WO2021084751A1 - Layered body, layered body manufacturing method, and polarizing plate manufacturing method - Google Patents

Layered body, layered body manufacturing method, and polarizing plate manufacturing method Download PDF

Info

Publication number
WO2021084751A1
WO2021084751A1 PCT/JP2019/043116 JP2019043116W WO2021084751A1 WO 2021084751 A1 WO2021084751 A1 WO 2021084751A1 JP 2019043116 W JP2019043116 W JP 2019043116W WO 2021084751 A1 WO2021084751 A1 WO 2021084751A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
translucent resin
mass
acrylic
meth
Prior art date
Application number
PCT/JP2019/043116
Other languages
French (fr)
Japanese (ja)
Inventor
西村 浩
奈々恵 藤枝
田坂 公志
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020227011671A priority Critical patent/KR102719733B1/en
Priority to PCT/JP2019/043116 priority patent/WO2021084751A1/en
Priority to JP2021554036A priority patent/JP7388443B2/en
Priority to TW109130845A priority patent/TWI840609B/en
Publication of WO2021084751A1 publication Critical patent/WO2021084751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a laminate, a method for producing a laminate, and a method for producing a polarizing plate.
  • a polarizing plate used in a display device such as a liquid crystal display device or an organic EL display device includes a polarizing element and a protective film for protecting the polarizing element.
  • display devices used for mobile applications such as smartphones and tablet terminals have been required to be thinned, and polarizing plates and protective films, which are constituent members thereof, are also required to be thinned.
  • the protective film is usually manufactured by a method (solution casting method) in which a resin is dissolved in a solvent, a solution called a doping is cast, and then dried. Then, the obtained protective film is bonded to a polarizing element to manufacture a polarizing plate.
  • a peelable laminated film laminated body having a base film (support) and a translucent film (translucent resin layer) is used.
  • a method has been proposed in which a translucent film is attached to a polarizer and a base film is peeled off to manufacture a polarizing plate (see Patent Documents 1 to 3).
  • JP-A-2018-41028 JP-A-2018-45220 Japanese Unexamined Patent Publication No. 2013-134336
  • a paint for a translucent resin layer is applied on a strip-shaped support, or a material for a support and a material for a translucent resin layer are mixed. Manufactured by co-spreading. Then, the obtained laminate is transported or stored in a rolled state, and then unwound from the roll and used when manufacturing a polarizing plate.
  • the thickness of the translucent resin layer is as thin as 10 ⁇ m or less, it is also required that the translucent resin layer does not break when being conveyed by a roll or the like while applying tension to the laminate.
  • the present invention has been made in view of the above circumstances, and is suitable for winding deformation when the laminated body or the polarizing plate is wound in a roll shape and stored for a certain period of time without causing breakage during transportation of the laminated body. It is an object of the present invention to provide a laminate capable of suppressing the accompanying surface defects, a method for producing the same, and a method for producing a polarizing plate using the laminate.
  • the laminate of the present invention is a laminate having a support and a translucent resin layer removably arranged on the surface thereof, and the translucent resin layer has a weight average molecular weight of 1 million or more. It contains a (meth) acrylic resin and rubber particles, and the tensile elastic modulus of the laminate at 25 ° C. is 2.0 to 6.0 GPa.
  • the method for producing a laminate of the present invention includes a step of obtaining a solution for a translucent resin layer containing a (meth) acrylic resin having a weight average molecular weight of 1 million or more, rubber particles, and a solvent, and the translucency.
  • the method for producing a polarizing plate of the present invention includes a step of adhering the translucent resin layer of the laminate of the present invention to the surface of a polarizing element and a surface of the translucent resin layer on the opposite side of the polarizing element. It has a step of peeling off the support arranged in.
  • a laminated body capable of suppressing breakage during transportation of the laminated body and suppressing surface defects due to winding deformation when the laminated body or the polarizing plate is stored in a rolled state for a certain period of time. And a method for producing the same, and a method for producing a polarizing plate using the laminated body.
  • FIG. 1 is a cross-sectional view showing a laminated body according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a manufacturing apparatus for carrying out the method for manufacturing a laminated body according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a polarizing plate according to an embodiment of the present invention.
  • the present inventors have made it possible to appropriately increase the tensile elastic modulus of the entire laminate and to include a high-molecular-weight (meth) acrylic resin and rubber particles in the translucent resin layer. It has been found that the deformation of the translucent resin layer during transportation can be suppressed while the deformation of the translucent resin layer when wound around the roll body can be suppressed.
  • the reason for this is not clear, but it is presumed as follows. For example, by adjusting the monomer composition of the (meth) acrylic resin contained in the translucent resin layer to appropriately increase the tensile elastic modulus of the laminated body, the laminated body becomes moderately hard, so that the roll body is deformed. It can be less likely to occur.
  • the translucent resin layer is likely to break when the laminated body is transported under tension.
  • the (meth) acrylic resin contained in the translucent resin layer to a high molecular weight, not only the toughness can be enhanced, but also the rubber particles are further contained in the translucent resin layer. It can be made easier to flexibly follow the tension. As a result, when the laminated body is transported, it is possible to prevent the translucent resin layer from breaking due to the transport tension, and it is possible to improve the transport stability.
  • the translucent resin layer contains rubber particles, even if the roll body of the laminated body is deformed, the restoring force of the rubber particles makes it easy to return the translucent resin layer to its original shape. , Deformation can be less likely to remain. Similarly, in the roll body of the polarizing plate, the roll body is less likely to be deformed, and the translucent resin layer can be easily returned to the original shape.
  • FIG. 1 is a cross-sectional view showing a laminated body according to an embodiment of the present invention.
  • the laminate 100 according to the present embodiment has a support 110 and a translucent resin layer 120 removably arranged on the surface thereof.
  • the tensile elastic modulus G of the laminated body is preferably 2.0 to 6.0 GPa.
  • the tensile elastic modulus G of the laminated body is 2.0 GPa or more, winding deformation can be less likely to occur while the roll body of the laminated body and the roll body of the polarizing plate obtained by using the roll body are stored.
  • the tensile elastic modulus G of the laminated body is 6.0 GPa or less, the translucent resin layer is less likely to be broken when the laminated body is conveyed while applying the conveying tension, and the conveying stability can be improved.
  • the tensile elastic modulus G of the laminated body is more preferably 3.5 to 5.5 GPa.
  • the tensile elastic modulus G of the laminated body can be measured by the following procedure. 1) The laminate is cut into 1 cm ⁇ 10 cm and used as a sample. This sample is humidity controlled for 24 hours in an environment of 25 ° C. and 60% RHS. 2) Next, the tensile elastic modulus of the obtained sample is measured by the tensile test method described in JIS K7127: 1999 (ISO 527-3: 1995).
  • the sample is set in a tensile test device (for example, Tencilon manufactured by Orientec Co., Ltd.), a tensile test is performed under the conditions of a distance between chucks of 50.0 mm and a tensile speed of 50 mm / min, and the tensile elastic modulus is measured. The measurement is performed at 25 ° C. and 60% RH.
  • a tensile test device for example, Tencilon manufactured by Orientec Co., Ltd.
  • the tensile elastic modulus G of the laminated body can be adjusted by the tensile elastic modulus G1 of the support and the tensile elastic modulus G2 of the translucent resin layer.
  • the tensile elastic modulus G1 of the support can be adjusted by the material of the support, heat treatment, and stretching treatment.
  • the tensile elastic modulus G2 of the translucent resin layer can be adjusted by the composition of the translucent resin layer (particularly, the monomer composition and the weight average molecular weight of the (meth) acrylic resin).
  • Support The support may include a resin film, although it is not particularly limited as long as it can support the translucent resin layer.
  • polyester resin films examples include polyester resin films (eg, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.).
  • PET film, triacetyl cellulose film (TAC), and cycloolefin resin film are preferable from the viewpoint of versatility and high tensile elastic modulus.
  • the resin film may be heat-relaxed or stretched.
  • the crystallinity and the orientation can be lowered by heat-treating the support, so that the tensile elastic modulus G1 of the resin film and the support can be lowered.
  • the heat relaxation temperature is not particularly limited, but can be set to (Tg + 60) to (Tg + 180) ° C., where Tg is the glass transition temperature of the resin constituting the resin film. Thermal relaxation may be performed before the release layer is formed or after the release layer is formed.
  • the resin film is stretched to increase the orientation of the resin molecules, whereby the tensile elastic modulus G1 of the resin film and the support can be increased.
  • the stretching treatment may be performed, for example, in the uniaxial direction of the support or in the biaxial direction.
  • the stretching treatment can be carried out under any conditions, for example, at a stretching ratio of about 120 to 900%.
  • the draw ratio is a value obtained by multiplying the draw ratio in each direction. Whether or not the resin film is stretched (whether or not it is a stretched film) can be confirmed by, for example, whether or not there is an in-plane slow layer axis (an axis extending in the direction of maximizing the refractive index).
  • the support preferably further has a release layer provided on the surface of the resin film.
  • the release layer can facilitate the peeling of the translucent resin layer from the support when the polarizing plate is produced.
  • the release layer may contain a known release agent or release agent, and is not particularly limited.
  • Examples of the release agent contained in the release layer include a silicone-based release agent and a non-silicone-based release agent.
  • silicone-based release agents include known silicone-based resins.
  • non-silicone release agents include long-chain alkyl pendant-type polymers obtained by reacting a long-chain alkyl isocyanate with a polyvinyl alcohol or an ethylene-vinyl alcohol copolymer, and olefin resins (for example, copolymerized polyethylene, cyclic polyolefin, etc.).
  • Polymethylpentene), polyallylate resins eg, copolymers of aromatic dicarboxylic acid components and divalent phenol components
  • fluororesins eg, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride) (PVF), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene)
  • FEP copolymer of tetrafluoroethylene and hexafluoropropylene
  • ETFE copolymer of tetrafluoroethylene and ethylene
  • the release layer may further contain an additive if necessary.
  • additives include fillers, lubricants (waxes, fatty acid esters, fatty acid amides, etc.), stabilizers (antioxidants, heat stabilizers, light stabilizers, etc.), flame retardants, viscosity modifiers, thickeners, etc. Includes defoamers and UV absorbers.
  • the thickness of the release layer may be as long as it can exhibit the desired peelability, and is not particularly limited, but is preferably 0.1 to 1.0 ⁇ m, for example.
  • the tensile elastic modulus G1 of the support may be set so that the tensile elastic modulus G of the laminated body satisfies the above range, and is not particularly limited, but may be, for example, 2.0 to 6.0 GPa.
  • the tensile elastic modulus G1 of the support is 2.0 GPa or more, winding deformation can be less likely to occur while the roll body of the laminated body or the roll body of the polarizing plate is stored.
  • the tensile elastic modulus G1 of the support is 6.0 GPa or less, the support and the laminate are less likely to be broken when the laminate is transported while applying tension, and the transport stability can be improved.
  • the tensile elastic modulus G1 of the support can be measured by performing the tensile test described in JIS K7127: 1999 (ISO 527-3: 1995) in the same manner as described above. If the support has anisotropy, prepare two types of samples, one in the orientation direction (in-plane slow phase axial direction, for example, the TD direction) and the other in the direction orthogonal to it (for example, the MD direction), measure each of them, and measure them. Take the average value.
  • the thickness of the support is not particularly limited, but is preferably, for example, 10 to 100 ⁇ m, and more preferably 25 to 50 ⁇ m.
  • Translucent resin layer The translucent resin layer is arranged on the support.
  • the translucent resin layer is peeled off from the support and then bonded to a polarizing element to form a polarizing plate, and can function as an optical film such as a protective film (including a retardation film).
  • the translucent resin layer contains a high molecular weight (meth) acrylic resin and rubber particles.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 1 million or more.
  • Mw weight average molecular weight
  • the toughness of the obtained translucent resin layer can be enhanced.
  • the weight average molecular weight of the (meth) acrylic resin is more preferably 1.5 million to 3 million.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene. Specifically, the measurement can be performed using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). The measurement conditions may be the same as in the examples described later.
  • the (meth) acrylic resin having a weight average molecular weight satisfying the above range contains at least a structural unit (U1) derived from methyl methacrylate.
  • the (meth) acrylic resin has a structure derived from phenylmaleimide. It is preferable to further contain the unit (U2), and from the viewpoint of improving the brittleness due to the inclusion of the structural unit (U2), the structural unit (U3) derived from the structural unit (U3) derived from the acrylic acid alkyl ester is used. It is more preferable to further include it.
  • the (meth) acrylic resin contains a structural unit (U1) derived from methyl methacrylate, a structural unit (U2) derived from phenylmaleimide, and a structural unit (U3) derived from an acrylic acid alkyl ester. Is preferable.
  • the content of the structural unit (U1) derived from methyl methacrylate is preferably 50 to 95% by mass, preferably 70 to 90% by mass, based on all the structural units constituting the (meth) acrylic resin. Is more preferable.
  • the structural unit (U2) derived from phenylmaleimide has a relatively rigid structure, the tensile elastic modulus G2 of the translucent resin layer can be increased. Further, since the structural unit (U2) derived from phenylmaleimide has a relatively bulky structure, it may have microscopic voids in the resin matrix that can move the rubber particles. Therefore, the rubber particles can be made of a translucent resin. It can be easily distributed unevenly on the surface layer of the layer.
  • the content of the structural unit (U2) derived from phenylmaleimide is preferably 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U2) derived from phenylmaleimide is 1% by mass or more, the tensile elastic modulus G2 of the translucent resin layer is likely to be increased, and when it is 25% by mass or less, the translucent resin layer Brittleness is not overly impaired.
  • the content of the structural unit (U2) derived from phenylmaleimide is more preferably 7 to 15% by mass.
  • the structural unit (U3) derived from the acrylic acid alkyl ester can impart appropriate flexibility to the resin, for example, the brittleness due to containing the structural unit (U2) derived from phenylmaleimide can be improved.
  • the acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having an alkyl portion having 1 to 7 carbon atoms, preferably 1 to 5 carbon atoms.
  • acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate and the like.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is preferably 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 1% by mass or more, appropriate flexibility can be imparted to the (meth) acrylic resin, so that the translucent resin layer does not become too brittle. , Hard to break.
  • the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 25% by mass or less, the Tg of the (meth) acrylic resin does not decrease too much, so that the heat resistance and tensile elastic modulus of the translucent resin layer do not decrease too much. G2 is unlikely to decrease excessively.
  • the content of the structural unit derived from the acrylic acid alkyl ester is more preferably 5 to 15% by mass.
  • the ratio of the structural unit (U2) derived from phenylmaleimide to the total amount of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester shall be 20 to 70% by mass. Is preferable. When the ratio is 20% by mass or more, the tensile elastic modulus G2 of the translucent resin layer is likely to be increased, and when it is 70% by mass or less, the translucent resin layer is not too brittle.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or higher, more preferably 120 to 150 ° C.
  • Tg of the (meth) acrylic resin is within the above range, the heat resistance of the translucent resin layer can be easily increased.
  • the content of the (meth) acrylic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more with respect to the translucent resin layer. ..
  • Rubber particles may have a function of imparting toughness (suppleness) to the translucent resin layer.
  • Rubber particles are particles containing a rubber-like polymer.
  • the rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20 ° C. or lower.
  • cross-linked polymers include butadiene-based cross-linked polymers, (meth) acrylic-based cross-linked polymers, and organosiloxane-based cross-linked polymers.
  • the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic) is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the translucent resin layer is not easily impaired. Rubber-like polymer) is more preferable.
  • the rubber particles are preferably particles containing the acrylic rubber-like polymer (a).
  • the acrylic rubber-like polymer (a) is a crosslinked polymer containing a structural unit derived from an acrylic acid ester as a main component. Including as a main component means that the content of structural units derived from acrylic acid ester is in the range described later.
  • the acrylic rubber-like polymer (a) has a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond).
  • Acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic.
  • An acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as n-octyl acid is preferable.
  • the acrylic acid ester may be one kind or two or more kinds.
  • the content of the structural unit derived from the acrylic acid ester is preferably 40 to 90% by mass, preferably 50 to 80% by mass, based on all the structural units constituting the acrylic rubber-like polymer (a1). Is more preferable.
  • the content of the acrylic acid ester is within the above range, it is easy to impart sufficient toughness to the protective film.
  • the other copolymerizable monomer is a monomer copolymerizable with the acrylic acid ester other than the polyfunctional monomer. That is, the copolymerizable monomer does not have two or more radically polymerizable groups.
  • copolymerizable monomers include methacrylic acid esters such as methyl methacrylate; styrenes such as styrene and methylstyrene; (meth) acrylonitriles; (meth) acrylamides; (meth) acrylic acid. ..
  • the other copolymerizable monomer preferably contains styrenes.
  • the other copolymerizable monomer may be one kind or two or more kinds.
  • the content of the structural unit derived from the other copolymerizable monomer is preferably 5 to 55% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a), and is preferably 10 to 55% by mass. It is more preferably 45% by mass.
  • polyfunctional monomers examples include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (diethylene glycol).
  • meth) acrylates triethylene glycol di (meth) acrylates, trimethylrol propanetri (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, polyethylene glycol di (meth) acrylates. ..
  • the content of the structural unit derived from the polyfunctional monomer is preferably 0.05 to 10% by mass, preferably 0.1% by mass, based on the total structural units constituting the acrylic rubber-like polymer (a). More preferably, it is ⁇ 5% by mass.
  • the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) can be easily increased, so that the hardness and rigidity of the obtained translucent resin layer can be easily increased. Is not too impaired, and if it is 10% by mass or less, the toughness of the translucent resin layer is not easily impaired.
  • the monomer composition constituting the acrylic rubber-like polymer (a) can be measured by, for example, the peak area ratio detected by thermal decomposition GC-MS.
  • the glass transition temperature (Tg) of the rubber-like polymer is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower. When the glass transition temperature (Tg) of the rubber-like polymer is 0 ° C. or lower, appropriate toughness can be imparted to the film.
  • the glass transition temperature (Tg) of the rubber-like polymer is measured by the same method as described above.
  • the glass transition temperature (Tg) of the rubber-like polymer can be adjusted by the composition of the rubber-like polymer.
  • It is preferable to increase the mass ratio of other copolymerizable monomers for example, 3 or more, preferably 4 to 10).
  • the particles containing the acrylic rubber-like polymer (a) are the particles made of the acrylic rubber-like polymer (a) or the hard layer made of the hard crosslinked polymer (c) having a glass transition temperature of 20 ° C. or higher.
  • Particles having a soft layer made of an acrylic rubber-like polymer (a) arranged around the acrylic polymer (a) may be used (these are also referred to as “epolymers”); the acrylic rubber-like polymer (a).
  • It may be a particle made of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as a methacrylate ester in the presence of at least one step or more.
  • the particles made of the acrylic graft copolymer may be core-shell type particles having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
  • the core portion contains an acrylic rubber-like polymer (a), and may further contain a hard crosslinked polymer (c), if necessary. That is, the core portion may have a soft layer made of an acrylic rubber-like polymer and a hard layer made of a hard crosslinked polymer (c) arranged inside the soft layer.
  • the crosslinked polymer (c) can be a crosslinked polymer containing a methacrylic acid ester as a main component. That is, the crosslinked polymer (c) includes a structural unit derived from a methacrylic acid alkyl ester, a structural unit derived from another monomer copolymerizable therewith, and a structural unit derived from a polyfunctional monomer. It is preferably a crosslinked polymer containing.
  • the alkyl methacrylic acid ester may be the alkyl methacrylic acid ester described above; the other copolymerizable monomer may be the styrenes or acrylic acid ester described above; the polyfunctional monomer may be. Examples thereof include those similar to those mentioned above as the polyfunctional monomer.
  • the content of the structural unit derived from the methacrylic acid alkyl ester can be 40 to 100% by mass with respect to all the structural units constituting the crosslinked polymer (c).
  • the content of the structural unit derived from the other copolymerizable monomer can be 60 to 0% by mass with respect to the total structural unit constituting the other crosslinked polymer (c).
  • the content of the structural unit derived from the polyfunctional monomer can be 0.01 to 10% by mass with respect to all the structural units constituting the other crosslinked polymer.
  • the shell portion contains a methacrylic polymer (b) (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • a methacrylic polymer (b) another polymer
  • graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component.
  • Including as a main component means that the content of structural units derived from methacrylic acid ester is in the range described later.
  • the methacrylic acid ester constituting the methacrylic acid polymer (b) is preferably an alkyl methacrylate having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate.
  • the methacrylic acid ester may be one kind or two or more kinds.
  • the content of the methacrylic acid ester is preferably 50% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b).
  • the content of the methacrylic acid ester is 50% by mass or more, compatibility with a methacrylic resin containing a structural unit derived from methyl methacrylate as a main component can be easily obtained.
  • the content of the methacrylic acid ester is more preferably 70% by mass or more with respect to all the structural units constituting the methacrylic polymer (b).
  • the methacrylic polymer (b) may further contain structural units derived from other monomers copolymerizable with the methacrylic acid ester.
  • examples of other copolymerizable monomers are acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, A (meth) acrylic monomer having an alicyclic, heterocyclic or aromatic ring such as phenoxyethyl (meth) acrylate (ring-containing (meth) acrylic monomer) is included.
  • the content of the structural unit derived from the copolymerizable monomer is preferably 50% by mass or less, preferably 30% by mass or less, based on all the structural units constituting the methacrylic polymer (b). Is more preferable.
  • the ratio of the graft component in the rubber particles is preferably 10 to 250% by mass, more preferably 15 to 150% by mass.
  • the proportion of the graft component that is, the methacrylic polymer (b) containing the structural unit derived from the methacrylic acid ester as the main component is moderately large, so that the rubber particles and the methacrylic resin are separated from each other. It is easy to improve compatibility and it is more difficult to agglomerate rubber particles. In addition, the rigidity of the film is not easily impaired.
  • the proportion of the acrylic rubber-like polymer (a) does not become too small, so that the toughness and brittleness improving effect of the film are not easily impaired.
  • the graft ratio is measured by the following method. 1) Dissolve 2 g of core-shell type particles in 50 ml of methyl ethyl ketone and centrifuge at a rotation speed of 30,000 rpm and a temperature of 12 ° C. for 1 hour using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CP60E) to remove insoluble matter. Separate into the lysate (centrifugal separation work is set 3 times in total). 2) The graft ratio is calculated by applying the weight of the obtained insoluble matter to the following formula.
  • Graft ratio (mass%) [ ⁇ (mass of methyl ethyl ketone insoluble matter)-(mass of acrylic rubber-like polymer (a)) ⁇ / (mass of acrylic rubber-like polymer (a))] ⁇ 100
  • the shape of the rubber particles is not particularly limited, but it is preferable that the shape is close to a true sphere.
  • the shape close to a spherical shape means a shape in which the aspect ratio of the rubber particles is in the range of about 1 to 2 when observing the cross section or the surface of the translucent resin layer.
  • the laminated body is more resistant to deformation due to contact with the roll during transportation and internal stress during winding, and resistance to deformation is more likely to be obtained.
  • the average particle size of the rubber particles is preferably 100 to 400 nm.
  • the average particle size of the rubber particles is 100 nm or more, sufficient toughness and stress relaxation property are easily imparted to the translucent resin layer, and when it is 400 nm or less, the transparency of the translucent resin layer is not easily impaired.
  • the average particle size of the rubber particles is more preferably 150 to 300 nm.
  • the average particle size of the rubber particles can be calculated by the following method.
  • the average particle size of the rubber particles can be measured as an average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the surface or section of the laminate.
  • the equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area.
  • the rubber particles observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size.
  • the content of the rubber particles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, based on the (meth) acrylic resin contained in the translucent resin layer. It is preferably 7 to 30% by mass, and more preferably 7 to 30% by mass.
  • the rubber particles may be uniformly dispersed in the thickness direction of the translucent resin layer, or may be unevenly distributed.
  • the region A is 20% or less of the thickness of the translucent resin layer from the surface opposite to the support of the translucent resin layer.
  • the region B is 20% or less of the thickness of the translucent resin layer from the surface of the translucent resin layer on the support side, the area ratio of the rubber particles in the region A per unit area is RA , and the rubber in the region B.
  • R a / R B may be a 1.0-1.1.
  • the rubber particles are the surface layer portion of the translucent resin layer (the surface layer opposite to the support). It is preferable that the parts are unevenly distributed.
  • the RA / R B of the translucent resin layer is more preferably 1.05 to 1.1.
  • RA / R B is 1.05 or more, the rubber particles are unevenly distributed on the surface layer portion of the translucent resin layer.
  • the flexibility and toughness of the surface layer of the translucent resin layer can be increased, so that not only is it easy to highly suppress breakage during transportation, but also winding deformation occurs during storage of the rolled body of the laminated body.
  • R A / R B of the translucent resin layer can be measured by the following method.
  • the translucent resin layer is cut with a microtome, and the cut surface perpendicular to the surface of the translucent resin layer is observed by TEM.
  • the observation conditions may be acceleration voltage (electron energy irradiating the sample): 30 kV, working distance (distance between the lens and the sample): 8.6 mm ⁇ magnification: 3.00 k.
  • the observation region is a region including the entire thickness direction of the translucent resin layer.
  • the obtained TEM image is subjected to an opening process after removing the brightness gradient using image processing software of NiVision (manufactured by National Instruments), and the contrast difference between the bulk and the rubber particles is detected.
  • the method of unevenly distributing the rubber particles is not particularly limited, but can be adjusted depending on the type of solvent of the translucent resin layer solution, the drying conditions of the coating film (drying temperature and atmospheric solvent concentration), the composition of the (meth) acrylic resin, and the like. ..
  • a solvent having a high affinity with the rubber particles for example, ketones such as acetone
  • the (meth) acrylic resin containing a moderately large amount of the structural unit (U2) derived from phenylmaleimide has many microscopic voids and easily diffuses and moves the rubber particles. Therefore, the structural unit derived from the phenylmaleimide. By appropriately increasing the content of (U2), it is possible to make it easier for the rubber particles to be unevenly distributed.
  • the translucent resin layer may further contain components other than the above, if necessary.
  • examples of other components include matting agents (fine particles), ultraviolet absorbers and the like.
  • the matting agent can be added from the viewpoint of imparting slipperiness to the film.
  • examples of the matting agent include inorganic fine particles such as silica particles and organic fine particles having a glass transition temperature of 80 ° C. or higher.
  • UV absorbers examples include benzotriazole-based UV absorbers, benzophenone-based UV absorbers, and triazine-based UV absorbers.
  • the tensile elastic modulus G2 of the translucent resin layer may be set so that the tensile elastic modulus G of the laminated body satisfies the above range, and is not particularly limited, but may be, for example, 2.0 to 3.0 GPa.
  • the tensile elastic modulus G2 of the translucent resin layer is 2.0 GPa or more, winding deformation can be less likely to occur while the laminated body or the rolled body of the polarizing plate is stored.
  • the tensile elastic modulus G2 of the translucent resin layer is 3.0 GPa or less, it is difficult to break the translucent resin layer when the laminated body is conveyed while applying tension, and the conveying stability can be improved.
  • the tensile elastic modulus G2 of the translucent resin layer can be adjusted mainly by the composition of the (meth) acrylic resin and the weight average molecular weight.
  • the tensile elastic modulus G2 of the translucent resin layer can be measured by the same method as described above. That is, after the translucent resin layer is peeled off from the support, the tensile elastic modulus G2 of the translucent resin layer is measured by the same method as described above. If the translucent resin layer has anisotropy, prepare two types of samples, one in the orientation direction (in-plane slow phase axis direction) and the other in the direction orthogonal to it, measure each of them, and take the average value of them. ..
  • the difference ⁇ G (G1-G2) between the tensile elastic modulus G1 of the support and the tensile elastic modulus G2 of the translucent resin layer is preferably 3.5 GPa or less, and more preferably 2.5 GPa or less.
  • ⁇ G is 3.5 GPa or less, for example, when a winding tension is applied, the difference in the amount of deformation due to tension such as crease is small, so that peeling and breakage due to peeling are unlikely to occur.
  • the internal haze of the translucent resin layer is preferably 1.0% or less, more preferably 0.1% or less, and even more preferably 0.05% or less.
  • the internal haze of the translucent resin layer can be measured by the same method as described above.
  • the internal haze of the translucent resin layer can be adjusted by the content of rubber particles and the like.
  • the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. It is preferably 0 to 5 nm, and more preferably 0 to 5 nm.
  • the phase difference Rt in the thickness direction of the translucent resin layer is preferably ⁇ 20 to 20 nm, and more preferably ⁇ 10 to 10 nm.
  • Ro and Rt are defined by the following equations, respectively.
  • Equation (2a): Ro (nx-ny) ⁇ d
  • Equation (2b): Rt ((nx + ny) /2-nz) ⁇ d
  • nx represents the refractive index of the translucent resin layer in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized).
  • ny represents the refractive index of the translucent resin layer in the direction orthogonal to the in-plane slow-phase axis.
  • nz represents the refractive index in the thickness direction of the translucent resin layer.
  • d represents the thickness (nm) of the translucent resin layer.
  • the in-plane slow-phase axis of the translucent resin layer can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods. 1) The translucent resin layer is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter). Measure in the environment.
  • the phase difference Ro and Rt of the translucent resin layer can be adjusted by, for example, the monomer composition of the (meth) acrylic resin.
  • the amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm, based on the translucent resin layer.
  • the content of the residual solvent can be adjusted by the drying conditions of the solution for the translucent resin layer applied on the support in the manufacturing process of the translucent resin layer.
  • the amount of residual solvent in the translucent resin layer can be measured by headspace gas chromatography.
  • a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound.
  • the volatile components are quantified while doing so.
  • the headspace method makes it possible to observe all peaks of volatile components by gas chromatography, and by using an analytical method that utilizes electromagnetic interactions, it is possible to quantify volatile substances and monomers with high accuracy. It can be done at the same time.
  • the thickness of the translucent resin layer is not particularly limited, but from the viewpoint of realizing a thin polarizing plate, it is usually thinner than the thickness of the support, specifically, for example, 0.1 to 35 ⁇ m. It is preferably 1 to 15 ⁇ m, more preferably 1 to 15 ⁇ m.
  • the ratio T2 / T1 of the thickness T1 of the support to the thickness T2 of the translucent resin layer is preferably 0.01 to 1, and more preferably 0.1 to 0.7.
  • the laminate according to the present embodiment may further have other layers arranged between the support and the translucent resin layer, if necessary.
  • the form of the laminated body according to the present embodiment may be strip-shaped. That is, the laminated body according to the present embodiment can be wound into a roll shape in a direction orthogonal to the width direction thereof to form a roll body.
  • the method for producing the laminate according to the present embodiment includes 1) a step of obtaining a translucent resin layer solution, and 2) a step of applying the obtained translucent resin layer solution to the surface of the support. 3) The present invention includes a step of removing the solvent from the applied solution for the translucent resin layer to form the translucent resin layer.
  • step 1) step of obtaining a solution for a translucent resin layer
  • a solution for a translucent resin layer containing the above-mentioned (meth) acrylic resin, the above-mentioned rubber particles, and a solvent is prepared.
  • the solvent used for the translucent resin layer solution is not particularly limited as long as it can disperse (meth) acrylic resin and rubber particles well.
  • solvents include alcohols such as methanol, ethanol, propanol, n-butanol, 2-butanol, tert-butanol and cyclohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, ethyl acetate, methyl acetate and lactic acid.
  • Esters such as ethyl, isopropyl acetate, amyl acetate, ethyl butyrate, glycol ethers (propylene glycol mono (C1 to C4) alkyl ethers (specifically, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol) Mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, etc.), propylene glycol mono (C1-C4) alkyl ether esters (propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate)), toluene, benzene , Cyclohexane, n-hexane and other hydrocarbons are included.
  • glycol ethers propylene glycol mono (C1 to C4) alkyl ethers (specifically, propylene glycol monomethyl
  • the solvent preferably contains ketones from the viewpoint of easily dissolving the (meth) acrylic resin, having a relatively high affinity with rubber particles, having a low boiling point, and easily increasing the drying rate and productivity. From the viewpoint of easily forming a translucent resin layer having high flatness, it is preferable to further contain alcohols.
  • the solvent preferably contains ketones and alcohols.
  • ketones / alcohols 95/5 to 10/90 (mass ratio) is preferable, and 95 It is more preferably / 5 to 60/40 (mass ratio), and further preferably 95/5 to 80/20 (mass ratio).
  • the proportion of ketones is moderately high, the drying rate is likely to be increased and the productivity is likely to be increased.
  • the proportion of alcohols is moderately high, it is easy to improve the flatness of the coating film.
  • the resin concentration of the translucent resin layer solution is preferably, for example, 1.0 to 20% by mass from the viewpoint of making it easy to adjust the viscosity within the range described later.
  • the viscosity of the solution for the translucent resin layer is not particularly limited as long as it can form a translucent resin layer having a desired thickness, but is preferably 5 to 5000 cP, for example.
  • the viscosity of the solution for the translucent resin layer is 5 cP or more, it is easy to form a translucent resin layer having an appropriate thickness, and when it is 5000 cP or less, it is possible to suppress the occurrence of thickness unevenness due to the increase in the viscosity of the solution. sell.
  • the viscosity of the translucent resin layer solution is more preferably 100 to 1000 cP.
  • the viscosity of the translucent resin layer solution can be measured with an E-type viscometer at 25 ° C.
  • step 2) step of applying the translucent resin layer solution
  • the obtained translucent resin layer solution is then applied to the surface of the support.
  • the obtained translucent resin layer solution is applied to the surface of the support.
  • the method for applying the solution for the translucent resin layer is not particularly limited, and may be a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Above all, the back coat method is preferable from the viewpoint of being able to form a thin and uniform thickness coating film.
  • step 3 step of forming the translucent resin layer
  • step 3 step of forming the translucent resin layer
  • the solution for the translucent resin layer applied to the support is dried. Drying can be performed, for example, by blowing air or heating. Above all, from the viewpoint of facilitating curling of the laminated body, it is preferable to dry it by blowing air.
  • the drying conditions for example, drying temperature, solvent concentration in the atmosphere, drying time, etc.
  • the amount of residual solvent in the coating film after drying, that is, the translucent resin layer is kept below a certain level.
  • the distribution state of the rubber particles in the translucent resin layer can be adjusted depending on the drying conditions. Specifically, from the viewpoint of facilitating uneven distribution of rubber particles, it is preferable to use a solvent having a good affinity with the rubber particles, and it is preferable to raise the drying temperature and lower the solvent concentration in the atmosphere.
  • the drying temperature is preferably (Tb-50) to (Tb + 50) ° C., more preferably (Tb-40) to (Tb + 40) ° C., when the boiling point of the solvent is Tb (° C.).
  • Tb boiling point
  • the drying temperature is at least the lower limit value, the evaporation rate of the solvent can be increased, so that the rubber particles are likely to be unevenly distributed, and when it is at least the upper limit value, the solvent concentration in the atmosphere can be prevented from becoming too high.
  • the drying temperature can be 40 ° C. or higher.
  • the solvent concentration in the atmosphere at the time of drying is preferably 0.10 to 0.30% by mass, more preferably 0.10 to 0.20% by mass.
  • the solvent concentration in the atmosphere can be adjusted by the drying temperature and the dew point temperature in the drying furnace. Further, the solvent concentration in the atmosphere can be measured by an infrared gas densitometer.
  • the laminate according to the present embodiment may be strip-shaped as described above. Therefore, it is preferable that the method for producing the laminated body according to the present embodiment further includes 4) a step of winding the strip-shaped laminated body into a roll shape to form a roll body.
  • Step 4) (Step of winding the laminated body to obtain a roll body)
  • the obtained strip-shaped laminated body is wound into a roll shape in a direction orthogonal to the width direction thereof to obtain a roll body.
  • the length of the strip-shaped laminate is not particularly limited, but may be, for example, about 100 to 10000 m.
  • the width of the strip-shaped laminate is preferably 1 m or more, and more preferably 1.3 to 4 m.
  • the method for manufacturing the laminate according to the present embodiment can be performed by, for example, the manufacturing apparatus shown in FIG.
  • FIG. 2 is a schematic view of a manufacturing apparatus 200 for carrying out the method for manufacturing a laminated body according to the present embodiment.
  • the manufacturing apparatus 200 includes a supply unit 210, a coating unit 220, a drying unit 230, a cooling unit 240, and a winding unit 250.
  • Reference numerals a to d indicate transport rolls for transporting the support 110.
  • the supply unit 210 has a feeding device (not shown) for feeding out the roll body 201 of the strip-shaped support 110 wound around the winding core.
  • the coating unit 220 is a coating device, and has a backup roll 221 that holds the support 110, and a coating head 222 that applies a translucent resin layer solution to the support 110 held by the backup roll 221. It has a decompression chamber 223 provided on the upstream side of the head 222.
  • the flow rate of the translucent resin layer solution discharged from the coating head 222 can be adjusted by a pump (not shown).
  • the flow rate of the translucent resin layer solution discharged from the coating head 222 is set to an amount capable of stably forming a coating layer having a predetermined film thickness when continuously coated under the conditions of the coating head 222 adjusted in advance. There is.
  • the decompression chamber 223 is a mechanism for stabilizing the bead (pool of coating liquid) formed between the solution for the translucent resin layer from the coating head 222 and the support 110 at the time of coating, and reduces the degree of decompression. It is adjustable.
  • the decompression chamber 223 is connected to a decompression blower (not shown) so that the inside is decompressed.
  • the pressure reducing chamber 223 is in a state where there is no air leakage, and the gap between the pressure reducing chamber 223 and the backup roll is narrowly adjusted so that a stable bead of the coating liquid can be formed.
  • the drying unit 230 is a drying device that dries the coating film applied to the surface of the support 110, and has a drying chamber 231, a drying gas introduction port 232, and a discharge port 233.
  • the temperature and air volume of the dry air are appropriately determined depending on the type of the coating film and the type of the support 110.
  • the residual solvent content of the coating film after drying can be adjusted.
  • the amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after the coating film is sufficiently dried.
  • the cooling unit 240 cools the temperature of the support 110 having the coating film (translucent resin layer 120) obtained by drying in the drying unit 230, and adjusts the temperature to an appropriate temperature.
  • the cooling unit 240 has a cooling chamber 241, a cooling air inlet 242, and a cooling air outlet 243.
  • the temperature and air volume of the cooling air can be appropriately determined depending on the type of the coating film and the type of the support 110. Further, even if the cooling unit 240 is not provided, the cooling unit 240 may not be provided if the cooling temperature is appropriate.
  • the winding unit 250 is a winding device (not shown) for winding the support 110 (laminated body 100) on which the translucent resin layer 120 is formed to obtain the roll body 251.
  • the polarizing plate has a polarizing element and a translucent resin layer arranged on at least one surface thereof. It is preferable that the polarizer and the translucent resin layer are adhered to each other via an adhesive layer.
  • FIG. 3 is a cross-sectional view showing a polarizing plate 300 according to an embodiment of the present invention.
  • the polarizing plate 300 includes a polarizing element 310 (polarizer), a translucent resin layer 120 (protective film) arranged on one surface thereof, and the other.
  • a protective film 320 (another protective film) arranged on the surface and two adhesive layers 330 (adhesive layer) arranged between the translucent resin layer 120 or the protective film 320 and the polarizing element 310.
  • the polarizing plate 300 may further have an adhesive layer 340 arranged on the surface of the translucent resin layer 120 opposite to the polarizer 310.
  • the pressure-sensitive adhesive layer 340 is a layer for attaching the polarizing plate 300 to a display element (not shown) such as a liquid crystal cell.
  • the surface of the pressure-sensitive adhesive layer 340 is usually protected by a release film (not shown).
  • Polarizer A polarizing element is an element that allows only light on a plane of polarization in a certain direction to pass through.
  • the polarizer can usually be a polyvinyl alcohol-based polarizing film.
  • Examples of the polyvinyl alcohol-based polarizing film include a polyvinyl alcohol-based film dyed with iodine and a film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl.
  • An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound).
  • the absorption axis of the polarizer is usually parallel to the maximum stretching direction.
  • the thickness of the polarizer is preferably 5 to 30 ⁇ m, and more preferably 5 to 20 ⁇ m from the viewpoint of thinning the polarizing plate.
  • a translucent resin layer is arranged on at least one surface of the polarizer.
  • the translucent resin layer is obtained by transferring the translucent resin layer of the above-mentioned laminate onto the surface of the polarizer, and can function as a protective film.
  • the translucent resin layer is arranged on one surface of the polarizer, and the other protective film is arranged on the other surface.
  • Examples of other protective films include (meth) acrylic resin, polyester resin, cycloolefin resin, and cellulose ester resin, and may be (meth) acrylic resin and polyester resin.
  • Adhesive layer The adhesive layer is arranged between the translucent resin layer and the polarizer, and between the other protective film and the polarizer, respectively.
  • the adhesive layer arranged between the translucent resin layer and the polarizer and the adhesive layer arranged between the other protective film and the polarizer may be the same or different. May be good.
  • the adhesive layer may be a layer obtained from a completely saponified polyvinyl alcohol aqueous solution (water glue), or may be a cured product layer of an active energy ray-curable adhesive. From the viewpoint of having high affinity with the translucent resin layer and facilitating good adhesion, the adhesive layer is preferably a cured product layer of an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive may be a photoradical polymerizable composition or a photocationic polymerizable composition. Of these, a photocationically polymerizable composition is preferable.
  • the photocationic polymerizable composition contains an epoxy compound and a photocationic polymerization initiator.
  • the epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • epoxy compounds include hydride epoxy compounds obtained by reacting an alicyclic polyol with epichlorohydrin (glycidyl ether of a polyol having an alicyclic ring); an aliphatic polyhydric alcohol or an alkylene thereof.
  • Aliphatic epoxy compounds such as polyglycidyl ether as an oxide adduct; alicyclic epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule are included. Only one type of epoxy compound may be used, or two or more types may be used in combination.
  • the photocationic polymerization initiator may be, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt; an iron-alene complex or the like.
  • Photocationic polymerization initiators include cationic polymerization accelerators such as oxetane and polyols, photosensitizers, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, and fluids, if necessary. Additives such as modifiers, plasticizers, defoamers, antistatic agents, leveling agents, solvents and the like may be further included.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 0.01 to 10 ⁇ m, and more preferably 0.01 to 5 ⁇ m, respectively.
  • Adhesive layer is a layer for bonding a polarizing plate to a display element such as a liquid crystal cell, and may be arranged on a surface of the translucent resin layer opposite to the polarizing element.
  • the pressure-sensitive adhesive layer is preferably a dry and partially cross-linked pressure-sensitive adhesive composition containing a base polymer, a prepolymer and / or a cross-linking monomer, a cross-linking agent and a solvent. That is, at least a part of the pressure-sensitive adhesive composition may be crosslinked.
  • the pressure-sensitive adhesive composition examples include an acrylic pressure-sensitive adhesive composition using a (meth) acrylic polymer as a base polymer, a silicone-based pressure-sensitive adhesive composition using a silicone-based polymer as a base polymer, and a rubber-based pressure-sensitive adhesive composition using a rubber as a base polymer.
  • a pressure-sensitive adhesive composition is included.
  • an acrylic pressure-sensitive adhesive composition is preferable from the viewpoint of transparency, weather resistance, heat resistance, and processability.
  • the (meth) acrylic polymer contained in the acrylic pressure-sensitive adhesive composition can be a copolymer of a (meth) acrylic acid alkyl ester, a cross-linking agent, and a cross-linkable functional group-containing monomer.
  • the (meth) acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having 2 to 14 carbon atoms in the alkyl group.
  • Examples of the functional group-containing monomer that can be crosslinked with the cross-linking agent include an amide group-containing monomer, a carboxyl group-containing monomer (acrylic acid, etc.), and a hydroxyl group-containing monomer (hydroxyethyl acrylate, etc.).
  • cross-linking agent contained in the acrylic pressure-sensitive adhesive composition examples include an epoxy-based cross-linking agent, an isocyanate-based cross-linking agent, and a peroxide-based cross-linking agent.
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition can be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content).
  • Adhesive compositions include tackifiers, plasticizers, fiberglass, glass beads, metal powders, other fillers, pigments, colorants, fillers, antioxidants, UV absorbers, silane couplings as needed. Various additives such as agents may be further included.
  • the thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the surface of the adhesive layer is protected by a release film that has undergone a mold release treatment.
  • the release film include a plastic film such as an acrylic film, a polycarbonate film, a polyester film, and a fluororesin film.
  • the polarizing plate according to the present embodiment can be manufactured through a step of attaching a translucent resin layer of the above-mentioned laminate to at least one surface of a polarizing element and peeling off a support. ..
  • the translucent resin layer may be bonded to only one surface of the polarizer or both surfaces, and from the viewpoint of transmittance, the translucent resin may be attached to one surface of the polarizer. It is preferable to attach the layers and attach another protective film to the other surface.
  • the polarizing plate is 1) a support in which the translucent resin layer of the laminated body is bonded to one surface of the polarizing element and is arranged on the surface of the translucent resin layer opposite to the polarizing element. It can be manufactured through a step of peeling off and 2) a step of attaching another protective film to the other surface of the polarizer.
  • step 1) step of laminating the translucent resin layer
  • the translucent resin layer of the laminate is bonded to one surface of the polarizer via an adhesive.
  • a pretreatment such as a corona treatment may be applied to the surface of the translucent resin layer to be bonded or one surface of the polarizer.
  • the surface of the translucent resin layer of the laminated body is subjected to surface treatment such as corona treatment as necessary.
  • the translucent resin layer of the laminated body is laminated on one surface of the polarizer via an active energy ray-curable adhesive, and then the translucent resin layer is arranged on the side opposite to the bonded surface. Peel off the support.
  • the exposed translucent resin layer is irradiated with active energy rays to cure the active energy ray-curable adhesive.
  • the polarizer and the translucent resin layer are bonded to each other via the cured product layer of the active energy ray-curable adhesive.
  • step 2 (protective film bonding step), another protective film is bonded to the other surface of the polarizer. Specifically, the surface of the other protective film is subjected to a surface treatment such as a corona treatment, if necessary. Next, the protective film is laminated on the other surface of the polarizer via the active energy ray-curable adhesive, and then irradiated with active energy rays to cure the active energy ray-curable adhesive. As a result, the polarizer and the other protective film are adhered to each other via the cured product layer of the active energy ray-curable adhesive.
  • a surface treatment such as a corona treatment
  • the steps 1) and 2) may be performed simultaneously or sequentially. From the viewpoint of increasing production efficiency, it is preferable that the steps 1) and 2) are performed at the same time.
  • the method for producing a polarizing plate according to the present embodiment may further include a step of forming a 3) pressure-sensitive adhesive layer after the step of 2), if necessary.
  • the pressure-sensitive adhesive layer and its release film are further bonded to the surface of the obtained laminate on the side opposite to the polarizer of the translucent resin layer. ..
  • the pressure-sensitive adhesive layer can be formed by a method such as transferring a release film provided with the pressure-sensitive adhesive layer on the translucent resin layer.
  • the polarizing plate according to the present embodiment may be band-shaped. Therefore, in the steps 1) and 2), the translucent resin layer of the strip-shaped laminate, the strip-shaped polarizer, and the other strip-shaped protective film (opposing film) are unwound from the roll body, respectively. , It is preferable to carry out by laminating by roll-to-roll.
  • the step of 4) winding the strip-shaped polarizing plate into a roll shape to form a roll body.
  • the length and width of the strip-shaped polarizing plate are the same as the length and width of the strip-shaped laminate in the step 4) of the method for manufacturing the laminate.
  • Display device includes a display element such as a liquid crystal cell or an organic EL element, and a polarizing plate manufactured by the above manufacturing method. Above all, the display device according to the present embodiment is preferably a liquid crystal display device having a liquid crystal cell and a polarizing plate manufactured by the above manufacturing method.
  • the liquid crystal display device includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell. Then, at least one of the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment.
  • the display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridaligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), etc.
  • STN Super-Twisted Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • HAN Hybridaligned Nematic
  • VA Very Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Parallel-Plane-Switching
  • the IPS mode is preferable.
  • the first polarizing plate is arranged on the surface of the liquid crystal cell on the visual side via its adhesive layer.
  • the first polarizing plate includes a first polarizing element, a protective film (F1) arranged on the surface of the first polarizing element on the visible side, and a protective film (F2) arranged on the surface of the first polarizing element on the liquid crystal cell side. ), And two adhesive layers arranged between the first polarizer and the protective film (F1) and between the first polarizer and the protective film (F2).
  • the second polarizing plate is arranged on the backlight side surface of the liquid crystal cell via its adhesive layer.
  • the second polarizing plate includes a second polarizing element, a protective film (F3) arranged on the surface of the second polarizing element on the liquid crystal cell side, and a protective film (F3) arranged on the surface of the second polarizing element on the backlight side. Includes F4) and two adhesive layers disposed between the second polarizer and the protective film (F3) and between the second polarizer and the protective film (F4).
  • the absorption axis of the first polarizer and the absorption axis of the second polarizer are orthogonal to each other (cross Nicol).
  • the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment. That is, when the first polarizing plate is the above-mentioned polarizing plate, the protective film (F1) is the protective film 320 of FIG. 3, and the protective film (F2) is the translucent resin layer 120 of FIG.
  • the pressure-sensitive adhesive layer can be the pressure-sensitive adhesive layer 340 of FIG.
  • the protective film (F4) is the protective film 320 of FIG. 3
  • the protective film (F3) is the translucent resin layer 120 of FIG.
  • the pressure-sensitive adhesive layer can be the pressure-sensitive adhesive layer 340 of FIG.
  • Laminate material 1-1 Support ⁇ PET-1> A polyethylene terephthalate film (TZ200 manufactured by Toyobo Co., Ltd., with a release layer (containing a silicone-based release agent, thickness 50 ⁇ m)) was used.
  • TZ200 polyethylene terephthalate film manufactured by Toyobo Co., Ltd., with a release layer (containing a silicone-based release agent, thickness 50 ⁇ m)
  • ⁇ PET-2> A polyethylene terephthalate film (TN100 manufactured by Toyobo Co., Ltd., with a release layer (containing a non-silicone release agent, thickness 50 ⁇ m)) was stretched (additionally stretched) by 50% in the TD direction at 140 ° C.
  • ⁇ PET-3> A polyethylene terephthalate film (TN100 manufactured by Toyobo Co., Ltd., with a release layer (containing a non-silicone release agent, thickness 50 ⁇ m)) was stretched (additionally stretched) by 50% in each of the TD direction and the MD direction at 140 ° C.
  • ⁇ TAC> Cellulose triacetate film (Konica Minolta KC4UA, no release layer, thickness 40 ⁇ m)
  • the tensile elastic modulus G1 of these supports was measured by the following method.
  • the support was cut into 1 cm ⁇ 10 cm to prepare a sample, and the humidity was adjusted for 24 hours in an environment of 25 ° C. and 60% RH. Then, the tensile elastic modulus of the obtained sample was measured by the tensile test method described in JIS K7127. Specifically, the sample was set in a tensile test device Tencilon manufactured by Orientec Co., Ltd., and the tensile elastic modulus was measured when the tensile test was performed under the conditions of a distance between chucks of 50.0 mm and a tensile speed of 50 mm / min. The measurement was performed at 25 ° C. and 60% RH.
  • the tensile elastic modulus was measured in both the MD direction and the TD direction, and the average value of the tensile elastic modulus in the MD direction and the tensile elastic modulus in the TD direction was defined as "tensile elastic modulus G1".
  • Resin 5 MMA / PMI / MA copolymer (85/10/5 mass ratio), Mw: 500,000, Tg: 122 ° C.
  • the abbreviations are as follows.
  • MMA Methyl Methacrylate
  • PMI Phenylmaleimide
  • MA Methyl Acrylate
  • the glass transition temperature and weight average molecular weight of resins 1 to 5 were measured by the following methods.
  • the glass transition temperature (Tg) of the resin was measured using DSC (Differential Scanning Colorimetry) according to JIS K 7121-2012.
  • the weight average molecular weight (Mw) of the resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and a column (TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). 20 mg ⁇ 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature 40 ° C.), measured at a detector RI temperature of 40 ° C., and a styrene-converted value was used.
  • ⁇ Rubber particles> The rubber particles R1 prepared by the following method were used. The following substances were charged into an 8L polymerization apparatus equipped with a stirrer. Deionized water 180 parts by mass Polyoxyethylene lauryl ether phosphoric acid 0.002 parts by mass Boric acid 0.4725 parts by mass Sodium carbonate 0.04725 parts by mass Sodium hydroxide 0.0076 parts by mass The inside of the polymerization machine was sufficiently replaced with nitrogen gas. After that, the internal temperature was adjusted to 80 ° C., and 0.021 parts by mass of potassium persulfate was added as a 2% aqueous solution.
  • a monomer consisting of 84.6% by mass of methyl methacrylate, 5.9% by mass of butyl acrylate, 7.9% by mass of styrene, 0.5% by mass of allyl methacrylate, and 1.1% by mass of n-octyl mercaptan.
  • a mixed solution prepared by adding 0.07 parts by mass of polyoxyethylene lauryl ether phosphoric acid to 21 parts by mass of the mixture (c') was continuously added to the above solution over 63 minutes. Further, the innermost hard polymer (c) was obtained by continuing the polymerization reaction for 60 minutes.
  • a soft layer (a layer made of an acrylic rubber-like polymer (a)).
  • the glass transition temperature (Tg) of the soft layer was ⁇ 30 ° C.
  • the glass transition temperature of the soft layer was calculated by averaging the glass transition temperature of the homopolymer of each monomer constituting the acrylic rubber-like polymer (a) according to the composition ratio.
  • the obtained polymer was put into a warm aqueous solution of 3% by mass sodium sulfate for salting out and coagulation. Then, after repeating dehydration and washing, the particles were dried to obtain acrylic graft copolymer particles (rubber particles R1) having a three-layer structure.
  • the average particle size of the obtained rubber particles R1 was 200 nm.
  • the average particle size of the rubber particles was measured by the following method.
  • the dispersed particle size of the rubber particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
  • Solutions 102 to 109 for the translucent resin layer were obtained in the same manner as the translucent resin layer solution 101 except that the composition was changed to that shown in Table 1.
  • Table 1 shows the compositions and viscosities of the obtained translucent resin layer solutions 101 to 109.
  • the viscosity of the translucent resin layer solution at 25 ° C. was measured with an E-type viscometer manufactured by Toki Sangyo Co., Ltd.
  • a PET film (TN100 manufactured by Toyobo Co., Ltd., a thickness of 50 ⁇ m, a release layer containing a non-silicone release agent, PET-1 in the table) was prepared.
  • a solution 101 for a translucent resin layer is applied onto the release layer of this PET film by a backcoat method using a die, and then dried at 80 ° C. in an atmosphere having a solvent concentration of 0.18% to obtain a thickness.
  • a 10 ⁇ m translucent resin layer was formed to obtain a laminate 201.
  • Laminates 202 to 203, 205, 210, 212, 213, 216, 217 and 219 were obtained in the same manner as the laminate 201 except that the type of the solution for the translucent resin layer was changed as shown in Table 2.
  • a laminated body 204 was obtained in the same manner as the laminated body 202 except that the solvent concentration of the atmosphere was changed as shown in Table 2.
  • Laminated bodies 211 and 214 were obtained in the same manner as the laminated body 202 except that the types of the supports were changed as shown in Table 2.
  • Laminated bodies 215 and 218 were obtained in the same manner as the laminated body 202 except that the thickness of the translucent resin layer was changed as shown in Table 2.
  • Distribution of the rubber particles of the translucent resin layer of the resulting laminate was measured by the following method. 1) The laminate was cut with a microtome, and the cut surface perpendicular to the surface of the translucent resin layer was observed by TEM. The observation conditions were an acceleration voltage of 30 kV, a working distance of 8.6 mm, and a magnification of 3.00 k. The observation region was a region including the entire thickness direction of the translucent resin layer. 2) The obtained TEM image was subjected to an opening process after removing the brightness gradient using image processing software of NiVision (manufactured by National Instruments), and the contrast difference between the bulk and the rubber particles was detected.
  • the laminate was subjected to a tensile test in accordance with JIS K7127 in the same manner as described above. That is, the laminate was cut into 1 cm (TD direction) ⁇ 10 cm (MD direction) to prepare a sample, and the humidity was adjusted for 24 hours in an environment of 25 ° C. and 60% RH.
  • the obtained sample was set in a tensile test device Tencilon manufactured by Orientec Co., Ltd. and a tensile test was performed to measure the tensile elastic modulus G (tensile elastic modulus of the laminated body).
  • the measurement conditions were the same as described above (distance between chucks: 50.0 mm, tensile speed: 50 mm / min, 25 ° C., 60% RH).
  • the tensile elastic modulus G2 of the translucent resin layer was measured by the same method as described above.
  • the transport stability of the laminated body was evaluated by confirming the presence or absence of breakage or cracking during roll transport on the line while applying a transport tension of 350 N / m. Then, the transport stability was evaluated based on the following criteria.
  • The translucent resin layer can be transported without breaking
  • The translucent resin layer cracks but can be transported without breaking
  • Very small scratches and cracks on the translucent resin layer However, it can be transported.
  • Small scratches and cracks occur in the translucent resin layer, but it can be transported.
  • The translucent resin layer cracks and breaks. ..
  • a translucent resin layer is provided on one surface of the produced polarizing element via an ultraviolet curable adhesive layer having a thickness of 3 ⁇ m, and another surface is provided on the other surface via an ultraviolet curable adhesive layer having a thickness of 3 ⁇ m.
  • the protective films of the above were bonded to each other to obtain a laminate. The bonding was performed so that the absorption axis of the polarizer and the slow axis of the protective film were orthogonal to each other.
  • the obtained laminate was irradiated with ultraviolet rays so that the integrated light amount was 750 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses a D valve manufactured by Fusion UV Systems).
  • the winding deformation defect of the obtained roll body was evaluated by the same method and criteria as the winding deformation defect of the roll body of the laminated body.
  • Table 2 shows the production conditions of the obtained laminates 201 to 219, and Table 3 shows the evaluation results.
  • 80 ° C. of ketone / alcohol (90/10 mass ratio) corresponds to about Tb ° C.
  • 40 ° C. of ketone / alcohol (10/90 mass ratio) corresponds to about Tb-40 ° C.
  • 110 ° C. of ethyl acetate corresponds to Tb + 30 ° C.
  • the laminated bodies 201 to 210 and 215 to 219 do not break during transportation and have good transportation stability. Further, it can be seen that even if the laminates 201 to 210 and 215 to 219 are wound into a roll and stored for a certain period of time, the winding deformation is unlikely to remain in the translucent resin layer, and the winding storage stability is also excellent. Further, it can be seen that even if the rolled body of the polarizing plate obtained by using such a laminated body is stored for a certain period of time, the winding deformation is unlikely to remain in the translucent resin layer.
  • the winding deformation can be further reduced by increasing the weight average molecular weight of the (meth) acrylic resin (comparison between the laminated bodies 202 and 203).
  • the rubber particles tend to be unevenly distributed on the surface layer (contrast between the laminated bodies 202 and 209). It is considered that this is because the drying speed has increased. Further, it can be seen that the rubber particles are likely to be unevenly distributed on the surface layer by making the ratio of acetone and methanol rich in acetone (contrast between the laminated bodies 202 and 210). It is considered that this is because, in addition to the increased drying rate, acetone has a high affinity with the rubber particles, so that the rubber particles easily move together with the solvent.
  • the laminated body 211 having an excessively high tensile elastic modulus of the support is easily broken and is inferior in transport stability.
  • the laminated body 214 having an excessively low tensile elastic modulus of the support is likely to undergo winding deformation of the laminated body, whereby the deformation is easily transferred to the translucent resin layer.
  • the winding deformation is hard to disappear.
  • the laminated body 212 having a low molecular weight of the resin contained in the translucent resin layer the translucent resin layer is easily broken during transportation and the transportation stability is low.
  • a laminated body capable of suppressing breakage during transportation of the laminated body and suppressing surface defects due to winding deformation when the laminated body or the polarizing plate is stored in a rolled state for a certain period of time. And a method for producing the same, and a method for producing a polarizing plate using the laminated body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

