WO2021082199A1 - 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法 - Google Patents

一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法 Download PDF

Info

Publication number
WO2021082199A1
WO2021082199A1 PCT/CN2019/124403 CN2019124403W WO2021082199A1 WO 2021082199 A1 WO2021082199 A1 WO 2021082199A1 CN 2019124403 W CN2019124403 W CN 2019124403W WO 2021082199 A1 WO2021082199 A1 WO 2021082199A1
Authority
WO
WIPO (PCT)
Prior art keywords
anaerobic digestion
sludge
filter screen
screen structure
ferroferric oxide
Prior art date
Application number
PCT/CN2019/124403
Other languages
English (en)
French (fr)
Inventor
戴晓虎
李磊
许颖
董李鹏
郑琳珂
董滨
戴翎翎
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US17/043,518 priority Critical patent/US11618705B2/en
Publication of WO2021082199A1 publication Critical patent/WO2021082199A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the field of urban sludge treatment and organic matter resource utilization, and in particular relates to a method for using a filter screen structure to strengthen anaerobic digestion of urban sludge to produce methane.
  • Iron respiration is the oldest breathing method of life on earth and an important part of the iron cycle in nature. Iron respiration refers to the process in which microorganisms use Fe(III) oxides as electron acceptors to oxidize organic matter and release electrons while reducing Fe(III) to Fe(II) and obtain energy. This process is also called dissimilated iron. Restore process. Studies have shown that the addition of ferroferric oxide during the hydrolysis and acidification process can help enrich the dissimilar iron-reducing bacteria, promote the oxidative decomposition of organic matter, and provide abundant substrates for the methane-producing section, thereby improving the efficiency of anaerobic digestion.
  • Lovley et al. proposed for the first time a new electron transport pathway in the anaerobic microbial mutualism system, namely direct interspecific electron transfer (DIET).
  • DIET direct interspecific electron transfer
  • the direct electron transfer between species greatly accelerates the rate of electron transfer and strengthens the process of reducing carbon dioxide to methane.
  • anaerobic digestion can be achieved.
  • the proportion of methane in the biogas produced is increased to more than 75%.
  • the addition of conductive materials can serve as a channel for electron transfer to promote the formation of DIET.
  • nano-ferric oxide in the anaerobic digestion process can enrich electroactive microorganisms and strengthen the species of cotrophic microorganisms in the anaerobic methanation process.
  • the process of direct electron transfer in between accelerates the rate of methane production by anaerobic digestion, and at the same time increases the proportion of methane in biogas.
  • Patent "A method for improving the efficiency of anaerobic methane production by using nano-magnetite” CN103773807A
  • the method of activity and methanogenesis efficiency (CN104529116A)
  • the use of nano-ferric oxide to improve the activity of methanogens has certain effects, but at the same time there are defects and disadvantages that cannot be ignored.
  • the purpose of the present invention is to overcome the problems of slow hydrolysis rate and low methane production efficiency in the anaerobic digestion process of municipal sludge in the prior art, and to provide a filter screen structure to strengthen the anaerobic digestion of municipal sludge to produce methane.
  • the method accelerates the rate of hydrolysis and acidification, and increases the ratio and efficiency of methane production.
  • the present invention provides a method for using a filter screen structure to strengthen the anaerobic digestion of urban sludge to produce methane.
  • a filter screen structure with titanium or titanium alloy as the skeleton and ferroferric oxide as the coating is arranged in the anaerobic digestion system. Speed up the rate of hydrolysis and acidification of sludge and increase the proportion of methane in biogas.
  • the framework is a woven mesh of titanium or titanium alloy wire, the mesh number is 10-200 mesh, the wire diameter is 0.25mm-0.5mm, and the mesh size is 0.1mm-2mm.
  • the ferroferric oxide coating adopts a micro-arc oxidation method, and uses water-soluble aminated ferroferric oxide nanoparticles, calcium salt, phosphate salt and weak acid as solutes to form an electrolyte, which generates four on the surface of the titanium or titanium alloy.
