WO2021084730A1 - Degradation state assessment device, degradation state inspection system, and degradation state inspection method - Google Patents

Degradation state assessment device, degradation state inspection system, and degradation state inspection method Download PDF

Info

Publication number
WO2021084730A1
WO2021084730A1 PCT/JP2019/042978 JP2019042978W WO2021084730A1 WO 2021084730 A1 WO2021084730 A1 WO 2021084730A1 JP 2019042978 W JP2019042978 W JP 2019042978W WO 2021084730 A1 WO2021084730 A1 WO 2021084730A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic resin
ultrasonic waves
amplitude
deterioration state
probe
Prior art date
Application number
PCT/JP2019/042978
Other languages
French (fr)
Japanese (ja)
Inventor
友則 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/042978 priority Critical patent/WO2021084730A1/en
Priority to JP2021554020A priority patent/JP7008887B2/en
Publication of WO2021084730A1 publication Critical patent/WO2021084730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves

Definitions

  • the present invention relates to a deterioration state determination device for determining a deterioration state of an elastic resin sandwiched between two members, a deterioration state inspection system, and a deterioration state inspection method.
  • Patent Document 1 discloses a technique for determining the quality of a spot welded portion of a plurality of laminated metal plates using ultrasonic waves.
  • Patent Document 1 determines the quality of the spot welded portion based on the presence / absence and magnitude of the intermediate echo corresponding to the boundary portion between the metal plates. If there is a gap at the boundary, an intermediate echo will occur. This intermediate echo is detected in the gap between the metal plates after multiple reflections and then transmitted through the metal plates. When the intermediate echo is multiple reflected in the gap between the metal plates, the attenuation of the amplitude of the intermediate echo is small.
  • the gap when the elastic resin sandwiched between the two members deteriorates, a gap is created between the two members and the elastic resin. Therefore, when determining the deteriorated state of the elastic resin sandwiched between the two members, the gap may be detected, and for example, the technique disclosed in Patent Document 1 may be used.
  • the present invention has been made to solve the above-mentioned problems, and provides a deterioration state determination device capable of nondestructively determining the deterioration state of an elastic resin sandwiched between two members. The purpose.
  • the deterioration state determination device uses the waveform of ultrasonic waves incident from the surface of one of the two members sandwiching the elastic resin and emitted from the surface of the other member of the two members. Deterioration of the elastic resin based on the amplitude of the ultrasonic waves acquired by the acquisition unit and the ultrasonic waves acquired by the acquisition unit that did not pass through the elastic resin and the amplitude of the ultrasonic waves that passed through the elastic resin. It is provided with a determination unit for determining a state.
  • the deteriorated state of the elastic resin sandwiched between the two members can be determined non-destructively.
  • FIG. 5 is an external perspective view of a structure to be determined by the deterioration state determination device according to the first embodiment. It is a vertical cross-sectional view of the structure which is the judgment target of the deterioration state determination apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the deterioration state determination apparatus applied to the deterioration state inspection system which concerns on Embodiment 1.
  • FIG. 4A is a diagram showing the transmission of ultrasonic waves when the elastic resin is not deteriorated.
  • FIG. 4B is a diagram showing the amplitude of ultrasonic waves when the elastic resin is not deteriorated.
  • FIG. 5A is a diagram showing the transmission of ultrasonic waves when the elastic resin is deteriorated.
  • FIG. 5B is a diagram showing the amplitude of ultrasonic waves when the elastic resin is deteriorated. It is a figure which shows the transmission wave experiment result for elastic resin which has not deteriorated. It is a figure which shows the transmission wave experiment result for the deteriorated elastic resin. It is a flowchart which shows the operation of the deterioration state determination apparatus which concerns on Embodiment 1.
  • FIG. 9A and 9B are diagrams showing an example of the hardware configuration of the driver monitoring device according to the first embodiment. It is a figure which shows the structure of the deterioration state inspection system which concerns on Embodiment 2.
  • Embodiment 1 The deterioration state determination device 40 according to the first embodiment will be described with reference to FIGS. 1 to 9.
  • FIG. 1 is an external perspective view of a structure 10 to be determined by the deterioration state determination device 40 according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view of the structure 10 to be determined by the deterioration state determination device 40 according to the first embodiment.
  • the deterioration state determination device 40 is shown in FIG. 3, and details thereof will be described later.
  • the pipe 11 and the pipe 12 are flanged to each other using bolts 14 and nuts 15.
  • the pipes 11 and 12 are made of, for example, metal.
  • the pipe 11 has a flange 11a.
  • the flange 11a is provided at one end of the pipe 11.
  • the pipe 12 has a flange 12a and an annular groove 12b.
  • the flange 12a is provided at one end of the pipe 12.
  • the annular groove 12b is formed on the contact surface of the flange 12a.
  • the contact surface of the flange 12a is in contact with the contact surface of the flange 11a.
  • Elastic resin 13 is fitted in the annular groove 12b.
  • the elastic resin 13 is, for example, a sealing member such as a rubber gasket or packing, and has an annular shape. Further, the elastic resin 13 is arranged in the radial direction of the pipes 11 and 12 (hereinafter, simply referred to as the radial direction) with respect to the bolt 14 penetrating the flanges 11a and 12a.
  • the height of the elastic resin 13 is a value that exceeds the depth of the annular groove 12b.
  • the flange 11a and the flange 12a are joined by using the bolt 14 and the nut 15 with the elastic resin 13 sandwiched between them.
  • the elastic resin 13 seals between the flanges 11a and 12a in the entire circumferential direction of the flanges 11a and 12a.
  • a fluid such as gas or liquid is flowing through the pipes 11 and 12 that are joined to each other.
  • the pipes 11 and 12 it is difficult to prevent fluid from leaking from between the flanges 11a and 12a simply by tightening the flanges 11a and 12a with bolts 14 and nuts 15. Therefore, the elastic resin 13 is sandwiched between the flanges 11a and 12a. Is sandwiched.
  • the elastic resin 13 fitted in the annular groove 12b is elastically deformed in the axial direction when the flanges 11a and 12a are butted against each other in the axial direction of the pipes 11 and 12 (hereinafter, simply referred to as the axial direction).
  • the elastic resin 13 presses the flange 11a, and the gap between the flanges 11a and 12a is sealed.
  • the fluid does not leak from between the flanges 11a and 12a even if it flows through the pipes 11 and 12.
  • the elastic resin 13 gradually deteriorates over the years. As described above, as the elastic resin 13 deteriorates, it gradually hardens and loses its elastic force. Such deterioration of the elastic resin 13 adversely affects the contact state between the flange 11a and the elastic resin 13 and the contact state between the flange 12a and the elastic resin 13, and may cause fluid leakage. There is. Therefore, in order to prevent fluid leakage from the flanges 11a and 12a, it is necessary to non-destructively inspect the deterioration of the elastic resin 13.
  • FIG. 3 is a block diagram showing a configuration of a deterioration state determination device 40 applied to the deterioration state inspection system according to the first embodiment.
  • FIG. 4A is a diagram showing transmission of ultrasonic waves when the elastic resin 13 is not deteriorated.
  • FIG. 4B is a diagram showing the amplitude of ultrasonic waves when the elastic resin 13 is not deteriorated.
  • FIG. 5A is a diagram showing transmission of ultrasonic waves when the elastic resin 13 is deteriorated.
  • FIG. 5B is a diagram showing the amplitude of ultrasonic waves when the elastic resin 13 is deteriorated.
  • FIGS. 3, 4A, and 5A are views in which the bolt 14, the nut 15, and the flow path are omitted. Further, FIGS. 4A and 5A are views in which the transmitter / receiver 30 is omitted. Further, in FIGS. 4B and 5B, the vertical axis represents the amplitude and the horizontal axis represents the time.
  • the deterioration state inspection system includes a transmission probe 21, a reception probe 22, and a transmitter / receiver 30.
  • the transmission probe 21 is attached to the flange 11a. Further, the transmission probe 21 has an ultrasonic radiation surface 21a for radiating ultrasonic waves.
  • the ultrasonic radiation surface 21a is in contact with the surface of the flange 11a.
  • the surface of the flange 11a is a surface located on the opposite side of the contact surface of the flange 11a.
  • the transmission probe 21 When the transmission probe 21 receives the excitation signal output from the transmitter / receiver 30, it emits ultrasonic waves from the ultrasonic radiation surface 21a. Then, the ultrasonic waves radiated from the ultrasonic radiation surface 21a propagate through the surface of the flange 11a to the inside of the flanges 11a and 12a and the inside of the elastic resin 13.
  • the receiving probe 22 is attached to the flange 12a in pairs with the transmitting probe 21. That is, the transmitting probe 21 and the receiving probe 22 are arranged so as to sandwich the elastic resin 13 sandwiched between the flanges 11a and 12a from both sides in the axial direction. Further, the receiving probe 22 has an ultrasonic wave receiving surface 22a for receiving ultrasonic waves.
  • the ultrasonic receiving surface 22a is in contact with the surface of the flange 12a.
  • the surface of the flange 12a is a surface located on the opposite side of the contact surface of the flange 12a.
  • the receiving probe 22 receives the ultrasonic waves radiated from the transmitting probe 21 by the ultrasonic receiving surface 22a. Further, the receiving probe 22 converts the received ultrasonic wave into a waveform signal indicating the waveform of the ultrasonic wave and outputs it to the transmitter / receiver 30.
  • the elastic resin 13 has ultrasonic wave transmitting surfaces 13a and 13b.
  • the ultrasonic transmission surface 13a faces the ultrasonic radiation surface 21a in the axial direction, and is a surface through which the ultrasonic waves radiated from the ultrasonic radiation surface 21a pass.
  • the ultrasonic radiation surface 21a is arranged so as to straddle one end (inner peripheral end) of the ultrasonic transmission surfaces 13a and 13b.
  • the ultrasonic wave transmitting surface 13b faces the ultrasonic wave receiving surface 22a in the axial direction, and is a surface through which the ultrasonic waves propagating inside the elastic resin 13 are transmitted.
  • the ultrasonic wave receiving surface 22a is arranged so as to straddle one end (inner peripheral end) of the ultrasonic wave transmitting surfaces 13a and 13b.
  • the ultrasonic radiation surface 21a straddles only one end (inner peripheral end) of the ultrasonic transmission surface 13a, and the ultrasonic reception surface 22a is one end (inner peripheral end) of the ultrasonic transmission surface 13b.
  • the ultrasonic radiation surface 21a straddles only the other end (outer peripheral end) of the ultrasonic transmission surface 13a, and the ultrasonic reception surface 22a straddles only the other end (outer peripheral end) of the ultrasonic transmission surface 13b. ) May be straddled.
  • the path through which the ultrasonic waves pass through only the flange 11a and the flange 12a in order and then reach the ultrasonic wave receiving surface 22a is referred to as a first propagation path 61. That is, the first propagation path 61 is a propagation path in which ultrasonic waves do not pass through the elastic resin 13.
  • the path through which the ultrasonic waves pass through the flange 11a, the elastic resin 13, and the flange 12a in this order and then reach the receiving probe 22 is referred to as a second propagation path 62. That is, the second propagation path 62 is a propagation path through which ultrasonic waves pass through the elastic resin 13.
  • the transmitter / receiver 30 has a transmitter 31, a receiver 32, and a deterioration state determination device 40.
  • the transmission unit 31 outputs an excitation signal to the transmission probe 21 and radiates ultrasonic waves from the transmission probe 21.
  • the receiving unit 32 receives the waveform signal output from the receiving probe 22, and outputs the received signal corresponding to the received waveform signal to the deterioration state determination device 40.
  • the deterioration state determination device 40 does not use the intermediate echo of the ultrasonic wave corresponding to the gap between the flanges 11a and 12a and the elastic resin 13, but the ultrasonic wave propagating in the above two propagation paths 61 and 62, respectively. By using the amplitude, the deteriorated state of the elastic resin 13 is determined non-destructively.
  • the deterioration state determination device 40 has an acquisition unit 41 and a determination unit 42.
  • the acquisition unit 41 acquires the reception signal output from the reception unit 32. Further, the acquisition unit 41 outputs the acquired reception signal to the determination unit 42.
  • the determination unit 42 receives the reception signal output from the acquisition unit 41, and among the ultrasonic waves received by the reception probe 22, the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the elastic resin 13 are determined. The deterioration state of the elastic resin 13 is determined based on the amplitude of the transmitted ultrasonic waves.
  • the determination unit 42 analyzes the reception signal output from the acquisition unit 41, and of the two ultrasonic waves received by the reception probe 22. , The amplitude of the ultrasonic wave propagating in the first propagation path 61 and the amplitude of the ultrasonic wave propagating in the second propagation path 62 are specified. Then, the determination unit 42 compares the amplitude of the ultrasonic wave propagating in the first propagation path 61 with the amplitude of the ultrasonic wave propagating in the second propagation path 62 to determine the deteriorated state of the elastic resin 13. .. The determination unit 42 compares, for example, the above two amplitudes using their differences or ratios.