This layered body includes: a support body; and a light-transmitting resin layer disposed on the surface of the support body so as to be removeable therefrom. The light-transmitting resin layer contains: a (meth) acrylic resin having a weight-average molecular weight of at least 1,000,000; and rubber particles. The layered body has a tensile elastic modulus, at 25℃, of 2.0-6.0GPa.

Description

積層体、積層体の製造方法、偏光板の製造方法Laminated body, manufacturing method of laminated body, manufacturing method of polarizing plate
 本発明は、積層体、積層体の製造方法、偏光板の製造方法に関する。 The present invention relates to a laminate, a method for producing a laminate, and a method for producing a polarizing plate.
 液晶表示装置や有機EL表示装置などの表示装置に用いられる偏光板は、偏光子と、それを保護するための保護フィルムとを含む。近年、スマートフォンやタブレット端末などのモバイル用途に用いられる表示装置は、薄型化が求められており、その構成部材である偏光板、ひいては保護フィルムも薄型化が求められている。 A polarizing plate used in a display device such as a liquid crystal display device or an organic EL display device includes a polarizing element and a protective film for protecting the polarizing element. In recent years, display devices used for mobile applications such as smartphones and tablet terminals have been required to be thinned, and polarizing plates and protective films, which are constituent members thereof, are also required to be thinned.
 保護フィルムは、通常、樹脂を溶剤に溶かしてドープと呼ばれる溶液を流延した後、乾燥させる方法(溶液流延法)などで製造される。そして、得られた保護フィルムを偏光子と貼り合せて、偏光板が製造される。 The protective film is usually manufactured by a method (solution casting method) in which a resin is dissolved in a solvent, a solution called a doping is cast, and then dried. Then, the obtained protective film is bonded to a polarizing element to manufacture a polarizing plate.
 これに対し、より薄い保護フィルムを有する偏光板を製造する方法として、基材フィルム(支持体)と透光性フィルム(透光性樹脂層)とを有する剥離性積層フィルム(積層体)から、透光性フィルムを偏光子に貼り合わせるとともに、基材フィルムを剥離して、偏光板を製造する方法が提案されている(特許文献1~3参照)。 On the other hand, as a method for producing a polarizing plate having a thinner protective film, a peelable laminated film (laminated body) having a base film (support) and a translucent film (translucent resin layer) is used. A method has been proposed in which a translucent film is attached to a polarizer and a base film is peeled off to manufacture a polarizing plate (see Patent Documents 1 to 3).
特開2018-41028号公報JP-A-2018-41028 特開2018-45220号公報JP-A-2018-45220 特開2013-134336号公報Japanese Unexamined Patent Publication No. 2013-134336
 ところで、特許文献1~3に示されるような積層体は、帯状の支持体上に、透光性樹脂層用塗料を塗布したり、支持体用材料と透光性樹脂層用材料とを溶液共流延したりすることによって製造される。そして、得られた積層体は、ロール状に巻き取られた状態で運搬または保管された後、偏光板を製造する際に、ロール体から巻き出されて使用される。 By the way, in the laminate as shown in Patent Documents 1 to 3, a paint for a translucent resin layer is applied on a strip-shaped support, or a material for a support and a material for a translucent resin layer are mixed. Manufactured by co-spreading. Then, the obtained laminate is transported or stored in a rolled state, and then unwound from the roll and used when manufacturing a polarizing plate.
 しかしながら、積層体のロール体を運搬または保管する間に、ロール体の変形(巻き変形)が生じやすく、当該変形が透光性樹脂層の表面に転写されやすいという問題があった。このようなロール体の変形は、積層体の長さが長く、幅が広いほど、顕著に生じやすい。また、得られた偏光板のロール体を運搬または保管する間も、同様の問題があった。 However, there is a problem that deformation (rolling deformation) of the roll body is likely to occur during transportation or storage of the roll body of the laminated body, and the deformation is easily transferred to the surface of the translucent resin layer. Such deformation of the roll body is more likely to occur as the length and width of the laminated body are longer. Further, the same problem has occurred while the rolled body of the obtained polarizing plate is transported or stored.
 また、透光性樹脂層の厚みが、例えば10μm以下と薄いことから、積層体に張力を付与しながらロールなどで搬送する際に、透光性樹脂層が破断しないことも求められる。 Further, since the thickness of the translucent resin layer is as thin as 10 μm or less, it is also required that the translucent resin layer does not break when being conveyed by a roll or the like while applying tension to the laminate.
 本発明は、上記事情に鑑みてなされたものであり、積層体の搬送時の破断を生じることなく、積層体または偏光板をロール状に巻き取った状態で一定期間保管した時の巻き変形に伴う表面欠陥を抑制しうる積層体およびその製造方法、ならびに当該積層体を用いた偏光板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is suitable for winding deformation when the laminated body or the polarizing plate is wound in a roll shape and stored for a certain period of time without causing breakage during transportation of the laminated body. It is an object of the present invention to provide a laminate capable of suppressing the accompanying surface defects, a method for producing the same, and a method for producing a polarizing plate using the laminate.
 上記課題は、以下の構成によって解決することができる。 The above problem can be solved by the following configuration.
 本発明の積層体は、支持体と、その表面に剥離可能に配置された透光性樹脂層とを有する積層体であって、前記透光性樹脂層は、重量平均分子量が100万以上の(メタ)アクリル系樹脂と、ゴム粒子とを含み、前記積層体の25℃における引張弾性率は、2.0~6.0GPaである。 The laminate of the present invention is a laminate having a support and a translucent resin layer removably arranged on the surface thereof, and the translucent resin layer has a weight average molecular weight of 1 million or more. It contains a (meth) acrylic resin and rubber particles, and the tensile elastic modulus of the laminate at 25 ° C. is 2.0 to 6.0 GPa.
 本発明の積層体の製造方法は、重量平均分子量が100万以上の(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含む透光性樹脂層用溶液を得る工程と、前記透光性樹脂層用溶液を、前記支持体の表面に付与する工程と、前記付与された前記透光性樹脂層用溶液から溶媒を除去し、透光性樹脂層を形成して、25℃における引張弾性率が2.0~6.0GPaである積層体を得る工程とを有する。 The method for producing a laminate of the present invention includes a step of obtaining a solution for a translucent resin layer containing a (meth) acrylic resin having a weight average molecular weight of 1 million or more, rubber particles, and a solvent, and the translucency. The step of applying the resin layer solution to the surface of the support and the solvent being removed from the applied translucent resin layer solution to form a translucent resin layer to form a translucent resin layer to have tensile elasticity at 25 ° C. It has a step of obtaining a laminate having a ratio of 2.0 to 6.0 GPa.
 本発明の偏光板の製造方法は、偏光子の表面に、本発明の積層体の前記透光性樹脂層を貼り合わせる工程と、前記透光性樹脂層の前記偏光子とは反対側の面に配置された支持体を剥離する工程とを有する。 The method for producing a polarizing plate of the present invention includes a step of adhering the translucent resin layer of the laminate of the present invention to the surface of a polarizing element and a surface of the translucent resin layer on the opposite side of the polarizing element. It has a step of peeling off the support arranged in.
 本発明によれば、積層体の搬送時の破断を抑制しつつ、積層体または偏光板をロール状に巻き取った状態で一定期間保管した時の巻き変形に伴う表面欠陥を抑制しうる積層体およびその製造方法、ならびに当該積層体を用いた偏光板の製造方法を提供することができる。 According to the present invention, a laminated body capable of suppressing breakage during transportation of the laminated body and suppressing surface defects due to winding deformation when the laminated body or the polarizing plate is stored in a rolled state for a certain period of time. And a method for producing the same, and a method for producing a polarizing plate using the laminated body.
図1は、本発明の一実施の形態に係る積層体を示す断面図である。FIG. 1 is a cross-sectional view showing a laminated body according to an embodiment of the present invention. 図2は、本発明の一実施の形態に係る積層体の製造方法を実施するための製造装置の模式図である。FIG. 2 is a schematic view of a manufacturing apparatus for carrying out the method for manufacturing a laminated body according to an embodiment of the present invention. 図3は、本発明の一実施の形態に係る偏光板を示す断面図である。FIG. 3 is a cross-sectional view showing a polarizing plate according to an embodiment of the present invention.
 本発明者らは、鋭意検討した結果、積層体全体の引張弾性率を適度に高くし、かつ透光性樹脂層に高分子量の(メタ)アクリル系樹脂と、ゴム粒子とを含有させることで、搬送時の透光性樹脂層の破断を抑制しつつ、ロール体に巻き取った時の変形を抑制できることを見出した。 As a result of diligent studies, the present inventors have made it possible to appropriately increase the tensile elastic modulus of the entire laminate and to include a high-molecular-weight (meth) acrylic resin and rubber particles in the translucent resin layer. It has been found that the deformation of the translucent resin layer during transportation can be suppressed while the deformation of the translucent resin layer when wound around the roll body can be suppressed.
 この理由は明らかではないが、以下のように推測される。例えば透光性樹脂層に含まれる(メタ)アクリル系樹脂のモノマー組成の調整などにより積層体の引張弾性率を適度に高くすることで、積層体が適度に硬くなるため、ロール体の変形を生じにくくしうる。 The reason for this is not clear, but it is presumed as follows. For example, by adjusting the monomer composition of the (meth) acrylic resin contained in the translucent resin layer to appropriately increase the tensile elastic modulus of the laminated body, the laminated body becomes moderately hard, so that the roll body is deformed. It can be less likely to occur.
 一方で、積層体の引張弾性率を高くしすぎると、張力をかけて搬送する際に、透光性樹脂層が破断しやすい。これに対し、透光性樹脂層に含まれる(メタ)アクリル系樹脂を高分子量とすることで、靱性を高めることができるだけでなく、透光性樹脂層にゴム粒子をさらに含有することで、張力に柔軟に追従させやすくしうる。それにより、積層体を搬送する際に、透光性樹脂層が搬送張力によって破断するのを抑制でき、搬送安定性を高めることができる。
 また、透光性樹脂層がゴム粒子を含有することで、積層体のロール体の変形が生じた場合でも、当該ゴム粒子の復元力によって、透光性樹脂層を元の形状に戻しやすくし、変形が残りにくくしうる。偏光板のロール体においても、同様に、ロール体の変形を生じにくくし、透光性樹脂層を元の形状に戻しやすくしうる。
On the other hand, if the tensile elastic modulus of the laminated body is made too high, the translucent resin layer is likely to break when the laminated body is transported under tension. On the other hand, by setting the (meth) acrylic resin contained in the translucent resin layer to a high molecular weight, not only the toughness can be enhanced, but also the rubber particles are further contained in the translucent resin layer. It can be made easier to flexibly follow the tension. As a result, when the laminated body is transported, it is possible to prevent the translucent resin layer from breaking due to the transport tension, and it is possible to improve the transport stability.
Further, since the translucent resin layer contains rubber particles, even if the roll body of the laminated body is deformed, the restoring force of the rubber particles makes it easy to return the translucent resin layer to its original shape. , Deformation can be less likely to remain. Similarly, in the roll body of the polarizing plate, the roll body is less likely to be deformed, and the translucent resin layer can be easily returned to the original shape.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 1.積層体
 図1は、本発明の一実施の形態に係る積層体を示す断面図である。図1に示されるように、本実施の形態に係る積層体100は、支持体110と、その表面に剥離可能に配置された透光性樹脂層120とを有する。
1. 1. Laminated Body FIG. 1 is a cross-sectional view showing a laminated body according to an embodiment of the present invention. As shown in FIG. 1, the laminate 100 according to the present embodiment has a support 110 and a translucent resin layer 120 removably arranged on the surface thereof.
 そして、積層体の引張弾性率Gは、2.0~6.0GPaであることが好ましい。積層体の引張弾性率Gが2.0GPa以上であると、積層体のロール体やそれを用いて得られる偏光板のロール体を保管している間に、巻き変形を生じにくくしうる。積層体の引張弾性率Gが6.0GPa以下であると、積層体に搬送張力を付与しながら搬送する際に、透光性樹脂層を破断させにくくし、搬送安定性を高めることができる。積層体の引張弾性率Gは、同様の観点から、3.5~5.5GPaであることがより好ましい。 The tensile elastic modulus G of the laminated body is preferably 2.0 to 6.0 GPa. When the tensile elastic modulus G of the laminated body is 2.0 GPa or more, winding deformation can be less likely to occur while the roll body of the laminated body and the roll body of the polarizing plate obtained by using the roll body are stored. When the tensile elastic modulus G of the laminated body is 6.0 GPa or less, the translucent resin layer is less likely to be broken when the laminated body is conveyed while applying the conveying tension, and the conveying stability can be improved. From the same viewpoint, the tensile elastic modulus G of the laminated body is more preferably 3.5 to 5.5 GPa.
 積層体の引張弾性率Gは、以下の手順で測定することができる。
 1)積層体を、1cm×10cmに切り出してサンプルとする。このサンプルを、25℃60%RHの環境下で24時間調湿する。
 2)次いで、得られたサンプルの引張弾性率を、JIS K7127:1999(ISO 527-3:1995)に記載の引張試験方法により測定する。具体的には、サンプルを、引張試験装置(例えばオリエンテック社製テンシロン)にセットし、チャック間距離50.0mm、引張り速度50mm/minの条件で引張試験を行い、引張弾性率を測定する。測定は、25℃60%RH下で行う。
The tensile elastic modulus G of the laminated body can be measured by the following procedure.
1) The laminate is cut into 1 cm × 10 cm and used as a sample. This sample is humidity controlled for 24 hours in an environment of 25 ° C. and 60% RHS.
2) Next, the tensile elastic modulus of the obtained sample is measured by the tensile test method described in JIS K7127: 1999 (ISO 527-3: 1995). Specifically, the sample is set in a tensile test device (for example, Tencilon manufactured by Orientec Co., Ltd.), a tensile test is performed under the conditions of a distance between chucks of 50.0 mm and a tensile speed of 50 mm / min, and the tensile elastic modulus is measured. The measurement is performed at 25 ° C. and 60% RH.
 積層体の引張弾性率Gは、支持体の引張弾性率G1および透光性樹脂層の引張弾性率G2によって調整することができる。支持体の引張弾性率G1は、支持体の材質や熱処理、延伸処理によって調整することができる。透光性樹脂層の引張弾性率G2は、透光性樹脂層の組成(特に(メタ)アクリル系樹脂のモノマー組成や重量平均分子量)によって調整することができる。 The tensile elastic modulus G of the laminated body can be adjusted by the tensile elastic modulus G1 of the support and the tensile elastic modulus G2 of the translucent resin layer. The tensile elastic modulus G1 of the support can be adjusted by the material of the support, heat treatment, and stretching treatment. The tensile elastic modulus G2 of the translucent resin layer can be adjusted by the composition of the translucent resin layer (particularly, the monomer composition and the weight average molecular weight of the (meth) acrylic resin).
 1-1.支持体
 支持体は、透光性樹脂層を支持できるものであればよく、特に制限されないが、通常、樹脂フィルムを含みうる。
1-1. Support The support may include a resin film, although it is not particularly limited as long as it can support the translucent resin layer.
 樹脂フィルムの例には、ポリエステル樹脂フィルム(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)など)、シクロオレフィン系樹脂フィルム(COP)、アクリル系フィルム、セルロース系樹脂フィルム(例えばトリアセチルセルロースフィルム(TAC)など)が含まれる。中でも、汎用性があり、かつ引張弾性率も高い観点から、PETフィルム、トリアセチルセルロースフィルム(TAC)、シクロオレフィン系樹脂フィルムが好ましい。 Examples of resin films include polyester resin films (eg, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.). , Cycloolefin resin film (COP), acrylic film, cellulose resin film (for example, triacetyl cellulose film (TAC), etc.). Among them, PET film, triacetyl cellulose film (TAC), and cycloolefin resin film are preferable from the viewpoint of versatility and high tensile elastic modulus.
 樹脂フィルムは、熱緩和されたものであってもよいし、延伸処理されたものであってもよい。 The resin film may be heat-relaxed or stretched.
 熱緩和は、支持体を熱処理することにより、結晶化度および配向性がいずれも低下しうるため、樹脂フィルム、ひいては支持体の引張弾性率G1を低くしうる。熱緩和温度は、特に制限されないが、樹脂フィルムを構成する樹脂のガラス転移温度をTgとしたとき、(Tg+60)~(Tg+180)℃で行うことができる。熱緩和は、離型層を形成する前に行われてもよいし、離型層を形成した後に行われてもよい。 In the heat relaxation, the crystallinity and the orientation can be lowered by heat-treating the support, so that the tensile elastic modulus G1 of the resin film and the support can be lowered. The heat relaxation temperature is not particularly limited, but can be set to (Tg + 60) to (Tg + 180) ° C., where Tg is the glass transition temperature of the resin constituting the resin film. Thermal relaxation may be performed before the release layer is formed or after the release layer is formed.
 延伸処理は、樹脂フィルムを延伸することで、樹脂分子の配向性を高め、それにより、樹脂フィルム、ひいては支持体の引張弾性率G1を高くしうる。延伸処理は、例えば支持体の一軸方向に行ってもよいし、二軸方向に行ってもよい。延伸処理は、任意の条件で行うことができ、例えば延伸倍率120~900%程度で行うことができる。延伸倍率は、各方向の延伸倍率を乗じた値である。樹脂フィルムが延伸されているかどうか(延伸フィルムであるかどうか)は、例えば面内遅層軸(屈折率が最大となる方向に延びた軸)があるかどうかによって確認することができる。 In the stretching treatment, the resin film is stretched to increase the orientation of the resin molecules, whereby the tensile elastic modulus G1 of the resin film and the support can be increased. The stretching treatment may be performed, for example, in the uniaxial direction of the support or in the biaxial direction. The stretching treatment can be carried out under any conditions, for example, at a stretching ratio of about 120 to 900%. The draw ratio is a value obtained by multiplying the draw ratio in each direction. Whether or not the resin film is stretched (whether or not it is a stretched film) can be confirmed by, for example, whether or not there is an in-plane slow layer axis (an axis extending in the direction of maximizing the refractive index).
 支持体は、樹脂フィルムの表面に設けられた離型層をさらに有することが好ましい。離型層は、偏光板を作製する際に、透光性樹脂層を支持体から剥離しやすくしうる。 The support preferably further has a release layer provided on the surface of the resin film. The release layer can facilitate the peeling of the translucent resin layer from the support when the polarizing plate is produced.
 離型層は、公知の剥離剤または離型剤を含むものであってよく、特に制限されない。離型層に含まれる剥離剤の例には、シリコーン系剥離剤、および、非シリコーン系剥離剤が含まれる。 The release layer may contain a known release agent or release agent, and is not particularly limited. Examples of the release agent contained in the release layer include a silicone-based release agent and a non-silicone-based release agent.
 シリコーン系剥離剤の例には、公知のシリコーン系樹脂が含まれる。非シリコーン系剥離剤の例には、ポリビニルアルコールまたはエチレン-ビニルアルコール共重合体などに長鎖アルキルイソシアネートを反応させた長鎖アルキルペンダント型重合体、オレフィン系樹脂(例えば共重合ポリエチレン、環状ポリオレフィン、ポリメチルペンテン)、ポリアリレート樹脂(例えば、芳香族ジカルボン酸成分と二価フェノール成分との重縮合物)、フッ素樹脂(例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、PFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(テトラフルオロエチレンとエチレンの共重合体))などが含まれる。 Examples of silicone-based release agents include known silicone-based resins. Examples of non-silicone release agents include long-chain alkyl pendant-type polymers obtained by reacting a long-chain alkyl isocyanate with a polyvinyl alcohol or an ethylene-vinyl alcohol copolymer, and olefin resins (for example, copolymerized polyethylene, cyclic polyolefin, etc.). Polymethylpentene), polyallylate resins (eg, copolymers of aromatic dicarboxylic acid components and divalent phenol components), fluororesins (eg, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride) (PVF), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), FEP (copolymer of tetrafluoroethylene and hexafluoropropylene), ETFE (copolymer of tetrafluoroethylene and ethylene)) Etc. are included.
 離型層には、必要に応じて添加剤をさらに含んでもよい。添加剤の例には、充填剤、滑剤(ワックス、脂肪酸エステル、脂肪酸アミドなど)、安定剤(酸化防止剤、熱安定剤、光安定剤など)、難燃剤、粘度調整剤、増粘剤、消泡剤、紫外線吸収剤が含まれる。 The release layer may further contain an additive if necessary. Examples of additives include fillers, lubricants (waxes, fatty acid esters, fatty acid amides, etc.), stabilizers (antioxidants, heat stabilizers, light stabilizers, etc.), flame retardants, viscosity modifiers, thickeners, etc. Includes defoamers and UV absorbers.
 離型層の厚みは、所望の剥離性を発現しうる程度であればよく、特に制限されないが、例えば0.1~1.0μmであることが好ましい。 The thickness of the release layer may be as long as it can exhibit the desired peelability, and is not particularly limited, but is preferably 0.1 to 1.0 μm, for example.
 (引張弾性率G1)
 支持体の引張弾性率G1は、積層体の引張弾性率Gが上記範囲を満たすように設定されればよく、特に制限されないが、例えば2.0~6.0GPaでありうる。支持体の引張弾性率G1が2.0GPa以上であると、積層体のロール体や偏光板のロール体を保管している間に、巻き変形を生じにくくしうる。支持体の引張弾性率G1が6.0GPa以下であると、積層体に張力を付与しながら搬送する際に、支持体や積層体を破断させにくくし、搬送安定性を高めうる。支持体の引張弾性率G1は、前述と同様に、JIS K7127:1999(ISO 527-3:1995)に記載の引張試験を行うことにより測定することができる。支持体が異方性を有する場合、配向方向(面内遅相軸方向、例えばTD方向)とそれと直交する方向(例えばMD方向)の2種類のサンプルを準備し、それぞれについて測定し、それらの平均値をとる。
(Tensile modulus G1)
The tensile elastic modulus G1 of the support may be set so that the tensile elastic modulus G of the laminated body satisfies the above range, and is not particularly limited, but may be, for example, 2.0 to 6.0 GPa. When the tensile elastic modulus G1 of the support is 2.0 GPa or more, winding deformation can be less likely to occur while the roll body of the laminated body or the roll body of the polarizing plate is stored. When the tensile elastic modulus G1 of the support is 6.0 GPa or less, the support and the laminate are less likely to be broken when the laminate is transported while applying tension, and the transport stability can be improved. The tensile elastic modulus G1 of the support can be measured by performing the tensile test described in JIS K7127: 1999 (ISO 527-3: 1995) in the same manner as described above. If the support has anisotropy, prepare two types of samples, one in the orientation direction (in-plane slow phase axial direction, for example, the TD direction) and the other in the direction orthogonal to it (for example, the MD direction), measure each of them, and measure them. Take the average value.
 (厚み)
 支持体の厚みは、特に制限されないが、例えば10~100μmであることが好ましく、25~50μmであることがより好ましい。
(Thickness)
The thickness of the support is not particularly limited, but is preferably, for example, 10 to 100 μm, and more preferably 25 to 50 μm.
 1-2.透光性樹脂層
 透光性樹脂層は、支持体上に配置されている。透光性樹脂層は、支持体から剥離された後、偏光子と貼り合わされて偏光板を構成するものであり、保護フィルム(位相差フィルムを含む)などの光学フィルムとして機能しうる。
1-2. Translucent resin layer The translucent resin layer is arranged on the support. The translucent resin layer is peeled off from the support and then bonded to a polarizing element to form a polarizing plate, and can function as an optical film such as a protective film (including a retardation film).
 透光性樹脂層は、高分子量の(メタ)アクリル系樹脂と、ゴム粒子とを含む。 The translucent resin layer contains a high molecular weight (meth) acrylic resin and rubber particles.
 1-2-1.(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、100万以上であることが好ましい。(メタ)アクリル系樹脂の重量平均分子量が100万以上であると、得られる透光性樹脂層の靱性を高めうる。それにより、積層体の引張弾性率が高くても、搬送張力によって透光性樹脂層を破断させにくくしうる。また、透光性樹脂層の引張弾性率も高くしうるため、巻き変形も生じにくくしうる。(メタ)アクリル系樹脂の重量平均分子量は、同様の観点から、150万~300万であることがより好ましい。
1-2-1. (Meta) Acrylic Resin The weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 1 million or more. When the weight average molecular weight of the (meth) acrylic resin is 1 million or more, the toughness of the obtained translucent resin layer can be enhanced. As a result, even if the tensile elastic modulus of the laminated body is high, it is possible to make it difficult for the translucent resin layer to break due to the transport tension. Further, since the tensile elastic modulus of the translucent resin layer can be increased, winding deformation can be less likely to occur. From the same viewpoint, the weight average molecular weight of the (meth) acrylic resin is more preferably 1.5 million to 3 million.
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。具体的には、東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL  G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定することができる。測定条件は、後述する実施例と同様としうる。 The weight average molecular weight (Mw) of the (meth) acrylic resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene. Specifically, the measurement can be performed using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series). The measurement conditions may be the same as in the examples described later.
 重量平均分子量が上記範囲を満たす(メタ)アクリル系樹脂は、少なくともメタクリル酸メチルに由来する構造単位(U1)を含む。中でも、透光性樹脂層の引張弾性率G2を高めることで、ロール体で保管したときのロール体の巻き変形を生じにくくする観点では、(メタ)アクリル系樹脂は、フェニルマレイミドに由来する構造単位(U2)をさらに含むことが好ましく、当該構造単位(U2)を含むことによる脆性を改善する観点などから、アクリル酸アルキルエステルに由来する構造単位(U3)に由来する構造単位(U3)をさらに含むことがより好ましい。 The (meth) acrylic resin having a weight average molecular weight satisfying the above range contains at least a structural unit (U1) derived from methyl methacrylate. Above all, from the viewpoint of increasing the tensile elastic modulus G2 of the translucent resin layer to prevent the roll body from being rolled and deformed when stored in the roll body, the (meth) acrylic resin has a structure derived from phenylmaleimide. It is preferable to further contain the unit (U2), and from the viewpoint of improving the brittleness due to the inclusion of the structural unit (U2), the structural unit (U3) derived from the structural unit (U3) derived from the acrylic acid alkyl ester is used. It is more preferable to further include it.
 すなわち、(メタ)アクリル系樹脂は、メタクリル酸メチルに由来する構造単位(U1)と、フェニルマレイミドに由来する構造単位(U2)と、アクリル酸アルキルエステルに由来する構造単位(U3)とを含むことが好ましい。 That is, the (meth) acrylic resin contains a structural unit (U1) derived from methyl methacrylate, a structural unit (U2) derived from phenylmaleimide, and a structural unit (U3) derived from an acrylic acid alkyl ester. Is preferable.
 メタクリル酸メチルに由来する構造単位(U1)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して50~95質量%であることが好ましく、70~90質量%であることがより好ましい。 The content of the structural unit (U1) derived from methyl methacrylate is preferably 50 to 95% by mass, preferably 70 to 90% by mass, based on all the structural units constituting the (meth) acrylic resin. Is more preferable.
 フェニルマレイミドに由来する構造単位(U2)は、比較的剛直な構造を有するため、透光性樹脂層の引張弾性率G2を高めうる。また、フェニルマレイミドに由来する構造単位(U2)は、比較的嵩高い構造を有するため、樹脂マトリクス中にゴム粒子を移動させうるミクロな空隙を有しうるため、ゴム粒子を、透光性樹脂層の表層部に偏在させやすくしうる。 Since the structural unit (U2) derived from phenylmaleimide has a relatively rigid structure, the tensile elastic modulus G2 of the translucent resin layer can be increased. Further, since the structural unit (U2) derived from phenylmaleimide has a relatively bulky structure, it may have microscopic voids in the resin matrix that can move the rubber particles. Therefore, the rubber particles can be made of a translucent resin. It can be easily distributed unevenly on the surface layer of the layer.
 フェニルマレイミドに由来する構造単位(U2)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%であることが好ましい。フェニルマレイミドに由来する構造単位(U2)の含有量が1質量%以上であると、透光性樹脂層の引張弾性率G2を高めやすく、25質量%以下であると、透光性樹脂層の脆性が過度には損なわれにくい。フェニルマレイミドに由来する構造単位(U2)の含有量は、上記観点から、7~15質量%であることがより好ましい。 The content of the structural unit (U2) derived from phenylmaleimide is preferably 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin. When the content of the structural unit (U2) derived from phenylmaleimide is 1% by mass or more, the tensile elastic modulus G2 of the translucent resin layer is likely to be increased, and when it is 25% by mass or less, the translucent resin layer Brittleness is not overly impaired. From the above viewpoint, the content of the structural unit (U2) derived from phenylmaleimide is more preferably 7 to 15% by mass.
