WO2021081890A1 - 控制方法、mcu、触控设备及存储介质 - Google Patents

控制方法、mcu、触控设备及存储介质 Download PDF

Info

Publication number
WO2021081890A1
WO2021081890A1 PCT/CN2019/114697 CN2019114697W WO2021081890A1 WO 2021081890 A1 WO2021081890 A1 WO 2021081890A1 CN 2019114697 W CN2019114697 W CN 2019114697W WO 2021081890 A1 WO2021081890 A1 WO 2021081890A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
mcu
sampling
voltages
sampling frequency
Prior art date
Application number
PCT/CN2019/114697
Other languages
English (en)
French (fr)
Inventor
陈法海
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980002408.3A priority Critical patent/CN110959256B/zh
Priority to PCT/CN2019/114697 priority patent/WO2021081890A1/zh
Publication of WO2021081890A1 publication Critical patent/WO2021081890A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to the technical field of touch control, in particular to a control method, MCU, touch control device and storage medium.
  • touch devices are frequently used in people's daily lives, such as gas stoves and touch lights. These touch devices include: Microcontroller Unit (MCU) and multiple touch buttons. Among them, there is a channel between the MCU and each touch button, and a touch sensor is provided under each touch button. Therefore, the above The touch buttons can also be called touch-sensitive electrical electrodes.
  • MCU Microcontroller Unit
  • touch buttons can also be called touch-sensitive electrical electrodes.
  • the working principle of the touch device is: the MCU is equipped with a touch module and a timer. Multiple channels work based on the same timer. Any touch button can be understood as a capacitor.
  • the touch module periodically performs multiple channels in sequence. Scanning (that is, collecting the output voltage of the capacitive touch sensor), when a finger presses the touch button, the human body and the ground will form a capacitance, which is connected in series with the touch button, resulting in the capacitance of the touch button As the output voltage of the capacitive touch sensor becomes smaller, the software program in the MCU processes the scan data to determine whether there is a finger pressing the touch button, and to determine which channel is pressed by the finger.
  • the MCU needs to scan multiple channels at a certain sampling frequency for a long time, the MCU power consumption is high.
  • the present application provides a control method, MCU, touch device, and storage medium to solve the problem of high power consumption in the prior art.
  • the technical problem of slow response of the MCU introduced when the sampling frequency is reduced is also solved.
  • the present invention provides a control method, which is applied to a microcontroller unit MCU.
  • the MCU is connected to N touch buttons through N channels, and the N channels correspond to the N touch buttons one-to-one, and N is an integer greater than 1.
  • Methods include:
  • the first sampling frequency is less than the second sampling frequency.
  • the first preset condition includes:
  • the number of channels meeting the second preset condition reaches the preset first number
  • the second preset condition includes:
  • the number of the first voltage reaches the preset second number
  • the first voltage is the voltage on the channel within the first preset threshold range
  • the first preset conditions include:
  • the number of the second voltage reaches the third number; where the second voltage is the voltage of any frame on any channel within the second preset threshold range.
  • the method further includes:
  • the voltages on the N channels are collected at the second sampling frequency
  • the voltages on all the channels in the first channel set are collected at the first sampling frequency.
  • the method before collecting the voltages on all channels in the first channel set at the first sampling frequency, the method further includes:
  • sampling mapping table is used to indicate the one-to-one mapping relationship between the sampling times and the first channel set, and the sampling times refers to the times of sampling at the first sampling frequency.
  • sampling mapping table satisfies the following conditions:
  • the number of channels in the first channel set is less than N; or
  • the number of channels in the first channel set is 1.
  • the present invention provides an MCU.
  • the MCU is connected to N touch buttons through N channels, and the N channels correspond to the N touch buttons one-to-one, where N is an integer greater than 1, and the MCU includes:
  • a collection module configured to collect voltages on all channels in the first channel set at a first sampling frequency; wherein the first channel set includes at least one channel among the N channels;
  • the acquisition module is further configured to collect the voltages on the N channels at the second sampling frequency if the voltages of all channels in the first channel set meet the first preset condition;
  • the processing module is used to process the voltages on the N channels to output corresponding control commands
  • the first sampling frequency is less than the second sampling frequency.
  • the first preset condition includes:
  • the number of channels meeting the second preset condition reaches the preset first number
  • the second preset condition includes:
  • the quantity of the first voltage reaches the preset second quantity
  • the first voltage is the voltage on the channel within the first preset threshold range
  • the first preset conditions include:
  • the number of the second voltage reaches the third number; where the second voltage is the voltage on any channel within the second preset threshold range.
  • the acquisition module is also used to:
  • the voltages on the N channels are collected at the second sampling frequency, the voltages of any frame on all channels in the first channel set are collected at the first sampling frequency.
  • determining module is specifically used for:
  • sampling mapping table is used to indicate the one-to-one mapping relationship between the sampling times and the first channel set, and the sampling times refers to the times of sampling at the first sampling frequency.
  • sampling mapping table satisfies the following conditions:
  • the number of channels in the first channel set is less than N; or
  • the number of channels in the first channel set is 1.
  • the present invention provides an MCU, which is used to execute the control method involved in the first aspect and the optional solutions.
  • the present invention provides a touch control device, including: MCU and N touch buttons, the MCU is connected to N touch buttons through N channels, and the N channels correspond to the N touch buttons one-to-one, and N is greater than 1.
  • MCU is used to execute the control methods involved in the first aspect and the optional solutions.
  • the present invention provides a readable storage medium including program instructions, which when the program instructions run on a computer, cause the computer to execute the control methods involved in the first aspect and the optional solutions.
  • This application provides a control method, MCU, touch control device, and storage medium.
  • the voltages on all channels in the first channel set are first collected at a first sampling frequency, and the first sampling frequency is less than the second sampling frequency , That is, let the MCU work in low power consumption mode, and determine whether the voltage of all channels in the first channel set meets the first preset condition, if it meets the requirements, enter the high power consumption mode, and collect N channels at the second sampling frequency On the voltage.
  • the control method provided by the present invention allows the MCU to preferentially work in the low power consumption mode, and when the first preset condition is met, it switches to the high power consumption mode, thereby reducing the power consumption of the MCU.
  • the first sampling frequency in order to reduce power consumption, if the first sampling frequency is too low, it will reduce the MCU's response timeliness to the user's touch buttons.
  • set the number of channels in the first channel set to be less than N, that is, only collect the The voltage can not only reduce the power consumption of the MCU, but also improve the response timeliness of the MCU.