  • the determination unit 42 may display the waveform of the ultrasonic wave propagating in the first propagation path 61 and the waveform of the ultrasonic wave propagating in the second propagation path 62 on a display (not shown). .. Further, the determination unit 42 may display the determination result on the display.
  • the determination unit 42 sets the first gate period 71 and the second gate period 72.
  • the first gate period 71 is a period for detecting the amplitude of the ultrasonic wave propagating in the first propagation path 61.
  • the second gate period 72 is a period for detecting the amplitude of the ultrasonic wave propagating in the second propagation path 62.
  • the determination unit 42 sets the start time of the first gate period 71 based on the thickness of the flange 11a, the thickness of the flange 12a, and the sound velocity of ultrasonic waves. Further, the determination unit 42 sets the start time of the second gate period 72 based on the thickness of the flange 11a, the thickness of the flange 12a, the thickness of the elastic resin 13, and the sound velocity of ultrasonic waves. Further, the determination unit 42 determines the length of the first gate period 71 and the second, based on the frequency of the ultrasonic wave, the bandwidth of the transmitter 21 for transmission, and the bandwidth of the probe 22 for reception. The length is set to the gate period 72.
  • the amplitude of the ultrasonic wave detected in the first gate period 71 depends on the contact state between the transmitting probe 21 and the flange 11a and the contact state between the receiving probe 22 and the flange 12a. Change.
  • the ultrasonic waves propagating in the second propagation path 62 propagate through the flanges 11a and 12a and the elastic resin 13, and therefore correspond to the deteriorated state of the elastic resin 13.
  • the amplitude of the ultrasonic wave detected in the second gate period 72 changes depending on the contact state between the flange 11a and the elastic resin 13 and the contact state between the flange 12a and the elastic resin 13. That is, when the elastic resin 13 deteriorates, a gap is formed between the flange 11a and the elastic resin 13 and at least one of the flange 12a and the elastic resin 13, so that the second gate period 72
  • the amplitude of the ultrasonic waves detected in is smaller.
  • the amplitude of the ultrasonic wave detected in the second gate period 72 is the contact state between the transmission probe 21 and the flange 11a, similarly to the amplitude of the ultrasonic wave detected in the first gate period 71. And, it changes according to the contact state between the receiving probe 22 and the flange 12a.
  • the determination unit 42 compares the amplitude of the ultrasonic wave detected in the first gate period 71 with the amplitude of the ultrasonic wave detected in the second gate period 72, thereby forming the flange 11a and the elastic resin 13.
  • the contact state between the two, and the contact state between the flange 12a and the elastic resin 13 can be obtained, and further, the deteriorated state of the elastic resin 13 can be determined based on the obtained result.
  • the elastic resin 13 is not deteriorated, and the amplitude of the ultrasonic wave detected in the second gate period 72 is higher than the amplitude of the ultrasonic wave detected in the first gate period 71. Is also getting bigger. That is, when the amplitude of the ultrasonic wave detected in the second gate period 72 is larger than the amplitude of the ultrasonic wave detected in the first gate period 71, the determination unit 42 determines between the flange 11a and the elastic resin 13. Further, it is determined that there is no gap between the flange 12a and the elastic resin 13. As a result, the determination unit 42 determines that the elastic resin 13 has not deteriorated.
  • the elastic resin 13 is in a deteriorated state, and the amplitude of the ultrasonic wave detected in the second gate period 72 is detected in the first gate period 71. It is smaller than the amplitude of the ultrasonic wave. That is, when the amplitude of the ultrasonic waves detected in the second gate period 72 is smaller than the amplitude of the ultrasonic waves detected in the first gate period 71, the determination unit 42 determines between the flange 11a and the elastic resin 13. And, it is determined that a gap is formed in at least one of the flange 12a and the elastic resin 13. As a result, the determination unit 42 determines that the elastic resin 13 has deteriorated.
  • the ultrasonic amplitude described here is the maximum value of the absolute value in the first gate period 71 and the second gate period 72.
  • FIG. 6 is a diagram showing the results of a transmitted wave experiment for an elastic resin 13 that has not deteriorated.
  • FIG. 7 is a diagram showing the results of a transmitted wave experiment targeting the deteriorated elastic resin 13.
  • the vertical axis represents the amplitude of ultrasonic waves (transmitted waves)
  • the horizontal axis represents time.
  • the frequencies of the transmitting probe 21 and the receiving probe 22 were set to 2 MHz. Further, in the following description, the amplitude of the ultrasonic wave detected in the first gate period 71 is referred to as A1, and the amplitude of the ultrasonic wave detected in the second gate period 72 is referred to as A2.
  • the transmitted wave experiment result for the elastic resin 13 which has not deteriorated is amplitude A1 ⁇ amplitude A2.
  • the transmitted wave experiment result for the deteriorated elastic resin 13 shows that the amplitude A1> the amplitude A2. Therefore, the determination method of the determination unit 42 described above is a method capable of correctly determining the deteriorated state of the elastic resin 13.
  • the determination unit 42 uses the magnitude relationship between the amplitude A1 and the amplitude A2 as described above, and also uses the amplitude ratio between the amplitude A1 and the amplitude A2. Is also good.
  • the determination unit 42 determines that the elastic resin 13 has not deteriorated when the amplitude ratio (A2 / A1) exceeds a preset threshold value, and when the amplitude ratio does not exceed the threshold value, the elastic resin It is determined that 13 is deteriorated.
  • the determination unit 42 can determine the deteriorated state of the elastic resin 13.
  • FIG. 8 is a flowchart showing the operation of the deterioration state determination device 40 according to the first embodiment.
  • step ST11 the acquisition unit 41 acquires a received signal indicating the waveform of the ultrasonic wave incident from the surface of the flange 11a and emitted from the surface of the flange 12a.
  • step ST12 the determination unit 42 said the ultrasonic waves acquired by the acquisition unit 41 based on the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the amplitude of the ultrasonic waves that passed through the elastic resin 13.
  • the deteriorated state of the elastic resin 13 is determined. As a result, the operation of the deterioration state determination device 40 ends.
  • FIG. 9A and 9B are diagrams showing an example of the hardware configuration of the deterioration state determination device 40 according to the first embodiment.
  • the deterioration state determination device 40 is composed of a computer, which has a processor 51 and a memory 52.
  • the memory 52 stores a program for causing the computer to function as the acquisition unit 41 and the determination unit 42.
  • the processor 51 reads and executes the program stored in the memory 52, the functions of the acquisition unit 41 and the determination unit 42 are realized.
  • the deterioration state determination device 40 may be configured by the processing circuit 53.
  • the functions of the acquisition unit 41 and the determination unit 42 may be realized by the processing circuit 53.
  • the deterioration state determination device 40 may be composed of a processor 51, a memory 52, and a processing circuit 53 (not shown). In this case, some of the functions of the acquisition unit 41 and the determination unit 42 may be realized by the processor 51 and the memory 52, and the remaining functions may be realized by the processing circuit 53.
  • the processor 51 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 52 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 52 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), and an EEPROM (Electrically Memory) State Drive) or HDD (Hard Disk Drive) or the like is used.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically Memory
  • HDD Hard Disk Drive
  • the processing circuit 53 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), a System on a Chip (System), a System Integration) is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • System System
  • System Integration System Integration
  • the deterioration state determination device 40 is incident from the surface of the flange 11a of the two flanges 11a and 12a sandwiching the elastic resin 13, and the flange 12a of the two flanges 11a and 12a.
  • the acquisition unit 41 that acquires a signal indicating the waveform of the ultrasonic waves emitted from the surface of the above, and the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the elastic resin 13 among the ultrasonic waves acquired by the acquisition unit 41.
  • a determination unit 42 for determining a deteriorated state of the elastic resin 13 based on the amplitude of the transmitted ultrasonic waves is provided.
  • the deterioration state determination device 40 can determine the deterioration state of the elastic resin 13 sandwiched between the two flanges 11a and 12a in a non-destructive manner.
  • the deterioration state inspection system includes a transmission probe 21 that radiates ultrasonic waves inside the flange 11a of the two flanges 11a and 12a sandwiching the elastic resin 13, and a transmission probe.
  • An excitation signal is output to the receiving probe 22 and the transmitting probe 21 that receive the ultrasonic waves radiated by the tentacle 21 via the flange 12a of the two flanges 11a and 12a.
  • the ultrasonic wave received by the receiving probe 22 after receiving the receiving signal corresponding to the amplitude signal from the receiving section 32 and the receiving section 32 that receive the waveform signal from the transmitting section 31 and the receiving probe 22.
  • a determination unit 42 for determining a deteriorated state of the elastic resin 13 is provided based on the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the amplitude of the ultrasonic waves that passed through the elastic resin 13.
  • the deterioration state inspection system can determine the deterioration state of the elastic resin 13 sandwiched between the two flanges 11a and 12a in a non-destructive manner.
  • the transmitting probe 21 and the receiving probe 22 are arranged so as to straddle one end of the elastic resin 13.
  • the deterioration state inspection system can set the first propagation path 61 in which the ultrasonic waves do not pass through the elastic resin 13 and the second propagation path 62 in which the ultrasonic waves pass through the elastic resin 13, so that the elasticity can be set.
  • the deteriorated state of the resin 13 can be appropriately determined.
  • FIG. 10 is a diagram in which the bolt 14, the nut 15, the transmitter / receiver 30, and the flow path are omitted.
  • the deterioration state inspection system according to the second embodiment replaces the transmission probe 21 and the reception probe 22 with the transmission probe 26 and the deterioration state inspection system according to the first embodiment. It is provided with a receiving probe 27.
  • the transmitting probe 26 and the receiving probe 27 are arranged so as to straddle both ends of the elastic resin 13.
  • the transmission probe 26 has an ultrasonic radiation surface 26a for radiating ultrasonic waves.
  • the ultrasonic radiation surface 26a is arranged so as to straddle one end (inner peripheral end) and the other end (outer peripheral end) of the ultrasonic transmission surfaces 13a and 13b.
  • the receiving probe 27 has an ultrasonic wave receiving surface 27a for receiving ultrasonic waves.
  • the ultrasonic wave receiving surface 27a is arranged so as to straddle one end (inner peripheral end) and the other end (outer peripheral end) of the ultrasonic wave transmitting surfaces 13a and 13b. That is, the length of the ultrasonic radiation surface 26a is longer than the radial length of the ultrasonic transmission surfaces 13a and 13b. Further, the length of the ultrasonic wave receiving surface 27a is longer than the radial length of the ultrasonic wave transmitting surfaces 13a and 13b.
  • the determination unit 42 can set two first propagation paths 61 and one second propagation path 62. That is, the ultrasonic waves that do not pass through the elastic resin 13 pass through one end side and the other end side of the elastic resin 13.
  • the determination unit 42 determines the amplitude of the two ultrasonic waves that did not pass through the elastic resin 13, or the amplitude of either of the two ultrasonic waves. To use.
  • the transmission probe 26 and the reception probe 27 are arranged so as to straddle both ends of the elastic resin 13.
  • the deterioration state inspection system can set the first propagation path 61 in which the ultrasonic waves do not pass through the elastic resin 13 and the second propagation path 62 in which the ultrasonic waves pass through the elastic resin 13, so that the elasticity can be set.
  • the deteriorated state of the resin 13 can be appropriately determined.
  • any combination of the embodiments, modification of any component in each embodiment, or omission of any component in each embodiment can be omitted. It is possible.
  • the deterioration state determination device can determine the deterioration state of the elastic resin by using the amplitude of the ultrasonic waves that have not passed through the elastic resin and the amplitude of the ultrasonic waves that have passed through the elastic resin. It is suitable for use in a deterioration state determination device or the like for determining a deterioration state of an elastic resin sandwiched between two members.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This degradation state assessment device 40 comprises: an acquisition unit (41) that acquires a signal indicating the waveform of ultrasonic waves that have entered via the surface of a flange 11a, among two flanges (11a, 12a) that sandwich an elastic resin (13), and that have exited from the surface of the flange (12a), among the two flanges (11a, 12a); and an assessment unit (42) that assesses the state of degradation of the elastic resin (13) on the basis of the amplitude of ultrasonic waves that have not passed through the elastic resin (13) and the amplitude of ultrasonic waves that have passed through the elastic resin (13).

