WO2021083150A1 - 变焦方法、装置、飞行器、飞行系统及存储介质 - Google Patents

变焦方法、装置、飞行器、飞行系统及存储介质 Download PDF

Info

Publication number
WO2021083150A1
WO2021083150A1 PCT/CN2020/124054 CN2020124054W WO2021083150A1 WO 2021083150 A1 WO2021083150 A1 WO 2021083150A1 CN 2020124054 W CN2020124054 W CN 2020124054W WO 2021083150 A1 WO2021083150 A1 WO 2021083150A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
zoom
aircraft
zoomed
camera device
Prior art date
Application number
PCT/CN2020/124054
Other languages
English (en)
French (fr)
Inventor
李昭早
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Priority to EP20881372.5A priority Critical patent/EP4054172A4/en
Publication of WO2021083150A1 publication Critical patent/WO2021083150A1/zh
Priority to US17/661,322 priority patent/US11889193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/2628Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance

Definitions

  • the present invention relates to the technical field of zoom control, in particular to a zoom method, device, aircraft, flight system and storage medium.
  • Digital zoom is a common zoom method used in aerial photography. Traditional digital zoom can only reduce the size of the original image, making the image larger on the terminal screen connected to the aircraft, but it will not help to make the details display clearer.
  • the main purpose of the present invention is to provide a zoom method, device, aircraft, flight system and storage medium.
  • the present invention provides a zoom method applied to an aircraft, the aircraft is provided with a camera device, and the method includes:
  • controlling the camera device to collect the initial image specifically includes:
  • the camera instruction is an instruction sent by a user to manipulate a terminal device communicatively connected with the aircraft;
  • the acquiring a clipped image according to the initial image specifically includes:
  • the acquiring a zoomed image according to the captured image specifically includes:
  • the method further includes:
  • the zoomed image is sent to a terminal device communicatively connected with the aircraft to display the zoomed image on the display screen of the terminal device, wherein the resolution of the image displayed on the display screen is less than or equal to W 1 *H 1 .
  • the zoom image is stored.
  • the present invention also provides a zoom device applied to an aircraft, the aircraft is provided with a camera device, and the zoom device includes:
  • An image acquisition module for controlling the camera device to acquire an initial image, wherein the resolution of the initial image is W 0 *H 0 , and the area of the initial image is S 0 ;
  • the present invention also provides an aircraft that includes a fuselage, an arm connected to the fuselage, a power device provided on the arm, a camera device connected to the fuselage, and an aircraft provided on the aircraft.
  • a visual chip of the body, the visual chip includes:
  • the camera device is electrically connected to the processor
  • the memory is used to store a computer-executable zoom program
  • the processor is used to call the computer-executable zoom program to implement the aforementioned zoom method.
  • the present invention also provides a flight system.
  • the flight system includes an aircraft and a terminal device communicatively connected to the aircraft.
  • the aircraft includes a fuselage, an arm connected to the fuselage, and a A power device, a camera device connected to the fuselage, and a vision chip provided on the fuselage, wherein the vision chip includes:
  • the memory is used to store a computer-executable zoom program
  • the processor is used to call the computer-executable zoom program to use the aforementioned zoom method.
  • the present invention also provides a storage medium that stores a computer-executable zoom program, and the processor can execute the aforementioned zoom method when calling the zoom program.
  • the zoom method provided by the present invention solves the problem of unclear images in the pure image zoom method in the traditional digital zoom.
  • FIG. 1 is a schematic diagram of the frame structure of a flight system provided by an embodiment of the present invention
  • Fig. 2 is a flow chart of a zoom method in the prior art
  • Fig. 3A is a process change diagram of image zooming in the prior art
  • FIG. 3B is a process change diagram of another image zooming in the prior art
  • FIG. 4 is a flowchart of steps of a zoom method provided by an embodiment of the present invention.
  • Fig. 5 is a step flow chart of step S1 in Fig. 4;
  • Fig. 6 is a step flow chart of step S2 in Fig. 4;
  • FIG. 7 is a flowchart of the steps of step S3 in FIG. 4;
  • Fig. 8 is a structural block diagram of a zoom device provided by the present invention.
  • FIG. 9 is a schematic diagram of a block diagram structure of an aircraft provided by an embodiment of the present invention.
  • FIG. 1 is a flight system 100 provided by the present invention.
  • the flight system includes an aircraft 10 and a terminal device 20 communicatively connected with the aircraft 10.
  • the terminal device 20 is, for example, a smart phone, a tablet computer, a computer, a remote control, and the like.
  • the user may interact with the terminal device 20 through any suitable type of one or more user interaction devices, and these user interaction devices may be a mouse, a button, a touch screen, and the like.
  • a communication connection can be established through wireless communication modules separately provided in each, such as a signal receiver, a signal transmitter, etc., and data/commands can be uploaded or issued.