 アクリル酸アルキルエステルに由来する構造単位(U3)は、樹脂に適度な柔軟性を付与しうるため、例えばフェニルマレイミドに由来する構造単位(U2)を含むことによる脆さを改善しうる。 Since the structural unit (U3) derived from the acrylic acid alkyl ester can impart appropriate flexibility to the resin, for example, the brittleness due to containing the structural unit (U2) derived from phenylmaleimide can be improved.
 アクリル酸アルキルエステルは、アルキル部分の炭素原子数が1~7、好ましくは1~5のアクリル酸アルキルエステルであることが好ましい。アクリル酸アルキルエステルの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-ヒドロキシエチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシルなどが含まれる。 The acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having an alkyl portion having 1 to 7 carbon atoms, preferably 1 to 5 carbon atoms. Examples of acrylic acid alkyl esters include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-hydroxyethyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate and the like.
 アクリル酸アルキルエステルに由来する構造単位(U3)の含有量は、(メタ)アクリル系樹脂を構成する全構造単位に対して1~25質量%であることが好ましい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が1質量%以上であると、(メタ)アクリル樹脂に適度な柔軟性を付与しうるため、透光性樹脂層が脆くなりすぎず、破断しにくい。アクリル酸アルキルエステルに由来する構造単位(U3)の含有量が25質量%以下であると、(メタ)アクリル樹脂のTgが低下しすぎないため、透光性樹脂層の耐熱性や引張弾性率G2が過度には低下しにくい。アクリル酸アルキルエステルに由来する構造単位の含有量は、上記観点から、5~15質量%であることがより好ましい。 The content of the structural unit (U3) derived from the acrylic acid alkyl ester is preferably 1 to 25% by mass with respect to all the structural units constituting the (meth) acrylic resin. When the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 1% by mass or more, appropriate flexibility can be imparted to the (meth) acrylic resin, so that the translucent resin layer does not become too brittle. , Hard to break. When the content of the structural unit (U3) derived from the acrylic acid alkyl ester is 25% by mass or less, the Tg of the (meth) acrylic resin does not decrease too much, so that the heat resistance and tensile elastic modulus of the translucent resin layer do not decrease too much. G2 is unlikely to decrease excessively. From the above viewpoint, the content of the structural unit derived from the acrylic acid alkyl ester is more preferably 5 to 15% by mass.
 フェニルマレイミドに由来する構造単位(U2)の、フェニルマレイミドに由来する構造単位(U2)とアクリル酸アルキルエステルに由来する構造単位(U3)の合計量に対する比率は、20~70質量%であることが好ましい。当該比率が20質量%以上であると、透光性樹脂層の引張弾性率G2を高めやすく、70質量%以下であると、透光性樹脂層が脆くなりすぎない。 The ratio of the structural unit (U2) derived from phenylmaleimide to the total amount of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester shall be 20 to 70% by mass. Is preferable. When the ratio is 20% by mass or more, the tensile elastic modulus G2 of the translucent resin layer is likely to be increased, and when it is 70% by mass or less, the translucent resin layer is not too brittle.
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、100℃以上であることが好ましく、120~150℃であることがより好ましい。(メタ)アクリル系樹脂のTgが上記範囲内にあると、透光性樹脂層の耐熱性を高めやすい。(メタ)アクリル系樹脂のTgを調整するためには、例えばフェニルマレイミドに由来する構造単位(U2)やアクリル酸アルキルエステルに由来する構造単位(U3)の含有量を調整することが好ましい。 The glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or higher, more preferably 120 to 150 ° C. When the Tg of the (meth) acrylic resin is within the above range, the heat resistance of the translucent resin layer can be easily increased. In order to adjust the Tg of the (meth) acrylic resin, for example, it is preferable to adjust the content of the structural unit (U2) derived from phenylmaleimide and the structural unit (U3) derived from the acrylic acid alkyl ester.
 (メタ)アクリル系樹脂の含有量は、透光性樹脂層に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。 The content of the (meth) acrylic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more with respect to the translucent resin layer. ..
 1-2-2.ゴム粒子
 ゴム粒子は、透光性樹脂層に靱性(しなやかさ)を付与する機能を有しうる。
1-2-2. Rubber particles The rubber particles may have a function of imparting toughness (suppleness) to the translucent resin layer.
 ゴム粒子は、ゴム状重合体を含む粒子である。ゴム状重合体は、ガラス転移温度が20℃以下の軟質な架橋重合体である。そのような架橋重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、透光性樹脂層の透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。 Rubber particles are particles containing a rubber-like polymer. The rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20 ° C. or lower. Examples of such cross-linked polymers include butadiene-based cross-linked polymers, (meth) acrylic-based cross-linked polymers, and organosiloxane-based cross-linked polymers. Among them, the (meth) acrylic crosslinked polymer is preferable, and the acrylic crosslinked polymer (acrylic) is preferable from the viewpoint that the difference in refractive index from the (meth) acrylic resin is small and the transparency of the translucent resin layer is not easily impaired. Rubber-like polymer) is more preferable.
 すなわち、ゴム粒子は、アクリル系ゴム状重合体(a)を含む粒子であることが好ましい。 That is, the rubber particles are preferably particles containing the acrylic rubber-like polymer (a).
 アクリル系ゴム状重合体(a)について:
 アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位を主成分として含む架橋重合体である。主成分として含むとは、アクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。アクリル系ゴム状重合体(a)は、アクリル酸エステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、1分子中に2以上のラジカル重合性基(非共役な反応性二重結合)を有する多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。
About acrylic rubber-like polymer (a):
The acrylic rubber-like polymer (a) is a crosslinked polymer containing a structural unit derived from an acrylic acid ester as a main component. Including as a main component means that the content of structural units derived from acrylic acid ester is in the range described later. The acrylic rubber-like polymer (a) has a structural unit derived from an acrylic acid ester, a structural unit derived from another monomer copolymerizable therewith, and two or more radically polymerizable groups in one molecule ( It is preferably a crosslinked polymer containing a structural unit derived from a polyfunctional monomer having a non-conjugated reactive double bond).
 アクリル酸エステルは、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸ベンジル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチルなどのアルキル基の炭素数1~12のアクリル酸アルキルエステルであることが好ましい。アクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 Acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic. An acrylic acid alkyl ester having 1 to 12 carbon atoms of an alkyl group such as n-octyl acid is preferable. The acrylic acid ester may be one kind or two or more kinds.
 アクリル酸エステルに由来する構造単位の含有量は、アクリル系ゴム状重合体(a1)を構成する全構造単位に対して40~90質量%であることが好ましく、50~80質量%であることがより好ましい。アクリル酸エステルの含有量が上記範囲内であると、保護フィルムに十分な靱性を付与しやすい。 The content of the structural unit derived from the acrylic acid ester is preferably 40 to 90% by mass, preferably 50 to 80% by mass, based on all the structural units constituting the acrylic rubber-like polymer (a1). Is more preferable. When the content of the acrylic acid ester is within the above range, it is easy to impart sufficient toughness to the protective film.
 共重合可能な他の単量体は、アクリル酸エステルと共重合可能な単量体のうち、多官能性単量体以外のものである。すなわち、共重合可能な単量体は、2以上のラジカル重合性基を有しない。共重合可能な単量体の例には、メタクリル酸メチルなどのメタクリル酸エステル;スチレン、メチルスチレンなどのスチレン類;(メタ)アクリロニトリル類;(メタ)アクリルアミド類;(メタ)アクリル酸が含まれる。中でも、共重合可能な他の単量体は、スチレン類を含むことが好ましい。共重合可能な他の単量体は、1種類であってもよいし、2種類以上であってもよい。 The other copolymerizable monomer is a monomer copolymerizable with the acrylic acid ester other than the polyfunctional monomer. That is, the copolymerizable monomer does not have two or more radically polymerizable groups. Examples of copolymerizable monomers include methacrylic acid esters such as methyl methacrylate; styrenes such as styrene and methylstyrene; (meth) acrylonitriles; (meth) acrylamides; (meth) acrylic acid. .. Among them, the other copolymerizable monomer preferably contains styrenes. The other copolymerizable monomer may be one kind or two or more kinds.
 共重合可能な他の単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して5~55質量%であることが好ましく、10~45質量%であることがより好ましい。 The content of the structural unit derived from the other copolymerizable monomer is preferably 5 to 55% by mass with respect to all the structural units constituting the acrylic rubber-like polymer (a), and is preferably 10 to 55% by mass. It is more preferably 45% by mass.
 多官能性単量体の例には、アリル(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチルロールプロパントリ(メタ)アクリレート、テトロメチロールメタンテトラ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートが含まれる。 Examples of polyfunctional monomers include allyl (meth) acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene, ethylene glycol di (meth) acrylate, and diethylene glycol (diethylene glycol). Includes meth) acrylates, triethylene glycol di (meth) acrylates, trimethylrol propanetri (meth) acrylates, tetromethylol methanetetra (meth) acrylates, dipropylene glycol di (meth) acrylates, polyethylene glycol di (meth) acrylates. ..
 多官能性単量体に由来する構造単位の含有量は、アクリル系ゴム状重合体(a)を構成する全構造単位に対して0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。多官能性単量体の含有量が0.05質量%以上であると、得られるアクリル系ゴム状重合体(a)の架橋度を高めやすいため、得られる透光性樹脂層の硬度、剛性が損なわれすぎず、10質量%以下であると、透光性樹脂層の靱性が損なわれにくい。 The content of the structural unit derived from the polyfunctional monomer is preferably 0.05 to 10% by mass, preferably 0.1% by mass, based on the total structural units constituting the acrylic rubber-like polymer (a). More preferably, it is ~ 5% by mass. When the content of the polyfunctional monomer is 0.05% by mass or more, the degree of cross-linking of the obtained acrylic rubber-like polymer (a) can be easily increased, so that the hardness and rigidity of the obtained translucent resin layer can be easily increased. Is not too impaired, and if it is 10% by mass or less, the toughness of the translucent resin layer is not easily impaired.
 アクリル系ゴム状重合体(a)を構成する単量体組成は、例えば熱分解GC-MSにより検出されるピーク面積比により測定することができる。 The monomer composition constituting the acrylic rubber-like polymer (a) can be measured by, for example, the peak area ratio detected by thermal decomposition GC-MS.
 ゴム状重合体のガラス転移温度(Tg)は、0℃以下であることが好ましく、-10℃以下であることがより好ましい。ゴム状重合体のガラス転移温度(Tg)が0℃以下であると、フィルムに適度な靱性を付与しうる。ゴム状重合体のガラス転移温度(Tg)は、前述と同様の方法で測定される。 The glass transition temperature (Tg) of the rubber-like polymer is preferably 0 ° C. or lower, more preferably −10 ° C. or lower. When the glass transition temperature (Tg) of the rubber-like polymer is 0 ° C. or lower, appropriate toughness can be imparted to the film. The glass transition temperature (Tg) of the rubber-like polymer is measured by the same method as described above.
 ゴム状重合体のガラス転移温度(Tg)は、ゴム状重合体の組成によって調整することができる。例えばアクリル系ゴム状重合体(a)のガラス転移温度(Tg)を低くするためには、アクリル系ゴム状重合体(a)中の、アルキル基の炭素原子数が4以上のアクリル酸エステル/共重合可能な他の単量体の質量比を多くする(例えば3以上、好ましくは4~10とする)ことが好ましい。 The glass transition temperature (Tg) of the rubber-like polymer can be adjusted by the composition of the rubber-like polymer. For example, in order to lower the glass transition temperature (Tg) of the acrylic rubber-like polymer (a), an acrylic acid ester having 4 or more carbon atoms in the alkyl group in the acrylic rubber-like polymer (a) / It is preferable to increase the mass ratio of other copolymerizable monomers (for example, 3 or more, preferably 4 to 10).
 アクリル系ゴム状重合体(a)を含む粒子は、アクリル系ゴム状重合体(a)からなる粒子、または、ガラス転移温度が20℃以上の硬質な架橋重合体(c)からなる硬質層と、その周囲に配置されたアクリル系ゴム状重合体(a)からなる軟質層とを有する粒子(これらを、「エラストマー」ともいう)であってもよいし;アクリル系ゴム状重合体(a)の存在下で、メタクリル酸エステルなどの単量体の混合物を、少なくとも1段以上重合して得られるアクリル系グラフト共重合体からなる粒子であってもよい。アクリル系グラフト共重合体からなる粒子は、アクリル系ゴム状重合体(a)を含むコア部と、それを覆うシェル部とを有するコアシェル型の粒子であってもよい。 The particles containing the acrylic rubber-like polymer (a) are the particles made of the acrylic rubber-like polymer (a) or the hard layer made of the hard crosslinked polymer (c) having a glass transition temperature of 20 ° C. or higher. , Particles having a soft layer made of an acrylic rubber-like polymer (a) arranged around the acrylic polymer (a) may be used (these are also referred to as “epolymers”); the acrylic rubber-like polymer (a). It may be a particle made of an acrylic graft copolymer obtained by polymerizing a mixture of monomers such as a methacrylate ester in the presence of at least one step or more. The particles made of the acrylic graft copolymer may be core-shell type particles having a core portion containing the acrylic rubber-like polymer (a) and a shell portion covering the core portion.
 アクリル系ゴム状重合体を含むコアシェル型のゴム粒子について:
 (コア部)
 コア部は、アクリル系ゴム状重合体(a)を含み、必要に応じて硬質な架橋重合体(c)をさらに含んでもよい。すなわち、コア部は、アクリル系ゴム状重合体からなる軟質層と、その内側に配置された硬質な架橋重合体(c)からなる硬質層とを有してもよい。
About core-shell type rubber particles containing acrylic rubber-like polymer:
(Core part)
The core portion contains an acrylic rubber-like polymer (a), and may further contain a hard crosslinked polymer (c), if necessary. That is, the core portion may have a soft layer made of an acrylic rubber-like polymer and a hard layer made of a hard crosslinked polymer (c) arranged inside the soft layer.
 架橋重合体(c)は、メタクリル酸エステルを主成分とする架橋重合体でありうる。すなわち、架橋重合体(c)は、メタクリル酸アルキルエステルに由来する構造単位と、それと共重合可能な他の単量体に由来する構造単位と、多官能性単量体に由来する構造単位とを含む架橋重合体であることが好ましい。 The crosslinked polymer (c) can be a crosslinked polymer containing a methacrylic acid ester as a main component. That is, the crosslinked polymer (c) includes a structural unit derived from a methacrylic acid alkyl ester, a structural unit derived from another monomer copolymerizable therewith, and a structural unit derived from a polyfunctional monomer. It is preferably a crosslinked polymer containing.
 メタクリル酸アルキルエステルは、前述のメタクリル酸アルキルエステルであってよく;共重合可能な他の単量体は、前述のスチレン類やアクリル酸エステルなどであってよく;多官能性単量体は、前述の多官能性単量体とした挙げたものと同様のものが挙げられる。 The alkyl methacrylic acid ester may be the alkyl methacrylic acid ester described above; the other copolymerizable monomer may be the styrenes or acrylic acid ester described above; the polyfunctional monomer may be. Examples thereof include those similar to those mentioned above as the polyfunctional monomer.
 メタクリル酸アルキルエステルに由来する構造単位の含有量は、架橋重合体(c)を構成する全構造単位に対して40~100質量%でありうる。共重合可能な他の単量体に由来する構造単位の含有量は、他の架橋重合体(c)を構成する全構造単位に対して60~0質量%でありうる。多官能性単量体に由来する構造単位の含有量は、他の架橋重合体を構成する全構造単位に対して0.01~10質量%でありうる。 The content of the structural unit derived from the methacrylic acid alkyl ester can be 40 to 100% by mass with respect to all the structural units constituting the crosslinked polymer (c). The content of the structural unit derived from the other copolymerizable monomer can be 60 to 0% by mass with respect to the total structural unit constituting the other crosslinked polymer (c). The content of the structural unit derived from the polyfunctional monomer can be 0.01 to 10% by mass with respect to all the structural units constituting the other crosslinked polymer.
 (シェル部)
 シェル部は、アクリル系ゴム状重合体(a)にグラフト結合した、メタクリル酸エステルに由来する構造単位を主成分として含むメタクリル系重合体(b)(他の重合体)を含む。主成分として含むとは、メタクリル酸エステルに由来する構造単位の含有量が後述する範囲となることをいう。
(Shell part)
The shell portion contains a methacrylic polymer (b) (another polymer) graft-bonded to the acrylic rubber-like polymer (a) and containing a structural unit derived from a methacrylic acid ester as a main component. Including as a main component means that the content of structural units derived from methacrylic acid ester is in the range described later.
 メタクリル系重合体(b)を構成するメタクリル酸エステルは、メタクリル酸メチルなどのアルキル基の炭素数1~12のメタクリル酸アルキルエステルであることが好ましい。メタクリル酸エステルは、1種類であってもよいし、2種類以上であってもよい。 The methacrylic acid ester constituting the methacrylic acid polymer (b) is preferably an alkyl methacrylate having 1 to 12 carbon atoms of an alkyl group such as methyl methacrylate. The methacrylic acid ester may be one kind or two or more kinds.
 メタクリル酸エステルの含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以上であることが好ましい。メタクリル酸エステルの含有量が50質量%以上であると、メタクリル酸メチルに由来する構造単位を主成分として含むメタクリル系樹脂との相溶性が得られやすい。メタクリル酸エステルの含有量は、上記観点から、メタクリル系重合体(b)を構成する全構造単位に対して70質量%以上であることがより好ましい。 The content of the methacrylic acid ester is preferably 50% by mass or more with respect to all the structural units constituting the methacrylic acid polymer (b). When the content of the methacrylic acid ester is 50% by mass or more, compatibility with a methacrylic resin containing a structural unit derived from methyl methacrylate as a main component can be easily obtained. From the above viewpoint, the content of the methacrylic acid ester is more preferably 70% by mass or more with respect to all the structural units constituting the methacrylic polymer (b).
 メタクリル系重合体(b)は、メタクリル酸エステルと共重合可能な他の単量体に由来する構造単位をさらに含んでもよい。共重合可能な他の単量体の例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルなどのアクリル酸エステル;(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルなどの脂環、複素環または芳香環を有する(メタ)アクリル系単量体(環含有(メタ)アクリル系単量体)が含まれる。 The methacrylic polymer (b) may further contain structural units derived from other monomers copolymerizable with the methacrylic acid ester. Examples of other copolymerizable monomers are acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate; benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, A (meth) acrylic monomer having an alicyclic, heterocyclic or aromatic ring such as phenoxyethyl (meth) acrylate (ring-containing (meth) acrylic monomer) is included.
 共重合可能な単量体に由来する構造単位の含有量は、メタクリル系重合体(b)を構成する全構造単位に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましい。 The content of the structural unit derived from the copolymerizable monomer is preferably 50% by mass or less, preferably 30% by mass or less, based on all the structural units constituting the methacrylic polymer (b). Is more preferable.
 ゴム粒子におけるグラフト成分の比率(グラフト率)は、10~250質量%であることが好ましく、15~150質量%であることがより好ましい。グラフト率が一定以上であると、グラフト成分、すなわち、メタクリル酸エステルに由来する構造単位を主成分とするメタクリル系重合体(b)の割合が適度に多いため、ゴム粒子とメタクリル系樹脂との相溶性を高めやすく、ゴム粒子を一層凝集させにくい。また、フィルムの剛性などが損なわれにくい。グラフト率が一定以下であると、アクリル系ゴム状重合体(a)の割合が少なくなりすぎないため、フィルムの靱性や脆性改善効果が損なわれにくい。 The ratio of the graft component in the rubber particles (graft ratio) is preferably 10 to 250% by mass, more preferably 15 to 150% by mass. When the graft ratio is above a certain level, the proportion of the graft component, that is, the methacrylic polymer (b) containing the structural unit derived from the methacrylic acid ester as the main component is moderately large, so that the rubber particles and the methacrylic resin are separated from each other. It is easy to improve compatibility and it is more difficult to agglomerate rubber particles. In addition, the rigidity of the film is not easily impaired. When the graft ratio is below a certain level, the proportion of the acrylic rubber-like polymer (a) does not become too small, so that the toughness and brittleness improving effect of the film are not easily impaired.
 グラフト率は、以下の方法で測定される。
 1)コアシェル型の粒子2gを、メチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpm、温度12℃にて1時間遠心し、不溶分と可溶分とに分離する(遠心分離作業を合計3回セット)。
 2)得られた不溶分の重量を下記式に当てはめて、グラフト率を算出する。
 グラフト率(質量%)=[{(メチルエチルケトン不溶分の質量)-(アクリル系ゴム状重合体(a)の質量)}/(アクリル系ゴム状重合体(a)の質量)]×100
The graft ratio is measured by the following method.
1) Dissolve 2 g of core-shell type particles in 50 ml of methyl ethyl ketone and centrifuge at a rotation speed of 30,000 rpm and a temperature of 12 ° C. for 1 hour using a centrifuge (manufactured by Hitachi Koki Co., Ltd., CP60E) to remove insoluble matter. Separate into the lysate (centrifugal separation work is set 3 times in total).
2) The graft ratio is calculated by applying the weight of the obtained insoluble matter to the following formula.
Graft ratio (mass%) = [{(mass of methyl ethyl ketone insoluble matter)-(mass of acrylic rubber-like polymer (a))} / (mass of acrylic rubber-like polymer (a))] × 100
 ゴム粒子の形状は、特に制限されないが、真球状に近い形状であることが好ましい。真球状に近い形状とは、透光性樹脂層の断面または表面を観察したときの、ゴム粒子のアスペクト比が約1~2の範囲となるような形状をいう。このように、ゴム粒子が真球形状であるほうが、搬送時のロールとの接触による積層体の変形や、巻取り時の内部応力に対して強く、変形に対して耐性が得られやすい。 The shape of the rubber particles is not particularly limited, but it is preferable that the shape is close to a true sphere. The shape close to a spherical shape means a shape in which the aspect ratio of the rubber particles is in the range of about 1 to 2 when observing the cross section or the surface of the translucent resin layer. As described above, when the rubber particles have a spherical shape, the laminated body is more resistant to deformation due to contact with the roll during transportation and internal stress during winding, and resistance to deformation is more likely to be obtained.
 ゴム粒子の平均粒子径は、100~400nmであることが好ましい。ゴム粒子の平均粒子径が100nm以上であると、透光性樹脂層に十分な靱性や応力緩和性を付与しやすく、400nm以下であると、透光性樹脂層の透明性が損なわれにくい。ゴム粒子の平均粒子径は、同様の観点から、150~300nmであることがより好ましい。 The average particle size of the rubber particles is preferably 100 to 400 nm. When the average particle size of the rubber particles is 100 nm or more, sufficient toughness and stress relaxation property are easily imparted to the translucent resin layer, and when it is 400 nm or less, the transparency of the translucent resin layer is not easily impaired. From the same viewpoint, the average particle size of the rubber particles is more preferably 150 to 300 nm.
 ゴム粒子の平均粒子径は、以下の方法で算出することができる。
 ゴム粒子の平均粒子径は、積層体の表面または切片のSEM撮影またはTEM撮影によって得た粒子100個の円相当径の平均値として測定することができる。円相当径は、撮影によって得られた粒子の投影面積を、同じ面積を持つ円の直径に換算することによって求めることができる。この際、倍率5000倍のSEM観察および/またはTEM観察によって観察されるゴム粒子を、平均粒子径の算出に使用する。
The average particle size of the rubber particles can be calculated by the following method.
The average particle size of the rubber particles can be measured as an average value of the equivalent circle diameters of 100 particles obtained by SEM or TEM photography of the surface or section of the laminate. The equivalent circle diameter can be obtained by converting the projected area of the particles obtained by photographing into the diameter of a circle having the same area. At this time, the rubber particles observed by SEM observation and / or TEM observation at a magnification of 5000 times are used for calculating the average particle size.
 ゴム粒子の含有量は、特に限定されないが、透光性樹脂層に含まれる(メタ)アクリル系樹脂に対して5~50質量%であることが好ましく、5~40質量%であることがより好ましく、7~30質量%であることがさらに好ましい。 The content of the rubber particles is not particularly limited, but is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, based on the (meth) acrylic resin contained in the translucent resin layer. It is preferably 7 to 30% by mass, and more preferably 7 to 30% by mass.
 (ゴム粒子の分布)
 ゴム粒子は、透光性樹脂層の厚み方向に均一に分散していてもよいし、偏在していてもよい。具体的には、透光性樹脂層の厚み方向に沿った断面において、透光性樹脂層の支持体とは反対側の面から透光性樹脂層の厚みの20%以下の領域を領域A、透光性樹脂層の支持体側の面から透光性樹脂層の厚みの20%以下の領域を領域Bとし、領域Aにおけるゴム粒子の単位面積当たりの面積率をR、領域Bにおけるゴム粒子の単位面積当たりの面積率をRとしたとき、R/Rは、1.0~1.1でありうる。
(Distribution of rubber particles)
The rubber particles may be uniformly dispersed in the thickness direction of the translucent resin layer, or may be unevenly distributed. Specifically, in the cross section along the thickness direction of the translucent resin layer, the region A is 20% or less of the thickness of the translucent resin layer from the surface opposite to the support of the translucent resin layer. The region B is 20% or less of the thickness of the translucent resin layer from the surface of the translucent resin layer on the support side, the area ratio of the rubber particles in the region A per unit area is RA , and the rubber in the region B. when the area ratio per unit area of the particles was R B, R a / R B may be a 1.0-1.1.
 中でも、積層体がカールする際に応力を生じさせにくくする観点や、偏光子との接着性を高める観点では、ゴム粒子は、透光性樹脂層の表層部(支持体とは反対側の表層部)に偏在していることが好ましい。具体的には、透光性樹脂層のR/Rは、1.05~1.1であることがより好ましい。R/Rが1.05以上であると、ゴム粒子が透光性樹脂層の表層部に偏在している。それにより、透光性樹脂層の表層部の柔軟性や靱性を高めうるため、搬送時の破断を高度に抑制しやすいだけでなく、積層体のロール体を保管する間に巻き変形が生じて当該変形が透光性樹脂層に転写されたとしても、元の形状に戻りやすくしうる。また、R/Rが1.1以下であると、透光性樹脂層の表層部と内部とで靱性の差が大きくなりすぎないため、搬送時などにおいて応力差によりクラックが生じにくい。 Above all, from the viewpoint of making it difficult to generate stress when the laminate is curled and improving the adhesiveness with the polarizer, the rubber particles are the surface layer portion of the translucent resin layer (the surface layer opposite to the support). It is preferable that the parts are unevenly distributed. Specifically, the RA / R B of the translucent resin layer is more preferably 1.05 to 1.1. When RA / R B is 1.05 or more, the rubber particles are unevenly distributed on the surface layer portion of the translucent resin layer. As a result, the flexibility and toughness of the surface layer of the translucent resin layer can be increased, so that not only is it easy to highly suppress breakage during transportation, but also winding deformation occurs during storage of the rolled body of the laminated body. Even if the deformation is transferred to the translucent resin layer, it can easily return to the original shape. Further, when RA / R B is 1.1 or less, the difference in toughness between the surface layer portion and the inside of the translucent resin layer does not become too large, so that cracks are unlikely to occur due to the stress difference during transportation or the like.
 領域Aにおけるゴム粒子の単位面積当たりの面積率Rは、下記式(1)で表される。
 式(1):面積率R(%)=領域Aにおけるゴム粒子の合計面積/領域Aの面積×100
 領域Bにおけるゴム粒子の単位面積当たりの面積率Rも同様に定義される。
The area ratio RA per unit area of the rubber particles in the region A is represented by the following formula (1).
Equation (1): Area ratio RA (%) = total area of rubber particles in region A / area of region A x 100