Description

劣化状態判定装置、劣化状態検査システム、及び、劣化状態検査方法Deterioration state judgment device, deterioration state inspection system, and deterioration state inspection method
 この発明は、2つの部材間に挟み込まれた弾性樹脂の劣化状態を判定する劣化状態判定装置、劣化状態検査システム、及び、劣化状態検査方法に関する。 The present invention relates to a deterioration state determination device for determining a deterioration state of an elastic resin sandwiched between two members, a deterioration state inspection system, and a deterioration state inspection method.
 従来、2つの部材間に弾性樹脂を挟み込むようにした構造体が提供されている。このような構造体を用いた場合、弾性樹脂の劣化状態を非破壊で検査したいという要求があった。非破壊検査では、超音波が多く用いられている。特許文献1には、複数枚積層された金属板のスポット溶接部の良否を、超音波を用いて判定する技術が開示されている。 Conventionally, a structure in which an elastic resin is sandwiched between two members has been provided. When such a structure is used, there is a demand for non-destructive inspection of the deteriorated state of the elastic resin. Ultrasound is often used in non-destructive inspection. Patent Document 1 discloses a technique for determining the quality of a spot welded portion of a plurality of laminated metal plates using ultrasonic waves.
特開昭61-155953号公報Japanese Unexamined Patent Publication No. 61-155953
 特許文献1に開示された技術は、金属板間の境界部位に対応する中間エコーの有無及び大小により、スポット溶接部の良否を判定している。境界部位に隙間が発生した場合、中間エコーが発生する。この中間エコーは、金属板間の隙間において、多重反射した後、金属板を透過したものが検出される。中間エコーが金属板間の隙間において多重反射した場合、中間エコーの振幅の減衰は小さい。 The technique disclosed in Patent Document 1 determines the quality of the spot welded portion based on the presence / absence and magnitude of the intermediate echo corresponding to the boundary portion between the metal plates. If there is a gap at the boundary, an intermediate echo will occur. This intermediate echo is detected in the gap between the metal plates after multiple reflections and then transmitted through the metal plates. When the intermediate echo is multiple reflected in the gap between the metal plates, the attenuation of the amplitude of the intermediate echo is small.
 ここで、2つの部材間に挟み込まれた弾性樹脂が劣化した場合、2つの部材と弾性樹脂との間に隙間が生じる。従って、2つの部材間に挟み込まれた弾性樹脂の劣化状態を判定する場合、その隙間を検出すれば良く、例えば、特許文献1に開示された技術を用いることが考えられる。 Here, when the elastic resin sandwiched between the two members deteriorates, a gap is created between the two members and the elastic resin. Therefore, when determining the deteriorated state of the elastic resin sandwiched between the two members, the gap may be detected, and for example, the technique disclosed in Patent Document 1 may be used.
 2つの部材間に挟み込まれた弾性樹脂の劣化状態を、特許文献1に開示された技術を用いて判定する場合、2つの部材と弾性樹脂との間の隙間に対応する中間エコーを検出する必要がある。この中間エコーは、2つの部材と弾性樹脂との間の隙間において、多重反射した後、弾性樹脂を透過したものが検出される。このように、中間エコーは、弾性樹脂の表面に対して多重反射するため、当該弾性樹脂によってその振幅が大きく減衰されてから検出されることになる。従って、2つの部材間に挟み込まれた弾性樹脂の劣化状態を、特許文献1に開示された技術を用いて判定する場合、中間エコーを明確に受信することは、困難となる。 When determining the deteriorated state of the elastic resin sandwiched between the two members using the technique disclosed in Patent Document 1, it is necessary to detect an intermediate echo corresponding to the gap between the two members and the elastic resin. There is. This intermediate echo is detected in the gap between the two members and the elastic resin after multiple reflections and then transmitted through the elastic resin. As described above, since the intermediate echo is multiplely reflected on the surface of the elastic resin, the intermediate echo is detected after the amplitude is greatly attenuated by the elastic resin. Therefore, when the deteriorated state of the elastic resin sandwiched between the two members is determined by using the technique disclosed in Patent Document 1, it is difficult to clearly receive the intermediate echo.
 この発明は、上記のような課題を解決するためになされたもので、2つの部材間に挟み込まれた弾性樹脂の劣化状態を非破壊で判定することができる劣化状態判定装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides a deterioration state determination device capable of nondestructively determining the deterioration state of an elastic resin sandwiched between two members. The purpose.
 この発明に係る劣化状態判定装置は、弾性樹脂を挟み込んだ2つの部材のうちの一方の部材の表面から入射され、2つの部材のうちの他方の部材の表面から出射された超音波の波形を示す信号を取得する取得部と、取得部が取得した超音波のうち、弾性樹脂を透過しなかった超音波の振幅と、弾性樹脂を透過した超音波の振幅とに基づいて、弾性樹脂の劣化状態を判定する判定部とを備えるものである。 The deterioration state determination device according to the present invention uses the waveform of ultrasonic waves incident from the surface of one of the two members sandwiching the elastic resin and emitted from the surface of the other member of the two members. Deterioration of the elastic resin based on the amplitude of the ultrasonic waves acquired by the acquisition unit and the ultrasonic waves acquired by the acquisition unit that did not pass through the elastic resin and the amplitude of the ultrasonic waves that passed through the elastic resin. It is provided with a determination unit for determining a state.
 この発明によれば、2つの部材間に挟み込まれた弾性樹脂の劣化状態を非破壊で判定することができる。 According to the present invention, the deteriorated state of the elastic resin sandwiched between the two members can be determined non-destructively.
実施の形態1に係る劣化状態判定装置の判定対象となる構造体の外観斜視図である。FIG. 5 is an external perspective view of a structure to be determined by the deterioration state determination device according to the first embodiment. 実施の形態1に係る劣化状態判定装置の判定対象となる構造体の縦断面図である。It is a vertical cross-sectional view of the structure which is the judgment target of the deterioration state determination apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る劣化状態検査システムに適用される劣化状態判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the deterioration state determination apparatus applied to the deterioration state inspection system which concerns on Embodiment 1. FIG. 図4Aは弾性樹脂が劣化していない場合の超音波の透過を示す図である。図4Bは弾性樹脂が劣化していない場合の超音波の振幅を示す図である。FIG. 4A is a diagram showing the transmission of ultrasonic waves when the elastic resin is not deteriorated. FIG. 4B is a diagram showing the amplitude of ultrasonic waves when the elastic resin is not deteriorated. 図5Aは弾性樹脂が劣化している場合の超音波の透過を示す図である。図5Bは弾性樹脂が劣化している場合の超音波の振幅を示す図である。FIG. 5A is a diagram showing the transmission of ultrasonic waves when the elastic resin is deteriorated. FIG. 5B is a diagram showing the amplitude of ultrasonic waves when the elastic resin is deteriorated. 劣化していない弾性樹脂を対象とした透過波実験結果を示す図である。It is a figure which shows the transmission wave experiment result for elastic resin which has not deteriorated. 劣化している弾性樹脂を対象とした透過波実験結果を示す図である。It is a figure which shows the transmission wave experiment result for the deteriorated elastic resin. 実施の形態1に係る劣化状態判定装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the deterioration state determination apparatus which concerns on Embodiment 1. FIG. 図9A及び図9Bは実施の形態1に係る運転者監視装置のハードウェア構成の一例を示す図である。9A and 9B are diagrams showing an example of the hardware configuration of the driver monitoring device according to the first embodiment. 実施の形態2に係る劣化状態検査システムの構成を示す図である。It is a figure which shows the structure of the deterioration state inspection system which concerns on Embodiment 2.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 実施の形態1に係る劣化状態判定装置40について、図1から図9を用いて説明する。
Embodiment 1.
The deterioration state determination device 40 according to the first embodiment will be described with reference to FIGS. 1 to 9.
 先ず、実施の形態1に係る劣化状態判定装置40の判定対象(検査対象)となる構造体10について、図1及び図2を用いて説明する。図1は、実施の形態1に係る劣化状態判定装置40の判定対象となる構造体10の外観斜視図である。図2は、実施の形態1に係る劣化状態判定装置40の判定対象となる構造体10の縦断面図である。なお、劣化状態判定装置40は、図3に図示されており、その詳細については、後述する。 First, the structure 10 to be the determination target (inspection target) of the deterioration state determination device 40 according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is an external perspective view of a structure 10 to be determined by the deterioration state determination device 40 according to the first embodiment. FIG. 2 is a vertical cross-sectional view of the structure 10 to be determined by the deterioration state determination device 40 according to the first embodiment. The deterioration state determination device 40 is shown in FIG. 3, and details thereof will be described later.
 図1及び図2に示すように、構造体10は、配管11と配管12とを、ボルト14及びナット15を用いて、互いにフランジ接合させたものである。配管11,12は、例えば、金属で形成されている。配管11は、フランジ11aを有している。フランジ11aは、配管11の一端に設けられている。配管12は、フランジ12a及び環状溝12bを有している。フランジ12aは、配管12の一端に設けられている。環状溝12bは、フランジ12aの接触面に形成されている。なお、フランジ12aの接触面は、フランジ11aの接触面と接触するである。 As shown in FIGS. 1 and 2, in the structure 10, the pipe 11 and the pipe 12 are flanged to each other using bolts 14 and nuts 15. The pipes 11 and 12 are made of, for example, metal. The pipe 11 has a flange 11a. The flange 11a is provided at one end of the pipe 11. The pipe 12 has a flange 12a and an annular groove 12b. The flange 12a is provided at one end of the pipe 12. The annular groove 12b is formed on the contact surface of the flange 12a. The contact surface of the flange 12a is in contact with the contact surface of the flange 11a.
 環状溝12bには、弾性樹脂13が嵌め込まれている。この弾性樹脂13は、例えば、ゴム製のガスケット又はパッキン等のシール部材であり、環状をなしている。また、弾性樹脂13は、配管11,12の径方向方(以下、単に、径方向と称す)において、フランジ11a,12aを貫通したボルト14よりも径方向内側に配置されている。弾性樹脂13の高さは、環状溝12bの深さを超える値となっている。これにより、弾性樹脂13は、環状溝12bに嵌め込まれた際に、当該環状溝12bから突出した状態となる。 Elastic resin 13 is fitted in the annular groove 12b. The elastic resin 13 is, for example, a sealing member such as a rubber gasket or packing, and has an annular shape. Further, the elastic resin 13 is arranged in the radial direction of the pipes 11 and 12 (hereinafter, simply referred to as the radial direction) with respect to the bolt 14 penetrating the flanges 11a and 12a. The height of the elastic resin 13 is a value that exceeds the depth of the annular groove 12b. As a result, when the elastic resin 13 is fitted into the annular groove 12b, the elastic resin 13 is in a state of protruding from the annular groove 12b.
 そして、フランジ11aとフランジ12aとは、弾性樹脂13を挟み込んだ状態で、ボルト14及びナット15を用いて接合されている。このとき、弾性樹脂13は、フランジ11a,12aの周方向全域において、当該フランジ11a,12a間を密閉している。 Then, the flange 11a and the flange 12a are joined by using the bolt 14 and the nut 15 with the elastic resin 13 sandwiched between them. At this time, the elastic resin 13 seals between the flanges 11a and 12a in the entire circumferential direction of the flanges 11a and 12a.
 互いに接合された配管11,12には、気体又は液体等の流体が流れている。配管11,12は、フランジ11a,12a同士をボルト14及びナット15によって締め付けるだけでは、流体のフランジ11a,12a間からの漏れを防ぐことが難しいため、当該フランジ11a,12a間に、弾性樹脂13を挟み込んでいる。 A fluid such as gas or liquid is flowing through the pipes 11 and 12 that are joined to each other. In the pipes 11 and 12, it is difficult to prevent fluid from leaking from between the flanges 11a and 12a simply by tightening the flanges 11a and 12a with bolts 14 and nuts 15. Therefore, the elastic resin 13 is sandwiched between the flanges 11a and 12a. Is sandwiched.
 環状溝12bに嵌め込まれた弾性樹脂13は、フランジ11a,12a同士が配管11,12の軸方向(以下、単に、軸方向と称す)において突き合わされることにより、当該軸方向において弾性変形する。これにより、弾性樹脂13は、フランジ11aを押圧することになり、フランジ11a,12a間の隙間は、密閉される。この結果、流体は、配管11,12を流れても、フランジ11a,12a間から漏出することはない。 The elastic resin 13 fitted in the annular groove 12b is elastically deformed in the axial direction when the flanges 11a and 12a are butted against each other in the axial direction of the pipes 11 and 12 (hereinafter, simply referred to as the axial direction). As a result, the elastic resin 13 presses the flange 11a, and the gap between the flanges 11a and 12a is sealed. As a result, the fluid does not leak from between the flanges 11a and 12a even if it flows through the pipes 11 and 12.