  • the aircraft 10 can be a rotary-wing aircraft, such as a quad-rotor aircraft, a hexa-rotor aircraft, or a fixed-wing aircraft.
  • the terminal device 20 is used to send control instructions to the aircraft 10 to control the aircraft 10, and the terminal device 10 can be a remote controller or a fixed-wing aircraft. It's a smartphone.
  • the aircraft 10 includes a fuselage 101, an arm 102 connected to the fuselage 101, a power device 103 provided on the arm 102, and a control system (not shown) provided on the fuselage 101.
  • the power unit 103 is used to provide thrust, lift, etc. for the flight of the aircraft 10, and the control system is the central nerve of the aircraft 10 and may include multiple functional modules, such as a flight control system, a tracking system, a path planning system, and other specific functions. system.
  • the flight control system includes various sensors, such as IMU, gyroscope, accelerometer, etc., and the flight control system is used to control the flight attitude of the aircraft 10 and so on.
  • the path planning system is used to plan the flight path of the aircraft 10 based on the location of the tracking target, and instruct the flight control system to control the flight attitude of the aircraft 10 to make the aircraft 10 fly according to the designated path.
  • the tracking system includes a camera 104 connected to the fuselage 101 and a vision chip arranged on the fuselage 101.
  • the camera 104 is in communication with the vision chip.
  • the camera 104 is used to capture media data such as images or videos of the target to be tracked.
  • the vision chip is used to identify the target to be tracked from the media data, so as to generate the corresponding tracking control instruction.
  • the camera device 104 can be a high-definition digital camera or other camera device.
  • the camera device 104 can be set at any suitable location that is convenient for shooting.
  • the camera device 104 is installed on the bottom of the body 101 via a pan-tilt.
  • the vision chip may also be provided on the arm 102.
  • the vision chip can use the target frame to select and track the target according to the characteristics of the target.
  • the camera device 104 can also shoot according to the user's shooting instruction through the terminal device 20, and transmit the captured image or video to the terminal device 20 through an image transmission device (not shown) provided in the aircraft 10, so as to The display screen of the terminal device 20 performs display.
  • FIG. 2 is a flowchart of a zoom method of an existing aircraft aerial photography from image collection to image display on the terminal device 20.
  • the image sensor of the camera 104 After the image sensor of the camera 104 collects the initial image, it sends the initial image to the image processing unit (not shown) of the aircraft 10 for preprocessing, and divides the processed image into two images, one of which is the original image
  • the image is encoded and stored in the memory of the aircraft 10, and another image is reduced after being encoded, and then decoded and displayed by the terminal device 20 on the ground through the wireless image transmission device.
  • the digital zoom of the transmission is usually done when the terminal device 20 is displayed, directly frame the area, and use the zoom function of the graphics card to enlarge the area to full-screen display.
  • This method is simple and intuitive, and has strong operability.
  • the disadvantage is that the image coming from the wireless image transmission device is already a reduced and encoded image, and then enlarge it, the image clarity will be very poor.
  • the image transmission device transmits to the terminal device
  • the resolution of the image of 20 is W 2 *H 2 .
  • the image field angle of the image transmission device is the same as the field angle of the image stored in the memory, so the digital zoom principle of the image transmission device can be consistent with the image stored in the memory.
  • the resolution of the initial image T 0 acquired by the camera 104 is W 0 *H 0 , that is, the width of the initial image T 0 is W 0 , the height is H 0 , and the initial area S 0 , due to the memory
  • the resolution of the image stored in the image is W 1 *H 1 and it is necessary to ensure that the reduced image is not stretched and deformed. It is necessary to cut off the X parts of the upper and lower opposite sides of the initial image T 0 to obtain the cropped image T, a reduced image T is then cut, thereby obtaining the width W 1 height H zoom image T 11.
  • the image stretching and deformation is not allowed, so the zooming process is performed on the cropped image T after cropping. It is assumed that the cropped image T after cropping is reduced by A times to obtain the zoomed image stored in the memory.
  • the initial image is enlarged by C times when the image sensor of the imaging device 104 is collecting, and in the image processing unit, it is reduced by A times and then sent to the memory.
  • the initial image T 0 is enlarged and reduced, the image quality is lost twice, and the image sharpness will be very poor. And the amount of processed image data is relatively large.
  • FIG. 4 is a zoom method provided by the present invention. The method is applied to an aircraft 10 and executed by a vision chip of the aircraft 10. The method includes:
  • Step S1 Control the camera device to collect an initial image, wherein the resolution of the initial image is W 0 *H 0 , and the area of the initial image is S 0 .
  • control of the camera device to collect the initial image specifically includes:
