WO2021082902A1 - Anti-microbial particles - Google Patents

Anti-microbial particles Download PDF

Info

Publication number
WO2021082902A1
WO2021082902A1 PCT/CN2020/120565 CN2020120565W WO2021082902A1 WO 2021082902 A1 WO2021082902 A1 WO 2021082902A1 CN 2020120565 W CN2020120565 W CN 2020120565W WO 2021082902 A1 WO2021082902 A1 WO 2021082902A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
microbial
water
composition
perfume
Prior art date
Application number
PCT/CN2020/120565
Other languages
French (fr)
Inventor
Amanee Daarina SALAAM
Kristin Rhedrick Williams
Deborah LEGENDRE
Yoko IKAWA
Pu Zhao
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP20881776.7A priority Critical patent/EP4051772A1/en
Priority to JP2022520931A priority patent/JP2022549738A/en
Priority to CN202080072719.XA priority patent/CN114555771A/en
Publication of WO2021082902A1 publication Critical patent/WO2021082902A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/24Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • C11D2111/12

Definitions

  • an anti-microbial laundry detergent product is desired by users as it cleans fabrics whilst having an anti-microbial benefit on fabrics.
  • various anti-microbial agents e.g., diphenyl ethers, are known for use in consumer product formulations to deliver an anti-microbial effect.
  • certain anti-microbial agents e.g., diphenyl ethers
  • diphenyl ether anti-microbial agents especially 4-4’-dichloro-2-hydroxy diphenyl ether (typically referred to as “Dichlosan” or by its tradename “ HP 100” as commercially available from BASF)
  • Dichlosan 4-4’-dichloro-2-hydroxy diphenyl ether
  • the present invention provides a composition comprising a plurality of anti-microbial particles that each comprises: (a) from 25%to 99%of a water soluble carrier by total weight of said particle; and (b) an diphenyl ether anti-microbial agent, wherein each of said plurality of anti-microbial particles has a mass from about 1 mg to about 1 g.
  • anti-microbial agent When the same amount of anti-microbial agent is provided, it may exhibit higher anti-microbial efficacy when formulated into the anti-microbial particles of the present invention, in comparison with being added into a powder or liquid laundry detergent product. Without being bound by any theory, it is believed that such anti-microbial particles provide controlled/sustained release of the anti-microbial agent into the wash liquor during the laundering process. Such controlled/sustained release is particulary advantageous when the pH of the wash liquor is lower during the later stage of the laundering process and certain anti-microbial agent (e.g., especially 4-4’-dichloro-2-hydroxy diphenyl ether) exhibits better fabric deposition at lower pH.
  • certain anti-microbial agent e.g., especially 4-4’-dichloro-2-hydroxy diphenyl ether
  • such anti-microbial particles of the present invention offer greater dosing flexibility to enable more effective delivery of the anti-microbial agent.
  • the consumers can choose to dose more or less of the anti-microbial agent as needed, separately from the surfactants or other detersive actives in the laundry detergent products.
  • the consumer can also choose to add the anti-microbial particles of the present invention at a specific stage of the laundering process, e.g., after wash or during the rinse cycle, to increase deposition rate of such anti-microbial agent onto fabrics.
  • anti-microbial particles of the present invention can be readily incorporated into particulate laundry detergent compositions that also contain detergent particles.
  • Particulate laundry detergent compositions typically have a significantly higher Equilibrium pH than liquid laundry detergent compositions, and such high-pH environment is not beneficiary to deposition of certain anti-microbial agents as mentioned hereinabove.
  • the anti-microbial particles of the present invention provides an alternative solution that is both simple and more cost-effective. Without being bound by any theory, it is believe that the water-soluble carrier in such anti-microbial particles functions to isolate the anti-microbial agent from the high-PH environment of the typical particulate laundry detergent products, thereby improving the deposition rate of such anti-microbial agent.
  • anti-microbial particles contain perfume ingredients therein, improved freshness benefit and better malodor control benefit are surprisingly observed. Without being bound by any theory, it is believe that the anti-microbial agent in such particles interacts with the perfume ingredients to improved the release profile and deposition of such perfume ingredients (especially perfume microcapsules) onto the fabrics.
  • anti-microbial particle refers to a particle comprising one or more anti-microbial agents in a water-soluble carrier.
  • the term “aspect ratio” refers to the ratio of the longest dimension of the perfume particles over its shortest dimension. For example, when such perfume particles have a hemispherical or compressed hemispherical shape, the aspect ratio is the ratio between the based diameter of the perfume particles over its height.
  • partate laundry detergent composition refers to a solid powdery or granular laundry detergent composition, preferably a free-flowing powdery or granular laundry detergent composition, such as an all-purpose or heavy-duty washing agent for fabrics, as well as laundry auxiliaries such as bleach actives, rinse aids, additives, or pre-treat products.
  • detergent particle refers to a particle comprising one or more detersive actives, such as surfactants, builders, bleach actives, enzymes, polymers, chelants, softeners, suds suppressors, suds boosters, brighteners, dye transfer inhibitors, and the like.
  • detersive actives such as surfactants, builders, bleach actives, enzymes, polymers, chelants, softeners, suds suppressors, suds boosters, brighteners, dye transfer inhibitors, and the like.
  • surfactants especially an anionic surfactant and/or a nonionic surfactant.
  • composition contains less than about 10%, preferably less than about 5%, of ingredients other than those listed.
  • the term “substantially free of” or “substantially free from” means that the indicated material is present in the amount of from 0 wt%to about 1 wt%, preferably from 0 wt%to about 0.5 wt%, more preferably from 0 wt%to about 0.2 wt%.
  • the term “essentially free of” means that the indicated material is present in the amount of from 0 wt%to about 0.1 wt%, preferably from 0 wt%to about 0.01 wt%, more preferably it is not present at analytically detectable levels.
  • composition of the present invention comprises a plurality of anti-microbial particles that each comprises: (a) from about 25%to about 99%of a water soluble carrier by total weight of said particle; and (b) an diphenyl ether anti-microbial agent, wherein each of said plurality of anti-microbial particles has a mass from about 1 mg to about 1 g.
  • each of said pluraility of anti-microbial particles comprises from about 0.01%to about 3%, preferably from about 0.02%to about 2%, more preferably from about 0.05%to about 1%, most preferably from about 0.1%to about 0.5%of said diphenyl ether anti-microbial agent by total weight of said each anti-microbial particle.
  • the diphenyl ether anti-microbial agent of the present invention can be either halogenated or non-halogenated, but preferably is halogenated.
  • the diphenyl ether anti-microbial agent is a hydroxyl diphenyl ether of formula (I) :
  • each Y is independently selected from chlorine, bromine, or fluorine, preferably is chlorine or bromine, more preferably is chlorine,
  • each Z is independently selected from SO 2 H, NO 2 , or C 1 -C 4 alkyl,
  • r is 0, 1, 2, or 3, preferably is 1 or 2
  • o is 0, 1, 2, or 3, preferably is 0, 1 or 2
  • p is 0, 1, or 2, preferably is 0,
  • n 1 or 2, preferably is 1, and
  • n 0 or 1, preferably is 0.
  • 0 means nil.
  • p when p is 0, then there is no Z in formula (I) .
  • Each Y and each Z could be the same or different.
  • o is 1, r is 2, and Y is chlorine or bromine.
  • This embodiment could be: one chlorine atom bonds to a benzene ring while the bromine atom and the other chlorine atom bond to the other benzene ring; or the bromine atom bonds to a benzene ring while the two chlorine atoms bond to the other benzene ring.
  • the diphenyl ether anti-microbial agent is selected from the group consisting of 4-4’-dichloro-2-hydroxy diphenyl ether, 2, 4, 4’-trichloro-2’-hydroxy diphenyl ether, and a combination thereof. Most preferably, said diphenyl ether anti-microbial agent is more preferably 4-4’-dichloro-2-hydroxy diphenyl ether.
  • anti-microbial agents may also be present, provided that these are not present at a level which causes instability in the formulation.
  • useful further antimicrobial agents are chelating agents, which are particularly useful in reducing the resistance of Gram negative microbes in hard water.
  • Acid biocides may also be present.
  • each of the plurality of anti-microbial particles of the present invention also comprises from about 25%to about 99%, preferably from about 30%to about 95%, more preferably from about 40%to about 94%, most preferably from about 50%to about 93%, of said water-soluble carrier by total weight of said each anti-microbial particle.
  • the water soluble carrier can be a material that is soluble in a wash liquor within a short period of time, for instance less than about 10 minutes.
  • the water soluble carrier can be selected from the group consisting of water soluble inorganic alkali metal salt, water-soluble alkaline earth metal salt, water-soluble organic alkali metal salt, water-soluble organic alkaline earth metal salt, water soluble carbohydrate, water-soluble silicate, water soluble urea, and any combination thereof.
  • Alkali metal salts can be, for example, selected from the group consisting of salts of lithium, salts of sodium, and salts of potassium, and any combination thereof.
  • Useful alkali metal salts can be, for example, selected from the group consisting of alkali metal fluorides, alkali metal chlorides, alkali metal bromides, alkali metal iodides, alkali metal sulfates, alkali metal bisulfates, alkali metal phosphates, alkali metal monohydrogen phosphates, alkali metal dihydrogen phosphates, alkali metal carbonates, alkali metal monohydrogen carbonates, alkali metal acetates, alkali metal citrates, alkali metal lactates, alkali metal pyruvates, alkali metal silicates, alkali metal ascorbates, and combinations thereof.
  • Alkali metal salts can be selected from the group consisting of sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium sulfate, sodium bisulfate, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, sodium carbonate, sodium hydrogen carbonate, sodium acetate, sodium citrate, sodium lactate, sodium tartrate, sodium silicate, sodium ascorbate, potassium fluoride, potassium chloride, potassium bromide, potassium iodide, potassium sulfate, potassium bisulfate, potassium phosphate, potassium monohydrogen phosphate, potassium dihydrogen phosphate, potassium carbonate, potassium monohydrogen carbonate, potassium acetate, potassium citrate, potassium lactate, potassium tartrate, potassium silicate, potassium, ascorbate, and combinations thereof.
  • Alkaline earth metal salts can be selected from the group consisting of salts of magnesium, salts of calcium, and the like, and combinations thereof.
  • Alkaline earth metal salts can be selected from the group consisting of alkaline metal fluorides, alkaline metal chlorides, alkaline metal bromides, alkaline metal iodides, alkaline metal sulfates, alkaline metal bisulfates, alkaline metal phosphates, alkaline metal monohydrogen phosphates, alkaline metal dihydrogen phosphates, alkaline metal carbonates, alkaline metal monohydrogen carbonates, alkaline metal acetates, alkaline metal citrates, alkaline metal lactates, alkaline metal pyruvates, alkaline metal silicates, alkaline metal ascorbates, and combinations thereof.
  • Alkaline earth metal salts can be selected from the group consisting of magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, magnesium sulfate, magnesium phosphate, magnesium monohydrogen phosphate, magnesium dihydrogen phosphate, magnesium carbonate, magnesium monohydrogen carbonate, magnesium acetate, magnesium citrate, magnesium lactate, magnesium tartrate, magnesium silicate, magnesium ascorbate, calcium fluoride, calcium chloride, calcium bromide, calcium iodide, calcium sulfate, calcium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, calcium carbonate, calcium monohydrogen carbonate, calcium acetate, calcium citrate, calcium lactate, calcium tartrate, calcium silicate, calcium ascorbate, and combinations thereof.
  • Inorganic salts such as inorganic alkali metal salts and inorganic alkaline earth metal salts, do not contain carbon.
  • Organic salts such as organic alkali metal salts and organic alkaline earth metal salts, contain carbon.
  • the organic salt can be an alkali metal salt or an alkaline earth metal salt of sorbic acid (i.e., asorbate) .
  • Sorbates can be selected from the group consisting of sodium sorbate, potassium sorbate, magnesium sorbate, calcium sorbate, and combinations thereof.
  • the water soluble carrier can be or comprise a material selected from the group consisting of a water-soluble inorganic alkali metal salt, a water-soluble organic alkali metal salt, a water-soluble inorganic alkaline earth metal salt, a water-soluble organic alkaline earth metal salt, a water-soluble carbohydrate, a water-soluble silicate, a water-soluble urea, and combinations thereof.
  • the water soluble carrier can be selected from the group consisting of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium acetate, potassium acetate, sodium citrate, potassium citrate, sodium tartrate, potassium tartrate, potassium sodium tartrate, calcium lactate, water glass, sodium silicate, potassium silicate, dextrose, fructose, galactose, isoglucose, glucose, sucrose, raffinose, isomalt, xylitol, candy sugar, coarse sugar, and combinations thereof.
  • the water soluble carrier can be sodium chloride.
  • the water soluble carrier can be table salt.
  • the water soluble carrier can be or comprise a material selected from the group consisting of sodium bicarbonate, sodium sulfate, sodium carbonate, sodium formate, calcium formate, sodium chloride, sucrose, maltodextrin, corn syrup solids, corn starch, wheat starch, rice starch, potato starch, tapioca starch, clay, silicate, citric acid carboxymethyl cellulose, fatty acid, fatty alcohol, glyceryl diester of hydrogenated tallow, glycerol, and combinations thereof.
  • the water soluble carrier can be selected from the group consisting of water soluble organic alkali metal salt, water soluble inorganic alkaline earth metal salt, water soluble organic alkaline earth metal salt, water soluble carbohydrate, water soluble silicate, water soluble urea, starch, clay, water insoluble silicate, citric acid carboxymethyl cellulose, fatty acid, fatty alcohol, glyceryl diester of hydrogenated tallow, glycerol, polyethylene glycol, and combinations thereof.
  • the water soluble carrier can be selected from the group consisting of disaccharides, polysaccharides, silicates, zeolites, carbonates, sulfates, citrates, and combinations thereof.
  • the water soluble carrier can be a water soluble polymer.
  • Water soluble polymers can be selected from the group consisting of polyvinyl alcohols (PVA) , modified PVAs; polyvinyl pyrrolidone; PVA copolymers such as PVA/polyvinyl pyrrolidone and PVA/polyvinyl amine; partially hydrolyzed polyvinyl acetate; polyalkylene oxides such as polyethylene oxide; polyethylene glycols; acrylamide; acrylic acid; cellulose, alkyl cellulosics such as methyl cellulose, ethyl cellulose and propyl cellulose; cellulose ethers; cellulose esters; cellulose amides; polyvinyl acetates; polycarboxylic acids and salts; polyaminoacids or peptides; polyamides; polyacrylamide; copolymers of maleic/acrylic acids; polysaccharides including starch, modified starch; gelatin; alginates;
  • the polymer comprises polyacrylates, especially sulfonated polyacrylates and water-soluble acrylate copolymers; and alkylhydroxy cellulosics such as methylcellulose, carboxymethylcellulose sodium, modified carboxy-methylcellulose, dextrin, ethylcellulose, propylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates.
  • the water soluble polymer can be selected from the group consisting of PVA; PVA copolymers; hydroxypropyl methyl cellulose (HPMC) ; and mixtures thereof.
  • the water soluble carrier can be selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl alcohol/polyvinyl pyrrolidone, polyvinyl alcohol/polyvinyl amine, partially hydrolyzed polyvinyl acetate, polyalkylene oxide, polyethylene glycol, acrylamide, acrylic acid, cellulose, alkyl cellulosics, methyl cellulose, ethyl cellulose, propyl cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides, starch, modified starch, gelatin, alginates, xyloglucans, hemicellulosic polysaccharides, xylan, glucuronoxylan
  • the water-soluble carrier can comprise a material selected from the group consisting of: a polyalkylene polymer of formula H- (C 2 H 4 O) x - (CH (CH 3 ) CH 2 O) y - (C 2 H 4 O) z -OH wherein x is from about 50 to about 300, y is from about 20 to about 100, and z is from about 10 to about 200; a polyethylene glycol fatty acid ester of formula (C 2 H 4 O) q -C (O) O- (CH 2 ) r -CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30; a polyethylene glycol fatty alcohol ether of formula HO- (C 2 H 4 O) s - (CH 2 ) t ) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30; and mixtures thereof.
  • the water-soluble carrier can comprise: polyethylene glycol; a polyalkylene polymer of formula H- (C 2 H 4 O) x - (CH (CH 3 ) CH 2 O) y - (C 2 H 4 O) z -OH wherein x is from about 50 to about 300; y is from about 20 to about 100, and z is from about 10 to about 200; a polyethylene glycol fatty acid ester of formula (C 2 H 4 O) q -C (O) O- (CH 2 ) r -CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30; and a polyethylene glycol fatty alcohol ether of formula HO- (C 2 H 4 O) s - (CH 2 ) t ) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30.
  • the water-soluble carrier can comprise from about 20%to about 80%by weight of the particles of polyalkylene polymer of formula H- (C 2 H 4 O) x - (CH (CH 3 ) CH 2 O) y - (C 2 H 4 O) z -OH wherein x is from about 50 to about 300; y is from about 20 to about 100, and z is from about 10 to about 200.
  • the water-soluble carrier can comprise from about 1%to about 20%by weight of the particles polyethylene glycol fatty acid ester of formula (C 2 H 4 O) q -C (O) O- (CH 2 ) r -CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30.
  • the water-soluble carrier can comprise from about 1%to about 10%by weight of the particles of polyethylene glycol fatty alcohol ether of formula HO- (C 2 H 4 O) s - (CH 2 ) t ) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30.
  • the water soluble carrier can be selected from the group consisting of polyethylene glycol, sodium acetate, sodium bicarbonate, sodium chloride, sodium silicate, polypropylene glycol polyoxoalkylene, polyethylene glycol fatty acid ester, polyethylene glycol ether, sodium sulfate, starch, and mixtures thereof. More preferably, the water soluble carrier can be polyethylene glycol (PEG) .
  • PEG polyethylene glycol
