WO2021082156A1 - 电压调节模块及植入式神经刺激系统 - Google Patents
电压调节模块及植入式神经刺激系统 Download PDFInfo
- Publication number
- WO2021082156A1 WO2021082156A1 PCT/CN2019/121538 CN2019121538W WO2021082156A1 WO 2021082156 A1 WO2021082156 A1 WO 2021082156A1 CN 2019121538 W CN2019121538 W CN 2019121538W WO 2021082156 A1 WO2021082156 A1 WO 2021082156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fine
- voltage
- tuning
- branch
- charge pump
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/3615—Intensity
- A61N1/36153—Voltage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36125—Details of circuitry or electric components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/378—Electrical supply
- A61N1/3782—Electrical supply producing a voltage above the power source level
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0077—Plural converter units whose outputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/072—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/073—Charge pumps of the Schenkel-type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0534—Electrodes for deep brain stimulation
Definitions
- the invention relates to the field of implantable medical treatment, in particular to a voltage regulation module and an implantable nerve stimulation system.
- Implantable medical systems have been used more and more widely in clinical medicine in recent years, usually including implantable neurostimulation systems (including deep brain stimulation system DBS, implantable cerebral cortex stimulation system CNS, implantable spinal cord electrical puncture) System stimulation SCS, implantable sacral nerve stimulation system SNS, implantable vagus nerve stimulation system VNS, etc.), implantable cardiac stimulation system (commonly known as pacemaker), implantable drug infusion system (IDDS), etc.
- implantable neurostimulation systems including deep brain stimulation system DBS, implantable cerebral cortex stimulation system CNS, implantable spinal cord electrical puncture) System stimulation SCS, implantable sacral nerve stimulation system SNS, implantable vagus nerve stimulation system VNS, etc.
- implantable cardiac stimulation system commonly known as pacemaker
- IDDS implantable drug infusion system
- the neurostimulation system can effectively control the symptoms of functional neurological diseases and mental diseases by chronically stimulating the target nerves.
- the frequency and amplitude of the target nerve signal can reflect the condition of the neurological disease.
- the condition of the disease can be judged and the optimal treatment method can be adopted, and the therapeutic effect of the nerve stimulation system can also be judged objectively.
- the stimulation amplitude required by different individuals is quite different, and the range may be from 0.1V to 14V. Because it is battery-powered, it can only provide a power supply voltage of 3.6V, and the actual output stimulation amplitude is an integer of the power supply voltage. In general, there is a difference between the actual output stimulus amplitude and the required stimulus amplitude. The stimulus amplitude in the prior art cannot be finely adjusted, which causes a waste of power consumption.
- the purpose of the present invention is to provide a voltage regulation module and an implantable nerve stimulation system.
- the input terminal of the fine-tuning charge pump is connected to the input voltage
- the input terminal of the voltage doubler charge pump is connected to the input voltage
- the fine-tuning charge pump is connected to the input voltage.
- the voltage doubler charge pumps are connected through an intermediate switch.
- the fine-tuned charge pump includes a number of fine-tuned charge pump basic units, and each fine-tuned charge pump basic unit includes a fine-tuned charging branch, a fine-tuned discharge branch, and a fine-tuned charge pump.
- the fine-tuning capacitors and fine-tuning switches of the branch and the fine-tuning discharge branch wherein the fine-tuning charging branch is used to charge a number of fine-tuning capacitors, and the fine-tuning discharge branch is used to output an intermediate output voltage ,
- the intermediate output voltage is used as the first output voltage or output to another adjacent fine-tuning charge pump basic unit, the fine-tuning charging branch and the fine-tuning discharge branch are controlled by the plurality of fine-tuning switches to output different The intermediate output voltage.
- each fine-tuned charge pump basic unit further includes a series branch connected in series with the fine-tuned discharge branch, and the series branch includes at least one series input terminal and controls the series connection.
- a series switch with an open and closed input terminal. The series input terminal is used to ground or connect the intermediate output voltage of other fine-tuning charge pump basic units to output the series voltage.
- each fine-tuning charge pump basic unit includes two fine-tuning capacitors.
- the input voltage or the intermediate output voltage is two fine-tuning capacitors connected in series.
- the capacitor is charged, and then when the fine-tuning discharge branch and the series branch are turned on, two fine-tuning capacitors are connected in parallel, and the first output voltage is the sum of the voltage at both ends of each fine-tuning capacitor and the series voltage.
- the fine-tuning charge pump includes a first fine-tuning charge pump basic unit, a second fine-tuning charge pump basic unit, a third fine-tuning charge pump basic unit, and a fourth fine-tuning charge pump basic unit, which are sequentially connected.
- the first fine-tuned charge pump basic unit includes a first series branch, a first fine-tuned charging branch, a first fine-tuned discharging branch, and a first fine-tuned charging branch and Two first fine-tuning capacitors and a number of first fine-tuning switches of the first fine-tuning discharge branch, the first fine-tuning charging branch is connected to the input voltage, and the first fine-tuning discharge branch outputs a first intermediate output
- the second fine-tuned charge pump basic unit includes a second series branch, a second fine-tuned charging branch, a second fine-tuned discharge branch, and is located in the second fine-tuned charge branch and the second fine-tuned discharge branch.
- the third fine-tuned charge pump basic unit includes a third series branch, a third fine-tuned charging branch, a third fine-tuned discharge branch, and is located in the third fine-tuned charging branch and the third fine-tuned discharge branch Two third fine-tuning capacitors, a number of third fine-tuning switches, the third fine-tuning charging branch is connected to the second intermediate output voltage, and the third fine-tuning discharging branch outputs a third intermediate output voltage
- the fourth fine-tuned charge pump basic unit includes a fourth series branch, a fourth fine-tuned charging branch, a fourth fine-tuned discharge branch, and a fourth fine-tuned charging branch and a fourth fine-tuned discharge branch.
- Two fourth fine-tuning capacitors, several fourth fine-tuning switches, the fourth fine-tuning charging branch is connected to the third intermediate output voltage, and the fourth fine-tuning discharge branch outputs a fourth intermediate output voltage, so
- the first series branch is grounded or connected to one of the second intermediate output voltage, the third intermediate output voltage, and the fourth intermediate output voltage, and the second series branch is grounded or connected to the first intermediate output voltage.
- One of three intermediate output voltages and the fourth intermediate output voltage, the third series branch is grounded or connected to the fourth intermediate output voltage, and the fourth series branch is grounded.
- the voltage doubling charge pump includes several voltage doubling charging branches, several voltage doubling discharging branches, several voltage doubling capacitors located in several voltage doubling charging branches and several voltage doubling discharge branches.
- several voltage doubling switches wherein the several voltage doubling charging branches are used to charge several voltage doubling capacitors, the several voltage doubling discharge branches are used to output the second output voltage, the several voltage doubling charging branches and The several voltage doubling discharge branches are controlled by the several voltage doubling switches to output different second output voltages.
- the several voltage doubling charging branches include a first voltage doubling charging branch, a second voltage doubling charging branch, and a third voltage doubling charging branch.
- the multiple voltage discharging branches The circuit includes a first voltage doubling discharge branch, a second voltage doubling discharge branch, and a third voltage doubling discharge branch.
- the several voltage doubling capacitors include a first voltage doubling capacitor, a second voltage doubling capacitor, and a third voltage doubling capacitor.
- the first voltage doubling charging branch is connected to the input voltage and the first voltage doubling capacitor
- the second voltage doubling charging branch is connected to the input voltage and the second voltage doubling capacitor
- the third voltage doubling charging branch is connected to the input voltage and the third voltage doubling capacitor
- the first voltage doubling discharge branch is connected to the first voltage doubling capacitor
- the second voltage doubling discharge branch is connected in series
- the third voltage doubling discharge branch is connected in series with the first voltage doubling capacitor, the second voltage doubling capacitor, and the third voltage doubling capacitor
- the voltage regulation module further includes a comparator.
- the two input terminals of the comparator are respectively connected to a preset voltage and a total output voltage.
- the total output voltage is controlled by a number of switches. When the total output voltage is not greater than the preset voltage, the comparator outputs a control signal to increase the operating frequency of the switches.
- an embodiment of the present invention provides an implantable neurostimulation system, which includes a terminal device and a stimulation electrode.
- the terminal device includes the voltage regulation module as described in any one of the above technical solutions, and the voltage The adjustment module is used to output the total output voltage to control the electrical stimulation amplitude of the stimulation electrode.
- an embodiment of the present invention adopts a combination of a fine-tuning charge pump and a voltage doubler charge pump to output a total output voltage that can be finely adjusted in a wide range, so that the actual total output voltage is as close as possible The required stimulus amplitude, thereby greatly saving power consumption.
- Fig. 1 is a schematic diagram of an implantable nerve stimulation system according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a voltage regulation module and stimulation electrodes according to an embodiment of the present invention
- Fig. 3 is a block diagram of a voltage regulation module structure according to an embodiment of the present invention.
- FIG. 4 is a circuit diagram of basic components in a fine-tuning charge pump according to an embodiment of the present invention.
- FIG. 5 is a circuit diagram of a fine-tuning charge pump according to an embodiment of the present invention.
- FIG. 11 is a circuit diagram of a voltage doubler charge pump according to an embodiment of the present invention.
- FIG. 15 is a circuit diagram of a voltage regulation module according to an embodiment of the present invention.
- Fig. 16 is a schematic diagram of a comparator according to an embodiment of the present invention.
- an embodiment of the present invention provides an implantable nerve stimulation system.
- An implantable neurostimulation system usually includes the following components: a number of stimulation electrodes 200 (here, the left brain electrode and the right brain electrode are taken as examples), an electrode lead 300, an extension lead 500, a pulse generator 400, and a terminal device 600.
- the pulse generator 400 conducts electrical pulses to the STN (Subthalamic Nucleus, subthalamic nucleus) nucleus of the brain through the extension lead 500, the electrode lead 300 and the stimulation electrode 200 to treat Parkinson and other diseases the goal of.
- STN Subthalamic Nucleus, subthalamic nucleus
- the terminal device 600 takes the programming instrument as an example.
- the programming instrument is used to adjust the stimulation parameters of the pulse generator 400.
- the stimulation parameters include pulse amplitude, pulse width (ie pulse width) and pulse frequency. It is understandable that the terminal device 600 also Other devices, such as display devices, etc., can be determined according to actual conditions.
- the implantable nerve stimulation system further includes a voltage regulation module 100.
- the voltage adjustment module 100 can be provided in the terminal device 600, but is not limited to this.
- the voltage adjustment module 100 is used to output a total output voltage V to control the electrical stimulation amplitude of the stimulation electrode 200.
- the voltage adjustment module 100 includes a fine adjustment charge pump 10 and a voltage doubler charge pump 20 connected to each other.
- the input voltage V 0 is the power supply voltage provided by the battery, but is not limited to this.
- This embodiment adopts a combination of fine-tuning charge pump 10 and voltage-doubler charge pump 20 to output a total output voltage V that can be finely adjusted in a wide range, so that the actual total output voltage V is as close as possible to the required stimulation amplitude, thereby greatly saving work. Consumption.
- the input terminal of the charge pump 10 is fine-tuned to connect the input voltage V 0
- the input terminal of the voltage doubler charge pump 20 is connected to the input voltage V 0
- the charge pump 10 and the voltage doubler charge pump 20 are fine-tuned Between them is connected through the middle switch S21.
- the input voltage V 0 provides input for the fine-tuning charge pump 10 and the double-voltage charge pump 20 respectively.
- the middle switch S21 When the middle switch S21 is closed and turned on, the fine-tuning charge pump 10 and the double-voltage charge pump 20 are connected in series with each other, and the voltage regulation module
- the total output voltage V of 100 is the sum of the first output voltage V 1 and the second output voltage V 2.
- the total output voltage V can also be equal to the first output voltage V 1 alone or equal to the second output voltage V 2 alone,
- the output terminal of the total output voltage V is located at the voltage doubler charge pump 20 and the total output voltage V is the sum of the first output voltage V 1 and the second output voltage V 2 as an example.
- the fine-tuning charge pump 10 includes a number of fine-tuning charge pump basic units (10a, 10b, 10c, 10d).
- each fine-tuning charge pump includes fine-tuning charging branch (P1a, P1b, P1c, P1d), fine-tuning discharge branch (P2a, P2b, P2c, P2d), located in the fine-tuning charging branch and fine-tuning discharge branch.