  • Figure 1 is a schematic diagram of the connection between MCU and touch buttons
  • Fig. 2 is a flowchart of a control method according to an exemplary embodiment of the present invention.
  • Fig. 3 is a flowchart of a control method according to another exemplary embodiment of the present invention.
  • Fig. 4 is a schematic diagram showing the structure of an MCU according to an exemplary embodiment of the present invention.
  • buttons 0, 1, and 2 are all button touch buttons
  • button 3 is a circular touch button
  • button 4 is a slider touch button.
  • the slider touch button is equivalent to 3 touch buttons or units
  • the circular touch button is equivalent to 4 touch buttons or units.
  • Each touch button or unit is connected to the MCU through a channel, for example: button 0 , 1, 2 are connected to the MCU through channels 0, 1, and 2, the circular touch button 3 is connected to the MCU through channels 3, 4, 5, and 6, and the circular touch button 4 is connected to the MCU through channels 7, 8, and 9 respectively. connection.
  • the touch button to be mentioned below in this application may be the above button touch button, or one of the slider touch buttons, or one of the circular touch buttons.
  • the working principle of the MCU is: suppose that the MCU supports 24 channels, that is, the MCU is connected to 24 buttons through the 24 channels, and the MCU collects the voltage on the 24 channels based on the same timer.
  • a capacitor is formed between the user and the ground.
  • the button can also be regarded as a capacitor.
  • the capacitance value becomes larger than before.
  • the voltage on the channel becomes larger than before.
  • the MCU cycles The voltage of 24 channels is collected, and when it is detected that the voltage of a channel meets the preset threshold range, the MCU sends out corresponding instructions.
  • the MCU needs to detect the channel voltage for a long time, the MCU is always in working state, the MCU power consumption is large, and the power consumption of the touch device corresponding to the MCU becomes larger. If the battery is used to power the touch device, it will cause the battery to work for a long time. Become shorter.
  • the present application provides a control method, MCU, touch device, and storage medium to solve the problem of high power consumption in the prior art.
  • Fig. 2 is a flowchart of a control method according to an exemplary embodiment of the present invention.
  • the present invention provides a control method, which is applied to a microcontroller unit MCU.
  • the MCU is connected to N touch buttons through N channels, and the N channels correspond to the N touch buttons one-to-one, and N is greater than 1.
  • Integer As shown in Figure 3, the method includes the following steps:
  • the MCU collects voltages on all channels in the first channel set at a first sampling frequency.
  • the first channel set includes at least one channel; wherein, the channel is the channel between the MCU and the touch button. Collect the voltages on all channels in the first channel set at the first sampling frequency, specifically: when a sampling period ends, the MCU starts a new sampling period, during the new sampling period, the MCU sequentially collects all channels in the first channel set The voltage.
  • the MCU judges whether the voltages of all channels in the first channel set meet the first preset condition; if the judgment result is yes, then go to S103; otherwise, go to S101.
  • the first preset condition includes: the number of channels meeting the second preset condition reaches a preset first number; wherein, the second preset condition includes: for one channel, the number of first voltages reaches a preset number The second number; where the first voltage is a voltage within a first preset threshold range.
  • the first channel set includes 3 channels, the first number is 2, and the second number is 8.
  • the channels in the first channel set are marked as: channel 1, channel 2, and channel 3.
  • 10 frames of voltage data on the channel are collected. Determine whether the 10 frames of voltage data on channel 1 are within the first preset threshold range. If there are 7 frames of voltage data on channel 1 within the first preset threshold range, then the number of first voltages on channel 1 is 7. If the number of voltages is less than the preset voltage, then channel 1 does not meet the second preset condition. If there are 8 frames of voltage data and 9 frames of voltage data on channel 2 and channel 3 respectively within the first preset threshold range, then both channel 2 and channel 3 meet the second preset condition. The number of channels meeting the second preset condition is 2, and the voltages of all channels in the first channel set meet the first preset condition.
  • the first preset condition includes: the quantity of the second voltage reaches the third quantity; where the second voltage is the voltage on any channel within the range of the second preset threshold.
  • the first channel set includes 3 channels, and the third number is 20.
  • the channels in the first channel set are marked as: channel 1, channel 2, and channel 3.
  • 10 frames of voltage data on the channel are collected. If the number of voltages on channel 1, channel 2, and channel 3 that meet the second preset threshold range are 6, 7, and 8, respectively, the number of second voltages is 21. The number of second voltages reaches the third number, and therefore, the voltages of all channels in the first channel set meet the first preset condition.
  • the MCU collects the voltages on the N channels at the second sampling frequency.
  • the first sampling frequency is less than the second sampling frequency.
  • the MCU collecting the voltages on the N channels at the second sampling frequency is specifically as follows: when one sampling period ends, the MCU starts a new sampling period, and during the new sampling period, the MCU sequentially collects the voltages of the N channels.
  • the MCU collects the voltages on the N channels, it processes the voltages on the N channels, and outputs corresponding control instructions according to the processing results.
  • the MCU preferentially works in the low power consumption mode
  • the low power consumption mode is to collect the voltages of all channels in the first channel set at the first collection frequency. And it is judged whether the mode switching condition is satisfied, that is, whether the voltage of all channels in the first channel set meets the first preset condition, and if the mode switching condition is satisfied, the high power consumption mode is switched. That is, the voltages on the N channels are collected at the second sampling frequency, the voltages on the N channels are processed, and the corresponding control commands are output.
  • control method provided by the present invention further includes: after the MCU collects the voltages on the N channels at the second sampling frequency, collecting the voltages on all the channels in the first channel set at the first sampling frequency.
  • the above steps can be between S103 and S104, or after S104.
  • the MCU detects that the user presses the button, it enters the high-power mode.
  • the MCU When the MCU has collected the voltages on N channels, it enters the low-power mode, which can reduce the time that the MCU runs in the high-power mode and further reduce the MCU's Power consumption.
  • the MCU After the MCU collects the multi-frame voltages on the N channels at the second sampling frequency, it enters the low power consumption mode, that is, collects the voltages on all channels in the first channel set at the first sampling frequency . After the MCU collects the multi-frame voltage on the N channels at the second sampling frequency, it means that there are multiple frames of voltage data on each of the N channels, so that the MCU can generate according to the multi-frame voltage on the N channels Control instructions to improve control reliability.