 しかしながら、弾性樹脂13は、年月が経つと、徐々に劣化していく。このように、弾性樹脂13は、劣化してくると、徐々に硬化して、その弾性力が失われていく。このような、弾性樹脂13の劣化は、フランジ11aと弾性樹脂13との間の接触状態、及び、フランジ12aと弾性樹脂13との間の接触状態に悪影響を与え、流体の漏れを発生させるおそれがある。これにより、フランジ11a,12aからの流体漏れを防止するためには、弾性樹脂13の劣化を非破壊で検査することが必要とされる。 However, the elastic resin 13 gradually deteriorates over the years. As described above, as the elastic resin 13 deteriorates, it gradually hardens and loses its elastic force. Such deterioration of the elastic resin 13 adversely affects the contact state between the flange 11a and the elastic resin 13 and the contact state between the flange 12a and the elastic resin 13, and may cause fluid leakage. There is. Therefore, in order to prevent fluid leakage from the flanges 11a and 12a, it is necessary to non-destructively inspect the deterioration of the elastic resin 13.
 次に、実施の形態1に係る劣化状態判定装置40及びこれを備えた劣化状態検査システムについて、図3から図5を用いて説明する。図3は、実施の形態1に係る劣化状態検査システムに適用される劣化状態判定装置40の構成を示すブロック図である。図4Aは、弾性樹脂13が劣化していない場合の超音波の透過を示す図である。図4Bは、弾性樹脂13が劣化していない場合の超音波の振幅を示す図である。図5Aは、弾性樹脂13が劣化している場合の超音波の透過を示す図である。図5Bは、弾性樹脂13が劣化している場合の超音波の振幅を示す図である。 Next, the deterioration state determination device 40 and the deterioration state inspection system provided with the deterioration state determination device 40 according to the first embodiment will be described with reference to FIGS. 3 to 5. FIG. 3 is a block diagram showing a configuration of a deterioration state determination device 40 applied to the deterioration state inspection system according to the first embodiment. FIG. 4A is a diagram showing transmission of ultrasonic waves when the elastic resin 13 is not deteriorated. FIG. 4B is a diagram showing the amplitude of ultrasonic waves when the elastic resin 13 is not deteriorated. FIG. 5A is a diagram showing transmission of ultrasonic waves when the elastic resin 13 is deteriorated. FIG. 5B is a diagram showing the amplitude of ultrasonic waves when the elastic resin 13 is deteriorated.
 なお、図3、図4A、及び、図5Aは、ボルト14、ナット15、及び、流路を省略した図となっている。更に、図4A及び図5Aは、送受信器30を省略した図となっている。また、図4B及び図5Bにおいては、縦軸は振幅を示しており、横軸は時間を示している。 Note that FIGS. 3, 4A, and 5A are views in which the bolt 14, the nut 15, and the flow path are omitted. Further, FIGS. 4A and 5A are views in which the transmitter / receiver 30 is omitted. Further, in FIGS. 4B and 5B, the vertical axis represents the amplitude and the horizontal axis represents the time.
 図3に示すように、実施の形態1に係る劣化状態検査システムは、送信用探触子21、受信用探触子22、及び、送受信器30を備えている。 As shown in FIG. 3, the deterioration state inspection system according to the first embodiment includes a transmission probe 21, a reception probe 22, and a transmitter / receiver 30.
 送信用探触子21は、フランジ11aに取り付けられている。また、送信用探触子21は、超音波を放射するための超音波放射面21aを有している。この超音波放射面21aは、フランジ11aの表面に当接されている。なお、フランジ11aの表面とは、上記フランジ11aの接触面の反対側に位置する面のことである。 The transmission probe 21 is attached to the flange 11a. Further, the transmission probe 21 has an ultrasonic radiation surface 21a for radiating ultrasonic waves. The ultrasonic radiation surface 21a is in contact with the surface of the flange 11a. The surface of the flange 11a is a surface located on the opposite side of the contact surface of the flange 11a.
 送信用探触子21は、送受信器30から出力された励振信号を受信すると、超音波放射面21aから超音波を放射する。そして、超音波放射面21aから放射された超音波は、フランジ11aの表面を介して、フランジ11a,12aの内部及び弾性樹脂13の内部を伝搬する。 When the transmission probe 21 receives the excitation signal output from the transmitter / receiver 30, it emits ultrasonic waves from the ultrasonic radiation surface 21a. Then, the ultrasonic waves radiated from the ultrasonic radiation surface 21a propagate through the surface of the flange 11a to the inside of the flanges 11a and 12a and the inside of the elastic resin 13.
 受信用探触子22は、送信用探触子21と対となって、フランジ12aに取り付けられている。即ち、送信用探触子21と受信用探触子22とは、フランジ11a,12a間に挟み込まれた弾性樹脂13を軸方向両側から挟み込むように配置されている。また、受信用探触子22は、超音波を受信するための超音波受信面22aを有している。この超音波受信面22aは、フランジ12aの表面に当接されている。なお、フランジ12aの表面とは、上記フランジ12aの接触面の反対側に位置する面のことである。 The receiving probe 22 is attached to the flange 12a in pairs with the transmitting probe 21. That is, the transmitting probe 21 and the receiving probe 22 are arranged so as to sandwich the elastic resin 13 sandwiched between the flanges 11a and 12a from both sides in the axial direction. Further, the receiving probe 22 has an ultrasonic wave receiving surface 22a for receiving ultrasonic waves. The ultrasonic receiving surface 22a is in contact with the surface of the flange 12a. The surface of the flange 12a is a surface located on the opposite side of the contact surface of the flange 12a.
 受信用探触子22は、送信用探触子21から放射された超音波を、超音波受信面22aによって受信する。更に、受信用探触子22は、その受信した超音波を、当該超音波の波形を示す波形信号に変換して、送受信器30に出力する。 The receiving probe 22 receives the ultrasonic waves radiated from the transmitting probe 21 by the ultrasonic receiving surface 22a. Further, the receiving probe 22 converts the received ultrasonic wave into a waveform signal indicating the waveform of the ultrasonic wave and outputs it to the transmitter / receiver 30.
 また、弾性樹脂13は、超音波透過面13a,13bを有している。超音波透過面13aは、超音波放射面21aと軸方向において対向しており、超音波放射面21aから放射された超音波が透過する面となっている。超音波放射面21aは、超音波透過面13a,13bの一端(内周端)を跨ぐように配置されている。一方、超音波透過面13bは、超音波受信面22aと軸方向において対向しており、弾性樹脂13の内部を伝搬してきた超音波が透過する面となっている。超音波受信面22aは、超音波透過面13a,13bの一端(内周端)を跨ぐように配置されている。 Further, the elastic resin 13 has ultrasonic wave transmitting surfaces 13a and 13b. The ultrasonic transmission surface 13a faces the ultrasonic radiation surface 21a in the axial direction, and is a surface through which the ultrasonic waves radiated from the ultrasonic radiation surface 21a pass. The ultrasonic radiation surface 21a is arranged so as to straddle one end (inner peripheral end) of the ultrasonic transmission surfaces 13a and 13b. On the other hand, the ultrasonic wave transmitting surface 13b faces the ultrasonic wave receiving surface 22a in the axial direction, and is a surface through which the ultrasonic waves propagating inside the elastic resin 13 are transmitted. The ultrasonic wave receiving surface 22a is arranged so as to straddle one end (inner peripheral end) of the ultrasonic wave transmitting surfaces 13a and 13b.
 なお、図3の例では、超音波放射面21aは、超音波透過面13aの一端(内周端)のみを跨ぐと共に、超音波受信面22aは、超音波透過面13bの一端(内周端)のみを跨いでいるが、超音波放射面21aは、超音波透過面13aの他端(外周端)のみを跨ぐと共に、超音波受信面22aは、超音波透過面13bの他端(外周端)のみを跨いでも構わない。 In the example of FIG. 3, the ultrasonic radiation surface 21a straddles only one end (inner peripheral end) of the ultrasonic transmission surface 13a, and the ultrasonic reception surface 22a is one end (inner peripheral end) of the ultrasonic transmission surface 13b. The ultrasonic radiation surface 21a straddles only the other end (outer peripheral end) of the ultrasonic transmission surface 13a, and the ultrasonic reception surface 22a straddles only the other end (outer peripheral end) of the ultrasonic transmission surface 13b. ) May be straddled.
 これにより、超音波放射面21aから放射された超音波の一部は、フランジ11a及びフランジ12aを順に透過した後、超音波受信面22aで受信される透過波、及び、フランジ11a、弾性樹脂13、及び、フランジ12aを順に透過した後、受信用探触子22で受信される透過波となる。 As a result, a part of the ultrasonic waves radiated from the ultrasonic radiation surface 21a passes through the flange 11a and the flange 12a in order, and then the transmitted wave received by the ultrasonic reception surface 22a, the flange 11a, and the elastic resin 13. , And, after passing through the flange 12a in order, the transmitted wave is received by the receiving probe 22.
 以下の説明では、図4A及び図5Aに示すように、超音波が、フランジ11a及びフランジ12aのみを順に透過した後、超音波受信面22aに到達する経路を、第1伝搬経路61と称する。即ち、第1伝搬経路61は、超音波が弾性樹脂13を透過しない伝搬経路である。また、超音波が、フランジ11a、弾性樹脂13、及び、フランジ12aを順に透過した後、受信用探触子22に到達する経路を、第2伝搬経路62と称する。即ち、第2伝搬経路62は、超音波が弾性樹脂13を透過する伝搬経路である。 In the following description, as shown in FIGS. 4A and 5A, the path through which the ultrasonic waves pass through only the flange 11a and the flange 12a in order and then reach the ultrasonic wave receiving surface 22a is referred to as a first propagation path 61. That is, the first propagation path 61 is a propagation path in which ultrasonic waves do not pass through the elastic resin 13. The path through which the ultrasonic waves pass through the flange 11a, the elastic resin 13, and the flange 12a in this order and then reach the receiving probe 22 is referred to as a second propagation path 62. That is, the second propagation path 62 is a propagation path through which ultrasonic waves pass through the elastic resin 13.
 送受信器30は、送信部31、受信部32、及び、劣化状態判定装置40を有している。 The transmitter / receiver 30 has a transmitter 31, a receiver 32, and a deterioration state determination device 40.
 送信部31は、送信用探触子21に対して、励振信号を出力し、当該送信用探触子21から超音波を放射させる。 The transmission unit 31 outputs an excitation signal to the transmission probe 21 and radiates ultrasonic waves from the transmission probe 21.
 受信部32は、受信用探触子22から出力された波形信号を受信し、この受信した波形信号に対応した受信信号を劣化状態判定装置40に出力する。 The receiving unit 32 receives the waveform signal output from the receiving probe 22, and outputs the received signal corresponding to the received waveform signal to the deterioration state determination device 40.
 劣化状態判定装置40は、フランジ11a,12aと弾性樹脂13との間の隙間に対応する超音波の中間エコーを用いるのではなく、上記2つの伝搬経路61,62をそれぞれ伝搬してきた超音波の振幅を用いることにより、弾性樹脂13の劣化状態を非破壊で判定するものである。この劣化状態判定装置40は、取得部41及び判定部42を有している。 The deterioration state determination device 40 does not use the intermediate echo of the ultrasonic wave corresponding to the gap between the flanges 11a and 12a and the elastic resin 13, but the ultrasonic wave propagating in the above two propagation paths 61 and 62, respectively. By using the amplitude, the deteriorated state of the elastic resin 13 is determined non-destructively. The deterioration state determination device 40 has an acquisition unit 41 and a determination unit 42.
 取得部41は、受信部32から出力された受信信号を取得する。また、取得部41は、取得した受信信号を、判定部42に出力する。 The acquisition unit 41 acquires the reception signal output from the reception unit 32. Further, the acquisition unit 41 outputs the acquired reception signal to the determination unit 42.
 判定部42は、取得部41から出力された受信信号を受信し、受信用探触子22が受信した超音波のうち、弾性樹脂13を透過しなかった超音波の振幅と、弾性樹脂13を透過した超音波の振幅とに基づいて、弾性樹脂13の劣化状態を判定する。 The determination unit 42 receives the reception signal output from the acquisition unit 41, and among the ultrasonic waves received by the reception probe 22, the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the elastic resin 13 are determined. The deterioration state of the elastic resin 13 is determined based on the amplitude of the transmitted ultrasonic waves.
 具体的には、図4Aから図5Bに示すように、判定部42は、取得部41から出力された受信信号を解析して、受信用探触子22によって受信された2つの超音波のうち、第1伝搬経路61を伝搬してきた超音波の振幅と、第2伝搬経路62を伝搬してきた超音波の振幅とを特定する。そして、判定部42は、第1伝搬経路61を伝搬してきた超音波の振幅と、第2伝搬経路62を伝搬してきた超音波の振幅とを比較して、弾性樹脂13の劣化状態を判定する。判定部42は、例えば、上記2つの振幅を、それらの差分又は比率を用いて比較する。 Specifically, as shown in FIGS. 4A to 5B, the determination unit 42 analyzes the reception signal output from the acquisition unit 41, and of the two ultrasonic waves received by the reception probe 22. , The amplitude of the ultrasonic wave propagating in the first propagation path 61 and the amplitude of the ultrasonic wave propagating in the second propagation path 62 are specified. Then, the determination unit 42 compares the amplitude of the ultrasonic wave propagating in the first propagation path 61 with the amplitude of the ultrasonic wave propagating in the second propagation path 62 to determine the deteriorated state of the elastic resin 13. .. The determination unit 42 compares, for example, the above two amplitudes using their differences or ratios.