  • Ferric oxide/titanium dioxide coating to form a ferroferric oxide coating.
  • the anaerobic digestion system has an anaerobic digestion reactor, and the filter screen structure is laid at the feed inlet in the anaerobic digestion reactor.
  • the feed port is arranged in the middle and lower part of the anaerobic digestion reactor, and the filter screen structure is laid below the feed port in the anaerobic digestion reactor near the feed port.
  • the substrate is the remaining sludge in the secondary settling tank or the sludge after gravity concentration and dewatering, the total solid content (TS) is 2%-8%, and the volatile solids (Volatile Solid, VS) is 51.9%-70.8 %.
  • the anaerobic digestion reactor is operated in batch, semi-continuous or continuous operation.
  • the present invention has the following advantages:
  • the present invention adopts a filter screen structure with titanium or titanium alloy as the framework and ferroferric oxide as the coating, and the contact between ferroferric oxide and anaerobic microorganisms is increased through the mesh structure.
  • the stable crystal structure of ferroferric oxide ensures the continuity as an electron carrier while enriching electroactive microorganisms.
  • Titanium or titanium alloy as a material with high strength, corrosion resistance, good biocompatibility, and good conductivity, can form a good match with ferroferric oxide and help promote the electron transfer process.
  • the present invention has the advantages of low cost and high income, does not require repeated dosing, has stable effects, can strengthen the oxidative decomposition of organic matter in the anaerobic digestion process, accelerate the rate of methane production, and increase the gas production rate.
  • Figure 1 is a schematic diagram of an anaerobic digestion experimental device with a filter screen structure in Example 1;
  • Fig. 2 is a schematic cross-sectional view of the 1-1 section in Fig. 1;
  • Figure 3 relates to the influence of different iron materials on the amount of electron transfer
  • Figure 4 is the X-ray diffraction spectrum (XRD) analysis chart of Fe3O4 before and after anaerobic treatment
  • Figure 4(a) is before anaerobic treatment
  • Figure 4(b) is after anaerobic treatment.
  • XRD X-ray diffraction spectrum
  • Figure 3 shows the influence of the different iron materials involved on the amount of electron transfer, from top to bottom, the addition of magnetite, hematite, ferrihydrite, iron atoms and no addition to the amount of electron transfer in the system influences. It can be seen that the electron transfer rate of the experimental group with the addition of ferroferric oxide is the largest, which reflects the advantages of ferroferric oxide to accelerate the electron transfer rate and promote the progress of biochemical reactions.
  • the invention provides a method for using a filter screen structure to strengthen the anaerobic digestion of urban sludge to produce methane.
  • a filter screen structure with titanium or titanium alloy as the skeleton and ferroferric oxide as the coating is arranged in the anaerobic digestion system , To accelerate the rate of sludge hydrolysis and acidification, and increase the proportion of methane in the biogas.
  • the framework is a woven mesh of titanium or titanium alloy wire, the mesh number is 10-200 mesh, the wire diameter is 0.25mm-0.5mm, and the mesh size is 0.1mm-2mm.
  • the ferroferric oxide coating adopts a micro-arc oxidation method, and uses water-soluble aminated ferroferric oxide nanoparticles, calcium salt, phosphate salt and weak acid as solutes to form an electrolyte, which generates four on the surface of the titanium or titanium alloy.
  • Ferric oxide/titanium dioxide coating to form a ferroferric oxide coating.
  • the anaerobic digestion system has an anaerobic digestion reactor, and the filter screen structure is laid at the feed inlet in the anaerobic digestion reactor.
  • the feed port is arranged in the middle and lower part of the anaerobic digestion reactor, and the filter screen structure is laid below the feed port in the anaerobic digestion reactor near the feed port.
  • the substrate is the remaining sludge in the secondary settling tank or the sludge after gravity concentration and dewatering, the total solid content (TS) is 2%-8%, and the volatile solids (Volatile Solid, VS) is 51.9%-70.8 %.