  • PEG can be a convenient material to employ to make particles because it can be sufficiently water soluble to dissolve during a wash cycle when the particles have the range of mass disclosed herein. Further, PEG can be easily processed as melt. The onset of melt temperature of PEG can vary as a function of molecular weight of the PEG.
  • the water-soluble carrier is polyethylene glycol (PEG) characterized by a weight average molecular weight (Mw) from about 1,000 to about 20,000 Daltons, preferably from about 1,500 to about 15,000 Daltons, more preferably from about 2,000 to about 13,000 Daltons.
  • PEG polyethylene glycol
  • Mw weight average molecular weight
  • a particularly suitable PEG is commercially available from BASF under the tradename PLURIOL E 8000 (which has a weight average molecular weight of 9000 even though 8000 is in the product name) , while other PLURIOL products are also suitable.
  • each of said plurality of anti-microbial particles further comprises one or more perfume ingredients in the amount ranging from about 0.1%to about 30%, preferably from about 0.5%to about 20%, more preferably from about 1%to about 15%by total weight of said each anti-microbial particle. It has been discovered that incorporation of perfume ingredients into the anti-microbial particles of the present invention surprisingly and unexpected improves the freshness benefit and better malodor control benefit, in comparsion with perfume ingredients not incorporated into any particles or with perfume ingredients incorporated into particles that contain the water-soluble carrier but are essentially free of the anti-microbial agent. Without being bound by any theory, it is believed that the presence of the anti-microbial agent may interact with the perfume ingredients to improve the release profile and deposition of such perfume ingredients (especially perfume microcapsules) onto fabrics.
  • Said one or more perfumes are preferably selected from the group consisting of free perfumes, pro-perfumes, encapsulated perfumes (i.e., perfumes carried by a carrier material such as starch, cyclodextrin, silica, zeolites or clay) , perfume microcapsules, and combinations thereof.
  • the anti-microbial particles of the present invention contain perfume microcapsules (PMCs) , especially friable PMCs.
  • PMCs perfume microcapsules
  • the term “perfume microcapsules” or PMCs cover both perfume microcapsules and perfume nanoparticles.
  • the PMCs comprise melamine/formaldehyde shells, which are commercially available from Appleton, Quest International, International Flavor &Fragrances, or other suitable sources.
  • the shells of the PMCs are coated with polymer to enhance the ability of the PMCs to adhere to fabric.
  • the anti-microbial particles of the present invention may comprise from about 0.1%to about 20%, preferably from about 1%to about 15%, more preferably from about 5%to about 10%of perfume microcapsules by total weight of each of said anti-microbial particles.
  • each of said anti-microbial particles comprises a combination of free perfumes and perfume microcapsules.
  • the weight ratio of free perfumes to perfume microcapsules in said each anti-microbial particle ranges from about 1: 5 to about 20: 1, preferalby from about 1: 2 to about 10: 1, more preferably from about 1: 1 to about 5: 1, most preferably from about 1.5: 1 to about 3: 1.
  • each of said plurality of anti-microbial particles further comprises a quaternary ammonium compound to provide additional fabric softening benefit.
  • the quaternary ammonium compound when released from the anti-microbial particles of the present invention during wash, is deposited from the wash liquor onto the fibers of the fabric to provide the consumer with a feeling of softness.
  • each of said plurality of anti-microbial particles may comprise from about 5%to about 45%, preferably from about 10%to about 40%, more preferably from about 15%to about 35%of a quaternary ammonium compound formed from a parent fatty acid compound having an Iodine Value from about 18 to about 60, preferably from about 20 to about 60, by total weight of said each anti-microbial particle.
  • the quaternary ammonium compound is an ester quaternary ammonium compound, and more preferably di- (tallowoyloxyethl) -N, N-methylhydroyethylammonium methyl sulfate.
  • the anti-microbial particles of the present invention may further comprise a cationic polymer, which functions to promote deposition of the quaternary ammonium compound onto the fabrics and to boost the fabric softening performance thereof.
  • a cationic polymer which functions to promote deposition of the quaternary ammonium compound onto the fabrics and to boost the fabric softening performance thereof.
  • Each of said plurality of anti-microbial particles may comprise from about 0.5%to about 10%, preferably from about 1%to about 5%of such cationic polymer by total weight of said each anti-microbial particle.
  • the cationic polymer is preferably a cationic polysaccharide, more preferably polymeric quaternary ammonium salt of hydroxyethylcellulose which has been reacted with an epoxide substituted with a trimethylammonium group.
  • the weight ratio of the quaternary ammonium compound to the cationic polymer in said each particle may range from about 3: 1 to about 30: 1, optionally from about 5: 1 to about 15: 1, optionally from about 5: 1 to about 10: 1, optionally about 8: 1.
  • the mass fraction of quaternary ammonium compound and mass fraction of cationic polymer are balanced to achieve assistance from the cationic polymer to deposit satisfactory levels of deposition of the quaternary ammonium compound onto the fabric being treated.
  • each of said plurality of anti-microbial particles may further comprise from about 0.0001%to about 1%, preferably from about 0.001%to about 0.5%, more preferably from about 0.005%to about 0.1%of one or more colorants by total weight of said each anti-microbial particle.
  • the colorants can be selected from the group consisting of dyes, pigments, and combinations thereof.
  • the colorants impart to the anti-microbial particles a color selected from the group consisting of blue, green, yellow, orange, pink, red, purple, grey, and the like.
  • the anti-microbial particles of the present invention may further comprise a water-soluble or water-dispersible filler, e.g., sodium chloride, sodium sulfate, sodium carbonate, sodium bicarbonate, sugar, starch, modified cellulose, silica, zeolite, clay, and the like.
  • a water-soluble or water-dispersible filler e.g., sodium chloride, sodium sulfate, sodium carbonate, sodium bicarbonate, sugar, starch, modified cellulose, silica, zeolite, clay, and the like.
  • each of the particles can comprise from about 0.1%to about 7%of clay by total weight of said each particle. More preferably, the clay is bentonite.
  • the anti-microbial particles of the present invention are substantially free of or essentially free of surfactants, because the presence of such surfactants may speed up dissolution or dispersion of the anti-microbial agent in water and reduce its deposition onto the fabrics, which is undesirable in the context of the present invention. More preferably, the anti-microbial particles of the present invention are substantially free of or essentially free of any detersive actives.
  • the anti-microbial particles of the present invention preferably contain less than about 10%, optionally less than about 8%, optionally less than about 5%, optionally less than about 3%of water by total weight of each of said anti-microbial particles. Decreasing or having these ranges of water content are thought to provide particles that are more stable. The lower the mass fraction of water, the more stable the particles are thought to be.
  • Each of the anti-microbial particles of the present invention has a mass from about 1 mg to about 1 g, preferably from about 5 mg to about 500 mg, more preferably from about 10 mg to about 250 mg, most preferably from about 15 mg to about 125 mg.
  • Said particles may be formed into tablets, pills, spheres, and the like. They can have any shape selected from the group consisting of spherical, hemispherical, compressed hemispherical, cylindrical, disc, circular, lentil-shaped, oblong, cubical, rectangular, star-shaped, flower-shaped, and any combinations thereof.
  • Lentil-shaped refers to the shape of a lentil bean.
  • Compressed hemispherical refers to a shape corresponding to a hemisphere that is at least partially flattened such that the curvature of the curved surface is less, on average, than the curvature of a hemisphere having the same radius.
  • a compressed hemispherical particle can have an aspect ratio (i.e., the ratio of its base diameter over its height that is orthogonal to the base) of from about 2.0 to about 5, alternatively from about 2.1 to about 4.5, alternatively from about 2.2 to about 4.
  • Oblong-shaped particle refers to a particle having a maximum dimension and a secondary dimension orthogonal to the maximum dimension, wherein the ratio of maximum dimension to the secondary dimension is greater than about 1.2, preferably greater than about 1.5, more preferably greater than about 2.
  • the anti-microbial particles of the present invention have a hemispherical or compressed hemispherical shape.
  • said anti-microbial particles are characterized by a longest dimension of from about 3 mm to about 10 mm, preferably from about 4 mm to about 9 mm, more preferably from about 5 mm to about 8 mm; and/or an aspect ratio from about 1 to about 5, preferably from about 1.5 to about 4, more preferably from about 2 to about 4.
  • the anti-microbial particles of the present invention have a density lower than water, so that they can float on water and are more noticeable by the consumers during wash.
  • such anti-microbial particles may have a density ranging from about 0.5 g/cm3 to about 0.98 g/cm3, preferably from about 0.7 g/cm3 to about 0.95 g/cm3, more preferably from about 0.8 g/cm3 to about 0.9 g/cm3.
  • the plurality of anti-microbial particles of the present invention can have different shapes, sizes, mass, and/or density.
  • Particulate products are preferred by many consumers.
  • Particulate products can be easily dosed by consumers from a package directly into the washing machine or into a dosing compartment on the washing machine. Or the consumer can dose from the package into a dosing cup that optionally provides one or more dosing indicia and then dose the particulates into a dosing compartment on the washing machine or directly to the drum.
  • a dosing cup For products in which a dosing cup is employed, particulate products tend to be less messy than liquid products.
  • the plurality of anti-microbial particles as mentioned hereinabove can be provided as a stand-alone particulate product for through-the-wash fabric treatment, which is convenient for the consumer to dose to the washing machine.
  • the stand-alone particulate product may consist essentially of the anti-microbial particles of the present invention, or it may contain other particles similar to the anti-microbial particles, e.g., perfume particles, softening particles, bleach particles, etc., which contain little or no surfactant or which is of similar sizes as the anti-microbial particles.
  • the stand-alone particulate product may be provided in a package that is separate from the package of detergent composition.
  • Having the anti-microbial particles in a package separate from the package of detergent composition can be beneficial since it allows the consumer to select the amount of anti-microbial agent to be dosed, independent of the amount of detergent composition used. This can give the consumers the opportunity to customize the amount of anti-microbial agent used and thereby the resulting anti-microbial benefit based on their needs, which is a highly valuable consumer benefit.
  • the anti-microbial particles of the present invention are present in a particulate laundry detergent composition which also contain detergent particles.
  • the plurality of anti-microbial particles are present in said particulate laundry detergent composition as a minor portion, e.g., in an amount ranging from about 0.05%to about 30%, preferably from about 0.1%to about 20%, more preferably from about 0.5%to about 15%, most preferably from about 1%to about 10%by total weight of said particulate laundry detergent composition.
  • the particulate laundry detergent composition may comprise the detergent particles in an amount ranging from about 10%to about 99.9%, preferably from about 20%to about 95%, more preferably from about 30%to about 90%, most preferably from about 40%to about 80%by total weight of said particulate laundry detergent composition.
  • the detergent particles of the present invention may comprise one or more detersive actives, such as surfactants, builders, bleach actives, enzymes, polymers, chelants, softeners, suds suppressors, suds boosters, brighteners, dye transfer inhibitors, and the like.
  • the detergent particles can be spray-dried particles and/or agglomerated particles and/or extruded particles.
  • Such detergent particles may be selected from: surfactant particles, including surfactant agglomerates, surfactant extrudates, surfactant needles, surfactant noodles, surfactant flakes; polymer particles such as cellulosic polymer particles, polyester particles, polyamine particles, terephthalate polymer particles, polyethylene glycol polymer particles; builder particles, such as sodium carbonate and sodium silicate co-builder particles, phosphate particles, zeolite particles, silicate salt particles, carbonate salt particles; filler particles such as sulphate salt particles; dye transfer inhibitor particles; dye fixative particles; bleach particles, such as percarbonate particles, especially coated percarbonate particles, such as percarbonate coated with carbonate salt, sulphate salt, silicate salt, borosilicate salt, or any combination thereof, perborate particles, bleach catalyst particles such as transition metal bleach catalyst particles, or oxaziridinium-based bleach catalyst particles, pre-formed peracid particles, especially coated pre-formed peracid particles, and co-bleach particles of
  • such detergent particles are surfactant particles containing from about 10%to about 90%, preferably from about 15%to about 80%, more preferably from about 20%to about 70%, of a surfactant by total weight of said detergent particles.
  • the surfactant is selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and combinations thereof.
  • the detergent particles of the present invention comprise an anionic surfactant and/or a nonionic surfactant.
  • the detergent particles of the present invention may be characterized by a Median Weight Particle Size (Dw50) of from about 250 ⁇ m to about 1000 ⁇ m, preferably from about 300 ⁇ m to about 950 ⁇ m, more preferably from about 400 ⁇ m to about 850 ⁇ m.
  • Dw50 Median Weight Particle Size
  • such detergent particles have a white or light-colored appearance
  • the anti-microbial particles have a blue, green, yellow, orange, pink, red, purple or grey color so that they are visually contrasting with the detergent particles.
  • the particulate laundry detergent composition of the present invention may comprise one or more detergent ingredients.
  • Suitable detergent ingredients include: detersive surfactants including anionic detersive surfactants, non-ionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants, amphoteric detersive surfactants, and any combination thereof; polymers including carboxylate polymers, polyethylene glycol polymers, polyester soil release polymers such as terephthalate polymers, amine polymers, cellulosic polymers, dye transfer inhibition polymers, dye lock polymers such as a condensation oligomer produced by condensation of imidazole and epichlorhydrin, optionally in ratio of 1: 4: 1, hexamethylenediamine derivative polymers, and any combination thereof; builders including zeolites, phosphates, citrate, and any combination thereof; buffers and alkalinity sources including carbonate salts and/or silicate salts; fill
  • the particulate laundry detergent composition comprises one or more builders (not including the carbonate as described hereinabove) in the amount ranging from about 1 wt%to about 40 wt%, typically from 2 wt%to 25 wt%, or even from about 5 wt%to about 20 wt%, or from 8 wt to 15 wt%by total weight of such composition.
  • Builders as used herein refers to any ingredients or components that are capable of enhancing or improving the cleaning efficiency of surfactants, e.g., by removing or reducing “free” calcium/magnesium ions in the wash solution to “soften” or reducing hardness of the washing liquor.
  • such particulate laundry detergent composition has relatively low levels of phosphate builder, zeolite builder, and silicate builder. Preferably, it contains at most 15 wt%by weight of phosphate builder, zeolite builder, and silicate builder in total. More preferably, such particulate laundry detergent composition contains from 0 wt%to about 5 wt%of phosphate builder, from 0 wt%to about 5 wt%of zeolite builder, and from 0 wt%to about 10 wt%of silicate builder, while the total amounts of these builders add up to no more than 10 wt%by total weight of the composition.
  • the particulate laundry detergent composition contains from 0 wt%to about 2 wt%of phosphate builder, from 0 wt%to about 2 wt%of zeolite builder, and from 0 wt%to about 2 wt%of silicate builder, while the total amounts of these builders add up to no more than 5 wt%by total weight of the composition.
  • the particulate laundry detergent composition contains from 0 wt%to about 1 wt%of phosphate builder, from 0 wt%to about 1 wt%of zeolite builder, and from 0 wt%to about 1 wt%of silicate builder, while the total amounts of these builders add up to no more than 2 wt%by total weight of the composition.
  • the composition may further comprise any other supplemental builder (s) , chelant (s) , or, in general, any material which will remove calcium ions from solution by, for example, sequestration, complexation, precipitation or ion exchange.
  • the composition may comprise materials having at a temperature of 25°C and at a 0.1M ionic strength a calcium binding capacity of at least 50 mg/g and a calcium binding constant log K Ca 2+ of at least 3.50.
  • the particulate laundry detergent composition of the present invention may contain one or more solid carriers selected from the group consisting of sodium chloride, potassium chloride, sodium sulphate, and potassium sulphate.
  • such particulate laundry detergent composition includes from about 20 wt%to about 65 wt%of sodium chloride and/or from about 20 wt%to about 65 wt%of sodium sulphate.
  • the total amount of sodium chloride and/or sodium sulphate in such composition may sum up, for example, to a total amount of from about 0 wt%to about 60 wt%.
  • the anti-microbial particles of the present invention are particularly useful for treating fabrics in a machine-washing or hand-washing setting to provide an anti-microbial benefit and optionally an improved fabric freshness and malodor control benefit. They enable consumers to achieve anti-microbial benefit through the wash, in particular the wash sub-cycle. By providing anti-microbial benefit through the wash sub-cycle, consumers only need to dose the detergent composition and the anti-microbial particles to a single location, for example the wash basin, prior to or shortly after the start of the washing machine.