 なお、判定部42は、第1伝搬経路61を伝搬してきた超音波の波形と、第2伝搬経路62を伝搬してきた超音波の波形とを、表示器(図示省略)に表示しても良い。また、判定部42は、判定結果を表示器に表示しても良い。 The determination unit 42 may display the waveform of the ultrasonic wave propagating in the first propagation path 61 and the waveform of the ultrasonic wave propagating in the second propagation path 62 on a display (not shown). .. Further, the determination unit 42 may display the determination result on the display.
 ここで、弾性樹脂材料内を伝搬する超音波の音速は、金属材料内を伝搬する超音波の音速よりも遅くなる。従って、第2伝搬経路62を伝搬した超音波は、第1伝搬経路61を伝搬した超音波よりも、時間的に遅く受信される。これにより、判定部42は、第1ゲート期間71及び第2ゲート期間72を設定している。第1ゲート期間71は、第1伝搬経路61を伝播した超音波の振幅を検出するための期間である。第2ゲート期間72は、第2伝搬経路62を伝播した超音波の振幅を検出するための期間である。 Here, the speed of sound of ultrasonic waves propagating in the elastic resin material is slower than the speed of sound of ultrasonic waves propagating in the metal material. Therefore, the ultrasonic wave propagating in the second propagation path 62 is received later in time than the ultrasonic wave propagating in the first propagation path 61. As a result, the determination unit 42 sets the first gate period 71 and the second gate period 72. The first gate period 71 is a period for detecting the amplitude of the ultrasonic wave propagating in the first propagation path 61. The second gate period 72 is a period for detecting the amplitude of the ultrasonic wave propagating in the second propagation path 62.
 判定部42は、フランジ11aの厚さ、フランジ12aの厚さ、及び、超音波の音速に基づいて、第1ゲート期間71の開始時刻を設定する。また、判定部42は、フランジ11aの厚さ、フランジ12aの厚さ、弾性樹脂13の厚さ、及び、超音波の音速に基づいて、第2ゲート期間72の開始時刻を設定する。更に、判定部42は、超音波の周波数、送信用探触子21の帯域幅、及び、受信用探触子22の帯域幅に基づいて、第1ゲート期間71の長さ、及び、第2ゲート期間72に長さを設定する。 The determination unit 42 sets the start time of the first gate period 71 based on the thickness of the flange 11a, the thickness of the flange 12a, and the sound velocity of ultrasonic waves. Further, the determination unit 42 sets the start time of the second gate period 72 based on the thickness of the flange 11a, the thickness of the flange 12a, the thickness of the elastic resin 13, and the sound velocity of ultrasonic waves. Further, the determination unit 42 determines the length of the first gate period 71 and the second, based on the frequency of the ultrasonic wave, the bandwidth of the transmitter 21 for transmission, and the bandwidth of the probe 22 for reception. The length is set to the gate period 72.
 第1伝搬経路61を伝搬する超音波は、フランジ11a,12aのみを透過するため、弾性樹脂13の劣化状態に対応しないものである。第1ゲート期間71で検出された超音波の振幅は、送信用探触子21とフランジ11aとの間の接触状態、及び、受信用探触子22とフランジ12aとの間の接触状態に応じて変化する。 Since the ultrasonic waves propagating in the first propagation path 61 pass through only the flanges 11a and 12a, they do not correspond to the deteriorated state of the elastic resin 13. The amplitude of the ultrasonic wave detected in the first gate period 71 depends on the contact state between the transmitting probe 21 and the flange 11a and the contact state between the receiving probe 22 and the flange 12a. Change.
 一方、第2伝搬経路62を伝搬する超音波は、フランジ11a,12a及び弾性樹脂13を伝播するため、弾性樹脂13の劣化状態に対応するものである。第2ゲート期間72で検出された超音波の振幅は、フランジ11aと弾性樹脂13との間の接触状態、及び、フランジ12aと弾性樹脂13との間の接触状態に応じて変化する。即ち、弾性樹脂13が劣化した場合、フランジ11aと弾性樹脂13との間、及び、フランジ12aと弾性樹脂13との間のうち、少なくともいずれか一方に、隙間が生じるため、第2ゲート期間72で検出された超音波の振幅は、小さくなる。 On the other hand, the ultrasonic waves propagating in the second propagation path 62 propagate through the flanges 11a and 12a and the elastic resin 13, and therefore correspond to the deteriorated state of the elastic resin 13. The amplitude of the ultrasonic wave detected in the second gate period 72 changes depending on the contact state between the flange 11a and the elastic resin 13 and the contact state between the flange 12a and the elastic resin 13. That is, when the elastic resin 13 deteriorates, a gap is formed between the flange 11a and the elastic resin 13 and at least one of the flange 12a and the elastic resin 13, so that the second gate period 72 The amplitude of the ultrasonic waves detected in is smaller.
 また、第2ゲート期間72で検出された超音波の振幅は、第1ゲート期間71で検出された超音波の振幅と同様に、送信用探触子21とフランジ11aとの間の接触状態、及び、受信用探触子22とフランジ12aとの間の接触状態に応じて変化する。これにより、判定部42は、第1ゲート期間71で検出された超音波の振幅と、第2ゲート期間72で検出された超音波の振幅とを比較することによって、フランジ11aと弾性樹脂13との間の接触状態、及び、フランジ12aと弾性樹脂13との間の接触状態を求めることができ、更に、この求めた結果に基づいて、弾性樹脂13の劣化状態を判定することができる。 Further, the amplitude of the ultrasonic wave detected in the second gate period 72 is the contact state between the transmission probe 21 and the flange 11a, similarly to the amplitude of the ultrasonic wave detected in the first gate period 71. And, it changes according to the contact state between the receiving probe 22 and the flange 12a. As a result, the determination unit 42 compares the amplitude of the ultrasonic wave detected in the first gate period 71 with the amplitude of the ultrasonic wave detected in the second gate period 72, thereby forming the flange 11a and the elastic resin 13. The contact state between the two, and the contact state between the flange 12a and the elastic resin 13 can be obtained, and further, the deteriorated state of the elastic resin 13 can be determined based on the obtained result.
 図4A及び図4Bでは、弾性樹脂13が劣化していない状態となっており、第2ゲート期間72で検出された超音波の振幅は、第1ゲート期間71で検出された超音波の振幅よりも大きくなっている。即ち、判定部42は、第2ゲート期間72で検出された超音波の振幅が第1ゲート期間71で検出された超音波の振幅がよりも大きい場合、フランジ11aと弾性樹脂13との間、及び、フランジ12aと弾性樹脂13との間に、隙間が生じていないと判断する。この結果、判定部42は、弾性樹脂13を劣化していないと判定する。 In FIGS. 4A and 4B, the elastic resin 13 is not deteriorated, and the amplitude of the ultrasonic wave detected in the second gate period 72 is higher than the amplitude of the ultrasonic wave detected in the first gate period 71. Is also getting bigger. That is, when the amplitude of the ultrasonic wave detected in the second gate period 72 is larger than the amplitude of the ultrasonic wave detected in the first gate period 71, the determination unit 42 determines between the flange 11a and the elastic resin 13. Further, it is determined that there is no gap between the flange 12a and the elastic resin 13. As a result, the determination unit 42 determines that the elastic resin 13 has not deteriorated.
 これに対して、図5A及び図5Bでは、弾性樹脂13が劣化している状態となっており、第2ゲート期間72で検出された超音波の振幅は、第1ゲート期間71で検出された超音波の振幅よりも小さくなっている。即ち、判定部42は、第2ゲート期間72で検出された超音波の振幅が第1ゲート期間71で検出された超音波の振幅がよりも小さい場合、フランジ11aと弾性樹脂13との間、及び、フランジ12aと弾性樹脂13との間の少なくともいずれか一方に、隙間が生じていると判断する。この結果、判定部42は、弾性樹脂13を劣化していると判定する。 On the other hand, in FIGS. 5A and 5B, the elastic resin 13 is in a deteriorated state, and the amplitude of the ultrasonic wave detected in the second gate period 72 is detected in the first gate period 71. It is smaller than the amplitude of the ultrasonic wave. That is, when the amplitude of the ultrasonic waves detected in the second gate period 72 is smaller than the amplitude of the ultrasonic waves detected in the first gate period 71, the determination unit 42 determines between the flange 11a and the elastic resin 13. And, it is determined that a gap is formed in at least one of the flange 12a and the elastic resin 13. As a result, the determination unit 42 determines that the elastic resin 13 has deteriorated.
 なお、ここで、説明した超音波の振幅とは、第1ゲート期間71及び第2ゲート期間72における絶対値の最大値のことである。 The ultrasonic amplitude described here is the maximum value of the absolute value in the first gate period 71 and the second gate period 72.
 次に、判定部42の判定方法について、図7及び図8を用いて検証する。図6は、劣化していない弾性樹脂13を対象とした透過波実験結果を示す図である。図7は、劣化している弾性樹脂13を対象とした透過波実験結果を示す図である。なお、図7及び図8においては、縦軸は超音波(透過波)の振幅を示しており、横軸は時間を示している。 Next, the determination method of the determination unit 42 will be verified using FIGS. 7 and 8. FIG. 6 is a diagram showing the results of a transmitted wave experiment for an elastic resin 13 that has not deteriorated. FIG. 7 is a diagram showing the results of a transmitted wave experiment targeting the deteriorated elastic resin 13. In FIGS. 7 and 8, the vertical axis represents the amplitude of ultrasonic waves (transmitted waves), and the horizontal axis represents time.
 図6及び図7に示した結果が得られた透過波実験では、送信用探触子21及び受信用探触子22の周波数を、2MHzとしている。また、以下の説明では、第1ゲート期間71で検出された超音波の振幅をA1とし、第2ゲート期間72で検出された超音波の振幅を、A2とする。 In the transmitted wave experiment in which the results shown in FIGS. 6 and 7 were obtained, the frequencies of the transmitting probe 21 and the receiving probe 22 were set to 2 MHz. Further, in the following description, the amplitude of the ultrasonic wave detected in the first gate period 71 is referred to as A1, and the amplitude of the ultrasonic wave detected in the second gate period 72 is referred to as A2.
 図6に示すように、劣化していない弾性樹脂13を対象とした透過波実験結果は、振幅A1<振幅A2となっている。また、図7に示すように、劣化している弾性樹脂13を対象とした透過波実験結果は、振幅A1>振幅A2となっている。従って、上述した判定部42の判定方法は、弾性樹脂13の劣化状態を正しく判定することができる方法である。 As shown in FIG. 6, the transmitted wave experiment result for the elastic resin 13 which has not deteriorated is amplitude A1 <amplitude A2. Further, as shown in FIG. 7, the transmitted wave experiment result for the deteriorated elastic resin 13 shows that the amplitude A1> the amplitude A2. Therefore, the determination method of the determination unit 42 described above is a method capable of correctly determining the deteriorated state of the elastic resin 13.
 ここで、判定部42は、弾性樹脂13の劣化状態を判定する場合、上述したように、振幅A1と振幅A2との大小関係を用いる他に、振幅A1と振幅A2との振幅比を用いても良い。 Here, when determining the deteriorated state of the elastic resin 13, the determination unit 42 uses the magnitude relationship between the amplitude A1 and the amplitude A2 as described above, and also uses the amplitude ratio between the amplitude A1 and the amplitude A2. Is also good.
 具体的には、判定部42は、振幅比(A2/A1)が予め設定された閾値を超える場合、弾性樹脂13を劣化していないと判定し、振幅比が閾値を超えない場合、弾性樹脂13を劣化していると判定する。 Specifically, the determination unit 42 determines that the elastic resin 13 has not deteriorated when the amplitude ratio (A2 / A1) exceeds a preset threshold value, and when the amplitude ratio does not exceed the threshold value, the elastic resin It is determined that 13 is deteriorated.
 例えば、図6に示した透過波実験結果では、(A2/A1)≒2.6となっており、図7に示した透過波実験結果では、(A2/A1)≒0.67となっている。このとき、判定部42は、閾値を「1.0」と予め設定しておけば、弾性樹脂13の劣化状態を判定することができる。 For example, in the transmitted wave experimental result shown in FIG. 6, (A2 / A1) ≈2.6, and in the transmitted wave experimental result shown in FIG. 7, (A2 / A1) ≈0.67. There is. At this time, if the threshold value is set to "1.0" in advance, the determination unit 42 can determine the deteriorated state of the elastic resin 13.
 次に、劣化状態判定装置40の動作について、図8を用いて説明する。図8は、実施の形態1に係る劣化状態判定装置40の動作を示すフローチャートである。 Next, the operation of the deterioration state determination device 40 will be described with reference to FIG. FIG. 8 is a flowchart showing the operation of the deterioration state determination device 40 according to the first embodiment.
 図8に示すように、ステップST11において、取得部41は、フランジ11aの表面から入射され、フランジ12aの表面から出射された超音波の波形を示す受信信号を、取得する。 As shown in FIG. 8, in step ST11, the acquisition unit 41 acquires a received signal indicating the waveform of the ultrasonic wave incident from the surface of the flange 11a and emitted from the surface of the flange 12a.
 ステップST12において、判定部42は、取得部41が取得した超音波のうち、弾性樹脂13を透過しなかった超音波の振幅と、弾性樹脂13を透過した超音波の振幅とに基づいて、当該弾性樹脂13の劣化状態を判定する。これにより、劣化状態判定装置40の動作は、終了する。 In step ST12, the determination unit 42 said the ultrasonic waves acquired by the acquisition unit 41 based on the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the amplitude of the ultrasonic waves that passed through the elastic resin 13. The deteriorated state of the elastic resin 13 is determined. As a result, the operation of the deterioration state determination device 40 ends.