Area ratio R B per unit area of the rubber particles in the area B is similarly defined.
 透光性樹脂層のR/Rは、以下の方法で測定することができる。
 1)透光性樹脂層をミクロトームで切断し、透光性樹脂層の表面に垂直な切断面を、TEM観察する。観察条件は、加速電圧(サンプルに照射する電子エネルギー):30kV、作動距離(レンズとサンプルの間の距離):8.6mm×倍率:3.00kとしうる。観察領域は、透光性樹脂層の厚み方向の全部を含む領域とする。
 2)得られたTEM画像を、NiVision(ナショナルインスツルメンツ社製)の画像処理ソフトを用いて輝度傾斜を除去した後、オープニング処理を行い、バルクとゴム粒子とのコントラスト差を検出する。それにより、ゴム粒子の分布状態を特定する。
 3)上記2)で得られた画像処理後の画像において、透光性樹脂層の厚み方向において、領域Aにおけるゴム粒子の単位面積当たりの面積率R、領域Bにおけるゴム粒子の単位面積当たりの面積率Rをそれぞれ算出する。
 4)上記3)で得られた結果から、R/Rを算出する。
R A / R B of the translucent resin layer can be measured by the following method.
1) The translucent resin layer is cut with a microtome, and the cut surface perpendicular to the surface of the translucent resin layer is observed by TEM. The observation conditions may be acceleration voltage (electron energy irradiating the sample): 30 kV, working distance (distance between the lens and the sample): 8.6 mm × magnification: 3.00 k. The observation region is a region including the entire thickness direction of the translucent resin layer.
2) The obtained TEM image is subjected to an opening process after removing the brightness gradient using image processing software of NiVision (manufactured by National Instruments), and the contrast difference between the bulk and the rubber particles is detected. Thereby, the distribution state of the rubber particles is specified.
3) In the image after image processing obtained in 2) above, the area ratio RA per unit area of the rubber particles in the region A and the unit area of the rubber particles in the region B in the thickness direction of the translucent resin layer. calculating the area ratio R B, respectively.
4) R A / R B is calculated from the result obtained in 3) above.
 ゴム粒子を偏在させる方法は、特に制限されないが、透光性樹脂層用溶液の溶媒の種類や塗膜の乾燥条件(乾燥温度や雰囲気溶媒濃度)、(メタ)アクリル樹脂の組成などによって調整できる。透光性樹脂層の表層部(領域A)にゴム粒子を偏在させやすくするためには、後述するように、溶媒として、ゴム粒子との親和性が高い溶媒(例えばアセトンなどのケトン類)を用いることが好ましく、乾燥温度を高くすることが好ましく、雰囲気の溶媒濃度を低くすることが好ましい。また、フェニルマレイミドに由来する構造単位(U2)を適度に多く含む(メタ)アクリル系樹脂は、ミクロな空隙を多く有し、ゴム粒子を拡散移動させやすいことから、フェニルマレイミドに由来する構造単位(U2)の含有量を適度に多くすることで、ゴム粒子を偏在させやすくすることもできる。 The method of unevenly distributing the rubber particles is not particularly limited, but can be adjusted depending on the type of solvent of the translucent resin layer solution, the drying conditions of the coating film (drying temperature and atmospheric solvent concentration), the composition of the (meth) acrylic resin, and the like. .. In order to facilitate uneven distribution of the rubber particles on the surface layer portion (region A) of the translucent resin layer, a solvent having a high affinity with the rubber particles (for example, ketones such as acetone) is used as the solvent as described later. It is preferable to use it, it is preferable to raise the drying temperature, and it is preferable to lower the solvent concentration in the atmosphere. Further, the (meth) acrylic resin containing a moderately large amount of the structural unit (U2) derived from phenylmaleimide has many microscopic voids and easily diffuses and moves the rubber particles. Therefore, the structural unit derived from the phenylmaleimide. By appropriately increasing the content of (U2), it is possible to make it easier for the rubber particles to be unevenly distributed.
 1-2-3.他の成分
 透光性樹脂層は、必要に応じて上記以外の他の成分をさらに含んでもよい。他の成分の例には、マット剤(微粒子)、紫外線吸収剤などが含まれる。
1-2-3. Other components The translucent resin layer may further contain components other than the above, if necessary. Examples of other components include matting agents (fine particles), ultraviolet absorbers and the like.
 マット剤は、フィルムに滑り性を付与する観点で、添加されうる。マット剤の例には、シリカ粒子などの無機微粒子、ガラス転移温度が80℃以上の有機微粒子などが含まれる。 The matting agent can be added from the viewpoint of imparting slipperiness to the film. Examples of the matting agent include inorganic fine particles such as silica particles and organic fine particles having a glass transition temperature of 80 ° C. or higher.
 紫外線吸収剤の例には、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、およびトリアジン系紫外線吸収剤が含まれる。 Examples of UV absorbers include benzotriazole-based UV absorbers, benzophenone-based UV absorbers, and triazine-based UV absorbers.
 1-2-4.物性
 (引張弾性率G2)
 透光性樹脂層の引張弾性率G2は、積層体の引張弾性率Gが上記範囲を満たすように設定されればよく、特に制限されないが、例えば2.0~3.0GPaでありうる。透光性樹脂層の引張弾性率G2が2.0GPa以上であると、積層体または偏光板のロール体を保管している間に、巻き変形を生じにくくしうる。透光性樹脂層の引張弾性率G2が3.0GPa以下であると、積層体に張力を付与しながら搬送する際に、透光性樹脂層を破断させにくくし、搬送安定性を高めうる。
1-2-4. Physical properties (tensile elastic modulus G2)
The tensile elastic modulus G2 of the translucent resin layer may be set so that the tensile elastic modulus G of the laminated body satisfies the above range, and is not particularly limited, but may be, for example, 2.0 to 3.0 GPa. When the tensile elastic modulus G2 of the translucent resin layer is 2.0 GPa or more, winding deformation can be less likely to occur while the laminated body or the rolled body of the polarizing plate is stored. When the tensile elastic modulus G2 of the translucent resin layer is 3.0 GPa or less, it is difficult to break the translucent resin layer when the laminated body is conveyed while applying tension, and the conveying stability can be improved.
 透光性樹脂層の引張弾性率G2は、主に、(メタ)アクリル系樹脂の組成や重量平均分子量によって調整することができる。透光性樹脂層の引張弾性率G2を高める場合は、例えば(メタ)アクリル系樹脂中のフェニルマレイミドに由来する構造単位(U2)を多くすることが好ましく、重量平均分子量を高くすることが好ましい。 The tensile elastic modulus G2 of the translucent resin layer can be adjusted mainly by the composition of the (meth) acrylic resin and the weight average molecular weight. When increasing the tensile elastic modulus G2 of the translucent resin layer, for example, it is preferable to increase the number of structural units (U2) derived from phenylmaleimide in the (meth) acrylic resin, and it is preferable to increase the weight average molecular weight. ..
 透光性樹脂層の引張弾性率G2は、前述と同様の方法で測定することができる。すなわち、支持体から透光性樹脂層を剥離した後、透光性樹脂層の引張弾性率G2を前述と同様の方法で測定する。なお、透光性樹脂層が異方性を有する場合、配向方向(面内遅相軸方向)とそれと直交する方向の2種類のサンプルを準備し、それぞれについて測定し、それらの平均値をとる。 The tensile elastic modulus G2 of the translucent resin layer can be measured by the same method as described above. That is, after the translucent resin layer is peeled off from the support, the tensile elastic modulus G2 of the translucent resin layer is measured by the same method as described above. If the translucent resin layer has anisotropy, prepare two types of samples, one in the orientation direction (in-plane slow phase axis direction) and the other in the direction orthogonal to it, measure each of them, and take the average value of them. ..
 支持体の引張弾性率G1と透光性樹脂層の引張弾性率G2の差ΔG(G1-G2)は、3.5GPa以下であることが好ましく、2.5GPa以下であることがより好ましい。ΔGが3.5GPa以下であると、例えば巻取り張力を掛けた時などにおいて、ツレなどの張力による変形量の差異が少ないので、剥がれ、剥がれによる破断などを生じにくい。 The difference ΔG (G1-G2) between the tensile elastic modulus G1 of the support and the tensile elastic modulus G2 of the translucent resin layer is preferably 3.5 GPa or less, and more preferably 2.5 GPa or less. When ΔG is 3.5 GPa or less, for example, when a winding tension is applied, the difference in the amount of deformation due to tension such as crease is small, so that peeling and breakage due to peeling are unlikely to occur.
 (内部ヘイズ)
 透光性樹脂層の内部ヘイズは、1.0%以下であることが好ましく、0.1%以下であることがより好ましく、0.05%以下であることがさらに好ましい。透光性樹脂層の内部ヘイズは、前述と同様の方法で測定することができる。透光性樹脂層の内部ヘイズは、ゴム粒子の含有量などによって調整されうる。
(Internal haze)
The internal haze of the translucent resin layer is preferably 1.0% or less, more preferably 0.1% or less, and even more preferably 0.05% or less. The internal haze of the translucent resin layer can be measured by the same method as described above. The internal haze of the translucent resin layer can be adjusted by the content of rubber particles and the like.
 (位相差RoおよびRt)
 透光性樹脂層は、例えばIPSモード用の位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、0~10nmであることが好ましく、0~5nmであることがより好ましい。透光性樹脂層の厚み方向の位相差Rtは、-20~20nmであることが好ましく、-10~10nmであることがより好ましい。
(Phase difference Ro and Rt)
From the viewpoint of using the translucent resin layer as a retardation film for IPS mode, for example, the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is 0 to 10 nm. It is preferably 0 to 5 nm, and more preferably 0 to 5 nm. The phase difference Rt in the thickness direction of the translucent resin layer is preferably −20 to 20 nm, and more preferably −10 to 10 nm.
 RoおよびRtは、それぞれ下記式で定義される。
 式(2a):Ro=(nx-ny)×d
 式(2b):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、透光性樹脂層の面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、透光性樹脂層の面内遅相軸に直交する方向の屈折率を表し、
 nzは、透光性樹脂層の厚み方向の屈折率を表し、
 dは、透光性樹脂層の厚み(nm)を表す。)
Ro and Rt are defined by the following equations, respectively.
Equation (2a): Ro = (nx-ny) × d
Equation (2b): Rt = ((nx + ny) /2-nz) × d
(During the ceremony,
nx represents the refractive index of the translucent resin layer in the in-plane slow-phase axial direction (the direction in which the refractive index is maximized).
ny represents the refractive index of the translucent resin layer in the direction orthogonal to the in-plane slow-phase axis.
nz represents the refractive index in the thickness direction of the translucent resin layer.
d represents the thickness (nm) of the translucent resin layer. )
 透光性樹脂層の面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow-phase axis of the translucent resin layer can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
 RoおよびRtは、以下の方法で測定することができる。
 1)透光性樹脂層を23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRoおよびRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following methods.
1) The translucent resin layer is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt of the film after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter). Measure in the environment.
 透光性樹脂層の位相差RoおよびRtは、例えば(メタ)アクリル系樹脂のモノマー組成によって調整することができる。 The phase difference Ro and Rt of the translucent resin layer can be adjusted by, for example, the monomer composition of the (meth) acrylic resin.
 (残留溶媒量)
 透光性樹脂層は、透光性樹脂層用溶液を塗布して得られることから、当該溶液に由来する溶媒(例えばケトン類やアルコール類)が残留していることがある。残留溶媒量は、透光性樹脂層に対して700ppm以下であることが好ましく、30~700ppmであることがより好ましい。残留溶媒の含有量は、透光性樹脂層の製造工程における、支持体上に付与した透光性樹脂層用溶液の乾燥条件によって調整されうる。
(Amount of residual solvent)
Since the translucent resin layer is obtained by applying a solution for the translucent resin layer, a solvent derived from the solution (for example, ketones and alcohols) may remain. The amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm, based on the translucent resin layer. The content of the residual solvent can be adjusted by the drying conditions of the solution for the translucent resin layer applied on the support in the manufacturing process of the translucent resin layer.
 透光性樹脂層の残留溶媒量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質やモノマーなどの定量も併せて行うことができる。 The amount of residual solvent in the translucent resin layer can be measured by headspace gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. The volatile components are quantified while doing so. The headspace method makes it possible to observe all peaks of volatile components by gas chromatography, and by using an analytical method that utilizes electromagnetic interactions, it is possible to quantify volatile substances and monomers with high accuracy. It can be done at the same time.
 (厚み)
 透光性樹脂層の厚みは、特に制限されないが、偏光板の薄型化を実現する観点では、通常、支持体の厚みよりも薄く、具体的には、例えば0.1~35μmであることが好ましく、1~15μmであることがより好ましい。
(Thickness)
The thickness of the translucent resin layer is not particularly limited, but from the viewpoint of realizing a thin polarizing plate, it is usually thinner than the thickness of the support, specifically, for example, 0.1 to 35 μm. It is preferably 1 to 15 μm, more preferably 1 to 15 μm.
 支持体の厚みT1と透光性樹脂層の厚みT2の比T2/T1は、0.01~1であることが好ましく、0.1~0.7であることがより好ましい。 The ratio T2 / T1 of the thickness T1 of the support to the thickness T2 of the translucent resin layer is preferably 0.01 to 1, and more preferably 0.1 to 0.7.
 1-3.他の層
 本実施の形態に係る積層体は、必要に応じて支持体と透光性樹脂層との間に配置された他の層をさらに有してもよい。
1-3. Other Layers The laminate according to the present embodiment may further have other layers arranged between the support and the translucent resin layer, if necessary.
 1-4.積層体の形態
 また、本実施の形態に係る積層体の形態は、帯状でありうる。すなわち、本実施の形態に係る積層体は、その幅方向に直交する方向にロール状に巻き取られて、ロール体とされうる。
1-4. Form of Laminated Body The form of the laminated body according to the present embodiment may be strip-shaped. That is, the laminated body according to the present embodiment can be wound into a roll shape in a direction orthogonal to the width direction thereof to form a roll body.
 2.積層体の製造方法
 [製造方法]
 本実施の形態に係る積層体の製造方法は、1)透光性樹脂層用溶液を得る工程と、2)得られた透光性樹脂層溶液を、支持体の表面に付与する工程と、3)付与された透光性樹脂層用溶液から溶媒を除去して、透光性樹脂層を形成する工程とを有する。
2. Laminated body manufacturing method [Manufacturing method]
The method for producing the laminate according to the present embodiment includes 1) a step of obtaining a translucent resin layer solution, and 2) a step of applying the obtained translucent resin layer solution to the surface of the support. 3) The present invention includes a step of removing the solvent from the applied solution for the translucent resin layer to form the translucent resin layer.
 1)の工程(透光性樹脂層用溶液を得る工程)について
 前述の(メタ)アクリル系樹脂と、前述のゴム粒子と、溶媒とを含む透光性樹脂層用溶液を調製する。
Regarding step 1) (step of obtaining a solution for a translucent resin layer), a solution for a translucent resin layer containing the above-mentioned (meth) acrylic resin, the above-mentioned rubber particles, and a solvent is prepared.
 透光性樹脂層用溶液に用いられる溶媒は、(メタ)アクリル系樹脂やゴム粒子を良好に分散させうるものであればよく、特に制限されない。溶媒の例には、メタノール、エタノール、プロパノール、n-ブタノール、2-ブタノール、tert-ブタノール、シクロヘキサノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン類、酢酸エチル、酢酸メチル、乳酸エチル、酢酸イソプロピル、酢酸アミル、酪酸エチルなどのエステル類、グリコールエーテル類(プロピレングリコールモノ(C1~C4)アルキルエーテル(具体的にはプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル等)、プロピレングリコールモノ(C1~C4)アルキルエーテルエステル(プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート))、トルエン、ベンゼン、シクロヘキサン、n-ヘキサン等の炭化水素類が含まれる。中でも、溶媒は、(メタ)アクリル系樹脂を溶解しやすく、かつゴム粒子との親和性が比較的高く、低沸点で、乾燥速度および生産性を高めやすい観点から、ケトン類を含むことが好ましく、平面性が高い透光性樹脂層を形成しやすい観点から、アルコール類をさらに含むことが好ましい。 The solvent used for the translucent resin layer solution is not particularly limited as long as it can disperse (meth) acrylic resin and rubber particles well. Examples of solvents include alcohols such as methanol, ethanol, propanol, n-butanol, 2-butanol, tert-butanol and cyclohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, ethyl acetate, methyl acetate and lactic acid. Esters such as ethyl, isopropyl acetate, amyl acetate, ethyl butyrate, glycol ethers (propylene glycol mono (C1 to C4) alkyl ethers (specifically, propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether, propylene glycol) Mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, etc.), propylene glycol mono (C1-C4) alkyl ether esters (propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate)), toluene, benzene , Cyclohexane, n-hexane and other hydrocarbons are included. Among them, the solvent preferably contains ketones from the viewpoint of easily dissolving the (meth) acrylic resin, having a relatively high affinity with rubber particles, having a low boiling point, and easily increasing the drying rate and productivity. From the viewpoint of easily forming a translucent resin layer having high flatness, it is preferable to further contain alcohols.
 すなわち、溶媒は、ケトン類と、アルコール類とを含むことが好ましい。ケトン類とアルコール類の含有比率は、特に限定されないが、乾燥速度と平面性の両立の観点から、ケトン類/アルコール類=95/5~10/90(質量比)であることが好ましく、95/5~60/40(質量比)であることがより好ましく、95/5~80/20(質量比)であることがさらに好ましい。ケトン類の割合が適度に多いと、乾燥速度を高めやすく、生産性も高めやすい。アルコール類の割合が適度に多いと、塗膜の平面性を高めやすい。 That is, the solvent preferably contains ketones and alcohols. The content ratio of ketones and alcohols is not particularly limited, but from the viewpoint of achieving both drying speed and flatness, ketones / alcohols = 95/5 to 10/90 (mass ratio) is preferable, and 95 It is more preferably / 5 to 60/40 (mass ratio), and further preferably 95/5 to 80/20 (mass ratio). When the proportion of ketones is moderately high, the drying rate is likely to be increased and the productivity is likely to be increased. When the proportion of alcohols is moderately high, it is easy to improve the flatness of the coating film.
 透光性樹脂層用溶液の樹脂濃度は、粘度を後述する範囲に調整しやすくする観点から、例えば1.0~20質量%であることが好ましい。 The resin concentration of the translucent resin layer solution is preferably, for example, 1.0 to 20% by mass from the viewpoint of making it easy to adjust the viscosity within the range described later.
 透光性樹脂層用溶液の粘度は、所望の厚みの透光性樹脂層を形成しうる程度であればよく、特に制限されないが、例えば5~5000cPであることが好ましい。透光性樹脂層用溶液の粘度が5cP以上であると、適度な厚みの透光性樹脂層を形成しやすく、5000cP以下であると、溶液の粘度上昇によって、厚みムラが生じるのを抑制しうる。透光性樹脂層用溶液の粘度は、同様の観点から、100~1000cPであることがより好ましい。透光性樹脂層用溶液の粘度は、25℃で、E型粘度計で測定することができる。 The viscosity of the solution for the translucent resin layer is not particularly limited as long as it can form a translucent resin layer having a desired thickness, but is preferably 5 to 5000 cP, for example. When the viscosity of the solution for the translucent resin layer is 5 cP or more, it is easy to form a translucent resin layer having an appropriate thickness, and when it is 5000 cP or less, it is possible to suppress the occurrence of thickness unevenness due to the increase in the viscosity of the solution. sell. From the same viewpoint, the viscosity of the translucent resin layer solution is more preferably 100 to 1000 cP. The viscosity of the translucent resin layer solution can be measured with an E-type viscometer at 25 ° C.
 2)の工程(透光性樹脂層用溶液を付与する工程)について
 次いで、得られた透光性樹脂層用溶液を、支持体の表面に付与する。具体的には、得られた透光性樹脂層用溶液を、支持体の表面に塗布する。
Regarding the step 2) (step of applying the translucent resin layer solution), the obtained translucent resin layer solution is then applied to the surface of the support. Specifically, the obtained translucent resin layer solution is applied to the surface of the support.
 透光性樹脂層用溶液の塗布方法は、特に制限されず、例えばバックロールコート法、グラビアコート法、スピンコート法、ワイヤーバーコート法、ロールコート法などでの公知の方法でありうる。中でも、薄くかつ均一な厚みの塗膜を形成しうる観点から、バックコート法が好ましい。 The method for applying the solution for the translucent resin layer is not particularly limited, and may be a known method such as a back roll coating method, a gravure coating method, a spin coating method, a wire bar coating method, or a roll coating method. Above all, the back coat method is preferable from the viewpoint of being able to form a thin and uniform thickness coating film.
 3)の工程(透光性樹脂層を形成する工程)について
 次いで、支持体に付与された透光性樹脂層用溶液から溶媒を除去して、透光性樹脂層を形成する。
About the step 3) (step of forming the translucent resin layer) Next, the solvent is removed from the solution for the translucent resin layer applied to the support to form the translucent resin layer.
 具体的には、支持体に付与された透光性樹脂層用溶液を乾燥させる。乾燥は、例えば送風または加熱により行うことができる。中でも、積層体のカールなどを抑制しやすくする観点では、送風により乾燥させることが好ましい。 Specifically, the solution for the translucent resin layer applied to the support is dried. Drying can be performed, for example, by blowing air or heating. Above all, from the viewpoint of facilitating curling of the laminated body, it is preferable to dry it by blowing air.
 乾燥条件(例えば乾燥温度、雰囲気中の溶媒濃度、乾燥時間など)を調整することにより、乾燥後の塗膜、すなわち透光性樹脂層の残留溶媒量を一定以下とする。また、乾燥条件によって、透光性樹脂層におけるゴム粒子の分布状態を調整しうる。具体的には、ゴム粒子を偏在させやすくする観点では、ゴム粒子との親和性が良好な溶媒を用い、かつ乾燥温度は高くすることが好ましく、雰囲気中の溶媒濃度は低くすることが好ましい。 By adjusting the drying conditions (for example, drying temperature, solvent concentration in the atmosphere, drying time, etc.), the amount of residual solvent in the coating film after drying, that is, the translucent resin layer, is kept below a certain level. Further, the distribution state of the rubber particles in the translucent resin layer can be adjusted depending on the drying conditions. Specifically, from the viewpoint of facilitating uneven distribution of rubber particles, it is preferable to use a solvent having a good affinity with the rubber particles, and it is preferable to raise the drying temperature and lower the solvent concentration in the atmosphere.
 乾燥温度は、溶媒の沸点をTb(℃)としたとき、(Tb-50)~(Tb+50)℃であることが好ましく、(Tb-40)~(Tb+40)℃であることがより好ましい。乾燥温度が下限値以上であると、溶媒の蒸発速度を高くしうるため、ゴム粒子を偏在させやすく、上限値以下であると、雰囲気中の溶媒濃度が高くなりすぎないようにしうる。例えば、アセトン/メタノールの混合溶媒を用いる場合は、乾燥温度は40℃以上としうる。 The drying temperature is preferably (Tb-50) to (Tb + 50) ° C., more preferably (Tb-40) to (Tb + 40) ° C., when the boiling point of the solvent is Tb (° C.). When the drying temperature is at least the lower limit value, the evaporation rate of the solvent can be increased, so that the rubber particles are likely to be unevenly distributed, and when it is at least the upper limit value, the solvent concentration in the atmosphere can be prevented from becoming too high. For example, when a mixed solvent of acetone / methanol is used, the drying temperature can be 40 ° C. or higher.
 乾燥時の雰囲気中の溶媒濃度は、0.10~0.30質量%であることが好ましく、0.10~0.20質量%であることがより好ましい。雰囲気中の溶媒濃度が0.1質量%以上であると、溶媒が蒸発しすぎないため、塗膜に割れなどが生じにくい。溶媒濃度が0.3質量%以下であると、塗膜からの溶媒の蒸発速度を適度に高くしやすいため、ゴム粒子を表面に偏在させやすい。雰囲気中の溶媒濃度は、乾燥温度と、乾燥炉内露点温度とによって調整することができる。また、雰囲気中の溶媒濃度は、赤外線ガス濃度計により測定することができる。 The solvent concentration in the atmosphere at the time of drying is preferably 0.10 to 0.30% by mass, more preferably 0.10 to 0.20% by mass. When the solvent concentration in the atmosphere is 0.1% by mass or more, the solvent does not evaporate too much, so that the coating film is less likely to crack. When the solvent concentration is 0.3% by mass or less, the evaporation rate of the solvent from the coating film is likely to be appropriately increased, so that the rubber particles are likely to be unevenly distributed on the surface. The solvent concentration in the atmosphere can be adjusted by the drying temperature and the dew point temperature in the drying furnace. Further, the solvent concentration in the atmosphere can be measured by an infrared gas densitometer.
 本実施の形態に係る積層体は、前述の通り、帯状でありうる。したがって、本実施の形態に係る積層体の製造方法は、4)帯状の積層体をロール状に巻き取り、ロール体とする工程をさらに含むことが好ましい。 The laminate according to the present embodiment may be strip-shaped as described above. Therefore, it is preferable that the method for producing the laminated body according to the present embodiment further includes 4) a step of winding the strip-shaped laminated body into a roll shape to form a roll body.
 4)の工程(積層体を巻き取り、ロール体を得る工程)について
 得られた帯状の積層体を、その幅方向に直交する方向にロール状に巻き取り、ロール体とする。
Step 4) (Step of winding the laminated body to obtain a roll body) The obtained strip-shaped laminated body is wound into a roll shape in a direction orthogonal to the width direction thereof to obtain a roll body.
 帯状の積層体の長さは、特に制限されないが、例えば100~10000m程度でありうる。また、帯状の積層体の幅は、1m以上であることが好ましく、1.3~4mであることがより好ましい。 The length of the strip-shaped laminate is not particularly limited, but may be, for example, about 100 to 10000 m. The width of the strip-shaped laminate is preferably 1 m or more, and more preferably 1.3 to 4 m.
 [製造装置]
 本実施の形態に係る積層体の製造方法は、例えば図2に示される製造装置によって行うことができる。
[manufacturing device]
The method for manufacturing the laminate according to the present embodiment can be performed by, for example, the manufacturing apparatus shown in FIG.
 図2は、本実施の形態に係る積層体の製造方法を実施するための製造装置200の模式図である。製造装置200は、供給部210と、塗布部220と、乾燥部230と、冷却部240と、巻き取り部250とを有する。a~dは、支持体110を搬送する搬送ロールを示す。 FIG. 2 is a schematic view of a manufacturing apparatus 200 for carrying out the method for manufacturing a laminated body according to the present embodiment. The manufacturing apparatus 200 includes a supply unit 210, a coating unit 220, a drying unit 230, a cooling unit 240, and a winding unit 250. Reference numerals a to d indicate transport rolls for transporting the support 110.
 供給部210は、巻き芯に巻かれた帯状の支持体110のロール体201を繰り出す繰り出し装置(不図示)を有する。 The supply unit 210 has a feeding device (not shown) for feeding out the roll body 201 of the strip-shaped support 110 wound around the winding core.
 塗布部220は、塗布装置であって、支持体110を保持するバックアップロール221と、バックアップロール221で保持された支持体110に、透光性樹脂層用溶液を塗布する塗布ヘッド222と、塗布ヘッド222の上流側に設けられた減圧室223とを有する。 The coating unit 220 is a coating device, and has a backup roll 221 that holds the support 110, and a coating head 222 that applies a translucent resin layer solution to the support 110 held by the backup roll 221. It has a decompression chamber 223 provided on the upstream side of the head 222.
 塗布ヘッド222から吐出される透光性樹脂層用溶液の流量は、不図示のポンプにより調整可能となっている。塗布ヘッド222から吐出する透光性樹脂層用溶液の流量は、予め調整した塗布ヘッド222の条件で連続塗布したときに、安定して所定の膜厚の塗布層を形成できる量に設定されている。 The flow rate of the translucent resin layer solution discharged from the coating head 222 can be adjusted by a pump (not shown). The flow rate of the translucent resin layer solution discharged from the coating head 222 is set to an amount capable of stably forming a coating layer having a predetermined film thickness when continuously coated under the conditions of the coating head 222 adjusted in advance. There is.
 減圧室223は、塗布時に塗布ヘッド222からの透光性樹脂層用溶液と支持体110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室223は、減圧ブロワ(不図示)に接続されており、内部が減圧されるようになっている。減圧室223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。 The decompression chamber 223 is a mechanism for stabilizing the bead (pool of coating liquid) formed between the solution for the translucent resin layer from the coating head 222 and the support 110 at the time of coating, and reduces the degree of decompression. It is adjustable. The decompression chamber 223 is connected to a decompression blower (not shown) so that the inside is decompressed. The pressure reducing chamber 223 is in a state where there is no air leakage, and the gap between the pressure reducing chamber 223 and the backup roll is narrowly adjusted so that a stable bead of the coating liquid can be formed.