  • the MCU first collects the voltages on the first set of channels at the first sampling frequency, and determines whether the voltages on all the channels in the first set meet the first preset condition.
  • the sampling frequency collects the voltages on N channels.
  • the first sampling frequency is less than the second sampling frequency. Therefore, the MCU does not need to work at the second sampling frequency for a long time, and preferentially work at the low frequency, which reduces the power consumption of the MCU.
  • Fig. 3 is a flowchart of a control method according to an exemplary embodiment of the present invention.
  • the present invention provides a control method, which is applied to a micro-control unit MCU.
  • the MCU is connected to N touch buttons through N channels, and N channels correspond to N touch buttons one-to-one, and N is greater than 1.
  • Integer As shown in Figure 3, the method includes the following steps:
  • the MCU determines the current sampling times.
  • the number of samplings refers to the number of samplings performed at the first sampling frequency. After collecting all the channels in the first channel set, it is considered as one acquisition. When the number of samplings has reached the preset value, the number of samplings needs to be initialized.
  • the MCU determines the first channel set according to the current sampling times and a preset sampling mapping table.
  • sampling mapping table is used to indicate the one-to-one mapping relationship between the number of samplings and the first channel set.
  • the sampling mapping table satisfies the following condition: when all the sampling times in the sampling mapping table are traversed, all N channels have been collected at the first sampling frequency.
  • the number of channels in the first channel set is less than N, that is, the first channel set includes some channels.
  • MCU supports collection of 24 channels, which are marked as: 1, 2, 3, ..., 24.
  • the first channel set includes 3 channels, so it needs to be collected 8 times to allow 24 channels to be collected.
  • the sampling mapping table is shown in Table 1 below:
  • the number of sampling times 0 to 7 corresponds to the 8 first channel sets, and the channel set formed by the 8 first channel sets is ⁇ 1,2,3...,24 ⁇ , when the first channel set is When the sampling reaches one cycle, all channels can be sampled.
  • the number of channels in the first channel set can be 1, that is, the voltage on one channel is collected at the first frequency, which can minimize the power consumption of the MCU.
  • MCU supports acquisition of 24 channels
  • the first channel set includes 1 channel
  • the sampling mapping table is shown in Table 2 below:
  • the number of channels in the first channel set may be equal to N, that is, the first channel set includes all channels.
  • N MCU supports the acquisition of 24 channels
  • the first channel set includes 24 channels
  • all 24 channels can be collected by collecting only once.
  • the sampling mapping table is shown in Table 3 below:
  • the first channel set already includes 24 channels.
  • S203 to S206 are the same as S101 to S104 in the embodiment shown in FIG. 2 and will not be repeated here.
  • the system source clock provides the first timer through the first frequency divider, and the system source clock provides the second timer through the second frequency divider.
  • the sampling mapping table is shown in Table 1. When sampling each time, only 3 channels are sampled. When the system enters the low-power mode for the first time, the number of sampling times is 0, and the corresponding first channel set is ⁇ 1,2,3 ⁇ , the system source clock provides the first timer for the MCU, and the first timer starts timing , Collect the voltages of 3 channels in sequence.
  • the MCU After the first timer expires, the MCU processes the collected data and judges whether it is necessary to switch to the high power consumption mode. During the timing of the first timer, only the first timer works, and other parts of the MCU do not work. After the first timer expires, other parts of the MCU will work again, and no higher energy consumption will be generated. If the collected voltage meets the first preset condition, the system source clock provides a second timer for the MCU. The second timer starts timing, collects the voltages on the 24 channels in sequence, and then generates an interrupt. The MCU processes the data and outputs corresponding instructions. After collecting the voltages on the 24 channels, the system source clock provides the first timer and enters the low-power mode.
  • the number of samples has been updated to 1, and the corresponding first channel set is ⁇ 4,5,6 ⁇ . Sampling is performed at the first sampling frequency.
  • the number of samples has been updated to 7 if the low-power mode is entered again and the number of samples needs to be updated, the number of samples collected is updated to 0.
  • reducing the number of acquisition channels in the low-power mode can further reduce the MCU, and then through the method of taking turns to achieve full coverage of all channels under the condition of reducing the acquisition channels, realizing current The user reacts quickly when pressing the touch button.
  • Fig. 4 is a schematic diagram showing the structure of an MCU according to an exemplary embodiment of the present invention.
  • the present invention provides an MCU.
  • the MCU is connected to N touch buttons through N channels, and the N channels correspond to the N touch buttons one-to-one.
  • N is an integer greater than 1, and the MCU includes:
  • the collection module 301 is configured to collect voltages on all channels in the first channel set at a first sampling frequency; wherein, the first channel set includes channels;
  • the collection module 301 is further configured to collect the voltages on the N channels at the second sampling frequency if the voltages of all the channels in the first channel set meet the first preset condition;
  • the processing module 302 is configured to process the voltages on the N channels to output corresponding control instructions
  • the first sampling frequency is less than the second sampling frequency.
  • the first preset condition includes:
  • the number of channels meeting the second preset condition reaches the preset first number
  • the second preset condition includes:
  • the quantity of the first voltage reaches the preset second quantity
  • the first voltage is the voltage on the channel within the first preset threshold range
  • the first preset condition includes: the quantity of the second voltage reaches the third quantity; where the second voltage is the voltage on any channel within the second preset threshold range.
  • the collection module 301 is also used to:
  • the voltages on the N channels are collected, the voltages on all the channels in the first channel set are collected at the first sampling frequency.
  • determining module 303 the determining module is specifically configured to:
  • sampling mapping table is used to indicate the one-to-one mapping relationship between the number of samplings and the first channel set.
  • the sampling mapping table satisfies the following condition: when all the sampling times in the sampling mapping table are traversed, all N channels have been collected at the first sampling frequency.
  • the number of channels in the first channel set is less than N;
  • the number of the channels in the first channel set is one.
  • the MCU provided in this application can execute the above-mentioned control method, and its content and effects can be referred to the method embodiment part, which will not be repeated here.
  • the present application also provides an MCU, which is used to execute the above-mentioned control method.
  • MCU which is used to execute the above-mentioned control method.
  • the method embodiment part which will not be repeated here.
  • the touch control device includes: an MCU and N touch buttons.
  • the MCU is connected to the N touch buttons through N channels, and the N channels are connected to the N touch buttons.
  • the N touch buttons have a one-to-one correspondence, and N is an integer greater than 1.