 次に、劣化状態判定装置40のハードウェア構成について、図9を用いて説明する。図9A及び図9Bは、実施の形態1に係る劣化状態判定装置40のハードウェア構成の一例を示す図である。 Next, the hardware configuration of the deterioration state determination device 40 will be described with reference to FIG. 9A and 9B are diagrams showing an example of the hardware configuration of the deterioration state determination device 40 according to the first embodiment.
 図9Aに示す如く、劣化状態判定装置40は、コンピュータにより構成されており、当該コンピュータは、プロセッサ51及びメモリ52を有している。メモリ52には、当該コンピュータを取得部41及び判定部42として機能させるためのプログラムが記憶されている。メモリ52に記憶されているプログラムをプロセッサ51が読み出して実行することにより、取得部41及び判定部42の機能が実現される。 As shown in FIG. 9A, the deterioration state determination device 40 is composed of a computer, which has a processor 51 and a memory 52. The memory 52 stores a program for causing the computer to function as the acquisition unit 41 and the determination unit 42. When the processor 51 reads and executes the program stored in the memory 52, the functions of the acquisition unit 41 and the determination unit 42 are realized.
 また、図9Bに示す如く、劣化状態判定装置40は、処理回路53により構成されても良い。この場合、取得部41及び判定部42の機能が処理回路53により実現されても良い。 Further, as shown in FIG. 9B, the deterioration state determination device 40 may be configured by the processing circuit 53. In this case, the functions of the acquisition unit 41 and the determination unit 42 may be realized by the processing circuit 53.
 更に、劣化状態判定装置40は、プロセッサ51、メモリ52、及び、処理回路53により構成されても良い(不図示)。この場合、取得部41及び判定部42の機能のうちの一部の機能がプロセッサ51及びメモリ52により実現されて、残余の機能が処理回路53により実現されるものであっても良い。 Further, the deterioration state determination device 40 may be composed of a processor 51, a memory 52, and a processing circuit 53 (not shown). In this case, some of the functions of the acquisition unit 41 and the determination unit 42 may be realized by the processor 51 and the memory 52, and the remaining functions may be realized by the processing circuit 53.
 プロセッサ51は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ、又は、DSP(Digital Signal Processor)を用いたものである。 The processor 51 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
 メモリ52は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ52は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)、又は、HDD(Hard Disk Drive)等を用いたものである。 The memory 52 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 52 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), and an EEPROM (Electrically Memory) State Drive) or HDD (Hard Disk Drive) or the like is used.
 処理回路53は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)、又は、システムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 53 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), a System on a Chip (System), a System Integration) is used.
 以上、実施の形態1に係る劣化状態判定装置40は、弾性樹脂13を挟み込んだ2つのフランジ11a,12aのうちのフランジ11aの表面から入射され、その2つのフランジ11a,12aのうちのフランジ12aの表面から出射された超音波の波形を示す信号を取得する取得部41と、取得部41が取得した超音波のうち、弾性樹脂13を透過しなかった超音波の振幅と、弾性樹脂13を透過した超音波の振幅とに基づいて、当該弾性樹脂13の劣化状態を判定する判定部42を備える。これにより、劣化状態判定装置40は、2つのフランジ11a,12a間に挟み込まれた弾性樹脂13の劣化状態を非破壊で判定することができる。 As described above, the deterioration state determination device 40 according to the first embodiment is incident from the surface of the flange 11a of the two flanges 11a and 12a sandwiching the elastic resin 13, and the flange 12a of the two flanges 11a and 12a. The acquisition unit 41 that acquires a signal indicating the waveform of the ultrasonic waves emitted from the surface of the above, and the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the elastic resin 13 among the ultrasonic waves acquired by the acquisition unit 41. A determination unit 42 for determining a deteriorated state of the elastic resin 13 based on the amplitude of the transmitted ultrasonic waves is provided. As a result, the deterioration state determination device 40 can determine the deterioration state of the elastic resin 13 sandwiched between the two flanges 11a and 12a in a non-destructive manner.
 また、実施の形態1に係る劣化状態検査システムは、弾性樹脂13を挟み込んだ2つのフランジ11a,12aのうちのフランジ11aの内部に超音波を放射する送信用探触子21と、送信用探触子21によって放射された超音波を、2つのフランジ11a,12aのうちのフランジ12aを介して、受信する受信用探触子22と、送信用探触子21に対して、励振信号を出力する送信部31と、受信用探触子22から、波形信号を受信する受信部32と、受信部32から波形信号に対応した受信信号を受信し、受信用探触子22が受信した超音波のうち、弾性樹脂13を透過しなかった超音波の振幅と、弾性樹脂13を透過した超音波の振幅とに基づいて、当該弾性樹脂13の劣化状態を判定する判定部42とを備える。これにより、劣化状態検査システムは、2つのフランジ11a,12a間に挟み込まれた弾性樹脂13の劣化状態を非破壊で判定することができる。 Further, the deterioration state inspection system according to the first embodiment includes a transmission probe 21 that radiates ultrasonic waves inside the flange 11a of the two flanges 11a and 12a sandwiching the elastic resin 13, and a transmission probe. An excitation signal is output to the receiving probe 22 and the transmitting probe 21 that receive the ultrasonic waves radiated by the tentacle 21 via the flange 12a of the two flanges 11a and 12a. The ultrasonic wave received by the receiving probe 22 after receiving the receiving signal corresponding to the amplitude signal from the receiving section 32 and the receiving section 32 that receive the waveform signal from the transmitting section 31 and the receiving probe 22. Of these, a determination unit 42 for determining a deteriorated state of the elastic resin 13 is provided based on the amplitude of the ultrasonic waves that did not pass through the elastic resin 13 and the amplitude of the ultrasonic waves that passed through the elastic resin 13. As a result, the deterioration state inspection system can determine the deterioration state of the elastic resin 13 sandwiched between the two flanges 11a and 12a in a non-destructive manner.
 更に、劣化状態検査システムは、送信用探触子21及び受信用探触子22を、弾性樹脂13の一端を跨ぐように配置させている。これにより、劣化状態検査システムは、超音波が弾性樹脂13を透過しない第1伝搬経路61と、超音波が弾性樹脂13を透過する第2伝搬経路62とを、設定することができるので、弾性樹脂13の劣化状態を適切に判定することができる。 Further, in the deterioration state inspection system, the transmitting probe 21 and the receiving probe 22 are arranged so as to straddle one end of the elastic resin 13. As a result, the deterioration state inspection system can set the first propagation path 61 in which the ultrasonic waves do not pass through the elastic resin 13 and the second propagation path 62 in which the ultrasonic waves pass through the elastic resin 13, so that the elasticity can be set. The deteriorated state of the resin 13 can be appropriately determined.
実施の形態2.
 実施の形態2に係る劣化状態検査システムについて、図10を用いて説明する。なお、図10は、ボルト14、ナット15、送受信器30、及び、流路を省略した図となっている。
Embodiment 2.
The deterioration state inspection system according to the second embodiment will be described with reference to FIG. Note that FIG. 10 is a diagram in which the bolt 14, the nut 15, the transmitter / receiver 30, and the flow path are omitted.
 実施の形態2に係る劣化状態検査システムは、実施の形態1に係る劣化状態検査システムに対して、送信用探触子21及び受信用探触子22に替えて、送信用探触子26及び受信用探触子27を備えたものである。送信用探触子26及び受信用探触子27は、弾性樹脂13の両端を跨ぐように配置されている。 The deterioration state inspection system according to the second embodiment replaces the transmission probe 21 and the reception probe 22 with the transmission probe 26 and the deterioration state inspection system according to the first embodiment. It is provided with a receiving probe 27. The transmitting probe 26 and the receiving probe 27 are arranged so as to straddle both ends of the elastic resin 13.
 送信用探触子26は、超音波を放射するための超音波放射面26aを有している。この超音波放射面26aは、超音波透過面13a,13bの一端(内周端)及び他端(外周端)を跨ぐように配置されている。また、受信用探触子27は、超音波を受信するための超音波受信面27aを有している。この超音波受信面27aは、超音波透過面13a,13bの一端(内周端)及び他端(外周端)を跨ぐように配置されている。即ち、超音波放射面26aの長さは、超音波透過面13a,13bの径方向長さよりも長い。また、超音波受信面27aの長さは、超音波透過面13a,13bの径方向長さよりも長い。 The transmission probe 26 has an ultrasonic radiation surface 26a for radiating ultrasonic waves. The ultrasonic radiation surface 26a is arranged so as to straddle one end (inner peripheral end) and the other end (outer peripheral end) of the ultrasonic transmission surfaces 13a and 13b. Further, the receiving probe 27 has an ultrasonic wave receiving surface 27a for receiving ultrasonic waves. The ultrasonic wave receiving surface 27a is arranged so as to straddle one end (inner peripheral end) and the other end (outer peripheral end) of the ultrasonic wave transmitting surfaces 13a and 13b. That is, the length of the ultrasonic radiation surface 26a is longer than the radial length of the ultrasonic transmission surfaces 13a and 13b. Further, the length of the ultrasonic wave receiving surface 27a is longer than the radial length of the ultrasonic wave transmitting surfaces 13a and 13b.
 これにより、判定部42は、2つの第1伝搬経路61と、1つの第2伝搬経路62を設定することができる。即ち、弾性樹脂13を透過しない超音波は、当該弾性樹脂13の一端側及び他端側を通過する。 Thereby, the determination unit 42 can set two first propagation paths 61 and one second propagation path 62. That is, the ultrasonic waves that do not pass through the elastic resin 13 pass through one end side and the other end side of the elastic resin 13.
 また、判定部42は、弾性樹脂13の劣化状態を判定する場合、弾性樹脂13を透過しなかった2つの超音波の振幅、又は、その2つの超音波の振幅のうちのいずれか一方の振幅を使用する。 Further, when determining the deteriorated state of the elastic resin 13, the determination unit 42 determines the amplitude of the two ultrasonic waves that did not pass through the elastic resin 13, or the amplitude of either of the two ultrasonic waves. To use.
 以上、実施の形態2に係る劣化状態検査システムは、送信用探触子26及び受信用探触子27を、弾性樹脂13の両端を跨ぐように配置させている。これにより、劣化状態検査システムは、超音波が弾性樹脂13を透過しない第1伝搬経路61と、超音波が弾性樹脂13を透過する第2伝搬経路62とを、設定することができるので、弾性樹脂13の劣化状態を適切に判定することができる。 As described above, in the deterioration state inspection system according to the second embodiment, the transmission probe 26 and the reception probe 27 are arranged so as to straddle both ends of the elastic resin 13. As a result, the deterioration state inspection system can set the first propagation path 61 in which the ultrasonic waves do not pass through the elastic resin 13 and the second propagation path 62 in which the ultrasonic waves pass through the elastic resin 13, so that the elasticity can be set. The deteriorated state of the resin 13 can be appropriately determined.
 なお、本願発明は、その発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは、各実施の形態における任意の構成要素の変形、もしくは、各実施の形態における任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, modification of any component in each embodiment, or omission of any component in each embodiment can be omitted. It is possible.
 この発明に係る劣化状態判定装置は、弾性樹脂を透過しなかった超音波の振幅と、弾性樹脂を透過した超音波の振幅とを使用して、弾性樹脂の劣化状態を判定することができ、2つの部材間に挟み込まれた弾性樹脂の劣化状態を判定する劣化状態判定装置等に用いるのに適している。 The deterioration state determination device according to the present invention can determine the deterioration state of the elastic resin by using the amplitude of the ultrasonic waves that have not passed through the elastic resin and the amplitude of the ultrasonic waves that have passed through the elastic resin. It is suitable for use in a deterioration state determination device or the like for determining a deterioration state of an elastic resin sandwiched between two members.
 10 構造体、11 配管、11a フランジ、12 配管、12a フランジ、12b 環状溝、13 弾性樹脂、13a,13b 超音波透過面、14 ボルト、15 ナット、21,26 送信用探触子、21a,26a 超音波放射面、22,27 受信用探触子、22a,27a 超音波受信面、30 送受信器、31 送信部、32 受信部、40 劣化状態判定装置、41 取得部、42 判定部、51 プロセッサ、52 メモリ、53 処理回路、61 第1伝搬経路、62 第2伝搬経路、71 第1ゲート期間、72 第2ゲート期間、A1,A2 振幅。 10 structure, 11 piping, 11a flange, 12 piping, 12a flange, 12b annular groove, 13 elastic resin, 13a, 13b ultrasonic transmission surface, 14 bolts, 15 nuts, 21,26 transmission probes, 21a, 26a Ultrasonic radiation surface, 22, 27 receiver for reception, 22a, 27a Ultrasonic reception surface, 30 transmitter / receiver, 31 transmitter, 32 receiver, 40 deterioration state judgment device, 41 acquisition unit, 42 judgment unit, 51 processor , 52 memory, 53 processing circuit, 61 first propagation path, 62 second propagation path, 71 first gate period, 72 second gate period, A1, A2 amplitude.