- fine-tuning capacitors Ca, Cb, Cc, Cd
- fine-tuning switches S1a, S2a, S1b, S2b, S1c, S2c, S1d, S2d).
- the fine-tuning charging branch is used to Adjust the capacitor charging
- the fine-tune discharge branch is used to output the intermediate output voltage V'
- the intermediate output voltage V' is used as the first output voltage V or output to another adjacent fine-tuned charge pump basic unit
- the charge branch and fine-tuned The regulating discharge branch is controlled by a number of fine regulating switches to output different intermediate output voltages V'.
- the intermediate output voltage V'output by the current fine-tuned charge pump basic unit can be directly output as the first output voltage V, or it can be used as the input voltage of another adjacent fine-tuned charge pump basic unit.
- each fine-tuning charge pump basic unit including two basic components (Cell1 to Cell8) as an example.
- each basic component includes two switches and one capacitor.
- Each fine-tuned charge pump basic unit also includes a series branch (P3a, P3b, P3c, P3d, the series branch voltage is denoted as V 3 , not marked in the figure) connected in series with the fine-tune discharge branch, and the series branch includes At least one series input terminal and a series switch (S3 ⁇ S15) that controls the opening and closing of the series input terminal.
- the series input terminal is used for grounding or connecting other intermediate output voltages of the basic unit of the charge pump to output the series voltage V 3 .
- the first output voltage V 1 is the sum of the intermediate output voltage V′ of the fine-tuning discharge branch and the series voltage V 3 .
- Each fine-tuning charge pump basic unit includes two fine-tuning capacitors.
- the input voltage V 0 or the intermediate output voltage V' charges the two fine-tuning capacitors in series, and then when the fine-tuning discharge
- the branch circuit and the series branch circuit are turned on, the two fine-tuning capacitors are connected in parallel, and the first output voltage V 1 is the sum of the voltage at both ends of each fine-tuning capacitor and the series voltage V 3.
- the fine-tuning charge pump 10 includes four fine-tuning charge pump basic units as an example, and each fine-tuning charge pump basic unit includes two basic components.
- Fine-tuning the number and connection relationship of the basic units and basic components of the charge pump can be determined according to the actual situation.
- the fine-tuning charge pump 10 includes a first fine-tuning charge pump basic unit 10a, a second fine-tuning charge pump basic unit 10b, a third fine-tuning charge pump basic unit 10c, and a fourth fine-tuning charge pump basic unit 10d, which are sequentially connected.
- the first fine-tuned charge pump basic unit 10a includes a first series branch P3a, a first fine-tuned charging branch P1a, a first fine-tuned discharge branch P2a, and is located in the first fine-tuned charge branch P1a and a first fine-tuned discharge circuit.
- the two first fine-tuning capacitors Ca of the branch P2a and several first fine-tuning switches (S1a, S2a) the first fine-tuning charging branch P1a is connected to the input voltage V 0 , and the first fine-tuning discharge branch P2a outputs the first The intermediate output voltage V 1 '.
- the second fine-tuning charge pump basic unit 10b includes a second series branch P3b, a second fine-tuning charging branch P1b, a second fine-tuning discharge branch P2b, and a second fine-tuning charging branch P1b and a second fine-tuning discharge circuit.
- the two second fine-tuning capacitors Cb of the branch P2b, a number of second fine-tuning switches (S1b, S2b), the second fine-tuning charging branch P1b is connected to the first intermediate output voltage V 1 ′, and the second fine-tuning discharging branch P2b outputs the second intermediate output voltage V 2 ′.
- the third fine-tuned charge pump basic unit 10c includes a third series branch P3c, a third fine-tuned charging branch P1c, a third fine-tuned discharge branch P2c, and is located in the third fine-tuned charging branch P1c and a third fine-tuned discharge
- the third fine-tuning charging branch P1c is connected to the second intermediate output voltage V 2 ', and the third fine-tuning discharging branch P2c outputs the third intermediate output voltage V 3 ′.
- the fourth fine-tuned charge pump basic unit 10d includes a fourth series branch P3d, a fourth fine-tuned charging branch P1d, a fourth fine-tuned discharge branch P2d, and is located in the fourth fine-tuned charging branch P1d and fourth fine-tuned discharge
- Two fourth fine-tuning capacitors Cd of branch P2d, several fourth fine-tuning switches (S1d, S2d), fourth fine-tuning charging branch P1d is connected to the third intermediate output voltage V 3 ', fourth fine-tuning discharging branch P2d outputs the fourth intermediate output voltage V 4 ′.
- the first series branch P3a is grounded or connected to one of the second intermediate output voltage V 2 ′, the third intermediate output voltage V 3 ′, and the fourth intermediate output voltage V 4 ′
- the second series branch P3b is grounded or connected to the first One of the three intermediate output voltages V 3 ′ and the fourth intermediate output voltage V 4 ′
- the third series branch P3c is grounded or the fourth intermediate output voltage V 4 ′ is connected
- the fourth series branch P3d is grounded.
- the charge pump 10 can be finely adjusted to output different first outputs. Voltage V 1 .
- the first fine-tuning charge pump basic unit 10a When in the first time period T1, the first fine-tuning charge pump basic unit 10a enters the charging process.
- the charging process of the first fine-tuning charge pump basic unit 10a is: the basic part Cell1 and the first fine-tuning switch S1a of the basic part Cell2 in the first fine-tuning charging branch P1a are both closed (that is, in a high-level state), The basic component Cell1 of the first fine-tuning discharge branch P2a and the first fine-tuning switch S2a of the basic component Cell2 are both open (that is, in a low-level state), and the series switch S4 is closed, and the other series switches are open, that is to say , The first fine-tuning charging branch P1a is turned on, the input voltage V 0 charges the two first fine-tuning capacitors Ca connected in series, and the voltage across each first fine-tuning capacitor Ca is 1/2*V 0 .
- the first fine-tuned charge pump basic unit 10a When in the second time period T2, the first fine-tuned charge pump basic unit 10a enters the discharge process.
- the discharge process of the first fine-tuning charge pump basic unit 10a is as follows: the basic component Cell1 and the first fine-tuning switch S1a of the basic component Cell2 located in the first fine-tuning charging branch P1a are both turned off and located in the first fine-tuning discharge branch.
- the first fine adjustment switch S2a of the basic part Cell1 and the basic part Cell2 of P2a are both closed, and the series switches S3 and S4 are closed, and the other series switches are opened, that is, the first series branch P3a is grounded, and the first fine adjustment
- the switch S1a and the switch S2a are all called the first fine-tuning switch, and the switches S3 and S4 are all called the series switch.
- the following description refers to the description here, and will not be repeated in the following.
- the first fine-tuning charge pump basic unit 10a When in the first time period T1, the first fine-tuning charge pump basic unit 10a enters the charging process.
- the charging process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both closed, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both opened, and The series switch S4 is closed, and the other series switches are opened, that is, the first fine-tuning charging branch P1a is turned on, and the input voltage V 0 charges the two series-connected first fine-tuning capacitors Ca, each of the first fine-tuning capacitors The voltage across Ca is 1/2*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the second time period T2, the first fine-tuning charge pump basic unit 10a enters the discharging process, and at the same time, the second fine-tuning charge pump basic unit 10b enters the charging process.
- the discharge process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both opened, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both closed, and The series switches S3 and S4 are closed, and the other series switches are disconnected, that is, the first series branch P3a is grounded, and the first fine-tuning discharge branch P1a is turned on.
- the two first fine-tuning capacitors Ca are connected in parallel with each other.
- the charging process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both closed, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both opened, and The series switch S9 is closed, and the other series switches are opened, that is, the second fine-tuning charging branch P1b is turned on, and the first intermediate output voltage V 1 ′ connected to the second fine-tuning charge pump basic unit 10b is two in series
- the second fine-tuning capacitor Cb is charged, and the voltage across each second fine-tuning capacitor Cb is 1/2*V 1 ′, that is, 1/4*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the third time period T3, the first fine-tuning charge pump basic unit 10a enters the charging process, and at the same time, the second fine-tuning charge pump basic unit 10b enters the discharging process.
- the discharge process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both opened, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both closed, and The series switches S8 and S9 are closed, and the other series switches are disconnected. That is to say, the second series branch P3b is grounded, and the second fine-tuning discharge branch P2b is turned on.
- the two second fine-tuning capacitors Cb are connected in parallel.
- the first fine-tuning charge pump basic unit 10a When in the first time period T1, the first fine-tuning charge pump basic unit 10a enters the charging process.
- the charging process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both closed, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both opened, and The series switch S4 is closed, and the other series switches are opened, that is, the first fine-tuning charging branch P1a is turned on, and the input voltage V 0 charges the two series-connected first fine-tuning capacitors Ca, each of the first fine-tuning capacitors The voltage across Ca is 1/2*V 0 .
- the first fine-tuned charge pump basic unit 10a When in the second time period T2, the first fine-tuned charge pump basic unit 10a enters the discharging process, and at the same time, the second fine-tuned charge pump basic unit 10b enters the charging process.
- the discharge process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both opened, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both closed, and The series switches S3 and S4 are closed, and the other series switches are disconnected, that is, the first series branch P3a is grounded, and the first fine-tuning discharge branch P1a is turned on.
- the two first fine-tuning capacitors Ca are connected in parallel with each other.
- the charging process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both closed, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both opened, and The series switch S9 is closed, and the other series switches are opened, that is, the second fine-tuning charging branch P1b is turned on, and the first intermediate output voltage V 1 ′ connected to the second fine-tuning charge pump basic unit 10b is two in series
- the second fine-tuning capacitor Cb is charged, and the voltage across each second fine-tuning capacitor Cb is 1/2*V 1 ′, that is, 1/4*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the third time period T3, the first fine-tuning charge pump basic unit 10a enters the charging process, at the same time, the second fine-tuning charge pump basic unit 10b enters the discharging process, and the third fine-tuning charge pump basic unit 10c enters the charging process.
- the discharge process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both opened, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both closed, and The series switches S8 and S9 are closed, and the other series switches are disconnected. That is to say, the second series branch P3b is grounded, and the second fine-tuning discharge branch P2b is turned on.
- the two second fine-tuning capacitors Cb are connected in parallel.
- the charging process of the third fine-tuning charge pump basic unit 10c is: the third fine-tuning switch S1c of the basic part Cell5 and the basic part Cell6 are both closed, the third fine-tuning switch S2c of the basic part Cell5 and the basic part Cell6 are both opened, and The series switch S13 is closed, and the other series switches are opened, that is, the third fine-tuning charging branch P1c is turned on, and the second intermediate output voltage V 2 ′ connected to the third fine-tuning charge pump basic unit 10c is two in series
- the third fine-tuning capacitor Cc is charged, and the voltage across each third fine-tuning capacitor Cc is 1/2*V 2 ', which is 1/8*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the fourth time period T4, the first fine-tuning charge pump basic unit 10a enters the discharging process, at the same time, the second fine-tuning charge pump basic unit 10b enters the charging process, and the third fine-tuning charge pump basic unit 10c enters the discharging process.
- the discharge process of the third fine-tuning charge pump basic unit 10c is: the third fine-tuning switch S1c of the basic part Cell5 and the basic part Cell6 are both opened, the third fine-tuning switch S2c of the basic part Cell5 and the basic part Cell6 are both closed, and The series switches S12 and S13 are closed, and the other series switches are disconnected. That is to say, the third series branch P3c is grounded, and the third fine-tuning discharge branch P2c is turned on.
- the two third fine-tuning capacitors Cc are connected in parallel with each other.
- the first fine-tuning charge pump basic unit 10a When in the first time period T1, the first fine-tuning charge pump basic unit 10a enters the charging process.
- the charging process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both closed, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both opened, and The series switch S4 is closed, and the other series switches are opened, that is, the first fine-tuning charging branch P1a is turned on, and the input voltage V 0 charges the two series-connected first fine-tuning capacitors Ca, each of the first fine-tuning capacitors The voltage across Ca is 1/2*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the second time period T2, the first fine-tuning charge pump basic unit 10a enters the discharging process, and at the same time, the second fine-tuning charge pump basic unit 10b enters the charging process.