  • the anaerobic digestion reactor is operated in batch, semi-continuous or continuous operation.
  • the gas production rate of the system was increased, reaching the maximum gas production at 13 days (the control group was 17 days).
  • the proportion of methane gas has been increased from 63% to more than 75%, which effectively accelerates the rate of hydrolysis and acidification and increases the proportion of methane.
  • the reactor of the experimental group was placed at the 0.5L position (near the feed inlet) with a filter screen structure with titanium mesh as the framework and ferroferric oxide coating, while the control group did not have a filter screen structure.
  • the reactor is heated by a 37-55 degree water bath, and the stirring is stopped for 1 minute every 1 minute, and the stirring rate is 80-120 r/min.
  • TS, VS, and VFA volatile fatty acids
  • the start-up time of the semi-continuous reactor with the filter screen structure is shortened, the methane production process is accelerated by 18.4%, the VFA content does not accumulate, and the methane ratio in the gas production is increased from 65% to 78% , And maintained stable operation.
  • the experimental group reactor was placed at the 0.8L position (near the feed inlet) with a titanium mesh as the framework and ferroferric oxide as a coating filter structure, while the control group did not have a filter structure.
  • the reactor is heated by a 37-55 degree water bath, and the stirring is stopped for 2 minutes every 1 minute, and the stirring rate is 80-120 r/min.
  • the contents of TS, VS, and VFA in the incoming and outgoing materials were monitored, and the gas output and ratio were determined.
  • the experimental group has been successfully initiated in the first SRT, while the control group has accumulated VFA.
  • the SRT was reduced from 20d to 15d, and then further reduced to 10d.