  • Step S11 Obtain a camera instruction, where the camera instruction is an instruction sent by a user to manipulate a terminal device that is in communication with the aircraft;
  • Step S12 Control the camera device to collect the initial image according to the camera instruction.
  • the user when the user needs to obtain an image through the aircraft 10, he controls the terminal device 20 to send a camera instruction to the aircraft 10, and the aircraft 10 receives the camera instruction and controls the camera device 104 to obtain the initial image T0 according to the camera instruction.
  • the acquiring a captured image according to the initial image specifically includes:
  • Step S21 Obtain the digital zoom factor of the camera device
  • the preset area is an area with the same center point as that of the initial image T0.
  • the obtaining a zoomed image according to the captured image specifically includes:
  • Step S31 Set the resolution of the zoomed image
  • the zoomed image T1 can be obtained after zooming the captured image T by C/A times.
  • the resolution of the 1/C image cropped from the initial image T0 is the same as the resolution corresponding to the zoom image T1.
  • the image has no zooming process at all, and there is no loss of image quality. We also call it a complete lossless zoom.
  • this kind of process image is a reduction operation, which can also be called a lossless digital zoom.
  • the initial resolution of the image sensor of the camera 104 is 7680*5760, that is, the resolution of the acquired initial image T0 is 7680*5760.
  • the memory can choose to store the image resolution of 8K (width and height is 7680*4320), 4K (width and height is 3840*2160) or 1080P (width and height is 1920*1080), that is, the resolution of the required zoom image T1
  • the rate can be selected as 8K (width and height is 7680*4320), 4K (width and height is 3840*2160) or 1080P (width and height is 1920*1080).
  • the resolution from the original image to the video recording will be reduced by 7680/1920 times, that is, 4 times.
  • the image sensor side of the camera 104 is directly cropped out of 1/2 image size, and then reduced by 2 times to the size of the zoomed image T1, because the initial zooming process
  • the image T0 is only reduced by 2 times.
  • the resulting zoomed image T1 is lossless, and it can also be said to support a lossless zoom of up to 4 times.
  • the zoom method further includes:
  • the zoomed image is sent to a terminal device communicatively connected with the aircraft to display the zoomed image on the display screen of the terminal device, wherein the resolution of the image displayed on the display screen is less than or equal to W 1 *H 1 .
  • the aircraft 10 sends the acquired zoom image T1 to the terminal device 20 for image display on the display screen of the terminal device 20, where the resolution of the image displayed on the display screen is less than or equal to W 1 *H 1 .
  • the zoom method further includes:
  • the zoomed image is stored.
  • the present invention also provides a zoom device 30 applied to an aircraft 10, the aircraft is provided with a camera device 104, and the zoom device 30 includes:
  • the image acquisition module 301 is used to control the camera device to acquire an initial image, wherein the resolution of the initial image is W 0 *H 0 , and the area of the initial image is S 0 ;
  • the image acquisition module 301 is also used to:
  • the camera instruction is an instruction sent by a user to manipulate a terminal device communicatively connected with the aircraft;
  • the image interception module 302 is also used to:
  • the image zoom module 303 is also used for:
  • the zoom device 30 further includes an image transmission module for:
  • the zoomed image is sent to a terminal device communicatively connected with the aircraft to display the zoomed image on the display screen of the terminal device, wherein the resolution of the image displayed on the display screen is less than or equal to W 1 *H 1 .
  • the zoom device 30 further includes a storage module for:
  • the zoomed image is stored.
  • the vision chip of the aircraft 10 further includes a memory 105 and a processor 106, and the memory 10 and the processor 106 are electrically connected.
  • the memory 105 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, and the like.
  • the memory 105 may be an internal storage unit of the aircraft 10 in some embodiments, such as a hard disk of the aircraft 10. In other embodiments, the memory 105 may also be an external storage device of the aircraft 10, such as a plug-in hard disk, a smart media card (SMC), and a secure digital (SD) card equipped on the aircraft 10. Flash Card, etc.
  • the memory 105 can be used not only to store application software and various data installed in the aircraft 10, such as computer-readable code of a zoom method program, etc., but also to temporarily store data that has been output or will be output.
  • the processor 106 may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chip, and the processor 106 may call program codes stored in the memory 105 or The data is processed to perform the aforementioned zoom method.
  • CPU central processing unit
  • controller controller
  • microcontroller microcontroller
  • microprocessor or other data processing chip
  • the present invention also provides a storage medium that stores a computer-executable zoom program, and the processor can execute the aforementioned zoom method when calling the zoom program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种变焦方法、装置、飞行器、飞行系统及存储介质,其中,所述变焦方法应用于飞行器,所述飞行器设置有摄像装置,所述方法包括控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0;根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。