- the discharge process of the first fine-tuning charge pump basic unit 10a is: the first fine-tuning switch S1a of the basic part Cell1 and the basic part Cell2 are both opened, the first fine-tuning switch S2a of the basic part Cell1 and the basic part Cell2 are both closed, and The series switches S3 and S4 are closed, and the other series switches are disconnected, that is, the first series branch P3a is grounded, and the first fine-tuning discharge branch P1a is turned on.
- the two first fine-tuning capacitors Ca are connected in parallel with each other.
- the charging process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both closed, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both opened, and The series switch S9 is closed, and the other series switches are opened, that is, the second fine-tuning charging branch P1b is turned on, and the first intermediate output voltage V 1 ′ connected to the second fine-tuning charge pump basic unit 10b is two in series
- the second fine-tuning capacitor Cb is charged, and the voltage across each second fine-tuning capacitor Cb is 1/2*V 1 ′, that is, 1/4*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the third time period T3, the first fine-tuning charge pump basic unit 10a enters the charging process, at the same time, the second fine-tuning charge pump basic unit 10b enters the discharging process, and the third fine-tuning charge pump basic unit 10c enters the charging process.
- the discharge process of the second fine-tuning charge pump basic unit 10b is: the second fine-tuning switch S1b of the basic part Cell3 and the basic part Cell4 are both opened, the second fine-tuning switch S2b of the basic part Cell3 and the basic part Cell4 are both closed, and The series switches S8 and S9 are closed, and the other series switches are disconnected. That is to say, the second series branch P3b is grounded, and the second fine-tuning discharge branch P2b is turned on.
- the two second fine-tuning capacitors Cb are connected in parallel.
- the charging process of the third fine-tuning charge pump basic unit 10c is: the third fine-tuning switch S1c of the basic part Cell5 and the basic part Cell6 are both closed, the third fine-tuning switch S2c of the basic part Cell5 and the basic part Cell6 are both opened, and The series switch S13 is closed, and the other series switches are opened, that is, the third fine-tuning charging branch P1c is turned on, and the second intermediate output voltage V 2 ′ connected to the third fine-tuning charge pump basic unit 10c is two in series
- the third fine-tuning capacitor Cc is charged, and the voltage across each third fine-tuning capacitor Cc is 1/2*V 2 ', which is 1/8*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the fourth time period T4, the first fine-tuning charge pump basic unit 10a enters the discharging process, at the same time, the second fine-tuning charge pump basic unit 10b enters the charging process, and the third fine-tuning charge pump basic unit 10c enters the discharging process.
- the fourth fine-tuned charge basic unit 10d enters the charging process.
- the discharge process of the third fine-tuning charge pump basic unit 10c is: the third fine-tuning switch S1c of the basic part Cell5 and the basic part Cell6 are both opened, the third fine-tuning switch S2c of the basic part Cell5 and the basic part Cell6 are both closed, and The series switches S12 and S13 are closed, and the other series switches are disconnected. That is to say, the third series branch P3c is grounded, and the third fine-tuning discharge branch P2c is turned on.
- the two third fine-tuning capacitors Cc are connected in parallel with each other.
- the charging process of the fourth fine-tuning charge pump basic unit 10d is: the fourth fine-tuning switch S1d of the basic component Cell7 and the basic component Cell8 are both closed, the fourth fine-tuning switch S2d of the basic component Cell7 and the basic component Cell8 are both open, and The series switch S15 is off, that is to say, the fourth fine-tuning charging branch P1d is turned on, and the third intermediate output voltage V 3 ′ of the fourth fine-tuning charge pump basic unit 10d is connected to two fourth fine-tuning in series.
- the capacitor Cd is charged, and the voltage across each fourth fine-tuning capacitor Cd is 1/2*V 3 ′, that is, 1/16*V 0 .
- the first fine-tuning charge pump basic unit 10a When in the fifth time period T5, the first fine-tuning charge pump basic unit 10a enters the charging process, at the same time, the second fine-tuning charge pump basic unit 10b enters the discharging process, and the third fine-tuning charge pump basic unit 10c enters the charging process.
- the fourth fine-tuned charge pump basic unit 10d enters the discharge process.
- the discharge process of the fourth fine-tuning charge pump basic unit 10d is: the fourth fine-tuning switch S1d of the basic component Cell7 and the basic component Cell8 are both opened, and the fourth fine-tuning switch S2d of the basic component Cell7 and the basic component Cell8 are both closed, and The series switch S15 is closed, that is, the fourth series branch P3d is grounded, and the fourth fine-tuning discharge branch P2d is turned on.
- the first output voltage V 1 , the first output voltage V 1 can be 1/2*V 0 , 1/4*V 0 , 1/8*V 0 , 1/16*V 0 .
- the first output voltage V 1 can also be other values.
- the first output voltage V 1 15/16*V 0 is taken as an example for description.
- FIG. 10 The difference between FIG. 10 and FIG. 9 lies in the fifth time period T5.
- the description of the first time period T1, the second time period T2, the third time period T3, and the fourth time period T4 can refer to the description of FIG. 9, here No longer.
- the first fine-tuned charge pump basic unit 10a, the second fine-tuned charge pump basic unit 10b, the third fine-tuned charge pump basic unit 10c, and the fourth fine-tuned charge pump basic unit are all in the discharge process.
- the first series branch P3a includes a ground terminal GND, a second intermediate output voltage input terminal V 2 ′, a third intermediate output voltage input terminal V 3 ′, a fourth intermediate output voltage input terminal V 4 ′, and a second series branch
- the path P3b includes a ground terminal GND, a third intermediate output voltage input terminal V 3 ′, and a fourth intermediate output voltage input terminal V 4 ′.
- the third series branch P3c includes a ground terminal GND and a fourth intermediate output voltage input terminal V 4 ′.
- the fourth series branch P3d includes a ground terminal GND (in conjunction with FIG. 5).
- the output terminal of the fourth fine-tuning charge pump basic unit 10d is connected to the fourth intermediate output voltage input terminal V 4 ′ of the third fine-tuning charge pump basic unit 10c, and the third fine-tuning charge pump basic unit 10c
- the output terminal of the unit 10c is connected to the third intermediate output voltage input terminal V 3 ′ of the second fine-tuning charge pump basic unit 10b, and the output terminal of the second fine-tuning charge pump basic unit 10b is connected to the first fine-tuning charge pump basic unit 10a.
- the second intermediate output voltage input terminal V 2 ′ is connected to the first fine-tuning charge pump basic unit 10a.
- the output terminal of the specific fine-tuned charge pump basic unit selects the output terminal of the specific fine-tuned charge pump basic unit to connect to the input terminal of the series branch of the specific fine-tuned charge pump basic unit, and the output can be different.
- the first output voltage V 1 selects the output terminal of the specific fine-tuned charge pump basic unit to connect to the input terminal of the series branch of the specific fine-tuned charge pump basic unit, and the output can be different.
- the first output voltage V 1 For the description of other values of the first output voltage V 1 , please refer to the description of Fig. 10, select the output terminal of the specific fine-tuned charge pump basic unit to connect to the input terminal of the series branch of the specific fine-tuned charge pump basic unit, and the output can be different.
- the first output voltage V 1 selects the output terminal of the specific fine-tuned charge pump basic unit to connect to the input terminal of the series branch of the specific fine-tuned charge pump basic unit, and the output can be different.
- the output terminal of the fourth fine-tuning charge pump basic unit 10d is connected to the fourth intermediate output voltage input terminal V 4 ′ of the second fine-tuning charge pump basic unit 10b, and the output terminal of the second fine-tuning charge pump basic unit 10b is connected
- the first output voltage V 1 when the output terminal of the first fine-tuning charge pump basic unit 10a is used as the final output terminal, the first output voltage V 1 can be 1/2*V 0 , 9/16*V 0 , 10/16* V 0 , 11/16*V 0 , 12/16*V 0 , 13/16*V 0 , 14/16*V 0 , 15/16*V 0 , when the output of the second fine-tuning charge pump basic unit 10b
- the first output voltage V 1 when the terminal is used as the final output terminal, can be 1/4*V 0 , 5/16*V 0 , 6/16*V 0 , 7/16*V 0 , when the third fine adjustment charge
- the first output voltage V 1 when the output terminal of the pump basic unit 10c is used as the final output terminal, the first output voltage V 1 can be 1/8*V 0 , 3/16*V 0 , when the output terminal of the fourth fine-tuned charge pump basic unit 10d is used as At the final output
- the input voltage V 0 can also be directly used as the first output voltage V 1
- the fine-tuning charge pump 10 also includes a control switch (S16 to S20) for controlling the output of the first output voltage V 1
- the control switch S16 is used to control The output terminal of the first fine-tuning charge pump basic unit 10a
- the control switch S17 is used to control the output terminal of the second fine-tuning charge pump basic unit 10b
- the control switch S18 is used to control the output terminal of the third fine-tuning charge pump basic unit 10c control switch S19 for controlling the fine adjustment of the charge pump output of the fourth base unit 10d
- the control switch S20 for outputting a control input of the voltage V 0.
- the value range of the first output voltage V 1 is 1/16*V 0 to V 0
- the step size of the first output voltage V 1 is 1/16*V 0 .
- FIG. 11 is a circuit diagram of a voltage doubler charge pump 20 according to an embodiment of the present invention.
- the voltage doubling charge pump 20 includes several voltage doubling charging branches, several voltage doubling discharge branches, several voltage doubling capacitors (C1, C2, C3) located in several voltage doubling charging branches and several voltage doubling discharge branches, and several voltage doubling capacitors (C1, C2, C3).
- Switches (S22 ⁇ S32) where several voltage double charging branches are used to charge several voltage capacitors, several voltage double discharge branches are used to output the second output voltage, several voltage charging branches and several voltage discharge branches are used to output the second output voltage. Route several voltage doubling switch control to output a different second output voltage V 2 .
- the voltage doubler charge pump 20 including three voltage doubler charging branches, three voltage doubler discharge branches, and three voltage doubler capacitors as an example.
- the voltage doubler charge pump 20 The number and connection relationship of the charging branch, the discharging branch and the voltage doubling capacitor can be determined according to the actual situation.
- Several voltage doubling charging branches include first doubling voltage charging branch, second doubling voltage charging branch, and third doubling voltage charging branch, and several doubling voltage discharging branches include first doubling voltage discharging branch and second doubling voltage
- the discharge branch, the third voltage doubling discharge branch, and several voltage doubling capacitors include a first voltage doubling capacitor C1, a second voltage doubling capacitor C2, and a third voltage doubling capacitor C3.
- the first voltage doubling charging branch is connected to the input voltage V 0 and the first voltage doubling capacitor C1
- the second voltage doubling charging branch is connected to the input voltage V 0 and the second voltage doubling capacitor C2
- the third voltage doubling charging branch is connected Input voltage V 0 and the third voltage doubling capacitor C3
- the first voltage doubling discharge branch is connected to the first voltage doubling capacitor C1
- the second voltage doubling discharge branch is connected in series with the first voltage doubling capacitor C1 and the second voltage doubling capacitor C2.
- the triple voltage discharge branch is connected in series with the first voltage doubling capacitor C1, the second voltage doubling capacitor C2 and the third voltage doubling capacitor C3, when the first voltage doubling charging branch is turned on and then the first voltage doubling discharging branch is turned on ,
- the second output voltage V 2 V 0
- the first voltage doubling charging branch and the second voltage doubling charging branch are turned on, and then the second voltage doubling discharging branch is turned on
- the second output voltage V 2 2 *V 0
- the first voltage doubler charging branch When in the first time period T1, the first voltage doubler charging branch enters the charging process.
- the charging process of the first voltage doubling charging branch is: the voltage doubling switches S22 and S23 in the first voltage doubling charging branch are both closed, and the other voltage doubling switches and the intermediate switch S21 are opened, that is, the first voltage doubling charging
- the branch is turned on, the input voltage V 0 charges the first capacitor C1, and the voltage across the first capacitor C1 is V 0 .
- the first voltage-doubling discharge branch When in the second time period T2, the first voltage-doubling discharge branch enters the discharge process.
- the discharge process of the first voltage doubling discharge branch is: the voltage doubling switch S25 and the middle switch S21 located in the first voltage doubling discharge branch are closed, and the other voltage doubling switches are opened, that is, the first voltage doubling discharge branch conducts
- each switch is referred to as a voltage doubler switch, and the intermediate switch S21 is also described here.
- the intermediate switch S21 is also described here.
- the first voltage doubling charging branch, the second voltage doubling charging branch, and the second voltage doubling discharging branch work.
