ 0.20 or more.
  • the detailed measurement method of the difference is as follows: an iodine solution treated with the composition described below (unless otherwise specified, "0.5 mol / L iodine solution” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. is diluted with water. It is specified based on the absorbance of). That is, when measuring the composition, 1 part by mass of the composition (if there is powder or the like adhering to the surface in advance at the time of measurement, it is removed so as not to damage the surface of the composition) is 9 parts by mass.
  • iodine solution Into an iodine solution (0.25 mM) and allowed to stand at room temperature (20 ° C.) for 3 minutes, and then filtered through a 0.20 ⁇ m filter (Millex-LG, 0.20 ⁇ m hydrophilic polytetrafluoroethylene (PTFE), 13 mm). Is used for absorbance measurement.
  • the optical path length of each of the iodine solution (for calibration) before the composition was added and the filtrate of the iodine solution after the composition was added was 10 mm using a normal spectrophotometer (for example, UV-1800 manufactured by Shimadzu Corporation).
  • the absorbance (500 nm) is measured using the square cell of No. 1, and the soluble component content ratio is measured by determining the difference between the absorbances of the two (absorbance of the filtrate-absorbance of the iodine solution).
  • the absorbance (500 nm) difference of 10 times the amount of the iodine solution (0.25 mM) in the composition is 0.70 or less and / or the composition throughout the entire manufacturing process of the solid paste composition for cooking.
  • a method of producing a composition while controlling the thermal history of starch so that the difference in absorbance in the pulverized product is 1.20 or less is included.
  • the paste dough composition obtained in the above step (i) is kneaded with a certain strength or higher under predetermined high temperature conditions.
  • the proportion of the specific component in the starch structure inside the composition has the characteristics of the above-mentioned analysis by the imaging mass spectrometry method using MALDI-TOFMS, and the present invention has the characteristics.
  • the effect is played.
  • the specific condition at the time of kneading is that the SME (specific mechanical energy) value obtained by the following formula I is 400 kJ / kg or more, so that the starch granules are sufficiently destroyed and the starch in the composition is leached from the inside of the starch granules. It is preferable because it has a continuous structure in the state of being brewed. Kneading is more preferably 450 kJ / kg or more, still more preferably 500 kJ / kg or more, still more preferably 550 kJ / kg or more, still more preferably 600 kJ / kg or more, still more preferably 700 kJ / kg or more, still more preferably 800 kJ / kg or more.
  • the screw rotation speed is preferably more than 150 rpm, more preferably more than 200 rpm, and even more preferably more than 250 rpm. Further, it is more preferable to carry out the above-mentioned kneading at a high temperature of 110 ° C. or higher (more preferably 120 ° C. or higher) because the starch grain structure is easily destroyed. Treatment at high temperature and high SME value is 3% or more (more preferably 5% or more, further preferably 8% or more, still more preferably 10% or more, still more preferably 15% or more, still more preferably 20% or more of the total length of the barrel. ) Is preferable.
  • the above-mentioned treatment at a high temperature and a high SME value is more useful.
  • the upper limit of the treatment temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 170 ° C. or lower, and most preferably 160 ° C. or lower.
  • the above kneading is performed under pressurized conditions with respect to atmospheric pressure.
  • the lower limit of the pressure to be applied is usually 0.1 MPa or more, more preferably 0.3 MPa or more, further 0.5 MPa or more, further 1 MPa or more, further 2 MPa or more, and further preferably 3 MPa or more.
  • the upper limit of the pressure at the time of kneading may be appropriately set from the request of the pressure resistance of the pressure equipment, but can be, for example, 50 MPa or less. Further, when the extruder is used, the pressure applied at the time of kneading can be grasped and adjusted by measuring the outlet pressure thereof.
  • N Screw rotation speed (rpm) during kneading
  • N max Maximum screw rotation speed (rpm)
  • Torque during kneading / maximum torque (%)
  • ⁇ empty Torque at idle / maximum torque (%)
  • Q Total mass flow rate (kg / hour)
  • P max Maximum power (kW) of agitator (for example, extruder)
  • the kneading time may be appropriately determined from the kneading temperature and pressure, the size of the kneading container, and the like.
  • step (ii) processing it is preferable to perform step (ii) processing until the components specified by the analysis by the imaging mass spectrometry method using MALDI-TOFMS are within an appropriate range. More specifically, the process of step (ii) can be performed until the value ⁇ 1 is 16.0 or less and ( ⁇ 1 ⁇ ⁇ 1) is 7.0 or less and / or the value ⁇ 1 is 1.70 or less. preferable. Further, it is particularly preferable to carry out the treatment in step (ii) until the value ⁇ 2 is 16.0 or less and ( ⁇ 2 ⁇ ⁇ 2) is 7.0 or less and / or the value ⁇ 2 is 1.70 or less.
  • the lower limit of the kneading time is usually 0.1 minutes or longer, preferably 0.2 minutes or longer, more preferably 0.3 minutes or longer, more preferably 0.4 minutes or longer, and more preferably 0. .5 minutes or more, more preferably 0.8 minutes or more, more preferably 1 minute or more, still more preferably 2 minutes or more
  • the upper limit of the kneading time is, for example, usually 60 minutes or less, preferably 30 minutes or less, still more preferably. It can be within 15 minutes.
  • the composition temperature is usually lowered to less than 110 ° C., preferably less than 105 ° C., more preferably less than 102 ° C., still more preferably less than 100 ° C. so that the composition does not swell.
  • the pressurizing condition at the time of lowering the temperature is not particularly limited as long as the expansion of the composition can be prevented, but it is preferable that the pressure is the same as the pressure at the time of the kneading process.
  • the lower limit of the pressure to be applied at the time of lowering the temperature is usually 0.1 MPa or more, preferably 0.3 MPa or more, more preferably 0.5 MPa or more, still more preferably 1 MPa or more, still more preferably 2 MPa or more, still more preferable. Is 3 MPa or more.
  • the upper limit of the pressure to be applied when the temperature is lowered can be, for example, 50 MPa or less.
  • the outlet temperature setting of the extruder by further lowering the outlet temperature setting of the extruder while keeping the total mass flow rate above a certain level, the pressure during kneading of (ii) increases, and the binding property of the composition during cooking is further improved, which is more preferable.
  • these conditions may be appropriately adjusted so that the outlet pressure is above a certain level, but the outlet temperature setting of the extruder is less than 90 ° C, more preferably less than 85 ° C, still more preferably less than 80 ° C.
  • the total mass flow rate is preferably 0.5 kg / hour or more, more preferably 0.7 kg / hour or more, and even more preferably 1.0 kg / hour.
  • the composition has a preferable quality.
  • a method of adding water at any of the steps (i) to (ii) to adjust the dry content-based moisture content of the dough composition to 50% by mass or more can be used. More specifically, the method of adding water at the step (i) is preferable. Further, water can be added in a water state or in a steam state, but it is preferable to add the water in a water state.
  • the water retention treatment a method of adding water in the post-step of step (iii) and / or step (iii) can be used.
  • Water can be added in the state of water or in the state of steam, but it is preferable to add the water in the state of water.
  • the water retention treatment can be performed by rehydrating the dry composition to increase the dry content standard moisture content.
  • the majority of the subsequent retention time is preferably 60 ° C. or lower, more preferably 50 ° C. or lower, and most preferably 40 ° C. or lower.
  • a method of performing water retention treatment by increasing the ambient humidity and prolonging the time until the dry content standard moisture content reaches 25% by mass is also used in the post-processes of the step (iii) and / or the step (iii). Can be done.
  • the composition temperature is rapidly lowered to a certain temperature or less to prolong the time until the dry content standard moisture content reaches 25% by mass. Therefore, a method of performing water retention treatment can also be used. More specifically, it is preferable to lower the composition temperature to 80 ° C. or lower, particularly 70 ° C. or lower, 60 ° C. or lower, or 50 in the majority of the time until the dry content standard moisture content reaches 25% by mass. It is more preferable to lower the temperature to °C or less, or 40 °C or less. Further, in the composition produced by using the extruder, it is preferable that the composition temperature is set to the temperature from the stage of being extruded from the outlet, and the composition is produced in a state where the outlet temperature is set to the temperature. More preferred.
  • the temperature of the dough composition inside the extruder is preferably less than 90 ° C (more preferably less than 85 ° C or less than 80 ° C, or less than 75 ° C, or less than 70 ° C, or less than 65 ° C, or The time from when the temperature drops to less than 60 ° C, or less than 55 ° C, or less than 50 ° C, or less than 45 ° C, or less than 40 ° C) until the dry content standard moisture content becomes less than 25% by mass in step (iii).
  • the composition during cooking is provided by having a section in which the internal set temperature of the extruder rises to 110 ° C. or higher in step (ii) and then a section in which the dough is kneaded while lowering the internal set temperature to less than 90 ° C. It is preferable because the binding property is further improved.
  • composition temperature in the step (iii) and / or the post-step of step (iii) is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, still more preferably 70 ° C. or lower, still more preferably 60 ° C. or lower. .. Further, it is more preferable that the step (iii) or the post-step of the step (iii) is performed under normal pressure.
  • the temperature inside the extruder is less than 100 ° C. (more preferable). Is less than 90 ° C., more preferably less than 80 ° C., still more preferably less than 70 ° C., still more preferably less than 60 ° C., even more preferably less than 50 ° C., even more preferably less than 40 ° C.) Is preferably mixed. Further, the dough composition processed according to the above conditions (for example, using an extruder) is used in the step (i) to produce the paste-like composition of the present invention, which is required at the time of processing the paste composition. It is also possible to apply a part of the high temperature pressure strong kneading in the dough composition manufacturing process.
  • the starch by mixing 50% by mass or more of the water content during the production with other raw materials before the inside of the extruder is pressurized (pressurized), it is possible to prevent the starch from changing its characteristics due to overheating. It is preferable because it can be done. It is more preferably 60% by mass or more, further preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 100% by mass. It is most preferable that the water content in these proportions is mixed with other raw materials before the inside of the extruder is heated to 100 ° C. or higher and pressurized.
  • the type of extruder is not limited, but it is preferable that each process from water addition, strong kneading (at least SME value 400 kJ / kg or more), heating, cooling, and extrusion molding can be performed with one unit.
  • an extruder having a structure capable of adding water to the raw material before heating and pressurization is preferable.
  • a uniaxial extruder or a biaxial extruder can be used, but from the viewpoint of realizing strong kneading for promoting the formation of the composition structure of the present invention, a general uniaxial extractor can be used. It is preferable to use a biaxial extruder rather than a ruder.
  • devices generally called single-screw extruders and twin-screw extruders include extruders that merely have a mixer and a kneader function.
  • Such an apparatus is not preferable because strong kneading for forming the composition structure of the present invention cannot be obtained.
  • the structure is strong, and in order for the starch grain structure to be sufficiently destroyed, it is kneaded more than an extruder using only a normal flight screw. It is even more preferred to use significantly more effective barrel sites than usual.
  • the flight screw part is a barrel part with the most general shape, which is also called a transport element, and when the ratio to the total length of the barrel increases, the ability to push the dough composition toward the die increases, but the dough composition is kneaded.
  • the ability to stimulate the reaction is reduced. It is more preferably 90% or less, still more preferably 85% or less.
  • the ratio of the flight screw portion to the total length of the barrel is usually 95% to 100%. Further, 5% or more, more preferably 7% or more, still more preferably 10% or more, still more preferably 12% or more of the total barrel length can be used as the barrel portion having a kneading effect.
  • composition of the present invention can be obtained by going through the above steps (i) to (ii) and, if necessary, further step (iii), but further post-treatment may be added. ..
  • the post-treatment include a molding treatment, a drying treatment, and the like, in addition to the above-mentioned water retention treatment.
  • the solid paste composition is formed into a desired form (for example, the above-mentioned pasta, Chinese noodles, udon, Inaniwa udon, kishimen, hoto, sweet potato, hiyamugi, somen noodles, soba noodles, soba noodles, rice noodles, pho, cold noodles). Noodles, vermicelli, oatmeal, kusukusu, kiritanpo, tok, rice noodles, etc.)
  • a method generally known in the art can be appropriately adopted.
  • the composition may be extruded into an elongated shape by using an apparatus such as an extruder described above.
  • the composition in the case of a flat plate-shaped composition, may be formed into a flat plate shape. Further, by press-molding the composition or cutting or die-cutting the composition formed into a flat plate shape, a composition having an arbitrary shape such as an elongated shape, a granular shape, or a flaky shape can be obtained.
  • any method generally used for drying food can be used. Examples include sun drying, shade drying, freeze drying, air drying (for example, hot air drying, fluidized bed drying method, spray drying, drum drying, low temperature drying, etc.), pressure drying, vacuum drying, microwave drying, oil heat drying, etc. Can be mentioned. Above all, air drying (for example, hot air drying, fluidized bed drying method, spray drying, drum drying, low temperature) is possible because the degree of change in the color tone and flavor inherent in the food is small and the aroma (burnt odor, etc.) other than the food can be controlled. Drying, etc.) or freeze-drying is preferred.
  • the solid paste composition for cooking of the present invention may be pulverized and used. That is, in the above-mentioned production method of the present invention, after the step (ii) or (iii), (iv) a step of pulverizing the composition to obtain a pulverized composition may be provided.
  • the pulverized product of the composition of the present invention thus obtained (which is appropriately referred to as “the pulverized composition of the present invention”) is also an object of the present invention.
  • the pulverization conditions are not particularly limited and are arbitrary, but d90 is more than 50 ⁇ m and less than 1000 ⁇ m (more preferably less than 500 ⁇ m, further less than 400 ⁇ m, Further, it is preferable to pulverize the mixture to a size of less than 300 ⁇ m, more preferably less than 200 ⁇ m).
  • agglomerates may be formed by using the pulverized composition of the present invention as a raw material and performing the high-temperature pressure-strong kneading treatment according to the above-mentioned production method of the present invention again. That is, in the above-mentioned production method of the present invention, after the pulverization in the step (iv), a step (v) in which the pulverized composition is further agglomerated to form a pulverized composition aggregate may be provided.
  • the aggregate of the pulverized composition of the present invention thus obtained (this is appropriately referred to as "the aggregate of the pulverized composition of the present invention") has a characteristic in the analysis by the imaging mass spectrometry method using the above-mentioned MALDI-TOFMS. Since it is a product, it can be suitably used as a solid paste composition for cooking. Such a pulverized composition aggregate of the present invention is also an object of the present invention.
  • the composition of the present invention is pulverized to obtain the pulverized composition of the present invention, the production conditions thereof are as described in the above item [II].
  • the processed composition was dried under the conditions described in "Time from when the dough temperature drops to less than 90 ° C. to when the dry content standard moisture content becomes less than 25% by mass".
  • sample preparation and preparation method For the sample for analysis, about 1 g of the composition is put into about 1.0 L of boiling distilled water (90 ° C. or higher), boiled for 6 minutes, and then dissected scissors have a length of about 2 mm to 5 mm. It was cut using and used for preparing a frozen block.
  • frozen block preparation method When preparing the frozen block, a frozen embedding agent for the Kawamoto method (described above) (manufactured by SCEM SECTION-LAB) was used as the embedding agent, and the embedding dish for preparing frozen tissue sections was Tissue-Tek ⁇ Cliomold 2> (Sakura). Fine Tech Japan Co., Ltd.) was used.
  • the cut surface at the time of preparing the frozen section is the longitudinal direction of the composition (corresponding to the composition extrusion direction when the composition is produced by extruder extrusion). , Each sample was placed so as to coincide with the lateral direction (direction perpendicular to the longitudinal direction).
  • the sample After the sample is placed in the embedding agent, it is rapidly frozen using a spray for rapid freezing of pathological tissue (white freezer S for cryostat: UI Kasei Co., Ltd.) in order to maintain the installation state, and the frozen block is frozen until section preparation. During the period, it was allowed to stand in a frozen microtome (-25 ° C) environment.
  • pathological tissue white freezer S for cryostat: UI Kasei Co., Ltd.
  • the frozen block was fixed to the sample holder using Tissue-Tek ⁇ OCT compound> (manufactured by Sakura Finetech Japan Co., Ltd.) as an embedding agent for preparing frozen tissue sections. Then, using a frozen microtome (Cryoster NX20, manufactured by Thermo Fisher Scientific Co., Ltd.), a section having a thickness of 30 ⁇ m was prepared in an environment of ⁇ 25 ° C.
  • Each frozen section was attached to a slide glass for imaging MS (ITO slide glass, manufactured by Bruker) and used for analysis.
  • a rapiflex (manufactured by Bruker) is used as the MALDI-TOFMS analyzer for imaging mass spectrometry, a scanner GT-X830 (manufactured by EPSON) is used for image capture under the condition of 6400 dpi, and the analysis software flexControl (manufactured by Bruker) is used.
  • the matrix used for the analysis was a matrix corresponding to the measurement target, the matrix was sprayed by TM-Sprayer (HTX Technologies, LLC), and the spraying conditions were 70 ° C. and 10 sprays. ..
  • ⁇ -cyano-4-hydroxysilicate skin acid which is a matrix for analyzing low molecular weight substances, is contained in 0.1% TFA. It was dissolved in a 70% acetonitrile solution, 1 mL of the solution was sprayed on a slide glass, and then dried in a vacuum desiccator for 10 minutes before use.
  • sinapinic acid was dissolved in ethanol (10 mg / mL), 2 mL was sprayed on an IOT slide glass to which a frozen section was attached, dried in a desiccator under reduced pressure for 10 minutes, and then sinapinic acid was dissolved in 30% acetonitrile. (60 mg / mL) was sprayed in 2 mL and dried in a vacuum desiccator for 10 minutes before use.
  • Signal intensity analysis was performed with Fleximage. Specifically, the signal intensity of m / z ⁇ 0.1 of each target substance is displayed in a shade of white in the image, and the signal intensity of each target substance is measured by measuring the intensity of white in the cross-sectional image of the composition. Intensity was measured (hence the background without signal is black). More specifically, imageJ was used as image analysis software, and the signal intensity was measured by designating the measurement points so as to surround the entire cross-sectional image of the composition.
  • a 6% suspension of the composition powder was prepared by suspending 3 mg of the composition powder having a mesh size of 150 ⁇ m pass obtained by pulverizing the composition with a mill in 50 ⁇ L of water. Then, after dropping the suspension on a slide glass, a cover glass was put on the slide glass and lightly crushed to prepare a preparation.
  • phase-contrast microscope ECLIPSE80i, manufactured by Nikon Corporation
  • a typical part in the preparation was polarized and observed at a magnification of 200 times, and the number of starch grain structures in the field of view was grasped.
  • composition softness during cooking The cookability of the composition was evaluated in the following five stages as compared with the cookability of mung bean vermicelli (commercially available product). 5: The composition has good softening property at the time of cooking, and is clearly superior to the commercially available product. 4: The softening property of the composition at the time of cooking is slightly good, and it is considerably superior to the commercially available product. 3: The softening property of the composition during cooking is moderate, which is superior to that of commercially available products. 2: Although the softening property of the composition during cooking is slightly poor, it is slightly superior to the commercially available product. 1: The composition has poor softness during cooking and is equivalent to a commercially available product.
  • composition / Manufacturing conditions / Evaluation results The composition, measured values and physical properties of the composition samples of each test example and comparative example are shown in Tables 1-1 and 1-2, and the production conditions of each sample are shown in Tables 2-1 and 2-2, and the evaluation of each sample is shown. The results are shown in Tables 3-1 and 3-2.
  • the starch grain structure observed when observing a 6% suspension of the pulverized product of the composition was 300 or more / mm 2 in Comparative Examples 1 and 3, and 300 in all other test examples. It was less than / mm 2.
  • the softness of the composition during cooking is enhanced, the cooking time can be shortened, and the binding property of the composition during cooking is suppressed. Since it is easy to cook, it is expected to be applied in the food field.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Agronomy & Crop Science (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Grain Derivatives (AREA)
  • Noodles (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