Description

变焦方法、装置、飞行器、飞行系统及存储介质
本申请要求于2019年11月01日提交中国专利局、申请号为201911061004.X申请名称为“变焦方法、装置、飞行器、飞行系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及变焦控制技术领域,尤其涉及一种变焦方法、装置、飞行器、飞行系统及存储介质。
背景技术
随着飞行器的不断发展,飞行器应用的领域也越来越广,而在飞行器所应用的大多数领域中,以利用飞行器的进行拍摄,也称航拍较为常见。
在航拍中想看清更细节的图像,需要通过变焦使图像放大,数码变焦作为常见的一种变焦方式被应用在航拍中。传统的数码变焦只能将原先的图像尺寸裁小,让图像在与飞行器通信连接的终端屏幕上变得比较大,但并不会有助于使细节显示更清晰。
因此,如何解决数字变焦中所存在的变焦后图像不清晰问题成为了本领域技术人员研究的热点课题。
发明内容
本发明的主要目的在于提供一种变焦方法、装置、飞行器、飞行系统及存储介质。
为实现上述目的,本发明提供一种变焦方法,应用于飞行器,所述飞行器设置有摄像装置,所述方法包括:
控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;
根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像 缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
优选地,所述控制所述摄像装置采集初始图像,具体包括:
获取摄像指令,其中,所述摄像指令为用户操控与所述飞行器通信连接的终端设备发送的指令;
根据所述摄像指令控制所述摄像装置采集所述初始图像。
优选地,所述根据所述初始图像获取截取图像,具体包括:
获取所述摄像装置的数码变焦倍数;
根据所述数码变焦倍数从所述初始图像中的预设区域截取面积为S的图像作为所述截取图像,其中,S 0/S=C,C为所述摄像装置的数码变焦倍数。
优选地,所述根据所述截取图像获取变焦图像,具体包括:
设置所述变焦图像的分辨率;
根据所述分辨率和所述数码变焦倍数对所述截取图像进行缩放,以获取所述变焦图像,其中,缩放倍数为C/A,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1
优选地,所述方法还包括:
将所述变焦图像发送给与所述飞行器通信连接的终端设备,以在所述终端设备的显示屏显示所述变焦图像,其中,所述显示屏的所显示的图像分辨率小于或等于W 1*H 1
优选地,存储所述变焦图像。
本发明还提供一种变焦装置,应用于飞行器,所述飞行器设置有摄像装置,所述变焦装置包括:
图像采集模块,用于控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
图像截取模块,用于根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;
图像变焦模块,用于根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
本发明还提供一种飞行器,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、与所述机身相连的摄像装置以及设于所述机身的视觉芯片,所述视觉芯片包括:
存储器以及处理器;
其中,所述摄像装置与所述处理器电连接;
所述存储器用于存储计算机可执行的变焦程序;
所述处理器用于调用所述计算机可执行的变焦程序以实现前述的变焦方法。
本发明还提供一种飞行系统,所述飞行系统包括飞行器以及与所述飞行器通信连接的终端设备,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、与所述机身相连的摄像装置以及设于所述机身的视觉芯片,其特征在于,所述视觉芯片包括:
存储器以及处理器;
所述存储器用于存储计算机可执行的变焦程序;
所述处理器用于调用所述计算机可执行的变焦程序以前述的变焦方法。
本发明还提供一种存储介质,所述存储介质存储有计算机可执行的变焦程序,处理器在调用所述变焦程序时,可执行前述的变焦方法。
与现有技术相比,本发明所提供的一种变焦方法,应用于飞行器,所述飞行器设置有摄像装置,所述方法通过控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0;根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W1*H1,A=W0/W1,C≤A。本发明所提供的变焦方法解决了传统数字变焦中纯图像放大方法图像不清晰问题。
附图说明
图1为本发明一实施例提供的飞行系统的框架结构示意图;
图2为现有技术的变焦方法的流程框图;
图3A为现有技术中一种图像变焦的过程变化图;
图3B为现有技术中另一种图像变焦的过程变化图;
图4为本发明一实施例提供的变焦方法的步骤流程图;
图5为图4中步骤S1的步骤流程图;
图6为图4中步骤S2的步骤流程图;
图7为图4中步骤S3的步骤流程图;
图8为本发明提供的一种变焦装置的结构框图;
图9为本发明一实施例提供的飞行器的框图结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提供了一种变焦方法、装置、飞行器、飞行系统及存储介质,其中,所述变焦方法应用于飞行器,所述变焦方法通过控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0;根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