- the first voltage doubler charging branch and the second voltage doubler charging branch enter the charging process.
- the charging process of the first voltage doubling charging branch and the second voltage doubling charging branch is as follows: the voltage doubling switches S22 and S23 located in the first voltage doubling charging branch are closed, and the voltage doubling switches located in the second voltage doubling charging branch are closed. S26 and S27 are both closed, the other voltage doubler switches and the intermediate switch S21 are opened, that is, the first voltage doubler charging branch and the second voltage doubler charging branch are turned on, and the input voltage V 0 is the first capacitor C1 and The second capacitor C2 is charged, and the voltages across the first capacitor C1 and the second capacitor C2 are both V 0 .
- the second voltage doubling discharge branch When in the second time period T2, the second voltage doubling discharge branch enters the discharge process.
- the discharge process of the second voltage doubling discharge branch is: the voltage doubling switches S24 and S28 and the middle switch S21 located in the second voltage doubling discharge branch are closed, and the other voltage doubling switches are opened, that is, the second voltage doubling discharge branch
- the first voltage doubler charging branch, the second voltage doubler charging branch, and the third voltage doubler charging branch enter the charging process.
- the charging process of the first voltage doubling charging branch, the second voltage charging branch, and the third voltage charging branch is: the voltage doubling switches S22 and S23 located in the first voltage doubling charging branch are all closed, and the voltage doubling switches S22 and S23 in the first voltage doubling charging branch are all closed.
- the voltage doubling switches S26 and S27 of the voltage charging branch are both closed, the voltage doubling switches S30 and S31 located in the third voltage doubling charging branch are both closed, and the other voltage doubling switches and the intermediate switch S21 are open, that is, the first time
- the voltage charging branch, the second voltage doubling charging branch, and the third voltage doubling charging branch are turned on, and the input voltage V 0 charges the first capacitor C1, the second capacitor C2, and the third capacitor C3, respectively.
- the first capacitor C1, The voltages across the second capacitor C2 and the third capacitor C3 are both V 0 .
- the third double-voltage discharge branch When in the second time period T2, the third double-voltage discharge branch enters the discharge process.
- the discharge process of the third voltage doubling discharge branch is: the voltage doubling switches S24, S29, S32 and the middle switch S21 located in the third voltage doubling discharge branch are closed, and the other voltage doubling switches are opened, that is, the third voltage doubling switch is opened.
- the value range of the second output voltage V 2 is V 0 ⁇ 3*V 0
- the step size of the second output voltage V 2 is V 0 .
- FIG. 15 is a circuit diagram of the entire voltage regulation module 100, including the fine-tuning charge pump 10 and the voltage doubler charge pump 20 that are connected.
- the fine adjustment charge pump 10 and the voltage doubler charge pump 20 are connected in series, and the total output voltage V of the voltage adjustment module 100 is the sum of the first output voltage V 1 and the second output voltage V 2 , and the first output voltage V 1 and the second output voltage V 2 are the sum of the first output voltage V 1 and the second output voltage V 2.
- the values of the output voltage V 1 and the second output voltage V 2 can be independently controlled.
- the first output voltage V 1 of different values can be connected in series to the second output voltage V 2 , voltage regulation module
- the value range of the total output voltage V of 100 is 1/16*V 0 ⁇ 4*V 0
- the step size of the total output voltage V is 1/16*V 0 .
- This embodiment adopts a combination of fine-tuning charge pump 10 and voltage-doubler charge pump 20 to generate a wide range of finely adjustable output voltages while ensuring high efficiency.
- the number of capacitors used in this embodiment is small, and the efficiency depends on the load and frequency matching conditions. Down can reach more than 90%.
- the period of time required to define the second output voltage V 2 of the voltage doubler charge pump 20 as 3*V 0 is t
- the first output voltage V 1 with the output value of the charge pump 10 of 15/16*V 0 requires a period of 2.5t. Therefore, in order to fine-tune the period of the charge pump 10 and the voltage doubler charge pump 20 to match each other, it is necessary to The cycle length of the voltage doubler charge pump 20 is extended to 2.5t. Therefore, the duty cycle of the high level in the voltage doubler charge pump 20 is not equal to 50%.
- the specific duty cycle of the high and low levels can be determined according to actual conditions.
- closed-loop control can be used to automatically adjust the switching frequency (including fine-tuning switches, voltage doublers, series switches, etc.).
- the voltage regulation module 100 further includes a comparator 30.
- the two input terminals of the comparator 30 are respectively connected to a preset voltage V n and a total output voltage V.
- the total output voltage V is controlled by a number of switches. When the total output voltage V is not greater than the preset voltage V
- the comparator 30 outputs a control signal to increase the operating frequency of several switches. In this way, the output efficiency of the voltage regulation module 100 can be greatly improved.
- the present invention uses the combination of fine-tuning charge pump 10 and voltage-doubler charge pump 20 to output a total output voltage V that can be finely adjusted in a wide range, so that the actual total output voltage V is as close as possible to the required stimulation amplitude, thereby greatly saving ⁇ Power consumption.
- the number of capacitors used in this embodiment is small, and the efficiency can reach more than 90% under the condition of load and frequency matching, while ensuring high efficiency.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Power Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种电压调节模块(100)及植入式神经刺激系统,电压调节模块(100)包括相连的细调电荷泵(10)及倍压电荷泵(20),细调电荷泵(10)的第一输出电压V1=m*V0,倍压电荷泵(20)的第二输出电压V2=n*V0,电压调节模块(100)的总输出电压V=V1+V2,其中,V0为输入电压,m的取值范围为0~1,n为大于等于1的整数。该系统采用细调电荷泵(10)和倍压电荷泵(20)结合方式输出可大范围精细调节的总输出电压V,使得实际的总输出电压V尽量接近所需的刺激幅值,进而大大节省了功耗。