Claims (5)

  1.  弾性樹脂を挟み込んだ2つの部材のうちの一方の部材の表面から入射され、前記2つの部材のうちの他方の部材の表面から出射された超音波の波形を示す信号を取得する取得部と、
     前記取得部が取得した超音波のうち、前記弾性樹脂を透過しなかった超音波の振幅と、前記弾性樹脂を透過した超音波の振幅とに基づいて、前記弾性樹脂の劣化状態を判定する判定部とを備える
     ことを特徴とする劣化状態判定装置。
    An acquisition unit that acquires a signal indicating the waveform of ultrasonic waves incident from the surface of one of the two members sandwiching the elastic resin and emitted from the surface of the other member of the two members.
    Judgment of determining the deterioration state of the elastic resin based on the amplitude of the ultrasonic waves that did not pass through the elastic resin and the amplitude of the ultrasonic waves that passed through the elastic resin among the ultrasonic waves acquired by the acquisition unit. A deterioration state determination device characterized by having a unit.
  2.  弾性樹脂を挟み込んだ2つの部材のうちの一方の部材の内部に超音波を放射する送信用探触子と、
     前記送信用探触子によって放射された超音波を、前記2つの部材のうちの他方の部材を介して、受信する受信用探触子と、
     前記送信用探触子に対して、励振信号を出力する送信部と、
     前記受信用探触子から、波形信号を受信する受信部と、
     前記受信部から波形信号に対応した受信信号を受信し、前記受信用探触子が受信した超音波のうち、前記弾性樹脂を透過しなかった超音波の振幅と、前記弾性樹脂を透過した超音波の振幅とに基づいて、前記弾性樹脂の劣化状態を判定する判定部とを備える
     ことを特徴とする劣化状態検査システム。
    A transmitter probe that radiates ultrasonic waves inside one of the two members that sandwich the elastic resin,
    A receiving probe that receives ultrasonic waves radiated by the transmitting probe via the other member of the two members, and a receiving probe.
    A transmitter that outputs an excitation signal to the transmitter probe,
    A receiving unit that receives a waveform signal from the receiving probe, and
    Of the ultrasonic waves received by the receiving probe that received the received signal corresponding to the waveform signal from the receiving unit, the amplitude of the ultrasonic waves that did not pass through the elastic resin and the ultrasonic waves that passed through the elastic resin. A deterioration state inspection system including a determination unit for determining a deterioration state of the elastic resin based on the amplitude of ultrasonic waves.
  3.  前記送信用探触子及び前記受信用探触子は、
     前記弾性樹脂の一端を跨ぐように配置される
     ことを特徴とする請求項2記載の劣化状態検査システム。
    The transmitting probe and the receiving probe are
    The deterioration state inspection system according to claim 2, wherein the elastic resin is arranged so as to straddle one end of the elastic resin.
  4.  前記送信用探触子及び前記受信用探触子は、
     前記弾性樹脂の両端を跨ぐように配置される
     ことを特徴とする請求項2記載の劣化状態検査システム。
    The transmitting probe and the receiving probe are
    The deterioration state inspection system according to claim 2, wherein the elastic resin is arranged so as to straddle both ends of the elastic resin.
  5.  弾性樹脂を挟み込んだ2つの部材のうちの一方の部材の表面から入射され、前記2つの部材のうちの他方の部材の表面から出射された超音波の波形を示す信号を取得し、
     取得した超音波のうち、前記弾性樹脂を透過しなかった超音波の振幅と、前記弾性樹脂を透過した超音波の振幅とに基づいて、前記弾性樹脂の劣化状態を判定する
     ことを特徴とする劣化状態検査方法。
    A signal indicating the waveform of an ultrasonic wave incident from the surface of one of the two members sandwiching the elastic resin and emitted from the surface of the other member of the two members is acquired.
    Among the acquired ultrasonic waves, the deterioration state of the elastic resin is determined based on the amplitude of the ultrasonic waves that did not pass through the elastic resin and the amplitude of the ultrasonic waves that passed through the elastic resin. Deterioration state inspection method.
PCT/JP2019/042978 2019-11-01 2019-11-01 Degradation state assessment device, degradation state inspection system, and degradation state inspection method WO2021084730A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/042978 WO2021084730A1 (en) 2019-11-01 2019-11-01 Degradation state assessment device, degradation state inspection system, and degradation state inspection method
JP2021554020A JP7008887B2 (en) 2019-11-01 2019-11-01 Deterioration state determination device, deterioration state inspection system, and deterioration state inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042978 WO2021084730A1 (en) 2019-11-01 2019-11-01 Degradation state assessment device, degradation state inspection system, and degradation state inspection method