本发明所提供的变焦方法,通过利用摄像装置获取的初始图像,并按照摄像装置的数码变焦倍数从初始图像中裁剪出1/C的裁剪图像,并对裁剪图像进行预设比例缩放以获取变焦图像,变焦图像至少满足在将要进行图像播放端的最大分辨率,从而在终端实现无损显示,从而解决了传统数字变焦中纯图像放大方法图像不清晰问题。请参阅图1,图1为本发明提供的一种飞行系统100,该飞行系统包括飞行器10以及与飞行器10通信连接的终端设备20。
其中,终端设备20例如智能手机、平板电脑、电脑、遥控器等。用户可以通过任何合适类型的一种或者多种用户交互设备与终端设备20交互,这些用户交互设备可以是鼠标、按键、触摸屏等。飞行器10和终端设备20之间,可以通过分别设置在各自内部的无线通信模块,例如信号接收器、信号发送器等建立通信连接,上传或者下发数据/指令。
飞行器10可以是旋翼飞行器,如四旋翼飞行器、六旋翼飞行器,也可以是固定翼飞行器,该终端设备20用于向飞行器10发送控制指令以控制飞行器10,该终端设备10可以是遥控器也可以是智能手机。
飞行器10包括机身101、与机身101相连的机臂102、设于机臂102的动力装置103及设于机身101的控制系统(图未示)。
其中,动力装置103用于提供飞行器10飞行的推力、升力等,控制系统是飞行器10的中枢神经,可以包括多个功能性模块,例如飞控系统、跟踪系统、路径规划系统以及其他具有特定功能的系统。其中,飞控系统包括各类传感器,例如IMU、陀螺仪、加速计等,飞控系统用于控制飞行器10的飞行姿态等。路径规划系统用于基于跟踪目标的位置对飞行器10的飞行路径进 行规划,并指示飞控系统控制飞行器10的飞行姿态以使飞行器10按指定路径飞行。其中,跟踪系统包括与机身101连接的摄像装置104和设置于机身101的视觉芯片,摄像装置104和视觉芯片通信连接,摄像装置104用于拍摄获取待跟踪目标的图像或视频等媒体数据,视觉芯片用于确定从媒体数据中识别待跟踪目标,从而生成相应的跟踪控制指令。摄像装置104可以为高清数码相机或其他摄像装置,摄像装置104可以设置于任何利于拍摄的合适位置,在一些实施例中,摄像装置104通过云台安装于机身101的底部。在一些实施例中,视觉芯片也可以设置于机臂102。
视觉芯片可以根据目标的特征对目标利用目标框框选并进行跟踪。
可以理解,摄像装置104还可以根据用户通过终端设备20的拍摄指令进行拍摄,并将所拍摄的图像或视频通过设置于飞行器10的图像传输装置(图未示)传输给终端设备20,以在终端设备20的显示屏进行显示。
请参阅图2,图2为现有飞行器航拍的变焦方法从图像采集到图像在终端设备20显示的流程框图。
摄像装置104的图像传感器再采集到初始图像之后,将初始图像发送到飞行器10的图像处理单元(图未示)进行预处理,并将处理后的图像分为两路图像,其中一路是将原始图像进行编码并存储到飞行器10的存储器内,另一路图像经缩小之后进行编码,再通过无线图像传输装置到地面的终端设备20进行解码显示。
传输的数码变焦做通常都是在终端设备20显示时,直接框定区域,利用显卡的缩放功能,把区域放大到全屏显示即可,这种方式简单直观,可操作性强。缺点是无线图像传输装置过来的图像已经是缩小和编码之后的图像,再把它放大,图像清晰度会非常差。
请参阅图3A-3B,假设摄像装置104的图像传感器允许的最大分辨率为W 0*H 0,存储器内所存储的图像的分辨率为W 1*H 1,在图像传输装置传输到终端设备20的图像的分辨率为W 2*H 2。通常图像传输装置的图像视场角和存储器内存储的图像的视场角是一样的,故图像传输装置数码变焦原理可以跟存储器内存储图像保持一致。
以将摄像装置104获取的图像存储到飞行器10的存储器内为例进行说明。
如图3A所示,假设A=W 0/W 1,B=H 0/H 1
如果B>A,摄像装置104获取到的初始图像T 0,其分辨率为W 0*H 0,也即初始图像T 0的宽为W 0,高为H 0,初始面积S 0,由于存储器内所存储的图像的分辨率为W 1*H 1且,需要保证缩小之后的图像不被拉伸变形,则需要裁掉初始图像T 0上下相对两侧X部分的区域,得到裁剪图像T,再将裁剪图像T缩小A倍,得到宽为W 1高为H 1的变焦图像T 1
如图3B所示,如果A>B,则需要裁掉初始图像T 0左右相对两侧Y部分的区域,得到裁剪图像T,再将裁剪图像T缩小B倍,得到宽为W1高为H1的变焦图像T 1
在数码变焦过程中,不允许有图像拉伸变形的情况,所以都是针对裁剪之后的裁剪图像T进行缩放处理,假设裁剪后的裁剪图像T缩小A倍得到存储器内存储的变焦图像。
假设数码变焦放大C倍,则是在摄像装置104的图像传感器采集时把初始图像放大C倍,在图像处理单元时,缩小A倍再送给存储器。这个过程中初始图像T 0经过放大缩小处理,图像质量被两次损失,图像清晰度会非常差。且处理的图像数据量比较大。
请参阅图4,图4为本发明提供的一种变焦方法,该方法应用于飞行器10,由飞行器10的视觉芯片执行,该方法包括:
步骤S1:控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
请参阅图5,所述控制所述摄像装置采集初始图像,具体包括:
步骤S11:获取摄像指令,其中,所述摄像指令为用户操控与所述飞行器通信连接的终端设备发送的指令;
步骤S12:根据所述摄像指令控制所述摄像装置采集所述初始图像。
示例性地,用户在需要通过飞行器10获取图像时,通过操控终端设备20向飞行器10发送摄像指令,飞行器10在接收到摄像指令后,根据摄像指令控制摄像装置104获取初始图像T0。
步骤S2:根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数。
请参阅图6,在部分实施例中,所述根据所述初始图像获取截取图像,具体包括:
步骤S21:获取所述摄像装置的数码变焦倍数;
步骤S22:根据所述数码变焦倍数从所述初始图像中的预设区域截取面积为S的图像作为所述截取图像,其中,S 0/S=C,C为所述摄像装置的数码变焦倍数。