  • the process for treating an article of clothing can comprise the steps of providing an article of clothing in a washing machine.
  • the article of clothing is contacted during the wash sub-cycle of the washing machine with a composition comprising a plurality of the anti-microbial particles disclosed herein.
  • the particles can dissolve into water provided as part of the wash sub-cycle to form a liquor.
  • the dissolution of the particles can occur during the wash sub-cycle.
  • Washing machines have at least two basic sub-cycles within a cycle of operation: a wash sub-cycle and a rinse sub-cycle.
  • the wash sub-cycle of a washing machine is the cycle on the washing machine that commences upon first filling or partially filing the wash basin with water.
  • a main purpose of the wash sub-cycle is to remove and or loosen soil from the article of clothing and suspend that soil in the wash liquor.
  • the wash liquor is drained at the end of the wash sub-cycle.
  • the rinse sub-cycle of a washing machine occurs after the wash sub-cycle and has a main purpose of rinsing soil, and optionally some benefit agents provided to the wash sub-cycle from the article of clothing.
  • the process can optionally comprise a step of contacting the article of clothing during the wash sub-cycle with a detergent composition comprising an anionic surfactant.
  • a detergent composition comprising an anionic surfactant.
  • Detergent compositions can comprise anionic surfactant, and optionally other benefit agents including but not limited to perfume, bleach, brighteners, hueing dye, enzyme, and the like.
  • the benefit agents provided with the detergent composition are contacted with or applied to the article of clothing disposed in the wash basin.
  • the benefit agents of detergent compositions are dispersed in a wash liquor of water and the benefit agents.
  • the wash basin may be filled or at least partially filled with water.
  • the anti-microbial particles can dissolve into the water to form a wash liquor comprising the components of the particles.
  • the wash liquor can include the components of the detergent composition and the components of the dissolved particles.
  • the particles can be placed in the wash basin of the washing machine before the article of clothing is placed in the wash basin of the washing machine.
  • the particles can be placed in the wash basin of the washing machine after the article of clothing is placed in the wash basin of the washing machine.
  • the particles can be placed in the wash basin prior to filling or partially filling the wash basin with water or after filling of the wash basin with water has commenced.
  • the detergent composition and particles can be provided from separate packages.
  • the detergent composition can be a liquid detergent composition provided from a bottle, sachet, water soluble pouch, dosing cup, dosing ball, or cartridge associated with the washing machine.
  • the particles can be provided from a separate package, by way of non-limiting example, a carton, bottle, water soluble pouch, dosing cup, sachet, or the like.
  • the detergent composition is a solid form, such as a powder, water soluble fibrous substrate, water soluble sheet, water soluble film, water soluble film, water insoluble fibrous web carrying solid detergent composition, the particles can be provided with the solid form detergent composition.
  • the particles can be provided from a container containing a mixture of the solid detergent composition and the particles.
  • the particles can be provided from a pouch formed of a detergent composition that is a water soluble fibrous substrate, water soluble sheet, water soluble film, water soluble film, water insoluble fibrous web carrying solid detergent composition.
  • the laundry liquor used for dissolving the anti-microbial particles and treating fabrics may have a pH value that is chosen to be the most complimentary to the fabrics to be cleaned spanning broad range of pH, e.g., from about 5 to about 11, preferably from about 8 to about 10.
  • the water temperatures preferably range from about 5 °C to about 100 °C.
  • the water to fabric ratio is typically from about 1: 1 to about 30: 1.
  • the wash liquor may comprise 40 litres or less of water, or 30 litres or less, or 20 litres or less, or 10 litres or less, or 8 litres or less, or even 6 litres or less of water.
  • the wash liquor may comprise from above 0 to 15 litres, or from 2 litres, and to 12 litres, or even to 8 litres of water.
  • the wash liquor may comprise 150 litres or less of water, 100 litres or less of water, 60 litres or less of water, or 50 litres or less of water, especially for hand-washing conditions, and can depend on the number of rinses.
  • from 0.01 Kg to 2 Kg of fabric per litre of wash liquor is dosed into the wash liquor.
  • the rotoforming process can be used.
  • a mixture of molten carrier and the other materials constituting the particles is prepared, for instance in a batch or continuous mixing process.
  • the molten mixture can be pumped to a rotoformer, for instance a Sandvik ROTOFORM 3000 having a 750 mm wide 10 m long belt.
  • the rotoforming apparatus can have a rotating cylinder.
  • the cylinder can have 2 mm diameter apertures set at a 10 mm pitch in the cross machine direction and 9.35 mm pitch in the machine direction.
  • the cylinder can be set at approximately 3 mm above the belt.
  • the belt speed and rotational speed of the cylinder can be set at about 10 m/min.
  • the molten mixture can be passed through the apertures in the rotating cylinder and deposited on a moving conveyor that is provided beneath the rotating cylinder.
  • the molten mixture can be cooled on the moving conveyor to form a plurality of solid particles.
  • the cooling can be provided by ambient cooling.
  • the cooling can be provided by spraying the under-side of the conveyor with ambient temperature water or chilled water.
  • the particles can be transferred from the conveyor to processing equipment downstream of the conveyor for further processing and or packaging.
  • the particles can be provided with inclusions of a gas.
  • a gas for example air
  • Occlusions of gas can be provided, by way of nonlimiting example, by injecting gas into the molten precursor material and milling the mixture.
  • Particles can also be made using other approaches. For instance, granulation or press agglomeration can be appropriate. In granulation, the precursor material containing the constituent materials of the particles is compacted and homogenized by rotating mixing tools and granulated to form particles. For precursor materials that are substantially free of water, a wide variety of sizes of particles can be made.
  • press agglomeration the precursor material containing the constituent materials of the particles is compacted and plasticized under pressure and under the effect of shear forces, homogenized and then discharged from the press agglomeration machine via a forming/shaping process.
  • Press agglomeration techniques include extrusion, roller compacting, pelleting, and tableting.
  • the precursor material containing the constituent materials of the particles can be delivered to a planetary roll extruder or twin screw extruder having co-rotating or contra-rotating screws.
  • the barrel and the extrusion granulation head can be heated to the desired extrusion temperature.
  • the precursor material containing the constituent materials of the particles can be compacted under pressure, plasticized, extruded in the form of strands through a multiple-bore extrusion die in the extruder head, and sized using a cutting blade.
  • the bore diameter of the of extrusion header can be selected to provide for appropriately sized particles.
  • the extruded particles can be shaped using a spheronizer to provide for particles that have a spherical shape.
  • the extrusion and compression steps may be carried out in a low-pressure extruder, such as a flat die pelleting press, for example as available from Amandus Kahl, Reinbek, Germany.
  • a low pressure extruder such as a BEXTRUDER, available from Hosokawa Alpine Aktiengesellschaft, Augsburg, Germany.
  • the particles can be made using roller compacting.
  • roller compacting the precursor material containing the constituent materials of the particles is introduced between two rollers and rolled under pressure between the two rollers to form a sheet of compactate.
  • the rollers provide a high linear pressure on the precursor material.
  • the rollers can be heated or cooled as desired, depending on the processing characteristics of the precursor material.
  • the sheet of compactate is broken up into small pieces by cutting. The small pieces can be further shaped, for example by using a spheronizer.
  • sample granular laundry detergent compositions The anti-microbial efficacy of sample granular laundry detergent compositions is measured as follows:
  • Each defined sample of a granular laundry detergent composition (e.g., 15.29g) to be tested is dissolved into 1 L of water with a water hardness level of 342 mg/L.
  • Such water is formed by dissolving 0.034g CaCl 2 and 0.139g MgCl 2 ⁇ 6H 2 O in 1L of deionized (DI) water.
  • DI deionized
  • the solution is mixed by a magnetic stirrer for about 4 minutes, followed by dispensing 265ml of such solution into the exposure chamber of a wash tumbler as described by the Degerming Test Method for Laundry Detergents as issued by the Japanese Detergent and Soap Fair Trade Council.
  • a stainless-steel spindle is fabricated from a single continuous piece of stainless steel wire having a diameter of about 1/16 inch by bending it to form 3 horizontal extensions, each about 2 inch in length, which are connected by 2 vertical sections of approximately 2 inch in length.
  • the spindle is used as a carrier for wrapping the fabric ballast.
  • cotton fabrics of approximately 300 grams are scoured by boiling for one hour in 3 L of distilled or DI water that contains about 1.5 grams of sodium carbonate and about 1.5 grams of a nonionic wetting agent.
  • the fabrics are then rinsed in boiling water and then in cold water, until all visual traces of foam formed by the wetting agent are removed.
  • the fabrics are then drained of water and air-dried for at least 24 hours at ambient temperature.
  • the scoured and dried fabrics are then cut into strips that has a width of about 2 inches and weighs about 15 ⁇ 0.1g each.
  • One piece of such cotton fabric strip is then taken, and one of its ends is secured onto the outer horizontal extension of the above-mentioned stainless-steel spindle.
  • This cotton fabric strip is wrapped around the three horizontal extensions of the spindle with sufficient tension for about 12 to 13 laps until the entire fabric strip has been wrapped onto the spindle.
  • a staple or pin may be used to secure the loose end of the fabric strip.
  • the fabric-wrapped spindles may then be sterilized, either in individual exposure chambers of the above-mentioned wash tumbler, or separately from the exposure chambers. The fabric wrapped on the spindle and the exposure chamber should both be dry prior to placement of the spindle into the exposure chamber.
  • the fabric-wrapped spindle is then placed into the exposure chamber of the wash tumbler that contains the 265ml washing solution as mentioned hereinabove.
  • the exposure chamber is then agitated for about 20 minutes at a speed of about 60 rpm.
  • the fabric-wrapped spindle is spun-dried for about 2 minutes, and the washing solution is discarded.
  • 265ml of fresh hard water as described hereinabove is dispensed into the same exposure chamber for rinsing the fabric-wrapped spindle.
  • the exposure chamber is agitated for another 3 minutes at the same agitation speed, and then the fabric-wrapped spindle is spun-dried again for about 2 minutes, followed by discarding the rinse solution.
  • the fabric-wrapped spindle is rinsed and spun-dried once more following the same procedure as described hereinabove.
  • the cotton fabric strip is taken off the spindle and air-dried overnight at ambient temperature.
  • the dried cotton fabric strip is then cut into 2cm ⁇ 2cm square pieces, and 10 pieces of such cotton fabrics are stacked together to form one test specimen, which weighs about 0.40 ⁇ 0.05g.
  • test specimen is then subjected to the Bacteriostatic Activity Evaluation method as described by Section 8.1 of the Japanese Industrial Standards (JIS) L1902-2015 standard, while the number of bacteria is calculated according to Section 8.1.4.5.2 (instead of calculating the amount of ATP as described in Section 8.1.4.5.3) .
  • JIS Japanese Industrial Standards
  • the Dissolution Rate Test is used to measure the speed of dissolution of the particles.
  • This test is conducted by adding 400ml of de-ionized water into a 400ml transparent glass beaker at room temperature (25°C) , then dispersing about 1 gram of test particles into the deionized water. Use stop watch to count the total time needed before the particles are fully dissolved.
  • the particle’s longest dimension and shortest dimension can be measured by using Vernier calipers. To reduce the variation of the data, typically 10 particles can be measured and then use the average result.
  • Test 4 Perfume Bloom and Fabric Freshness Test
  • Dissolving Head-Space Count testing is used for demonstration of improved perfume bloom and fabric freshness benefit. It is similar in many ways to the conditions that might occur when a consumer uses the particles to treat her laundry.
  • Dissolving Head-Space Count test method the particles to be tested are placed in distilled water and the amount of perfume raw materials (PRM) that is transferred to the air in the head-space above the water is measured as counts at various time points. Measurement of the Dissolving Head-Space Count is conducted using a 7100 Ultra Fast GC Analyzer MicroSense5 ZNOSE with the accompanying software MicroSense version 5.37 (available from Electronic Sensor Technology, Newbury Park, Calif., USA. ) .
  • This instrument system is a miniature, high-speed gas chromatograph containing a gas chromatograph sensor, pneumatic controls, and support electronics.
  • the gas chromatograph sensor is based on a 6-port valve and oven, a preconcentrating trap, a short gas chromatograph column and a surface acoustic wave detector.
  • a system controller based on a laptop computer, operates the system, analyzes the data and provides a user interface.
  • Complete instructions for use of the ZNOSE can be found in the 7100 Ultra Fast GC Analyzer Operation Manual MicroSense 5.
  • the ZNOSE is set to the following settings: 5ps2a1b_35 (DBS column) ; 1 second pump sample time; 0.5 second data collection; column temperature range is 40°C. to 180°C. and ramps at a rate of 5°C.
  • a total of 20 g of 25°C. deionized (DI) water is added into a clean 40 ml sample bottle (such as VWR scientific cat. #EP 140-40C) .
  • a total of 0.040 g of the test particles or a 0.040 g portion of a test particle is added to the 20 g of water in the sample bottle, to provide a sample of the test particle material at a concentration of 2.0 mg/mL in DI water.
  • a 3 mm thick PTFE silicone septum is fixed to the sample bottle and the ZNOSE inlet needle is inserted into the head-space of the sample bottle immediately, along with a separate needle attached to a carbon filter.
  • a ZNOSE measurement is taken every 90 seconds and measurements are continued for at least 45 minutes without any agitation of the sample or bottle, at an ambient room temperature between 22°C and 27°C.
  • the headspace count for each PRM is recorded at each 90 second measurement time point.
  • the Dissolving Head-Space Count reported for a given time point is the sum of the counts from all PRMs detected in the headspace at that time point.
  • the Dissolving Head-Space Count is a function of the concentration in the head-space of the particular perfume raw material being considered. Higher head-space counts are associated with higher concentrations of perfume in the head-space.
  • anti-microbial particles A-E Following are exemplary anti-microbial particles A-E according to the present invention:
  • Polymer PK available from Dow Chemical, which is a cationic hydroxyethyl cellulose having a weight average molecular weight of 400 kDa, a charge density of 0.18, and an average weight percent of nitrogen per anydroglucose repeat unit of 0.28%.
  • inventive anti-microbial particles from Example 1 are incorporated into particulate laundry detergent products of the following formulations I-V:
  • Example 3 Comparative Test Demonstrating Higher Deposition Rate of Anti-Microbial Agent When Incorporated Into Anti-Microbial Beads
  • sample A An inventive sample (Sample A) containing anti-microbial particles of the present invention is provided.
  • Sample A contains 13.5 grams of anti-microbial particles formed by 13.42 grams of PEG9000 and 0.08 grams of The anti-microbial particles in Sample A are made by the following steps:
  • Sample B contains, separately, 13.42 grams of PEG9000 particles and 0.08 grams of The PEG9000 particles in Sample B are formed by the following steps:
  • Pre-melting the PEG9000 is pre-melted material in a 75°C oven overnight;
  • Sample A and Sample B are then used to treat fabrics, respectively, according to the following washing conditions:
  • Wash cycle Dissolve 2min/soak 10min/wash 15min/rinse 4min*2/spin dry Load size: Total 1.7kg include 4 pieces CW98 (cotton) (new cotton: new polyester 8: 2)
  • HMI Fe: Cu: Mn 6: 1: 4
  • 4-4’-dichloro-2-hydroxy diphenyl ether is extracted from the fabrics by using methanol with the aid of ASE (Accelerate Solvent Extraction) .
  • ASE Accelerate Solvent Extraction
  • About 3g of fabrics is accurately weighed and filled into a steel ASE tube, followed by running an extraction protocol for 5 mins at 100°C and 2000psi with methanol as an extraction solvent.
  • the extracted content is collected and transferred into a 25ml flask and brought to volume with methanol, followed by further dilution of 25 fold by adding 50: 50 methanol: water to prepare injection sample.
  • the injection sample is then subjected to gradient reversed-phase high performance liquid chromatographic (HPLC) separation on a C18 column and quantified by tandem mass spectrometry (MS/MS) operating under multiple reaction monitoring (MRM) conditions at negative mode.
  • HPLC high performance liquid chromatographic
  • MS/MS tandem mass spectrometry
  • MRM multiple reaction monitoring
  • the LC-MS/MS test is conducted by injecting 5ul of the injection sample separating it on a Waters Acquity UPLC C18 column with gradient from 70%mobile phase A (1%formic water solution) /30%mobile phase B (0.1%formic acid in methanol) to 5%mobile phase A/95%mobile phase B in 3 minutes and keep the final gradient for another 3 minutes.
  • the antimicrobial agent 4-4’-dichloro-2-hydroxy diphenyl ether is detected at negative MRM mode.
  • the ion pair of m/z 253>142 is used as quantification transition while m/z of 253>125 is for identification.
  • Spiked matrix standards in the range of 0.5g/ml to 500ng/ml is injected for calibration curve creation.
  • Concentration of 4-4’-dichloro-2-hydroxy diphenyl ether in injection sample is determined by back-calculation using weighted (1/x 2 ) quadratic regression of a calibration curve.