加熱調理時の組成物軟化性に優れると共に、加熱調理中の組成物結着性が低減された加熱調理用固形状ペースト組成物を提供する。斯かる組成物は、下記(1)から(4)を全て充足する。 (1)でんぷんを乾燥質量換算で19質量%以上含有する。 (2)タンパク質を乾燥質量換算で4.0質量%以上含有する。 (3)所定条件で得られた組成物凍結物組成物凍結切片Xの下記[α]の値(α1)が16.0以下である。 [α]組成物断面におけるm/z=788.37のシグナル強度に対するm/z=213.38のシグナル強度の割合。 (4)所定条件で得られた組成物凍結切片Xの下記[β]の値(β1)が、前記α1との関係で下記[式1]を充足する。 [β]組成物断面におけるm/z=5962.70のシグナル強度に対するm/z=12345.17のシグナル強度の割合。 [式1]α1×β1≦7.0

Description

加熱調理用固形状ペースト組成物及びその製造方法
 本発明は、加熱調理用固形状ペースト組成物及びその製造方法に関する。
 世界各地には、穀類の粉やでんぷん等、様々な食材を原料とし、これに水と塩等を加え混練して生地を得、更に様々な形状に成型した多種多様な加熱調理用固形状ペースト組成物が存在する。その形状としては、細長い形状(例えばパスタ・麺様食品)が一般的であるが、帯状、板状、短冊状、筒状、団子状、粒状等に成型されたものもある。
 それらの加熱調理用固形状ペースト組成物は、生状、乾燥状のいずれにおいても、加熱調理した後に喫食されるが、加熱調理時に組成物が軟化しにくく、調理に時間がかかったりする一方で、加熱調理時の軟化適性を高めた組成物は、加熱調理中の組成物が結着しやすくなるため、調理しにくくなるという課題があった。その課題を解決するため、例えば特許文献1のように、麺線ほぐれ改良剤を含む生地原料と水とを混合して麺を作製することが知られていた。
特開2016-077196号公報
 しかしながら、特許文献1に記載の技術は、乳化油脂などの麺線ほぐれ改良剤を含むことから、それらの改良剤の味が感じられ好ましいものではなかった。また昨今の食品添加物フリーのニーズに対応できないという問題があった。一方で、でんぷんを主成分とする加熱調理用組成物は、その歯ごたえを高めようと表面を固くすると、弾性が強くなりゴムのような食感が付与されてしまうという課題が残されていた。
 本発明者らは、上記の事情に鑑みて鋭意研究した結果、組成物内部におけるでんぷん構造中の特定成分に着目し、その割合を調整することで、加熱調理時の組成物軟化性に優れると共に、加熱調理中の組成物結着性が低減された、上記課題が解決された加熱調理用固形状ペースト組成物が得られることを見出した。また、当業者の技術常識では小麦等に含有されるグルテンが変性するため通常採用されていない高温高圧強混練条件に着目し、食用植物原料を特定条件下にて処理することで、上記加熱調理用固形状ペースト組成物を簡便な方法で製造できるとの新たな知見を得た。そして、本発明者らは上記の知見に基づいて更に鋭意研究を進めることにより、下記の発明を完成させるに至った。
 すなわち、本発明は、以下の項[1]~[27]を提供するものである。
・項[1]
 下記(1)から(4)を全て充足する、加熱調理用固形状ペースト組成物。
(1)でんぷんを乾燥質量換算で19質量%以上含有する。
(2)タンパク質を乾燥質量換算で4.0質量%以上含有する。
(3)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、ある切断面Xに沿って厚さ30μmに切断した組成物凍結切片Xを、下記[条件A]で測定した場合における下記[α]の値(以下「α1」とする。)が16.0以下である。
 [条件A]組成物凍結切片を、マトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用い、MALDI-TOFMSを用いたイメージング質量分析法によって解析する。
 [α]組成物断面におけるm/z=788.37のシグナル強度に対するm/z=213.38のシグナル強度の割合。
(4)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、ある切断面Xに沿って厚さ30μmに切断した組成物凍結切片Xを、下記[条件B]で測定した場合における下記[β]の値(以下「β1」とする。)が、前記α1との関係で下記[式1]を充足する。
 [条件B]組成物凍結切片を、マトリックスとしてシナピン酸を用い、MALDI-TOFMSを用いたイメージング質量分析法によって解析する。
 [β]組成物断面におけるm/z=5962.70のシグナル強度に対するm/z=12345.17のシグナル強度の割合。
 [式1]α1×β1≦7.0
・項[2]
 前記β1が1.70以下である、項[1]に記載の組成物。
・項[3]
 前記[条件A]における切断面Xが、前記組成物の長手方向に直交する断面である項[1]又は[2]に記載の組成物。
・項[4]
 更に下記(5)及び(6)を充足する、項[1]~[3]の何れか一項に記載の組成物。
(5)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、前記切断面Xと直交する切断面Yに沿って厚さ30μmに切断した組成物凍結切片Yを、前記[条件A]で測定した場合における前記[α]の値(以下「α2」とする。)が16.0以下である。
(6)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、前記切断面Xと直交する切断面Yに沿って厚さ30μmに切断した組成物凍結切片Yを、前記[条件B]で測定した場合における前記[β]の値(以下「β2」とする。)が、前記α2との関係で下記[式2]を充足する。
 [式2]α2×β2≦7.0
・項[5]
 前記β2が1.70以下である、項[4]に記載の組成物。
・項[6]
 前記組成物の粉砕物の6%懸濁液を観察した場合に認められるでんぷん粒構造が、300個以下/mmである、項[1]~[5]の何れか一項に記載の組成物。
・項[7]
 食用植物に由来する成分を含む、項[1]~[6]の何れか一項に記載の組成物。
・項[8]
 前記食用植物が、乾量基準含水率15質量%未満の乾燥食用植物である、項[7]に記載の組成物。
・項[9]
 前記食用植物が豆類である、項[7]又は[8]に記載の組成物。
・項[10]
 豆類が、エンドウ属、インゲンマメ属、キマメ属、ササゲ属、ソラマメ属、ヒヨコマメ属、ダイズ属及びヒラマメ属から選ばれる1種以上の豆類を原料とするものである、項[9]に記載の組成物。
・項[11]
 前記豆類が、超音波処理後の粒子径のd90が500μm未満の豆類粉末である、項[9]又は[10]に記載の組成物。
・項[12]
 前記組成物中の総でんぷん含量に対する、前記食用植物に由来するでんぷん含量の比率が、10質量%以上である、項[7]~[11]の何れか一項に記載の組成物。
・項[13]
 前記組成物中の総タンパク質含量に対する、前記食用植物に由来するタンパク質含量の比率が、10質量%以上である、項[7]~[12]の何れか一項に記載の組成物。
・項[14]
 膨化物ではない、項[1]~[13]の何れか一項に記載の組成物。
・項[15]
 乾量基準含水率が60質量%以下である、項[1]~[14]の何れか一項に記載の組成物。
・項[16]
 項[1]~[15]の何れか一項に記載の組成物を粉砕してなる、粉砕組成物。
・項[17]
 項[16]に記載の粉砕組成物を凝集してなる、粉砕組成物凝集体。
・項[18]
 下記の段階(i)から(ii)を含む、項[1]~[15]の何れか一項に記載の加熱調理用固形状ペースト組成物の製造方法。
(i)でんぷんの含有量が乾燥質量換算で10.0質量%以上、タンパク質の含有量が乾燥質量換算で4質量%以上、乾量基準水分率20質量%以上のペースト生地組成物を調製する段階。
(ii)前記段階(i)の調製後の組成物を、温度110℃以上190℃以下、SME値400kJ/kg以上、0.1MPa以上の圧力を印加する条件で混練する段階。
・項[19]
 前記段階(ii)の混練処理を、0.1分間以上60分間以内に亘って行う、項[18]に記載の製造方法。
・項[20]
 前記段階(ii)の後、更に下記の(iii)の段階を含む、項[18]又は[19]に記載の製造方法。
(iii)前記段階(ii)の混練処理後の組成物の温度を、前記組成物が膨化しない温度まで低下させる段階。
・項[21]
 前記段階(iii)において、生地組成物温度が90℃未満に低下してから、乾量基準含水率25質量%未満となるまで、連続的に0.02時間以上保持される、項[20]に記載の製造方法。
・項[22]
 前記段階(ii)の混練処理及び/又は前記段階(iii)の降温を、エクストルーダーを用いて行う、項[20]又は[21]に記載の製造方法。
・項[23]
 前記エクストルーダーが2軸エクストルーダーである、項[22]に記載の製造方法。
・項[24]
 前記エクストルーダーにおけるバレル全長に対するフライトスクリュー部位長が95%以下である、項[22]又は[23]に記載の製造方法。
・項[25]
 前記段階(iii)の降温後、更に下記の(iv)の段階を含む、項[20]~[24]の何れか1項に記載の製造方法。
(iv)前記組成物を粉砕し、粉砕組成物とする段階。
・項[26]
 前記段階(iv)の粉砕後、更に下記の(v)の段階を含む、項[25]に記載の製造方法。
(v)前記粉砕組成物を凝集させて、粉砕組成物凝集体とする段階。
・項[27]
 項[18]~[26]の何れか1項に記載の製造方法により製造される加熱調理用固形状ペースト組成物。
 本発明によれば、加熱調理時の組成物軟化性に優れると共に、加熱調理中の組成物結着性が低減された、加熱調理用固形状ペースト組成物及びその製造方法が提供される。
 以下、本発明について具体的な実施形態に基づき説明するが、本発明はこれらの形態に限定されるものではなく、その主旨を逸脱しない限りにおいて、任意の改変を加えて実施することが可能である。
[I:加熱調理用固形状ペースト組成物]
 本発明の一態様は、加熱調理用固形状ペースト組成物(以下「本発明の固形状ペースト組成物」又は「本発明の組成物」と称する場合もある。)に関する。
(1)組成物の概要:
・用語の定義:
 本発明において「加熱調理」とは、一般的に、火やマイクロ波を用いて直接的に、又は、水や空気等の媒体を通じて間接的に、食品に熱を加えることで、食品の温度を上げる調理方法をいう。一般的には、例えば80℃~99℃程度の加熱温度で、例えば1分以上60分以内の時間に亘って調理することを表す。斯かる加熱調理の方法として、例えば、焼く、煮る、炒める、蒸す等を挙げることができるが、これらに限定されない。
 本発明において「固形状」とは、加熱調理されてもその形状を保持できる程度の固形性を有することを表す。
 本発明において「ペースト組成物」とは、食材を混練して製造した食品組成物を表し、より好ましくは食用植物由来の食材を混練して製造した食品組成物を表し、さらに好ましくは食用植物を混練して製造した食品組成物を表す。
・組成物の態様:
 本発明の組成物は、後述するように、水中における成分溶出が抑制された性質を有することから、特に成分が溶出しやすい調理環境である液中(特に水中)での加熱調理に供されることが好ましい。例えば加熱調理用固形状ペースト組成物が麺やパスタ等の麺線又は麺帯状組成物であった場合、喫食のために水中における加熱調理(例えば90℃以上の水中で5分以上)された後においても、喫食が可能な形状が保持されるような性質を有するため、麺やパスタ等の麺線又は麺帯状組成物であることが好ましい。
 本発明の組成物の例としては、これらに限定されるものではないが、パスタ、中華麺、うどん、稲庭うどん、きしめん、ほうとう、すいとん、ひやむぎ、素麺、蕎麦、蕎麦がき、ビーフン、フォー、冷麺の麺、春雨、オートミール、クスクス、きりたんぽ、トック、ぎょうざの皮等が挙げられる。
 パスタの例としては、ロングパスタとショートパスタとが挙げられる。
 ロングパスタとは、通常細長いパスタの総称であるが、本発明においては、うどんやそば等も包含する概念である。具体例としては、これらに限定されるものではないが、例えば、スパゲッティ(直径:1.6mm~1.7mm)、スパゲッティーニ(直径:1.4mm~1.5mm)、ヴァーミセリ(直径:2.0mm~2.2mm)、カッペリーニ(直径:0.8mm~1.0mm)、リングイネ(短径1mmほど、長径3mmほど)、タリアテッレ又はフェットチーネ(幅7mm~8mmほどの平麺)、パッパルデッレ(幅10mm~30mmほどの平麺)等が挙げられる。ロングパスタはその組成物同士の接触面積が大きく、なめらかさが失われた結果結着しやすい商品特性を有しやすいため、本発明の組成物とすることが有用であり好ましい。
 ショートパスタとは、通常短いパスタの総称であるが、本発明においては、フレーゴラ(粒状のパスタ)やクスクス等の成型後更に小サイズに加工されたものも包含する概念である。具体例としては、これらに限定されるものではないが、マカロニ(直径が3mm~5mm前後の円筒状)、ペンネ(円筒状の両端をペン先のように斜めにカットしたもの)、ファルファーレ(蝶のような形状)、コンキリエ(貝殻のような形状)、オレッキエッテ(耳のような形状のドーム型)等が挙げられる。
・乾燥状態の組成物:
 従来の加熱調理用固形状ペースト組成物のうち、特に乾燥状態の組成物は、乾燥時の熱負荷によって加熱調理中の組成物が結着しやすくなる。それに対して、本発明によれば、加熱調理中の組成物結着性が低減される。よって、本発明は、特に乾燥状態の加熱調理用固形状ペースト組成物に適用した場合に有用である。
 なお、本発明において「乾燥」状態とは、乾量基準含水率25質量%未満であり、且つ、水分活性値が0.85以下である状態を指す。斯かる乾燥した態様における本発明の組成物は、乾量基準含水率20質量%未満、更には15質量%未満であることが好ましく、また、水分活性値が0.80以下、更には0.75以下であることが好ましい。なお、固形状ペースト組成物中の含水率は、乾燥粉末を後述の減圧加熱乾燥法に供して測定することが可能であり、また、水分活性値は、一般的な水分活性測定装置(例えば電気抵抗式(電解質式)湿度センサを用いたノバシーナ社製「LabMaster-aw NEO」)を用い、定法に従って測定することが可能である。
 なお、本発明において「加熱調理時の組成物軟化性」とは、加熱調理時に組成物が膨潤しやすい特性を有し、速やかに軟化して加熱調理されやすい品質である度合いを表す。
 また、本発明において「加熱調理中の組成物結着性」とは、加熱調理時において組成物同士がくっ付く度合いを表す。
・細長く成型された組成物:
 従来のでんぷん主成分とする加熱調理用固形状ペースト組成物のうち、特にロングパスタ様の細長く成型された組成物は、加熱調理時に組成物の軟化性が低い場合、調理に時間がかかり、加熱調理時の軟化適性を高めようとすると、加熱調理中の組成物が結着しやすくなるため、調理しにくくなるという前述の課題が生じやすい。これに対して、本発明の組成物は、加熱調理時の組成物軟化性を高め調理時間を短縮しつつ、加熱調理中の組成物の結着性が抑えられた、調理しやすい物性となる。惹いては、本発明の組成物は、特に細長く成型された組成物に適用した場合に有用である。
 斯かる細長く成型された態様における本発明の組成物は、特に限定されるものではないが、通常20mm以下、好ましくは10mm以下、より好ましくは5mm以下、更に好ましくは3mm以下、より更に好ましくは2mm以下の直径を有することが好ましい。なお、固形状ペースト組成物の「直径」とは、固形状ペースト組成物の長手方向に対して垂直に切断した際の切断面の長径(断面中の任意の2点を結ぶ線分の最大長)のことを意味する。ここで、当該切断面が円形であればその直径、楕円形であればその長軸、長方形(例えば板状に成型された組成物等の場合)であればその対角線が、それぞれ固形状ペースト組成物の「直径」に該当する。
(2)組成物の組成:
・でんぷん:
 本発明の組成物は、でんぷんを所定割合以上含有する。
 具体的に、本発明の組成物中のでんぷん含有量の下限は、乾燥質量換算で通常19質量%以上である。中でも20質量%以上、更には25質量%以上、更には30質量%以上、更には35質量%以上、とりわけ40質量%以上、特に45質量%以上であることが好ましい。一方、本発明の組成物中のでんぷん含有量の上限は、特に制限されるものではないが、例えば乾燥質量換算で85質量%以下、中でも80質量%以下、又は70質量%以下、又は60質量%以下とすることができる。