 乾燥部230は、支持体110の表面に塗布された塗膜を乾燥させる乾燥装置であって、乾燥室231と、乾燥用気体の導入口232と、排出口233とを有する。乾燥風の温度および風量は、塗膜の種類および支持体110の種類により適宜決められる。乾燥部230で乾燥風の温度および風量、乾燥時間などの条件を設定することにより、乾燥後の塗膜の残留溶媒含有量を調整することができる。乾燥後の塗膜の残留溶媒量は、乾燥後の塗膜の単位質量と、該塗膜を十分に乾燥した後の質量を比較することにより測定することができる。 The drying unit 230 is a drying device that dries the coating film applied to the surface of the support 110, and has a drying chamber 231, a drying gas introduction port 232, and a discharge port 233. The temperature and air volume of the dry air are appropriately determined depending on the type of the coating film and the type of the support 110. By setting conditions such as the temperature and air volume of the drying air and the drying time in the drying unit 230, the residual solvent content of the coating film after drying can be adjusted. The amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after the coating film is sufficiently dried.
 冷却部240は、乾燥部230で乾燥させて得られる塗膜(透光性樹脂層120)を有する支持体110の温度を冷却し、適切な温度に調整する。冷却部240は、冷却室241と、冷却風入口242と、冷却風出口243とを有する。冷却風の温度および風量は、塗膜の種類および支持体110の種類により適宜決めうる。また、冷却部240を設けなくても、適正な冷却温度になる場合は、冷却部240はなくてもよい。 The cooling unit 240 cools the temperature of the support 110 having the coating film (translucent resin layer 120) obtained by drying in the drying unit 230, and adjusts the temperature to an appropriate temperature. The cooling unit 240 has a cooling chamber 241, a cooling air inlet 242, and a cooling air outlet 243. The temperature and air volume of the cooling air can be appropriately determined depending on the type of the coating film and the type of the support 110. Further, even if the cooling unit 240 is not provided, the cooling unit 240 may not be provided if the cooling temperature is appropriate.
 巻き取り部250は、透光性樹脂層120が形成された支持体110(積層体100)を巻き取り、ロール体251を得るための巻き取り装置(不図示)である。 The winding unit 250 is a winding device (not shown) for winding the support 110 (laminated body 100) on which the translucent resin layer 120 is formed to obtain the roll body 251.
 3.偏光板
 偏光板は、偏光子と、その少なくとも一方の面に配置された透光性樹脂層とを有する。偏光子と透光性樹脂層とは、接着剤層を介して接着されていることが好ましい。
3. 3. Polarizing plate The polarizing plate has a polarizing element and a translucent resin layer arranged on at least one surface thereof. It is preferable that the polarizer and the translucent resin layer are adhered to each other via an adhesive layer.
 図3は、本発明の一実施の形態に係る偏光板300を示す断面図である。 FIG. 3 is a cross-sectional view showing a polarizing plate 300 according to an embodiment of the present invention.
 図3に示されるように、本実施の形態に係る偏光板300は、偏光子310(偏光子)と、その一方の面に配置された透光性樹脂層120(保護フィルム)と、他方の面に配置された保護フィルム320(他の保護フィルム)と、透光性樹脂層120または保護フィルム320と偏光子310との間に配置された2つの接着剤層330(接着剤層)とを有する。 As shown in FIG. 3, the polarizing plate 300 according to the present embodiment includes a polarizing element 310 (polarizer), a translucent resin layer 120 (protective film) arranged on one surface thereof, and the other. A protective film 320 (another protective film) arranged on the surface and two adhesive layers 330 (adhesive layer) arranged between the translucent resin layer 120 or the protective film 320 and the polarizing element 310. Have.
 また、偏光板300は、透光性樹脂層120の偏光子310とは反対側の面に配置された粘着剤層340をさらに有しうる。粘着剤層340は、偏光板300を、液晶セルなどの表示素子(不図示)に貼り付けるための層である。粘着剤層340の表面は、通常、剥離フィルム(不図示)で保護されている。 Further, the polarizing plate 300 may further have an adhesive layer 340 arranged on the surface of the translucent resin layer 120 opposite to the polarizer 310. The pressure-sensitive adhesive layer 340 is a layer for attaching the polarizing plate 300 to a display element (not shown) such as a liquid crystal cell. The surface of the pressure-sensitive adhesive layer 340 is usually protected by a release film (not shown).
 3-1.偏光子
 偏光子は、一定方向の偏波面の光だけを通す素子である。偏光子は、通常、ポリビニルアルコール系偏光フィルムでありうる。ポリビニルアルコール系偏光フィルムの例には、ポリビニルアルコール系フィルムにヨウ素を染色させたものや、二色性染料を染色させたものが含まれる。
3-1. Polarizer A polarizing element is an element that allows only light on a plane of polarization in a certain direction to pass through. The polarizer can usually be a polyvinyl alcohol-based polarizing film. Examples of the polyvinyl alcohol-based polarizing film include a polyvinyl alcohol-based film dyed with iodine and a film dyed with a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a bicolor dye (preferably a film further subjected to a durability treatment with a boron compound); polyvinyl. An alcohol-based film may be a film that has been dyed with iodine or a bicolor dye and then uniaxially stretched (preferably a film that has been further subjected to a durability treatment with a boron compound). The absorption axis of the polarizer is usually parallel to the maximum stretching direction.
 偏光子の厚みは、5~30μmであることが好ましく、偏光板を薄型化する観点などから、5~20μmであることがより好ましい。 The thickness of the polarizer is preferably 5 to 30 μm, and more preferably 5 to 20 μm from the viewpoint of thinning the polarizing plate.
 3-2.透光性樹脂層および他の保護フィルム
 偏光子の少なくとも一方の面には、透光性樹脂層が配置されている。透光性樹脂層は、前述の積層体の透光性樹脂層を、偏光子の表面に転写させたものであり、保護フィルムとして機能しうる。本実施の形態では、偏光子の一方の面に透光性樹脂層が配置され、他方の面に他の保護フィルムが配置されている。
3-2. Translucent resin layer and other protective film A translucent resin layer is arranged on at least one surface of the polarizer. The translucent resin layer is obtained by transferring the translucent resin layer of the above-mentioned laminate onto the surface of the polarizer, and can function as a protective film. In the present embodiment, the translucent resin layer is arranged on one surface of the polarizer, and the other protective film is arranged on the other surface.
 他の保護フィルムの例には、(メタ)アクリル系樹脂、ポリエステル樹脂、シクロオレフィン系樹脂、セルロースエステル樹脂が含まれ、好ましくは(メタ)アクリル樹脂、ポリエステル樹脂でありうる。 Examples of other protective films include (meth) acrylic resin, polyester resin, cycloolefin resin, and cellulose ester resin, and may be (meth) acrylic resin and polyester resin.
 3-3.接着剤層
 接着剤層は、透光性樹脂層と偏光子との間、および、他の保護フィルムと偏光子との間にそれぞれ配置されている。透光性樹脂層と偏光子との間に配置される接着剤層と、他の保護フィルムと偏光子との間に配置される接着剤層とは、同じであってもよいし、異なってもよい。
3-3. Adhesive layer The adhesive layer is arranged between the translucent resin layer and the polarizer, and between the other protective film and the polarizer, respectively. The adhesive layer arranged between the translucent resin layer and the polarizer and the adhesive layer arranged between the other protective film and the polarizer may be the same or different. May be good.
 接着剤層は、完全ケン化型ポリビニルアルコール水溶液(水糊)から得られる層であってもよいし、活性エネルギー線硬化性接着剤の硬化物層であってもよい。透光性樹脂層との親和性が高く、良好に接着させやすい観点では、接着剤層は、活性エネルギー線硬化性接着剤の硬化物層であることが好ましい。 The adhesive layer may be a layer obtained from a completely saponified polyvinyl alcohol aqueous solution (water glue), or may be a cured product layer of an active energy ray-curable adhesive. From the viewpoint of having high affinity with the translucent resin layer and facilitating good adhesion, the adhesive layer is preferably a cured product layer of an active energy ray-curable adhesive.
 活性エネルギー線硬化性接着剤は、光ラジカル重合性組成物であってもよいし、光カチオン重合性組成物であってもよい。中でも、光カチオン重合性組成物が好ましい。 The active energy ray-curable adhesive may be a photoradical polymerizable composition or a photocationic polymerizable composition. Of these, a photocationically polymerizable composition is preferable.
 光カチオン重合性組成物は、エポキシ系化合物と、光カチオン重合開始剤とを含む。 The photocationic polymerizable composition contains an epoxy compound and a photocationic polymerization initiator.
 エポキシ系化合物とは、分子内に1以上、好ましくは2以上のエポキシ基を有する化合物である。エポキシ系化合物の例には、脂環式ポリオールに、エピクロロヒドリンを反応させて得られる水素化エポキシ系化合物(脂環式環を有するポリオールのグリシジルエーテル);脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルなどの脂肪族エポキシ系化合物;脂環式環に結合したエポキシ基を分子内に1以上有する脂環式エポキシ系化合物が含まれる。エポキシ系化合物は、1種のみを使用してもよいし、2種以上を併用してもよい。 The epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule. Examples of epoxy compounds include hydride epoxy compounds obtained by reacting an alicyclic polyol with epichlorohydrin (glycidyl ether of a polyol having an alicyclic ring); an aliphatic polyhydric alcohol or an alkylene thereof. Aliphatic epoxy compounds such as polyglycidyl ether as an oxide adduct; alicyclic epoxy compounds having one or more epoxy groups bonded to an alicyclic ring in the molecule are included. Only one type of epoxy compound may be used, or two or more types may be used in combination.
 光カチオン重合開始剤は、例えば芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩などのオニウム塩;鉄-アレーン錯体などでありうる。 The photocationic polymerization initiator may be, for example, an aromatic diazonium salt; an onium salt such as an aromatic iodonium salt or an aromatic sulfonium salt; an iron-alene complex or the like.
 光カチオン重合開始剤は、必要に応じてオキセタン、ポリオールなどのカチオン重合促進剤、光増感剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、溶剤などの添加剤をさらに含んでもよい。 Photocationic polymerization initiators include cationic polymerization accelerators such as oxetane and polyols, photosensitizers, ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, and fluids, if necessary. Additives such as modifiers, plasticizers, defoamers, antistatic agents, leveling agents, solvents and the like may be further included.
 接着剤層の厚みは、特に限定されないが、それぞれ0.01~10μmであることが好ましく、0.01~5μmであることがより好ましい。 The thickness of the adhesive layer is not particularly limited, but is preferably 0.01 to 10 μm, and more preferably 0.01 to 5 μm, respectively.
 3-4.粘着剤層
 粘着剤層は、偏光板を、液晶セルなどの表示素子と貼り合わせるための層であり、透光性樹脂層の偏光子とは反対側の面に配置されうる。
3-4. Adhesive layer The adhesive layer is a layer for bonding a polarizing plate to a display element such as a liquid crystal cell, and may be arranged on a surface of the translucent resin layer opposite to the polarizing element.
 粘着剤層は、ベースポリマー、プレポリマーおよび/または架橋性モノマー、架橋剤ならびに溶媒を含む粘着剤組成物を、乾燥および部分架橋させたものであることが好ましい。すなわち、粘着剤組成物の少なくとも一部が架橋したものでありうる。 The pressure-sensitive adhesive layer is preferably a dry and partially cross-linked pressure-sensitive adhesive composition containing a base polymer, a prepolymer and / or a cross-linking monomer, a cross-linking agent and a solvent. That is, at least a part of the pressure-sensitive adhesive composition may be crosslinked.
 粘着剤組成物の例には、(メタ)アクリル系ポリマーをベースポリマーとするアクリル系粘着剤組成物、シリコーン系ポリマーをベースポリマーとするシリコーン系粘着剤組成物、ゴムをベースポリマーとするゴム系粘着剤組成物が含まれる。中でも、透明性、耐候性、耐熱性、加工性の観点では、アクリル系粘着剤組成物が好ましい。 Examples of the pressure-sensitive adhesive composition include an acrylic pressure-sensitive adhesive composition using a (meth) acrylic polymer as a base polymer, a silicone-based pressure-sensitive adhesive composition using a silicone-based polymer as a base polymer, and a rubber-based pressure-sensitive adhesive composition using a rubber as a base polymer. A pressure-sensitive adhesive composition is included. Above all, an acrylic pressure-sensitive adhesive composition is preferable from the viewpoint of transparency, weather resistance, heat resistance, and processability.
 アクリル系粘着剤組成物に含まれる(メタ)アクリル系ポリマーは、(メタ)アクリル酸アルキルエステルと、架橋剤と架橋可能な官能基含有モノマーとの共重合体でありうる。 The (meth) acrylic polymer contained in the acrylic pressure-sensitive adhesive composition can be a copolymer of a (meth) acrylic acid alkyl ester, a cross-linking agent, and a cross-linkable functional group-containing monomer.
 (メタ)アクリル酸アルキルエステルは、アルキル基の炭素数2~14のアクリル酸アルキルエステルであることが好ましい。 The (meth) acrylic acid alkyl ester is preferably an acrylic acid alkyl ester having 2 to 14 carbon atoms in the alkyl group.
 架橋剤と架橋可能な官能基含有モノマーの例には、アミド基含有モノマー、カルボキシル基含有モノマー(アクリル酸など)、ヒドロキシル基含有モノマー(アクリル酸ヒドロキシエチルなど)が含まれる。 Examples of the functional group-containing monomer that can be crosslinked with the cross-linking agent include an amide group-containing monomer, a carboxyl group-containing monomer (acrylic acid, etc.), and a hydroxyl group-containing monomer (hydroxyethyl acrylate, etc.).
 アクリル系粘着剤組成物に含まれる架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、過酸化物系架橋剤などが挙げられる。粘着剤組成物における架橋剤の含有量は、通常、ベースポリマー(固形分)100質量部に対して、例えば0.01~10質量部でありうる。 Examples of the cross-linking agent contained in the acrylic pressure-sensitive adhesive composition include an epoxy-based cross-linking agent, an isocyanate-based cross-linking agent, and a peroxide-based cross-linking agent. The content of the cross-linking agent in the pressure-sensitive adhesive composition can be, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content).
 粘着剤組成物は、必要に応じて粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤などの各種の添加剤をさらに含んでもよい。 Adhesive compositions include tackifiers, plasticizers, fiberglass, glass beads, metal powders, other fillers, pigments, colorants, fillers, antioxidants, UV absorbers, silane couplings as needed. Various additives such as agents may be further included.
 粘着剤層の厚みは、通常、3~100μm程度であり、好ましくは5~50μmである。 The thickness of the pressure-sensitive adhesive layer is usually about 3 to 100 μm, preferably 5 to 50 μm.
 粘着剤層の表面は、離型処理が施された剥離フィルムで保護されている。剥離フィルムの例には、アクリルフィルム、ポリカーボネートフィルム、ポリエステルフィルム、フッ素樹脂フィルムなどのプラスチックフィルムが含まれる。 The surface of the adhesive layer is protected by a release film that has undergone a mold release treatment. Examples of the release film include a plastic film such as an acrylic film, a polycarbonate film, a polyester film, and a fluororesin film.
 4.偏光板の製造方法
 本実施の形態に係る偏光板は、偏光子の少なくとも一方の面に、前述の積層体の透光性樹脂層を貼り合わせるとともに、支持体を剥離する工程を経て製造されうる。透光性樹脂層の貼り合わせは、偏光子の一方の面のみに行ってもよいし、両方の面に行ってもよく、透過率の観点では、偏光子の一方の面に透光性樹脂層を貼り合わせ、他方の面に他の保護フィルムを貼り合わせることが好ましい。
4. Method for manufacturing a polarizing plate The polarizing plate according to the present embodiment can be manufactured through a step of attaching a translucent resin layer of the above-mentioned laminate to at least one surface of a polarizing element and peeling off a support. .. The translucent resin layer may be bonded to only one surface of the polarizer or both surfaces, and from the viewpoint of transmittance, the translucent resin may be attached to one surface of the polarizer. It is preferable to attach the layers and attach another protective film to the other surface.
 すなわち、偏光板は、1)偏光子の一方の面に、上記積層体の透光性樹脂層を貼り合わせるとともに、透光性樹脂層の偏光子とは反対側の面に配置された支持体を剥離する工程と、2)偏光子の他方の面に、他の保護フィルムを貼り合わせる工程とを経て製造されうる。 That is, the polarizing plate is 1) a support in which the translucent resin layer of the laminated body is bonded to one surface of the polarizing element and is arranged on the surface of the translucent resin layer opposite to the polarizing element. It can be manufactured through a step of peeling off and 2) a step of attaching another protective film to the other surface of the polarizer.
 1)の工程(透光性樹脂層の貼り合わせ工程)について
 偏光子の一方の面に、上記積層体の透光性樹脂層を、接着剤を介して貼り合わせる。貼り合わされる透光性樹脂層の表面、または、偏光子の一方の表面に、必要に応じてコロナ処理などの前処理を施してもよい。
Regarding step 1) (step of laminating the translucent resin layer), the translucent resin layer of the laminate is bonded to one surface of the polarizer via an adhesive. If necessary, a pretreatment such as a corona treatment may be applied to the surface of the translucent resin layer to be bonded or one surface of the polarizer.
 例えば、接着剤として活性エネルギー線硬化性接着剤を用いる場合、積層体の透光性樹脂層の表面に、必要に応じてコロナ処理などの表面処理を施す。次いで、偏光子の一方の面に、活性エネルギー線硬化性接着剤を介して、積層体の透光性樹脂層を積層した後、透光性樹脂層の、貼り合わせ面とは反対側に配置された支持体を剥離する。次いで、露出した透光性樹脂層に活性エネルギー線を照射して、活性エネルギー線硬化性接着剤を硬化させる。それにより、偏光子と透光性樹脂層とを、活性エネルギー線硬化性接着剤の硬化物層を介して接着させて、貼り合わせる。 For example, when an active energy ray-curable adhesive is used as the adhesive, the surface of the translucent resin layer of the laminated body is subjected to surface treatment such as corona treatment as necessary. Next, the translucent resin layer of the laminated body is laminated on one surface of the polarizer via an active energy ray-curable adhesive, and then the translucent resin layer is arranged on the side opposite to the bonded surface. Peel off the support. Next, the exposed translucent resin layer is irradiated with active energy rays to cure the active energy ray-curable adhesive. As a result, the polarizer and the translucent resin layer are bonded to each other via the cured product layer of the active energy ray-curable adhesive.
 2)の工程(保護フィルムの貼り合わせ工程)について
 また、偏光子の他方の面に、他の保護フィルムを貼り合わせる。具体的には、他の保護フィルムの表面に、必要に応じてコロナ処理などの表面処理を施す。次いで、偏光子の他方の面に、活性エネルギー線硬化性接着剤を介して、当該保護フィルムを積層した後、活性エネルギー線を照射して、活性エネルギー線硬化性接着剤を硬化させる。それにより、偏光子と他の保護フィルムとを、活性エネルギー線硬化性接着剤の硬化物層を介して接着させて、貼り合わせる。
Regarding step 2) (protective film bonding step), another protective film is bonded to the other surface of the polarizer. Specifically, the surface of the other protective film is subjected to a surface treatment such as a corona treatment, if necessary. Next, the protective film is laminated on the other surface of the polarizer via the active energy ray-curable adhesive, and then irradiated with active energy rays to cure the active energy ray-curable adhesive. As a result, the polarizer and the other protective film are adhered to each other via the cured product layer of the active energy ray-curable adhesive.
 1)および2)の工程は、同時に行ってもよいし、逐次的に行ってもよい。製造効率を高める観点では、1)および2)の工程は同時に行うことが好ましい。 The steps 1) and 2) may be performed simultaneously or sequentially. From the viewpoint of increasing production efficiency, it is preferable that the steps 1) and 2) are performed at the same time.
 また、本実施の形態に係る偏光板の製造方法は、必要に応じて、2)の工程の後に、3)粘着剤層を形成する工程をさらに有してもよい。 Further, the method for producing a polarizing plate according to the present embodiment may further include a step of forming a 3) pressure-sensitive adhesive layer after the step of 2), if necessary.
 3)の工程(粘着剤層を形成する工程)について
 次いで、得られた積層体の透光性樹脂層の偏光子とは反対側の面に、粘着剤層およびその剥離フィルムを、さらに貼り合わせる。具体的には、透光性樹脂層上に、粘着剤層を設けた剥離フィルムを転写するなどの方法により、粘着剤層を形成することができる。
Regarding the step 3) (step of forming the pressure-sensitive adhesive layer) Next, the pressure-sensitive adhesive layer and its release film are further bonded to the surface of the obtained laminate on the side opposite to the polarizer of the translucent resin layer. .. Specifically, the pressure-sensitive adhesive layer can be formed by a method such as transferring a release film provided with the pressure-sensitive adhesive layer on the translucent resin layer.
 なお、本実施の形態に係る偏光板は、帯状でありうる。したがって、1)および2)の工程は、帯状の積層体の透光性樹脂層と、帯状の偏光子と、帯状の他の保護フィルム(対向フィルム)とが、それぞれロール体から巻き出されて、ロールトゥロールで貼り合わせることによって行うことが好ましい。 The polarizing plate according to the present embodiment may be band-shaped. Therefore, in the steps 1) and 2), the translucent resin layer of the strip-shaped laminate, the strip-shaped polarizer, and the other strip-shaped protective film (opposing film) are unwound from the roll body, respectively. , It is preferable to carry out by laminating by roll-to-roll.
 また、4)帯状の偏光板をロール状に巻き取り、ロール体とする工程をさらに行うことが好ましい。当該工程において、帯状の偏光板の長さや幅は、積層体の製造方法の4)の工程における帯状の積層体の長さや幅と同様である。 Further, it is preferable to further perform the step of 4) winding the strip-shaped polarizing plate into a roll shape to form a roll body. In this step, the length and width of the strip-shaped polarizing plate are the same as the length and width of the strip-shaped laminate in the step 4) of the method for manufacturing the laminate.
 5.表示装置
 本実施の形態に係る表示装置は、液晶セルや有機EL素子などの表示素子と、上記製造方法で製造された偏光板とを有する。中でも、本実施の形態に係る表示装置は、液晶セルと、上記製造方法で製造された偏光板とを有する液晶表示装置であることが好ましい。
5. Display device The display device according to the present embodiment includes a display element such as a liquid crystal cell or an organic EL element, and a polarizing plate manufactured by the above manufacturing method. Above all, the display device according to the present embodiment is preferably a liquid crystal display device having a liquid crystal cell and a polarizing plate manufactured by the above manufacturing method.
 すなわち、液晶表示装置は、液晶セルと、液晶セルの一方の面に配置された第一偏光板と、液晶セルの他方の面に配置された第二偏光板とを含む。そして、第一偏光板と第二偏光板の少なくとも一方は、本実施の形態に係る偏光板である。 That is, the liquid crystal display device includes a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell. Then, at least one of the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment.
 液晶セルの表示モードは、例えばSTN(Super-Twisted Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、HAN(Hybridaligned Nematic)、VA(Vertical Alignment、MVA(Multi-domain Vertical Alignment)、PVA(Patterned Vertical Alignment))、IPS(In-Plane-Switching)などでありうる。例えば、携帯機器用途の液晶表示装置では、IPSモードが好ましい。 The display modes of the liquid crystal cells are, for example, STN (Super-Twisted Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), HAN (Hybridaligned Nematic), VA (Vertical Alignment, MVA (Multi-domain Vertical Alignment), PVA). (Patterned Vertical Alignment)), IPS (In-Plane-Switching), etc. For example, in a liquid crystal display device for mobile devices, the IPS mode is preferable.
 第一偏光板は、液晶セルの視認側の面に、その粘着剤層を介して配置されている。第一偏光板は、第一偏光子と、第一偏光子の視認側の面に配置された保護フィルム(F1)と、第一偏光子の液晶セル側の面に配置された保護フィルム(F2)と、第一偏光子と保護フィルム(F1)との間および第一偏光子と保護フィルム(F2)との間に配置された2つの接着剤層とを含む。 The first polarizing plate is arranged on the surface of the liquid crystal cell on the visual side via its adhesive layer. The first polarizing plate includes a first polarizing element, a protective film (F1) arranged on the surface of the first polarizing element on the visible side, and a protective film (F2) arranged on the surface of the first polarizing element on the liquid crystal cell side. ), And two adhesive layers arranged between the first polarizer and the protective film (F1) and between the first polarizer and the protective film (F2).
 第二偏光板は、液晶セルのバックライト側の面に、その粘着剤層を介して配置されている。第二偏光板は、第二偏光子と、第二偏光子の液晶セル側の面に配置された保護フィルム(F3)と、第二偏光子のバックライト側の面に配置された保護フィルム(F4)と、第二偏光子と保護フィルム(F3)との間および第二偏光子と保護フィルム(F4)との間に配置された2つの接着剤層とを含む。 The second polarizing plate is arranged on the backlight side surface of the liquid crystal cell via its adhesive layer. The second polarizing plate includes a second polarizing element, a protective film (F3) arranged on the surface of the second polarizing element on the liquid crystal cell side, and a protective film (F3) arranged on the surface of the second polarizing element on the backlight side. Includes F4) and two adhesive layers disposed between the second polarizer and the protective film (F3) and between the second polarizer and the protective film (F4).
 第一偏光子の吸収軸と第二偏光子の吸収軸とは直交している(クロスニコルとなっている)ことが好ましい。 It is preferable that the absorption axis of the first polarizer and the absorption axis of the second polarizer are orthogonal to each other (cross Nicol).
 そして、第一偏光板および第二偏光板の少なくとも一方が、本実施の形態に係る偏光板である。すなわち、第一偏光板が前述の偏光板である場合、保護フィルム(F1)は、図3の保護フィルム320であり、保護フィルム(F2)は、図3の透光性樹脂層120であり、粘着剤層は、図3の粘着剤層340でありうる。同様に、第二偏光板が前述の偏光板である場合、保護フィルム(F4)は、図3の保護フィルム320であり、保護フィルム(F3)は、図3の透光性樹脂層120であり、粘着剤層は、図3の粘着剤層340でありうる。 Then, at least one of the first polarizing plate and the second polarizing plate is the polarizing plate according to the present embodiment. That is, when the first polarizing plate is the above-mentioned polarizing plate, the protective film (F1) is the protective film 320 of FIG. 3, and the protective film (F2) is the translucent resin layer 120 of FIG. The pressure-sensitive adhesive layer can be the pressure-sensitive adhesive layer 340 of FIG. Similarly, when the second polarizing plate is the above-mentioned polarizing plate, the protective film (F4) is the protective film 320 of FIG. 3, and the protective film (F3) is the translucent resin layer 120 of FIG. , The pressure-sensitive adhesive layer can be the pressure-sensitive adhesive layer 340 of FIG.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
 1.積層体の材料
 1-1.支持体
 <PET-1>
 ポリエチレンテレフタレートフィルム(東洋紡社製TZ200、離型層あり(シリコーン系剥離剤含有、厚み50μm))を用いた。
1. 1. Laminate material 1-1. Support <PET-1>
A polyethylene terephthalate film (TZ200 manufactured by Toyobo Co., Ltd., with a release layer (containing a silicone-based release agent, thickness 50 μm)) was used.
 <PET-2>
 ポリエチレンテレフタレートフィルム(東洋紡社製TN100、離型層あり(非シリコーン系剥離剤含有、厚み50μm))を、140℃でTD方向に50%延伸(追加延伸)した。
<PET-2>
A polyethylene terephthalate film (TN100 manufactured by Toyobo Co., Ltd., with a release layer (containing a non-silicone release agent, thickness 50 μm)) was stretched (additionally stretched) by 50% in the TD direction at 140 ° C.
 <PET-3>
 ポリエチレンテレフタレートフィルム(東洋紡社製TN100、離型層あり(非シリコーン系剥離剤含有、厚み50μm))を、140℃でTD方向とMD方向のそれぞれに50%ずつ延伸(追加延伸)した。
<PET-3>
A polyethylene terephthalate film (TN100 manufactured by Toyobo Co., Ltd., with a release layer (containing a non-silicone release agent, thickness 50 μm)) was stretched (additionally stretched) by 50% in each of the TD direction and the MD direction at 140 ° C.
 <TAC>
 セルローストリアセテートフィルム(コニカミノルタ社製KC4UA、離型層なし、厚み40μm)
<TAC>
Cellulose triacetate film (Konica Minolta KC4UA, no release layer, thickness 40 μm)
 <COP>
 シクロオレフィン樹脂フィルム(JSR社製RX4500、離型層なし、厚み50μm)
<COP>
Cycloolefin resin film (RX4500 manufactured by JSR, no release layer, thickness 50 μm)
 <HDPE>
 高密度ポリエチレンフィルム(厚み50μm)
<HDPE>
High-density polyethylene film (thickness 50 μm)
 これらの支持体の引張弾性率G1は、以下の方法で測定した。 The tensile elastic modulus G1 of these supports was measured by the following method.
 (引張弾性率G1)
 支持体を、1cm×10cmに切り出してサンプルとし、25℃60%RHの環境下で24時間調湿した。そして、得られたサンプルの引張弾性率を、JIS K7127に記載の引張試験方法により測定した。具体的には、サンプルを、引張試験装置オリエンテック社製テンシロンにセットし、チャック間距離50.0mm、引張り速度50mm/minの条件で引張試験を行ったときの引張弾性率を測定した。測定は、25℃60%RH下で行った。なお、引張弾性率の測定は、MD方向とTD方向の両方について行い、MD方向の引張弾性率とTD方向の引張弾性率の平均値を、「引張弾性率G1」とした。