从初始图像T0的预设区域截取面积为S的图像作为截取图像T,其中,S 0/S=C,C为所述摄像装置的数码变焦倍数。
该预设区域为与初始图像T0的具有相同中心点的区域。
步骤S3:根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
请参阅图7,在部分实施例中,所述根据所述截取图像获取变焦图像,具体包括:
步骤S31:设置所述变焦图像的分辨率;
步骤S32:根据所述分辨率和所述数码变焦倍数对所述截取图像进行缩放,以获取所述变焦图像,其中,缩放倍数为C/A,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
示例性地,将截取图像T进行缩放C/A倍后即可获取变焦图像T1。
若C=A,即数码变焦的放大倍数等于初始图像T0缩小到变焦图像T1的倍数。从初始图像T0裁剪出的1/C图像的分辨率与变焦图像T1对应的分辨率相同,此时图像完全没有任何缩放的过程,没有任何图像质量的损失,我们也称呼为完全的无损变焦。
若C<A,即数码变焦的倍数C不够大,比初始图像T0缩小到变焦图像T1分辨率的倍数A还要小,从裁剪出的1/C图像还需要缩小C/A倍到变焦图像T1,这种过程图像是缩小的操作,也可以称呼为无损数字变焦。
如果需要完全的数码变焦,则需要在裁剪时,不是裁剪出1/C大小,而是裁剪出1/C大小图像,然后在图像处理单元不需要缩小操作了,直接就是变焦图像T1大小,这个过程完全没有图像质量的损失。
例如,摄像装置104的图像传感器初始分辨率是7680*5760,即获取的 初始图像T0的分辨率是7680*5760。
若存储器可以选择存储的图像分辨率有8K(宽高为7680*4320)、4K(宽高为3840*2160)或1080P(宽高为1920*1080),也即所需的变焦图像T1的分辨率可以选择为8K(宽高为7680*4320)、4K(宽高为3840*2160)或1080P(宽高为1920*1080)。
当选择存储的变焦图像T1的分辨率为1080P,从原图到录像分辨率会缩小7680/1920倍,即4倍。
如果数码变焦倍数C低于4倍时,如C=2,在摄像装置104的图像传感器端直接裁剪出1/2图像大小,然后再缩小2倍到变焦图像T1的大小,由于变焦过程中初始图像T0只缩小了2倍,相对原本缩小4倍来讲,所得到的变焦图像T1是无损的,也可以称为支持最大4倍的无损变焦。
在部分实施例中,所述变焦方法还包括:
将所述变焦图像发送给与所述飞行器通信连接的终端设备,以在所述终端设备的显示屏显示所述变焦图像,其中,所述显示屏的所显示的图像分辨率小于或等于W 1*H 1
示例性地,飞行器10将获取的变焦图像T1发送给终端设备20,以在终端设备20的显示屏进行图像显示,其中,所述显示屏的所显示的图像分辨率小于或等于W 1*H 1
在部分实施例中,所述变焦方法还包括:
存储所述变焦图像。
请参阅图8,本发明还提供一种变焦装置30,应用于飞行器10,所述飞行器设置有摄像装置104,所述变焦装置30包括:
图像采集模块301,用于控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
图像截取模块302,用于根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;
图像变焦模块303,用于根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1
在部分实施例中,图像采集模块301还用于:
获取摄像指令,其中,所述摄像指令为用户操控与所述飞行器通信连接的终端设备发送的指令;
根据所述摄像指令控制所述摄像装置采集所述初始图像。
在部分实施例中,图像截取模块302还用于:
获取所述摄像装置的数码变焦倍数;
根据所述数码变焦倍数从所述初始图像中的预设区域截取面积为S的图像作为所述截取图像,其中,S 0/S=C,C为所述摄像装置的数码变焦倍数。
在部分实施例中,图像变焦模块303还用于:
设置所述变焦图像的分辨率;
根据所述分辨率和所述数码变焦倍数对所述截取图像进行缩放,以获取所述变焦图像,其中,缩放倍数为C/A,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
在部分实施例中,所述变焦装置30还包括图像传输模块,用于:
将所述变焦图像发送给与所述飞行器通信连接的终端设备,以在所述终端设备的显示屏显示所述变焦图像,其中,所述显示屏的所显示的图像分辨率小于或等于W 1*H 1
在部分实施例中,所述变焦装置30还包括存储模块,用于:
存储所述变焦图像。
请参阅图9,在部分实施例中,飞行器10的视觉芯片还包括存储器105以及处理器106,存储器10与处理器106电连接。
其中,存储器105至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器105在一些实施例中可以是飞行器10的内部存储单元,例如该飞行器10的硬盘。存储器105在另一些实施例中也可以是飞行器10的外部存储设备,例如飞行器10上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。存储器105不仅可以用于存储安装于飞行器10的应用软件及各类数据,例如计算机可读的变焦方法程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器106在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,处理器106可调用存储器105中存储的程序代码或处理数据,以执行前述的变焦方法。