  • buttons 0, 1, and 2 in Fig. 1 are all button touch buttons. Buttons, button 3 is a circular touch button, and button 4 is a slider touch button. Among them, the slider touch button is equivalent to three touch buttons or units, and the circular touch button is equivalent to 4 touch buttons or units.
  • Each touch button or unit is connected to the MCU through a channel, for example: buttons 0, 1, 2 are connected to the MCU through channels 0, 1, and 2 respectively, and button 3 is connected to the MCU through channels 3, 4, 5, and 6, respectively. 4 is connected to the MCU through channels 7, 8, and 9 respectively.
  • the above-mentioned MCU is used to execute the above-mentioned control method, and its content and effects can be referred to the method embodiment part, which will not be repeated here.
  • the present application also provides a readable storage medium, including program instructions, when the program instructions run on a computer, the computer executes the above-mentioned control method.
  • a readable storage medium including program instructions, when the program instructions run on a computer, the computer executes the above-mentioned control method.
  • the present application also provides a computer program product, including program instructions, which are used to try the above-mentioned control method.
  • program instructions which are used to try the above-mentioned control method.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Electronic Switches (AREA)

Abstract

一种控制方法、MCU、触控设备及存储介质,方法应用于微控制单元MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数,方法包括:以第一采样频率采集第一通道集合中全部通道上的电压;其中,第一通道集合包括至少一个通道;若第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集N个通道上的电压;对N个通道上的电压进行处理,以输出相应控制指令;其中,第一采样频率小于第二采样频率。使MCU无需长期工作于第二采样频率,降低了MCU的功耗。

Description

控制方法、MCU、触控设备及存储介质 技术领域
本发明涉及触控技术领域,尤其涉及一种控制方法、MCU、触控设备及存储介质。
背景技术
目前触控设备在人们的日常生活中被频繁使用,如燃气灶、触控灯等。这些触控设备中包括:微控制单元(Microcontroller Unit,MCU)和多个触摸按键,其中MCU与每一个触摸按键之间存在一个通道,在每个触摸按键下方均设置有触摸传感器,因此,上述的触摸按键也可以被称为触摸感应电电极。
触控设备的工作原理是:MCU内设置有触控模块和计时器,多个通道基于同一个计时器工作,任一个触摸按键可以被理解为一个电容,触控模块周期性对多个通道依次进行扫描(即采集电容触摸触感器的输出电压),当有手指按压在该触摸按键上时,人体与地会行成一个电容,这个电容与触摸按键串连在一起,从而导致触摸按键的电容变大,进而电容触摸触感器的输出电压变小,MCU内软件程序对扫描数据进行处理,进而判断有无手指按压触摸按键,并判断是哪一路通道被手指按压。
由于MCU需要长期以一定采样频率对多个通道进行扫描,造成MCU功耗较高。
发明内容
本申请提供一种控制方法、MCU、触控设备及存储介质,解决现有技术中功耗高的问题。另外,作为优选方案,也解决降低采样频率时引入的MCU的反应不及时的技术问题。
第一方面,本发明提供一种控制方法,方法应用于微控制单元MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数,方法包括:
以第一采样频率采集第一通道集合中全部通道上的电压;其中,第一通道集合包括N个通道中的至少一个通道;
若第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集N个通道上的电压;
对N个通道上的电压进行处理,以输出相应控制指令;
其中,第一采样频率小于第二采样频率。
可选地,第一预设条件包括:
满足第二预设条件的通道数量达到预设的第一数量;
其中,第二预设条件包括:
针对一个通道上的多帧电压数据,第一电压的数量达到预设的第二数量;
其中,第一电压为在第一预设阈值范围内的通道上的电压;
或者
第一预设条件包括:
第二电压的数量达到第三数量;其中,第二电压为在第二预设阈值范围内的任意通道上任意帧的电压。
可选地,在以第二采样频率采集N个通道上的电压,之后还包括:
在以第二采样频率采集完N个通道上的电压之后,以第一采样频率采集第一通道集合中全部通道上的电压。
可选地,在以第二采样频率采集完N个通道上的电压之后,具体包括:
在以第二采样频率采集完N个通道上的多帧电压数据之后。
可选地,在以第一采样频率采集第一通道集合中全部通道上的电压,之前还包括:
确定当前已采样次数;
根据当前已采样次数和预设的采样映射表确定第一通道集合;
其中,采样映射表用于表示已采样次数与第一通道集合的一一映射关系,已采样次数是指以第一采样频率进行采样的次数。
可选地,采样映射表满足如下条件:
当遍历采样映射表中全部的已采样次数时,N个通道都已以第一采集频率被采集到。
可选地,第一通道集合中通道的数量小于N;或者
第一通道集合中通道的数量为1。
第二方面,本发明提供一种MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数,MCU包括:
采集模块,用于以第一采样频率采集第一通道集合中全部通道上的电压;其中,第一通道集合包括N个通道中的至少一个通道;
采集模块还用于若第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集N个通道上的电压;