Publications (1)

Publication Number Publication Date
WO2021084730A1 true WO2021084730A1 (en) 2021-05-06

Family

ID=75714995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042978 WO2021084730A1 (en) 2019-11-01 2019-11-01 Degradation state assessment device, degradation state inspection system, and degradation state inspection method

Country Status (2)

Country Link
JP (1) JP7008887B2 (en)
WO (1) WO2021084730A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112050A (en) * 1992-09-29 1994-04-22 Toshiba Corp Detection of deteriorated packing in tank
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket
JP2000235022A (en) * 1999-02-16 2000-08-29 Mitsubishi Motors Corp Inspection device
JP2010043732A (en) * 2008-06-24 2010-02-25 Trelleborg Sealing Solutions Us Inc Seal system in situ lifetime measurement
JP2010196834A (en) * 2009-02-26 2010-09-09 Mitsubishi Chemicals Corp Method of controlling gasket and system for controlling gasket
JP2012087885A (en) * 2010-10-20 2012-05-10 Tokyo Electric Power Co Inc:The Method for inspection of fastening condition of soft gasket
US20180058993A1 (en) * 2016-08-29 2018-03-01 Alexandre N. Terentiev Sensor for seal applications and related methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012289968B2 (en) 2011-08-04 2014-01-16 Omeros Corporation Stable anti-inflammatory solutions for injection
JP6112050B2 (en) 2014-03-17 2017-04-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112050A (en) * 1992-09-29 1994-04-22 Toshiba Corp Detection of deteriorated packing in tank
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket
JP2000235022A (en) * 1999-02-16 2000-08-29 Mitsubishi Motors Corp Inspection device
JP2010043732A (en) * 2008-06-24 2010-02-25 Trelleborg Sealing Solutions Us Inc Seal system in situ lifetime measurement
JP2010196834A (en) * 2009-02-26 2010-09-09 Mitsubishi Chemicals Corp Method of controlling gasket and system for controlling gasket
JP2012087885A (en) * 2010-10-20 2012-05-10 Tokyo Electric Power Co Inc:The Method for inspection of fastening condition of soft gasket
US20180058993A1 (en) * 2016-08-29 2018-03-01 Alexandre N. Terentiev Sensor for seal applications and related methods

Also Published As

Publication number Publication date
JPWO2021084730A1 (en) 2021-05-06
JP7008887B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US10962506B2 (en) Inspection devices and related systems and methods
JP5237923B2 (en) Adhesion evaluation apparatus and method
JP6182236B1 (en) Lamination peel test method and peel inspection apparatus
WO2013176039A1 (en) Method for adjusting flaw detection sensitivity of ultrasonic probe and abnormality diagnostic method
WO2018135244A1 (en) Ultrasonic probe
JP7008887B2 (en) Deterioration state determination device, deterioration state inspection system, and deterioration state inspection method
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JP4952489B2 (en) Flaw detection method and apparatus
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
US20230049260A1 (en) Acoustic Detection of Defects in a Pipeline
US11067540B2 (en) Method and device for checking an object for flaws
US11054399B2 (en) Inspection method
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
US20200363196A1 (en) Method for non-destructive testing of walls of components
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
Suzuki et al. Feasibility study of air-coupled ultrasonic vertical reflection method using a single probe
JP2006003150A (en) Oblique probe and ultrasonic flaw detector
Horne et al. Detection and measurement of pitting corrosion using short range guided wave scanning
JP2005181170A (en) Method for evaluating adhesion of covering material
JP2007322366A (en) Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2015111076A (en) Ultrasonic flaw detector
JP2020153810A (en) Liquid detection method and liquid detection device
JP2004226123A (en) Inspection device for fluid conveying pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950884

Country of ref document: EP

Kind code of ref document: A1