(Tensile modulus G1)
The support was cut into 1 cm × 10 cm to prepare a sample, and the humidity was adjusted for 24 hours in an environment of 25 ° C. and 60% RH. Then, the tensile elastic modulus of the obtained sample was measured by the tensile test method described in JIS K7127. Specifically, the sample was set in a tensile test device Tencilon manufactured by Orientec Co., Ltd., and the tensile elastic modulus was measured when the tensile test was performed under the conditions of a distance between chucks of 50.0 mm and a tensile speed of 50 mm / min. The measurement was performed at 25 ° C. and 60% RH. The tensile elastic modulus was measured in both the MD direction and the TD direction, and the average value of the tensile elastic modulus in the MD direction and the tensile elastic modulus in the TD direction was defined as "tensile elastic modulus G1".
 1-2.透光性樹脂層用溶液
 (1)材料の準備
 <樹脂>
 樹脂1:PMMA、Mw:100万、Tg:109℃
 樹脂2:MMA/PMI/MA共重合体(85/10/5質量比)、Mw:100万、Tg:122℃
 樹脂3:MMA/PMI/MA共重合体(85/10/5質量比)、Mw:200万、Tg:122℃
 樹脂4:MMA/PMI/MA共重合体(50/25/25質量比)、Mw:100万、Tg:134℃
 樹脂5:MMA/PMI/MA共重合体(85/10/5質量比)、Mw:50万、Tg:122℃
 なお、略称は、以下を示す。
 MMA:メタクリル酸メチル
 PMI:フェニルマレイミド
 MA:アクリル酸メチル
1-2. Solution for translucent resin layer (1) Preparation of materials <Resin>
Resin 1: PMMA, Mw: 1 million, Tg: 109 ° C
Resin 2: MMA / PMI / MA copolymer (85/10/5 mass ratio), Mw: 1 million, Tg: 122 ° C.
Resin 3: MMA / PMI / MA copolymer (85/10/5 mass ratio), Mw: 2 million, Tg: 122 ° C.
Resin 4: MMA / PMI / MA copolymer (50/25/25 mass ratio), Mw: 1 million, Tg: 134 ° C.
Resin 5: MMA / PMI / MA copolymer (85/10/5 mass ratio), Mw: 500,000, Tg: 122 ° C.
The abbreviations are as follows.
MMA: Methyl Methacrylate PMI: Phenylmaleimide MA: Methyl Acrylate
 樹脂1~5のガラス転移温度および重量平均分子量は、以下の方法で測定した。 The glass transition temperature and weight average molecular weight of resins 1 to 5 were measured by the following methods.
 (ガラス転移温度)
 樹脂のガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠して測定した。
(Glass-transition temperature)
The glass transition temperature (Tg) of the resin was measured using DSC (Differential Scanning Colorimetry) according to JIS K 7121-2012.
 (重量平均分子量)
 樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定した。試料20mg±0.5mgをテトラヒドロフラン10mlに溶解し、0.45mmのフィルターで濾過した。この溶液をカラム(温度40℃)に100ml注入し、検出器RI温度40℃で測定し、スチレン換算した値を用いた。
(Weight average molecular weight)
The weight average molecular weight (Mw) of the resin was measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and a column (TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). 20 mg ± 0.5 mg of the sample was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 mm filter. 100 ml of this solution was injected into a column (temperature 40 ° C.), measured at a detector RI temperature of 40 ° C., and a styrene-converted value was used.
 <ゴム粒子>
 以下の方法で調製したゴム粒子R1を用いた。
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
 脱イオン水                     180質量部
 ポリオキシエチレンラウリルエーテルリン酸    0.002質量部
 ホウ酸                    0.4725質量部
 炭酸ナトリウム               0.04725質量部
 水酸化ナトリウム               0.0076質量部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸カリウム0.021質量部を2%水溶液として投入した。次いで、メタクリル酸メチル84.6質量%、アクリル酸ブチル5.9質量%、スチレン7.9質量%、メタクリル酸アリル0.5質量%、n-オクチルメルカプタン1.1質量%からなる単量体混合物(c’)21質量部にポリオキシエチレンラウリルエーテルリン酸を0.07質量部加えた混合液を、上記溶液に63分間にかけて連続的に添加した。さらに、60分重合反応を継続させることにより、最内硬質重合体(c)を得た。
<Rubber particles>
The rubber particles R1 prepared by the following method were used.
The following substances were charged into an 8L polymerization apparatus equipped with a stirrer.
Deionized water 180 parts by mass Polyoxyethylene lauryl ether phosphoric acid 0.002 parts by mass Boric acid 0.4725 parts by mass Sodium carbonate 0.04725 parts by mass Sodium hydroxide 0.0076 parts by mass The inside of the polymerization machine was sufficiently replaced with nitrogen gas. After that, the internal temperature was adjusted to 80 ° C., and 0.021 parts by mass of potassium persulfate was added as a 2% aqueous solution. Next, a monomer consisting of 84.6% by mass of methyl methacrylate, 5.9% by mass of butyl acrylate, 7.9% by mass of styrene, 0.5% by mass of allyl methacrylate, and 1.1% by mass of n-octyl mercaptan. A mixed solution prepared by adding 0.07 parts by mass of polyoxyethylene lauryl ether phosphoric acid to 21 parts by mass of the mixture (c') was continuously added to the above solution over 63 minutes. Further, the innermost hard polymer (c) was obtained by continuing the polymerization reaction for 60 minutes.
 その後、水酸化ナトリウム0.021質量部を2質量%水溶液として、過硫酸カリウム0.062質量部を2質量%水溶液としてそれぞれ添加した。次いで、アクリル酸ブチル80.0質量%、スチレン18.5質量%、メタクリル酸アリル1.5質量%からなる単量体混合物(a’)39質量部にポリオキシエチレンラウリルエーテルリン酸0.25質量部を加えた混合液を117分間にかけて連続的に添加した。添加終了後、過硫酸カリウム0.012質量部を2質量%水溶液で添加し、120分間重合反応を継続させて、軟質層(アクリル系ゴム状重合体(a)からなる層)を得た。軟質層のガラス転移温度(Tg)を、-30℃であった。軟質層のガラス転移温度は、アクリル系ゴム状重合体(a)を構成する各モノマーの単独重合体のガラス転移温度を組成比に応じて平均して算出した。 Then, 0.021 parts by mass of sodium hydroxide was added as a 2% by mass aqueous solution, and 0.062 parts by mass of potassium persulfate was added as a 2% by mass aqueous solution. Next, 0.25 polyoxyethylene lauryl ether phosphoric acid was added to 39 parts by mass of the monomer mixture (a') consisting of 80.0% by mass of butyl acrylate, 18.5% by mass of styrene, and 1.5% by mass of allyl methacrylate. The mixed solution to which the mass part was added was continuously added over 117 minutes. After completion of the addition, 0.012 parts by mass of potassium persulfate was added in a 2% by mass aqueous solution, and the polymerization reaction was continued for 120 minutes to obtain a soft layer (a layer made of an acrylic rubber-like polymer (a)). The glass transition temperature (Tg) of the soft layer was −30 ° C. The glass transition temperature of the soft layer was calculated by averaging the glass transition temperature of the homopolymer of each monomer constituting the acrylic rubber-like polymer (a) according to the composition ratio.
 その後、過硫酸カリウム0.04質量部を2質量%水溶液で添加し、メタクリル酸メチル97.5質量%、アクリル酸ブチル2.5質量%からなる単量体混合物(b’)26.1質量部を78分間かけて連続的に添加した。さらに30分間重合反応を継続させて、重合体(b)を得た。 Then, 0.04 parts by mass of potassium persulfate was added in a 2% by mass aqueous solution, and 26.1% by mass of a monomer mixture (b') consisting of 97.5% by mass of methyl methacrylate and 2.5% by mass of butyl acrylate was added. The portions were added continuously over 78 minutes. The polymerization reaction was continued for another 30 minutes to obtain a polymer (b).
 得られた重合体を3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させた。次いで、脱水・洗浄を繰り返した後、乾燥させて、3層構造のアクリル系グラフト共重合体粒子(ゴム粒子R1)を得た。得られたゴム粒子R1の平均粒子径は200nmであった。 The obtained polymer was put into a warm aqueous solution of 3% by mass sodium sulfate for salting out and coagulation. Then, after repeating dehydration and washing, the particles were dried to obtain acrylic graft copolymer particles (rubber particles R1) having a three-layer structure. The average particle size of the obtained rubber particles R1 was 200 nm.
 ゴム粒子の平均粒子径は、以下の方法で測定した。 The average particle size of the rubber particles was measured by the following method.
 (平均粒子径)
 得られた分散液中のゴム粒子の分散粒径を、ゼータ電位・粒径測定システム(大塚電子株式会社製 ELSZ-2000ZS)で測定した。
(Average particle size)
The dispersed particle size of the rubber particles in the obtained dispersion was measured by a zeta potential / particle size measuring system (ELSZ-2000ZS manufactured by Otsuka Electronics Co., Ltd.).
 (2)透光性樹脂層用溶液の調製
 <透光性樹脂層用溶液101の作製>
 下記成分を混合して、透光性樹脂層用溶液を得た。
  アセトン(ケトン類):1012.5質量部
  メタノール(アルコール類):112.5質量部
  樹脂1((メタ)アクリル系樹脂):100質量部
  ゴム粒子:25質量部
(2) Preparation of a solution for a translucent resin layer <Preparation of a solution 101 for a translucent resin layer>
The following components were mixed to obtain a solution for a translucent resin layer.
Acetone (ketones): 1012.5 parts by mass Methanol (alcohols): 112.5 parts by mass Resin 1 ((meth) acrylic resin): 100 parts by mass Rubber particles: 25 parts by mass
 <透光性樹脂層用溶液102~109の作製>
 表1に示される組成に変更した以外は透光性樹脂層用溶液101と同様にして、透光性樹脂層用溶液102~109を得た。
<Preparation of solutions 102 to 109 for translucent resin layer>
Solutions 102 to 109 for the translucent resin layer were obtained in the same manner as the translucent resin layer solution 101 except that the composition was changed to that shown in Table 1.
 得られた透光性樹脂層用溶液101~109の組成および粘度を、表1に示す。なお、透光性樹脂層用溶液の25℃における粘度は、東機産業(株)E型粘度計で測定した。 Table 1 shows the compositions and viscosities of the obtained translucent resin layer solutions 101 to 109. The viscosity of the translucent resin layer solution at 25 ° C. was measured with an E-type viscometer manufactured by Toki Sangyo Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2.積層体の作製および評価
 <積層体201の作製>
 支持体として、PETフィルム(東洋紡社製TN100、厚み50μm、非シリコーン系剥離剤を含有する離型層あり、表中ではPET-1)を準備した。このPETフィルムの離型層上に、透光性樹脂層用溶液101を、バックコート法によりダイを用いて塗布した後、溶媒濃度0.18%の雰囲気下、80℃で乾燥させて、厚み10μmの透光性樹脂層を形成し、積層体201を得た。
2. Fabrication and evaluation of laminate <Preparation of laminate 201>
As a support, a PET film (TN100 manufactured by Toyobo Co., Ltd., a thickness of 50 μm, a release layer containing a non-silicone release agent, PET-1 in the table) was prepared. A solution 101 for a translucent resin layer is applied onto the release layer of this PET film by a backcoat method using a die, and then dried at 80 ° C. in an atmosphere having a solvent concentration of 0.18% to obtain a thickness. A 10 μm translucent resin layer was formed to obtain a laminate 201.
 <積層体202~203、205、210、212、213、216、217および219の作製>
 透光性樹脂層用溶液の種類を、表2に示されるように変更した以外は積層体201と同様にして積層体202~203、205、210、212、213、217および219を得た。
<Preparation of laminates 202 to 203, 205, 210, 212, 213, 216, 217 and 219>
Laminates 202 to 203, 205, 210, 212, 213, 217 and 219 were obtained in the same manner as the laminate 201 except that the type of the solution for the translucent resin layer was changed as shown in Table 2.
 <積層体204の作製>
 雰囲気の溶媒濃度を、表2に示されるように変更した以外は積層体202と同様にして積層体204を得た。
<Manufacturing of laminated body 204>
A laminated body 204 was obtained in the same manner as the laminated body 202 except that the solvent concentration of the atmosphere was changed as shown in Table 2.
 <積層体211、214の作製>
 支持体の種類を、表2に示されるように変更した以外は積層体202と同様にして積層体211および214を得た。
<Manufacturing of laminated bodies 211 and 214>
Laminated bodies 211 and 214 were obtained in the same manner as the laminated body 202 except that the types of the supports were changed as shown in Table 2.
 <積層体215、218の作製>
 透光性樹脂層の厚みを、表2に示されるように変更した以外は積層体202と同様にして積層体215および218を得た。
<Preparation of laminates 215 and 218>
Laminated bodies 215 and 218 were obtained in the same manner as the laminated body 202 except that the thickness of the translucent resin layer was changed as shown in Table 2.
 <評価>
 得られた積層体201~219の透光性樹脂層におけるゴム粒子の分布、積層体の引張弾性率Gおよび搬送安定性、ならびに、偏光板の巻き変形を、以下の方法で評価した。
<Evaluation>
The distribution of rubber particles in the translucent resin layers of the obtained laminates 201 to 219, the tensile elastic modulus G and the transport stability of the laminate, and the winding deformation of the polarizing plate were evaluated by the following methods.
 [ゴム粒子の分布]
 得られた積層体の透光性樹脂層中のゴム粒子の分布(R/R)を、以下の方法で測定した。
 1)積層体をミクロトームで切断し、透光性樹脂層の表面に垂直な切断面をTEM観察した。観察条件は、加速電圧:30kV、作動距離:8.6mm×倍率:3.00kとした。観察領域は、透光性樹脂層の厚み方向の全部を含む領域とした。
 2)得られたTEM画像を、NiVision(ナショナルインスツルメンツ社製)の画像処理ソフトを用いて輝度傾斜を除去した後、オープニング処理を行い、バルクとゴム粒子とのコントラスト差を検出した。それにより、ゴム粒子の分布状態を特定した。
 3)上記2)で得られた画像処理後の画像において、透光性樹脂層の厚み方向において、透光性樹脂層の支持体とは反対側の面から厚みの20%以下の領域Aにおけるゴム粒子の単位面積当たりの面積率R、透光性樹脂層の支持体側の面から厚みの20%以下の領域Bにおけるゴム粒子の単位面積当たりの面積率Rをそれぞれ算出した。
 4)上記3)で得られた結果から、領域Aにおけるゴム粒子の単位面積当たりの面積率Rの、領域Bにおけるゴム粒子の単位面積当たりの面積率Rに対する比(R/R)を算出した。
[Distribution of rubber particles]
Distribution of the rubber particles of the translucent resin layer of the resulting laminate (R A / R B), was measured by the following method.
1) The laminate was cut with a microtome, and the cut surface perpendicular to the surface of the translucent resin layer was observed by TEM. The observation conditions were an acceleration voltage of 30 kV, a working distance of 8.6 mm, and a magnification of 3.00 k. The observation region was a region including the entire thickness direction of the translucent resin layer.
2) The obtained TEM image was subjected to an opening process after removing the brightness gradient using image processing software of NiVision (manufactured by National Instruments), and the contrast difference between the bulk and the rubber particles was detected. As a result, the distribution state of the rubber particles was identified.
3) In the image after image processing obtained in 2) above, in the region A of 20% or less of the thickness from the surface opposite to the support of the translucent resin layer in the thickness direction of the translucent resin layer. area ratio R a per unit area of the rubber particles, per unit area of the rubber particles at 20% or less of the region B in terms of the thickness of the support side of the translucent resin layer and the area ratio R B was calculated.
The results obtained in 4) above 3), the area ratio R A per unit area of the rubber particles in the region A, the ratio to the area ratio R B per unit area of the rubber particles in the region B (R A / R B ) Was calculated.
 [引張弾性率]
 積層体について、前述と同様に、JIS K7127準拠して引張試験を行った。すなわち、積層体を、1cm(TD方向)×10cm(MD方向)に切り出してサンプルとし、25℃60%RHの環境下で24時間調湿した。得られたサンプルを、引張試験装置オリエンテック社製テンシロンにセットして引張試験を行い、引張弾性率G(積層体の引張弾性率)を測定した。測定条件も、前述と同様(チャック間距離50.0mm、引張り速度50mm/min、25℃60%RH下)とした。
[Tension modulus]
The laminate was subjected to a tensile test in accordance with JIS K7127 in the same manner as described above. That is, the laminate was cut into 1 cm (TD direction) × 10 cm (MD direction) to prepare a sample, and the humidity was adjusted for 24 hours in an environment of 25 ° C. and 60% RH. The obtained sample was set in a tensile test device Tencilon manufactured by Orientec Co., Ltd. and a tensile test was performed to measure the tensile elastic modulus G (tensile elastic modulus of the laminated body). The measurement conditions were the same as described above (distance between chucks: 50.0 mm, tensile speed: 50 mm / min, 25 ° C., 60% RH).
 また、透光性樹脂層については、透光性樹脂層を支持体から剥離した後、上記と同様の方法で、透光性樹脂層の引張弾性率G2を測定した。 Regarding the translucent resin layer, after peeling the translucent resin layer from the support, the tensile elastic modulus G2 of the translucent resin layer was measured by the same method as described above.
 [搬送安定性]
 積層体の搬送安定性は、搬送張力350N/mを付与しながら、ラインでロール搬送したときの破断や割れの有無を確認することにより評価した。そして、以下の基準に基づいて、搬送安定性を評価した。
 ◎:透光性樹脂層は破断することなく、搬送可能
 ○:透光性樹脂層に割れは発生するが、破断せずに搬送可能
 ○△:透光性樹脂層に極微小な傷と割れが発生するが、搬送可能
 △:透光性樹脂層に微小な傷と割れが発生するが、搬送可能
 ×:透光性樹脂層が割れて、破断する
 △以上であれば、良好と判断した。
[Transport stability]
The transport stability of the laminated body was evaluated by confirming the presence or absence of breakage or cracking during roll transport on the line while applying a transport tension of 350 N / m. Then, the transport stability was evaluated based on the following criteria.
⊚: The translucent resin layer can be transported without breaking ○: The translucent resin layer cracks but can be transported without breaking ○ △: Very small scratches and cracks on the translucent resin layer However, it can be transported. Δ: Small scratches and cracks occur in the translucent resin layer, but it can be transported. ×: The translucent resin layer cracks and breaks. ..
 [積層体の巻き変形欠陥]
 得られたロール体を、40℃90%RHの恒温槽で8日間保存した。その後、ロール体を恒温槽から取り出して、ロール体の外観、具体的には、ロール体の幅方向中央部が凹むなどの巻き変形の有無を評価した。
 そして、以下の基準に基づいて、巻き変形を評価した。
 ◎:巻き形状の変形はない
 ○:巻き形状の変形が若干あるが、使用できるレベルであり、貼り付きもない
 ○△:巻形状の変形が若干あり、一部貼り付きが見られるが、使用できるレベル
 △:巻き形状の変形や貼り付きが若干あるが、使用できるレベル
 ×:巻き形状の変形が著しく、使用できないレベル
 △以上であれば、良好と判断した。
[Wound deformation defect of laminated body]
The obtained rolls were stored in a constant temperature bath at 40 ° C. and 90% RH for 8 days. Then, the roll body was taken out from the constant temperature bath, and the appearance of the roll body, specifically, the presence or absence of winding deformation such as a dent in the central portion in the width direction of the roll body was evaluated.
Then, the winding deformation was evaluated based on the following criteria.
◎: There is no deformation of the winding shape ○: There is some deformation of the winding shape, but it is at a usable level and there is no sticking ○ △: There is some deformation of the winding shape, and some sticking is seen, but it is used Possible level Δ: There is some deformation or sticking of the winding shape, but usable level ×: If the winding shape is significantly deformed and cannot be used, it is judged to be good.
 [偏光板の巻き変形欠陥]
 (偏光子の作製)
 厚さ25μmのポリビニルアルコール系フィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚み12μmの偏光子を得た。
[Polarizing plate winding deformation defect]
(Making a polarizer)
A polyvinyl alcohol-based film having a thickness of 25 μm was swollen with water at 35 ° C. The obtained film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution of 45 ° C. consisting of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water. .. The obtained film was uniaxially stretched under the conditions of a stretching temperature of 55 ° C. and a stretching ratio of 5 times. This uniaxially stretched film was washed with water and then dried to obtain a polarizer having a thickness of 12 μm.
 (紫外線硬化性接着剤組成物の調製)
 下記成分を混合した後、脱泡して、紫外線硬化性接着剤組成物を調製した。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート:45質量部
 エポリードGT-301(ダイセル社製の脂環式エポキシ樹脂):40質量部
 1,4-ブタンジオールジグリシジルエーテル:15質量部
 トリアリールスルホニウムヘキサフルオロホスフェート:2.3質量部(固形分)
 9,10-ジブトキシアントラセン:0.1質量部
 1,4-ジエトキシナフタレン:2.0質量部
 なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合した。
(Preparation of UV curable adhesive composition)
After mixing the following components, defoaming was performed to prepare an ultraviolet curable adhesive composition.
3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate: 45 parts by mass Epolide GT-301 (alicyclic epoxy resin manufactured by Daicel): 40 parts by mass 1,4-butanediol diglycidyl ether: 15 parts by mass Parts by mass Triarylsulfonium hexafluorophosphate: 2.3 parts by mass (solid content)
9,10-Dibutoxyanthracene: 0.1 parts by mass 1,4-diethoxynaphthalene: 2.0 parts by mass Triarylsulfonium hexafluorophosphate was blended as a 50% propylene carbonate solution.
 (偏光板の作製)
 上記作製した透光性樹脂層の表面に、コロナ出力強度2.0kW、ライン速度18m/分で、それぞれコロナ放電処理を施した。同様に、他の保護フィルム(対向フィルム)としてトリアセチルセルロース(厚み25μm)を準備し、この表面に、上記と同様の条件でコロナ処理を施した。
(Preparation of polarizing plate)
The surface of the translucent resin layer produced above was subjected to corona discharge treatment at a corona output strength of 2.0 kW and a line speed of 18 m / min. Similarly, triacetyl cellulose (thickness 25 μm) was prepared as another protective film (opposite film), and the surface was subjected to corona treatment under the same conditions as described above.
 そして、上記作製した偏光子の一方の面に、厚み3μmの紫外線硬化性接着剤層を介して透光性樹脂層を、他方の面に、厚み3μmの紫外線硬化性接着剤層を介して他の保護フィルムを、それぞれ貼り合わせて、積層物を得た。貼り合わせは、偏光子の吸収軸と保護フィルムの遅相軸とが直交するように行った。 Then, a translucent resin layer is provided on one surface of the produced polarizing element via an ultraviolet curable adhesive layer having a thickness of 3 μm, and another surface is provided on the other surface via an ultraviolet curable adhesive layer having a thickness of 3 μm. The protective films of the above were bonded to each other to obtain a laminate. The bonding was performed so that the absorption axis of the polarizer and the slow axis of the protective film were orthogonal to each other.
 次いで、得られた積層物に、ベルトコンベヤー付き紫外線照射装置(ランプは、フュージョンUVシステムズ社製のDバルブを使用)を用いて、積算光量が750mJ/cmとなるように紫外線を照射し、紫外線硬化性接着剤層を硬化させて、対向フィルム/接着剤層/偏光子/接着剤層/透光性樹脂層の積層構造を有する、長さ3000m、幅1.5mの偏光板201のロール体を得た。 Next, the obtained laminate was irradiated with ultraviolet rays so that the integrated light amount was 750 mJ / cm 2 using an ultraviolet irradiation device with a belt conveyor (the lamp uses a D valve manufactured by Fusion UV Systems). A roll of a polarizing plate 201 having a length of 3000 m and a width of 1.5 m, which has a laminated structure of an opposing film / adhesive layer / polarizer / adhesive layer / translucent resin layer by curing an ultraviolet curable adhesive layer. I got a body.
 (巻き変形欠陥)
 得られたロール体の巻き変形欠陥を、積層体のロール体の巻き変形欠陥と同じ方法および基準で評価した。
(Rolling deformation defect)
The winding deformation defect of the obtained roll body was evaluated by the same method and criteria as the winding deformation defect of the roll body of the laminated body.
 得られた積層体201~219の製造条件を表2に示し、評価結果を表3に示す。なお、表2において、ケトン/アルコール(90/10質量比)の80℃は、約Tb℃に相当し、ケトン/アルコール(10/90質量比)の40℃は、約Tb-40℃に相当し、酢酸エチルの110℃は、Tb+30℃に相当する。 Table 2 shows the production conditions of the obtained laminates 201 to 219, and Table 3 shows the evaluation results. In Table 2, 80 ° C. of ketone / alcohol (90/10 mass ratio) corresponds to about Tb ° C., and 40 ° C. of ketone / alcohol (10/90 mass ratio) corresponds to about Tb-40 ° C. However, 110 ° C. of ethyl acetate corresponds to Tb + 30 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、積層体201~210および215~219は、搬送時に破断を生じず、良好な搬送安定性を有することがわかる。また、積層体201~210および215~219は、ロール状に巻き取って一定期間保管しても、巻き変形が透光性樹脂層に残りにくく、巻き保管安定性にも優れることがわかる。また、そのような積層体を用いて得られる偏光板のロール体も、一定期間保管しても、巻き変形が透光性樹脂層に残りにくいことがわかる。 As shown in Table 3, it can be seen that the laminated bodies 201 to 210 and 215 to 219 do not break during transportation and have good transportation stability. Further, it can be seen that even if the laminates 201 to 210 and 215 to 219 are wound into a roll and stored for a certain period of time, the winding deformation is unlikely to remain in the translucent resin layer, and the winding storage stability is also excellent. Further, it can be seen that even if the rolled body of the polarizing plate obtained by using such a laminated body is stored for a certain period of time, the winding deformation is unlikely to remain in the translucent resin layer.
 また、(メタ)アクリル系樹脂の重量平均分子量を高くすることで、巻き変形を一層少なくしうることがわかる(積層体202と203の対比)。 Further, it can be seen that the winding deformation can be further reduced by increasing the weight average molecular weight of the (meth) acrylic resin (comparison between the laminated bodies 202 and 203).
 また、乾燥温度を高くすると、ゴム粒子が表層に偏在しやすいことがわかる(積層体202と209の対比)。これは、乾燥速度が高くなったためと考えられる。また、アセトンとメタノールの比率をアセトンリッチにすることで、ゴム粒子が表層に偏在しやすいことがわかる(積層体202と210の対比)。これは、乾燥速度が高くなったことに加え、アセトンがゴム粒子と親和性が高いため、溶媒とともにゴム粒子が移動しやすくなったためと考えられる。 Further, it can be seen that when the drying temperature is raised, the rubber particles tend to be unevenly distributed on the surface layer (contrast between the laminated bodies 202 and 209). It is considered that this is because the drying speed has increased. Further, it can be seen that the rubber particles are likely to be unevenly distributed on the surface layer by making the ratio of acetone and methanol rich in acetone (contrast between the laminated bodies 202 and 210). It is considered that this is because, in addition to the increased drying rate, acetone has a high affinity with the rubber particles, so that the rubber particles easily move together with the solvent.
 これに対して、支持体の引張弾性率が高すぎる積層体211は、破断しやすく、搬送安定性に劣ることがわかる。一方、支持体の引張弾性率が低すぎる積層体214は、積層体の巻き変形を生じやすく、それにより透光性樹脂層に変形が転写されやすいことがわかる。また、透光性樹脂層がゴム粒子を含まない積層体213は、巻き変形が消えにくいことがわかる。また、透光性樹脂層に含まれる樹脂の分子量が低い積層体212は、搬送時に、透光性樹脂層が破断しやすく、搬送安定性が低いことがわかる。 On the other hand, it can be seen that the laminated body 211 having an excessively high tensile elastic modulus of the support is easily broken and is inferior in transport stability. On the other hand, it can be seen that the laminated body 214 having an excessively low tensile elastic modulus of the support is likely to undergo winding deformation of the laminated body, whereby the deformation is easily transferred to the translucent resin layer. Further, it can be seen that in the laminated body 213 in which the translucent resin layer does not contain rubber particles, the winding deformation is hard to disappear. Further, it can be seen that in the laminated body 212 having a low molecular weight of the resin contained in the translucent resin layer, the translucent resin layer is easily broken during transportation and the transportation stability is low.
 本発明によれば、積層体の搬送時の破断を抑制しつつ、積層体または偏光板をロール状に巻き取った状態で一定期間保管した時の巻き変形に伴う表面欠陥を抑制しうる積層体およびその製造方法、ならびに当該積層体を用いた偏光板の製造方法を提供することができる。 According to the present invention, a laminated body capable of suppressing breakage during transportation of the laminated body and suppressing surface defects due to winding deformation when the laminated body or the polarizing plate is stored in a rolled state for a certain period of time. And a method for producing the same, and a method for producing a polarizing plate using the laminated body.
 100 積層体
 110 支持体
 120 透光性樹脂層
 200 製造装置
 210 供給部
 220 塗布部
 230 乾燥部
 240 冷却部
 250 巻き取り部
 300 偏光板
 310 偏光子
 320 保護フィルム(他の保護フィルム)
 330 接着剤層
 340 粘着剤層
100 Laminated body 110 Support 120 Translucent resin layer 200 Manufacturing equipment 210 Supply part 220 Coating part 230 Drying part 240 Cooling part 250 Winding part 300 Polarizing plate 310 Polarizer 320 Protective film (other protective film)
330 Adhesive layer 340 Adhesive layer