  • the experimental group showed stronger adaptability and recovered to stability faster than the control group. It proves the stable operation effect of the reactor with the titanium mesh as the framework and the ferroferric oxide as the coating filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Textile Engineering (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,该方法在厌氧消化系统中设置以钛或钛合金为骨架、四氧化三铁为涂层的滤网结构,加快污泥水解酸化速率,提高沼气中甲烷比例。与现有技术相比,通过网状结构增加了四氧化三铁与厌氧微生物的接触;并且,四氧化三铁稳定的晶体结构保证了作为电子载体的持续性的同时富集电活性微生物;钛或钛合金作为强度高、耐腐蚀、生物相容性好、导电性好的材料可与四氧化三铁形成良好的搭配,并辅助促进电子的传递过程;所述方法具备低成本、高收益的优点,无需重复投加、效果稳定,可以强化厌氧消化过程中有机物的氧化分解,加快产甲烷速率,提高产气量。

Description

一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法 技术领域
本发明属于城市污泥处理与有机质资源化领域,尤其是涉及一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法。
背景技术
随着我国污水处理能力的快速提高,截至2019年2月底,全国设市城市累计建成城市污水处理厂5500多座(不含乡镇污水处理厂和工业),污水处理能力达2.04亿立方米/日,随之而来的污泥年产量已超过4000万吨(以含水率80%计)。厌氧消化技术在促进污泥减量化、稳定化、无害化的同时实现了资源回收,具有良好的环境、经济效益,是帮助应对气候变化、实现节能减排的极具前景的技术。
在城市污泥厌氧消化过程中,污泥中有机质需要经历水解、酸化、乙酸化等一系列步骤变成乙酸等小分子有机物,进行产甲烷过程。而目前污泥厌氧消化存在水解速率慢、产甲烷效率低等问题,针对这些问题研究者进行了大量的研究,而作为厌氧消化过程最为核心的一系列厌氧微生物成为了研究人员关注的重点。铁是微生物生长的必需元素之一,在自然界主要以Fe(Ⅲ)矿物的形态存在。铁呼吸是地球生命最古老的呼吸方式,是自然界铁循环的重要环节。铁呼吸指的是微生物以Fe(Ⅲ)氧化物为电子受体,氧化有机物释放电子的同时,将Fe(Ⅲ)还原为Fe(Ⅱ)并获得能量的过程,该过程又被称为异化铁还原过程。研究表明,在水解酸化过程中添加四氧化三铁,有助于富集异化铁还原菌,促进有机物的氧化分解,为产甲烷段提供丰富的底物,从而提高了厌氧消化的效率。
另外,Lovley等人在厌氧微生物互营体系中首次提出一种新的电子传递途径,即种间直接电子传递(DIET)。相比于传统厌氧消化过程中的种间氢转移或种间甲酸转移,种间直接电子传递大大加快了电子传递的速率,并且强化了二氧化碳还原为甲烷的过程,理论上可以将厌氧消化产沼气中的甲烷比例提高至75%以上。导体材料的加入可以作为电子传递的通道促进DIET的形成,研究表明,在厌氧消化过程加入纳米四氧化三铁可以富集电活性微生物,强化厌氧甲烷化过程中互养微生物之间的种间直接电子传递过程,加快厌氧消化产甲烷速率,同时,提高了甲烷在沼气中占的比例。
综上所述,利用四氧化三铁和导体材料强化城市污泥厌氧消化被证实是行之有效的策略。专利“一种利用纳米磁铁矿提高厌氧产甲烷效率的方法”(CN103773807A)采用纳米磁铁矿提高厌氧产甲烷效率,专利“一种利用纳米四氧化三铁提高厌氧消化产甲烷菌活性与产甲烷效率的方法”(CN104529116A)利用纳米四氧化三铁提高产甲烷菌活性,都有一定的效果,但同时有不可忽视的缺陷和弊端。外源投加纳米磁铁矿或纳米四氧化三铁在提高处理成本的同时,需要考虑到传质、纳米颗粒聚沉等多重因素对于生物化学反应过程的不利影响,与此同时,四氧化三铁的流失与后续回收都是不可忽视的经济负担。
因此,需要找到一种效果稳定、降低成本、无需重复投加的四氧化三铁利用方式,有效的强化城市污泥厌氧消化产甲烷。
发明内容
本发明的目的就是为了克服上述现有技术存在的城市污泥厌氧消化过程中,水解速率慢、产甲烷效率低的问题而提供一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,加快水解酸化速率,提高产甲烷比例及效率。
本发明的目的可以通过以下技术方案来实现:
本发明提供一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,该方法在厌氧消化系统中设置以钛或钛合金为骨架、四氧化三铁为涂层的滤网结构,加快污泥水解酸化速率,提高沼气中甲烷比例。
优选地,所述的骨架为钛或钛合金丝编织网,目数为10目-200目,丝径为0.25mm-0.5mm,网孔大小为0.1mm-2mm。
优选地,四氧化三铁涂层采用微弧氧化法,以水溶性胺基化四氧化三铁纳米颗粒、钙盐、磷盐和弱酸为溶质,形成电解液,在钛或钛合金表层生成四氧化三铁/二氧化钛涂层,从而形成四氧化三铁涂层。
优选地,所述的厌氧消化系统具有厌氧消化反应器,滤网结构铺设在厌氧消化反应器内的进料口处。
优选地,所述的进料口设置于厌氧消化反应器的中下部,滤网结构铺设在厌氧消化反应器内的进料口的下方靠近进料口处。