Abstract

A composition comprising a plurality of anti-microbial particles that each comprises: (a) from 25% to 99%of a water soluble carrier by total weight of said particle; and (b) an diphenyl ether anti-microbial agent, wherein each of said plurality of particles has a mass from about 1 mg to about 1 g. Preferably, each of said anti-microbial particles further comprises a perfume. More preferably, said composition is a particulate laundry detergent composition comprising said plurality of anti-microbial particles in combination with detergent particles.

Description

ANTI-MICROBIAL PARTICLES FIELD OF THE INVENTION
Through-the-wash laundry additive and fabric treatment compositions comprising same.
BACKGROUND OF THE INVENTION
Consumer products have evolved to address user needs for an anti-microbial benefit, in addition to their original intended functions. For example, an anti-microbial laundry detergent product is desired by users as it cleans fabrics whilst having an anti-microbial benefit on fabrics. Currently, various anti-microbial agents, e.g., diphenyl ethers, are known for use in consumer product formulations to deliver an anti-microbial effect.
However, in the context of laundry detergent, it is challenging to achieve a desired efficacy of the anti-microbial agents on fabrics. Specifically, during a washing cycle, most of the active ingredients, including the incorporated anti-microbial agents, are eventually washed away along with the washing solution. Consequently, only a small amount of anti-microbial agents released by the laundry detergent can be deposited onto washed fabrics. In order to compensate for such low deposition rate of the anti-microbial agents, manufacturers will have to increase the concentration of the anti-microbial agents in the the laundry detergent products, which not only leads to increased cost but also environmental concerns due to an increased amount of anti-microbial agents being washed away during the laundering process and released into the environment.
Further, certain anti-microbial agents, e.g., diphenyl ethers, are known for use in liquid laundry detergent formulations to deliver an anti-microbial effect. However, in the context of solid, granular laundry detergent products, such diphenyl ether anti-microbial agents, especially 4-4’-dichloro-2-hydroxy diphenyl ether (typically referred to as “Dichlosan” or by its tradename “
Figure PCTCN2020120565-appb-000001
HP 100” as commercially available from BASF) , have been found to have disappointingly poor anti-microbial efficacy, when they are provided at the same concentration level as in the liquid laundry detergent products. To compensate for such poor anti-microbial efficacy, such anti-microbial agent needs to be provided in the granular laundry detergent products at a significantly higher concentration level than in the liquid laundry detergent products, to the point that it becomes too cost-prohibitive to use.
Therefore, there is a continuing need for improving the delivery efficiency and deposition rate of anti-microbial agents during the laundering process, so as to maintain or improve the overall anti-microbial effect while minimizing the cost and environmental impact thereof.
SUMMARY OF THE INVENTION
The present invention provides a composition comprising a plurality of anti-microbial particles that each comprises: (a) from 25%to 99%of a water soluble carrier by total weight of said particle; and (b) an diphenyl ether anti-microbial agent, wherein each of said plurality of anti-microbial particles has a mass from about 1 mg to about 1 g.
When the same amount of anti-microbial agent is provided, it may exhibit higher anti-microbial efficacy when formulated into the anti-microbial particles of the present invention, in comparison with being added into a powder or liquid laundry detergent product. Without being bound by any theory, it is believed that such anti-microbial particles provide controlled/sustained release of the anti-microbial agent into the wash liquor during the laundering process. Such controlled/sustained release is particulary advantageous when the pH of the wash liquor is lower during the later stage of the laundering process and certain anti-microbial agent (e.g., especially 4-4’-dichloro-2-hydroxy diphenyl ether) exhibits better fabric deposition at lower pH.
Further, when provided as a stand-alone fabric treatment product, such anti-microbial particles of the present invention offer greater dosing flexibility to enable more effective delivery of the anti-microbial agent. The consumers can choose to dose more or less of the anti-microbial agent as needed, separately from the surfactants or other detersive actives in the laundry detergent products. The consumer can also choose to add the anti-microbial particles of the present invention at a specific stage of the laundering process, e.g., after wash or during the rinse cycle, to increase deposition rate of such anti-microbial agent onto fabrics.
Still further, such anti-microbial particles of the present invention can be readily incorporated into particulate laundry detergent compositions that also contain detergent particles. Particulate laundry detergent compositions typically have a significantly higher Equilibrium pH than liquid laundry detergent compositions, and such high-pH environment is not beneficiary to deposition of certain anti-microbial agents as mentioned hereinabove. In order to solve this problem, it is possible to reformulate the particulate laundry detergent composition to reduce the Equilibrium pH of, but the cost and complexity associated with such reformulation are significant. Therefore, the anti-microbial particles of the present invention provides an alternative solution that is both simple and more cost-effective. Without being bound by any theory, it is believe that  the water-soluble carrier in such anti-microbial particles functions to isolate the anti-microbial agent from the high-PH environment of the typical particulate laundry detergent products, thereby improving the deposition rate of such anti-microbial agent.
Still further, when such anti-microbial particles contain perfume ingredients therein, improved freshness benefit and better malodor control benefit are surprisingly observed. Without being bound by any theory, it is believe that the anti-microbial agent in such particles interacts with the perfume ingredients to improved the release profile and deposition of such perfume ingredients (especially perfume microcapsules) onto the fabrics.
These and other aspects of the present invention will become more apparent upon reading the following detailed description of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Features and benefits of the various embodiments of the present invention will become apparent from the following description, which includes examples of specific embodiments intended to give a broad representation of the invention. Various modifications will be apparent to those skilled in the art from this description and from practice of the invention. The scope of the present invention is not intended to be limited to the particular forms disclosed and the invention covers all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the claims.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm. ”
As used herein, terms such as "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described. The terms “comprise, ” “comprises, ” “comprising, ” “contain, ” “contains, ” “containing, ” “include, ” “includes” and “including” are all meant to be non-limiting.
The term “anti-microbial particle” refers to a particle comprising one or more anti-microbial agents in a water-soluble carrier.
The term “aspect ratio” refers to the ratio of the longest dimension of the perfume particles over its shortest dimension. For example, when such perfume particles have a  hemispherical or compressed hemispherical shape, the aspect ratio is the ratio between the based diameter of the perfume particles over its height.
The term “particulate laundry detergent composition” refers to a solid powdery or granular laundry detergent composition, preferably a free-flowing powdery or granular laundry detergent composition, such as an all-purpose or heavy-duty washing agent for fabrics, as well as laundry auxiliaries such as bleach actives, rinse aids, additives, or pre-treat products.
The term “detergent particle” refers to a particle comprising one or more detersive actives, such as surfactants, builders, bleach actives, enzymes, polymers, chelants, softeners, suds suppressors, suds boosters, brighteners, dye transfer inhibitors, and the like. Preferably, such detergent particles contain one or more surfactants, especially an anionic surfactant and/or a nonionic surfactant.
The term “consisting essentially of” means that the composition contains less than about 10%, preferably less than about 5%, of ingredients other than those listed.
Further, the term “substantially free of” or “substantially free from” means that the indicated material is present in the amount of from 0 wt%to about 1 wt%, preferably from 0 wt%to about 0.5 wt%, more preferably from 0 wt%to about 0.2 wt%. The term “essentially free of” means that the indicated material is present in the amount of from 0 wt%to about 0.1 wt%, preferably from 0 wt%to about 0.01 wt%, more preferably it is not present at analytically detectable levels.
As used herein, all concentrations and ratios are on a weight basis unless otherwise specified. All temperatures herein are in degrees Celsius (℃) unless otherwise indicated. All conditions herein are at 20℃ and under the atmospheric pressure, unless otherwise specifically stated. All polymer molecular weights are determined by weight average number molecular weight unless otherwise specifically noted.
Anti-Microbial Particles
The composition of the present invention comprises a plurality of anti-microbial particles that each comprises: (a) from about 25%to about 99%of a water soluble carrier by total weight of said particle; and (b) an diphenyl ether anti-microbial agent, wherein each of said plurality of anti-microbial particles has a mass from about 1 mg to about 1 g.
Preferably, each of said pluraility of anti-microbial particles comprises from about 0.01%to about 3%, preferably from about 0.02%to about 2%, more preferably from about 0.05%to  about 1%, most preferably from about 0.1%to about 0.5%of said diphenyl ether anti-microbial agent by total weight of said each anti-microbial particle.
The diphenyl ether anti-microbial agent of the present invention can be either halogenated or non-halogenated, but preferably is halogenated. In a preferred embodiment, the diphenyl ether anti-microbial agent is a hydroxyl diphenyl ether of formula (I) :
Figure PCTCN2020120565-appb-000002
wherein:
each Y is independently selected from chlorine, bromine, or fluorine, preferably is chlorine or bromine, more preferably is chlorine,
each Z is independently selected from SO 2H, NO 2, or C 1-C 4 alkyl,
r is 0, 1, 2, or 3, preferably is 1 or 2,
o is 0, 1, 2, or 3, preferably is 0, 1 or 2,
p is 0, 1, or 2, preferably is 0,
m is 1 or 2, preferably is 1, and
n is 0 or 1, preferably is 0.
In the above definition for formula (I) , 0 means nil. For example, when p is 0, then there is no Z in formula (I) . Each Y and each Z could be the same or different. In one embodiment, o is 1, r is 2, and Y is chlorine or bromine. This embodiment could be: one chlorine atom bonds to a benzene ring while the bromine atom and the other chlorine atom bond to the other benzene ring; or the bromine atom bonds to a benzene ring while the two chlorine atoms bond to the other benzene ring.
More preferably, the diphenyl ether anti-microbial agent is selected from the group consisting of 4-4’-dichloro-2-hydroxy diphenyl ether, 2, 4, 4’-trichloro-2’-hydroxy diphenyl ether, and a combination thereof. Most preferably, said diphenyl ether anti-microbial agent is more preferably 4-4’-dichloro-2-hydroxy diphenyl ether.
In addition to the diphenyl ether anti-microbial agents disclosed hereinabove, other anti-microbial agents may also be present, provided that these are not present at a level which causes instability in the formulation. Among such useful further antimicrobial agents are chelating agents, which are particularly useful in reducing the resistance of Gram negative microbes in hard water. Acid biocides may also be present.
In addition to the above-mentioned diphenyl ether anti-microbial agent, each of the plurality of anti-microbial particles of the present invention also comprises from about 25%to about 99%, preferably from about 30%to about 95%, more preferably from about 40%to about 94%, most preferably from about 50%to about 93%, of said water-soluble carrier by total weight of said each anti-microbial particle.
The water soluble carrier can be a material that is soluble in a wash liquor within a short period of time, for instance less than about 10 minutes. The water soluble carrier can be selected from the group consisting of water soluble inorganic alkali metal salt, water-soluble alkaline earth metal salt, water-soluble organic alkali metal salt, water-soluble organic alkaline earth metal salt, water soluble carbohydrate, water-soluble silicate, water soluble urea, and any combination thereof.
Alkali metal salts can be, for example, selected from the group consisting of salts of lithium, salts of sodium, and salts of potassium, and any combination thereof. Useful alkali metal salts can be, for example, selected from the group consisting of alkali metal fluorides, alkali metal chlorides, alkali metal bromides, alkali metal iodides, alkali metal sulfates, alkali metal bisulfates, alkali metal phosphates, alkali metal monohydrogen phosphates, alkali metal dihydrogen phosphates, alkali metal carbonates, alkali metal monohydrogen carbonates, alkali metal acetates, alkali metal citrates, alkali metal lactates, alkali metal pyruvates, alkali metal silicates, alkali metal ascorbates, and combinations thereof.
Alkali metal salts can be selected from the group consisting of sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium sulfate, sodium bisulfate, sodium phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, sodium carbonate, sodium hydrogen carbonate, sodium acetate, sodium citrate, sodium lactate, sodium tartrate, sodium silicate, sodium ascorbate, potassium fluoride, potassium chloride, potassium bromide, potassium iodide, potassium sulfate, potassium bisulfate, potassium phosphate, potassium monohydrogen phosphate, potassium dihydrogen phosphate, potassium carbonate, potassium monohydrogen carbonate, potassium acetate, potassium citrate, potassium lactate, potassium tartrate, potassium silicate, potassium, ascorbate, and combinations thereof.
Alkaline earth metal salts can be selected from the group consisting of salts of magnesium, salts of calcium, and the like, and combinations thereof. Alkaline earth metal salts can be selected from the group consisting of alkaline metal fluorides, alkaline metal chlorides, alkaline metal bromides, alkaline metal iodides, alkaline metal sulfates, alkaline metal bisulfates, alkaline metal phosphates, alkaline metal monohydrogen phosphates, alkaline metal dihydrogen  phosphates, alkaline metal carbonates, alkaline metal monohydrogen carbonates, alkaline metal acetates, alkaline metal citrates, alkaline metal lactates, alkaline metal pyruvates, alkaline metal silicates, alkaline metal ascorbates, and combinations thereof. Alkaline earth metal salts can be selected from the group consisting of magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, magnesium sulfate, magnesium phosphate, magnesium monohydrogen phosphate, magnesium dihydrogen phosphate, magnesium carbonate, magnesium monohydrogen carbonate, magnesium acetate, magnesium citrate, magnesium lactate, magnesium tartrate, magnesium silicate, magnesium ascorbate, calcium fluoride, calcium chloride, calcium bromide, calcium iodide, calcium sulfate, calcium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, calcium carbonate, calcium monohydrogen carbonate, calcium acetate, calcium citrate, calcium lactate, calcium tartrate, calcium silicate, calcium ascorbate, and combinations thereof.
Inorganic salts, such as inorganic alkali metal salts and inorganic alkaline earth metal salts, do not contain carbon. Organic salts, such as organic alkali metal salts and organic alkaline earth metal salts, contain carbon. The organic salt can be an alkali metal salt or an alkaline earth metal salt of sorbic acid (i.e., asorbate) . Sorbates can be selected from the group consisting of sodium sorbate, potassium sorbate, magnesium sorbate, calcium sorbate, and combinations thereof.
The water soluble carrier can be or comprise a material selected from the group consisting of a water-soluble inorganic alkali metal salt, a water-soluble organic alkali metal salt, a water-soluble inorganic alkaline earth metal salt, a water-soluble organic alkaline earth metal salt, a water-soluble carbohydrate, a water-soluble silicate, a water-soluble urea, and combinations thereof. The water soluble carrier can be selected from the group consisting of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium acetate, potassium acetate, sodium citrate, potassium citrate, sodium tartrate, potassium tartrate, potassium sodium tartrate, calcium lactate, water glass, sodium silicate, potassium silicate, dextrose, fructose, galactose, isoglucose, glucose, sucrose, raffinose, isomalt, xylitol, candy sugar, coarse sugar, and combinations thereof. In one embodiment, the water soluble carrier can be sodium chloride. In one embodiment, the water soluble carrier can be table salt.
The water soluble carrier can be or comprise a material selected from the group consisting of sodium bicarbonate, sodium sulfate, sodium carbonate, sodium formate, calcium formate,  sodium chloride, sucrose, maltodextrin, corn syrup solids, corn starch, wheat starch, rice starch, potato starch, tapioca starch, clay, silicate, citric acid carboxymethyl cellulose, fatty acid, fatty alcohol, glyceryl diester of hydrogenated tallow, glycerol, and combinations thereof.
The water soluble carrier can be selected from the group consisting of water soluble organic alkali metal salt, water soluble inorganic alkaline earth metal salt, water soluble organic alkaline earth metal salt, water soluble carbohydrate, water soluble silicate, water soluble urea, starch, clay, water insoluble silicate, citric acid carboxymethyl cellulose, fatty acid, fatty alcohol, glyceryl diester of hydrogenated tallow, glycerol, polyethylene glycol, and combinations thereof.
The water soluble carrier can be selected from the group consisting of disaccharides, polysaccharides, silicates, zeolites, carbonates, sulfates, citrates, and combinations thereof.
The water soluble carrier can be a water soluble polymer. Water soluble polymers can be selected from the group consisting of polyvinyl alcohols (PVA) , modified PVAs; polyvinyl pyrrolidone; PVA copolymers such as PVA/polyvinyl pyrrolidone and PVA/polyvinyl amine; partially hydrolyzed polyvinyl acetate; polyalkylene oxides such as polyethylene oxide; polyethylene glycols; acrylamide; acrylic acid; cellulose, alkyl cellulosics such as methyl cellulose, ethyl cellulose and propyl cellulose; cellulose ethers; cellulose esters; cellulose amides; polyvinyl acetates; polycarboxylic acids and salts; polyaminoacids or peptides; polyamides; polyacrylamide; copolymers of maleic/acrylic acids; polysaccharides including starch, modified starch; gelatin; alginates; xyloglucans, other hemicellulosic polysaccharides including xylan, glucuronoxylan, arabinoxylan, mannan, glucomannan and galactoglucomannan; and natural gums such as pectin, xanthan, and carrageenan, locus bean, arabic, tragacanth; and combinations thereof. In one embodiment the polymer comprises polyacrylates, especially sulfonated polyacrylates and water-soluble acrylate copolymers; and alkylhydroxy cellulosics such as methylcellulose, carboxymethylcellulose sodium, modified carboxy-methylcellulose, dextrin, ethylcellulose, propylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates. In yet another embodiment the water soluble polymer can be selected from the group consisting of PVA; PVA copolymers; hydroxypropyl methyl cellulose (HPMC) ; and mixtures thereof.
The water soluble carrier can be selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl alcohol/polyvinyl pyrrolidone, polyvinyl alcohol/polyvinyl amine, partially hydrolyzed polyvinyl acetate, polyalkylene oxide, polyethylene glycol, acrylamide, acrylic acid, cellulose, alkyl cellulosics, methyl cellulose, ethyl cellulose, propyl cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates,  polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides, starch, modified starch, gelatin, alginates, xyloglucans, hemicellulosic polysaccharides, xylan, glucuronoxylan, arabinoxylan, mannan, glucomannan, galactoglucomannan, natural gums, pectin, xanthan, carrageenan, locus bean, arabic, tragacanth, polyacrylates, sulfonated polyacrylates, water-soluble acrylate copolymers, alkylhydroxy cellulosics, methylcellulose, carboxymethylcellulose sodium, modified carboxy-methylcellulose, dextrin, ethylcellulose, propylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, polyvinyl alcohol copolymers, hydroxypropyl methyl cellulose, and mixtures thereof.
The water-soluble carrier can comprise a material selected from the group consisting of: a polyalkylene polymer of formula H- (C 2H 4O)  x- (CH (CH 3) CH 2O)  y- (C 2H 4O)  z-OH wherein x is from about 50 to about 300, y is from about 20 to about 100, and z is from about 10 to about 200; a polyethylene glycol fatty acid ester of formula (C 2H 4O)  q-C (O) O- (CH 2r-CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30; a polyethylene glycol fatty alcohol ether of formula HO- (C 2H 4O)  s- (CH 2t) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30; and mixtures thereof. The polyalkylene polymer of formula H- (C 2H 4O)  x- (CH (CH 3) CH 2O)  y- (C 2H 4O)  z-OH wherein x is from about 50 to about 300, y is from about 20 to about 100, and z is from about 10 to about 200, can be a block copolymer or random copolymer.
The water-soluble carrier can comprise: polyethylene glycol; a polyalkylene polymer of formula H- (C 2H 4O)  x- (CH (CH 3) CH 2O)  y- (C 2H 4O)  z-OH wherein x is from about 50 to about 300; y is from about 20 to about 100, and z is from about 10 to about 200; a polyethylene glycol fatty acid ester of formula (C 2H 4O)  q-C (O) O- (CH 2r-CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30; and a polyethylene glycol fatty alcohol ether of formula HO- (C 2H 4O)  s- (CH 2t) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30.
The water-soluble carrier can comprise from about 20%to about 80%by weight of the particles of polyalkylene polymer of formula H- (C 2H 4O)  x- (CH (CH 3) CH 2O)  y- (C 2H 4O)  z-OH wherein x is from about 50 to about 300; y is from about 20 to about 100, and z is from about 10 to about 200.
The water-soluble carrier can comprise from about 1%to about 20%by weight of the particles polyethylene glycol fatty acid ester of formula (C 2H 4O)  q-C (O) O- (CH 2r-CH 3 wherein q is from about 20 to about 200 and r is from about 10 to about 30.