 本発明の組成物中のでんぷんの由来は特に制限されない。例としては、植物由来のものや動物由来のものが挙げられるが、植物由来のでんぷんが好ましい。具体的には、組成物全体の総でんぷん含有量に対する、植物由来でんぷん含有量の比率が、通常10質量%以上、中でも30質量%以上、更には50質量%以上、とりわけ70質量%以上、又は90質量%以上、特に100質量%であることが好ましい。植物由来でんぷんの例としては、穀類由来のもの、豆類由来のもの、芋類由来のもの、野菜類由来のもの、種実類由来のもの、果実類由来のもの等が挙げられるが、組成物のテクスチャの観点からは、穀類由来のもの、豆類由来のものがより好ましく、豆類由来のものが更に好ましく、特にエンドウ由来のものが好ましく、黄色エンドウ由来のものが最も好ましい。なお、生地組成物中におけるでんぷんについても同様である。
 本発明の組成物中のでんぷんは、単離された純品として組成物に配合されたものであってもよいが、食用植物に含有された状態で組成物に配合されていることが好ましい。具体的には、組成物全体の総でんぷん含有量に対する、食用植物に含有された状態で配合されているでんぷん含有量の比率が、通常10質量%以上、中でも20質量%以上、更には30質量%以上、とりわけ40質量%以上、又は50質量%以上、又は60質量%以上、とりわけ70質量%以上、又は80質量%以上、又は90質量%以上、特に100質量%であることが好ましい。なお、生地組成物中におけるでんぷんについても同様である。
 なお、本発明において、固形状ペースト組成物中のでんぷん含有量は、日本食品標準成分表2015年版(七訂)に準じ、AOAC996.11の方法に従い、80%エタノール抽出処理により、測定値に影響する可溶性炭水化物(ぶどう糖、麦芽糖、マルトデキストリン等)を除去した方法で測定する。
・タンパク質:
 本発明の組成物は、タンパク質を所定割合以上含有する。特に、本発明の組成物は、タンパク質を所定割合以上含有することで、後述する加熱調理時にでんぷん構造の膨潤を阻害する低分子成分の割合が一定範囲に調整されるため好ましい。
 具体的に、本発明の組成物におけるタンパク質含有量の下限は、乾燥質量換算で通常4.0質量%以上である。中でも5.0質量%以上、更には6.0質量%以上、とりわけ7.0質量%以上、又は8.0質量%以上、又は9.0質量%以上、又は10.0質量%以上、又は11.0質量%以上、又は12.0質量%以上、又は13.0質量%以上、又は14.0質量%以上、又は15.0質量%以上、又は16.0質量%以上、又は17.0質量%以上、又は18.0質量%以上、又は19.0質量%以上、又は20.0質量%以上、特に21.0質量%以上であることが好ましい。一方、本発明の組成物におけるタンパク質含有量の上限は、特に制限されるものではないが、乾燥質量換算で通常85質量%以下、好ましくは80質量%以下、更に好ましくは75質量%以下、更に好ましくは70質量%以下、更に好ましくは65質量%以下、更に好ましくは60質量%以下である。
 本発明の組成物中のタンパク質の由来は特に制限されない。例としては、植物由来のものや動物由来のものが挙げられるが、植物由来のタンパク質が好ましい。具体的には、組成物全体の総タンパク質含有量に対する、植物由来タンパク質含有量の比率が、通常10質量%以上、中でも20質量%以上、更には30質量%以上、とりわけ40質量%以上、又は50質量%以上、又は60質量%以上、とりわけ70質量%以上、又は80質量%以上、又は90質量%以上、特に100質量%であることが好ましい。植物由来タンパク質の例としては、穀類由来のもの、豆類由来のもの、芋類由来のもの、野菜類由来のもの、種実類由来のもの、果実類由来のもの等が挙げられるが、後述するMALDI-TOFMSを用いたイメージング質量分析法によって解析した場合の特定の特徴を有する観点からは、豆類由来のものを用いることがより好ましく、特にエンドウ由来のものが好ましく、黄色エンドウ由来のものが最も好ましい。なお、生地組成物中におけるタンパク質についても同様である。
 本発明の組成物中のタンパク質は、単離された純品として組成物に配合されたものであってもよいが、食用植物に含有された状態で組成物に配合されていることが好ましい。具体的には、組成物全体の総タンパク質含有量に対する、食用植物に含有された状態で配合されているタンパク質含有量の比率が、通常10質量%以上、中でも20質量%以上、更には30質量%以上、とりわけ40質量%以上、又は50質量%以上、とりわけ70質量%以上、又は90質量%以上、特に100質量%であることが好ましい。なお、生地組成物中におけるタンパク質についても同様である。
 なお、本発明の組成物中のタンパク質及びでんぷんの、それぞれ通常10質量%以上、中でも30質量%以上、更には50質量%以上、とりわけ70質量%以上、又は90質量%以上、特に100質量%が、共に豆類に由来することが好ましく、同一種の豆類に由来することが更に好ましく、同一個体の豆類に由来することが更に好ましい。また、本発明の組成物中のタンパク質及びでんぷんの、それぞれ通常10質量%以上、中でも20質量%以上、更には30質量%以上、とりわけ40質量%以上、又は50質量%以上、又は60質量%以上、とりわけ70質量%以上、又は80質量%以上、又は90質量%以上、特に100質量%が、共に食用植物に含有された状態で配合されることが最も好ましい。なお、生地組成物中におけるタンパク質及びでんぷんについても同様である。
 なお、本発明において、固形状ペースト組成物中のタンパク質含有量は、日本食品標準成分表2015年版(七訂)に準じ、改良ケルダール法によって定量した窒素量に、「窒素-タンパク質換算係数」を乗じて算出する方法で測定する。
・全油脂分:
 本発明の組成物中の全油脂分含有量は、制限されるものではないが、乾燥質量換算で、通常17質量%未満、中でも15質量%未満、更には13質量%未満、とりわけ10質量%未満、又は8質量%未満、又は7質量%未満、又は6質量%未満、又は5質量%未満、又は4質量%未満、又は3質量%未満、又は2質量%未満、又は1質量%未満、特に0.8質量%未満とすることが好ましい。一方、斯かる全油脂分含量の下限は、特に制限されるものではないが、乾燥質量換算で、通常0.01質量%以上であることが好ましい。なお、本発明において、固形状ペースト組成物中の全油脂分含有量は、日本食品標準成分表2015年版(七訂)に準じ、ジエチルエーテルによるソックスレー抽出法で測定する。
・乾量基準含水率:
 従来の加熱調理用固形状ペースト組成物のうち、乾量基準含水率が低い状態のものは、乾燥時の熱負荷によって加熱調理中の組成物が結着しやすくなるため本発明は、特に乾量基準含水率が一定値以下の組成物に適用した場合に有用である。
 具体的に、本発明の組成物中の乾量基準含水率は、制限されるものではないが、例えば60質量%以下、中でも50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下、又は15質量%以下であってもよい。一方、本発明の組成物中の乾量基準含水率の下限は、制限されるものではないが、工業上の生産効率という観点から、例えば0.5質量%以上、或いは1質量%以上、或いは2質量%以上とすることができる。なお、本発明の組成物中の乾量基準含水率は、組成物の各種成分に由来するものであってもよいが、更に添加された水に由来するものであってもよい。
 本発明において「乾量基準含水率」とは、本発明の組成物の原料に由来する水分量と別途添加した水分量の合計量の、固形分の合計量に対する割合を意味する。その数値は、日本食品標準成分表2015年版(七訂)に準じ、減圧加熱乾燥法で90℃に加温することで測定する。具体的には、あらかじめ恒量になったはかり容器(W0)に適量の試料を採取して、0.1mgまではかり(W1)、常圧において、所定の温度(より詳しくは90℃)に調節した減圧電気定温乾燥器中に、はかり容器の蓋をとるか、口を開けた状態で入れ、扉を閉じ、真空ポンプを作動させて、所定の減圧度において一定時間乾燥し、真空ポンプを止め、乾燥空気を送って常圧に戻し、はかり容器を取り出し、蓋をしてデシケーター中で放冷後、質量をはかる。そのようにして恒量(W2、0.1mgまではかる)になるまで乾燥、放冷、質量をはかることを繰り返し、乾量基準含水率(質量%)を次の計算式で求める。
Figure JPOXMLDOC01-appb-M000001
〔式中、W0は恒量としたはかり容器の質量(g)を示し、W1は試料を入れたはかり容器の乾燥前の質量(g)を示し、W2は試料を入れたはかり容器の乾燥後の質量(g)を示す。〕
・豆類:
 本発明の組成物において、食用植物として豆類を用いる場合、豆類としては、エンドウ属、ダイズ属、インゲンマメ属、キマメ属、ササゲ属、ソラマメ属、ヒヨコマメ属、ヒラマメ属、ルピナス属、レンリソウ属、クラスタマメ属、トビカズラ属、イナゴマメ属及びパルキア属の豆類から選ばれる1種以上を用いることが好ましく、特にエンドウ属、インゲンマメ属、キマメ属、ササゲ属、ソラマメ属、ヒヨコマメ属、ダイズ属、及びヒラマメ属の豆類から選ばれる1種以上の豆類を用いることが好ましい。豆類の具体例としては、これらに限定されるものではないが、エンドウ(特に黄色エンドウ、白エンドウ、未熟の種子であるグリーンピース)、インゲンマメ(隠元豆)、キドニー・ビーン、赤インゲンマメ、白インゲンマメ、ブラック・ビーン、うずら豆、とら豆、ライマメ、ベニバナインゲン、キマメ、緑豆、ササゲ、アズキ、ソラマメ、ダイズ(特に大豆を未熟な状態で鞘ごと収穫したもので、豆が緑色の外観を呈することを特徴とする、大豆の未熟種子であるエダマメ)、ヒヨコマメ、レンズマメ、ヒラ豆、ブルーピー、紫花豆、レンティル、ラッカセイ、ルピナス豆、グラスピー、イナゴマメ(キャロブ)、ネジレフサマメノキ、ヒロハフサマメノキ、コーヒー豆、カカオ豆、メキシコトビマメ等が挙げられる。さらに、本発明の豆類は、豆類の種皮を含有しない態様であってもよく、豆類の種皮を含有する態様であってもよい。なお、豆類の種皮とは、豆が入っている鞘のことではなく、豆粒自体の表層を覆う膜状構造の皮を指す。豆類の種皮は、一般的な脱皮機等により豆類から分離できる。なお、豆類の種皮は、種皮付きの豆類を用いることによってもよく、豆類から分離した種皮を別途用いることによってもよい。
・豆類粉末の粒子径:
 本発明の組成物において、食用植物として粉末状の豆類を用いる場合、豆類粉末の粒子径は、超音波処理後の粒子径d90が500μm未満であることが好ましく、例えば450μm未満、中でも400μm未満、更には300μm未満であることがより好ましい。n、本発明において「粒子径d90」とは、測定対象の粒子径分布を体積基準で測定し、ある粒子径から2つに分けたとき、大きい側の粒子頻度%の累積値の割合と、小さい側の粒子頻度%の累積値の割合との比が、10:90となる粒子径として定義される。また、本発明において「超音波処理」とは、特に断りがない限り、周波数40kHzの超音波を出力40Wにて3分間の処理をすることを意味する。なお、超音波処理後の粒子径d90の測定条件については、後記に従うものとする。
・その他の食材:
 本発明の組成物は、任意の1又は2以上の食材を含んでいてもよい。斯かる食材の例としては、植物性食材(野菜類、芋類、きのこ類、果実類、藻類、穀類、種実類等)、動物性食材(魚介類、肉類、卵類、乳類等)、微生物性食品等が挙げられる。これら食材の含有量は、本発明の目的を損なわない範囲内で適宜設定することができる。
・調味料、食品添加物等:
 本発明の組成物は、任意の1又は2以上の調味料、食品添加物等を含んでいてもよい。調味料、食品添加物等の例としては、醤油、味噌、アルコール類、糖類(例えばブドウ糖、ショ糖、果糖、ブドウ糖果糖液糖、果糖ブドウ糖液糖等)、糖アルコール(例えばキシリトール、エリスリトール、マルチトール等)、人工甘味料(例えばスクラロース、アスパルテーム、サッカリン、アセスルファムK等)、ミネラル(例えばカルシウム、カリウム、ナトリウム、鉄、亜鉛、マグネシウム等、及びこれらの塩類等)、香料、pH調整剤(例えば水酸化ナトリウム、水酸化カリウム、乳酸、クエン酸、酒石酸、リンゴ酸及び酢酸等)、シクロデキストリン、酸化防止剤(例えばビタミンE、ビタミンC、茶抽出物、生コーヒー豆抽出物、クロロゲン酸、香辛料抽出物、カフェ酸、ローズマリー抽出物、ビタミンCパルミテート、ルチン、ケルセチン、ヤマモモ抽出物、ゴマ抽出物等)、乳化剤(例としてはグリセリン脂肪酸エステル、酢酸モノグリセリド、乳酸モノグリセリド、クエン酸モノグリセリド、ジアセチル酒石酸モノグリセリド、コハク酸モノグリセリド、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リノシール酸エステル、キラヤ抽出物、ダイズサポニン、チャ種子サポニン、ショ糖脂肪酸エステル、レシチン等)、着色料、増粘安定剤等が挙げられる。
 但し、昨今の自然志向の高まりからは、本発明の組成物は、いわゆる乳化剤、着色料、増粘安定剤(例えば、食品添加物表示ポケットブック(平成23年版)の「表示のための食品添加物物質名表」に「着色料」、「増粘安定剤(特に「加工デンプン」)」、「乳化剤」として記載されているもの)から選ばれる何れか1つを含有しないことが好ましく、何れか2つを含有しないことがより好ましく、3つ全てを含有しないことが更に好ましい。
 特に、本発明の組成物は、ゲル化剤を含有しなくても組成物に弾性を付与でき、また過度の弾力付与を防止するため、ゲル化剤を含有しないことが好ましい。また、素材の味が感じられやすい品質とする観点からは、本発明の組成物は、乳化剤を含有しないことが好ましい。更には、本発明の組成物は、食品添加物(例えば、食品添加物表示ポケットブック(平成23年版)中の「表示のための食品添加物物質名表」に記載されている物質を食品添加物用途に用いたもの)を含有しないことがとりわけ望ましい。また、食品そのものの甘みが感じられやすい品質とする観点からは、本発明の組成物は、糖類(特にブドウ糖、ショ糖、果糖、ブドウ糖果糖液糖、果糖ブドウ糖液糖等の精製された糖類)を添加しない方が好ましい。
 また、従来の加熱調理用固形状ペースト組成物(特にネットワーク構造のグルテンを含有する組成物)は、塩化ナトリウムを含有させることで組成物弾性を保持しているが、味に影響を与えたり、塩分の過剰摂取となったりする観点から問題があった。特に乾燥状態の組成物(乾燥うどん、乾燥ひやむぎ等)においては、組成物弾性の保持のため、通常3質量%以上の塩化ナトリウムが使用されるため、こうした課題が顕著であった。一方、本発明の組成物では、塩化ナトリウムの使用量が極微量であるか、或いは塩化ナトリウムを添加しなくても、弾性低下が抑制された組成物とすることができ、良好な品質の組成物となるため好ましい。また、通常はネットワーク構造のグルテンと塩化ナトリウムによって粘着力や弾力を有する、パスタ、うどん、パン等の加熱調理用固形状ペースト組成物についても、本発明を適用することで、塩化ナトリウムを添加することなく良好な品質の組成物とすることができるため好ましい。具体的に、本発明の組成物中の塩化ナトリウムの含有量は、乾燥質量換算で、通常3質量%以下、中でも2質量%以下、更には1質量%以下、更には0.7質量%以下、特に0.5質量%以下であることが好ましい。本発明の組成物中の塩化ナトリウムの含有量の下限は特に限定されず、0質量%であっても構わない。なお、本発明において、固形状ペースト組成物中の塩化ナトリウムの定量法としては、例えば日本食品標準成分表2015年版(七訂)の「食塩相当量」に準じ、原子吸光法を用いて測定したナトリウム量に2.54を乗じて算出する手法を用いる。
(3)加熱水中処理後組成物の凍結切片のMALDI-TOFMSイメージング質量分析に基づく特性:
 本発明の組成物は、特定の条件で得られる凍結切片をMALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、以下に説明する特徴を有する。
・加熱水中処理後組成物の凍結切片の作製:
 本発明では、組成物を90℃の水中で6分間加温した後、-25℃で凍結した組成物凍結物について、特定の切断面に沿って厚さ30μmに切断した凍結切片を作製し、これをMALDI-TOFMSを用いたイメージング質量分析法によって解析する。
 具体的に、組成物の凍結切片の作製及びMALDI-TOFMSを用いたイメージング質量分析法による解析は、制限されるものではないが、例えば以下の手順で行うことが好ましい。すなわち、組成物を90℃以上に加温した1000倍量の水中(より具体的には90℃の水中)で6分間処理した後、Kawamoto, "Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants", Arch. Histol. Cytol., (2003), 66[2]:123-43に記載の川本法に従って、-25℃で厚さ30μmに切断することにより、凍結切片を作製する。こうして得られた組成物の凍結切片を、後述のMALDI-TOFMSを用いたイメージング質量分析法による解析に供する。
・MALDI-TOFMSを用いたイメージング質量分析法による凍結切片の解析:
 前記手順で作成された組成物凍結切片を、以下の方法でイメージング質量分析法により解析する。