Description
本发明涉及植入式医疗领域,尤其涉及一种电压调节模块及植入式神经刺激系统。
植入式医疗系统近年来在医学临床上得到越来越广泛的应用,通常包括植入式神经刺激系统(包括脑深部刺激系统DBS,植入式脑皮层刺激系统CNS,植入式脊髓电刺系统激SCS,植入式骶神经刺激系统SNS,植入式迷走神经刺激系统VNS等)、植入式心脏刺激系统(俗称心脏起搏器)、植入式药物输注系统(IDDS)等。
在植入式医疗系统中,神经剌激系统通过对靶点神经进行慢性电剌激,可以有效控制功能性神经疾病和精神疾病的症状。
靶点神经信号的频率和幅值可以反映神经疾病的情况,通过读取靶点神经信号可以判断病情和采取优化治疗方式,也可以客观判断神经剌激系统的治疗效果。
实际操作中,不同个体所需的刺激幅值相差较大,范围可能从0.1V到14V,由于是电池供电,只能提供3.6V的电源电压,而实际输出的刺激幅值为电源电压的整数倍,实际输出的刺激幅值一般与所需的刺激幅值之间具有差异,现有技术中的刺激幅值无法实现精细调节,进而造成功耗的浪费。
发明内容
本发明的目的在于提供一种电压调节模块及植入式神经刺激系统。
为实现上述发明目的之一,本发明一实施方式提供一种电压调节模块,包括相连的细调电荷泵及倍压电荷泵,所述细调电荷泵的第一输出电压V
1=m*V
0,所述倍压电荷泵的第二输出电压V
2=n*V
0,所述电压调节模块的总输出电压V=V
1+V
2,其中,V
0为输入电压,m的取值范围为0~1,n为大于等于1的整数。
作为本发明一实施方式的进一步改进,所述细调电荷泵的输入端连接所述输入电压,所述倍压电荷泵的输入端连接所述输入电压,且所述细调电荷泵与所述倍压电荷泵之间通过中间开关连接。
作为本发明一实施方式的进一步改进,所述细调电荷泵包括若干细调电荷泵基本单元,每一细调电荷泵基本单元包括细调充电支路、细调放电支路、位于细调充电支路及细调放电支路的若干细调电容、若干细调开关,其中,所述细调充电支路用于为若干细调电容充电, 所述细调放电支路用于输出中间输出电压,所述中间输出电压作为第一输出电压或输出至邻接的另一细调电荷泵基本单元,所述细调充电支路及所述细调放电支路由所述若干细调开关控制以输出不同的中间输出电压。
作为本发明一实施方式的进一步改进,每一细调电荷泵基本单元还包括与所述细调放电支路串联的串联支路,所述串联支路包括至少一串联输入端及控制所述串联输入端开闭的串联开关,所述串联输入端用于接地或连接其他细调电荷泵基本单元的中间输出电压而输出串联电压,当所述细调放电支路及所述串联支路导通时,所述第一输出电压为细调放电支路的中间输出电压和串联电压的和。
作为本发明一实施方式的进一步改进,每一细调电荷泵基本单元包括两个细调电容,当所述细调充电支路导通时,输入电压或中间输出电压为串联的两个细调电容充电,而后当所述细调放电支路及所述串联支路导通时,两个细调电容并联,所述第一输出电压为每一细调电容两端的电压及串联电压的和。
作为本发明一实施方式的进一步改进,所述细调电荷泵包括依次连接的第一细调电荷泵基本单元、第二细调电荷泵基本单元、第三细调电荷泵基本单元及第四细调电荷泵基本单元,其中,所述第一细调电荷泵基本单元包括第一串联支路、第一细调充电支路、第一细调放电支路及位于第一细调充电支路及第一细调放电支路的两个第一细调电容、若干第一细调开关,所述第一细调充电支路连接输入电压,所述第一细调放电支路输出第一中间输出电压,所述第二细调电荷泵基本单元包括第二串联支路、第二细调充电支路、第二细调放电支路及位于第二细调充电支路及第二细调放电支路的两个第二细调电容、若干第二细调开关,所述第二细调充电支路连接所述第一中间输出电压,所述第二细调放电支路输出第二中间输出电压,所述第三细调电荷泵基本单元包括第三串联支路、第三细调充电支路、第三细调放电支路及位于第三细调充电支路及第三细调放电支路的两个第三细调电容、若干第三细调开关,所述第三细调充电支路连接所述第二中间输出电压,所述第三细调放电支路输出第三中间输出电压,所述第四细调电荷泵基本单元包括第四串联支路、第四细调充电支路、第四细调放电支路及位于第四细调充电支路及第四细调放电支路的两个第四细调电容、若干第四细调开关,所述第四细调充电支路连接所述第三中间输出电压,所述第四细调放电支路输出第四中间输出电压,所述第一串联支路接地或连接所述第二中间输出电压、所述第三中间输出电压及所述第四中间输出电压的其中之一,所述第二串联支路接地或连接所述第三中间输出电压及所述第四中间输出电压的其中之一,所述第三串联支路接地或连接所述第四中间输出电压,所述第四串联支路接地。
作为本发明一实施方式的进一步改进,所述倍压电荷泵包括若干倍压充电支路、若干倍压放电支路、位于若干倍压充电支路及若干倍压放电支路的若干倍压电容、若干倍压开关,其中,所述若干倍压充电支路用于为若干倍压电容充电,所述若干倍压放电支路用于输出第二输出电压,所述若干倍压充电支路及所述若干倍压放电支路由所述若干倍压开关控制以输出不同的第二输出电压。
作为本发明一实施方式的进一步改进,所述若干倍压充电支路包括第一倍压充电支路、第二倍压充电支路、第三倍压充电支路,所述若干倍压放电支路包括第一倍压放电支路、第二倍压放电支路、第三倍压放电支路,所述若干倍压电容包括第一倍压电容、第二倍压电容、第三倍压电容,其中,所述第一倍压充电支路连接所述输入电压及所述第一倍压电容,所述第二倍压充电支路连接所述输入电压及所述第二倍压电容,所述第三倍压充电支路连接所述输入电压及所述第三倍压电容,所述第一倍压放电支路连接所述第一倍压电容,所述第二倍压放电支路串联所述第一倍压电容及所述第二倍压电容,所述第三倍压放电支路串联所述第一倍压电容、所述第二倍压电容及所述第三倍压电容,当所述第一倍压充电支路导通且而后所述第一倍压放电支路导通时,所述第二输出电压V
2=V
0,当所述第一倍压充电支路、第二倍压充电支路导通且而后所述第二倍压放电支路导通时,所述第二输出电压V
2=2*V
0,当所述第一倍压充电支路、第二倍压充电支路、第三倍压充电支路导通且而后所述第三倍压放电支路导通时,所述第二输出电压V
2=3*V
0。
作为本发明一实施方式的进一步改进,所述电压调节模块还包括比较器,所述比较器的两个输入端分别连接预设电压及总输出电压,所述总输出电压由若干开关控制,当所述总输出电压不大于所述预设电压时,所述比较器输出控制信号以提高若干开关的工作频率。
为实现上述发明目的之一,本发明一实施方式提供一种植入式神经刺激系统,包括终端设备及刺激电极,所述终端设备包括如上任意一项技术方案所述的电压调节模块,所述电压调节模块用于输出总输出电压以控制所述刺激电极的电刺激幅值。
与现有技术相比,本发明的有益效果在于:本发明一实施方式采用细调电荷泵和倍压电荷泵结合方式输出可大范围精细调节的总输出电压,使得实际的总输出电压尽量接近所需的刺激幅值,进而大大节省了功耗。
图1是本发明一实施方式的植入式神经刺激系统示意图;
图2是本发明一实施方式的电压调节模块及刺激电极的示意图;
图3是本发明一实施方式的电压调节模块结构框图;
图4是本发明一实施方式的细调电荷泵中基本部件电路图;
图5是本发明一实施方式的细调电荷泵电路图;
图6是本发明一实施方式的第一输出电压V
1=1/2*V
0的开关时序图;
图7是本发明一实施方式的第一输出电压V
1=1/4*V
0的开关时序图;
图8是本发明一实施方式的第一输出电压V
1=1/8*V
0的开关时序图;
图9是本发明一实施方式的第一输出电压V
1=1/16*V
0的开关时序图;
图10是本发明一实施方式的第一输出电压V
1=15/16*V
0的开关时序图;
图11是本发明一实施方式的倍压电荷泵电路图;
图12是本发明一实施方式的第二输出电压V
2=V
0的开关时序图;
图13是本发明一实施方式的第二输出电压V
2=2*V
0的开关时序图;
图14是本发明一实施方式的第二输出电压V
2=3*V
0的开关时序图;
图15是本发明一实施方式的电压调节模块的电路图;
图16是本发明一实施方式的比较器示意图。
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
参图1,本发明一实施方式提供一种植入式神经刺激系统。
植入式神经刺激系统通常包括以下几个组件:若干个刺激电极200(这里以左脑电极及右脑电极为例)、电极导线300、延伸导线500、脉冲发生器400以及终端设备600。
以脑深部刺激系统DBS为例,脉冲发生器400通过延伸导线500、电极导线300和刺激电极200将电脉冲传导到脑部STN(Subthalamic Nucleus,底丘脑核)核团以达到治疗帕金森等疾病的目的。
终端设备600以程控仪为例,程控仪用来调节脉冲发生器400的各刺激参数,刺激参数包括脉冲幅值,脉冲宽度(即脉宽)和脉冲频率等,可以理解的,终端设备600也可以其他设备,例如显示设备等,可以根据实际情况而定。
结合图2,植入式神经刺激系统还包括电压调节模块100。
电压调节模块100可设置于终端设备600中,但不以此为限。
电压调节模块100用于输出总输出电压V以控制刺激电极200的电刺激幅值。
在本实施方式中,电压调节模块100包括相连的细调电荷泵10及倍压电荷泵20。
细调电荷泵10的第一输出电压V
1=m*V
0,倍压电荷泵20的第二输出电压V
2=n*V
0,电压调节模块100的总输出电压V=V
1+V
2,其中,V
0为输入电压,m的取值范围为0~1,n为大于等于1的整数。
需要说明的是,输入电压V
0即为电池提供的电源电压,但不以此为限。
本实施方式采用细调电荷泵10和倍压电荷泵20结合方式输出可大范围精细调节的总输出电压V,使得实际的总输出电压V尽量接近所需的刺激幅值,进而大大节省了功耗。
在本实施方式中,结合图3,细调电荷泵10的输入端连接输入电压V
0,倍压电荷泵20的输入端连接输入电压V
0,且细调电荷泵10与倍压电荷泵20之间通过中间开关S21连接。
可以看到,输入电压V
0分别为细调电荷泵10及倍压电荷泵20提供输入,当中间开关S21闭合导通时,细调电荷泵10与倍压电荷泵20相互串联,电压调节模块100的总输出电压V为第一输出电压V
1和第二输出电压V
2的和,理论上,总输出电压V也可单独等于第一输出电压V
1或单独等于第二输出电压V
2,本实施方式以总输出电压V的输出端位于倍压电荷泵20且总输出电压V为第一输出电压V
1和第二输出电压V
2的和值为例。
下面,详细介绍细调电荷泵10及倍压电荷泵20的具体电路图。
结合图4及图5,细调电荷泵10包括若干细调电荷泵基本单元(10a、10b、10c、10d)。
每一细调电荷泵基本单元包括细调充电支路(P1a、P1b、P1c、P1d)、细调放电支路(P2a、P2b、P2c、P2d)、位于细调充电支路及细调放电支路的若干细调电容(Ca、Cb、Cc、Cd)、若干细调开关(S1a、S2a、S1b、S2b、S1c、S2c、S1d、S2d),其中,细调充电支路用于为若干细调电容充电,细调放电支路用于输出中间输出电压V’,中间输出电压V’作为第一输出电压V或输出至邻接的另一细调电荷泵基本单元,细调充电支路及细调放电支路由若干细调开关控制以输出不同的中间输出电压V’。
也就是说,当前细调电荷泵基本单元输出的中间输出电压V’可以直接作为第一输出电压V输出,也可以作为邻接的另一细调电荷泵基本单元的输入电压,如此,通过多个细调电荷泵基本单元,可以根据需求输出不同大小的第一输出电压V
1,且第一输出电压V
1=m*V
0,m的取值范围为0~1。
这里,以每一细调电荷泵基本单元包括两个基本部件(Cell1~Cell8)为例,参图4,每一基本部件包括两个开关及一个电容。
每一细调电荷泵基本单元还包括与细调放电支路串联的串联支路(P3a、P3b、P3c、P3d,串联支路电压记为V
3,未标注于图中),串联支路包括至少一串联输入端及控制串联输入端开闭的串联开关(S3~S15),串联输入端用于接地或连接其他细调电荷泵基本单元的中间输出电压而输出串联电压V
3,当细调放电支路及串联支路导通时,第一输出电压V
1为细调放电支路的中间输出电压V’和串联电压V
3的和。
每一细调电荷泵基本单元包括两个细调电容,当细调充电支路导通时,输入电压V
0或中间输出电压V’为串联的两个细调电容充电,而后当细调放电支路及串联支路导通时,两个细调电容并联,第一输出电压V
1为每一细调电容两端的电压及串联电压V
3的和。
在一具体示例中,结合图5,以细调电荷泵10包括四个细调电荷泵基本单元为例,且每一细调电荷泵基本单元包括两个基本部件,当然,在其他示例中,细调电荷泵基本单元及基本部件的数量及连接关系可以根据实际情况而定。
细调电荷泵10包括依次连接的第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基本单元10d。
第一细调电荷泵基本单元10a包括第一串联支路P3a、第一细调充电支路P1a、第一细调放电支路P2a及位于第一细调充电支路P1a及第一细调放电支路P2a的两个第一细调电容Ca、若干第一细调开关(S1a、S2a),第一细调充电支路P1a连接输入电压V
0,第一细调放电支路P2a输出第一中间输出电压V
1’。
第二细调电荷泵基本单元10b包括第二串联支路P3b、第二细调充电支路P1b、第二细调放电支路P2b及位于第二细调充电支路P1b及第二细调放电支路P2b的两个第二细调电容Cb、若干第二细调开关(S1b、S2b),第二细调充电支路P1b连接第一中间输出电压V
1’,第二细调放电支路P2b输出第二中间输出电压V
2’。
第三细调电荷泵基本单元10c包括第三串联支路P3c、第三细调充电支路P1c、第三细调放电支路P2c及位于第三细调充电支路P1c及第三细调放电支路P2c的两个第三细调电容Cc、若干第三细调开关(S1c、S2c),第三细调充电支路P1c连接第二中间输出电压V
2’,第三细调放电支路P2c输出第三中间输出电压V
3’。
第四细调电荷泵基本单元10d包括第四串联支路P3d、第四细调充电支路P1d、第四细调放电支路P2d及位于第四细调充电支路P1d及第四细调放电支路P2d的两个第四细调电容Cd、若干第四细调开关(S1d、S2d),第四细调充电支路P1d连接第三中间输出电压V
3’,第四细调放电支路P2d输出第四中间输出电压V
4’。
第一串联支路P3a接地或连接第二中间输出电压V
2’、第三中间输出电压V
3’及第四中间输出电压V
4’的其中之一,第二串联支路P3b接地或连接第三中间输出电压V
3’及第四中间输出电压V
4’的其中之一,第三串联支路P3c接地或连接第四中间输出电压V
4’,第四串联支路P3d接地。