The water-soluble carrier can comprise from about 1%to about 10%by weight of the particles of polyethylene glycol fatty alcohol ether of formula HO- (C 2H 4O)  s- (CH 2t) -CH 3 wherein s is from about 30 to about 250 and t is from about 10 to about 30.
Preferably, the water soluble carrier can be selected from the group consisting of polyethylene glycol, sodium acetate, sodium bicarbonate, sodium chloride, sodium silicate, polypropylene glycol polyoxoalkylene, polyethylene glycol fatty acid ester, polyethylene glycol ether, sodium sulfate, starch, and mixtures thereof. More preferably, the water soluble carrier can be polyethylene glycol (PEG) . PEG can be a convenient material to employ to make particles because it can be sufficiently water soluble to dissolve during a wash cycle when the particles have the range of mass disclosed herein. Further, PEG can be easily processed as melt. The onset of melt temperature of PEG can vary as a function of molecular weight of the PEG. PEG has a relatively low cost, may be formed into many different shapes and sizes, minimizes unencapsulated perfume diffusion, and dissolves well in water. PEG comes in various weight average molecular weights. In a particularly preferred embodiment of the present invention, the water-soluble carrier is polyethylene glycol (PEG) characterized by a weight average molecular weight (Mw) from about 1,000 to about 20,000 Daltons, preferably from about 1,500 to about 15,000 Daltons, more preferably from about 2,000 to about 13,000 Daltons. A particularly suitable PEG is commercially available from BASF under the tradename PLURIOL E 8000 (which has a weight average molecular weight of 9000 even though 8000 is in the product name) , while other PLURIOL products are also suitable.
Preferably, but not necessarily, each of said plurality of anti-microbial particles further comprises one or more perfume ingredients in the amount ranging from about 0.1%to about 30%, preferably from about 0.5%to about 20%, more preferably from about 1%to about 15%by total weight of said each anti-microbial particle. It has been discovered that incorporation of perfume ingredients into the anti-microbial particles of the present invention surprisingly and unexpected improves the freshness benefit and better malodor control benefit, in comparsion with perfume ingredients not incorporated into any particles or with perfume ingredients incorporated into particles that contain the water-soluble carrier but are essentially free of the anti-microbial agent. Without being bound by any theory, it is believed that the presence of the anti-microbial agent may interact with the perfume ingredients to improve the release profile and deposition of such perfume ingredients (especially perfume microcapsules) onto fabrics.
Said one or more perfumes are preferably selected from the group consisting of free perfumes, pro-perfumes, encapsulated perfumes (i.e., perfumes carried by a carrier material such  as starch, cyclodextrin, silica, zeolites or clay) , perfume microcapsules, and combinations thereof. Preferably, the anti-microbial particles of the present invention contain perfume microcapsules (PMCs) , especially friable PMCs. For purpose of the present invention, the term “perfume microcapsules” or PMCs cover both perfume microcapsules and perfume nanoparticles. In one embodiment, the PMCs comprise melamine/formaldehyde shells, which are commercially available from Appleton, Quest International, International Flavor &Fragrances, or other suitable sources. In a preferred embodiment, the shells of the PMCs are coated with polymer to enhance the ability of the PMCs to adhere to fabric. The anti-microbial particles of the present invention may comprise from about 0.1%to about 20%, preferably from about 1%to about 15%, more preferably from about 5%to about 10%of perfume microcapsules by total weight of each of said anti-microbial particles. In a particularly preferred embodiment, each of said anti-microbial particles comprises a combination of free perfumes and perfume microcapsules. More preferably, the weight ratio of free perfumes to perfume microcapsules in said each anti-microbial particle ranges from about 1: 5 to about 20: 1, preferalby from about 1: 2 to about 10: 1, more preferably from about 1: 1 to about 5: 1, most preferably from about 1.5: 1 to about 3: 1.
Preferably but not necessarily, each of said plurality of anti-microbial particles further comprises a quaternary ammonium compound to provide additional fabric softening benefit. Specifically, the quaternary ammonium compound, when released from the anti-microbial particles of the present invention during wash, is deposited from the wash liquor onto the fibers of the fabric to provide the consumer with a feeling of softness. For example, each of said plurality of anti-microbial particles may comprise from about 5%to about 45%, preferably from about 10%to about 40%, more preferably from about 15%to about 35%of a quaternary ammonium compound formed from a parent fatty acid compound having an Iodine Value from about 18 to about 60, preferably from about 20 to about 60, by total weight of said each anti-microbial particle. Preferably, the quaternary ammonium compound is an ester quaternary ammonium compound, and more preferably di- (tallowoyloxyethl) -N, N-methylhydroyethylammonium methyl sulfate.
In addition to the quaternary ammonium compound described hereinabove, the anti-microbial particles of the present invention may further comprise a cationic polymer, which functions to promote deposition of the quaternary ammonium compound onto the fabrics and to boost the fabric softening performance thereof. Each of said plurality of anti-microbial particles may comprise from about 0.5%to about 10%, preferably from about 1%to about 5%of such cationic polymer by total weight of said each anti-microbial particle. The cationic polymer is  preferably a cationic polysaccharide, more preferably polymeric quaternary ammonium salt of hydroxyethylcellulose which has been reacted with an epoxide substituted with a trimethylammonium group. More preferably, the weight ratio of the quaternary ammonium compound to the cationic polymer in said each particle may range from about 3: 1 to about 30: 1, optionally from about 5: 1 to about 15: 1, optionally from about 5: 1 to about 10: 1, optionally about 8: 1. Without being bound by theory, the mass fraction of quaternary ammonium compound and mass fraction of cationic polymer are balanced to achieve assistance from the cationic polymer to deposit satisfactory levels of deposition of the quaternary ammonium compound onto the fabric being treated.
In order to provide an aesthetic appearance that is pleasing to the consumer or a visual cue that highlights certain ingredients or benefits, each of said plurality of anti-microbial particles may further comprise from about 0.0001%to about 1%, preferably from about 0.001%to about 0.5%, more preferably from about 0.005%to about 0.1%of one or more colorants by total weight of said each anti-microbial particle. The colorants can be selected from the group consisting of dyes, pigments, and combinations thereof. Preferably, the colorants impart to the anti-microbial particles a color selected from the group consisting of blue, green, yellow, orange, pink, red, purple, grey, and the like.
The anti-microbial particles of the present invention may further comprise a water-soluble or water-dispersible filler, e.g., sodium chloride, sodium sulfate, sodium carbonate, sodium bicarbonate, sugar, starch, modified cellulose, silica, zeolite, clay, and the like. Preferably, each of the particles can comprise from about 0.1%to about 7%of clay by total weight of said each particle. More preferably, the clay is bentonite.
It is particularly preferred that the anti-microbial particles of the present invention are substantially free of or essentially free of surfactants, because the presence of such surfactants may speed up dissolution or dispersion of the anti-microbial agent in water and reduce its deposition onto the fabrics, which is undesirable in the context of the present invention. More preferably, the anti-microbial particles of the present invention are substantially free of or essentially free of any detersive actives.
The anti-microbial particles of the present invention preferably contain less than about 10%, optionally less than about 8%, optionally less than about 5%, optionally less than about 3%of water by total weight of each of said anti-microbial particles. Decreasing or having these ranges of water content are thought to provide particles that are more stable. The lower the mass fraction of water, the more stable the particles are thought to be.
Each of the anti-microbial particles of the present invention has a mass from about 1 mg to about 1 g, preferably from about 5 mg to about 500 mg, more preferably from about 10 mg to about 250 mg, most preferably from about 15 mg to about 125 mg.
Said particles may be formed into tablets, pills, spheres, and the like. They can have any shape selected from the group consisting of spherical, hemispherical, compressed hemispherical, cylindrical, disc, circular, lentil-shaped, oblong, cubical, rectangular, star-shaped, flower-shaped, and any combinations thereof. Lentil-shaped refers to the shape of a lentil bean. Compressed hemispherical refers to a shape corresponding to a hemisphere that is at least partially flattened such that the curvature of the curved surface is less, on average, than the curvature of a hemisphere having the same radius. A compressed hemispherical particle can have an aspect ratio (i.e., the ratio of its base diameter over its height that is orthogonal to the base) of from about 2.0 to about 5, alternatively from about 2.1 to about 4.5, alternatively from about 2.2 to about 4. Oblong-shaped particle refers to a particle having a maximum dimension and a secondary dimension orthogonal to the maximum dimension, wherein the ratio of maximum dimension to the secondary dimension is greater than about 1.2, preferably greater than about 1.5, more preferably greater than about 2. Preferably, the anti-microbial particles of the present invention have a hemispherical or compressed hemispherical shape.
Preferably, said anti-microbial particles are characterized by a longest dimension of from about 3 mm to about 10 mm, preferably from about 4 mm to about 9 mm, more preferably from about 5 mm to about 8 mm; and/or an aspect ratio from about 1 to about 5, preferably from about 1.5 to about 4, more preferably from about 2 to about 4.
In a preferred but not necessary embodiment of the present invention, the anti-microbial particles of the present invention have a density lower than water, so that they can float on water and are more noticeable by the consumers during wash. For example, such anti-microbial particles may have a density ranging from about 0.5 g/cm3 to about 0.98 g/cm3, preferably from about 0.7 g/cm3 to about 0.95 g/cm3, more preferably from about 0.8 g/cm3 to about 0.9 g/cm3.
The plurality of anti-microbial particles of the present invention can have different shapes, sizes, mass, and/or density.
Use of the Anti-Microbial Particles in Stand-Alone Particulate Products
Particulate products, especially particulates that are not dusty, are preferred by many consumers. Particulate products can be easily dosed by consumers from a package directly into the washing machine or into a dosing compartment on the washing machine. Or the consumer  can dose from the package into a dosing cup that optionally provides one or more dosing indicia and then dose the particulates into a dosing compartment on the washing machine or directly to the drum. For products in which a dosing cup is employed, particulate products tend to be less messy than liquid products.
The plurality of anti-microbial particles as mentioned hereinabove can be provided as a stand-alone particulate product for through-the-wash fabric treatment, which is convenient for the consumer to dose to the washing machine. The stand-alone particulate product may consist essentially of the anti-microbial particles of the present invention, or it may contain other particles similar to the anti-microbial particles, e.g., perfume particles, softening particles, bleach particles, etc., which contain little or no surfactant or which is of similar sizes as the anti-microbial particles. The stand-alone particulate product may be provided in a package that is separate from the package of detergent composition. Having the anti-microbial particles in a package separate from the package of detergent composition can be beneficial since it allows the consumer to select the amount of anti-microbial agent to be dosed, independent of the amount of detergent composition used. This can give the consumers the opportunity to customize the amount of anti-microbial agent used and thereby the resulting anti-microbial benefit based on their needs, which is a highly valuable consumer benefit.
Particulate Laundry Detergent Products Comprising the Anti-Microbial Particles
In a preferred but not necessary embodiment of the present invention, the anti-microbial particles of the present invention are present in a particulate laundry detergent composition which also contain detergent particles. Preferably, the plurality of anti-microbial particles are present in said particulate laundry detergent composition as a minor portion, e.g., in an amount ranging from about 0.05%to about 30%, preferably from about 0.1%to about 20%, more preferably from about 0.5%to about 15%, most preferably from about 1%to about 10%by total weight of said particulate laundry detergent composition.
The particulate laundry detergent composition may comprise the detergent particles in an amount ranging from about 10%to about 99.9%, preferably from about 20%to about 95%, more preferably from about 30%to about 90%, most preferably from about 40%to about 80%by total weight of said particulate laundry detergent composition. The detergent particles of the present invention may comprise one or more detersive actives, such as surfactants, builders, bleach actives, enzymes, polymers, chelants, softeners, suds suppressors, suds boosters, brighteners, dye transfer inhibitors, and the like. The detergent particles can be spray-dried particles and/or  agglomerated particles and/or extruded particles. Such detergent particles may be selected from: surfactant particles, including surfactant agglomerates, surfactant extrudates, surfactant needles, surfactant noodles, surfactant flakes; polymer particles such as cellulosic polymer particles, polyester particles, polyamine particles, terephthalate polymer particles, polyethylene glycol polymer particles; builder particles, such as sodium carbonate and sodium silicate co-builder particles, phosphate particles, zeolite particles, silicate salt particles, carbonate salt particles; filler particles such as sulphate salt particles; dye transfer inhibitor particles; dye fixative particles; bleach particles, such as percarbonate particles, especially coated percarbonate particles, such as percarbonate coated with carbonate salt, sulphate salt, silicate salt, borosilicate salt, or any combination thereof, perborate particles, bleach catalyst particles such as transition metal bleach catalyst particles, or oxaziridinium-based bleach catalyst particles, pre-formed peracid particles, especially coated pre-formed peracid particles, and co-bleach particles of bleach activator, source of hydrogen peroxide and optionally bleach catalyst; bleach activator particles such as oxybenzene sulphonate bleach activator particles and tetra acetyl ethylene diamine bleach activator particles; chelant particles such as chelant agglomerates; hueing dye particles; brightener particles; enzyme particles such as protease prills, lipase prills, cellulase prills, amylase prills, mannanase prills, pectate lyase prills, xyloglucanase prills, bleaching enzyme prills, cutinase prills and co-prills of any of these enzymes; clay particles such as montmorillonite particles or particles of clay and silicone; flocculant particles such as polyethylene oxide particles; wax particles such as wax agglomerates.
Preferably, such detergent particles are surfactant particles containing from about 10%to about 90%, preferably from about 15%to about 80%, more preferably from about 20%to about 70%, of a surfactant by total weight of said detergent particles. More preferably, the surfactant is selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and combinations thereof. Most preferably, the detergent particles of the present invention comprise an anionic surfactant and/or a nonionic surfactant.
The detergent particles of the present invention may be characterized by a Median Weight Particle Size (Dw50) of from about 250 μm to about 1000 μm, preferably from about 300 μm to about 950 μm, more preferably from about 400 μm to about 850 μm. Preferably, such detergent particles have a white or light-colored appearance, while the anti-microbial particles have a blue, green, yellow, orange, pink, red, purple or grey color so that they are visually contrasting with the detergent particles.
In addition to the anti-microbial particles and detergent particles described hereinabove, the particulate laundry detergent composition of the present invention may comprise one or more detergent ingredients. Suitable detergent ingredients include: detersive surfactants including anionic detersive surfactants, non-ionic detersive surfactants, cationic detersive surfactants, zwitterionic detersive surfactants, amphoteric detersive surfactants, and any combination thereof; polymers including carboxylate polymers, polyethylene glycol polymers, polyester soil release polymers such as terephthalate polymers, amine polymers, cellulosic polymers, dye transfer inhibition polymers, dye lock polymers such as a condensation oligomer produced by condensation of imidazole and epichlorhydrin, optionally in ratio of 1: 4: 1, hexamethylenediamine derivative polymers, and any combination thereof; builders including zeolites, phosphates, citrate, and any combination thereof; buffers and alkalinity sources including carbonate salts and/or silicate salts; fillers including sulphate salts and bio-filler materials; bleach including bleach activators, sources of available oxygen, pre-formed peracids, bleach catalysts, reducing bleach, and any combination thereof; chelants; photobleach; hueing agents; brighteners; enzymes including proteases, amylases, cellulases, lipases, xylogucanases, pectate lyases, mannanases, bleaching enzymes, cutinases, and any combination thereof; fabric softeners including clay, silicones, quaternary ammonium fabric-softening agents, and any combination thereof; flocculants such as polyethylene oxide; perfume including starch encapsulated perfume accords, perfume microcapsules, perfume loaded zeolites, schif base reaction products of ketone perfume raw materials and polyamines, blooming perfumes, and any combination thereof; aesthetics including soap rings, lamellar aesthetic particles, geltin beads, carbonate and/or sulphate salt speckles, colored clay, and any combination thereof: and any combination thereof.
In a preferred embodiment of the present invention, the particulate laundry detergent composition comprises one or more builders (not including the carbonate as described hereinabove) in the amount ranging from about 1 wt%to about 40 wt%, typically from 2 wt%to 25 wt%, or even from about 5 wt%to about 20 wt%, or from 8 wt to 15 wt%by total weight of such composition. Builders as used herein refers to any ingredients or components that are capable of enhancing or improving the cleaning efficiency of surfactants, e.g., by removing or reducing “free” calcium/magnesium ions in the wash solution to “soften” or reducing hardness of the washing liquor.
It is particularly desirable that such particulate laundry detergent composition has relatively low levels of phosphate builder, zeolite builder, and silicate builder. Preferably, it  contains at most 15 wt%by weight of phosphate builder, zeolite builder, and silicate builder in total. More preferably, such particulate laundry detergent composition contains from 0 wt%to about 5 wt%of phosphate builder, from 0 wt%to about 5 wt%of zeolite builder, and from 0 wt%to about 10 wt%of silicate builder, while the total amounts of these builders add up to no more than 10 wt%by total weight of the composition. Still more preferably, the particulate laundry detergent composition contains from 0 wt%to about 2 wt%of phosphate builder, from 0 wt%to about 2 wt%of zeolite builder, and from 0 wt%to about 2 wt%of silicate builder, while the total amounts of these builders add up to no more than 5 wt%by total weight of the composition. Most preferably, the particulate laundry detergent composition contains from 0 wt%to about 1 wt%of phosphate builder, from 0 wt%to about 1 wt%of zeolite builder, and from 0 wt%to about 1 wt%of silicate builder, while the total amounts of these builders add up to no more than 2 wt%by total weight of the composition. The composition may further comprise any other supplemental builder (s) , chelant (s) , or, in general, any material which will remove calcium ions from solution by, for example, sequestration, complexation, precipitation or ion exchange. In particular, the composition may comprise materials having at a temperature of 25℃ and at a 0.1M ionic strength a calcium binding capacity of at least 50 mg/g and a calcium binding constant log K Ca 2+ of at least 3.50.
The particulate laundry detergent composition of the present invention may contain one or more solid carriers selected from the group consisting of sodium chloride, potassium chloride, sodium sulphate, and potassium sulphate. In a preferred, but not necessary embodiment, such particulate laundry detergent composition includes from about 20 wt%to about 65 wt%of sodium chloride and/or from about 20 wt%to about 65 wt%of sodium sulphate. When the particulate laundry detergent composition is in a concentrated form, the total amount of sodium chloride and/or sodium sulphate in such composition may sum up, for example, to a total amount of from about 0 wt%to about 60 wt%.
Methods of Using the Anti-Microbial Particles
The anti-microbial particles of the present invention are particularly useful for treating fabrics in a machine-washing or hand-washing setting to provide an anti-microbial benefit and optionally an improved fabric freshness and malodor control benefit. They enable consumers to achieve anti-microbial benefit through the wash, in particular the wash sub-cycle. By providing anti-microbial benefit through the wash sub-cycle, consumers only need to dose the detergent  composition and the anti-microbial particles to a single location, for example the wash basin, prior to or shortly after the start of the washing machine.
The process for treating an article of clothing can comprise the steps of providing an article of clothing in a washing machine. The article of clothing is contacted during the wash sub-cycle of the washing machine with a composition comprising a plurality of the anti-microbial particles disclosed herein. The particles can dissolve into water provided as part of the wash sub-cycle to form a liquor. The dissolution of the particles can occur during the wash sub-cycle.