 イメージング質量分析用のMALDI-TOFMS分析計としては、rapiflex(ブルカー社製)を使用し、画像取り込みにはスキャナーGT-X830(EPSON社製)を6400dpiの条件で使用し、分析ソフトflexControl(ブルカー社製)を使用して、測定条件をレーザー周波数10kHz、レーザーパワー100、ショット数500、感度gain26x(2905V)、Scanrange:X5μmY5μm、Resulting Field size:X9μmY9μmに設定し、組成物断面全体を囲むようにイメージング領域を設定する。また、分析用のマトリックスとしては、測定対象に対応したマトリックスを使用し、マトリックスの噴霧は、TM-Sprayer(HTX Technologies、LLC社製)を用い、スプレー条件を70℃、10回噴霧として行う。
 値[α](組成物断面におけるm/z=788.37のシグナル強度([788.37])に対するm/z=213.38のシグナル強度([213.38])の割合、[213.38]/[788.37]と称する場合もある)の測定に際しては、低分子物質解析用マトリックスであるα-シアノ-4-ヒドロキシケイ皮酸を、0.1%TFA含有70%アセトニトリル溶液に溶解し、溶解物1mLをスライドグラスに噴霧後、減圧デシケータ中で10分間乾燥させて使用する。
 値[β](組成物断面におけるm/z=5962.70のシグナル強度([5962.70])に対するm/z=12345.17のシグナル強度([12345.17])の割合、[12345.17]/[5962.70]とも記載する)の測定に際しては、高分子物質解析用マトリックスであるシナピン酸を用いて、ブルカー社のプロトコールに従い、2段階の噴霧を行う。具体的には、シナピン酸をエタノール(10mg/mL)に溶解し、凍結切片を張り付けたIOTスライドグラスに2mL噴霧し、減圧デシケータ中10分間乾燥後、シナピン酸を30%アセトニトリルに溶解したもの(60mg/mL)を2mL噴霧し、減圧デシケータ中10分間乾燥させて使用する。
 シグナル強度解析はFleximageで実施する。具体的には、各ターゲット物質のm/z±0.1のシグナル強度を画像中に白色の濃淡で表示させ、組成物断面画像中の白色の強度を計測することで、各ターゲット物質のシグナル強度を測定する(従って、シグナルが無い背景は黒となる)。より具体的には、画像解析ソフトとしてimageJを用い、組成物断面画像全体を囲むように測定箇所を指定することでシグナル強度を測定する。すなわち、本発明におけるシグナル強度とは、各ターゲット物質のm/z中心値±0.1の範囲におけるシグナル強度合計を表す。
・特徴(a):値[α]([213.38]/[788.37]のシグナル強度比)
 本発明の組成物は、前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、組成物断面におけるm/z=788.37のシグナル強度(以下、[788.37]と称する場合もある。同様に、任意の数値(例えばN)のm/zのシグナル強度を[N]と称する場合もある。)に対する、m/z=213.38のシグナル強度([213.38])の割合([213.38]/[788.37])である値[α]が、所定値以下であることを特徴の一つとする(特徴(a))。こうした物性を有することで、本発明の組成物は、加熱調理時に組成物が膨潤しやすい特性を呈するため、速やかに軟化して加熱調理しやすい品質となり、ひいては加熱調理に伴う成分流出が抑えられた喫食時に食味に優れた組成物となるので好ましい。その原理は不明であるが、加熱調理時にでんぷん構造の膨潤を阻害する低分子成分割合が低下し、速やかに膨潤が進行するためと考えられ、ひいては加熱調理に伴う成分流出が抑えられた喫食時に食味に優れた組成物となる。
 なお、値[α]とは、組成物断面におけるm/z=788.37のシグナル強度に対するm/z=213.38のシグナル強度の割合([213.38]/[788.37])を表し、異なる条件で測定された値[α]の数値を、それぞれα1、α2、・・・等と称する場合もある。
 具体的に、本発明の組成物を前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、後述する条件Aで測定した場合における値[α]は、16.0以下である。中でも13.0以下、更には10.0以下、とりわけ8.0以下、又は7.0以下、又は6.0以下、又は5.0以下、又は4.0以下、又は3.0以下、特に2.5以下であることが好ましい。一方、斯かる比率の下限は、特に制限されるものではないが、工業上の生産性の観点から、通常0.01以上であることが好ましい。
・特徴(b):値[β]([12345.17]/[5962.70]のシグナル強度比)と値[α]との乗算値
 また、本発明の組成物は、前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、組成物断面におけるm/z=5962.70のシグナル強度([5962.70])に対する、m/z=12345.17のシグナル強度([12345.17])の割合([12345.17]/[5962.70])である値[β]と、前述する値[α]との乗算値([α]×[β])が、所定値以下であることを特徴の一つとする(特徴(b))。
 なお、値[β]とは、組成物断面におけるm/z=5962.70のシグナル強度に対するm/z=12345.17のシグナル強度の割合([12345.17]/[5962.70])を表し、異なる条件で測定された値[β]の数値を、それぞれβ1、β2、・・・と称する場合もある。
 具体的に、本発明の組成物を前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、後述する条件Bで測定した場合における値[β]と、前記の値[α]との乗算値([α]×[β])が、7.0以下であることが好ましい。こうした物性を有することで、本発明の組成物は、加熱調理中の組成物が結着しづらくなるという特性を呈するため、さらに加熱調理しやすい品質となり、ひいては加熱調理時に個々の組成物が均一に調理され喫食時に食味に優れた組成物となるので好ましい。中でも6.0以下、更には5.0以下、とりわけ4.0以下、又は3.0以下、又は2.0以下、又は1.5以下、特に1.0以下であることが好ましい。一方、斯かる比率の下限は、特に制限されるものではないが、工業上の生産性の観点から、通常0.01以上であることが好ましい。
・特徴(c):値[β]
 また、本発明の組成物は、前述の値[β]が所定値以下であることをより好ましい特徴の一つとする(特徴(c))。具体的に、本発明の組成物を前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、後述する条件Bで測定した場合における、値[β]が1.70以下であることが好ましい。こうした物性を有することで、本発明の組成物は、加熱調理中の組成物がより結着しづらくなるという特性を呈するため、さらに加熱調理しやすい品質となり、ひいては喫食時に食味に優れた組成物となるので好ましい。その原理は不明であるが、加熱調理に際してでんぷん構造に粘性を付与する高分子成分割合が低下するためと考えられる。中でも1.60以下、更には1.50以下、とりわけ1.40以下、又は1.30以下、又は1.20以下、又は1.10以下、又は1.00以下、又は0.90以下、又は0.80以下、又は0.70以下、特に0.60以下であることが好ましい。一方、斯かる比率の下限は、特に制限されるものではないが、工業上の生産性の観点から、通常0.01以上であることが好ましい。
・凍結切片の切断面について:
 本発明の組成物は、これを前記手順で凍結切片化し、MALDI-TOFMSを用いたイメージング質量分析法によって解析した場合に、前記特徴(a)及び(b)を充足し、好ましくはそれらに加えて前記特徴(c)を充足することを特徴とする。ここで、本発明の組成物は、組成物の凍結物を任意の切断面で切断して得られる凍結切片について、前記特徴(a)及び(b)(好ましくはそれらに加えて前記特徴(c))を充足していればよい。
 しかし、本発明の組成物は、少なくとも組成物の長手方向と直交する切断面で切断して得られる凍結切片について、前記特徴(a)及び(b)(好ましくはそれらに加えて前記特徴(c))を充足することが好ましい。なお、本発明における組成物の「長手方向」とは、組成物が内接する最小体積の仮想直方体の長辺方向を表し、組成物の「短手方向」とは、長手方向に垂直の方向を表す。例えば、エクストルーダー等の押出成形を用いて製造した組成物の場合は、切断前の状態では組成物の押出方向が長手方向に該当する。
 また、本発明の組成物は、組成物凍結物を任意の切断面Xで切断して得られる凍結切片Xと、当該切断面Xに直交する切断面Yで切断して得られる凍結切片Yの各々について、前記手順で被染色部位の形状に関する各パラメーターを測定した場合に、切断面Xの凍結切片Xについて得られた値(α1、β1)と切断面Yの凍結切片Yについて得られた値(α2、β2)との平均値が、前記特徴(a)及び(b)(好ましくはそれらに加えて前記特徴(c))を充足することが好ましい。更には、切断面Xの凍結切片Xについて得られた値(α1、β1)と切断面Yの凍結切片Yについて得られた値(α2、β2)の双方が、前記特徴(a)及び(b)(好ましくはそれらに加えて前記特徴(c))を充足することがより好ましい。この場合、切断面Xは長手方向に対して直交する切断面であり、切断面Yは長手方向に対して平行な切断面であることが好ましい。
 なお、ある組成物のシグナル強度の分布が一様である場合は、代表部位として一切断面のシグナル強度を測定することで組成物全体のシグナル強度を推定することができるが、シグナル強度の分布に偏りが認められる場合は、複数の切断面のシグナル強度を測定し、その結果を合算することで、組成物全体のシグナル強度の測定値とすることができる。
(4)組成物のその他の物性:
・でんぷん粒構造:
 本発明の組成物は、特定の条件下で観察されるでんぷん粒構造の数が所定値以下であることで、組成物中のでんぷんがでんぷん粒内部から浸出した状態の連続構造をとるため、より好ましい。
 でんぷん粒構造とは、平面画像中で直径1~50μm程度の円状の形状を有する、ヨウ素染色性を有する構造であり、例えば組成物の粉砕物を水に懸濁してなる6%の懸濁液を調製し、拡大視野の下で観察することができる。具体的には、組成物の粉砕物を目開き150μmの篩で分級し、150μmパスの組成物粉末3mgを水50μLに懸濁することにより、組成物粉末の6%懸濁液を調製する。本懸濁液を載置したプレパラートを作製し、位相差顕微鏡にて偏光観察するか、又はヨウ素染色したものを光学顕微鏡にて観察すればよい。拡大率は制限されないが、例えば拡大倍率100倍又は200倍とすることができる。プレパラートにおけるでんぷん粒構造の分布が一様である場合は、代表視野を観察することでプレパラート全体のでんぷん粒構造の割合を推定することができるが、その分布に偏りが認められる場合は、有限の複数視野を観察し、観察結果を合算することでプレパラート全体の測定値とすることができる。
 具体的に、本発明の組成物は、前記条件下で観察されたでんぷん粒構造の数が、通常300個以下/mm、中でも250個以下/mm、更には200個以下/mm、とりわけ150個以下/mm、又は100個以下/mm、又は50個以下/mm、又は30個以下/mm、又は10個以下/mm、特に0個/mmであることが好ましい。
 なお、本発明において「組成物の粉砕物」、「組成物粉砕物」又は「粉砕組成物」とは、特に断りがない限り、d90が50μm超1000μm未満程度となるように粉砕した組成物を意味する。
・でんぷんの糊化度:
 本発明の組成物中のでんぷん糊化度は、所定値以上であることが、組成物の成型性の観点から好ましい。具体的に、本発明の組成物中のでんぷん糊化度は、通常30%以上、中でも40%以上、更には50%以上、とりわけ60%以上、特に70%以上であることが好ましい。糊化度の上限は特に制限されないが、あまりに高すぎるとでんぷんが分解し、組成物がべたべたした好ましくない品質となる場合がある。よって、糊化度の上限は99%以下、中でも95%以下、更には90%以下であることが好ましい。なお、本発明において組成物の糊化度は、グルコアミラーゼ第二法を用いて測定する。
・粒子径d90:
 本発明において、超音波処理後の粒子径d90の粒子径分布に関する各種パラメーターの測定条件は、レーザー回折式粒度分布測定装置を用いて、以下の条件にしたがうものとする。まず、測定時の溶媒は、組成物中の構造に影響を与え難いエタノールを用いる。測定に使用されるレーザー回折式粒度分布測定装置としては、特に制限されるものではないが、例えばマイクロトラック・ベル株式会社のMicrotrac MT3300 EXIIシステムを使用することができる。測定アプリケーションソフトウェアとしては、特に制限されるものではないが、例えばDMS2(Data Management System version2、マイクロトラック・ベル株式会社)を使用することができる。前記の測定装置及びソフトウェアを使用する場合、測定に際しては、同ソフトウェアの洗浄ボタンを押下して洗浄を実施したのち、同ソフトウェアのSet zeroボタンを押下してゼロ合わせを実施し、サンプルローディングでサンプルの濃度が適正範囲内に入るまでサンプルを直接投入すればよい。測定試料は、予め超音波処理を行ったサンプルを投入してもよく、サンプル投入後に前記の測定装置を用いて超音波処理を行い、続いて測定を行ってもよい。後者の場合、超音波処理を行っていないサンプルを投入し、サンプルローディングにて濃度を適正範囲内に調整した後、同ソフトの超音波処理ボタンを押下して超音波処理を行う。その後、3回の脱泡処理を行った上で、再度サンプルローディング処理を行い、濃度が依然として適正範囲であることを確認した後、速やかに流速60%で10秒の測定時間でレーザー回折した結果を測定値とする。測定時のパラメーターとしては、例えば分布表示:体積、粒子屈折率:1.60、溶媒屈折率:1.36、測定上限(μm)=2000.00μm、測定下限(μm)=0.021μmとする。
 本発明において、豆類の粉末化処理の手段は特に限定されない。粉末化処理時の温度は特に制限されないが、粉末が高温に曝されると、本発明の組成物の弾性が低下しやすくなるため、例えば200℃以下の温度で乾燥されることが好ましい。なお、豆類の状態で加温した後に粉砕を行う方法であれば、熱負荷が軽減されるため、特に制限されない。更に、微細化処理時の圧力も制限されず、高圧粉砕、常圧粉砕、低圧粉砕の何れであってもよい。斯かる微細化処理のための装置の例としては、ブレンダー、ミキサー、ミル機、混練機、粉砕機、解砕機、磨砕機等の機器類が挙げられるが、これらに限定されない。具体的には、例えば、乾式ビーズミル、ボールミル(転動式、振動式等)等の媒体攪拌ミル、ジェットミル、高速回転型衝撃式ミル(ピンミル等)、ロールミル、ハンマーミル等を用いることができる。
・非膨化:
 本発明の組成物は、膨化食品(特に膨化により密度比重が1.0未満となる膨化食品)においてもその効果を奏するが、非膨化の状態の組成物とすることもできる。なお、膨化を防止しつつ降温した後、通常は圧力を大気圧程度まで減圧することにより、本発明の組成物を得ることができる。
[II:加熱調理用固形状ペースト組成物の製造方法]
 本発明の別の態様は、本発明の組成物を製造する方法(以下、「本発明の製造方法」と称する場合もある。)に関する。
(1)概要:
 本発明の組成物を調製する方法は、特に制限されるものではなく、前記の各種要件を充足する組成物が得られる限りにおいて、任意の手法を用いることができる。具体的には、本発明の組成物の前記の材料、例えば豆類などの食用植物と、任意により用いられるその他の食材、調味料、及びその他の成分とを混合すればよい。必要に応じて加熱や成型等の処理を加えてもよい。中でも、前記の材料を前記の組成を満たすように混合したペースト生地組成物を、所定の高温加圧条件下で混練した後、膨化しないように降温させる特定の方法(以下適宜「本発明の製造方法」と称する。)を用いることで、本発明の組成物を効率的に製造することが可能である。
 具体的には、本発明の製造方法は、例えば下記の段階(i)から(ii)を含む。更に、本発明の製造方法は、例えば下記の段階(iii)を含んでいてもよい。
(i)でんぷんの含有量が乾燥質量換算で10.0質量%以上、タンパク質の含有量が乾燥質量換算で4質量%以上、乾量基準水分率20質量%以上のペースト生地組成物を調製する段階。
(ii)前記段階(i)の調製後の組成物を、温度110℃以上190℃以下、SME値400kJ/kg以上、0.1MPa以上の圧力を印加する条件で混練する段階。
(iii)前記段階(ii)の混練処理後の組成物の温度を、前記組成物が膨化しない温度まで低下させる段階。
 以下、斯かる本発明の製造方法について詳細に説明する。