这里,通过控制若干细调开关(S1a、S2a、S1b、S2b、S1c、S2c、S1d、S2d)及若干串联开关(S3~S15)的开闭可以实现细调电荷泵10输出不同的第一输出电压V
1。
下面,介绍细调电荷泵10输出几种第一输出电压V
1时的具体开关时序。
结合图6,为第一输出电压V
1=1/2*V
0的开关时序图,此时,第一细调电荷泵基本单元10a工作。
当处于第一时间段T1时,第一细调电荷泵基本单元10a进入充电过程。
第一细调电荷泵基本单元10a的充电过程为:位于第一细调充电支路P1a的基本部件Cell1及基本部件Cell2的第一细调开关S1a均闭合(即处于高电平状态),位于第一细调放电支路P2a的基本部件Cell1及基本部件Cell2的第一细调开关S2a均断开(即处于低电平状态),且串联开关S4闭合,其他串联开关断开,也就是说,第一细调充电支路P1a导通,输入电压V
0为两个串联的第一细调电容Ca充电,每一第一细调电容Ca两端的电压为1/2*V
0。
当处于第二时间段T2时,第一细调电荷泵基本单元10a进入放电过程。
第一细调电荷泵基本单元10a的放电过程为:位于第一细调充电支路P1a的基本部件Cell1及基本部件Cell2的第一细调开关S1a均断开,位于第一细调放电支路P2a的基本部件Cell1及基本部件Cell2的第一细调开关S2a均闭合,且串联开关S3、S4闭合,其他串联开关断开,也就是说,第一串联支路P3a接地,且第一细调放电支路P2a导通,两个第一细调电容Ca相互并联,第一中间输出电压V
1’即为任一第一细调电容Ca两端的电压,亦即,V
1’=1/2*V
0,且此时的第一中间输出电压V
1’即为整个细调电荷泵10的第一输出电压V
1,即V
1=1/2*V
0。
这里,为了便于说明,开关S1a、开关S2a均被称作第一细调开关,开关S3、S4均被称作串联开关,下面的说明参考此处说明,后续不再赘述。
结合图7,为第一输出电压V
1=1/4*V
0的开关时序图,此时,第一细调电荷泵基本单元10a及第二细调电荷泵基本单元10b均工作。
当处于第一时间段T1时,第一细调电荷泵基本单元10a进入充电过程。
第一细调电荷泵基本单元10a的充电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均闭合,基本部件Cell1及基本部件Cell2的第一细调开关S2a均断开,且串联开关S4闭合,其他串联开关断开,也就是说,第一细调充电支路P1a导通,输入电压V
0为两个串联的第一细调电容Ca充电,每一第一细调电容Ca两端的电压为1/2*V
0。
当处于第二时间段T2时,第一细调电荷泵基本单元10a进入放电过程,同时,第二细调电荷泵基本单元10b进入充电过程。
第一细调电荷泵基本单元10a的放电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均断开,基本部件Cell1及基本部件Cell2的第一细调开关S2a均闭合,且串联开关S3、S4闭合,其他串联开关断开,也就是说,第一串联支路P3a接地,且第一细调放电支路P1a导通,两个第一细调电容Ca相互并联,第一中间输出电压V
1’即为任一第一细调电容Ca两端的电压,亦即,V
1’=1/2*V
0,第一中间输出电压V
1’传输至第二细调电荷泵基本单元10b。
第二细调电荷泵基本单元10b的充电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均闭合,基本部件Cell3及基本部件Cell4的第二细调开关S2b均断开,且串联开关S9闭合,其他串联开关断开,也就是说,第二细调充电支路P1b导通,接入第二细调电荷泵基本单元10b的第一中间输出电压V
1’为两个串联的第二细调电容Cb充电,每一第二细调电容Cb两端的电压为1/2*V
1’,即为1/4*V
0。
当处于第三时间段T3时,第一细调电荷泵基本单元10a进入充电过程,同时,第二细调电荷泵基本单元10b进入放电过程。
这里,第一细调电荷泵基本单元10a的充电过程不再赘述。
第二细调电荷泵基本单元10b的放电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均断开,基本部件Cell3及基本部件Cell4的第二细调开关S2b均闭合,且串联开关S8、S9闭合,其他串联开关断开,也就是说,第二串联支路P3b接地,且第二细调放电支路P2b导通,两个第二细调电容Cb相互并联,第二中间输出电压V
2’即为任一第二细调电容Cb两端的电压,亦即,V
2’=1/4*V
0,且此时的第二中间输出电压V
2’即为整个细调电荷泵10的第一输出电压V
1,即V
1=1/4*V
0。
结合图8,为第一输出电压V
1=1/8*V
0的开关时序图,此时,第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b及第三细调电荷泵基本单元10c均工作。
当处于第一时间段T1时,第一细调电荷泵基本单元10a进入充电过程。
第一细调电荷泵基本单元10a的充电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均闭合,基本部件Cell1及基本部件Cell2的第一细调开关S2a均断开,且串联开关S4闭合,其他串联开关断开,也就是说,第一细调充电支路P1a导通,输入电压V
0为两个串联的第一细调电容Ca充电,每一第一细调电容Ca两端的电压为1/2*V
0。
当处于第二时间段T2时,第一细调电荷泵基本单元10a进入放电过程,同时,第二细 调电荷泵基本单元10b进入充电过程。
第一细调电荷泵基本单元10a的放电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均断开,基本部件Cell1及基本部件Cell2的第一细调开关S2a均闭合,且串联开关S3、S4闭合,其他串联开关断开,也就是说,第一串联支路P3a接地,且第一细调放电支路P1a导通,两个第一细调电容Ca相互并联,第一中间输出电压V
1’即为任一第一细调电容Ca两端的电压,亦即,V
1’=1/2*V
0,第一中间输出电压V
1’传输至第二细调电荷泵基本单元10b。
第二细调电荷泵基本单元10b的充电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均闭合,基本部件Cell3及基本部件Cell4的第二细调开关S2b均断开,且串联开关S9闭合,其他串联开关断开,也就是说,第二细调充电支路P1b导通,接入第二细调电荷泵基本单元10b的第一中间输出电压V
1’为两个串联的第二细调电容Cb充电,每一第二细调电容Cb两端的电压为1/2*V
1’,即为1/4*V
0。
当处于第三时间段T3时,第一细调电荷泵基本单元10a进入充电过程,同时,第二细调电荷泵基本单元10b进入放电过程,第三细调电荷泵基本单元10c进入充电过程。
这里,第一细调电荷泵基本单元10a的充电过程不再赘述。
第二细调电荷泵基本单元10b的放电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均断开,基本部件Cell3及基本部件Cell4的第二细调开关S2b均闭合,且串联开关S8、S9闭合,其他串联开关断开,也就是说,第二串联支路P3b接地,且第二细调放电支路P2b导通,两个第二细调电容Cb相互并联,第二中间输出电压V
2’即为任一第二细调电容Cb两端的电压,亦即,V
2’=1/4*V
0,第二中间输出电压V
2’传输至第三细调电荷泵基本单元10c。
第三细调电荷泵基本单元10c的充电过程为:基本部件Cell5及基本部件Cell6的第三细调开关S1c均闭合,基本部件Cell5及基本部件Cell6的第三细调开关S2c均断开,且串联开关S13闭合,其他串联开关断开,也就是说,第三细调充电支路P1c导通,接入第三细调电荷泵基本单元10c的第二中间输出电压V
2’为两个串联的第三细调电容Cc充电,每一第三细调电容Cc两端的电压为1/2*V
2’,即为1/8*V
0。
当处于第四时间段T4时,第一细调电荷泵基本单元10a进入放电过程,同时,第二细调电荷泵基本单元10b进入充电过程,第三细调电荷泵基本单元10c进入放电过程。
这里,第一细调电荷泵基本单元10a的放电过程、第二细调电荷泵基本单元10b的充电过程不再赘述。
第三细调电荷泵基本单元10c的放电过程为:基本部件Cell5及基本部件Cell6的第三细调开关S1c均断开,基本部件Cell5及基本部件Cell6的第三细调开关S2c均闭合,且串联开关S12、S13闭合,其他串联开关断开,也就是说,第三串联支路P3c接地,且第三细调放电支路P2c导通,两个第三细调电容Cc相互并联,第三中间输出电压V
3’即为任一第三细调电容Cc两端的电压,亦即,V
3’=1/8*V
0,且此时的第三中间输出电压V
3’即为整个细调电 荷泵10的第一输出电压V
1,即V
1=1/8*V
0。
结合图9,为第一输出电压V
1=1/16*V
0的开关时序图,此时,第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基本单元10d均工作。
当处于第一时间段T1时,第一细调电荷泵基本单元10a进入充电过程。
第一细调电荷泵基本单元10a的充电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均闭合,基本部件Cell1及基本部件Cell2的第一细调开关S2a均断开,且串联开关S4闭合,其他串联开关断开,也就是说,第一细调充电支路P1a导通,输入电压V
0为两个串联的第一细调电容Ca充电,每一第一细调电容Ca两端的电压为1/2*V
0。
当处于第二时间段T2时,第一细调电荷泵基本单元10a进入放电过程,同时,第二细调电荷泵基本单元10b进入充电过程。
第一细调电荷泵基本单元10a的放电过程为:基本部件Cell1及基本部件Cell2的第一细调开关S1a均断开,基本部件Cell1及基本部件Cell2的第一细调开关S2a均闭合,且串联开关S3、S4闭合,其他串联开关断开,也就是说,第一串联支路P3a接地,且第一细调放电支路P1a导通,两个第一细调电容Ca相互并联,第一中间输出电压V
1’即为任一第一细调电容Ca两端的电压,亦即,V
1’=1/2*V
0,第一中间输出电压V
1’传输至第二细调电荷泵基本单元10b。
第二细调电荷泵基本单元10b的充电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均闭合,基本部件Cell3及基本部件Cell4的第二细调开关S2b均断开,且串联开关S9闭合,其他串联开关断开,也就是说,第二细调充电支路P1b导通,接入第二细调电荷泵基本单元10b的第一中间输出电压V
1’为两个串联的第二细调电容Cb充电,每一第二细调电容Cb两端的电压为1/2*V
1’,即为1/4*V
0。
当处于第三时间段T3时,第一细调电荷泵基本单元10a进入充电过程,同时,第二细调电荷泵基本单元10b进入放电过程,第三细调电荷泵基本单元10c进入充电过程。
这里,第一细调电荷泵基本单元10a的充电过程不再赘述。
第二细调电荷泵基本单元10b的放电过程为:基本部件Cell3及基本部件Cell4的第二细调开关S1b均断开,基本部件Cell3及基本部件Cell4的第二细调开关S2b均闭合,且串联开关S8、S9闭合,其他串联开关断开,也就是说,第二串联支路P3b接地,且第二细调放电支路P2b导通,两个第二细调电容Cb相互并联,第二中间输出电压V
2’即为任一第二细调电容Cb两端的电压,亦即,V
2’=1/4*V
0,第二中间输出电压V
2’传输至第三细调电荷泵基本单元10c。
第三细调电荷泵基本单元10c的充电过程为:基本部件Cell5及基本部件Cell6的第三细调开关S1c均闭合,基本部件Cell5及基本部件Cell6的第三细调开关S2c均断开,且串联开关S13闭合,其他串联开关断开,也就是说,第三细调充电支路P1c导通,接入第三细调电荷泵基本单元10c的第二中间输出电压V
2’为两个串联的第三细调电容Cc充电,每一第三 细调电容Cc两端的电压为1/2*V
2’,即为1/8*V
0。
当处于第四时间段T4时,第一细调电荷泵基本单元10a进入放电过程,同时,第二细调电荷泵基本单元10b进入充电过程,第三细调电荷泵基本单元10c进入放电过程,第四细调电荷基本单元10d进入充电过程。
这里,第一细调电荷泵基本单元10a的放电过程、第二细调电荷泵基本单元10b的充电过程不再赘述。
第三细调电荷泵基本单元10c的放电过程为:基本部件Cell5及基本部件Cell6的第三细调开关S1c均断开,基本部件Cell5及基本部件Cell6的第三细调开关S2c均闭合,且串联开关S12、S13闭合,其他串联开关断开,也就是说,第三串联支路P3c接地,且第三细调放电支路P2c导通,两个第三细调电容Cc相互并联,第三中间输出电压V
3’即为任一第三细调电容Cc两端的电压,亦即,V
3’=1/8*V
0,第三中间输出电压V
3’传输至第四细调电荷泵基本单元10d。
第四细调电荷泵基本单元10d的充电过程为:基本部件Cell7及基本部件Cell8的第四细调开关S1d均闭合,基本部件Cell7及基本部件Cell8的第四细调开关S2d均断开,且串联开关S15断开,也就是说,第四细调充电支路P1d导通,接入第四细调电荷泵基本单元10d的第三中间输出电压V
3’为两个串联的第四细调电容Cd充电,每一第四细调电容Cd两端的电压为1/2*V
3’,即为1/16*V
0。
当处于第五时间段T5时,第一细调电荷泵基本单元10a进入充电过程,同时,第二细调电荷泵基本单元10b进入放电过程,第三细调电荷泵基本单元10c进入充电过程,第四细调电荷泵基本单元10d进入放电过程。
这里,第一细调电荷泵基本单元10a的充电过程、第二细调电荷泵基本单元10b的放电过程及第三细调电荷泵基本单元10c进入充电过程不再赘述。
第四细调电荷泵基本单元10d的放电过程为:基本部件Cell7及基本部件Cell8的第四细调开关S1d均断开,基本部件Cell7及基本部件Cell8的第四细调开关S2d均闭合,且串联开关S15闭合,也就是说,第四串联支路P3d接地,且第四细调放电支路P2d导通,两个第四细调电容Cd相互并联,第四中间输出电压V
4’即为任一第四细调电容Cd两端的电压,亦即,V
4’=1/16*V
0,且此时的第四中间输出电压V
4’即为整个细调电荷泵10的第一输出电压V
1,即V
1=1/16*V
0。
可以看到,选择性控制第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基本单元10d工作可以实现不同的第一输出电压V
1,第一输出电压V
1可为1/2*V
0、1/4*V
0、1/8*V
0、1/16*V
0。
当然,第一输出电压V
1也可为其他数值,下面,以第一输出电压V
1=15/16*V
0为例作说明。
结合图10,为第一输出电压V
1=15/16*V
0的开关时序图,此时,第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基 本单元10d均工作。