本发明还提供一种存储介质,所述存储介质存储有计算机可执行的变焦程序,处理器在调用所述变焦程序时,可执行前述的变焦方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种变焦方法,应用于飞行器,所述飞行器设置有摄像装置,其特征在于,所述方法包括:
    控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
    根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;
    根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
  2. 如权利要求1所述的方法,其特征在于,所述控制所述摄像装置采集初始图像,具体包括:
    获取摄像指令,其中,所述摄像指令为用户操控与所述飞行器通信连接的终端设备发送的指令;
    根据所述摄像指令控制所述摄像装置采集所述初始图像。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述初始图像获取截取图像,具体包括:
    获取所述摄像装置的数码变焦倍数;
    根据所述数码变焦倍数从所述初始图像中的预设区域截取面积为S的图像作为所述截取图像,其中,S 0/S=C,C为所述摄像装置的数码变焦倍数。
  4. 如权利要求1所述的方法,其特征在于,所述根据所述截取图像获取变焦图像,具体包括:
    设置所述变焦图像的分辨率;
    根据所述分辨率和所述数码变焦倍数对所述截取图像进行缩放,以获取所述变焦图像,其中,缩放倍数为C/A,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1,C≤A。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述变焦图像发送给与所述飞行器通信连接的终端设备,以在所述终端设备的显示屏显示所述变焦图像,其中,所述显示屏的所显示的图像分辨率小于或等于W 1*H 1
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    存储所述变焦图像。
  7. 一种变焦装置,应用于飞行器,所述飞行器设置有摄像装置,其特征在于,所述变焦装置包括:
    图像采集模块,用于控制所述摄像装置采集初始图像,其中,所述初始图像的分辨率为W 0*H 0,所述初始图像的面积为S 0
    图像截取模块,用于根据所述初始图像获取截取图像,其中,所述截取图像为从所述初始图像预设区域截取的面积为S的图像,且S 0/S=C,C为所述摄像装置的数码变焦倍数;
    图像变焦模块,用于根据所述截取图像获取变焦图像,其中,所述变焦图像为所述截取图像缩放C/A倍后所获取的图像,所述变焦图像的分辨率为W 1*H 1,A=W 0/W 1
  8. 一种飞行器,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、与所述机身相连的摄像装置以及设于所述机身的视觉芯片,其特征在于,所述视觉芯片包括:
    存储器以及处理器;
    其中,所述摄像装置与所述处理器电连接;
    所述存储器用于存储计算机可执行的变焦程序;
    所述处理器用于调用所述计算机可执行的变焦程序以实现如权利要求1~6任意一项所述的变焦方法。
  9. 一种飞行系统,所述飞行系统包括飞行器以及与所述飞行器通信连接 的终端设备,所述飞行器包括机身、与所述机身相连的机臂、设于所述机臂的动力装置、与所述机身相连的摄像装置以及设于所述机身的视觉芯片,其特征在于,所述视觉芯片包括:
    存储器以及处理器;
    所述存储器用于存储计算机可执行的变焦程序;
    所述处理器用于调用所述计算机可执行的变焦程序以实现如权利要求1~6任意一项所述的变焦方法。
  10. 一种存储介质,其特征在于,所述存储介质存储有计算机可执行的变焦程序,处理器在调用所述变焦程序时,可执行如权利要求1-6任意一项所述的变焦方法。
PCT/CN2020/124054 2019-11-01 2020-10-27 变焦方法、装置、飞行器、飞行系统及存储介质 WO2021083150A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20881372.5A EP4054172A4 (en) 2019-11-01 2020-10-27 ZOOMING METHOD AND DEVICE, AIRCRAFT, FLIGHT SYSTEM AND STORAGE MEDIA
US17/661,322 US11889193B2 (en) 2019-11-01 2022-04-29 Zoom method and apparatus, unmanned aerial vehicle, unmanned aircraft system and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911061004.XA CN111050066A (zh) 2019-11-01 2019-11-01 变焦方法、装置、飞行器、飞行系统及存储介质
CN201911061004.X 2019-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/661,322 Continuation US11889193B2 (en) 2019-11-01 2022-04-29 Zoom method and apparatus, unmanned aerial vehicle, unmanned aircraft system and storage medium