优选地,该方法以厌氧消化反应器中稳定运行的消化污泥为接种物,以城市污泥为基质,在pH=7.0、温度35~65℃、搅拌速度80~120r/min条件下,厌氧发酵产 甲烷。
优选地,基质为二沉池剩余污泥或经过重力浓缩脱水后污泥,总固体含量(Total Solid,TS)为2%~8%,挥发性固体(Volatile Solid,VS)为51.9%~70.8%。
优选地,所述的厌氧消化反应器进行批次、半连续或连续运行。
与现有技术相比,本发明具有以下优点:
(1)本发明采用以钛或钛合金为骨架,四氧化三铁为涂层的滤网结构,通过网状结构增加了四氧化三铁与厌氧微生物的接触。并且,四氧化三铁稳定的晶体结构保证了作为电子载体的持续性的同时富集电活性微生物。
(2)钛或钛合金作为强度高、耐腐蚀、生物相容性好、导电性好的材料可与四氧化三铁形成良好的搭配,并辅助促进电子的传递过程。
(3)本发明具备低成本、高收益的优点,无需重复投加、效果稳定,可以强化厌氧消化过程中有机物的氧化分解,加快产甲烷速率,提高产气量。
附图说明
图1为实施例1中带有滤网结构的厌氧消化实验装置示意图;
图2为图1中的1-1截面的剖面示意图;
图3涉及到的不同铁材料对电子转移量的影响图;
图4为厌氧处理前后四氧化三铁的X射线衍射光谱(XRD)分析图谱,图4(a)为厌氧处理前,图4(b)为厌氧处理后。
具体实施方式
图3显示了涉及到的不同铁材料对电子转移量的影响图,从上至下依次为在系统里添加磁铁矿、赤铁矿、水铁矿、铁原子和不添加对电子转移量的影响。可以看出,添加四氧化三铁的实验组电子转移速率最大,反映了四氧化三铁加快电子传递速率、促进生化反应进行的优点。
本发明提供的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,该方法在厌氧消化系统中设置以钛或钛合金为骨架、四氧化三铁为涂层的滤网结构,加快污泥水解酸化速率,提高沼气中甲烷比例。
优选地,所述的骨架为钛或钛合金丝编织网,目数为10目-200目,丝径为0.25mm-0.5mm,网孔大小为0.1mm-2mm。
优选地,四氧化三铁涂层采用微弧氧化法,以水溶性胺基化四氧化三铁纳米颗粒、钙盐、磷盐和弱酸为溶质,形成电解液,在钛或钛合金表层生成四氧化三铁/二氧化钛涂层,从而形成四氧化三铁涂层。
优选地,所述的厌氧消化系统具有厌氧消化反应器,滤网结构铺设在厌氧消化反应器内的进料口处。
优选地,所述的进料口设置于厌氧消化反应器的中下部,滤网结构铺设在厌氧消化反应器内的进料口的下方靠近进料口处。
优选地,该方法以厌氧消化反应器中稳定运行的消化污泥为接种物,以城市污泥为基质,在pH=7.0、温度35~65℃、搅拌速度80~120r/min条件下,厌氧发酵产甲烷。
优选地,基质为二沉池剩余污泥或经过重力浓缩脱水后污泥,总固体含量(Total Solid,TS)为2%~8%,挥发性固体(Volatile Solid,VS)为51.9%~70.8%。
优选地,所述的厌氧消化反应器进行批次、半连续或连续运行。
下面结合附图和具体实施例对本发明进行详细说明。
实施例一:
在批次产甲烷实验中实施一种强化城市污泥厌氧消化产甲烷的方法。采用二沉池剩余污泥(VS=51.9%~70.8%,TS=1.8%~5.1%)作为基质,稳定运行的反应器中的厌氧消化污泥(VS=35.6%~47.9%,TS=2.5%~5.2%)做接种泥,在500mL血清瓶中进行批次产甲烷实验,实验装置参见图1,图1中1-1截面的剖面示意图参见图2,从图2中可以看出,本实施例中通过在血清瓶侧壁沿周向设置四个支架,来支撑滤网结构(图中阴影部分),进料管从血清瓶上部插入并且进料口伸入血清瓶内部。
实验组血清瓶中部放置了以钛网为骨架,四氧化三铁为涂层的滤网结构,对照组则未放置滤网结构,同时设置了空白组以消除接种泥的影响。实验在37~55度空气浴、80~120r/min摇床中开展。实验过程中监测气体产量和比例,测定厌氧消化前后的TS、VS。
相比于本实施例中的对照组,放置四氧化三铁涂层的钛网后,系统产气速率得到了提高,在13d即达到了产气最大值(对照组为17d),产气中甲烷气体比例由63%提高到了75%以上,有效的加快了水解酸化速率,提高了甲烷比例。
实施例二:
在半连续产甲烷实验中实施一种强化城市污泥厌氧消化产甲烷的方法。采用重力浓缩后污泥(VS=51.9%~70.8%,TS=3.8%~5.1%)作为基质,稳定运行的反应器中的厌氧消化污泥(VS=35.6%~47.9%,TS=2.5%~5.2%)做接种泥,在工作容积为2L的反应器中进行半连续产甲烷实验。
实验组反应器在0.5L位置(靠近进料口)放置了以钛网为骨架,四氧化三铁为涂层的滤网结构,对照组则未放置滤网结构。实验组和对照组半连续反应器均先加入2L接种泥,每日进料200mL、出料200mL,SRT=10d。反应器采用37~55度水浴加热,每搅拌1分钟停1分钟,搅拌速率为80~120r/min。实验过程中监测进出料TS、VS、VFA(挥发性脂肪酸)含量,测定气体产量和比例。
相比于本实施例中的对照组,放置有滤网结构的半连续反应器启动时间缩短,产甲烷过程加速18.4%,VFA含量未出现积累,产气中甲烷比例由65%提高至78%,并且保持了稳定运行。
实施例三:
在连续流产甲烷实验中实施一种强化城市污泥厌氧消化产甲烷的方法。
采用二沉池剩余污泥(VS=51.9%~70.8%,TS=1.8%~5.1%)作为基质,稳定运行的反应器中的厌氧消化污泥(VS=35.6%~47.9%,TS=2.5%~5.2%)做接种泥,在工作容积为4L的反应器中进行连续流产甲烷实验。
实验组反应器在0.8L位置(靠近进料口)放置了以钛网为骨架,四氧化三铁为涂层的滤网结构,对照组则未放置滤网结构。实验组和对照组半连续反应器均先加入4L接种泥,采取连续进出料方式启动,SRT=20d。反应器采用37~55度水浴加热,每搅拌1分钟停2分钟,搅拌速率为80~120r/min。实验过程中监测进出料TS、VS、VFA含量,测定气体产量和比例。
相比于本实施例中的对照组,实验组在第一个SRT中就已启动成功,而对照组则出现了VFA的积累。在两个反应器均运行稳定时,将SRT由20d减少至15d,接着进一步减少至10d,实验组均表现出更强的适应能力,较对照组更快恢复稳定。证明了放置以钛网为骨架、四氧化三铁为涂层的滤网的反应器稳定运行的效果。
厌氧处理前后四氧化三铁的X射线衍射光谱(XRD)分析图谱参见图4,对比图4(a)和图4(b)可以看出,反应前后四氧化三铁晶型保持良好,物化性质稳定,可以重复利用。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。 熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

  1. 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,该方法在厌氧消化系统中设置以钛或钛合金为骨架、四氧化三铁为涂层的滤网结构,加快污泥水解酸化速率,提高沼气中甲烷比例。
  2. 根据权利要求1所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,所述的骨架为钛或钛合金丝编织网,目数为10目-200目,丝径为0.25mm-0.5mm,网孔大小为0.1mm-2mm。
  3. 根据权利要求1所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,四氧化三铁涂层采用微弧氧化法,以水溶性胺基化四氧化三铁纳米颗粒、钙盐、磷盐和弱酸为溶质,形成电解液,在钛或钛合金表层生成四氧化三铁/二氧化钛涂层,从而形成四氧化三铁涂层。
  4. 根据权利要求1所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,所述的厌氧消化系统具有厌氧消化反应器,滤网结构铺设在厌氧消化反应器内的进料口处。
  5. 根据权利要求4所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,所述的进料口设置于厌氧消化反应器的中下部,滤网结构铺设在厌氧消化反应器内的进料口的下方靠近进料口处。
  6. 根据权利要求4所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,该方法以厌氧消化反应器中稳定运行的消化污泥为接种物,以城市污泥为基质,在pH=7.0、温度35~65℃、搅拌速度80~120r/min条件下,厌氧发酵产甲烷。
  7. 根据权利要求6所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,基质为二沉池剩余污泥或经过重力浓缩脱水后污泥,总固体含量为1.5%~8%,挥发性固体为51.9%~70.8%。
  8. 根据权利要求1所述的一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法,其特征在于,所述的厌氧消化反应器进行批次、半连续或连续运行。
PCT/CN2019/124403 2019-10-31 2019-12-10 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法 WO2021082199A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,518 US11618705B2 (en) 2019-10-31 2019-12-10 Method for enhancing methanogenesis in anaerobic digestion of municipal sludge by utilizing a filter screen structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911053440.2A CN110776228B (zh) 2019-10-31 2019-10-31 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法
CN201911053440.2 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082199A1 true WO2021082199A1 (zh) 2021-05-06

Family

ID=69388084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124403 WO2021082199A1 (zh) 2019-10-31 2019-12-10 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法

Country Status (3)

Country Link
US (1) US11618705B2 (zh)
CN (1) CN110776228B (zh)
WO (1) WO2021082199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652453A (zh) * 2021-08-16 2021-11-16 海南大学 一种利用纳米石墨烯促进有机酸厌氧甲烷化的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826403B (zh) * 2020-06-05 2021-05-11 同济大学 一种有机废弃物厌氧消化的方法
CN112250271B (zh) * 2020-09-18 2022-06-03 哈尔滨学院 一种金属导电材料联合污泥预处理促进剩余污泥厌氧消化产甲烷的方法
CN112441660B (zh) * 2020-10-29 2021-11-19 同济大学 基于电子传递耦合微生物电解池强化厌氧消化装置与方法
CN113388648B (zh) * 2021-05-12 2022-12-16 同济大学 四氧化三铁促进厌氧发酵产中链脂肪酸以及微生物种间电子传递效率的方法
CN113695356A (zh) * 2021-08-26 2021-11-26 同济大学 一种利用生物填料强化有机固废厌氧消化能力的反应器
CN113603218A (zh) * 2021-08-26 2021-11-05 同济大学 一种用于强化厌氧消化的填料反应系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348314A (zh) * 2008-09-12 2009-01-21 镇江市水业总公司 催化铁还原与厌氧水解酸化协同预处理工业废水的方法
CN102140001A (zh) * 2010-12-17 2011-08-03 合肥工业大学 一种提高有机废弃物厌氧过程中甲烷产出效率的方法
WO2012123331A1 (en) * 2011-03-11 2012-09-20 Fundació Privada Institut Català De Nanotecnologia Biogas production
CN104529116A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种利用纳米四氧化三铁提高厌氧消化产甲烷菌活性与产甲烷效率的方法
CN107236983A (zh) * 2017-07-17 2017-10-10 西安交通大学 一种四氧化三铁/二氧化钛磁性生物活性涂层的制备方法
CN110171876A (zh) * 2019-05-16 2019-08-27 浙江科技学院 一种氮掺杂污泥炭载纳米四氧化三铁的制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893551B2 (en) * 2001-11-22 2005-05-17 International Advanced Research Centre For Powder Metallurgy And New Materials (Arci) Process for forming coatings on metallic bodies and an apparatus for carrying out the process
CN107866210B (zh) * 2016-09-23 2020-08-04 长沙立兴环保科技有限公司 一种钛基掺杂型二氧化钛光催化网及其制造方法
CN106365404A (zh) * 2016-10-20 2017-02-01 福建农林大学 一种利用赤泥促进污泥厌氧消化产甲烷的方法
CN209507733U (zh) * 2019-01-30 2019-10-18 深圳绿动力环境治理工程有限公司 一种具有定量填料功能的厌氧消化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348314A (zh) * 2008-09-12 2009-01-21 镇江市水业总公司 催化铁还原与厌氧水解酸化协同预处理工业废水的方法
CN102140001A (zh) * 2010-12-17 2011-08-03 合肥工业大学 一种提高有机废弃物厌氧过程中甲烷产出效率的方法
WO2012123331A1 (en) * 2011-03-11 2012-09-20 Fundació Privada Institut Català De Nanotecnologia Biogas production
CN104529116A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种利用纳米四氧化三铁提高厌氧消化产甲烷菌活性与产甲烷效率的方法
CN107236983A (zh) * 2017-07-17 2017-10-10 西安交通大学 一种四氧化三铁/二氧化钛磁性生物活性涂层的制备方法
CN110171876A (zh) * 2019-05-16 2019-08-27 浙江科技学院 一种氮掺杂污泥炭载纳米四氧化三铁的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652453A (zh) * 2021-08-16 2021-11-16 海南大学 一种利用纳米石墨烯促进有机酸厌氧甲烷化的方法
CN113652453B (zh) * 2021-08-16 2023-10-24 海南大学 一种利用纳米石墨烯促进有机酸厌氧甲烷化的方法

Also Published As

Publication number Publication date
CN110776228B (zh) 2020-10-02
US20220340467A1 (en) 2022-10-27
CN110776228A (zh) 2020-02-11
US11618705B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2021082199A1 (zh) 一种应用滤网结构强化城市污泥厌氧消化产甲烷的方法
Feng et al. Electroactive microorganisms in bulk solution contribute significantly to methane production in bioelectrochemical anaerobic reactor
Zhu et al. Dual roles of zero-valent iron in dry anaerobic digestion: Enhancing interspecies hydrogen transfer and direct interspecies electron transfer
CN104478178B (zh) 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
CN106882871A (zh) 一种强化厌氧微生物活性的纳米磁铁矿耦合废水处理工艺
CN103094597A (zh) 高效同步脱氮除碳微生物燃料电池
CN102220259B (zh) 一种具有硫酸盐还原功能的柠檬酸杆菌及其应用
CN101880118A (zh) 一种能源回收式污泥减量方法
CN105176614A (zh) 一种微生物电化学原位沼气脱硫的方法
CN104261559A (zh) 一种新型微生物电解强化升流式套筒厌氧消化产甲烷反应器及利用其处理废液的方法
WO2022110695A1 (zh) 一种利用生物膜法富集磷及回收蓝铁矿的工艺
CN109576332B (zh) 一种生物还原制备磁性纳米四氧化三铁的方法
CN109231746A (zh) 一种铁电极活化过硫酸盐预处理污泥优化产酸结构的方法
CN105441361A (zh) 一种用于重金属污染水体治理的菌种及微生物菌剂的制备方法
CN106396246A (zh) 一种综合污水处理装置
CN111826403B (zh) 一种有机废弃物厌氧消化的方法
CN106480102A (zh) 一种利用电解辅助厌氧微生物提高甲烷产量的方法
CN113430234B (zh) 一种外加电势强化厌氧微生物产中链脂肪酸的方法
CN106966494A (zh) 去除水中硝酸盐氮的方法,电极挂膜方法,电极及装置
CN113321289B (zh) 一种电场耦合Fe-C复合介体强化废水污泥厌氧消化产甲烷效能的方法
CN109574201A (zh) 有机和脱硫废水微生物燃料电池协同处理方法及系统
CN101219843B (zh) 一种处理废水的碳源的制备方法
CN110877952A (zh) 一种微生物燃料电池辅助强化厌氧污泥消化的复合系统
CN111499143B (zh) 一种污泥厌氧发酵过程同步强化产酸与去除难降解有机副产物的方法
CN110482681A (zh) 一种含重金属酸性污水处理联产新能源的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950672

Country of ref document: EP

Kind code of ref document: A1