Washing machines have at least two basic sub-cycles within a cycle of operation: a wash sub-cycle and a rinse sub-cycle. The wash sub-cycle of a washing machine is the cycle on the washing machine that commences upon first filling or partially filing the wash basin with water. A main purpose of the wash sub-cycle is to remove and or loosen soil from the article of clothing and suspend that soil in the wash liquor. Typically, the wash liquor is drained at the end of the wash sub-cycle. The rinse sub-cycle of a washing machine occurs after the wash sub-cycle and has a main purpose of rinsing soil, and optionally some benefit agents provided to the wash sub-cycle from the article of clothing.
The process can optionally comprise a step of contacting the article of clothing during the wash sub-cycle with a detergent composition comprising an anionic surfactant. Most consumers provide a detergent composition to the wash basin during the wash sub-cycle. Detergent compositions can comprise anionic surfactant, and optionally other benefit agents including but not limited to perfume, bleach, brighteners, hueing dye, enzyme, and the like. During the wash sub-cycle, the benefit agents provided with the detergent composition are contacted with or applied to the article of clothing disposed in the wash basin. Typically, the benefit agents of detergent compositions are dispersed in a wash liquor of water and the benefit agents.
During the wash sub-cycle, the wash basin may be filled or at least partially filled with water. The anti-microbial particles can dissolve into the water to form a wash liquor comprising the components of the particles. Optionally, if a detergent composition is employed or if the anti-microbial particles are formulated into a particulate laundry detergent composition, the wash liquor can include the components of the detergent composition and the components of the dissolved particles. The particles can be placed in the wash basin of the washing machine before the article of clothing is placed in the wash basin of the washing machine. The particles can be placed in the wash basin of the washing machine after the article of clothing is placed in the wash basin of the washing machine. The particles can be placed in the wash basin prior to filling or  partially filling the wash basin with water or after filling of the wash basin with water has commenced.
If a detergent composition is employed by the consumer in practicing the process of treating an article of clothing, the detergent composition and particles can be provided from separate packages. For instance, the detergent composition can be a liquid detergent composition provided from a bottle, sachet, water soluble pouch, dosing cup, dosing ball, or cartridge associated with the washing machine. The particles can be provided from a separate package, by way of non-limiting example, a carton, bottle, water soluble pouch, dosing cup, sachet, or the like. If the detergent composition is a solid form, such as a powder, water soluble fibrous substrate, water soluble sheet, water soluble film, water soluble film, water insoluble fibrous web carrying solid detergent composition, the particles can be provided with the solid form detergent composition. For instance, the particles can be provided from a container containing a mixture of the solid detergent composition and the particles. Optionally, the particles can be provided from a pouch formed of a detergent composition that is a water soluble fibrous substrate, water soluble sheet, water soluble film, water soluble film, water insoluble fibrous web carrying solid detergent composition.
The laundry liquor used for dissolving the anti-microbial particles and treating fabrics may have a pH value that is chosen to be the most complimentary to the fabrics to be cleaned spanning broad range of pH, e.g., from about 5 to about 11, preferably from about 8 to about 10. The water temperatures preferably range from about 5 ℃ to about 100 ℃. The water to fabric ratio is typically from about 1: 1 to about 30: 1. The wash liquor may comprise 40 litres or less of water, or 30 litres or less, or 20 litres or less, or 10 litres or less, or 8 litres or less, or even 6 litres or less of water. The wash liquor may comprise from above 0 to 15 litres, or from 2 litres, and to 12 litres, or even to 8 litres of water. For dilute wash conditions, the wash liquor may comprise 150 litres or less of water, 100 litres or less of water, 60 litres or less of water, or 50 litres or less of water, especially for hand-washing conditions, and can depend on the number of rinses.
Typically, from 0.01 Kg to 2 Kg of fabric per litre of wash liquor is dosed into the wash liquor. Typically, from 0.01 Kg, or from 0.05 Kg, or from 0.07 Kg, or from 0.10 Kg, or from 0.15 Kg, or from 0.20 Kg, or from 0.25 Kg, to 1.8 Kg, or to 1.6 Kg, or to 1.5 Kg, or to 1.3 Kg, or to 1.1 Kg, or to 0.9 Kg, or to 0.7 Kg, or to 0.5 Kg, of fabric per litre of wash liquor is dosed into the wash liquor.
Production of Anti-Microbial Particles
For a carrier that can be processed conveniently as a melt, the rotoforming process can be used. A mixture of molten carrier and the other materials constituting the particles is prepared, for instance in a batch or continuous mixing process. The molten mixture can be pumped to a rotoformer, for instance a Sandvik ROTOFORM 3000 having a 750 mm wide 10 m long belt. The rotoforming apparatus can have a rotating cylinder. The cylinder can have 2 mm diameter apertures set at a 10 mm pitch in the cross machine direction and 9.35 mm pitch in the machine direction. The cylinder can be set at approximately 3 mm above the belt. The belt speed and rotational speed of the cylinder can be set at about 10 m/min. The molten mixture can be passed through the apertures in the rotating cylinder and deposited on a moving conveyor that is provided beneath the rotating cylinder.
The molten mixture can be cooled on the moving conveyor to form a plurality of solid particles. The cooling can be provided by ambient cooling. Optionally the cooling can be provided by spraying the under-side of the conveyor with ambient temperature water or chilled water.
Once the particles are sufficiently coherent, the particles can be transferred from the conveyor to processing equipment downstream of the conveyor for further processing and or packaging.
Optionally, the particles can be provided with inclusions of a gas. Such occlusions of gas, for example air, can help the particles dissolve more quickly in the wash. Occlusions of gas can be provided, by way of nonlimiting example, by injecting gas into the molten precursor material and milling the mixture.
Particles can also be made using other approaches. For instance, granulation or press agglomeration can be appropriate. In granulation, the precursor material containing the constituent materials of the particles is compacted and homogenized by rotating mixing tools and granulated to form particles. For precursor materials that are substantially free of water, a wide variety of sizes of particles can be made.
In press agglomeration, the precursor material containing the constituent materials of the particles is compacted and plasticized under pressure and under the effect of shear forces, homogenized and then discharged from the press agglomeration machine via a forming/shaping process. Press agglomeration techniques include extrusion, roller compacting, pelleting, and tableting.
The precursor material containing the constituent materials of the particles can be delivered to a planetary roll extruder or twin screw extruder having co-rotating or contra-rotating  screws. The barrel and the extrusion granulation head can be heated to the desired extrusion temperature. The precursor material containing the constituent materials of the particles can be compacted under pressure, plasticized, extruded in the form of strands through a multiple-bore extrusion die in the extruder head, and sized using a cutting blade. The bore diameter of the of extrusion header can be selected to provide for appropriately sized particles. The extruded particles can be shaped using a spheronizer to provide for particles that have a spherical shape.
Optionally, the extrusion and compression steps may be carried out in a low-pressure extruder, such as a flat die pelleting press, for example as available from Amandus Kahl, Reinbek, Germany. Optionally, the extrusion and compression steps may be carried out in a low pressure extruder, such as a BEXTRUDER, available from Hosokawa Alpine Aktiengesellschaft, Augsburg, Germany.
The particles can be made using roller compacting. In roller compacting the precursor material containing the constituent materials of the particles is introduced between two rollers and rolled under pressure between the two rollers to form a sheet of compactate. The rollers provide a high linear pressure on the precursor material. The rollers can be heated or cooled as desired, depending on the processing characteristics of the precursor material. The sheet of compactate is broken up into small pieces by cutting. The small pieces can be further shaped, for example by using a spheronizer.
TEST METHODS
The following techniques must be used to determine the properties of the perfume particles, the detergent particles, and the particulate laundry detergent compositions of the invention in order that the invention described and claimed herein may be fully understood.
Test 1: Anti-Microbial Test
The anti-microbial efficacy of sample granular laundry detergent compositions is measured as follows:
Each defined sample of a granular laundry detergent composition (e.g., 15.29g) to be tested is dissolved into 1 L of water with a water hardness level of 342 mg/L. Such water is formed by dissolving 0.034g CaCl 2 and 0.139g MgCl 2·6H 2O in 1L of deionized (DI) water. The solution is mixed by a magnetic stirrer for about 4 minutes, followed by dispensing 265ml of such solution into the exposure chamber of a wash tumbler as described by the Degerming Test Method for Laundry Detergents as issued by the Japanese Detergent and Soap Fair Trade Council.
Separately, a stainless-steel spindle is fabricated from a single continuous piece of stainless steel wire having a diameter of about 1/16 inch by bending it to form 3 horizontal extensions, each about 2 inch in length, which are connected by 2 vertical sections of approximately 2 inch in length. The spindle is used as a carrier for wrapping the fabric ballast.
Next, cotton fabrics of approximately 300 grams are scoured by boiling for one hour in 3 L of distilled or DI water that contains about 1.5 grams of sodium carbonate and about 1.5 grams of a nonionic wetting agent. The fabrics are then rinsed in boiling water and then in cold water, until all visual traces of foam formed by the wetting agent are removed. The fabrics are then drained of water and air-dried for at least 24 hours at ambient temperature. The scoured and dried fabrics are then cut into strips that has a width of about 2 inches and weighs about 15±0.1g each. One piece of such cotton fabric strip is then taken, and one of its ends is secured onto the outer horizontal extension of the above-mentioned stainless-steel spindle. This cotton fabric strip is wrapped around the three horizontal extensions of the spindle with sufficient tension for about 12 to 13 laps until the entire fabric strip has been wrapped onto the spindle. A staple or pin may be used to secure the loose end of the fabric strip. The fabric-wrapped spindles may then be sterilized, either in individual exposure chambers of the above-mentioned wash tumbler, or separately from the exposure chambers. The fabric wrapped on the spindle and the exposure chamber should both be dry prior to placement of the spindle into the exposure chamber.
The fabric-wrapped spindle is then placed into the exposure chamber of the wash tumbler that contains the 265ml washing solution as mentioned hereinabove. The exposure chamber is then agitated for about 20 minutes at a speed of about 60 rpm. After 20 minutes of agitation, the fabric-wrapped spindle is spun-dried for about 2 minutes, and the washing solution is discarded. Subsequently, 265ml of fresh hard water as described hereinabove is dispensed into the same exposure chamber for rinsing the fabric-wrapped spindle. The exposure chamber is agitated for another 3 minutes at the same agitation speed, and then the fabric-wrapped spindle is spun-dried again for about 2 minutes, followed by discarding the rinse solution. The fabric-wrapped spindle is rinsed and spun-dried once more following the same procedure as described hereinabove.
Next, the cotton fabric strip is taken off the spindle and air-dried overnight at ambient temperature. The dried cotton fabric strip is then cut into 2cm×2cm square pieces, and 10 pieces of such cotton fabrics are stacked together to form one test specimen, which weighs about 0.40±0.05g.
Such test specimen is then subjected to the Bacteriostatic Activity Evaluation method as described by Section 8.1 of the Japanese Industrial Standards (JIS) L1902-2015 standard, while  the number of bacteria is calculated according to Section 8.1.4.5.2 (instead of calculating the amount of ATP as described in Section 8.1.4.5.3) .
Test 2: Dissolution Rate Test
The Dissolution Rate Test is used to measure the speed of dissolution of the particles.
This test is conducted by adding 400ml of de-ionized water into a 400ml transparent glass beaker at room temperature (25℃) , then dispersing about 1 gram of test particles into the deionized water. Use stop watch to count the total time needed before the particles are fully dissolved.
Test 3: Particle aspect ratio
For non-spherical particles, the particle’s longest dimension and shortest dimension can be measured by using Vernier calipers. To reduce the variation of the data, typically 10 particles can be measured and then use the average result. The particle aspect ratio herein is calculated by using this formula: Aspect ratio = Longest dimension /Shortest dimension.
Test 4: Perfume Bloom and Fabric Freshness Test
Dissolving Head-Space Count testing is used for demonstration of improved perfume bloom and fabric freshness benefit. It is similar in many ways to the conditions that might occur when a consumer uses the particles to treat her laundry.
In the Dissolving Head-Space Count test method, the particles to be tested are placed in distilled water and the amount of perfume raw materials (PRM) that is transferred to the air in the head-space above the water is measured as counts at various time points. Measurement of the Dissolving Head-Space Count is conducted using a 7100 Ultra Fast GC Analyzer MicroSense5 ZNOSE with the accompanying software MicroSense version 5.37 (available from Electronic Sensor Technology, Newbury Park, Calif., USA. ) . This instrument system is a miniature, high-speed gas chromatograph containing a gas chromatograph sensor, pneumatic controls, and support electronics. The gas chromatograph sensor is based on a 6-port valve and oven, a preconcentrating trap, a short gas chromatograph column and a surface acoustic wave detector. A system controller, based on a laptop computer, operates the system, analyzes the data and provides a user interface. Complete instructions for use of the ZNOSE can be found in the 7100 Ultra Fast GC Analyzer Operation Manual MicroSense 5. To conduct Dissolving Head-Space Count testing, the ZNOSE is set to the following settings: 5ps2a1b_35 (DBS column) ; 1 second  pump sample time; 0.5 second data collection; column temperature range is 40℃. to 180℃. and ramps at a rate of 5℃. /5cc; and the surface acoustic wave detector is set at 35℃. A total of 20 g of 25℃. deionized (DI) water is added into a clean 40 ml sample bottle (such as VWR scientific cat. #EP 140-40C) . A total of 0.040 g of the test particles or a 0.040 g portion of a test particle is added to the 20 g of water in the sample bottle, to provide a sample of the test particle material at a concentration of 2.0 mg/mL in DI water. After addition of the test particle material, a 3 mm thick PTFE silicone septum is fixed to the sample bottle and the ZNOSE inlet needle is inserted into the head-space of the sample bottle immediately, along with a separate needle attached to a carbon filter. A ZNOSE measurement is taken every 90 seconds and measurements are continued for at least 45 minutes without any agitation of the sample or bottle, at an ambient room temperature between 22℃ and 27℃. The headspace count for each PRM is recorded at each 90 second measurement time point. The Dissolving Head-Space Count reported for a given time point is the sum of the counts from all PRMs detected in the headspace at that time point.
The Dissolving Head-Space Count is a function of the concentration in the head-space of the particular perfume raw material being considered. Higher head-space counts are associated with higher concentrations of perfume in the head-space.
EXAMPLES
The Examples herein are meant to exemplify the present invention but are not used to limit or otherwise define the scope of the present invention.
Example 1: Anti-Microbial Particles
Following are exemplary anti-microbial particles A-E according to the present invention:
TABLE 1
Ingredients (wt%) A B C D E
PEG 9000 25-99 65.0 89.89 65.0 70.0
4-4’-dichloro-2-hydroxy diphenyl ether 1 0.01-3 0.5 0.17 0.2 0.5
Free Perfumes 0-30 -- 6.44 6.5 9.0
Friable Perfume Microcapsules 0-30 -- 3.09 3.0 3.0
Quaternary Ammonium Compound 2 0-45 -- -- 10.0 14.0
Cationic Hydroxyethyl Cellulcose 3 0-10 -- -- -- 3.0
Na 2SO 4 0-50 44.5 -- 15 --
Misc (water, dyes, etc. ) Q.S. Q.S. Q.S. Q.S. Q.S.
1 Provided as
Figure PCTCN2020120565-appb-000003
from BASF, which contains 30%of 4-4’-dichloro-2-hydroxy diphenyl ether active in a solution of 1, 2-propylene glycol. The concentration provided herein is the pure active level, not the raw material level.
2 C18 Unsaturated DEEHMAMS (Diethyl Ester Hydroxyethyl Methyl Ammonium Methyl Sulphate) from EVONIK, which has an Iodine Value of about 42.
3 Polymer PK available from Dow Chemical, which is a cationic hydroxyethyl cellulose having a weight average molecular weight of 400 kDa, a charge density of 0.18, and an average weight percent of nitrogen per anydroglucose repeat unit of 0.28%.
Example 2: Anti-Microbial Particles in Particulate Laundry Detergent Products
The inventive anti-microbial particles from Example 1 are incorporated into particulate laundry detergent products of the following formulations I-V:
TABLE 2
Ingredients (wt%) I II III IV
C 11-C 13 linear alkylbenzene sulfonate (LAS) 9.5 13 5.4 13
C 12-C 15 ethoxylated alcohol with EO 7-9 1.3 1.1 2.4 1
Soap 0.1 0.1 10 0.5
C 12-C 14 alkyl sulfate   - 5 0.3
Methyl ester sulfonates (MES) 4.4 - - -
Zeolite 8 2 9 1.5
Bleach 0.5 - 0 2
Polymer 1 1 1.1 2
Enzyme 0.3 0.3 0.7 0.2
Brightener 0.1 0.2 0.1 0.3
Carbonate 3.5 24 11 20.5
Silicate 6 10 8 5
Citric Acid 0.7 - - -
Sulphate/Salt 61.4 44.1 43.6 50.4
Anti-Microbial Beads 1 2 2 2 2
Misc (e.g., perfume, aesthetics, etc. ) Q.S. Q.S. Q.S. Q.S.
1 Any one of the inventive Anti-Microbial Beads A-E from Example 1 or mixtures thereof.
Example 3: Comparative Test Demonstrating Higher Deposition Rate of Anti-Microbial Agent  When Incorporated Into Anti-Microbial Beads
An inventive sample (Sample A) containing anti-microbial particles of the present invention is provided. A comparative sample (Sample B) containing particles (free of anti-microbial agent) and separate anti-microbial agent (not incorporated into the particles) is also provide.
Specifially, Sample A contains 13.5 grams of anti-microbial particles formed by 13.42 grams of PEG9000 and 0.08 grams of
Figure PCTCN2020120565-appb-000004
The anti-microbial particles in Sample A are made by the following steps:
● Pre-melting the PEG9000 material in a 75℃ oven overnight;
● Weighing the molten PEG9000 material in a 250mL beaker;
● Weighing the 4-4’-dichloro-2-hydroxy diphenyl ether antimicrobial agent in the same beaker;
● Placing the beaker in a 85℃ water bath;
● Mixing the contents in the beaker with a blender (4 blade agitator) at a speed of 250RPM for 10 min;
● Transferring the mixture to beads mold;
● Leaving the mold at room temperature so that the mixture in the mold cools down and solidifies; and
● Collecting the solidified anti-microbial beads from the mold.
Sample B contains, separately, 13.42 grams of PEG9000 particles and 0.08 grams of 
Figure PCTCN2020120565-appb-000005
The PEG9000 particles in Sample B are formed by the following steps:
● Pre-melting the PEG9000 is pre-melted material in a 75℃ oven overnight;
● Pre-heating a mold and a scraper the 75℃ oven;
● Transferring the molten PEG9000 material to the pre-heated mold;
● Leaving the mold at room temperature so that the molten PEG9000 material in the mold cools down and solidifies;
● Collecting the solidified PEG9000 beads from the mold.
Sample A and Sample B are then used to treat fabrics, respectively, according to the following washing conditions:
Washing Machine: Haier Dual Agitation TLA 1466
Wash cycle: Dissolve 2min/soak 10min/wash 15min/rinse 4min*2/spin dry Load size: Total 1.7kg include 4 pieces CW98 (cotton) (new cotton: new polyester 8: 2)
Hardness: 9gpg Ca: Mg=4: 1
HMI: Fe: Cu: Mn 6: 1: 4
Water temperature: 25℃
Four (4) pieces of CW98 cotton (10x10cm) from each wash were hanged dry and send for deposition analysis of 4-4’-dichloro-2-hydroxy diphenyl ether.
Specifically, 4-4’-dichloro-2-hydroxy diphenyl ether is extracted from the fabrics by using methanol with the aid of ASE (Accelerate Solvent Extraction) . About 3g of fabrics is accurately weighed and filled into a steel ASE tube, followed by running an extraction protocol for 5 mins at 100℃ and 2000psi with methanol as an extraction solvent. The extracted content is  collected and transferred into a 25ml flask and brought to volume with methanol, followed by further dilution of 25 fold by adding 50: 50 methanol: water to prepare injection sample.
The injection sample is then subjected to gradient reversed-phase high performance liquid chromatographic (HPLC) separation on a C18 column and quantified by tandem mass spectrometry (MS/MS) operating under multiple reaction monitoring (MRM) conditions at negative mode. The LC-MS/MS test is conducted by injecting 5ul of the injection sample separating it on a Waters Acquity UPLC C18 column with gradient from 70%mobile phase A (1%formic water solution) /30%mobile phase B (0.1%formic acid in methanol) to 5%mobile phase A/95%mobile phase B in 3 minutes and keep the final gradient for another 3 minutes. The antimicrobial agent 4-4’-dichloro-2-hydroxy diphenyl ether is detected at negative MRM mode. The ion pair of m/z 253>142 is used as quantification transition while m/z of 253>125 is for identification.
Spiked matrix standards in the range of 0.5g/ml to 500ng/ml is injected for calibration curve creation. Concentration of 4-4’-dichloro-2-hydroxy diphenyl ether in injection sample is determined by back-calculation using weighted (1/x 2) quadratic regression of a calibration curve.
The 4-4’-dichloro-2-hydroxy diphenyl ether deposition results on fabrics treated by Sample A and Sample B are as follows:
TABLE 3
Figure PCTCN2020120565-appb-000006
The above results show a significantly higher deposition rate for 4-4’-dichloro-2-hydroxy diphenyl ether when it is incorporated into the particles vs. when it is added separately.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm. ”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or  benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims (11)