处理模块用于对N个通道上的电压进行处理,以输出相应控制指令;
其中,第一采样频率小于第二采样频率。
可选地,第一预设条件包括:
满足第二预设条件的通道数量达到预设的第一数量;
其中,第二预设条件包括:
针对一个通道上多帧电压数据,第一电压的数量达到预设的第二数量;
其中,第一电压为在第一预设阈值范围内的通道上的电压;
或者
第一预设条件包括:
第二电压的数量达到第三数量;其中,第二电压为在第二预设阈值范围内的任意通道上的电压。
可选地,采集模块还用于:
在以第二采样频率采集完N个通道上的电压之后,以第一采样频率采集第一通道集合中全部通道上任意帧的电压。
可选地,在以第二采样频率采集完N个通道上的电压之后,具体包括:
在以第二采样频率采集完N个通道上的多帧电压数据之后。
可选地,还包括:确定模块;确定模块具体用于:
确定当前已采样次数;
根据当前已采样次数和预设的采样映射表确定第一通道集合;
其中,采样映射表用于表示已采样次数与第一通道集合的一一映射关系,已采样次数是指以第一采样频率进行采样的次数。
可选地,采样映射表满足如下条件:
当遍历采样映射表中全部的已采样次数时,N个通道都已以第一采集频 率被采集到。
可选地,第一通道集合中通道的数量小于N;或者
第一通道集合中通道的数量为1。
第三方面,本发明提供一种MCU,MCU用于执行第一方面及可选方案涉及的控制方法。
第四方面,本发明提供一种触控设备,包括:MCU和N个触摸按键,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数,MCU用于执行第一方面及可选方案涉及的控制方法。
第五方面,本发明提供一种可读存储介质,包括程序指令,当程序指令在计算机上运行时,使得计算机执行第一方面以及可选方案涉及的控制方法。
本申请提供一种控制方法、MCU、触控设备及存储介质,在该控制方法中,先以第一采样频率采集第一通道集合中全部通道上的电压,第一采样频率小于第二采样频率,即让MCU工作于低功耗模式,并判断第一通道集合中全部通道的电压是否满足第一预设条件,若满足要求,则进入高功耗模式,以第二采样频率采集N个通道上电压。本发明提供的控制方法通过让MCU优先工作于低功耗模式,当满足第一预设条件时,则切换至高功耗模式,降低了MCU的功耗。另外,为了降低功耗,若使第一采样频率过低,会降低MCU对用户触摸按键的反应及时性,作为优选方法,设置第一通道集合中通道数量小于N,即仅采集一部分通道上的电压,可以即降低MCU功耗,又提高MCU的反应及时性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为MCU和触摸按键的连接示意图;
图2为本发明根据一示例性实施例示出的控制方法的流程图;
图3为本发明根据另一示例性实施例示出的控制方法的流程图;
图4为本发明根据一示例性实施例示出的MCU的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如上所述,目前触控设备中包括:微控制单元(Microcontroller Unit,MCU)和触摸按键,其中MCU与触摸按键之间存在通道。图1为MCU和触摸按键的连接示意图,如图1所示,目前存在的典型触摸按键包括:按键式触摸按键、滑条式触摸按键和圆形式触摸按键,这些触摸按键下方均设置有触摸传感器,因此,上述的触摸按键也可以被称为触摸感应电电极,如图1中的按键0、1、2均为按键式触摸按键,按键3为圆形式触摸按键,按键4为滑条式触摸按键。其中,滑条式触摸按键相当于由3个触摸按键或单元构成,圆形式触摸按键相当于由4个触摸按键或单元构成,每个触摸按键或单元通过一个通道与MCU连接,例如:按键0、1、2分别通过通道0、1、2与MCU连接,圆形式触摸按键3分别通过通道3、4、5、6与MCU连接,圆形式触摸按键4分别通过通道7、8、9与MCU连接。需要说明的是,本申请下面将要提到的触摸按键可以是上面的按键式触摸按键、或者是滑条式触摸按键中的一个触摸按键,又或者是圆形式触摸按键中的一个触摸按键。
MCU的工作原理为:假设MCU支持24路通路,即MCU通过24路通 道与24个按键连接,MCU基于同一个计时器采集24路通道上电压。当用户按压某一个按键,用户与大地之间会形成一个电容,按键也可以看做一个电容,电容值相较于之前变大,相应地,通道上的电压相较于之前变大,MCU周期性的采集24路通道电压,当检测到某一路通道电压满足预设阈值范围时,MCU发出相应指令。然而,由于MCU需要长期检测通道电压,导致MCU一直处于工作状态,MCU功耗较大,与MCU对应的触控设备功耗变大,若采用蓄电池为触控设备供电,则会导致蓄电池工作时长变短。
本申请提供一种控制方法、MCU、触控设备及存储介质,解决现有技术中功耗高的问题。
图2为本发明根据一示例性实施例示出的控制方法的流程图。如图2所示,本发明提供一种控制方法,方法应用于微控制单元MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数。如图3所示,该方法包括如下步骤:
S101、MCU以第一采样频率采集第一通道集合中全部通道上的电压。
更具体地,第一通道集合包括至少一个通道;其中,通道为MCU与触摸按键之间的通道。以第一采样频率采集第一通道集合中全部通道上的电压,具体为:当一个采样周期结束时,MCU开始一个新采样周期,在新采样周期期间,MCU依次采集第一通道集合中全部通道的电压。
S102、MCU判断第一通道集合中全部通道的电压是否满足第一预设条件;若判断结果为是,则进入S103;否则,转入S101。
更具体地,第一预设条件包括:满足第二预设条件的通道数量达到预设的第一数量;其中,第二预设条件包括:针对一个通道,第一电压的数量达到预设的第二数量;其中,第一电压为在第一预设阈值范围内的电压。
例如:第一通道集合包括3个通道,第一数量为2个,第二数量为8个。第一通道集合中通道分别标记为:通道1、通道2以及通道3。在一段时间内,针对每个通道,均采集到通道上的10帧电压数据。分别判断通道1上的10帧电压数据是否在第一预设阈值范围内,若通道1上有7帧电压数据在第一预设阈值范围内,则通道1上第一电压数量为7,第一电压数量小于预设的电压,那么通道1不满足第二预设条件。若通道2和通道3上分别有8帧电压数据和9帧电压数据在第一预设阈值范围内,那么通道2和通道3都满足 第二预设条件。满足第二预设条件的通道数量为2,那么第一通道集合中全部通道的电压满足第一预设条件。
可选地,第一预设条件包括:第二电压的数量达到第三数量;其中,第二电压为在第二预设阈值范围内的任意通道上的电压。
例如:第一通道集合包括3个通道,第三数量为20个。第一通道集合中通道分别标记为:通道1、通道2以及通道3。在一段时间内,针对每个通道,均采集到通道上的10帧电压数据。若通道1、通道2、通道3上满足第二预设阈值范围的电压数量分别为:6、7、8,则第二电压的数量为21。第二电压的数量达到第三数量,因此,第一通道集合中全部通道的电压满足第一预设条件。
S103、MCU以第二采样频率采集N个通道上的电压。
更具体地,第一采样频率小于第二采样频率。MCU以第二采样频率采集N个通道上的电压具体为:当一个采样周期结束时,MCU开始一个新采样周期,在新采样周期期间,MCU依次采集N个通道的电压。
S104、对N个通道上的电压进行处理,以输出相应控制指令。
更具体地,当MCU采集到N个通道上的电压,对N个通道上的电压进行处理,并根据处理结果输出相应控制指令。