Claims (13)

  1.  支持体と、その表面に剥離可能に配置された透光性樹脂層とを有する積層体であって、
     前記透光性樹脂層は、重量平均分子量が100万以上の(メタ)アクリル系樹脂と、ゴム粒子とを含み、
     前記積層体の25℃における引張弾性率は、2.0~6.0GPaである、積層体。
    A laminate having a support and a translucent resin layer removably arranged on the surface thereof.
    The translucent resin layer contains a (meth) acrylic resin having a weight average molecular weight of 1 million or more and rubber particles.
    The laminate has a tensile elastic modulus of 2.0 to 6.0 GPa at 25 ° C.
  2.  前記(メタ)アクリル系樹脂は、前記(メタ)アクリル系樹脂を構成する全構造単位に対して、50~95質量%のメタクリル酸メチルに由来する構造単位と、1~25質量%のフェニルマレイミドに由来する構造単位と、1~25質量%のアクリル酸アルキルエステルに由来する構造単位とを含む共重合体である、
     請求項1に記載の積層体。
    The (meth) acrylic resin contains 50 to 95% by mass of a structural unit derived from methyl methacrylate and 1 to 25% by mass of phenylmaleimide with respect to all the structural units constituting the (meth) acrylic resin. A copolymer containing a structural unit derived from 1 to 25% by mass of a structural unit derived from acrylic acid alkyl ester.
    The laminate according to claim 1.
  3.  前記透光性樹脂層の断面において、
     前記透光性樹脂層の前記支持体とは反対側の面から前記透光性樹脂層の厚みの20%以下の領域を領域A、前記透光性樹脂層の前記支持体側の面から前記透光性樹脂層の厚みの20%以下の領域を領域Bとし、
     前記領域Aにおけるゴム粒子の単位面積当たりの面積率をR、前記領域Bにおけるゴム粒子の単位面積当たりの面積率をRBとしたとき、
     R/Rは、1.0~1.1である、
     請求項1または2に記載の積層体。
    In the cross section of the translucent resin layer,
    The region A of 20% or less of the thickness of the translucent resin layer is formed from the surface of the translucent resin layer opposite to the support, and the translucency is formed from the surface of the translucent resin layer on the support side. A region of 20% or less of the thickness of the light resin layer is designated as region B.
    When the area ratio R A per unit area of the rubber particles in the region A, the area ratio per unit area of the rubber particles in the region B was set to R B,
    R A / R B is 1.0-1.1,
    The laminate according to claim 1 or 2.
  4.  R/Rは、1.05~1.1である、
     請求項3に記載の積層体。
    R A / R B is from 1.05 to 1.1
    The laminate according to claim 3.
  5.  前記透光性樹脂層における前記ゴム粒子の含有量は、前記透光性樹脂層に対して5~40質量%である、
     請求項1~4のいずれか一項に記載の積層体。
    The content of the rubber particles in the translucent resin layer is 5 to 40% by mass with respect to the translucent resin layer.
    The laminate according to any one of claims 1 to 4.
  6.  前記透光性樹脂層の厚みは、0.1~35μmである、
     請求項1~5のいずれか一項に記載の積層体。
    The thickness of the translucent resin layer is 0.1 to 35 μm.
    The laminate according to any one of claims 1 to 5.
  7.  前記支持体は、ポリエステル樹脂、セルロースエステル樹脂またはシクロオレフィン系樹脂を含むフィルムを含む、
     請求項1~6のいずれか一項に記載の積層体。
    The support includes a film containing a polyester resin, a cellulose ester resin or a cycloolefin resin.
    The laminate according to any one of claims 1 to 6.
  8.  重量平均分子量が100万以上の(メタ)アクリル系樹脂と、ゴム粒子と、溶媒とを含む透光性樹脂層用溶液を得る工程と、
     前記透光性樹脂層用溶液を、前記支持体の表面に付与する工程と、
     前記付与された前記透光性樹脂層用溶液から溶媒を除去し、透光性樹脂層を形成して、25℃における引張弾性率が2.0~6.0GPaである積層体を得る工程とを有する、
     積層体の製造方法。
    A step of obtaining a solution for a translucent resin layer containing a (meth) acrylic resin having a weight average molecular weight of 1 million or more, rubber particles, and a solvent.
    A step of applying the translucent resin layer solution to the surface of the support, and
    A step of removing the solvent from the applied solution for the translucent resin layer to form a translucent resin layer to obtain a laminate having a tensile elastic modulus of 2.0 to 6.0 GPa at 25 ° C. Have,
    Method for manufacturing a laminate.
  9.  前記(メタ)アクリル系樹脂は、前記(メタ)アクリル系樹脂を構成する全構造単位に対して、50~95質量%のメタクリル酸メチルに由来する構造単位と、1~25質量%のフェニルマレイミドに由来する構造単位と、1~25質量%のアクリル酸アルキルエステルに由来する構造単位とを含む共重合体である、
     請求項8に記載の積層体の製造方法。
    The (meth) acrylic resin contains 50 to 95% by mass of a structural unit derived from methyl methacrylate and 1 to 25% by mass of phenylmaleimide with respect to all the structural units constituting the (meth) acrylic resin. A copolymer containing a structural unit derived from 1 to 25% by mass of a structural unit derived from acrylic acid alkyl ester.
    The method for producing a laminate according to claim 8.
  10.  前記溶媒は、ケトン類とアルコール類とを含む、
     請求項8または9に記載の積層体の製造方法。
    The solvent contains ketones and alcohols.
    The method for producing a laminate according to claim 8 or 9.
  11.  前記透光性樹脂層を形成する工程では、
     前記溶媒の沸点をTb(℃)としたとき、前記支持体の表面に付与した前記透光性樹脂層用溶液を、(Tb-50)~(Tb+50)℃の温度で乾燥させる、
     請求項8~10のいずれか一項に記載の積層体の製造方法。
    In the step of forming the translucent resin layer,
    When the boiling point of the solvent is Tb (° C.), the translucent resin layer solution applied to the surface of the support is dried at a temperature of (Tb-50) to (Tb + 50) ° C.
    The method for producing a laminate according to any one of claims 8 to 10.
  12.  前記透光性樹脂層の厚みは、0.1~35μmである、
     請求項8~11のいずれか一項に記載の積層体の製造方法。
    The thickness of the translucent resin layer is 0.1 to 35 μm.
    The method for producing a laminate according to any one of claims 8 to 11.
  13.  偏光子の少なくとも一方の面に、請求項1~7のいずれか一項に記載の積層体の前記透光性樹脂層を貼り合わせ、かつ前記透光性樹脂層の前記偏光子とは反対側の面に配置された支持体を剥離する工程を有する、
     偏光板の製造方法。
    The translucent resin layer of the laminate according to any one of claims 1 to 7 is bonded to at least one surface of the polarizer, and the side of the translucent resin layer opposite to the polarizer. It has a step of peeling off the support arranged on the surface of the surface.
    Method for manufacturing a polarizing plate.
PCT/JP2019/043116 2019-11-01 2019-11-01 Layered body, layered body manufacturing method, and polarizing plate manufacturing method WO2021084751A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227011671A KR102719733B1 (en) 2019-11-01 Laminate, method for manufacturing laminate, method for manufacturing polarizing plate
PCT/JP2019/043116 WO2021084751A1 (en) 2019-11-01 2019-11-01 Layered body, layered body manufacturing method, and polarizing plate manufacturing method
JP2021554036A JP7388443B2 (en) 2019-11-01 2019-11-01 Laminate, method for manufacturing a laminate, method for manufacturing a polarizing plate
TW109130845A TWI840609B (en) 2019-11-01 2020-09-09 Laminate, method for manufacturing laminate, method for manufacturing polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043116 WO2021084751A1 (en) 2019-11-01 2019-11-01 Layered body, layered body manufacturing method, and polarizing plate manufacturing method

Publications (1)

Publication Number Publication Date
WO2021084751A1 true WO2021084751A1 (en) 2021-05-06

Family

ID=75716120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043116 WO2021084751A1 (en) 2019-11-01 2019-11-01 Layered body, layered body manufacturing method, and polarizing plate manufacturing method

Country Status (3)

Country Link
JP (1) JP7388443B2 (en)
TW (1) TWI840609B (en)
WO (1) WO2021084751A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176982A (en) * 2005-12-27 2007-07-12 Toray Ind Inc Method for producing acrylic film and acrylic film produced thereby
WO2015182614A1 (en) * 2014-05-30 2015-12-03 日本ゼオン株式会社 Multilayer film and wound body
JP2016104515A (en) * 2013-03-18 2016-06-09 コニカミノルタ株式会社 Method for producing optical film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176982A (en) * 2005-12-27 2007-07-12 Toray Ind Inc Method for producing acrylic film and acrylic film produced thereby
JP2016104515A (en) * 2013-03-18 2016-06-09 コニカミノルタ株式会社 Method for producing optical film
WO2015182614A1 (en) * 2014-05-30 2015-12-03 日本ゼオン株式会社 Multilayer film and wound body

Also Published As

Publication number Publication date
JPWO2021084751A1 (en) 2021-05-06
TWI840609B (en) 2024-05-01
KR20220058951A (en) 2022-05-10
JP7388443B2 (en) 2023-11-29
TW202118637A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
TWI763976B (en) Easy-adhesive film and method for producing the same, polarizing plate, and image display device
TW201822995A (en) Polarizing film, method for manufacture thereof, optical film, and image display device
US20150024149A1 (en) Polarizing plate, method for manufacturing polarizing plate and liquid crystal display device
JP6122812B2 (en) Polarizing plate and image display device
CN103930942A (en) Unit for image display device having adhesive layer, and image display device using said unit
TWI707165B (en) Polarizing plate
JP2017211433A (en) Polarization film, polarization film with adhesive layer, and image display device
JP2022013705A (en) Polarization plate having retardation layer and adhesive layer, and picture display unit using the polarization plate having retardation layer and adhesive layer
WO2015152157A1 (en) Polarizing plate, image display and liquid crystal display
JP2019159200A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP6825848B2 (en) Polarizing plate for curved image display panel
TWI696853B (en) Method of producing polarizing plate
TWI809198B (en) Liquid crystal layer laminate
KR20160138900A (en) Method for producing polarizing plate
WO2021084751A1 (en) Layered body, layered body manufacturing method, and polarizing plate manufacturing method
JP7367756B2 (en) Polarizer
WO2021131237A1 (en) Image display device and set of optical members
JP7283537B2 (en) Polarizing plate and liquid crystal display device
TW202244141A (en) Optical film and polarizing plate
KR102719733B1 (en) Laminate, method for manufacturing laminate, method for manufacturing polarizing plate
WO2021084752A1 (en) Multilayer body, method for producing multilayer body and method for producing polarizing plate
CN110275237B (en) Method for producing optical laminate and method for producing optical laminate with adhesive layer
CN112226027A (en) Optical film and polarizing plate
KR101894811B1 (en) Coating acryl film
JP7447909B2 (en) Polarizing plate, polarizing plate manufacturing method, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554036

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227011671

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951174

Country of ref document: EP

Kind code of ref document: A1