Publications (1)

Publication Number Publication Date
WO2021083150A1 true WO2021083150A1 (zh) 2021-05-06

Family

ID=70232029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124054 WO2021083150A1 (zh) 2019-11-01 2020-10-27 变焦方法、装置、飞行器、飞行系统及存储介质

Country Status (4)

Country Link
US (1) US11889193B2 (zh)
EP (1) EP4054172A4 (zh)
CN (1) CN111050066A (zh)
WO (1) WO2021083150A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050066A (zh) 2019-11-01 2020-04-21 深圳市道通智能航空技术有限公司 变焦方法、装置、飞行器、飞行系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282422A (zh) * 2007-04-02 2008-10-08 捷讯研究有限公司 具有多个取景器的摄像机
CN102857684A (zh) * 2011-06-27 2013-01-02 天彩电子(深圳)有限公司 一种智能数码变焦方法
CN102868855A (zh) * 2011-07-04 2013-01-09 安凯(广州)微电子技术有限公司 一种数码变焦方法和装置
CN106713740A (zh) * 2016-10-18 2017-05-24 广州视源电子科技股份有限公司 定位跟踪摄像方法与系统
CN108476289A (zh) * 2017-07-31 2018-08-31 深圳市大疆创新科技有限公司 一种视频处理方法、设备、飞行器及系统
CN111050066A (zh) * 2019-11-01 2020-04-21 深圳市道通智能航空技术有限公司 变焦方法、装置、飞行器、飞行系统及存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948468B2 (en) * 2003-06-26 2015-02-03 Fotonation Limited Modification of viewing parameters for digital images using face detection information
US7573514B2 (en) * 2005-02-03 2009-08-11 Eastman Kodak Company Digital imaging system with digital zoom warning
US8106956B2 (en) * 2005-06-27 2012-01-31 Nokia Corporation Digital camera devices and methods for implementing digital zoom in digital camera devices and corresponding program products
JP5061631B2 (ja) * 2007-02-09 2012-10-31 ソニー株式会社 撮影装置及び撮影方法
US8330832B2 (en) * 2009-06-23 2012-12-11 Research In Motion Limited Adjustment of sharpness during digital zoom in digital photography
CN113766161B (zh) * 2014-12-14 2023-06-20 深圳市大疆创新科技有限公司 视频处理的方法和系统
CN107852453B (zh) * 2015-07-10 2020-06-23 深圳市大疆创新科技有限公司 具有分光器的双镜头系统
US9781350B2 (en) * 2015-09-28 2017-10-03 Qualcomm Incorporated Systems and methods for performing automatic zoom
US9620168B1 (en) * 2015-12-21 2017-04-11 Amazon Technologies, Inc. Cataloging video and creating video summaries
WO2017164753A1 (en) * 2016-03-24 2017-09-28 Motorola Solutions, Inc. Methods and apparatus for continuing a zoom of a stationary camera utilizing a drone
KR102516175B1 (ko) * 2017-12-21 2023-03-30 한화비전 주식회사 줌 렌즈의 광축 보정 방법, 장치 및 컴퓨터 프로그램

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282422A (zh) * 2007-04-02 2008-10-08 捷讯研究有限公司 具有多个取景器的摄像机
CN102857684A (zh) * 2011-06-27 2013-01-02 天彩电子(深圳)有限公司 一种智能数码变焦方法
CN102868855A (zh) * 2011-07-04 2013-01-09 安凯(广州)微电子技术有限公司 一种数码变焦方法和装置
CN106713740A (zh) * 2016-10-18 2017-05-24 广州视源电子科技股份有限公司 定位跟踪摄像方法与系统
CN108476289A (zh) * 2017-07-31 2018-08-31 深圳市大疆创新科技有限公司 一种视频处理方法、设备、飞行器及系统
CN111050066A (zh) * 2019-11-01 2020-04-21 深圳市道通智能航空技术有限公司 变焦方法、装置、飞行器、飞行系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4054172A4 *

Also Published As

Publication number Publication date
CN111050066A (zh) 2020-04-21
EP4054172A4 (en) 2022-12-28
US20220264017A1 (en) 2022-08-18
EP4054172A1 (en) 2022-09-07
US11889193B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
KR102363364B1 (ko) 파노라마 비디오의 상호작용적 전송을 위한 방법 및 시스템
US11758265B2 (en) Image processing method and mobile terminal
CN106027910B (zh) 预览画面呈现方法、装置及终端
WO2020083114A1 (zh) 航拍相机的图像处理方法、图像处理系统及无人机
US8350931B2 (en) Arrangement and method relating to an image recording device
US9742995B2 (en) Receiver-controlled panoramic view video share
WO2019238113A1 (zh) 成像方法、装置、终端和存储介质
EP2892228A1 (en) Selective capture and presentation of native image portions
CN111064895B (zh) 一种虚化拍摄方法和电子设备
US20200007794A1 (en) Image transmission method, apparatus, and device
CN111083371A (zh) 拍摄方法和电子设备
US20180213185A1 (en) Method and system for monitoring a scene based on a panoramic view
CN107147882A (zh) 一种自动实时跟踪目标对象的多分辨率观测系统
US20190387153A1 (en) Imaging resolution and transmission system
CN111866437A (zh) 一种用于视频会议双摄像头的自动切换方法及装置
CN112511741A (zh) 一种图像处理方法、移动终端以及计算机存储介质
WO2021083150A1 (zh) 变焦方法、装置、飞行器、飞行系统及存储介质
CN113965687B (zh) 拍摄方法、装置和电子设备
WO2020000393A1 (zh) 图像处理方法及装置、第一电子设备和图像处理系统
CN106488128B (zh) 一种自动拍照的方法及装置
CN103139457A (zh) 一种图像获得控制方法及电子设备
WO2017024954A1 (zh) 图像显示方法及装置
CN103716528A (zh) 一种基于触控终端的ptz摄像机远程控制的系统和方法
CN108496351B (zh) 无人机及其控制方法、控制终端及其控制方法
CN115002347A (zh) 图像处理方法、智能终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881372

Country of ref document: EP

Effective date: 20220601