下面说明本发明提供的控制方法的控制原理:MCU优先工作于低功耗模式下,低功耗模式为以第一采集频率采集第一通道集合中全部通道电压。并判断是否满足模式切换条件,即第一通道集合中全部通道电压是否满足第一预设条件,若满足模式切换条件,则切换至高功耗模式。即以第二采样频率采集N个通道上电压,并对N个通道上电压进行处理,输出对应控制指令。通过让MCU优先工作于低功耗模式,在用户按压按键后,再进入高功耗模式,可以降低MCU功耗。
可选地,本发明提供的控制方法还包括:在MCU以第二采样频率采集完N个通道上的电压之后,以第一采样频率采集第一通道集合中全部通道上的电压。上述步骤可以在S103和S104之间,也可以在S104之后。MCU在检测到用户按压按键后,进入高功耗模式,当MCU在采集完N个通道上电压时,再进入低功耗模式,可以减少MCU运行于高功耗模式的时间,进一步减少MCU的功耗。
在本实施例中,MCU以第二采样频率采集完N个通道上的多帧电压后,再进入低功耗模式,也就是,以第一采样频率采集第一通道集合中全部通道上的电压。MCU以第二采样频率采集完N个通道上的多帧电压后,是指N个通道中的每个通道上有多帧电压数据之后,以使MCU可以根据N个通道上的多帧电压生成控制指令,以提高控制可靠性。
在本实施例提供的控制方法中,MCU先以第一采样频率采集第一集合通道上电压,并判断第一集合中全部通道上电压是否满足第一预设条件,若满足,则以第二采样频率采集N个通道上的电压。其中,第一采样频率小于第二采样频率。使得MCU无需长期工作于第二采样频率,优先工作于低频,降低了MCU的功耗。
图3为本发明根据一示例性实施例示出的控制方法的流程图。如图3所示,本发明提供一种控制方法,方法应用于微控制单元MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数。如图3所示,该方法包括如下步骤:
S201、MCU确定当前已采样次数。
更具体地,已采样次数是指以第一采样频率进行采样的次数。采集完第一通道集合中全部通道算一次采集。当已采样次数已经达到预设值时,需要对已采样次数进行初始化处理。
S202、MCU根据当前已采样次数和预设的采样映射表确定第一通道集合。
更具体地,采样映射表用于表示已采样次数与第一通道集合的一一映射关系。采样映射表满足如下条件:当遍历采样映射表中全部的已采样次数时,N个通道都已以第一采集频率被采集到。
作为一种可选方案,第一通道集合中通道的数量小于N,即第一通道集合中包含部分通道。为了保证每个通道都被采集到,需要轮流采集。例如:MCU支持采集24路通路,依次标记为:1、2、3、……、24。第一通道集合中包括3个通道,那么需要采集8次才能让24个通路被采集到。采样映射表如下表1所示:
表1采样映射表
已采样次数 0 1 2 3
第一通道集合 1,2,3 4,5,6 7,8,9 10,11,12
已采样次数 4 5 6 7
第一通道集合 13,14,15 16,17,18 19,20,21 22,23,24
在上述采样映射表中,已采样次数0至7对应8个第一通道集合,8个第一通道集合构成的通道集合为{1,2,3……,24},当对第一通道集合进行采样达到一个轮回时,即可实现对所有通路的采样。
作为一种可选方案,第一通道集合中通道的数量可以为1,即以第一频率采集1个通道上的电压,可以使MCU功耗最小。MCU支持采集24路通路,第一通道集合包括1路通道,采样映射表如下表2所示:
表2采样映射表
已采样次数 0 1 2 3 4 5 6 7
第一通道集合 1 2 3 4 5 6 7 8
已采样次数 8 9 10 11 12 13 14 15
第一通道集合 9 10 11 12 13 14 15 16
已采样次数 16 17 18 19 20 21 22 23
第一通道集合 17 18 19 20 21 22 23 24
作为另一中可选方案,第一通道集合中通道的数量可以等于N,即第一通道集合中包括全部通道。例如:MCU支持采集24路通道,第一通道集合包括24路通道,只需要采集一次就能让24路通道均被采集。采样映射表如下表3所示:
表3采样映射表
已采样次数 1
第一通道集合 1,2,3……,24
在上述采样映射表中,第一通道集合已包括24路通道。
S203至S206与图2所示实施例中S101至S104相同,在此处不再赘述。
下面说明本发明提供的控制方法的控制原理:配置计时器分频系数,配置采样映射表,通道电压的预设阈值范围。系统源时钟通过第一分频器提供第一计时器,系统源时钟通过第二分频器提供第二计时器。采样映射表如表1所示,每一次采样时,仅对3个通道进行采样。当系统第一次进入低功耗模式时,已采样次数为0次,对应第一通道集合为{1,2,3},系统源时钟为MCU 提供第一计时器,第一计时器开始计时,依次采集3个通道的电压。第一计时器计时超时后,MCU对采集到数据进行处理,判断是否需要切换到高功耗模式。在第一计时器计时过程中,仅第一计时器工作,MCU其他部分不工作。第一计时器计时超时后,MCU其他部分再工作,不会产生较高的能耗。若采集到电压满足第一预设条件,则系统源时钟为MCU提供第二计时器。第二计时器开始计时,依次采集24个通道上电压,然后产生中断,MCU对数据处理,输出相应指令。在采集完24路通道上电压后,系统源时钟提供第一计时器,进入低功耗模式,此时,已采样次数更新为1,对应第一通道集合为{4,5,6},以第一采样频率进行采样。当已采样次数更新至7时,若再次进入低功耗模式,需要更新已采样次数,则将已采集次数更新为0。
在本实施例提供的控制方法中,减少低功耗模式下采集通道的数量,可以进一步减少MCU,再通过轮流采集的方式,实现在减少采集通道的情况下,对所有通道全覆盖,实现当用户按下触摸按键时快速反应。
图4为本发明根据一示例性实施例示出的MCU的结构示意图。如图4所示,本发明提供一种MCU,MCU通过N个通道与N个触摸按键连接,N个通道与N个触摸按键一一对应,N为大于1的整数,MCU包括:
采集模块301,用于以第一采样频率采集第一通道集合中全部通道上的电压;其中,第一通道集合包括通道;
采集模块301还用于若第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集N个通道上的电压;
处理模块302用于对N个通道上的电压进行处理,以输出相应控制指令;
其中,第一采样频率小于第二采样频率。
可选地,第一预设条件包括:
满足第二预设条件的通道数量达到预设的第一数量;
其中,第二预设条件包括:
针对一个通道,第一电压的数量达到预设的第二数量;
其中,第一电压为在第一预设阈值范围内的通道上的电压;
第一预设条件包括:第二电压的数量达到第三数量;其中,第二电压为在第二预设阈值范围内的任意通道上的电压。
可选地,采集模块301还用于:
在采集完N个通道上的电压之后,以第一采样频率采集第一通道集合中全部通道上的电压。
可选地,还包括:确定模块303;确定模块具体用于:
确定当前已采样次数;
根据当前已采样次数和预设的采样映射表确定第一通道集合;
其中,采样映射表用于表示已采样次数与第一通道集合的一一映射关系。
可选地,采样映射表满足如下条件:当遍历采样映射表中全部的已采样次数时,N个通道都已以第一采集频率被采集到。
可选地,第一通道集合中通道的数量小于N;
或者
所述第一通道集合中所述通道的数量为1。
本申请提供的MCU,可以执行上述的控制方法,其内容和效果可参考方法实施例部分,对此不再赘述。
本申请还提供一种MCU,该MCU用于执行上述的控制方法,其内容和效果可参考方法实施例部分,对此不再赘述。
本申请还提供一种触控设备,示例性地,该触控设备包括:MCU和N个触摸按键,所述MCU通过N个通道与所述N个触摸按键连接,所述N个通道与所述N个触摸按键一一对应,N为大于1的整数。
示例性的,如图1所示,目前存在的典型触摸按键包括:按键式触摸按键、滑条式触摸按键和圆形式触摸按键,如图1中的按键0、1、2均为按键式触摸按键,按键3为圆形式触摸按键,按键4为滑条式触摸按键。其中,滑条式触摸按键相当于由3个触摸按键或单元构成,圆形式触摸按键相当于由4个触摸按键或单元构成。
每个触摸按键或单元通过一个通道与MCU连接,例如:按键0、1、2分别通过通道0、1、2与MCU连接,按键3分别通过通道3、4、5、6与MCU连接,按键4分别通过通道7、8、9与MCU连接。上述MCU用于执行上述的控制方法,其内容和效果可参考方法实施例部分,对此不再赘述。
本申请还提供一种可读存储介质,包括程序指令,当该程序指令在计算机上运行时,使得计算机执行如上述的控制方法,其内容和效果可参考方法 实施例部分,对此不再赘述。
本申请还提供一种计算机程序产品,包括程序指令,该程序指令用于试下如上述的控制方法,其内容和效果可参考方法实施例部分,对此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种控制方法,其特征在于,所述方法应用于微控制单元MCU,所述MCU通过N个通道与N个触摸按键连接,所述N个通道与所述N个触摸按键一一对应,N为大于1的整数,所述方法包括:
    以第一采样频率采集第一通道集合中全部通道上的电压;其中,所述第一通道集合包括所述N个通道中的至少一个所述通道;
    若所述第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集所述N个通道上的电压;
    对所述N个通道上的电压进行处理,以输出相应控制指令;
    其中,所述第一采样频率小于所述第二采样频率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设条件包括:
    满足第二预设条件的通道的数量达到预设的第一数量;
    所述第二预设条件包括:针对一个所述通道上的多帧电压数据,第一电压的数量达到预设的第二数量;
    其中,所述第一电压为在第一预设阈值范围内的通道上的电压;
    或者
    所述第一预设条件包括:
    第二电压的数量达到第三数量;其中,所述第二电压为在第二预设阈值范围内的任意通道上任意帧的电压。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    在以所述第二采样频率采集完所述N个通道上的电压之后,以所述第一采样频率采集所述第一通道集合中全部通道上的电压。
  4. 根据权利要求3所述的方法,其特征在于,所述在以所述第二采样频率采集完所述N个通道上的电压之后,具体包括:
    在以所述第二采样频率采集完所述N个通道上的多帧电压数据之后。
  5. 根据权利要求1或2所述的方法,其特征在于,在所述以第一采样频率采集第一通道集合中全部通道上的电压,之前还包括:
    确定当前已采样次数;
    根据所述当前已采样次数和预设的采样映射表确定第一通道集合;
    其中,所述采样映射表用于表示已采样次数与所述第一通道集合的一一 映射关系。
  6. 根据权利要求5所述的方法,其特征在于,所述采样映射表满足如下条件:
    当遍历所述采样映射表中全部的已采样次数时,所述N个通道都已以所述第一采集频率被采集到。
  7. 根据权利要求1所述的方法,其特征在于:
    所述第一通道集合中所述通道的数量小于N;或者
    所述第一通道集合中所述通道的数量为1。
  8. 一种MCU,其特征在于,所述MCU通过N个通道与N个触摸按键连接,所述N个通道与所述N个触摸按键一一对应,N为大于1的整数,所述MCU包括:
    采集模块,用于以第一采样频率采集第一通道集合中全部通道上的电压;其中,所述第一通道集合包括所述N个通道中的至少一个所述通道;
    所述采集模块还用于若所述第一通道集合中全部通道的电压满足第一预设条件,则以第二采样频率采集所述N个通道上的电压;
    处理模块用于对所述N个通道上的电压进行处理,以输出相应控制指令;
    其中,所述第一采样频率小于所述第二采样频率。
  9. 根据权利要求8所述的MCU,其特征在于,所述第一预设条件包括:
    满足第二预设条件的通道数量达到预设的第一数量;
    所述第二预设条件包括:针对一个所述通道上的多帧电压数据,第一电压的数量达到预设的第二数量;
    其中,所述第一电压为在预设阈值范围内的电压;
    或者
    所述第一预设条件包括:
    第二电压的数量达到第三数量;其中,所述第二电压为在第二预设阈值范围内的任意通道上任意帧的电压。
  10. 根据权利要求8或9所述的MCU,其特征在于,所述采集模块还用于:
    在以所述第二采样频率采集完所述N个通道上的电压之后,以所述第一采样频率采集所述第一通道集合中全部通道上的电压。
  11. 根据权利要求10所述的MCU,其特征在于,所述在以所述第二采样频率采集完所述N个通道上的电压之后,具体包括:
    以所述第二采样频率采集完所述N个通道上的多帧电压数据之后。
  12. 根据权利要求8或9所述的MCU,其特征在于,还包括:确定模块;所述确定模块具体用于:
    确定当前已采样次数;
    根据所述当前已采样次数和预设的采样映射表确定第一通道集合;
    其中,所述采样映射表用于表示已采样次数与所述第一通道集合的一一映射关系。
  13. 根据权利要求12所述的MCU,其特征在于,所述采样映射表满足如下条件:
    当遍历所述采样映射表中全部的已采样次数时,所述N个通道都已以所述第一采集频率被采集到。
  14. 根据权利要求8所述的MCU,其特征在于:
    所述第一通道集合中所述通道的数量小于N;或者
    所述第一通道集合中所述通道的数量为1。
  15. 一种MCU,其特征在于,所述MCU用于执行如权利要求1-7任一项所述的控制方法。
  16. 一种触控设备,其特征在于,包括:MCU和N个触摸按键,所述MCU通过N个通道与所述N个触摸按键连接,所述N个通道与所述N个触摸按键一一对应,N为大于1的整数,所述MCU用于执行如权利要求1-7任一项所述的控制方法。
  17. 一种可读存储介质,其特征在于,包括程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的控制方法。
PCT/CN2019/114697 2019-10-31 2019-10-31 控制方法、mcu、触控设备及存储介质 WO2021081890A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002408.3A CN110959256B (zh) 2019-10-31 2019-10-31 控制方法、mcu、触控设备及存储介质
PCT/CN2019/114697 WO2021081890A1 (zh) 2019-10-31 2019-10-31 控制方法、mcu、触控设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114697 WO2021081890A1 (zh) 2019-10-31 2019-10-31 控制方法、mcu、触控设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021081890A1 true WO2021081890A1 (zh) 2021-05-06

Family

ID=69985842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114697 WO2021081890A1 (zh) 2019-10-31 2019-10-31 控制方法、mcu、触控设备及存储介质

Country Status (2)

Country Link