(2)段階(i):ペースト生地組成物の調製
 本発明の生地組成物は、最終的な組成物におけるでんぷん含量が所定の値となるように、でんぷんを所定割合以上含有する。具体的に、本発明の組成物中のでんぷん含有量の下限は、乾燥質量換算で通常10質量%以上である。中でも15質量%以上、更には20質量%以上、更には25質量%以上、更には30質量%以上、とりわけ35質量%以上、特に40質量%以上であることが好ましい。一方、本発明の組成物中のでんぷん含有量の上限は、特に制限されるものではないが、例えば乾燥質量換算で85質量%以下、中でも80質量%以下、又は70質量%以下、又は60質量%以下とすることができる。その測定方法は組成物における方法と同様である。
 本発明の生地組成物は、タンパク質を所定割合以上含有する。特に、本発明の組成物は、タンパク質を所定割合以上含有することで、後述する加熱調理時にでんぷん構造の膨潤を阻害する低分子成分の割合が一定範囲に調整されるため好ましい。具体的に、本発明の組成物におけるタンパク質含有量の下限は、乾燥質量換算で通常4.0質量%以上である。中でも5.0質量%以上、更には6.0質量%以上、とりわけ7.0質量%以上、又は8.0質量%以上、又は9.0質量%以上、又は10.0質量%以上、又は11.0質量%以上、又は12.0質量%以上、又は13.0質量%以上、又は14.0質量%以上、又は15.0質量%以上、又は16.0質量%以上、又は17.0質量%以上、又は18.0質量%以上、又は19.0質量%以上、又は20.0質量%以上、特に21.0質量%以上であることが好ましい。一方、本発明の組成物におけるタンパク質含有量の上限は、特に制限されるものではないが、乾燥質量換算で通常85質量%以下、好ましくは80質量%以下、更に好ましくは75質量%以下、更に好ましくは70質量%以下、更に好ましくは65質量%以下、更に好ましくは60質量%以下である。
 本発明のペースト生地組成物に含まれるでんぷん及び/又はタンパク質は水を含む条件であらかじめ加熱されたものを用いてもよい。具体的には、乾量基準含水率20質量%以上(より好ましくは30質量%以上、更に好ましくは40質量%以上、より更に好ましくは50質量%以上)の環境下で110℃~190℃で加熱されたものを用いることで、最終的な加熱調理用ペースト組成物中の構造が形成されやすくなるため、好ましい。でんぷん及びタンパク質が共にあらかじめ加熱されたものを用いることが、さらに好ましい(例えば、スチームなどによって加熱されたものを用いることができる)。また、特に粉末化(例えばd90<500μm、より好ましくはd90<450μm)されたでんぷん含有食材を原料として用いる場合、乾量基準含水率25質量%未満の乾燥環境下で、でんぷん含有食材粉末が加熱(例えば90℃以上)されたものを用いると、でんぷんが局所的に加熱されることでその構造中のアミロースの可溶化が促進され、組成物がべたべたした品質となるため、好ましくない。
 また、そのような過加熱のでんぷん含有食材粉末や、食材の状態であっても過剰な加熱を施された食材を用いて製造された組成物は、組成物における10倍量のヨウ素溶液(0.25mM)の吸光度(500nm)差分が0.70超、組成物粉砕物における吸光度差分が1.20超となるような組成物となり、べたべたした品質となるため、当該組成物における差分が0.70以下、組成物粉砕物における差分が1.20以下となるように調整された組成物が好ましい。前記差分はより好ましくは0.65以下、更に好ましくは0.60以下、更に好ましくは0.55以下、更に好ましくは0.50以下、更に好ましくは0.45以下、更に好ましくは0.40以下、更に好ましくは0.35以下、更に好ましくは0.30以下、更に好ましくは0.25以下、より更に好ましくは0.20以下である。また、組成物粉砕物において1.10以下であることが好ましく、更に好ましくは1.00以下、更に好ましくは0.90以下、更に好ましくは0.80以下、更に好ましくは0.70以下、更に好ましくは0.60以下、更に好ましくは0.50以下、更に好ましくは0.40以下、より更に好ましくは0.30以下である。なお、組成物、組成物粉砕物における吸光度の差分の下限値は特に限定されないが、通常はどちらも-0.20以上である。なお、前記差分の詳細な測定方法は、以下に説明する組成物を処理したヨウ素液(特に指定が無い限り富士フイルム和光純薬社製「0.5mol/L よう素溶液」を水で希釈して使用する。)の吸光度に基づいて規定する。即ち、組成物の測定に際しては、組成物(測定に際して事前に表面に付着している粉末等がある場合は組成物表面に傷をつけないように除去したもの)1質量部を、9質量部のヨウ素溶液(0.25mM)に投入し、常温(20℃)で3分間静置後、0.20μmフィルター(Millex-LG、0.20μm親水性ポリテトラフルオロエチレン(PTFE)、13mm)でろ過したものを吸光度測定に供する。吸光度測定に際しては、組成物添加前のヨウ素溶液(校正用)と組成物添加後のヨウ素溶液のろ液の各々について、通常の分光光度計(例えば島津製作所社製UV-1800)によって光路長10mmの角セルを用いて吸光度(500nm)を測定し、両者の吸光度の差分(ろ液の吸光度-ヨウ素溶液の吸光度)を求めることで可溶性成分含有割合を測定する。
 また、本発明には、加熱調理用固形状ペースト組成物の製造工程全般を通して、組成物における10倍量のヨウ素溶液(0.25mM)の吸光度(500nm)差分が0.70以下及び/又は組成物粉砕物における吸光度差分が1.20以下となるようにでんぷんの熱履歴を管理しながら組成物を製造する方法が含まれる。
(3)段階(ii):高温条件での混練処理
 前記段階(i)で得られたペースト生地組成物を、所定の高温条件下で一定以上の強さで混練する。このように高温条件で強混練することで、組成物内部におけるでんぷん構造中の、特定成分の割合について、前述のMALDI-TOFMSを用いたイメージング質量分析法による解析における特徴を有し、本発明の効果が奏される。特に、一定の高温加圧条件下で混練を行うことで、上記特徴を有するため、より好ましい。その理由は定かではないが、一定の高温条件下、好ましくは高温加圧条件下での処理によって、ペースト生地中のでんぷん構造中に、MALDI-TOFMSを用いたイメージング質量分析法による解析によって特定される成分が適切に分布することによって本発明の効果が奏されている可能性がある。一方、精製でんぷんを原料として使用した通常の冷麺等は、特にタンパク質をごく僅かしか含有しないため、本発明の上記特徴を有せず、本発明の効果を奏さない。
 混練時の具体的な条件は、以下式Iで求められるSME(specific mechanical energy)値が400kJ/kg以上であることで、でんぷん粒が十分に破壊され組成物中のでんぷんがでんぷん粒内部から浸出した状態の連続構造となるため好ましい。より好ましくは450kJ/kg以上、更に好ましくは500kJ/kg以上、更に好ましくは550kJ/kg以上、更に好ましくは600kJ/kg以上、更に好ましくは700kJ/kg以上、より更に好ましくは800kJ/kg以上で混練することがより好ましい。また、エクストルーダーを用いる場合、スクリュー回転数を150rpm超、より好ましくは200rpm超、より更に好ましくは250rpm超とすることが好ましい。さらに、前述の混練を110℃以上(より好ましくは120℃以上。)の高温下で行うことで、でんぷん粒構造が破壊されやすくなるため、さらに好ましく、例えばエクストルーダーを用いる場合には、前記した高温かつ高SME値における処理が、バレル全長の3%以上(より好ましくは5%以上、さらに好ましくは8%以上、さらに好ましくは10%以上、さらに好ましくは15%以上、さらに好ましくは20%以上)で行われることが好ましい。特に、豆類及び種実類に由来するでんぷん粒構造はその構造がより強固であるため、前記した高温かつ高SME値における処理はより有用である。また、処理温度の上限は190℃以下が好ましく、更に好ましくは180℃以下、更に好ましくは170℃以下であり、中でも160℃以下が最も好ましい。
 さらに、本発明の組成物を製造する際には、上記混練を大気圧に対する加圧条件下で行う。印加すべき圧力の下限は、通常0.1MPa以上、更には0.3MPa以上、更には0.5MPa以上、更には1MPa以上、更には2MPa以上、更には3MPa以上とすることが好ましい。一方、混練時の圧力の上限は、圧力設備の耐圧性等の要請から適宜定めればよいが、例えば50MPa以下とすることができる。また、混練時に印加される圧力は、エクストルーダーを用いる場合、その出口圧力を測定することで把握、調整することができる。
Figure JPOXMLDOC01-appb-M000002
N:混練時スクリュー回転数(rpm)
max:最大スクリュー回転数(rpm)
τ:混練時トルク/最大トルク(%)
τempty:空回し時トルク/最大トルク(%)
Q:総質量流量(kg/時間)
max:撹拌機(例えばエクストルーダー)最大パワー(kW)
 混練の時間は、混練の温度及び圧力、混練容器の大きさ等から適宜定めればよい。特に、組成物に印加される熱量は、主に用いられる装置の特性によって大きく異なることから、処理前後の組成物の物性が所定の範囲に調整されるように加工することが好ましい。
 具体的には、MALDI-TOFMSを用いたイメージング質量分析法による解析によって特定される成分が適切な範囲となるまで段階(ii)の処理を行うことが好ましい。より具体的には、値α1が16.0以下かつ(α1×β1)が7.0以下となるまで及び/又は値β1が1.70以下となるまで段階(ii)の処理を行うことが好ましい。さらに、値α2が16.0以下かつ(α2×β2)が7.0以下となるまで及び/又は値β2が1.70以下となるまで段階(ii)の処理を行うことが特に好ましい。
 また、一般的には、混練時間の下限は例えば通常0.1分間以上、好ましくは0.2分間以上、より好ましくは0.3分間以上、より好ましくは0.4分間以上、より好ましくは0.5分間以上、より好ましくは0.8分間以上、より好ましくは1分間以上、更に好ましくは2分間以上であり、混練時間の上限は例えば通常60分間以内、好ましくは30分間以内、更に好ましくは15分間以内とすることができる。
 ペースト生地組成物をこのような過酷な高温加圧条件下での混練処理により、加熱調理時の組成物軟化性を高め調理時間が短縮されること、さらには加熱調理中の組成物の結着性が抑えられ調理し易くなることは、従来は全く知られていなかった驚くべき知見である。
(4)段階(iii):降温処理
 前記段階(ii)後、降温せずに組成物を減圧すると、組成物中の水分が急激に蒸発して組成物が膨化するため、非膨化のペースト生地組成物を製造するに際しては好ましくない。従って、高温条件での混練処理後、組成物が膨化しないように組成物温度は通常110℃未満、好ましくは105℃未満、より好ましくは102℃未満、更に好ましくは100℃未満まで降温させる。特に、降温処理を一定の加圧条件下で行うことが好ましい。この場合、降温時の加圧条件は、組成物の膨化を防止できれば特に制限されないが、混練処理時の圧力と同様であることが好ましい。具体的には、降温時に印加すべき圧力の下限は、通常0.1MPa以上、好ましくは0.3MPa以上、より好ましくは0.5MPa以上、更に好ましくは1MPa以上、更に好ましくは2MPa以上、更に好ましくは3MPa以上である。一方、降温時に印加すべき圧力の上限は、例えば50MPa以下とすることができる。
 また、総質量流量を一定以上に保ちつつエクストルーダーの出口温度設定をさらに下げることで、(ii)の混練時圧力が高まり、加熱調理中の組成物結着性が更に改善するためより好ましい。それらの条件はエクストルーダーを用いる場合その出口圧力が一定以上となるように適宜調整すればよいが、エクストルーダーの出口温度設定は90℃未満、更に好ましくは85℃未満、更に好ましくは80℃未満、更に好ましくは75℃未満、更に好ましくは70℃未満、更に好ましくは65℃未満、更に好ましくは60℃未満、更に好ましくは55℃未満、更に好ましくは50℃未満、更に好ましくは45℃未満、より更に好ましくは40℃未満である。また、総質量流量は0.5kg/時間以上が好ましく、更に好ましくは0.7kg/時間以上、より更に好ましくは1.0kg/時間である。
 組成物が膨化しない温度下で、乾量基準含水率25質量%未満となるまでの時間が0.02時間以上保持すると好ましく、より好ましくは0.03時間以上、更に好ましくは0.05時間以上、更に好ましくは0.08時間以上、更に好ましくは0.1時間以上、更に好ましくは0.2時間以上、更に好ましくは0.4時間以上、更に好ましくは0.8時間以上、より更に好ましくは1.0時間以上であることで、組成物が好ましい品質となる。その手段として、前記(i)~(ii)の何れかの段階において水分を添加し、生地組成物の乾量基準含水率を50質量%以上に調整する方法を用いることができる。より具体的には、(i)の段階で加水を行う方法が好ましい。また加水は水の状態でもスチームの状態でも行うことができるが、水の状態で添加することが好ましい。
 また、保水処理として段階(iii)及び/または段階(iii)の後工程で加水を行う方法を用いることができる。加水は、水の状態でもスチームの状態でも行うことができるが、水の状態で添加することが好ましい。さらに、一旦組成物の乾量基準含水率25質量%以下となった場合であっても、乾燥組成物に再加水して乾量基準含水率を高めることで、保水処理を行うことができる。乾燥組成物に再加水する場合には、その後の保持時間の過半が60℃以下であることが好ましく、50℃以下であることがさらに好ましく、40℃以下であることが最も好ましい。
 また、段階(iii)及び/または段階(iii)の後工程で、周辺湿度を高め、乾量基準含水率25質量%に到達するまでの時間を長くすることで保水処理を行う方法も用いることができる。
 また、段階(iii)及び/または段階(iii)の後工程で、組成物温度を一定温度以下に速やかに低下させることで、乾量基準含水率25質量%に到達するまでの時間を長くすることで保水処理を行う方法も用いることができる。より具体的には、乾量基準含水率25質量%に到達するまでの時間の過半において、組成物温度を80℃以下まで低下させることが好ましく、中でも70℃以下、又は60℃以下、又は50℃以下、又は40℃以下まで低下させることがより好ましい。さらに、エクストルーダーを用いて製造する組成物においては、出口から押し出される段階から組成物温度が当該温度となっていることが好ましく、出口温度が当該温度に設定された状態で製造されることがより好ましい。
 また、段階(ii)においてエクストルーダー内部における生地組成物温度が好ましくは90℃未満(より好ましくは85℃未満、又は80℃未満、又は75℃未満、又は70℃未満、又は65℃未満、又は60℃未満、又は55℃未満、又は50℃未満、又は45℃未満、又は40℃未満)に低下してから、段階(iii)で乾量基準含水率25質量%未満となるまでの時間が連続的に好ましくは0.02時間以上(より好ましくは0.03時間以上、又は0.05時間以上、又は0.08時間以上、又は0.1時間以上、又は0.2時間以上、又は0.4時間以上、又は0.8時間以上、又は1.0時間以上)保持することで保水処理を行う方法を用いることもできる。そのために、段階(ii)においてエクストルーダー内部設定温度が110℃以上に上昇するセクションの後に、内部設定温度を90℃未満に低下させつつ生地を混練するセクションを有することで、加熱調理中の組成物結着性が更に改善するため好ましい。
 さらに、段階(iii)及び/または段階(iii)の後工程における組成物温度は90℃以下が好ましく、より好ましくは80℃以下、更に好ましくは70℃以下、より更に好ましくは60℃以下である。さらに、段階(iii)または段階(iii)の後工程が常圧下で行われることがより好ましい。
(5)エクストルーダー
 エクストルーダーを用いる場合は、その製造中に配合する水分の50質量%以上をエクストルーダー内が20℃以上加温される前に他原料と混合することで、でんぷんが過加熱によってその特性が変化することを抑制できるため好ましい。より好ましくは60%以上、更に好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは100質量%である。水分を他原料と混合する場合、あらかじめエクストルーダーに投入する前に前記割合の水分を混合しておくことが好ましい。また、100℃以上にエクストルーダー内部が加温された状態で注水を行うと、水分が突沸して組成物構造が損なわれる可能性があるため、エクストルーダー内部の温度が100℃未満(より好ましくは90℃未満、更に好ましくは80℃未満、更に好ましくは70℃未満、更に好ましくは60℃未満、更に好ましくは50℃未満、より更に好ましくは40℃未満)の状態で粉末と前記割合の水分を混合することが好ましい。さらに、上記の条件に従って(例えばエクストルーダーを用いて)加工した生地組成物を、(i)の工程に用いて本発明のペースト状組成物を製造することで、ペースト組成物加工時に必要とされる高温加圧強混練の一部を生地組成物製造工程で施すこともできる。
 また、その製造中に配合する水分の50質量%以上をエクストルーダー内が加圧(与圧)される前に他原料と混合することで、でんぷんが過加熱によってその特性が変化することを抑制できるため好ましい。より好ましくは60質量%以上、更に好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは100質量%である。エクストルーダー内部が100℃以上に加温、加圧される前にそれら割合の水分が他原料と混合されることが最も好ましい。
 エクストルーダーの種類は制限されないが、加水、強混練(最低でもSME値400kJ/kg以上)、加熱、冷却、押出し成形までの各処理をひとつのユニットで実施できるものが好ましい。特に加温加圧前の原料に加水できる構造を有するエクストルーダーが好ましい。具体的に、1軸エクストルーダー及び2軸エクストルーダーのいずれであっても使用できるが、本発明の組成物構造の形成を促進するための強混練を実現する観点から、一般的な1軸エクストルーダーよりも2軸エクストルーダーを用いることが好ましい。また一般に1軸エクストルーダー、2軸エクストルーダーと呼ばれる装置(特に海外でextruder、twin screw extruderと称される装置)においては、単なるミキサー、ニーダー機能を有するに過ぎない押出装置も含まれるが、そのような装置は本発明の組成物構造を形成するための強混練を得られないため、好ましくない。さらに、でんぷん粒構造を有する組成物原料を用いる場合は、その構造が強固であり、でんぷん粒構造が十分に破壊されるためには、通常のフライトスクリューのみを用いたエクストルーダーよりも、ニーディング効果を有するバレル部位を通常より顕著に多く使用することがさらに好ましい。具体的には、エクストルーダーにおけるバレル全長に対するフライトスクリュー部割合が95%以下であることで、組成物が強く混練され、本発明の組成物の特徴的な構造の形成が促進されるため、好ましい。フライトスクリュー部とは、輸送エレメントとも呼ばれる最も一般的な形状のバレル部であり、バレル全長に対するその割合が高まると、生地組成物をダイに向けて押し出す能力が高まるものの、生地組成物を混練しその反応を促す能力が低下する。より好ましくは90%以下、更に好ましくは85%以下である。なお、パフなどの膨化物をエクストルーダーを用いて製造する際は、高圧で勢いよく組成物を押し出す必要があるため、バレル全長に対するフライトスクリュー部位割合を高める動機が存在し、(高SME値で混練する場合であっても)、バレル全長に対するフライトスクリュー部位割合は95%~100%となることが通常である。また、バレル長全体の5%以上、より好ましくは7%以上、更に好ましくは10%以上、より更に好ましくは12%以上をニーディング効果を有するバレル部位とすることができる。
(6)後処理
 以上の段階(i)~(ii)、必要に応じてさらに段階(iii)を経ることにより、本発明の組成物を得ることができるが、更に後処理を加えてもよい。後処理としては、例えば前述の保水処理の他に、成型処理、乾燥処理等が挙げられる。
 成型処理としては、例えば固形状ペースト組成物を所望の形態(例えば前述のパスタ、中華麺、うどん、稲庭うどん、きしめん、ほうとう、すいとん、ひやむぎ、素麺、蕎麦、蕎麦がき、ビーフン、フォー、冷麺の麺、春雨、オートミール、クスクス、きりたんぽ、トック、ぎょうざの皮等)に成型する処理等が挙げられる。斯かる成型処理は、当該技術分野において通常知られている方法を適宜採用することができる。例えば、パスタや中華麺等の麺のような細長状組成物とする場合、前述のエクストルーダー等の装置を用いて、組成物を細長形状に押し出し成形すればよい。一方、平板状の組成物とする場合、組成物を平板形状に成形すればよい。更には、組成物をプレス成型したり、平板形状に成形した組成物を切断又は型抜きしたりすることで、細長状、粒状、薄片状等の任意の形状の組成物を得ることもできる。
 乾燥方法としては、一般的に食品の乾燥に用いられる任意の方法を用いることができる。例としては、天日乾燥、陰干し、フリーズドライ、エアドライ(例えば熱風乾燥、流動層乾燥法、噴霧乾燥、ドラム乾燥、低温乾燥等)、加圧乾燥、減圧乾燥、マイクロウェーブドライ、油熱乾燥等が挙げられる。中でも、食材が本来有する色調や風味の変化の程度が小さく、食品以外の香り(こげ臭等)を制御できるという点から、エアドライ(例えば熱風乾燥、流動層乾燥法、噴霧乾燥、ドラム乾燥、低温乾燥等)又はフリーズドライによる方法が好ましい。
[III:加熱調理用固形状ペースト組成物の粉砕物及びその凝集体]
 なお、本発明の加熱調理用固形状ペースト組成物は、これを粉砕して用いてもよい。即ち、前述の本発明の製造方法において、前記段階(ii)もしくは(iii)の後、さらに(iv)前記組成物を粉砕し、粉砕組成物とする段階を設けてもよい。こうして得られる本発明の組成物の粉砕物(これを適宜「本発明の粉砕組成物」という。)も、本発明の対象となる。本発明の組成物を粉砕して本発明の粉砕組成物とする場合、その粉砕条件は特に制限されず任意であるが、d90が50μm超1000μm未満(より好ましくは500μm未満、さらには400μm未満、さらには300μm未満、さらには200μm未満)程度となるように粉砕することが好ましい。
 また、本発明の粉砕組成物を原料として、前記の本発明の製造方法による高温加圧強混練処理を再度実施することで、凝集体を形成してもよい。即ち、前述の本発明の製造方法において、前記段階(iv)の粉砕後、さらに(v)前記粉砕組成物を凝集させて、粉砕組成物凝集体とする段階を設けてもよい。こうして得られる本発明の粉砕組成物の凝集体(これを適宜「本発明の粉砕組成物凝集体」という。)は、前述のMALDI-TOFMSを用いたイメージング質量分析法による解析における特徴を有する組成物となるため、加熱調理用固形状ペースト組成物として好適に利用できる。斯かる本発明の粉砕組成物凝集体も、本発明の対象となる。本発明の組成物を粉砕して本発明の粉砕組成物とする場合、その製造条件については、前記項目[II]において説明したとおりである。
 以下、本発明を実施例に則して更に詳細に説明するが、これらの実施例はあくまでも説明のために便宜的に示す例に過ぎず、本発明は如何なる意味でもこれらの実施例に限定されるものではない。
[ペースト生地組成物の調製方法]
 生地組成物の調製に当たっては、後記表中「原料前処理」に記載された条件で前処理を施した原料を用いた。また、加工前の段階で「ペースト生地組成物測定値」となるように、適宜水を添加して調製した。なお、原料に豆類粉末を使用する場合、特に指定がない限り種皮を取り除いた豆類粉末を用いた。
[加熱調理用固形状ペースト組成物の調製]
 各試験例及び比較例の加熱調理用固形状ペースト組成物の試料を、後記表中「加工条件」に記載された条件で製造した。具体的には、「使用機材」に記載された「機材種類」の機材を使用し、混練時の使用バレルとして「フライトスクリュー部位割合」のものを用い、バレル部位(後記表中(1)~(9))のうち、「混練部位」に記載された部位を混練能力が強い形状に変更したものを用い、「温度条件」に該当する部位の温度を後記表中に記載された数値に設定した(表中(1)が原料投入部、表中(9)が出口温度に該当する)。なお、2軸エクストルーダーとしては、サーモフィッシャーサイエンティフィック社製、HAAKE Process11(スクリュー径11mm×2、スクリュー長41cm、セグメント式、同方向回転スクリュー)を使用し、一軸エクストルーダーとしてはNP食品社製一軸エクストルーダー(スクリュー径70mm×スクリュー長140cm)を使用した。また、「注水方法」に記載された方法で加水を行い、「バレル回転速度」「混練強度(SME値)」「内部圧力(出口付近圧力)」で加工を行った。加工時のベントは行わなかった。
 さらに、加工後の組成物を、「生地温度が90℃未満に低下してから、乾量基準含水率25質量%未満となるまでの時間」に記載された条件で、乾燥処理を行った。
 得られた各試験例及び比較例の加熱調理用固形状ペースト組成物の試料について、下記の分析及び官能評価を行った。
[でんぷん、タンパク質、乾量基準含水率]
 「でんぷん」については、日本食品標準成分表2015年版(七訂)に準じ、AOAC996.11の方法に従い、80%エタノール抽出処理により、測定値に影響する可溶性炭水化物(ぶどう糖、麦芽糖、マルトデキストリン等)を除去した方法で測定し、「タンパク質」については、日本食品標準成分表2015年版(七訂)に準じ、改良ケルダール法によって定量した窒素量に、「窒素-タンパク質換算係数」を乗じて算出する方法で測定し、「乾量基準含水率」については、日本食品標準成分表2015年版(七訂)に準じ、減圧加熱乾燥法で90℃に加温することで測定した。
[加熱水中処理後組成物の凍結切片のMALDI-TOFMSイメージング質量分析による解析]
 (試料調製、作製方法)
 分析用試料については組成物約1gを、約1.0Lの沸騰した蒸留水(90℃以上)に投入し、6分間煮沸処理した後、2mm~5mm程度の長さになるように解剖ハサミを用いて切断し、凍結ブロック作製に供した。
 (凍結ブロック作製方法)
 凍結ブロック作製にあたり、包埋剤として川本法(前述)用の凍結包埋剤(SCEM SECTION-LAB社製)を用い、凍結組織切片作製用包埋皿はTissue-Tek<クリオモルド2号>(サクラファインテックジャパン社製)を使用した。
 凍結包埋剤を凍結組織切片作製用包埋皿に投入後、凍結切片作製時の切断面が組成物の長手方向(組成物をエクストルーダー押出によって製造した際の組成物押出方向に相当)と、短手方向(長手方向に対して垂直方向)と一致するように、各試料を配置した。
 試料を包埋剤内に投入後、設置状態を維持するため病理用組織迅速凍結用スプレー(クリオスタット用ホワイトフリーザーS:ユーアイ化成株式会社)を用いて迅速に凍結させ、凍結ブロックは切片作製までの間、凍結ミクロトーム内(-25℃)環境下で静置した。
 (切片作製方法)
 凍結ブロックは、凍結組織切片作製用包埋剤としてTissue-Tek<OCTコンパウンド>(サクラファインテックジャパン社製)を用いて試料ホルダーに固定した。その後、凍結ミクロトーム(Cryostar NX20、サーモフィッシャーサイエンティフィック社製)を用いて、-25℃環境下で厚さ30μmの切片を作製した。
 各々の凍結切片はイメージングMS用スライドグラス(ITOスライドガラス、ブルカー社製)に張り付け、分析に供した。
 (イメージング質量分析)
 イメージング質量分析用のMALDI-TOFMS分析計としてはrapiflex(ブルカー社製)を使用し、画像取り込みにはスキャナーGT-X830(EPSON社製)を6400dpiの条件で使用し、分析ソフトflexControl(ブルカー社製)を使用して測定条件を、レーザー周波数10kHz、レーザーパワー100、ショット数500、感度はgain26x(2905V)、Scanrange:X5μmY5μm、Resulting Field size:X9μmY9μmに設定し、組成物断面全体を囲むようにイメージング領域を設定した。
 また、分析に際して使用するマトリックスについては、測定対象に対応したマトリックスを用いて行い、マトリックス噴霧はTM-Sprayer(HTX Technologies、LLC社製)で行い、スプレー条件は70℃、10回噴霧で行った。
 具体的には、値[α](組成物断面におけるm/z=788.37のシグナル強度([788.37])に対するm/z=213.38のシグナル強度([213.38])の割合、[213.38]/[788.37]と称する場合もある)の測定に際しては、低分子物質解析用マトリックスであるα-シアノ-4-ヒドロキシケイ皮酸を、0.1%TFA含有70%アセトニトリル溶液に溶解し、溶解物1mLをスライドグラスに噴霧後、減圧デシケータ中10分間乾燥させて使用した。
 また、値[β](組成物断面におけるm/z=5962.70のシグナル強度([5962.70])に対するm/z=12345.17のシグナル強度([12345.17])の割合、[12345.17]/[5962.70]とも記載する)の測定に際しては、高分子物質解析用マトリックスであるシナピン酸を用いて、ブルカー社のプロトコールに従い、2段階の噴霧を行った。より具体的には、シナピン酸をエタノール(10mg/mL)に溶解し、凍結切片を張り付けたIOTスライドグラスに2mL噴霧し、減圧デシケータ中10分間乾燥後、シナピン酸を30%アセトニトリルに溶解したもの(60mg/mL)を2mL噴霧し、減圧デシケータ中10分間乾燥させて使用した。
 (シグナル強度解析)
 シグナル強度解析はFleximageで実施した。具体的には、各ターゲット物質のm/z±0.1のシグナル強度を画像中に白色の濃淡で表示させ、組成物断面画像中の白色の強度を計測することで、各ターゲット物質のシグナル強度を測定した(従って、シグナルが無い背景は黒となる)。より具体的には、画像解析ソフトとしてimageJを用い、組成物断面画像全体を囲むように測定箇所を指定することでシグナル強度を測定した。
[視野中のでんぷん粒構造の数]
 組成物をミルで粉砕した目開き150μmパスの組成物粉末3mgを、水50μLに懸濁した組成物粉末6%懸濁液を作製した。その後、スライドグラスに懸濁液を滴下後、カバーガラスをかけ軽く押しつぶしてプレパラートを作製した。
 位相差顕微鏡(ECLIPSE80i、Nikon社製)にて、拡大倍率200倍でプレパラート中の代表的部位を偏光観察し、視野中のでんぷん粒構造の数を把握した。
[官能評価]
 上記のように調製した各組成物1質量部と、比較対象として市販の緑豆ハルサメ1質量部とを、それぞれ9質量部の水中で90℃、5分間加熱調理した際における調理性、物性について、官能評価を行った。具体的には、上記組成物を加熱調理し、訓練された官能検査員10名が加熱調理時の組成物を観察し、その調理性、物性について、「加熱調理時の組成物軟化性」、「加熱調理中の組成物結着改善性」、及び「総合評価」の各観点から、下記の基準で評価を行った。そして、官能検査員10名の評点の平均値を算出し、小数第1位を四捨五入して最終評点とした。
・「加熱調理時の組成物軟化性」の評価基準:
 組成物の加熱調理性について、緑豆ハルサメ(市販品)の調理性と比して下記の5段階で評価した。
  5:加熱調理時の組成物の軟化性が良く、市販品より明らかに優れる。
  4:加熱調理時の組成物の軟化性がやや良く、市販品より相当優れる。
  3:加熱調理時の組成物の軟化性は中庸で、市販品より優れる。
  2:加熱調理時の組成物の軟化性がやや悪いものの、市販品よりやや優れる。
  1:加熱調理時の組成物の軟化性が悪く、市販品と同等である。
・「加熱調理中の組成物結着改善性」の評価基準:
 組成物の調理性について、緑豆ハルサメ(市販品)の調理性と比して下記の5段階で評価した。
  5:加熱調理中に組成物同士が結着せず、市販品より明らかに優れる。
  4:加熱調理中に組成物同士が一部で結着するが、市販品より相当優れる。
  3:加熱調理中に組成物同士が半数程度結着するものの、市販品と同等である。
  2:加熱調理中に組成物同士が大半で結着し、市販品よりやや劣る。
  1:加熱調理中に組成物同士がほぼ全て結着し、市販品より劣る。
・「総合評価」の評価基準:
 組成物の物性および食味について、緑豆ハルサメ(市販品)と比して下記の5段階で評価した。
  5:組成物軟化性と結着改善性が非常に良く、市販品より明らかに優れる。
  4:組成物軟化性と結着改善性がおおむね良く、市販品より相当優れる。
  3:組成物軟化性と結着改善性が中庸だが、市販品より優れる。
  2:組成物軟化性と結着改善性がやや悪く、市販品よりやや劣る。
  1:組成物軟化性と結着改善性が悪く、市販品より劣る。
[組成・製造条件・評価結果]
 各試験例及び比較例の組成物試料の組成、測定値及び物性を表1-1及び1-2に示し、各試料の製造条件を表2-1及び2-2に示し、各試料の評価結果を表3-1及び3-2に示す。なお、組成物の粉砕物の6%懸濁液を観察した場合に認められるでんぷん粒構造は、比較例1と3は300個以上/mmであり、それ以外の試験例においては全て300個以下/mmであった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明の加熱調理用固形状ペースト組成物は、加熱調理時の組成物軟化性が高められており、調理時間が短縮できると共に、加熱調理中の組成物の結着性が抑えられており、調理しやすいため、食品分野での応用が期待される。

Claims (27)

  1.  下記(1)から(4)を全て充足する、加熱調理用固形状ペースト組成物。
    (1)でんぷんを乾燥質量換算で19質量%以上含有する。
    (2)タンパク質を乾燥質量換算で4.0質量%以上含有する。
    (3)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、ある切断面Xに沿って厚さ30μmに切断した組成物凍結切片Xを、下記[条件A]で測定した場合における下記[α]の値(以下「α1」とする。)が16.0以下である。
     [条件A]組成物凍結切片を、マトリックスとしてα-シアノ-4-ヒドロキシケイ皮酸を用い、MALDI-TOFMSを用いたイメージング質量分析法によって解析する。
     [α]組成物断面におけるm/z=788.37のシグナル強度に対するm/z=213.38のシグナル強度の割合。
    (4)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、ある切断面Xに沿って厚さ30μmに切断した組成物凍結切片Xを、下記[条件B]で測定した場合における下記[β]の値(以下「β1」とする。)が、前記α1との関係で下記[式1]を充足する。
     [条件B]組成物凍結切片を、マトリックスとしてシナピン酸を用い、MALDI-TOFMSを用いたイメージング質量分析法によって解析する。
     [β]組成物断面におけるm/z=5962.70のシグナル強度に対するm/z=12345.17のシグナル強度の割合。
     [式1]α1×β1≦7.0
  2.  前記β1が1.70以下である、請求項1に記載の組成物。
  3.  前記[条件A]における切断面Xが、前記組成物の長手方向に直交する断面である請求項1又は2に記載の組成物。
  4.  更に下記(5)及び(6)を充足する、請求項1~3の何れか一項に記載の組成物。
    (5)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、前記切断面Xと直交する切断面Yに沿って厚さ30μmに切断した組成物凍結切片Yを、前記[条件A]で測定した場合における前記[α]の値(以下「α2」とする。)が16.0以下である。
    (6)90℃の水中で当該組成物を6分間加温した後、-25℃で凍結した組成物凍結物について、前記切断面Xと直交する切断面Yに沿って厚さ30μmに切断した組成物凍結切片Yを、前記[条件B]で測定した場合における前記[β]の値(以下「β2」とする。)が、前記α2との関係で下記[式2]を充足する。
     [式2]α2×β2≦7.0
  5.  前記β2が1.70以下である、請求項4に記載の組成物。
  6.  前記組成物の粉砕物の6%懸濁液を観察した場合に認められるでんぷん粒構造が、300個以下/mmである、請求項1~5の何れか一項に記載の組成物。
  7.  食用植物に由来する成分を含む、請求項1~6の何れか一項に記載の組成物。
  8.  前記食用植物が、乾量基準含水率15質量%未満の乾燥食用植物である、請求項7に記載の組成物。
  9.  前記食用植物が豆類である、請求項7又は8に記載の組成物。
  10.  豆類が、エンドウ属、インゲンマメ属、キマメ属、ササゲ属、ソラマメ属、ヒヨコマメ属、ダイズ属及びヒラマメ属から選ばれる1種以上の豆類を原料とするものである、請求項9に記載の組成物。
  11.  前記豆類が、超音波処理後の粒子径のd90が500μm未満の豆類粉末である、請求項9又は10に記載の組成物。
  12.  前記組成物中の総でんぷん含量に対する、前記食用植物に由来するでんぷん含量の比率が、10質量%以上である、請求項7~11の何れか一項に記載の組成物。
  13.  前記組成物中の総タンパク質含量に対する、前記食用植物に由来するタンパク質含量の比率が、10質量%以上である、請求項7~12の何れか一項に記載の組成物。
  14.  膨化物ではない、請求項1~13の何れか一項に記載の組成物。
  15.  乾量基準含水率が60質量%以下である、請求項1~14の何れか一項に記載の組成物。
  16.  請求項1~15の何れか一項に記載の組成物を粉砕してなる、粉砕組成物。
  17.  請求項16に記載の粉砕組成物を凝集してなる、粉砕組成物凝集体。
  18.  下記の段階(i)から(ii)を含む、請求項1~15の何れか一項に記載の加熱調理用固形状ペースト組成物の製造方法。
    (i)でんぷんの含有量が乾燥質量換算で10.0質量%以上、タンパク質の含有量が乾燥質量換算で4質量%以上、乾量基準水分率20質量%以上のペースト生地組成物を調製する段階。
    (ii)前記段階(i)の調製後の組成物を、温度110℃以上190℃以下、SME値400kJ/kg以上、0.1MPa以上の圧力を印加する条件で混練する段階。
  19.  前記段階(ii)の混練処理を、0.1分間以上60分間以内に亘って行う、請求項18に記載の製造方法。
  20.  前記段階(ii)の後、更に下記の(iii)の段階を含む、請求項18又は19に記載の製造方法。
    (iii)前記段階(ii)の混練処理後の組成物の温度を、前記組成物が膨化しない温度まで低下させる段階。
  21.  前記段階(iii)において、生地組成物温度が90℃未満に低下してから、乾量基準含水率25質量%未満となるまで、連続的に0.02時間以上保持される、請求項20に記載の製造方法。
  22.  前記段階(ii)の混練処理及び/又は前記段階(iii)の降温を、エクストルーダーを用いて行う、請求項20又は21に記載の製造方法。
  23.  前記エクストルーダーが2軸エクストルーダーである、請求項22に記載の製造方法。
  24.  前記エクストルーダーにおけるバレル全長に対するフライトスクリュー部位長が95%以下である、請求項22又は23に記載の製造方法。
  25.  前記段階(iii)の降温後、更に下記の(iv)の段階を含む、請求項20~24の何れか1項に記載の製造方法。
    (iv)前記組成物を粉砕し、粉砕組成物とする段階。
  26.  前記段階(iv)の粉砕後、更に下記の(v)の段階を含む、請求項25に記載の製造方法。
    (v)前記粉砕組成物を凝集させて、粉砕組成物凝集体とする段階。
  27.  請求項18~26の何れか1項に記載の製造方法により製造される加熱調理用固形状ペースト組成物。
PCT/JP2020/026288 2019-11-01 2020-07-03 加熱調理用固形状ペースト組成物及びその製造方法 WO2021084803A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021517057A JP6948098B2 (ja) 2019-11-01 2020-07-03 加熱調理用固形状ペースト組成物及びその製造方法
CA3159765A CA3159765C (en) 2019-11-01 2020-07-03 Solid paste composition for cooking and method for producing same
EP20880430.2A EP4039104A4 (en) 2019-11-01 2020-07-03 SOLID PASTE COMPOSITION FOR COOKING AND PROCESS FOR PRODUCTION THEREOF
TW109137820A TWI813915B (zh) 2019-11-01 2020-10-30 加熱調理用固型狀糊料組合物及其製造方法
US17/734,570 US20220264917A1 (en) 2019-11-01 2022-05-02 Solid paste composition for cooking and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019200278 2019-11-01
JP2019-200278 2019-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/734,570 Continuation US20220264917A1 (en) 2019-11-01 2022-05-02 Solid paste composition for cooking and method for producing same

Publications (1)

Publication Number Publication Date
WO2021084803A1 true WO2021084803A1 (ja) 2021-05-06

Family

ID=75714617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026288 WO2021084803A1 (ja) 2019-11-01 2020-07-03 加熱調理用固形状ペースト組成物及びその製造方法

Country Status (6)

Country Link
US (1) US20220264917A1 (ja)
EP (1) EP4039104A4 (ja)
JP (1) JP6948098B2 (ja)
CA (1) CA3159765C (ja)
TW (1) TWI813915B (ja)
WO (1) WO2021084803A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255492A1 (ja) * 2021-06-04 2022-12-08 株式会社Mizkan Holdings でんぷん含有固形状組成物を調味液中に含む食品組成物及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989620A (en) * 1996-09-20 1999-11-23 University Of Saskatchewan Production of legume pasta products by a high temperature extrusion process
JP2016077196A (ja) 2014-10-15 2016-05-16 日清製粉株式会社 麺類の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394397A (en) * 1981-10-02 1983-07-19 Carnation Company Process for producing pasta products
IL103642A (en) * 1991-11-07 1995-11-27 Cpc International Inc Pre-cooked stuffed pasta products made by co-extrusion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989620A (en) * 1996-09-20 1999-11-23 University Of Saskatchewan Production of legume pasta products by a high temperature extrusion process
JP2016077196A (ja) 2014-10-15 2016-05-16 日清製粉株式会社 麺類の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Pocket Book of Food Additives Labeling", 2011
"Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants", ARCH. HISTOL. CYTOL., vol. 66, no. 2, 2003, pages 123 - 43
See also references of EP4039104A4
WANG, N. ET AL.: "Pasta-like product from pea flour by twin-screw extrusion.", J. FOOD. SCI., vol. 64, no. 4, 1999, pages 671 - 678, XP009005751, DOI: 10.1111/j.1365-2621.1999.tb15108.x *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255492A1 (ja) * 2021-06-04 2022-12-08 株式会社Mizkan Holdings でんぷん含有固形状組成物を調味液中に含む食品組成物及びその製造方法
JPWO2022255492A1 (ja) * 2021-06-04 2022-12-08
JP7339707B2 (ja) 2021-06-04 2023-09-06 株式会社Mizkan Holdings でんぷん含有固形状組成物を調味液中に含む食品組成物及びその製造方法

Also Published As

Publication number Publication date
CA3159765C (en) 2023-06-20
EP4039104A1 (en) 2022-08-10
TWI813915B (zh) 2023-09-01
JP6948098B2 (ja) 2021-10-13
EP4039104A4 (en) 2022-11-30
JPWO2021084803A1 (ja) 2021-11-18
US20220264917A1 (en) 2022-08-25
TW202131801A (zh) 2021-09-01
CA3159765A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6792308B1 (ja) 加熱調理用固形状ペースト組成物及びその製造方法
JP6948098B2 (ja) 加熱調理用固形状ペースト組成物及びその製造方法
JP7089817B1 (ja) 加熱調理用でんぷん含有組成物の製造方法
JP2019118269A (ja) そば粉及びそば粉の製造方法
TW202231188A (zh) 含有澱粉之膨化組合物及其製造方法
WO2021039544A1 (ja) 加熱調理用固形状ペースト組成物及びその製造方法
JP2013009625A (ja) 乾燥タケノコの粉末とその製造方法
JP7104455B2 (ja) でんぷん含有固形状組成物及びその製造方法
Suryawanshi Enhancement of income through value addition of rice.
CA3172051A1 (en) Oil-and-fat-containing composition and production method therefor
JP2018201388A (ja) 即席乾燥粥
JP2019071833A (ja) 飲食品用粉粒物及びその製造方法、並びに飲食品用品質改良剤及び飲食品の品質改良方法
JPS6056469B2 (ja) 脱脂大豆抽出残渣含有食品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3159765

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020880430

Country of ref document: EP

Effective date: 20220503

NENP Non-entry into the national phase

Ref country code: DE