图10与图9的区别在于第五时间段T5,这里,第一时间段T1、第二时间段T2、第三时间段T3、第四时间段T4的说明可以参考图9的说明,在此不再赘述。
结合图10,当处于第五时间段T5时,第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基本单元10d均处在放电过程。
这里,第一串联支路P3a包括接地端GND、第二中间输出电压输入端V
2’、第三中间输出电压输入端V
3’、第四中间输出电压输入端V
4’,第二串联支路P3b包括接地端GND、第三中间输出电压输入端V
3’、第四中间输出电压输入端V
4’,第三串联支路P3c包括接地端GND及第四中间输出电压输入端V
4’,第四串联支路P3d包括接地端GND(结合图5)。
当处于第五时间段T5时,第四细调电荷泵基本单元10d的输出端连接第三细调电荷泵基本单元10c的第四中间输出电压输入端V
4’,第三细调电荷泵基本单元10c的输出端连接第二细调电荷泵基本单元10b的第三中间输出电压输入端V
3’,第二细调电荷泵基本单元10b的输出端连接第一细调电荷泵基本单元10a的第二中间输出电压输入端V
2’。
此时,当第四细调电荷泵基本单元10d的输出端连接至第三细调电荷泵基本单元10c的第四中间输出电压输入端V
4’,且闭合串联开关S14、S12时,第三串联支路P3c与第三细调放电支路P2c之间相互串联,此时第三细调电荷泵基本单元10c实际输出的第三中间输出电压V
3’=1/8*V
0+1/16*V
0。
当第三细调电荷泵基本单元10c的输出端连接至第二细调电荷泵基本单元10b的第三中间输出电压输入端V
3’,且闭合串联开关S10、S8时,第二串联支路P3b与第二细调放电支路P2b之间相互串联,此时第二细调电荷泵基本单元10b实际输出的第二中间输出电压V
2’=1/4*V
0+1/8*V
0+1/16*V
0。
当第二细调电荷泵基本单元10b的输出端连接至第一细调电荷泵基本单元10a的第二中间输出电压输入端V
2’,且闭合串联开关S5、S3时,第一串联支路P3a与第一细调放电支路P2a之间相互串联,此时第一细调电荷泵基本单元10a实际输出的第一中间输出电压V
1’=1/2*V
0+1/4*V
0+1/8*V
0+1/16*V
0,且此时的第一中间输出电压V
1’即为整个细调电荷泵10的第一输出电压V
1,即V
1=1/2*V
0+1/4*V
0+1/8*V
0+1/16*V
0=15/16*V
0。
第一输出电压V
1为其他数值的说明可以参考图10的说明,选取特定的细调电荷泵基本单元的输出端连接至特定的细调电荷泵基本单元的串联支路输入端,可以输出不同的第一输出电压V
1。
例如,当处于第五时间段T5且第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b、第三细调电荷泵基本单元10c及第四细调电荷泵基本单元10d均工作时,第四细调电荷泵基本单元10d的输出端连接第二细调电荷泵基本单元10b的第四中间输出电压输入端V
4’,第二细调电荷泵基本单元10b的输出端连接第一细调电荷泵基本单元10a的第二中间输出电压输入端V
2’,第一细调电荷泵基本单元10a的输出端作为最终的输出端,第一输出电 压V
1=1/2*V
0+1/4*V
0+1/16*V
0=13/16*V
0。
又例如,当处于第四时间段T4且第一细调电荷泵基本单元10a、第二细调电荷泵基本单元10b及第三细调电荷泵基本单元10c均工作时,第三细调电荷泵基本单元10c的输出端连接第二细调电荷泵基本单元10b的第三中间输出电压输入端V
3’,第二细调电荷泵基本单元10b的输出端作为最终的输出端,第一输出电压V
1=1/4*V
0+1/8*V
0=6/16*V
0。
综合来说,当第一细调电荷泵基本单元10a的输出端作为最终的输出端时,第一输出电压V
1可为1/2*V
0、9/16*V
0、10/16*V
0、11/16*V
0、12/16*V
0、13/16*V
0、14/16*V
0、15/16*V
0,当第二细调电荷泵基本单元10b的输出端作为最终的输出端时,第一输出电压V
1可为1/4*V
0、5/16*V
0、6/16*V
0、7/16*V
0,当第三细调电荷泵基本单元10c的输出端作为最终的输出端时,第一输出电压V
1可为1/8*V
0、3/16*V
0,当第四细调电荷泵基本单元10d的输出端作为最终的输出端时,第一输出电压V
1可为1/16*V
0。
另外,输入电压V
0也可直接作为第一输出电压V
1,而且,细调电荷泵10还包括控制第一输出电压V
1的输出的控制开关(S16~S20),控制开关S16用于控制第一细调电荷泵基本单元10a的输出端,控制开关S17用于控制第二细调电荷泵基本单元10b的输出端,控制开关S18用于控制第三细调电荷泵基本单元10c的输出端,控制开关S19用于控制第四细调电荷泵基本单元10d的输出端,控制开关S20用于控制输入电压V
0的输出。
可以看到,通过选取特定的细调电荷泵基本单元的输出端连接至特定的细调电荷泵基本单元的串联支路输入端,第一输出电压V
1的取值范围为1/16*V
0~V
0,且第一输出电压V
1的步长为1/16*V
0。
结合图11,为本发明一实施方式的倍压电荷泵20电路图。
倍压电荷泵20包括若干倍压充电支路、若干倍压放电支路、位于若干倍压充电支路及若干倍压放电支路的若干倍压电容(C1、C2、C3)、若干倍压开关(S22~S32),其中,若干倍压充电支路用于为若干倍压电容充电,若干倍压放电支路用于输出第二输出电压,若干倍压充电支路及若干倍压放电支路由若干倍压开关控制以输出不同的第二输出电压V
2。
也就是说,可以根据需求选择不同的倍压充电支路及倍压放电支路以输出不同大小的第二输出电压V
2,且第二输出电压V
2=n*V
0,n为大于等于1的整数。
在一具体示例中,以倍压电荷泵20包括三个倍压充电支路、三个倍压放电支路及三个倍压电容为例,当然,在其他示例行,倍压电荷泵20的充电支路、放电支路及倍压电容的数量及连接关系可以根据实际情况而定。
若干倍压充电支路包括第一倍压充电支路、第二倍压充电支路、第三倍压充电支路,若干倍压放电支路包括第一倍压放电支路、第二倍压放电支路、第三倍压放电支路,若干倍压电容包括第一倍压电容C1、第二倍压电容C2、第三倍压电容C3。
其中,第一倍压充电支路连接输入电压V
0及第一倍压电容C1,第二倍压充电支路连接输入电压V
0及第二倍压电容C2,第三倍压充电支路连接输入电压V
0及第三倍压电容C3,第一倍压放电支路连接第一倍压电容C1,第二倍压放电支路串联第一倍压电容C1及第二倍压 电容C2,第三倍压放电支路串联第一倍压电容C1、第二倍压电容C2及第三倍压电容C3,当第一倍压充电支路导通且而后第一倍压放电支路导通时,第二输出电压V
2=V
0,当第一倍压充电支路、第二倍压充电支路导通且而后第二倍压放电支路导通时,第二输出电压V
2=2*V
0,当第一倍压充电支路、第二倍压充电支路、第三倍压充电支路导通且而后第三倍压放电支路导通时,第二输出电压V
2=3*V
0。
下面,介绍倍压电荷泵20输出几种不同的第二输出电压V
2时的具体开关时序。
结合图12,为第二输出电压V
2=V
0的开关时序图,此时,第一倍压充电支路及第一倍压放电支路工作。
当处于第一时间段T1时,第一倍压充电支路进入充电过程。
第一倍压充电支路的充电过程为:位于第一倍压充电支路的倍压开关S22、S23均闭合,其他倍压开关及中间开关S21断开,也就是说,第一倍压充电支路导通,输入电压V
0为第一电容C1充电,第一电容C1两端的电压为V
0。
当处于第二时间段T2时,第一倍压放电支路进入放电过程。
第一倍压放电支路的放电过程为:位于第一倍压放电支路的倍压开关S25和中间开关S21闭合,其他倍压开关断开,也就是说,第一倍压放电支路导通,第二输出电压V
2即为第一电容C1两端的电压,即,第二输出电压V
2=V
0。
这里,为了便于说明,各个开关均被称作倍压开关,中间开关S21也于该处作说明,下面的说明参考此处说明,后续不再赘述。
结合图13,为第二输出电压V
2=2*V
0的开关时序图,此时,第一倍压充电支路、第二倍压充电支路及第二倍压放电支路工作。
当处于第一时间段T1时,第一倍压充电支路、第二倍压充电支路进入充电过程。
第一倍压充电支路、第二倍压充电支路的充电过程为:位于第一倍压充电支路的倍压开关S22、S23均闭合,位于第二倍压充电支路的倍压开关S26、S27均闭合,其他倍压开关及中间开关S21断开,也就是说,第一倍压充电支路、第二倍压充电支路导通,输入电压V
0分别为第一电容C1、第二电容C2充电,第一电容C1、第二电容C2两端的电压均为V
0。
当处于第二时间段T2时,第二倍压放电支路进入放电过程。
第二倍压放电支路的放电过程为:位于第二倍压放电支路的倍压开关S24、S28和中间开关S21闭合,其他倍压开关断开,也就是说,第二倍压放电支路导通,第一电容C1及第二电容C2相互串联,第二输出电压V
2即为第一电容C1两端的电压与第二电容C2两端的电压的和,即,第二输出电压V
2=2*V
0。
结合图14,为第二输出电压V
2=3*V
0的开关时序图,此时,第一倍压充电支路、第二倍压充电支路、第三倍压充电支路及第三倍压放电支路工作。
当处于第一时间段T1时,第一倍压充电支路、第二倍压充电支路、第三倍压充电支路进入充电过程。
第一倍压充电支路、第二倍压充电支路、第三倍压充电支路的充电过程为:位于第一 倍压充电支路的倍压开关S22、S23均闭合,位于第二倍压充电支路的倍压开关S26、S27均闭合,位于第三倍压充电支路的倍压开关S30、S31均闭合,其他倍压开关及中间开关S21断开,也就是说,第一倍压充电支路、第二倍压充电支路及第三倍压充电支路导通,输入电压V
0分别为第一电容C1、第二电容C2及第三电容C3充电,第一电容C1、第二电容C2及第三电容C3两端的电压均为V
0。
当处于第二时间段T2时,第三倍压放电支路进入放电过程。
第三倍压放电支路的放电过程为:位于第三倍压放电支路的倍压开关S24、S29、S32和中间开关S21闭合,其他倍压开关断开,也就是说,第三倍压放电支路导通,第一电容C1、第二电容C2及第三电容C3相互串联,第二输出电压V
2即为第一电容C1两端的电压、第二电容C2两端的电压及第三电容C3两端的电压的和,即,第二输出电压V
2=3*V
0。
可以看到,通过选取特定的倍压充电支路及倍压放电支路,第二输出电压V
2的取值范围为V
0~3*V
0,且第二输出电压V
2的步长为V
0。
参图15,为整个电压调节模块100的电路图,包括了相连的细调电荷泵10和倍压电荷泵20。
当中间开关S21闭合时,细调电荷泵10与倍压电荷泵20相互串联,电压调节模块100的总输出电压V为第一输出电压V
1和第二输出电压V
2的和,而第一输出电压V
1和第二输出电压V
2的数值可以独立控制,通过控制控制开关(S16~S20),可以实现不同数值的第一输出电压V
1串联至第二输出电压V
2,电压调节模块100的总输出电压V的取值范围为1/16*V
0~4*V
0,且总输出电压V的步长为1/16*V
0。
本实施方式采用细调电荷泵10和倍压电荷泵20结合方式产生大范围精细可调的输出电压,同时保证高效率,另外,本实施方式所用的电容数量少,效率在负载和频率匹配情况下可以达到90%以上。
另外,由于细调电荷泵10和倍压电荷泵20协同工作,细调电荷泵10和倍压电荷泵20需要注意时序的配合,对应不同的总输出电压V,需要不同的时序关系。
例如,当总输出电压V为3*V
0+15/16*V
0时,定义倍压电荷泵20输出数值为3*V
0的第二输出电压V
2需要的周期时长为t,细调电荷泵10输出数值为15/16*V
0的第一输出电压V
1需要的周期时长为2.5t,因此,为了使得细调电荷泵10与倍压电荷泵20的周期时长相互匹配,需要将倍压电荷泵20的周期时长延长为2.5t,因此,倍压电荷泵20中高电平的占空比不等于50%,当然,高低电平的具体占空比可以根据实际情况而定。
在本实施方式中,结合图16,由于电压调节模块100的总输出电压V受负载影响,因此,可以采用闭环控制来自动调整开关(包括细调开关、倍压开关、串联开关等)频率。
这里,电压调节模块100还包括比较器30,比较器30的两个输入端分别连接预设电压V
n及总输出电压V,总输出电压V由若干开关控制,当总输出电压V不大于预设电压V
n时,比较器30输出控制信号以提高若干开关的工作频率,如此,可大大提高电压调节模块100的输出效率。
另外,如果开关频率提高到最大值还是无法达到预设电压V
n时,则提高输入电压V
0。
综上,本发明采用细调电荷泵10和倍压电荷泵20结合方式输出可大范围精细调节的总输出电压V,使得实际的总输出电压V尽量接近所需的刺激幅值,进而大大节省了功耗。
另外,本实施方式所用的电容数量少,效率在负载和频率匹配情况下可以达到90%以上,且同时保证高效率。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
Claims (10)
- 一种电压调节模块,其特征在于,包括相连的细调电荷泵及倍压电荷泵,所述细调电荷泵的第一输出电压V 1=m*V 0,所述倍压电荷泵的第二输出电压V 2=n*V 0,所述电压调节模块的总输出电压V=V 1+V 2,其中,V 0为输入电压,m的取值范围为0~1,n为大于等于1的整数。
- 根据权利要求1所述的电压调节模块,其特征在于,所述细调电荷泵的输入端连接所述输入电压,所述倍压电荷泵的输入端连接所述输入电压,且所述细调电荷泵与所述倍压电荷泵之间通过中间开关连接。
- 根据权利要求1所述的电压调节模块,其特征在于,所述细调电荷泵包括若干细调电荷泵基本单元,每一细调电荷泵基本单元包括细调充电支路、细调放电支路、位于细调充电支路及细调放电支路的若干细调电容、若干细调开关,其中,所述细调充电支路用于为若干细调电容充电,所述细调放电支路用于输出中间输出电压,所述中间输出电压作为第一输出电压或输出至邻接的另一细调电荷泵基本单元,所述细调充电支路及所述细调放电支路由所述若干细调开关控制以输出不同的中间输出电压。
- 根据权利要求3所述的电压调节模块,其特征在于,每一细调电荷泵基本单元还包括与所述细调放电支路串联的串联支路,所述串联支路包括至少一串联输入端及控制所述串联输入端开闭的串联开关,所述串联输入端用于接地或连接其他细调电荷泵基本单元的中间输出电压而输出串联电压,当所述细调放电支路及所述串联支路导通时,所述第一输出电压为细调放电支路的中间输出电压和串联电压的和。
- 根据权利要求4所述的电压调节模块,其特征在于,每一细调电荷泵基本单元包括两个细调电容,当所述细调充电支路导通时,输入电压或中间输出电压为串联的两个细调电容充电,而后当所述细调放电支路及所述串联支路导通时,两个细调电容并联,所述第一输出电压为每一细调电容两端的电压及串联电压的和。