CN (1) CN110959256B (zh)
WO (1) WO2021081890A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113282194A (zh) * 2021-05-31 2021-08-20 中微半导体(深圳)股份有限公司 低功耗触摸检测唤醒方法及装置
CN113419126B (zh) * 2021-06-21 2022-12-30 合肥美的暖通设备有限公司 性能参数记录方法、装置、变频器、空调设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908876A (zh) * 2010-07-23 2010-12-08 中颖电子有限公司 电容式触摸按键系统及其微控制单元
CN105652193A (zh) * 2015-12-31 2016-06-08 深圳Tcl数字技术有限公司 用于终端与按键板的适配检测装置及方法
CN105786241A (zh) * 2015-01-14 2016-07-20 三星电子株式会社 触摸控制器、 触摸感测装置及触摸感测方法
CN108259044A (zh) * 2018-02-26 2018-07-06 上海东软载波微电子有限公司 触摸按键扫描方法及装置、计算机可读存储介质
CN110310391A (zh) * 2019-05-21 2019-10-08 深圳绿米联创科技有限公司 触摸唤醒方法、装置、电子设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9092098B2 (en) * 2011-04-19 2015-07-28 Cypress Semiconductor Corporation Method and apparatus to improve noise immunity of a touch sense array
TWI442279B (zh) * 2011-07-18 2014-06-21 Acer Inc 多重取樣頻率電路及方法
US9013429B1 (en) * 2012-01-14 2015-04-21 Cypress Semiconductor Corporation Multi-stage stylus detection
WO2013129304A1 (ja) * 2012-03-02 2013-09-06 Necカシオモバイルコミュニケーションズ株式会社 タッチパネル装置、情報処理装置、タッチ検出方法及び記憶媒体
CN106527701B (zh) * 2016-10-26 2019-12-03 国家电网公司 一种应用于风电机组运维的智能可穿戴设备
CN109154873B (zh) * 2017-03-16 2021-09-03 深圳市汇顶科技股份有限公司 触摸检测方法及系统
GB2565305A (en) * 2017-08-08 2019-02-13 Cambridge Touch Tech Ltd Device for processing signals from a pressure-sensing touch panel
CN109426712A (zh) * 2017-08-28 2019-03-05 北京小米移动软件有限公司 指纹解锁方法、装置及电子设备
CN110362225B (zh) * 2019-06-18 2024-01-30 腾讯科技(成都)有限公司 触控屏采样频率控制方法、装置、介质及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908876A (zh) * 2010-07-23 2010-12-08 中颖电子有限公司 电容式触摸按键系统及其微控制单元
CN105786241A (zh) * 2015-01-14 2016-07-20 三星电子株式会社 触摸控制器、 触摸感测装置及触摸感测方法
CN105652193A (zh) * 2015-12-31 2016-06-08 深圳Tcl数字技术有限公司 用于终端与按键板的适配检测装置及方法
CN108259044A (zh) * 2018-02-26 2018-07-06 上海东软载波微电子有限公司 触摸按键扫描方法及装置、计算机可读存储介质
CN110310391A (zh) * 2019-05-21 2019-10-08 深圳绿米联创科技有限公司 触摸唤醒方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN110959256A (zh) 2020-04-03
CN110959256B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
US10296771B2 (en) Fingerprint recognition system and method
US20130314370A1 (en) Detecting method and device for suppressing interference of low-frequency noise
WO2021081890A1 (zh) 控制方法、mcu、触控设备及存储介质
KR102337627B1 (ko) 커패시턴스 검출 회로, 터치 장치와 단말 장치
CN110199247B (zh) 噪声检测方法及装置、电子设备和计算机可读存储介质
US20140146002A1 (en) Touch Detection System of Terminal Device and Terminal Device
CN205787043U (zh) 一种电池电量的检测装置
CN104777383A (zh) 一种非侵入式电力负载监测与负荷分解装置
WO2016026316A1 (zh) 一种语音唤醒方法及设备
CN204929213U (zh) 一种音频信号检测控制电路
WO2018148902A1 (zh) 一种按键检测方法及装置
CN103324365A (zh) 电容式触控系统、触控装置及触控方法
CN109831700A (zh) 一种待机模式切换方法、装置、电子设备及存储介质
TW201617819A (zh) 電容觸控系統及其選頻方法
EP3851938A1 (en) Ultra-low power mode for a low-cost force-sensing device
CN105954684A (zh) 一种电池电量的检测方法和装置
CN102788910A (zh) 互电容触摸屏的噪声检测、扫描及频率跳转方法
JP2014142753A (ja) 静電容量式タッチセンサ
CN104000581B (zh) 心电信号处理方法及装置
CN104184449A (zh) 电容式触控装置、方法与系统
CN109992079A (zh) 终端设备以及应用于终端设备的控制方法
CN203457288U (zh) 一种耳机触摸式手势识别控制装置
CN202582709U (zh) 一种智能分贝提醒仪
EP3644071B1 (en) Sampling current processing circuit, power detection circuit and electromagnetic cooking device
CN104020898B (zh) 一种触控输入装置上手势的感知方法和感知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950966

Country of ref document: EP

Kind code of ref document: A1