  1. A composition comprising a plurality of anti-microbial particles that each comprises:
    a) from 25%to 99%of a water soluble carrier by total weight of said particle; and
    b) an diphenyl ether anti-microbial agent,
    wherein each of said plurality of anti-microbial particles has a mass from 1 mg to 1 g.
  2. The composition of claim 1, wherein each of said pluraility of anti-microbial particles comprises from from 0.01%to 3%, preferably from 0.02%to 2%, more preferably from 0.05%to 1%, most preferably from 0.1%to 0.5%of said diphenyl ether anti-microbial agent by total weight of said each anti-microbial particle; wherein said diphenyl ether anti-microbial agent is preferably selected from the group consisting of 4-4’ -dichloro-2-hydroxy diphenyl ether, 2, 4, 4’ -trichloro-2’ -hydroxy diphenyl ether, and a combination thereof; and wherein said diphenyl ether anti-microbial agent is more preferably 4-4’ -dichloro-2-hydroxy diphenyl ether.
  3. The composition according to any one of the preceding claims, wherein each of said plurality of anti-microbial particles comprise from 30%to 95%, more preferably from 40%to 94%, most preferably from 50%to 93%, of said water-soluble carrier by total weight of said each anti-microbial particle; wherein said water-soluble carrier is preferably a water soluble polymer; wherein said water-soluble carrier is preferably selected from the group consisting of polyethylene glycol, sodium acetate, sodium bicarbonate, sodium chloride, sodium silicate, polypropylene glycol polyoxoalkylene, polyethylene glycol fatty acid ester, polyethylene glycol ether, sodium sulfate, starch, and combinations thereof; wherein said water-soluble carrier is most preferably polyethylene glycol characterized by a weight average molecular weight (Mw) from 1,000 to 20,000 Daltons, preferably from 1,500 to 15,000 Daltons, more preferably from 2,000 to 13,000 Daltons.
  4. The composition according to any one of the preceding claims, wherein each of said plurality of anti-microbial particles further comprises from 0.1%to 30%, preferably from 0.5%to 20%, more preferably from 1%to 15%, of a perfume by total weight of said each  anti-microbial particle; wherein said perfume is preferably selected from the group consisting of free perfumes, pro-perfumes, encapsulated perfumes, perfume microcapsules, and combinations thereof; wherein said perfume more preferably comprises a combination of free perfumes and perfume microcapsules; wherein most preferably the weight ratio of free perfumes to perfume microcapsules in said each anti-microbial particle is from 1: 5 to 20: 1, preferalby from 1: 2 to 10: 1, more preferably from 1: 1 to 5: 1, most preferably from 1.5: 1 to 3: 1.
  5. The composition according to any one of the preceding claims, wherein each of said plurality of anti-microbial particles further comprises from 5%to 45%, preferably from 10%to 40%, more preferably from 15%to 35%of a quaternary ammonium compound formed from a parent fatty acid compound having an Iodine Value from 18 to 60, preferably from 20 to 60, by total weight of said each anti-microbial particle; wherein said quaternary ammonium compound is preferably an ester quaternary ammonium compound; wherein said quaternary ammonium compound is more preferably di- (tallowoyloxyethl) -N, N-methylhydroyethylammonium methyl sulfate.
  6. The composition of claim 5, wherein each of said plurality of anti-microbial particles further comprises from 0.5%to 10%, preferably from 1%to 5%of a cationic polymer by total weight of said each anti-microbial particle; wherein said cationic polymer is preferably a cationic polysaccharide; wherein said cationic polymer is more preferably polymeric quaternary ammonium salt of hydroxyethylcellulose which has been reacted with an epoxide substituted with a trimethylammonium group.
  7. The composition according to any one of the preceding claims, wherein each of said plurality of anti-microbial particles further comprises from 0.0001%to 1%, preferably from 0.001%to 0.5%, more preferably from 0.005%to 0.1%of a colorant by total weight of said each anti-microbial particle; wherein preferably said colorant is selected from the group consisting of dyes, pigments, and combinations thereof.
  8. The composition according to any one of the preceding claims, wherein each of said plurality of anti-microbial particles is characterized by:
    i) a shape selected from the group consisting of spherical, hemispherical, compressed hemispherical, cylindrical, disc, circular, lentil-shaped, oblong,  cubical, rectangular, star-shaped, flower-shaped, and combinations thereof; wherein preferably each of said perfume particles has a hemispherical or compressed hemispherical shape; and/or
    ii) a longest dimension of from 3 mm to 10 mm, preferably from 4 mm to 9 mm, more preferably from 5 mm to 8 mm; and/or
    iii) an aspect ratio from 1 to 5, preferably from 1.5 to 4, more preferably from 2 to 4; and/or
    iv) a density ranging from 0.5 g/cm 3 to 0.98 g/cm 3, preferably from 0.7 g/cm 3 to 0.95 g/cm 3, more preferably from 0.8 g/cm 3 to 0.9 g/cm 3.
  9. The composition according to any one of the preceding claims, wherein said composition is a particulate laundry detergent composition; wherein said plurality of anti-microbial particles are preferably present in said particulate laundry detergent composition in an amount ranging from 0.05%to 30%, preferably from 0.1%to 20%, more preferably from 0.5%to 15%, most preferably from 1%to 10%by total weight of said particulate laundry detergent composition.
  10. The composition of claim 9, wherein said particulate laundry detergent composition further comprises from 10%to 99.9%, preferably from 20%to 95%, more preferably from 30%to 90%, most preferably from 40%to 80%of detergent particles; wherein each of said detergent particles preferably comprises from 10 wt%to 90 wt%of a surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, and combinations thereof.
  11. A process for treating an article of clothing comprising the steps of:
    a) providing an article of clothing in a washing machine; and
    b) contacting said article of clothing during a wash sub-cycle of said washing machine with a composition according to any one of the preceding claims.
PCT/CN2020/120565 2019-10-31 2020-10-13 Anti-microbial particles WO2021082902A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20881776.7A EP4051772A1 (en) 2019-10-31 2020-10-13 Anti-microbial particles
JP2022520931A JP2022549738A (en) 2019-10-31 2020-10-13 antibacterial particles
CN202080072719.XA CN114555771A (en) 2019-10-31 2020-10-13 Antimicrobial particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962929084P 2019-10-31 2019-10-31
US62/929,084 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082902A1 true WO2021082902A1 (en) 2021-05-06

Family

ID=75714455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120565 WO2021082902A1 (en) 2019-10-31 2020-10-13 Anti-microbial particles

Country Status (4)

Country Link
EP (1) EP4051772A1 (en)
JP (1) JP2022549738A (en)
CN (1) CN114555771A (en)
WO (1) WO2021082902A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213400A (en) * 1990-09-11 1992-08-04 Lion Corp Liquid detergent composition
US5286492A (en) * 1990-05-03 1994-02-15 Reckitt & Colman Products Limited Method of treatment of Heliobacter pylori infections with triclosan
CN100441671C (en) * 1999-12-22 2008-12-10 宝洁公司 Process for making detergent product
US20150175945A1 (en) * 2012-07-06 2015-06-25 Xeros Limited Cleaning formulation and method
WO2019025216A1 (en) * 2017-08-02 2019-02-07 Unilever Plc Laundry composition
US20190059366A1 (en) * 2017-08-30 2019-02-28 Nobio, Ltd. Anti-microbial particles and methods of use thereof
CN109652230A (en) * 2017-10-12 2019-04-19 宝洁公司 Antimicrobial laundry detergent composition
WO2019095089A1 (en) * 2017-11-14 2019-05-23 The Procter & Gamble Company Granular anti-microbial laundry detergent composition
US20190169532A1 (en) * 2017-12-01 2019-06-06 The Procter & Gamble Company Particulate Laundry Softening Wash Additive
WO2020227737A1 (en) * 2019-05-08 2020-11-12 The Procter & Gamble Company Particles for through the wash laundry softening

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310507A (en) * 1992-05-15 1993-11-22 Mitsubishi Materials Corp Powder-type bactericide/deodorizing agent
GB9622844D0 (en) * 1996-11-01 1997-01-08 Procter & Gamble Cleansing compositions
ES2203916T3 (en) * 1997-09-17 2004-04-16 Ciba Specialty Chemicals Holding Inc. ANTIMICROBIAL ADDITIVE FOR DETERGENTS.
CA2346771C (en) * 1998-10-23 2012-04-10 The Procter & Gamble Company Fabric care composition and method
JP2008156565A (en) * 2006-12-26 2008-07-10 Lion Corp Additive particle for washing, method for producing the same, and detergent for clothes containing the same
MX2012000827A (en) * 2009-07-17 2012-03-26 Carefusion 2200 Inc Particles incorporating antimicrobial agents.
GB201204074D0 (en) * 2012-03-08 2012-04-18 Reckitt & Colman Overseas Novel cleaning method
JP6250285B2 (en) * 2013-01-17 2017-12-20 日本曹達株式会社 Powdery fungicide composition and method for producing the same
CN116103096A (en) * 2014-06-30 2023-05-12 宝洁公司 Laundry detergent composition
EP3282003B1 (en) * 2016-08-09 2020-09-02 Takasago International Corporation Solid composition comprising free and encapsulated fragrances
JP2018076615A (en) * 2016-11-08 2018-05-17 ライオン株式会社 Fiber treatment agent composition
EP3510867A1 (en) * 2018-01-12 2019-07-17 Basf Se Antimicrobial polymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286492A (en) * 1990-05-03 1994-02-15 Reckitt & Colman Products Limited Method of treatment of Heliobacter pylori infections with triclosan
JPH04213400A (en) * 1990-09-11 1992-08-04 Lion Corp Liquid detergent composition
CN100441671C (en) * 1999-12-22 2008-12-10 宝洁公司 Process for making detergent product
US20150175945A1 (en) * 2012-07-06 2015-06-25 Xeros Limited Cleaning formulation and method
WO2019025216A1 (en) * 2017-08-02 2019-02-07 Unilever Plc Laundry composition
US20190059366A1 (en) * 2017-08-30 2019-02-28 Nobio, Ltd. Anti-microbial particles and methods of use thereof
CN109652230A (en) * 2017-10-12 2019-04-19 宝洁公司 Antimicrobial laundry detergent composition
WO2019095089A1 (en) * 2017-11-14 2019-05-23 The Procter & Gamble Company Granular anti-microbial laundry detergent composition
US20190169532A1 (en) * 2017-12-01 2019-06-06 The Procter & Gamble Company Particulate Laundry Softening Wash Additive
WO2020227737A1 (en) * 2019-05-08 2020-11-12 The Procter & Gamble Company Particles for through the wash laundry softening

Also Published As

Publication number Publication date
JP2022549738A (en) 2022-11-28
EP4051772A1 (en) 2022-09-07
CN114555771A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
EP3426759B1 (en) Particles including enzyme
EP3122854B1 (en) Cleaning compositions containing cationic polymers in an aes-enriched surfactant system
EP1771543B1 (en) Soluble unit dose of laundry detergent
CA3084795C (en) Particulate laundry softening wash additive
EP1254950A2 (en) Effervescence compositions and dry effervescent granules
JPH04253800A (en) Detergent composition
US11760958B2 (en) Particulate laundry softening and freshening wash additive comprising perfume and softener particles
EP3122855B1 (en) Cleaning compositions containing cationic polymers, and methods of making and using same
GB2358191A (en) Film packaged liquid detergent
US6329334B1 (en) Use of crosslinked polyvinylpyrrolidone to increase the rate of disintegration of compact particular detergents and cleaners
JP2002502456A (en) Detergent and additive granules for compacts exhibiting detergency
JP4264713B2 (en) Bleach cleaning composition
JP6656323B2 (en) Use of a combination of a cationic polysaccharide polymer and an anionic non-soap surfactant
CN110607208B (en) Particulate laundry detergent composition comprising perfume particles and method of use thereof
WO2021082902A1 (en) Anti-microbial particles
CN113201415B (en) Environment-friendly laundry particle and preparation method thereof
US20170066997A1 (en) Cleaning compositions containing cationic polymers in an aes-enriched surfactant system, and methods of making and using same
WO2023050123A1 (en) Anti-microbial particles
CA3071129A1 (en) Method of laundering fabrics
JP2002502457A (en) Granular detergent
CN117980456A (en) Antimicrobial particles
JP2003055692A (en) Solid detergent composition and cleaning method
JP2002265998A (en) Detergent composition
CN115916940A (en) Granular laundry detergent composition
WO1992021744A2 (en) Dry bleach composition with improved dispersibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881776

Country of ref document: EP

Effective date: 20220531