- 根据权利要求5所述的电压调节模块,其特征在于,所述细调电荷泵包括依次连接的第一细调电荷泵基本单元、第二细调电荷泵基本单元、第三细调电荷泵基本单元及第四细调电荷泵基本单元,其中,所述第一细调电荷泵基本单元包括第一串联支路、第一细调充电支路、第一细调放电支路及位于第一细调充电支路及第一细调放电支路的两个第一细调电容、若干第一细调开关,所述第一细调充电支路连接输入电压,所述第一细调放电支路输出第一中间输出电压,所述第二细调电荷泵基本单元包括第二串联支路、第二细调充电支路、第二细调放电支路及位于第二细调充电支路及第二细调放电支路的两个第二细调电容、若干第二细调开关,所述第二细调充电支路连接所述第一中间输出电压,所述第二细调放电支路输出第二中间输出电压,所述第三细调电荷泵基本单元包括第三串联支路、第三细调充电支路、第三细调放电支路及位于第三细调充电支路及第三细调放电支路的两个第三细调电容、若干第三细调开关,所述第三细调充电支路连接所述第二中间输出电压,所述第三细调放电支路输出第三中间输出电压,所述第四细调电荷泵基本单元包括第四串联支路、第四细调充 电支路、第四细调放电支路及位于第四细调充电支路及第四细调放电支路的两个第四细调电容、若干第四细调开关,所述第四细调充电支路连接所述第三中间输出电压,所述第四细调放电支路输出第四中间输出电压,所述第一串联支路接地或连接所述第二中间输出电压、所述第三中间输出电压及所述第四中间输出电压的其中之一,所述第二串联支路接地或连接所述第三中间输出电压及所述第四中间输出电压的其中之一,所述第三串联支路接地或连接所述第四中间输出电压,所述第四串联支路接地。
- 根据权利要求1所述的电压调节模块,其特征在于,所述倍压电荷泵包括若干倍压充电支路、若干倍压放电支路、位于若干倍压充电支路及若干倍压放电支路的若干倍压电容、若干倍压开关,其中,所述若干倍压充电支路用于为若干倍压电容充电,所述若干倍压放电支路用于输出第二输出电压,所述若干倍压充电支路及所述若干倍压放电支路由所述若干倍压开关控制以输出不同的第二输出电压。
- 根据权利要求7所述的电压调节模块,其特征在于,所述若干倍压充电支路包括第一倍压充电支路、第二倍压充电支路、第三倍压充电支路,所述若干倍压放电支路包括第一倍压放电支路、第二倍压放电支路、第三倍压放电支路,所述若干倍压电容包括第一倍压电容、第二倍压电容、第三倍压电容,其中,所述第一倍压充电支路连接所述输入电压及所述第一倍压电容,所述第二倍压充电支路连接所述输入电压及所述第二倍压电容,所述第三倍压充电支路连接所述输入电压及所述第三倍压电容,所述第一倍压放电支路连接所述第一倍压电容,所述第二倍压放电支路串联所述第一倍压电容及所述第二倍压电容,所述第三倍压放电支路串联所述第一倍压电容、所述第二倍压电容及所述第三倍压电容,当所述第一倍压充电支路导通且而后所述第一倍压放电支路导通时,所述第二输出电压V 2=V 0,当所述第一倍压充电支路、第二倍压充电支路导通且而后所述第二倍压放电支路导通时,所述第二输出电压V 2=2*V 0,当所述第一倍压充电支路、第二倍压充电支路、第三倍压充电支路导通且而后所述第三倍压放电支路导通时,所述第二输出电压V 2=3*V 0。
- 根据权利要求1所述的电压调节模块,其特征在于,所述电压调节模块还包括比较器,所述比较器的两个输入端分别连接预设电压及总输出电压,所述总输出电压由若干开关控制,当所述总输出电压不大于所述预设电压时,所述比较器输出控制信号以提高若干开关的工作频率。
- 一种植入式神经刺激系统,其特征在于,包括终端设备及刺激电极,所述终端设备包括如权利要求1-9中任意一项所述的电压调节模块,所述电压调节模块用于输出总输出电压以控制所述刺激电极的电刺激幅值。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19950638.7A EP4043067A4 (en) | 2018-12-26 | 2019-11-28 | VOLTAGE REGULATOR MODULE AND IMPLANTABLE NERVE STIMULATION SYSTEM |
US17/771,849 US20220370807A1 (en) | 2018-12-26 | 2019-11-28 | Voltage regulating module and implantable nerve stimulation system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811600635 | 2018-12-26 | ||
CN201911060243.3A CN111359095A (zh) | 2018-12-26 | 2019-11-01 | 电压调节模块及植入式神经刺激系统 |
CN201911060243.3 | 2019-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021082156A1 true WO2021082156A1 (zh) | 2021-05-06 |
Family
ID=71198530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/121538 WO2021082156A1 (zh) | 2018-12-26 | 2019-11-28 | 电压调节模块及植入式神经刺激系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220370807A1 (zh) |
EP (1) | EP4043067A4 (zh) |
CN (2) | CN111359095A (zh) |
WO (1) | WO2021082156A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111359095A (zh) * | 2018-12-26 | 2020-07-03 | 苏州景昱医疗器械有限公司 | 电压调节模块及植入式神经刺激系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376327A (zh) * | 1999-07-27 | 2002-10-23 | 艾尔弗雷德·E·曼基金会 | 用于对输出电容器进行充电的电压控制电路系统 |
US20100114252A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Determination of stimulation output capabilities throughout power source voltage range |
CN105879219A (zh) * | 2015-02-10 | 2016-08-24 | 北京大学 | 用于经颅磁刺激的多路高压脉冲电源发生器 |
CN107485785A (zh) * | 2017-06-20 | 2017-12-19 | 西安交通大学 | 一种电荷平衡的应用于心脏起搏器的脉冲产生电路 |
CN110336348A (zh) * | 2019-04-24 | 2019-10-15 | 华为技术有限公司 | 一种终端、开关电容升压电路以及供电方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4451743A (en) * | 1980-12-29 | 1984-05-29 | Citizen Watch Company Limited | DC-to-DC Voltage converter |
DE102006046387B4 (de) * | 2006-09-29 | 2015-11-19 | Texas Instruments Deutschland Gmbh | DC-DC-Aufwärtswandler mit einer Ladungspumpe |
US9061163B2 (en) * | 2011-01-27 | 2015-06-23 | Medtronic, Inc. | Fault tolerant system for an implantable cardioverter defibrillator or pulse generator |
CN104868706B (zh) * | 2015-06-05 | 2017-07-18 | 南京航空航天大学 | 一种电荷泵dc‑dc转换器自动增益跳变控制方法 |
CN107185109A (zh) * | 2017-05-17 | 2017-09-22 | 苏州景昱医疗器械有限公司 | 自适应控制模块及具有其的植入式神经刺激系统 |
CN111359095A (zh) * | 2018-12-26 | 2020-07-03 | 苏州景昱医疗器械有限公司 | 电压调节模块及植入式神经刺激系统 |
-
2019
- 2019-11-01 CN CN201911060243.3A patent/CN111359095A/zh active Pending
- 2019-11-01 CN CN201921874772.2U patent/CN211097046U/zh active Active
- 2019-11-28 US US17/771,849 patent/US20220370807A1/en active Pending
- 2019-11-28 WO PCT/CN2019/121538 patent/WO2021082156A1/zh active Application Filing
- 2019-11-28 EP EP19950638.7A patent/EP4043067A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1376327A (zh) * | 1999-07-27 | 2002-10-23 | 艾尔弗雷德·E·曼基金会 | 用于对输出电容器进行充电的电压控制电路系统 |
US20100114252A1 (en) * | 2008-10-31 | 2010-05-06 | Medtronic, Inc. | Determination of stimulation output capabilities throughout power source voltage range |
CN105879219A (zh) * | 2015-02-10 | 2016-08-24 | 北京大学 | 用于经颅磁刺激的多路高压脉冲电源发生器 |
CN107485785A (zh) * | 2017-06-20 | 2017-12-19 | 西安交通大学 | 一种电荷平衡的应用于心脏起搏器的脉冲产生电路 |
CN110336348A (zh) * | 2019-04-24 | 2019-10-15 | 华为技术有限公司 | 一种终端、开关电容升压电路以及供电方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4043067A1 (en) | 2022-08-17 |
CN211097046U (zh) | 2020-07-28 |
US20220370807A1 (en) | 2022-11-24 |
CN111359095A (zh) | 2020-07-03 |
EP4043067A4 (en) | 2023-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11577073B2 (en) | Pulsed passive charge recovery circuitry for an implantable medical device | |
US20220273946A1 (en) | Passive Charge Recovery Circuitry for an Implantable Medical Device | |
EP2841153B1 (en) | Charge-balancing during electrical stimulation | |
US7923865B2 (en) | Multi-mode switched capacitor dc-dc voltage converter | |
US8089787B2 (en) | Switched capacitor DC-DC voltage converter | |
JP5997829B2 (ja) | 電圧源を使用したフィールド増強式電流ステアリング | |
EP2635344B1 (en) | Apparatus for energy efficient stimulation | |
CN111053975B (zh) | 心脏起搏装置、存储介质、电源设备及输出电压控制方法 | |
EP4103266A1 (en) | Neuromodulation therapy with a multiple stimulation engine system | |
WO2021082156A1 (zh) | 电压调节模块及植入式神经刺激系统 | |
CN110327545B (zh) | 基于混合模式快速电荷平衡的神经刺激器电路 | |
CN107485785B (zh) | 一种电荷平衡的应用于心脏起搏器的脉冲产生电路 | |
CN107029352B (zh) | 刺激脉冲幅值调节模块及具有其的植入式神经刺激系统 | |
US20210290962A1 (en) | Control circuit for implantable pulse generator | |
US11121624B1 (en) | Configurable multi-output charge pump | |
US9739809B2 (en) | Compliance voltage detector circuit | |
CN114696594A (zh) | 电源系统及输出电压控制方法 | |
AU2015221531B2 (en) | A neurological system and method of therapy | |
CN113965074A (zh) | 倍压电荷泵、植入式神经刺激器及植入式神经刺激系统 | |
NL2008217C2 (en) | Tissue- or neurostimulator. | |
CN111729192A (zh) | 一种神经前端闭环刺激电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19950638 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19 950 638.7 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019950638 Country of ref document: EP Effective date: 20220429 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |