WO2021081881A1 - 一种基于tdg分子骨架的功能糖类分子及其制备方法 - Google Patents

一种基于tdg分子骨架的功能糖类分子及其制备方法 Download PDF

Info

Publication number
WO2021081881A1
WO2021081881A1 PCT/CN2019/114660 CN2019114660W WO2021081881A1 WO 2021081881 A1 WO2021081881 A1 WO 2021081881A1 CN 2019114660 W CN2019114660 W CN 2019114660W WO 2021081881 A1 WO2021081881 A1 WO 2021081881A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
group
formula
preparation
Prior art date
Application number
PCT/CN2019/114660
Other languages
English (en)
French (fr)
Inventor
李伟
王怀雨
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2019/114660 priority Critical patent/WO2021081881A1/zh
Publication of WO2021081881A1 publication Critical patent/WO2021081881A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/056Triazole or tetrazole radicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to the field of medicinal chemistry, in particular to a functional carbohydrate molecule based on a TDG molecular skeleton and a preparation method thereof.
  • Galectin is a type of lectin protein. It is a sugar-binding protein. It can recognize and bind sugars with galactose and lactose residues through its own carbohydrate recognition domain (CRD) pocket. Ligand molecules, in turn, play an important role in many physiological and pathological processes (such as cancer, inflammation, etc.).
  • glycoligand molecules with high specific recognition and high affinity binding to galectin have been developed (WO 2005/113569 A1, WO 2016/113335 A1, WO 2017/019770 A1, WO 2017/080973 A1), in which glycoligand molecules with thiodigalactoside (TDG) molecular backbone can better match and occupy the galectin protein CRD, in turn, shows higher binding activity.
  • TDG thiodigalactoside
  • glycoligand molecules only block the recognition and binding of galectin protein with glycoligands or antibodies in vivo through competitive binding, and the biological effects of these molecules are not clear and need to be further studied; and the use of these glycoligands
  • the recognition and combination of molecules and galectin is still blank for broader biological applications, such as the specific recognition and combination of glycoligands and tumor markers galectin 1 and 3 for tumor detection and tumor immunity Treatment etc.
  • TDG sugar ligand molecules with high specific recognition and high affinity binding, such as through different substituent groups on TDG sugar ligand molecules (such as substituted triazole groups, The introduction of substituted arylamide groups, etc.) has developed a series of sugar ligand molecules with high binding force to galectin, and the TDG sugar ligand molecules can be adjusted to different galectins by changing the substitution group.
  • Lectin protein recognizes the selectivity and specificity of binding.
  • TDG sugar ligand molecules are basically limited to the medicinal chemical application of TDG sugar ligands as galectin protein inhibitors, which mainly block the competitive binding of TDG sugar ligand molecules to the galectin target protein.
  • the target protein of galectin binds to natural carbohydrate ligands or antibodies in organisms, thereby blocking the corresponding signal channels and exerting corresponding biological effects.
  • the current research results show that the biological effects are not obvious, and the related reasons need to be further studied. .
  • TDG glycoligand molecules In addition to the medicinal chemistry applications of TDG glycoligands, research has not yet been conducted using the recognition and binding of TDG glycoligand molecules to galectin proteins, and using TDG glycoligand molecules as functional molecules targeting galectin proteins. There are no reports about the functional molecules that can play the role of the target of these sugar ligand molecules.
  • the glycoligand molecule with TDG molecular skeleton can specifically recognize and bind galectin protein with high affinity. By designing and preparing new compounds of functional sugar molecules based on TDG molecular skeleton, it can give full play to the sugar ligand with TDG molecular skeleton.
  • the body molecule acts on the target head that the galectin protein target recognizes and binds, and then endows this type of ligand molecule with a wider range of biological functions.
  • the present invention provides a method for the synthesis of new compounds, which is the same as the existing method for synthesizing sugar ligands with a TDG molecular backbone (WO 2005/113569 A1, WO 2016/113335 A1, WO 2017/019770 A1, WO 2017/080973 A1) Compared with 2017/080973 A1), the present invention adopts the synthetic strategy of “first side chain derivatization and then glycosylation coupling”, realizes the side chain derivatization modification of TDG molecular skeleton, and provides a new synthetic route to achieve The efficient synthesis of the compound.
  • the purpose of the present invention is to provide a new class of functionalized carbohydrate molecules based on the TDG molecular skeleton and a synthetic preparation method thereof based on the recognition and binding mechanism of TDG sugar ligand molecules and galectin proteins.
  • the molecular structure design is carried out by deriving functional side chains from the non-binding sites of the TDG molecular skeleton, so that the new compound maintains the high specific recognition and high affinity binding of the TDG molecular skeleton to the galectin target protein.
  • Different active reactive groups are derived from the functional side chains, so as to have the reaction performance to construct a variety of functional molecules, and through the practice of new synthetic routes, new compounds of functionalized TDG sugar ligand molecules can be efficiently prepared.
  • the present invention provides a new type of functional carbohydrate molecule compound based on TDG molecular skeleton, and provides a synthetic preparation method of this type of new compound.
  • the functional side chain derivatization modification is carried out on the sugar ligand with TDG molecular skeleton to obtain a new functionalized carbohydrate.
  • Class molecules, new compounds maintain the high specific recognition and high affinity binding of the sugar ligand molecules with TDG molecular backbone to the galectin protein, and further extend the functional side chain, which can be activated through the functional side chain.
  • the reactive group is functionally constructed and used for tumor detection based on galectin protein target, tumor targeting, tumor immunity, inflammation suppression and other reagents and molecular construction.
  • the invention provides a new class of functional carbohydrate molecular compounds based on TDG molecular skeletons and a synthetic preparation method thereof.
  • the present invention first designs a new type of functionalized carbohydrate molecule compound based on TDG molecular skeleton based on the analysis of the recognition and combination of TDG molecular skeleton and galectin protein, and then develops synthetic route through synthetic practice to realize TDG molecular skeleton based The efficient preparation of new compounds with functional sugar molecules.
  • the binding mechanism of galectin protein and glycoligand molecules has been clarified (Nilsson et al, 2005; Nilsson et al, 2008).
  • the CRD pocket of galectin is mainly divided into A, B, C, D, E
  • the present invention designs a carbohydrate compound whose structure is shown in formula X,
  • R 1 and R 2 are independently selected from substituted amide groups, substituted triazole groups, and substituted amino groups;
  • R 3 is selected from mercapto, azido, amino, carboxy
  • A is Or -C m H 2m R 3
  • X is selected from oxygen atoms
  • n is selected from 0, 1, 2, 3, 4, 5, 6, 7;
  • n is selected from 2, 3, 4, 5, 6, 7, 8, 9, 10.
  • the amide group Wherein R 4 is selected from alkyl, substituted alkyl, aryl, and substituted aryl;
  • R 5 is selected from aryl group, substituted aryl group, aramid group, substituted aramid group, alkyl amide group, ester group.
  • R 6 is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, aramid, substituted aramid, and alkamide.
  • the aryl group in the aryl group or substituted aryl group is selected from phenyl, naphthyl, pyrenyl, anthryl, phenanthryl, furan, and thiophene.
  • the alkyl group in the alkyl group or the substituted alkyl group is selected from C1-C6 hydrocarbon groups.
  • the substituent on the substituted aryl group is hydrogen, halogen, C1-C6 hydrocarbyl or hydrocarbyloxy, C1-C6 haloalkyl or nitro, or hydroxyl; preferably, the halogen is selected from, Cl, Br, I, F.
  • substituted aryl groups are optionally independently substituted with 1 to 3 substituents.
  • R 5 is selected from -COOR 12 , -CONHR 13 , wherein R 7 -R 11 are as described in the following table, wherein A is independently selected from F, Cl, Br, I: R 12 is selected from C1-6 alkyl, R 13 is selected from C1 -6 alkyl, aryl or substituted aryl, wherein the aryl is selected from phenyl, naphthyl, pyrenyl, anthryl, phenanthryl, furan, thiophene;
  • the compound of formula X is further as follows: Wherein A, R 1 , R 2 , R 3 , R 4 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 and X are as shown above; preferably, R 4 is selected from naphthyl, phenyl , Substituted naphthyl or substituted phenyl, the substituted phenyl is more preferably
  • Another aspect of the present invention provides a preparation method of the carbohydrate compound of the present invention, which comprises the following steps:
  • R 3 is selected from levulinyloxy (LevO-), 4-methoxyphenoxy (4-MP-O-), A, R 1 , R 2 , R 3 , with the same definition as described above .
  • the accelerator in step 1) is selected from potassium carbonate and sodium carbonate,
  • Step 2) The side chain group conversion includes the following steps:
  • Step 2-1) Selective deprotection of R 3 "to obtain a key intermediate
  • Step 2-2) subject the key intermediate obtained in step 2-1) to a continuous acylation reaction and then a substitution reaction to achieve group conversion to prepare a compound of formula IX;
  • the reagents for removing the protective group in step 2-1) are hydrazine acetate (N 2 H 4 .AcOH) and cerium ammonium nitrate (CAN).
  • the protective group removing agent corresponds to the R 3 ”group.
  • R 3 ” is LevO-
  • the protective group removing reagent is hydrazine acetate N 2 H 4 .AcOH
  • R 3 ” is 4-MP-O-
  • the reagent for removing protecting groups is cerium ammonium nitrate CAN.
  • the acylation reagent in the acylation reaction conditions in step 2-2) is selected from trifluoromethanesulfonic anhydride, p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, preferably under alkaline conditions, more preferably Ground, the base is selected from triethylamine, pyridine, diisopropylethylamine, triisopropylamine;
  • the substitution reagent in the substitution reaction in step 2-2) is selected from potassium thioacetate, sodium thioacetate, potassium thioacetate, thioacetic acid, sodium hydrosulfide, lithium azide, sodium azide, tetrabutylene Ammonium azide, azidotrimethylsilane and fluoride combination reagent
  • the fluoride is selected from lithium fluoride, sodium fluoride, potassium fluoride, ammonium fluoride, sodium hydrogen fluoride, potassium hydrogen fluoride, ammonium hydrogen fluoride , Tetrabutylammonium fluoride, tetramethylammonium fluoride;
  • R 3 is mercapto-SH
  • the substitution reagent is potassium thioacetate, sodium thioacetate, potassium thioacetate, thioacetic acid, sodium hydrosulfide
  • R 3 is an azido group or an amino group
  • step 3 the deacetylation reaction is reacted under alkaline conditions, and the pH of the reaction is 8-12.
  • the alkaline conditions are selected from sodium methoxide, triethylamine, trimethylamine, and ammonia.
  • One or more kinds of acquisition are selected from sodium methoxide, triethylamine, trimethylamine, and ammonia.
  • step 1) the reaction solvent is selected from solvents miscible with water, preferably acetonitrile, tetrahydrofuran, N,N-dimethylformamide; step 2-2) the reaction solvent in the acylation reaction conditions is selected from aprotic polar
  • the solvent is preferably dichloromethane, chloroform, acetonitrile, and tetrahydrofuran;
  • the reaction solvent of step 2-2) substitution reaction is selected from solvents miscible with water, preferably N,N-dimethylformamide, acetonitrile, tetrahydrofuran
  • step 3 the reaction solvent is selected from protic polar solvents, preferably water, alcohol or alcohol aqueous solution, more preferably methanol, methanol/water mixture, water, ethanol.
  • the compound of formula III prepares crude bromosugar under the action of bromination reagent, wherein the bromination reagent is selected from 33% hydrobromic acid acetic acid solution HBr/AcOH, methanol/acetyl bromide combined reagent, titanium tetrabromide, tribromide Phosphorus
  • substitution reaction to prepare intermediates, and the substitution reagent is selected from potassium thioacetate, sodium hydrosulfide, thioacetic acid, sodium thioacetate, and ammonium thioacetate;
  • the end group selective deacetylation reagent is selected from N,N-dimethylaminopropylamine, ethylenediamine/acetic acid combination reagent, benzylamine, aniline;
  • R 2 is as described above.
  • the solvent is selected from a mixed solution of aprotic polar solvent and acetic acid, preferably a mixed solvent of dichloromethane and acetic acid; in step 1-12), the reaction solvent is selected from acetonitrile MeCN, N, N- Dimethylformamide DMF;
  • R 1 , R 3 ” are as defined above, and R 3 ′ is 2-naphthylmethyl (Nap), benzyl (Bn-), and allyl (All-).
  • the reaction reagents for hydrolysis and ring opening of 1,2-position propionic acid are toluenesulfonic acid, benzenesulfonic acid, camphorsulfonic acid, trifluoroacetic acid, and reflux for ring-opening reaction;
  • the acetylation reaction condition is sodium acetate And acetic anhydride mixture, acetic anhydride and pyridine mixture, acetyl bromide and pyridine mixture, acetyl chloride and pyridine mixture, perchloric acid and acetic anhydride mixture.
  • step 1-22 by deprotecting agent 2,3-dichloro-5,6-dicyano-1,4-benzoquinone or ceric ammonium nitrate removal of R 3 'Nap protection, palladium or by deprotecting agent carbon (Pd / C), palladium hydroxide (Pd (OH) 2) removal of R 3 'Bn protecting group, deprotecting agent, or by removal of PdCl 2 R 3' All- protection;
  • step 1-22 after deprotection, react under levulinic acid or levulinic anhydride to obtain R3" as Lev, or react under 4-methoxyphenol to obtain R3" as 4-MP-OH.
  • the brominated reagent is selected from 33% hydrobromic acid acetic acid solution HBr/AcOH, methanol/acetyl bromide combined reagent, titanium tetrabromide, and phosphorus tribromide.
  • step 1-21-2 Before or after step 1-21-1) or after step 1-21-2), further including step 1-21-3) performing a group conversion reaction;
  • step 1-21-1 the conditions for the selective ring-opening reaction of propylidene at the 5 and 6 positions are acidic conditions, and the reaction is carried out at room temperature.
  • the acidic conditions are carried out by adding p-toluenesulfonic acid, benzenesulfonic acid, camphorsulfonic acid, and trifluorosulfonic acid. Acetic acid is obtained and reacted in the presence of water;
  • Step 1-21-2) LG-PEG n+1 -R 3 'or LG-C m H 2m -R 3 ' is reacted under the conditions of a catalyst selected from the group consisting of dibutyltin oxide and cesium fluoride, LG is selected from chlorine atom, bromine atom, p-toluenesulfonyloxy group;
  • Step 1-21-3 The condition of the group conversion reaction is to react with R 1 -C ⁇ C under the condition of a catalyst, and the catalyst is a combination of CuI and N,N-diisopropylethylamine DIPEA, CuSO 4 and Combination of Vc-Na; or firstly hydrogenate and reduce the -N 3 on the compound of formula II to -NH 2 , which is obtained by reacting with R 6 -Cl.
  • step 1-11-3) Before or after step 1-11-1) or after step 1-11-2), further including step 1-11-3) performing a group conversion reaction;
  • step 1-11-1 the conditions for the propylidene ring-opening reaction are carried out under acidic reflux.
  • the acidic conditions are obtained by adding p-toluenesulfonic acid, benzenesulfonic acid, camphorsulfonic acid, and trifluoroacetic acid, and in the presence of water The conditions for the reaction;
  • the acetylation reaction conditions in step 1-11-2) are a mixture of sodium acetate and acetic anhydride, a mixture of acetic anhydride and pyridine, a mixture of acetyl bromide and pyridine, a mixture of acetyl chloride and pyridine, a mixture of perchloric acid and acetic anhydride ;
  • Step 1-11-3) The condition of the group conversion reaction is to react with R 2 -C ⁇ C under the condition of a catalyst, and the catalyst is a combination of CuI and N,N-diisopropylethylamine DIPEA, CuSO 4 and Vc-Na; or firstly hydrogenate and reduce the -N 3 on the compound of formula II to -NH 2 , which is obtained by reacting with R 6 -Cl.
  • the catalyst is a combination of CuI and N,N-diisopropylethylamine DIPEA, CuSO 4 and Vc-Na; or firstly hydrogenate and reduce the -N 3 on the compound of formula II to -NH 2 , which is obtained by reacting with R 6 -Cl.
  • step i) includes the following two steps:
  • the catalyst is selected from Pd/C, Pd(OH) 2 /C.
  • step ii) includes the following two steps:
  • the acylating reagent is selected from trifluoromethanesulfonic anhydride, p-toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride, preferably under alkaline conditions, more preferably Ground, the base is selected from triethylamine, pyridine, diisopropylethylamine, triisopropylamine;
  • the azide reagent is selected from lithium azide, sodium azide, tetrabutylammonium azide, or a combination of azidotrimethylsilane and fluoride
  • the fluoride is selected from lithium fluoride, sodium fluoride, potassium fluoride, ammonium fluoride, sodium hydrogen fluoride, potassium hydrogen fluoride, ammonium hydrogen fluoride, tetrabutylammonium fluoride, tetramethylammonium fluoride.
  • Another aspect of the present invention provides the use of the carbohydrate compound of the present invention in the preparation of drugs or detection reagents for targeting, identifying or detecting galectin protein 1.
  • Another aspect of the present invention provides the use of the carbohydrate compound of the present invention as an active targeting ligand, the active targeting ligand specifically recognizes galectin protein 1, and the carbohydrate compound and the active ingredient Or test reagent connection.
  • the active ingredients include anti-tumor drugs or anti-inflammatory drugs
  • the detection reagents include fluorescent labels and probes.
  • the commercial raw material diacetone glucose is used as the starting material, and the diacetone gulose II is obtained by inversion of the sugar ring, and then the key intermediate II is obtained through group conversion;
  • the key intermediate III is synthesized through the steps of group conversion, ring opening and acetylation.
  • Intermediate II undergoes bromination, thiolation and selective deacetylation reactions to obtain key intermediate IV;
  • intermediate I undergoes group conversion,
  • the key intermediate V of selective ring opening and side chain derivatization reaction is successively subjected to the steps of ring opening, acetylation, side chain group conversion, and bromination to obtain key intermediate VII;
  • intermediate IV and intermediate Intermediate VIII is prepared by VII under the action of accelerator.
  • Intermediate VIII undergoes selective deprotection, group conversion and other steps successively to obtain a new compound X based on TDG molecular skeleton for functionalized carbohydrate molecules.
  • the synthesis route is shown in the following process.
  • the present invention provides a class of functional carbohydrate molecular compounds based on TDG molecular skeleton by designing and efficiently synthesizing a class of functional carbohydrate molecular compounds, which can be used for the direct construction of multiple functional targeting molecules.
  • the R3 group can be coupled with various detection reagents or active substances to achieve the purpose of targeting.
  • a class of functional carbohydrate compounds is provided: by modifying the functional side chains of the TDG molecular skeleton, a new class of carbohydrate compound functional molecules based on the TDG molecular skeleton is obtained.
  • the reactive groups on the functional side chains can directly construct functional targeting molecules.
  • a synthetic route is provided to synthesize and prepare new compounds, and to achieve gram-level large-scale synthesis. This synthetic route simplifies the reaction steps and simplifies the post-processing and purification steps. Each step of the reaction is stable, economical, and efficient, and does not involve anhydrous Oxygen reaction is conducive to mass and industrial production.
  • the synthetic route of the present invention optimizes the conditions of each step of the reaction, avoids the use of heavy metal oxidants and other heavily polluting reagents, metal azide reagents and other strictly controlled reagents, and improves the reaction efficiency
  • the present invention provides a new class of functionalized carbohydrate molecule compounds based on TDG molecular backbone, which can use TDG carbohydrate ligand molecules to recognize and bind target proteins, play the role of recognizing and binding target proteins, and use them as target molecules and then
  • TDG carbohydrate ligand molecules to recognize and bind target proteins, play the role of recognizing and binding target proteins, and use them as target molecules and then
  • the construction of functionally targeted molecules has broad application prospects in tumor detection, tumor immunity and other fields; and each step of the synthesis process is simple, stable and efficient, the reaction steps are simple, the post-processing and purification are simple, the cost is low, and it is suitable for batches. And industrialized production.
  • Figure 1 The design of new compounds of functionalized carbohydrate molecules based on the TDG molecular backbone.
  • Azidotrimethylsilane (52.9mL, 402.1mmol) and sodium fluoride (15.9g, 379.1mmol) were mixed in DMF (150mL), refluxed in an oil bath at 100°C for 1 hour, cooled to room temperature, and then added.
  • Example 3 The feeding ratio and operation are the same as in Example 3, the isolated compound of formula II (29.2g, 89%).
  • Azidotrimethylsilane (52.9mL, 402.1mmol) and tetrabutylammonium fluoride (15.9g, 379.1mmol) were mixed in DMF (100mL), and the reaction was refluxed at 50°C for 30 minutes until no bubbles were generated.
  • the oily intermediate was dissolved in methanol (40mL), dibutyltin oxide (5.24g, 21.03mmol) was added, and the reaction was refluxed in an oil bath for 3 hours until the solution was clear. The reaction solution was cooled to room temperature, and the solvent was evaporated to obtain a yellow syrup.
  • the syrup intermediate was dissolved in DMF (40mL), Ts-PEG 4 -ONap (12.84g, 26.29mmol) and cesium fluoride (3.99g, 26.29mmol) were added, and the reaction was refluxed overnight in an oil bath at 70°C.
  • the feeding operation is the same as step 1 in embodiment 13;
  • the reaction solution is washed with 1N HCl aq , sat.NaHCO 3a.q. and saturated brine successively, dried over anhydrous sodium sulfate, concentrated and mixed, and purified by column chromatography to obtain compound XXI (5.6g, 85.6%), light yellow syrup, anomer mixture.
  • the compound of formula XII-2 (1.0g, 2.71mmol) was dissolved in 10ml of methanol, and 10 times equivalent of nBu-NH 2 was added to the nBu-NH 2, and the mixture was refluxed and stirred overnight in an oil bath at 80°C.
  • the side chain derivatization reagent LG-(CH 2 CH 2 -X) n -CH 2 CH 2 -R 3 ”' has been synthesized, and the side chain derivatization reagents in the following table have been tested.
  • the operation is as follows Conditions A or B were tried, but no product was obtained
  • Condition B Bu 2 SnO/CsF reagent combination, the operation process is the same as that in Example 16, and no reaction occurs.
  • the probe complex can be used to detect the tumor biomarker Galectin-1 (Galectin-1) protein in serum, and then realize tumor diagnosis: disperse sugar-gold nanorod probes evenly in aqueous solution,
  • Galectin-1 the tumor biomarker Galectin-1
  • the glycosyl part of the probe complex is the ligand of Galectin-1, which can combine with Galectin-1 to cause the evenly dispersed gold nanorod probes to reunite.
  • the LSPR effect of the gold nanorod itself is before and after the reunion. It can show obvious optical absorption signal changes, thus realizing the detection of Galectin-1, and then realizing tumor diagnosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明设计了一种糖类化合物,其结构如式X所示,其中,R1、R2独立地选自取代的酰胺基、取代的三氮唑基、取代的氨基;R3选自巯基,叠氮基、氨基、羧基;A为式aa或-CmH2mR3,X选自氧原子;n选自0、1、2、3、4、5、6、7;m选自2、3、4、5、6、7、8、9、10。本发明采取了"先侧链衍生化、后糖基化偶联"的合成策略,实现了TDG分子骨架的侧链衍生化修饰,实现了化合物的高效合成。本发明利用TDG糖配体分子对靶蛋白的识别结合、发挥识别结合靶蛋白的靶头作用,将其作为靶头分子进而构建功能靶向分子,在肿瘤检测、肿瘤免疫等领域具有广泛的应用前景。

Description

一种基于TDG分子骨架的功能糖类分子及其制备方法 技术领域
本发明涉及药物化学领域,具体涉及一种基于TDG分子骨架的功能糖类分子及其制备方法。
背景技术
半乳凝素(Galectin)是凝集素蛋白中的一类,属糖结合蛋白,可通过本身具有的糖结合域(Carbohydrate Recognition Domain,CRD)口袋而识别、结合具有半乳糖、乳糖残基的糖配体分子,进而在诸多生理病理过程(如癌症、炎症等)中发挥重要作用。
目前已经阐明了半乳凝素蛋白与其糖配体分子的识别结合机制,发展获得了一系列对半乳凝素具有高特异识别、高亲和结合的糖配体分子(WO 2005/113569 A1,WO 2016/113335 A1,WO 2017/019770 A1,WO 2017/080973 A1),其中具有硫代二半乳糖苷(TDG)分子骨架的糖配体分子能更好的匹配和占据半乳凝素蛋白的CRD,进而表现出更高的结合活性。
但是,目前获得的糖配体分子仅通过竞争结合以阻断半乳凝素蛋白与体内糖配体或抗体的识别结合,产生的生物效应不明确,有待进一步研究;而在利用这些糖配体分子与半乳凝素的识别结合作用进行更广泛的生物学应用方面尚属空白,如利用糖配体与肿瘤标志物半乳凝素1、3的特异性识别结合而进行肿瘤检测、肿瘤免疫治疗等。
目前围绕TDG糖配体分子的研究聚集在发展高特异识别、高亲和结合的TDG糖配体分子上,比如通过TDG糖配体分子上不同取代基团(如取代的三氮唑基团、取代的芳基酰胺基团等)的引入,发展了一系列对半乳凝素具有高结合力的糖配体分子,并可通过取代基团的变化来调整TDG糖配体分子对不同半乳凝素蛋白识别结合的选择性和特异性。
目前对TDG糖配体分子的利用基本限于将TDG糖配体作为半乳凝素蛋白抑制剂的药物化学应用,其主要通过TDG糖配体分子对半乳凝素靶蛋白的竞争结合,阻断半乳凝素靶蛋白与生物体内天然糖配体或抗体的结合,进而阻断相应的信号通道,发挥相应的生物学效应,然而目前研究结果显示该生物学效应不明显,相关原因待进一步研究。
在TDG糖配体的药物化学应用之外,利用TDG糖配体分子与半乳凝素蛋白的识别结合、将TDG糖配体分子作为靶向半乳凝素蛋白的功能分子来进行的研究尚未报道,能发挥这些糖配体分子靶头作用的功能分子也未见报道。具有TDG分子骨架的糖配体分子能高特异识别、高亲和结合半乳凝素蛋白,通过设计、制备基于TDG分子骨架的功能糖类分子新化合物,能充分发挥具TDG分子骨架的糖配体分子对半乳凝素蛋白靶标识别结合的靶头作用,进而赋予 该类配体分子更广泛的生物学功能。
在合成制备方法上,本发明提供了新化合物的合成方法,同目前已有的具TDG分子骨架糖配体合成方法(WO 2005/113569 A1,WO 2016/113335 A1,WO 2017/019770 A1,WO 2017/080973 A1)相比,本发明采取了“先侧链衍生化、后糖基化偶联”的合成策略,实现了TDG分子骨架的侧链衍生化修饰,提供了一条新合成路线,实现了化合物的高效合成。
本发明的目的在于根据TDG糖配体分子与半乳凝素蛋白识别结合的机制,提供一类基于TDG分子骨架的功能化糖类分子新化合物及其合成制备方法。通过在TDG分子骨架的非结合位点衍生出功能侧链来进行分子结构设计,使得新化合物在保持TDG分子骨架对半乳凝素靶蛋白的高特异识别、高亲和结合作用的基础上,通过功能侧链上衍生出不同活性反应基团,从而具备构建多种功能分子的反应性能,并通过新合成路线实践,高效制备功能化TDG糖配体分子新化合物。
因此本发明提供一类基于TDG分子骨架的功能糖类分子新化合物、提供该类新化合物的合成制备方法,在具TDG分子骨架的糖配体上进行功能侧链衍生修饰得到新的功能化糖类分子,新化合物在保持具TDG分子骨架的糖配体分子对半乳凝素蛋白的高特异识别、高亲和结合作用的基础上,进一步延伸出功能侧链,可通过功能侧链上活性反应基团进行功能化构建、用于基于半乳凝素蛋白靶标的肿瘤检测、肿瘤靶向、肿瘤免疫、炎症抑制等试剂、分子的构建等。
发明内容
本发明提供一类基于TDG分子骨架的功能糖类分子新化合物及其合成制备方法。本发明首先在分析TDG分子骨架与半乳凝素蛋白的识别结合基础上,设计一类基于TDG分子骨架的功能化糖类分子新化合物,然后通过合成实践,发展合成路线,实现基于TDG分子骨架的功能糖分子新化合物的高效制备。
基于TDG分子骨架的功能化糖类分子新化合物的设计
目前,半乳凝素蛋白与糖配体分子的结合机制已经阐明(Nilsson et al,2005;Nilsson et al,2008),半乳凝素的CRD口袋主要分为A、B、C、D、E五个区域(图1A),在与其天然乳糖配体的结合中,主要通过C、D区的His158、Asn160、Arg162、Asn174和Glu184这5个氨基酸残基同乳糖分子的C-3位、C-4'位和C-6'位的羟基发生作用而进行识别结合(图1B),而利用具有TDG分子骨架的分子作为糖配体分子,其延伸出的R 1、R 2基团可进一步同E区 的Arg 186和A、B区的Arg144残基发生作用,从而进一步匹配占据了半乳凝素的CRD口袋(图1C)。基于此,在TDG分子骨架糖配体分子的非结合位点C-6位延生出带功能基团的功能侧链(图1D),设计得到一类基于TDG分子骨架的功能化糖类分子新化合物(图1E),其中,R 1、R 2分别或同时选自取代的三氮唑基团、酰胺基,侧链功能基团R 3选自巯基(-SH)、氨基(-NH 2)、叠氮基(-N 3),X选自氧原子(O)、碳原子(C),n选自0-7等;设计原理及相应的化合物结构如图1所示。
基于以上设计,本发明设计了一种糖类化合物,其结构如式X所示,
Figure PCTCN2019114660-appb-000001
其中,R 1、R 2独立地选自取代的酰胺基、取代的三氮唑基、取代的氨基;
R 3选自巯基,叠氮基、氨基、羧基;
A为
Figure PCTCN2019114660-appb-000002
或-C mH 2mR 3
X选自氧原子;
n选自0、1、2、3、4、5、6、7;
m选自2、3、4、5、6、7、8、9、10。
在本发明中,所述酰胺基
Figure PCTCN2019114660-appb-000003
其中R 4选自烷基、取代的烷基、芳基、取代的芳基;
在本发明中,所述取代的三氮唑基
Figure PCTCN2019114660-appb-000004
其中,R 5选自芳基、取代的芳基、芳酰胺基、取代的芳酰胺基、烷酰胺基、酯基。
在本发明中,取代的氨基(
Figure PCTCN2019114660-appb-000005
其中,R 6选自烷基、取代的烷基、芳基、取代的芳基、芳酰胺基、取代的芳酰胺基、烷酰胺基。
在本发明中,芳基或取代的芳基中的芳基选自苯基、萘基、芘基、蒽基、菲基、呋喃、噻吩。
在本发明中,烷基或取代的烷基中的烷基选自C1~C6的烃基。
在本发明中,所述取代芳基上的取代基是氢、卤素、C1~C6的烃基或烃氧基、C1~C6 的卤代烷基或硝基、羟基;优选地,所述卤素选自,Cl、Br、I、F。
在本发明中,所述取代芳基上的任选独立地被1至3个取代基取代。
在本发明中,R 5选自
Figure PCTCN2019114660-appb-000006
-COOR 12,-CONHR 13,其中,R 7-R 11如下表所述,其中A独立地选自F、Cl、Br、I:R 12选自C1-6的烷基,R 13选自C1-6的烷基,芳基或取代的芳基中,其中芳基选自苯基、萘基、芘基、蒽基、菲基、呋喃、噻吩;
R 7 R 8 R 9 R 10 R 11
H Z Z Z H
Z Z X H H
H H Z Z Z
Z H Z H Z
Z Z H Z H
Z Z H H Z
Z Z H H H
Z H Z H H
Z H H Z H
Z H H H Z
H Z Z H H
H Z H Z H
Z H H H H
H Z H H H
H H Z H H
H H H Z H
H H H H Z
.
本发明中,所述式X化合物进一步如下所示,
Figure PCTCN2019114660-appb-000007
Figure PCTCN2019114660-appb-000008
Figure PCTCN2019114660-appb-000009
其中A、R 1、R 2、R 3、R 4、R 8、R 9、R 10、R 11、R 12、R 13和X如上所示;优选地,R 4选自萘基,苯基、取代的萘基或取代的苯基,取代的苯基更优选为
Figure PCTCN2019114660-appb-000010
本发明另一个方面提供了一种本发明所述的糖类化合物的制备方法,其包括如下步骤:
1)式IV化合物与式VII化合物在促进剂的作用下进行糖基化偶联获得式VIII化合物,
2)式VIII化合物经过侧链基团转换得到式IX化合物;
3)式IX化合物经过去乙酰化获得式X化合物;
Figure PCTCN2019114660-appb-000011
其中,R 3”选自乙酰丙酰氧基(LevO-),4-甲氧基苯氧基(4-MP-O-),A、R 1、R 2、R 3、定义同前所述。
步骤1)中所促进剂选自碳酸钾、碳酸钠,
步骤2)中侧链基团转换包括如下步骤:
步骤2-1)选择性脱保护基R 3”得关键中间体;
步骤2-2)将步骤2-1)中所得关键中间体经连续的酰化反应、然后进行取代反应实现基团转换,制备式IX化合物;
其中,步骤2-1)中脱除保护基的试剂为醋酸肼(N 2H 4.AcOH)、硝酸铈铵(CAN)。保护基脱除剂同R 3”基团相对应,当R 3”为LevO-时,脱除保护基试剂为醋酸肼N 2H 4.AcOH,当R 3”为4-MP-O-时,脱除保护基试剂选择硝酸铈铵CAN。
其中,步骤2-2)中酰化反应条件中酰化试剂选自三氟甲磺酸酐、对甲苯磺酰氯、甲磺酰氯、三氟甲磺酰氯,优选地在碱性条件下进行,更优选地,碱选自三乙胺、吡啶、二异丙基乙胺、三异丙基胺;
其中,步骤2-2)中取代反应中取代试剂选自硫代乙酸钾、硫代乙酸钠、硫代乙酸钾、硫代乙酸、硫氢化钠、叠氮化锂、叠氮化钠、四丁基叠氮化铵、叠氮基三甲基硅烷和氟化物组 合试剂,优选地,氟化物选自氟化锂,氟化钠,氟化钾,氟化铵,氟化氢钠,氟化氢钾,氟化氢铵,四丁基氟化铵,四甲基氟化铵;当R 3为巯基-SH时,取代试剂选择硫代乙酸钾、硫代乙酸钠、硫代乙酸钾、硫代乙酸、硫氢化钠,当R 3为叠氮基、氨基时,取代试剂选择叠氮化锂、叠氮化钠、四丁基叠氮化铵、叠氮基三甲基硅烷和氟化物组合试剂。
步骤3)中去乙酰化反应在碱性条件下反应,反应的pH值为8-12,优选地,所述碱性条件通过加入选自甲醇钠、三乙胺、三甲胺、氨水中的一种或多种获得。
其中,步骤1)反应溶剂选自与水混溶的溶剂,优选为乙腈、四氢呋喃、N,N-二甲基甲酰胺;步骤2-2)酰化反应条件中反应溶剂选自非质子极性溶剂,优选为二氯甲烷、三氯甲烷、乙腈、四氢呋喃;步骤2-2)取代反应的反应溶剂选自同水混溶的溶剂,优选为N,N-二甲基甲酰胺,乙腈,四氢呋喃;步骤3)中反应溶剂选自质子性极性溶剂,优选为水,醇或醇的水溶液,更优选为甲醇、甲醇/水混合物、水、乙醇。
在本发明的技术方案中,所述的式IV化合物通过以下步骤获得,
1-11)式III化合物在溴代试剂作用下制备溴代糖粗品,其中溴代试剂选自33%氢溴酸醋酸溶液HBr/AcOH,甲醇/乙酰溴组合试剂、四溴化钛、三溴化磷;
1-12)将1-11)中所得溴代糖粗品经取代反应制备中间体,取代试剂选自硫代乙酸钾、硫氢化钠、硫代乙酸,硫代乙酸钠,硫代乙酸铵;
1-13)将1-12)中所得中间体经端基选择性脱乙酰化反应,制备式IV化合物,
其中,端基选择性脱乙酰化试剂选自N,N-二甲氨基丙胺、乙二胺/乙酸组合试剂、苄胺、苯胺;
Figure PCTCN2019114660-appb-000012
R 2如前所述。
其中,步骤1-11)中溶剂选自非质子极性溶剂和醋酸的混合溶液,优选为二氯甲烷和醋酸的混合溶剂;步骤1-12)中反应溶剂选自乙腈MeCN,N,N-二甲基甲酰胺DMF;
在本发明的技术方案中,所述的式VII化合物通过以下步骤获得,
1-21)式V化合物经1,2位丙叉酸水解开环、乙酰化反应制备式VI中间体;
1-22)式VI化合物经保护基转换反应制备中间体;
1-23)将步骤1-22)中所得中间体在溴代试剂作用下发生溴代反应,制备式VII化合物;
Figure PCTCN2019114660-appb-000013
其中,R 1、R 3”定义如前所述,R 3’为2-萘甲基(Nap),苄基(Bn-),烯丙基(All-)。
步骤1-21)中,1,2位丙叉酸水解开环的反应试剂为甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸,回流进行开环反应;乙酰化反应条件为乙酸钠和乙酸酐的混合物,醋酐和吡啶的混合物,乙酰溴和吡啶的混合物,乙酰氯和吡啶的混合物,高氯酸和醋酐的混合物。
步骤1-22)中,经脱保护剂2,3-二氯-5,6-二氰基-1,4-苯醌或硝酸铈铵脱除R 3’Nap保护,或者通过脱保护剂钯碳(Pd/C)、氢氧化钯(Pd(OH) 2)脱除R 3’Bn保护基,或者通过脱保护剂PdCl 2脱除R 3’All-保护;
步骤1-22)中,脱保护后在乙酰丙酸或乙酰丙酸酐下反应获得R3”为Lev,或者在4-甲氧基苯酚下反应获得R3”为4-MP-OH。
步骤1-23)中,溴代试剂选自33%氢溴酸醋酸溶液HBr/AcOH,甲醇/乙酰溴组合试剂、四溴化钛、三溴化磷。
在本发明的技术方案中,所述的式V化合物通过以下步骤获得,
1-21-1)式II化合物进行5,6位丙叉选择性开环;
1-21-2)进行侧链衍生化;
在步骤1-21-1)之前或之后或在步骤1-21-2)之后还包括步骤1-21-3)进行基团转换反应;
其中
Figure PCTCN2019114660-appb-000014
步骤1-21-1)中5,6位丙叉选择性开环反应的条件为在酸性条件,常温下进行反应,酸性条件通过加入对甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸获得,并在有水存在的条件进行反应;
步骤1-21-2)LG-PEG n+1-R 3’或者LG-C mH 2m-R 3’在催化剂条件下进行反应,所述催化剂选自二丁基氧化锡和氟化铯,LG选自氯原子,溴原子,对甲苯磺酰氧基;
步骤1-21-3)基团转换反应的条件为在催化剂的条件下与R 1-C≡C反应,所述催化剂为 CuI和N,N-二异丙基乙胺DIPEA组合、CuSO 4和Vc-Na组合;或者首先氢化还原式II化合物上的-N 3为-NH 2,在与R 6-Cl反应获得。
在本发明的技术方案中,所述的式III化合物通过以下步骤获得,
1-11-1)式II化合物进行丙叉开环反应;
1-11-2)进行糖环羟基的乙酰化;
在步骤1-11-1)之前或之后或在步骤1-11-2)之后还包括步骤1-11-3)进行基团转换反应;
其中
Figure PCTCN2019114660-appb-000015
步骤1-11-1)中丙叉开环反应的条件为在酸性条件回流下进行,酸性条件通过加入对甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸获得,并在有水存在的条件进行反应;
步骤1-11-2)中乙酰化反应条件为乙酸钠和乙酸酐的混合物,醋酐和吡啶的混合物,乙酰溴和吡啶的混合物,乙酰氯和吡啶的混合物,高氯酸和醋酐的混合物;
步骤1-11-3)基团转换反应的条件为在催化剂的条件下与R 2-C≡C反应,所述催化剂为CuI和N,N-二异丙基乙胺DIPEA组合、CuSO 4和Vc-Na;或者首先氢化还原式II化合物上的-N 3为-NH 2,在与R 6-Cl反应获得。
在本发明的技术方案中,所述的式II化合物通过以下步骤获得,
i)通过双丙酮葡萄糖经糖环翻转,制备式I化合物双丙酮古洛糖
Figure PCTCN2019114660-appb-000016
ii)式I化合物经酰化、叠氮取代反应制备式II化合物;
其中步骤i)包括以下两个步骤:
i-1)氧化反应得到式I-1化合物
Figure PCTCN2019114660-appb-000017
以醋酐Ac 2O和二甲基亚砜DMSO组合物作为氧化剂进行氧化反应,
i-2)催氢化脱乙酰基反应,催化剂选自Pd/C,Pd(OH) 2/C。
其中步骤ii)包括以下两个步骤:
ii-1)加入酰化试剂进行反应,所述酰化试剂选自三氟甲磺酸酐、对甲苯磺酰氯、甲磺酰氯、三氟甲磺酰氯,优选地在碱性条件下进行,更优选地,碱选自三乙胺、吡啶、二异丙基乙胺、三异丙基胺;
ii-2)加入叠氮试剂进行反应,所述叠氮试剂选自叠氮化锂、叠氮化钠、四丁基叠氮化铵,或叠氮基三甲基硅烷与氟化物的组合,所述氟化物选自氟化锂,氟化钠,氟化钾,氟化铵,氟化氢钠,氟化氢钾,氟化氢铵,四丁基氟化铵,四甲基氟化铵。
本发明再一个方面提供了本发明所述的糖类化合物在制备用于靶向、识别或检测半乳凝素蛋白1的药物或检测试剂的用途。
本发明再一个方面提供了本发明所述的糖类化合物作为主动靶向配体的用途,所述主动靶向配体特异性识别半乳凝素蛋白1,且所述糖类化合物与活性成分或检测试剂连接。
在本发明的技术方案中,所述的活性成分包括抗肿瘤药物或抗炎药物,所述检测试剂包括荧光标记、探针。
在本发明的技术方案中,具体地,以商业原料双丙酮葡萄糖为起始原料,经糖环翻转得到双丙酮古洛糖II,继而经基团转换得到关键中间体II;中间体II经基团转换、开环、乙酰化步骤合成关键中间体III,中间体II先后经溴代、硫代和选择性脱乙酰化反应得到关键中间体IV;另一方面,中间体I经基团转换、选择性开环、侧链衍生化反应关键中间体V,中间体V先后经开环、乙酰化、侧链基团转换操作、溴代等步骤,得到关键中间体VII;中间体IV和中间体VII在促进剂作用下制备得到中间体VIII,中间体VIII先后经选择性脱保护、基团转换等步骤,得到基于TDG分子骨架的功能化糖类分子新化合物X,合成路线如下流程所示。
Figure PCTCN2019114660-appb-000018
Figure PCTCN2019114660-appb-000019
本发明通过设计和高效合成一类基于TDG分子骨架的功能化糖类分子化合物,提供了一类糖类化合物功能分子,可用于多种功能靶向分子的直接构建。在作为靶向试剂使用时,R3基团可以偶联各种检测试剂或者活性物质,进而实现靶向目的。
有益效果
1.提供了一类功能糖类化合物:通过对TDG分子骨架的功能侧链修饰,得到一类基于TDG分子骨架的糖类新化合物功能分子。
2.在糖配体分子的非结合位点引入功能侧链的结构设计,在保持糖配体对靶蛋白的识别结合活性的基础上,引入侧链功能基团使得新化合物具有通过高效简单的化学反应制备成多种靶向分子的反应性能。
3.通过功能侧链基团的引入,功能侧链上的反应活性基团可直接构建功能靶向分子。
4.通过在侧链引入不同功能基团,可用于多种不同类型功能靶向分子的构建,具有广阔的应用范围和明显的应用价值。
5.通过在侧链引入不同的功能基团,可应用多种不同方法高效构建不同类型功能分子,具有广阔的应用范围和明显的应用价值
6.提供了一条合成路线来合成制备新化合物,并实现克级大量合成,该合成路线简并了反应步骤,简化了后处理纯化步骤,各步反应稳定、经济、高效,不涉及无水无氧反应,有利于大批量、工业化生产。
7.本发明合成路线优化了各步反应的条件、避免了重金属氧化剂等重污染试剂、金属叠氮化试剂等严格管控试剂的使用、提高了反应效率
本发明提供的一类基于TDG分子骨架的功能化糖类分子新化合物,可利用TDG糖配体分子对靶蛋白的识别结合、发挥识别结合靶蛋白的靶头作用,将其作为靶头分子进而构建功能靶向分子,在肿瘤检测、肿瘤免疫等领域具有广泛的应用前景;并且其合成过程中各步反应简单、稳定、高效,反应步骤简并,后处理纯化简单,成本低廉、适用于批量及工业化成产。
附图说明
图1.基于TDG分子骨架的功能化糖类分子新化合物的设计。
具体实施方式
下面以合成新化合物XI作为基于TDG分子骨架的功能化糖类分子化合物的合成路线代表证明本发明的可行性。
Figure PCTCN2019114660-appb-000020
实施例1
Figure PCTCN2019114660-appb-000021
双丙酮葡萄糖(40g,153.7mmol)溶于Ac 2O/DMSO(v/v=1:2,150mL)的混合溶液中,室温搅拌过夜,TLC(PE:EA=1:1)检测反应完全,反应液加入二氯甲烷DCM稀释,水洗涤3次,合并有机相,有机相用30%双氧水洗涤,无水硫酸钠干燥,浓缩,得褐色糖浆中间体,直接用于下步反应
褐色糖浆中间体溶于吡啶(50mL),滴入乙酸酐(20mL),反应置于90℃油浴中回流过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,浓缩后经柱层析纯化(等度洗脱,PE:EA=3:1),得无色糖浆I-1(39.5g,85%in 2steps)。 1H NMR(400M,CDCl 3)δ6.04(d,J=5.5Hz,1H),5.40(d,J=5.5Hz,1H),4.71(t,J=6.4Hz,1H),4.10-4.04(m,2H),2.22(s,3H),1.54(s,3H),1.48(s,3H),1.45(s,3H),1.38(s,3H). 13C NMR(101MHz,CDCl 3)δ169.1,145.4,129.2,113.6,110.6,104.2,81.0,68.8,66.1,28.1,28.0,25.9,25.8,20.7。
实施例2
Figure PCTCN2019114660-appb-000022
化合物I-1(39.5g,131.5mmol)溶于乙酸乙酯(100mL),加入Pd/C粉末(2.0g),搅匀后,置于氢气(40psi)氛围中搅拌3小时,TLC(PE:EA=1:1)检测反应完全,滤除Pd/C粉末,浓缩滤液,得浅黄色糖浆中间体(36.6g,92%), 1H NMR(400MHz,CDCl3)δ5.82(d,J=4.1Hz,1H),5.10-5.06(m,1H),4.81(dd,J=5.6,4.1Hz,1H),4.14-4.06(m,2H),3.57-3.51(m,1H),2.14(s,3H),1.59(s,3H),1.45(s,3H),1.39(s,3H),1.36(s,3H). 13C NMR(101MHz,CDCl3)δ169.7,114.6,109.4,105.1,81.5,78.6,75.3,71.9,66.5,26.9,26.8,25.4,20.7.
上步所得浅黄色糖浆溶于甲醇(100mL),加入甲醇钠调节反应液pH 8~10,室温下搅拌30min,TLC(PE:EA=1:1)显示反应完全,加入732型H +树脂调节反应液至中性,滤除树脂,浓缩滤液,经柱层析(PE:EA=3:1)分离得淡黄色糖浆I,久置后固化(31.2g,99%)。 1H NMR(400MHz,CDCl 3)δ5.78(d,J=4.1Hz,1H),4.66(dd,J=6.3,4.1Hz,1H),4.48(dt,J=8.4,7.0Hz,1H),4.26-4.20(m,2H),3.90(dd,J=8.6,5.7Hz,1H),3.72(dd,J=8.6,7.3Hz,1H),2.68(s,1H),1.63(s,3H),1.45(s,3H),1.43(s,3H),1.38(s,3H). 13C NMR(101MHz,CDCl 3)δ115.1,109.4,105.4,84.4,80.0,75.7,69.8,66.5,27.3,27.2,26.8,25.3。
实施例3
Figure PCTCN2019114660-appb-000023
化合物I(29.9g,114.88mmol)溶于二氯甲烷(100mL),加入吡啶(27.81mL,344.6mmol),降至冰浴温度后,滴入三氟甲磺酸酐(38.6mL,229.7mmol),冰浴下搅拌30min,TLC(PE:EA=1:1)显示反应完全,反应液先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得棕色糖浆中间体,直接用于下步反应;
叠氮基三甲基硅烷(52.9mL,402.1mmol)和氟化钠(15.9g,379.1mmol)混于DMF(150mL),于100℃油浴中回流反应1小时,冷却至室温后,加入上步反应所得棕色糖浆中间体的DMF溶液,混合物置50℃油浴中回流反应过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,倒入水中,混合物经二氯甲烷萃取三次(3*300mL),合并有机相,盐水洗涤,无水硫酸钠干燥,浓缩后拌样,柱层析(PE:EA=6:1)分离得无色糖浆II,久置后固化(29.64g,90.2%)。 1H NMR(400MHz,CDCl 3)δ5.80(d,J=3.9Hz,1H),4.60(dd,J=3.9,1.8Hz,1H), 4.35(dd,J=12.4,6.7Hz,1H),4.08(dd,J=8.4,6.7Hz,1H),3.94(dd,J=5.7,1.7Hz,1H),3.90-3.81(m,2H),1.57(s,3H),1.46(s,3H),1.39(s,3H),1.37(s,3H). 13C NMR(101MHz,CDCl 3)δ114.6,110.2,105.0,85.9,83.3,74.7,65.7,65.7,27.7,27.0,26.5,25.3。
实施例4
Figure PCTCN2019114660-appb-000024
投料比例及操作同实施例3,分离的式II化合物(29.2g,89%)。
实施例5
Figure PCTCN2019114660-appb-000025
投料比例及操作步骤1)同实施例3;
叠氮基三甲基硅烷(52.9mL,402.1mmol)和四丁基氟化铵(15.9g,379.1mmol)混于DMF(100mL),于50℃中回流反应30分钟,至无气泡产生后,加入步骤1)所得棕色糖浆中间体的DMF溶液,混合物置50℃油浴中回流反应过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,加入二氯甲烷稀释(500mL),混合物经盐水洗涤三次(3*100mL),水相用二氯甲烷反萃1次(100mL)合并有机相,盐水洗涤,无水硫酸钠干燥,浓缩后拌样,柱层析分离得式II化合物(30.2g,92%)。
实施例6
Figure PCTCN2019114660-appb-000026
化合物II(8g,28.04mmol)溶于四氢呋喃(40mL),加入CuI(1.07g,5.61mmol)和DIPEA(5.86mL,33.65mmol),剧烈搅拌5min后,加入3,4,5-三氟苯乙炔(4.11mL,33.65mmol), 室温下搅拌1小时,TLC(PE:EA=4:1)检测反应完全,蒸除溶剂,残余物溶于二氯甲烷(50mL),有机相先后经稀氨水、1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化(PE:EA=6:1)得无色固体化合物XII(12.1g,97.8%), 1H NMR(400M,CDCl 3)δ7.78(s,1H),7.39(dd,J=8.1,6.5Hz,2H),5.99(d,J=3.9Hz,1H),4.94(dd,J=3.9,1.8Hz,1H),4.39(dd,J=12.4,6.7Hz,1H),4.24(dd,J=8.4,6.7Hz,1H),4.03(dd,J=5.7,1.7Hz,1H),3.99-3.91(m,2H),1.72(s,3H),1.60(s,3H),1.52(s,3H),1.35(s,3H); 13C NMR(100M,CDCl 3)δ123.1,115.9,111.1,111.0,110.9,110.8,106.5,86.2,81.6,73.6,65.5,27.8,27.2,26.2,25.2.
实施例7
Figure PCTCN2019114660-appb-000027
化合物II(8g,28.04mmol)溶于四氢呋喃(40mL),加入CuSO 4(0.9g,5.6mmol)和抗坏血酸钠(6.67g,mmol),剧烈搅拌5min后,加入3,4,5-三氟苯乙炔(4.11mL,33.65mmol),室温下搅拌1小时,TLC(PE:EA=4:1)检测反应完全,蒸除溶剂,残余物溶于二氯甲烷(50mL),有机相先后经稀氨水、1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化(PE:EA=6:1)得化合物XII(11.8g,95.3%)
实施例8
Figure PCTCN2019114660-appb-000028
化合物XII(10g,mmol)混于MeCN/H 2O(v/v=1:3,60mL)的混合溶剂中,加入催化量的TsOH,置油浴中回流反应过夜,反应液冷却至室温,滴入三乙胺中和反应液,浓缩,得浅黄色固体中间体,直接用于下步反应;
浅黄色固体中间体溶于吡啶(40mL),冰浴中滴入乙酸酐(20mL),反应于室温下搅拌12小时,TLC(PE:EA=1:1)检测反应完全,冰浴中滴入甲醇淬灭反应,浓缩反应液,残余物溶于 二氯甲烷,有机相先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得化合物XIII(11.9g,99%),浅黄色固体,为端基异构体混合物。
实施例9
Figure PCTCN2019114660-appb-000029
化合物I(5g,17.53mmol)混于MeCN/H 2O(v/v=1:3,30mL)的混合溶剂中,加入催化量的TsOH,置油浴中回流反应过夜,反应液冷却至室温,滴入三乙胺中和反应液,浓缩,得白色固体中间体,直接用于下步反应;
白色固体中间体溶于吡啶(10mL),冰浴中滴入乙酸酐(5mL),反应于室温下搅拌12小时,TLC(PE:EA=1:1)检测反应完全,冰浴中滴入甲醇淬灭反应,浓缩反应液,残余物溶于二氯甲烷,有机相先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得淡黄色糖浆中间体,久置后固化
上步所得糖浆中间体溶于四氢呋喃,加入CuI(667mg,3.51mmol)和DIPEA(3.66mL,21.03mmol),剧烈搅拌5min后,加入3,4,5-三氟苯乙炔(2.41mL,21.03mmol),室温下搅拌1小时,TLC(PE:EA=2:1)检测反应完全,蒸除溶剂,残余物溶于二氯甲烷,有机相先后经稀氨水、1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化得体化合物XIII(8.8g,94.8%)。
实施例10
Figure PCTCN2019114660-appb-000030
化合物XIII(5g,mmol)溶于二氯甲烷/醋酐(v/v=10:1,16.5mL)混合溶剂,冰浴下滴入33%HBr/AcOH溶液(5mL),继续搅拌8小时,TLC(PE:EA=2:1)检测反应完全,反应液倒入冰水混合物中,搅拌30min后,混合物经二氯甲烷萃取(3*50mL),合并有机相,先后经sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得泡沫状化合物XIV(4.3g,82.7%),可直接用于下步反应。 1H NMR(400MHz,CDCl 3)δ7.80(s,1H),7.44(dd,J=8.0,6.5Hz,2H),6.89(d,J=3.8Hz,1H),5.82(dd,J=11.3,3.8Hz,1H),5.62(d,J=1.8Hz,1H),5.32(dd,J=11.4,2.9Hz,1H),4.64(t,J=6.6Hz,1H),4.24(dd,J=11.5,6.4Hz,1H),4.14(dd,J=11.5,6.7Hz,1H),2.07(s,6H),1.96(s,3H). 13C NMR(101MHz,CDCl 3)δ170.5, 169.7,169.3,120.5,110.3,110.2,110.1,110.0,88.7,71.4,67.8,67.0,61.0,59.2,20.8,20.7,20.6。
实施例11
Figure PCTCN2019114660-appb-000031
化合物XIV(5g,9.09mmol)溶于N,N-二甲基甲酰胺(20mL)中,加入硫代乙酸钾KSAc(2.08g,18.17mmol),室温下搅拌2小时,TLC(PE:EA=2:1)检测反应完全,反应液加入二氯甲烷(100mL)稀释,有机相用水洗涤(3*100mL),无水硫酸钠干燥,浓缩,得黄色糖浆XV(4.7g,94.8%),久置后固化。 1H NMR(400MHz,CDCl 3)δ7.77(s,1H),7.40(dd,J=7.9,6.6Hz,2H),5.85(t,J=10.5Hz,1H),5.61(d,J=2.8Hz,1H),5.41(d,J=10.0Hz,1H),5.21(dd,J=11.0,3.2Hz,1H),4.25(t,J=6.4Hz,1H),4.15(dd,J=11.5,6.4Hz,1H),4.08(dd,J=11.5,6.7Hz,1H),2.43(s,3H),2.05(d,J=7.1Hz,6H),1.88(s,3H); 13C NMR(101MHz,CDCl 3)δ191.9,170.5,169.6,169.0,119.1,110.1,110.1,110.0,109.9,81.5,76.1,68.7,65.5,63.5,61.3,31.1,20.8,20.6,20.5;
实施例12
Figure PCTCN2019114660-appb-000032
化合物XV(1g,1.83mmol)溶于四氢呋喃(10mL),滴入N,N-二甲氨基丙胺(0.35mL,2.75mmol),室温下搅拌30分钟,TLC(PE:EA=1:1)检测反应完全,滴入醋酸中和反应液,蒸除反应溶剂,残余物溶于二氯甲烷,有机相先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得黄色糖浆XVI,立即用于下步反应。
实施例13
Figure PCTCN2019114660-appb-000033
化合物II(5g,17.53mmol)混于MeCN/H 2O(v/v=3:1,40mL)混合溶剂,加入催化量TsOH,室温下搅拌24小时,TLC(PE:EA=2:1)检测反应完全,滴入三乙胺中和反应液,蒸除溶剂,得淡黄色油状中间体,直接用于下步反应, 1H NMR(400MHz,CDCl 3)δ5.88(d,J=4.1Hz, 1H),4.65(dd,J=4.1,1.3Hz,1H),4.13-4.09(m,1H),4.00(dd,J=6.1,4.2Hz,1H),3.89-3.84(m,1H),3.78(dd,J=11.7,4.1Hz,1H),3.70(dd,J=11.7,4.7Hz,1H),1.55(s,3H),1.35(s,3H); 13C NMR(101MHz,CDCl 3)δ113.8,105.4,85.5,85.1,70.1,65.9,63.8,27.1,26.5.
油状中间体溶于甲醇(40mL),加入二丁基氧化锡(5.24g,21.03mmol),置油浴中回流反应3小时至溶液澄清,反应液冷却至室温,蒸除溶剂,得黄色糖浆中间体;糖浆中间体溶于DMF(40mL),加入Ts-PEG 4-ONap(12.84g,26.29mmol)和氟化铯(3.99g,26.29mmol),置70℃油浴中回流反应过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,蒸除溶剂,残余物溶于二氯甲烷,有机相用水洗涤三次,无水硫酸钠干燥,浓缩拌样,柱层析纯化(PE:丙酮=3:1),分离得黄色糖浆XVII(9.3g,94.5%in 2steps), 1H NMR(400MHz,CDCl 3)δ7.86-7.78(m,4H),7.51-7.45(m,3H),5.83(d,J=4.1Hz,1H),4.74(s,2H),4.59(dd,J=4.1,1.4Hz,1H),4.22(dd,J=4.1,1.2Hz,1H),4.00-3.91(m,2H),3.72-3.61(m,16H),3.55(dd,J=10.0,5.2Hz,1H),2.18(s,1H),1.55(s,3H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ135.8,133.3,133.0,128.2,127.9,127.7,126.5,126.1,125.9,125.9,113.7,105.2,85.6,85.2,73.4,72.6,70.9,70.7,70.7,70.6,70.5,69.4,68.8,65.8,27.1,26.5。
实施例14
Figure PCTCN2019114660-appb-000034
化合物XVII(9.3g,16.65mmol)溶于四氢呋喃(40mL),加入CuI(0.63g,3.31mmol)和DIPEA(3.47mL,19.87mmol),剧烈搅拌5分钟后,加入3,4,5-三氟苯乙炔(2.14mL,19.87mmol),于室温下反应1小时,TLC(PE:丙酮=3:1)检测反应完全,蒸除溶剂,残余物溶于二氯甲烷,有机相先后经稀氨水、1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化得化合物XVIII(11.2g,94.2%),淡黄色糖浆。 1H NMR(400MHz,CDCl 3)δ8.17(s,1H),7.84-7.76(m,3H),7.73(s,1H),7.54-7.40(m,5H),6.11(d,J=3.9Hz,1H),5.30(d,J=3.2Hz,1H),5.08-5.04(m,1H),4.67(s,2H),4.30(dd,J=6.6,4.3Hz,1H),4.04(dd,J=12.4,6.6Hz,1H),3.74(dd,J=9.7,5.5Hz,1H),3.70-3.55(m,16H),3.49(dd,J=9.7,6.7Hz,1H),1.63(s,3H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ135.6,133.2,133.0,128.2,127.9,127.7,126.6,126.1,125.9,125.8,121.7,114.1,110.0, 109.8,105.7,86.6,85.5,77.3,73.4,72.7,70.7,70.7,70.6,70.6,70.5,70.5,70.4,69.5,68.6,65.5,31.0,27.3,26.5.
实施例15
Figure PCTCN2019114660-appb-000035
化合物XII(5g,11.33mmol)悬于MeCN/H 2O(v/v=3:2,40mL)的混合溶剂中,加入催化量的对甲苯磺酸,室温下搅拌24小时,TLC(PE:EA=3:1)检测反应完全,滴加三乙胺中和反应液,蒸除溶剂,残余物用二氯甲烷溶解,盐水洗涤,合并有机相,浓缩,得化合物XIX(4.3g,94.6%),白色固体, 1H NMR(400MHz,MeOD)δ8.54(s,1H),7.64(dd,J=8.8,6.6Hz,2H),6.07(d,J=4.2Hz,1H),5.36(dd,J=6.7,2.5Hz,1H),5.11(dd,J=4.1,2.6Hz,1H),4.36(dd,J=6.7,4.3Hz,1H),3.75-3.59(m,3H),1.66(s,3H),1.39(s,3H). 13C NMR(101MHz,MeOD)δ123.1,115.9,111.1,110.8,106.5,87.7,84.5,71.1,66.9,64.1,28.0,27.4.
实施例16
Figure PCTCN2019114660-appb-000036
化合物XIX(4.3g,10.71mmol)溶于甲醇(30mL),加入二丁基氧化锡(3.2g,12.86mmol),置油浴中回流反应3小时至溶液澄清,反应液冷却至室温,蒸除溶剂,得黄色糖浆中间体;糖浆中间体溶于DMF(20mL),加入Ts-PEG 4-ONap(7.85g,16.07mmol)和氟化铯(2.44g,16.07mmol),置70℃油浴中回流反应过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,蒸除溶剂,残余物溶于二氯甲烷,有机相用水洗涤三次,无水硫酸钠干燥,浓缩拌样,柱层析纯化(PE:丙酮=3:1),分离得黄色糖浆XVIII(7.4g,96.2%)。
实施例17
Figure PCTCN2019114660-appb-000037
投料操作同实施例13步骤1;
所得中间体溶于四氢呋喃(40mL),加入CuI(667mg,3.51mmol)和DIPEA(3.67mL,21.03mmol),剧烈搅拌5分钟后,加入3,4,5-三氟苯乙炔(2.25mL,21.03mmol),于室温下反应1小时,TLC(PE:丙酮=3:1)检测反应完全,蒸除溶剂,残余物溶于二氯甲烷,有机相先后经稀氨水、1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化得化合物XIX(6.5g,92.4%)。
实施例18
Figure PCTCN2019114660-appb-000038
化合物XVIII(7.4g,10.31mmol)混于MeCN/H 2O(v/v=3:1,40mL)混合溶剂,加入催化量TsOH,置油浴中回流反应过夜,TLC(PE:丙酮=2:1)检测反应完全,滴入三乙胺中和反应液,蒸除溶剂,得淡黄色糖浆中间体;
淡黄色糖浆中间体溶于吡啶(15mL),滴入醋酐(5mL),室温下搅拌12小时,TLC(PE:丙酮=2:1)检测反应完全,冰浴中滴入甲醇淬灭反应,蒸除溶剂,残余物溶于二氯甲烷,有机相先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化得化合物XX(6.9g,83.3%),淡黄色糖浆
XX -α-anomer  1H NMR(400MHz,CDCl 3)δ7.80(m,6H),7.50-7.38(m,6H),6.50(d,J=3.5Hz,1H),6.00(dd,J=11.7,3.6Hz,1H),5.66(d,J=2.0Hz,1H),5.33(dd,J=11.8,2.9Hz,1H),4.72(s,2H),4.43(t,J=6.2Hz,1H),3.73-3.45(m,18H),2.20(s,3H),2.06(s,3H),1.87(s,3H). 13C NMR(101MHz,CDCl 3)δ169.6,169.0,168.8,135.7,133.3,133.0,128.2,127.9,127.7,126.5,126.1,125.9,125.8,119.5,110.0,109.8,89.3,77.3,73.4,71.1, 70.7,70.7,70.6,70.6,70.5,70.3,69.4,69.0,68.8,65.6,60.4,58.4,36.5,21.0,20.5,20.4,14.2。
XX -β-anomer  1H NMR(400MHz,CDCl 3)δ7.85-7.77(m,6H),7.50-7.38(m,6H),5.91-5.82(m,2H),5.61(d,J=1.8Hz,1H),5.13(d,J=8.5Hz,1H),4.73(s,2H),4.15(dd,J=10.0,4.3Hz,1H),3.75-3.48(m,18H),2.14(s,3H),2.05(s,3H),1.87(s,3H). 13C NMR(101MHz,CDCl 3)δ169.3,168.9,168.8,135.8,133.3,133.0,128.2,127.9,127.7,126.5,126.1,125.9,125.8,119.4,110.0,109.8,92.7,77.3,73.9,73.3,71.2,70.7,70.6,70.5,69.5,68.7,68.6,67.0,62.3,31.0,20.9,20.5,20.4。
实施例19
Figure PCTCN2019114660-appb-000039
化合物XX(6.9g,8.58mmol)溶于二氯甲烷/甲醇(v/v=10:1,44mL)混合溶剂,加入2,3-二氯-5,6-二氰基-1,4-苯醌(4.87g,21.46mmol),室温下搅拌30分钟,TLC(PE:丙酮=2:1)检测反应完全,反应液加入二氯甲烷稀释,先后经1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩得淡黄色糖浆中间体;
上步中间体溶于二氯甲烷(30mL),加入乙酰丙酸(1.99g,17.17mmol)、EDC(4.94g,25.57mmol)和催化量DMAP,于室温下搅拌2小时,TLC(PE:丙酮=2:1)检测反应完全,反应液先后1N HCl a.q.、sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩拌样,柱层析纯化得化合物XXI(5.6g,85.6%),淡黄色糖浆,端基异构体混合物。
实施例20
Figure PCTCN2019114660-appb-000040
化合物XXI(5.6g,7.35mmol)溶于二氯甲烷/醋酐(v/v=10:1,11mL)混合溶剂,冰浴下滴入33%HBr/AcOH溶液(3mL),继续搅拌4小时,TLC(PE:丙酮=2:1)检测反应完全,反应液倒入冰水混合物中,搅拌30min后,混合物经二氯甲烷萃取三次,合并有机相,先后经sat.NaHCO 3a.q.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得泡沫状化合物XXII(5.3g,91.2%),淡黄色糖浆,可直接用于下步反应。 1H NMR(400MHz,CDCl3)δ7.89(s,1H),7.45 (dd,J=8.0,6.6Hz,2H),6.90(d,J=3.8Hz,1H),5.82(dd,J=11.3,3.8Hz,1H),5.67(d,J=1.8Hz,1H),5.33(dd,J=11.2,2.9Hz,1H),4.57(t,J=6.3Hz,1H),4.25-4.21(m,2H),3.72-3.55(m,17H),2.75(t,J=6.5Hz,2H),2.60(t,J=6.5Hz,2H),2.19(s,3H),2.05(s,3H),1.95(s,3H). 13C NMR(101MHz,CDCl 3)δ206.79,172.84,169.55,169.12,120.77,110.04,109.98,109.81,89.28,72.23,71.16,70.66,70.60,70.54,69.10,68.24,68.09,67.10,63.84,59.14,53.48,37.94,29.93,27.96,20.54,20.44.
实施例21
Figure PCTCN2019114660-appb-000041
化合物XVI(3.4g,6.75mmol)、化合物XXII(5.3g,6.76mmol)混于MeCN(50mL)中,加入碳酸钾(1.87g,13.51mmol),室温下搅拌反应12小时,TLC检测反应完全(PE:丙酮=2:1),蒸除溶剂,残余物直接经柱层析纯化(PE:丙酮=5:2)得化合物XXIII(5.7g,70%),淡黄色糖浆。 1H NMR(400MHz,CDCl3)δ7.85(s,1H),7.83(s,1H),7.42(dd,J=14.0,6.6Hz,4H),5.76(t,J=10.2Hz,1H),5.76(t,J=10.2Hz,1H),5.62(s,2H),5.26(dd,J=11.1,2.5Hz,1H),5.22(dd,J=11.0,2.3Hz,1H),5.16(d,J=9.8Hz,1H),5.06(d,J=9.8Hz,1H),4.23(dd,J=9.4,4.9Hz,3H),4.18(d,J=4.8Hz,2H),4.11(t,J=6.0Hz,1H),3.74-3.53(m,16H),2.77(t,J=6.4Hz,2H),2.60(t,J=6.4Hz,2H),2.19(s,3H),2.08(s,3H),2.06(s,6H),1.93(s,6H),1.93(s,6H); 13C NMR(101MHz,CDCl3)δ207.1,173.0,170.5,169.7,169.0,169.0,119.4,119.3,110.1,110.0,109.9,109.9,82.3,82.2,75.5,71.1,70.7,70.6,70.6,69.5,69.4,69.1,68.9,66.7,66.6,63.9,63.5,63.2,61.5,38.02 30.0,28.0,20.9,20.7,20.6,20.6。
实施例22
Figure PCTCN2019114660-appb-000042
化合物XXIII(5.7g,4.73mmol)溶于二氯甲烷/甲醇(v/v=1:1,20mL)混合溶液,滴入预配的1M N 2H 4.AcOH/MeOH(7mL,7mmol)溶液,于室温下搅拌1小时,TLC(PE:丙酮=3:2)检测反应完全,加入丙酮1mL,搅拌5分钟后,蒸除溶剂,残余物溶于二氯甲烷,水洗,无 水硫酸钠干燥,浓缩拌样,柱层析分离(PE:丙酮=5:2)得无色糖浆中间体(5.1g,97.5%), 1H NMR(400MHz,CDCl3)δ7.91(s,1H),7.84(s,1H),7.42(dd,J=11.9,6.6Hz,4H),5.78(t,J=8.8Hz,1H),5.74(t,J=10.3Hz,1H),5.60(dd,J=7.5,2.9Hz,2H),5.32(dd,J=11.0,3.1Hz,1H),5.26(dd,J=10.9,3.0Hz,1H),5.22(d,J=9.8Hz,1H),5.10(d,J=9.8Hz,1H),4.28(t,J=6.4Hz,1H),4.17(dd,J=13.4,6.2Hz,3H),3.78(d,J=3.9Hz,2H),3.73-3.56(m,16H),2.07(s,3H),2.07(s,3H),2.05(s,3H),1.93(s,3H),1.93(s,3H); 13C NMR(101MHz,CDCl3)δ170.5,169.8,169.7,169.2,169.1,119.7,119.2,110.1,110.0,109.9,109.9,82.8,82.7,75.4,73.0,71.0,70.6,70.6,70.5,70.3,70.0,69.7,69.6,69.0,66.7,66.6,63.3,63.2,61.7,61.4,20.9,20.7,20.6,20.6;
上步所得中间体(5.1g,4.61mmol)溶于二氯甲烷(40mL),加入三乙胺(1.92mL,13.82mmol),搅拌5分钟后,加入对甲苯磺酰氯(1.76g,9.21mmol),于室温下搅拌12小时,TLC(PE:丙酮=3:2)检测显示反应完全,加入甲醇淬灭反应,蒸除溶剂,残余物溶于二氯甲烷,盐水洗涤,无水硫酸钠干燥,浓缩后柱层析(PE:丙酮=2:1)分离得淡黄色糖浆(5.6g,96.4%), 1H NMR(400M,CDCl 3)δ7.83(d,J=8.1Hz,2H),7.83(s,2H),7.41(t,J=6.9Hz,4H),7.36(d,J=8.1Hz,2H),5.80-5.73(m,2H),5.61(dd,J=6.5,3.0Hz,2H),5.23(td,J=10.6,3.1Hz,2H),5.14(d,J=9.8Hz,1H),5.09(d,J=9.8Hz,1H),4.25-4.12(m,6H),3.72(dd,J=10.2,5.6Hz,3H),3.68-3.60(m,12H),3.57(dd,J=9.3,4.2Hz,2H),2.45(s,3H),2.07(s,6H),2.06(s,3H),1.91(s,6H).; 13C NMR(100M,CDCl 3)δ170.5,169.7,169.7,169.1,145.3,136.7,132.8,130.1,128.2,119.4,110.1,110.0,109.9,109.8,82.5,75.5,71.2,70.8,70.7,70.6,70.6,69.7,69.5,69.4,68.9,68.7,66.7,66.6,63.4,63.2,61.5,21.8,20.9,20.7,20.7,20.6;
上步所得淡黄色糖浆(5.6g,4.44mmol)溶于N,N-二甲基甲酰胺(40mL),加入硫代乙酸钾(1.0g,8.88mmol),于室温下搅拌3小时,TLC(PE:丙酮=3:2)检测反应完全,反应液加入二氯甲烷稀释(400mL),盐水洗涤(3*400ml),无水硫酸钠干燥,浓缩干燥,得化合物XXIV(4.8g,92.8%), 1H NMR(400MHz,CDCl 3)δ7.85(s,1H),7.83(s,1H),7.41(dd,J=13.1,6.1Hz,4H),5.75(td,J=10.3,6.1Hz,2H),5.61(d,J=2.6Hz,2H),5.25(dd,J=11.0,3.0Hz,1H),5.21(dd,J=11.0,3.0Hz,1H),5.15(d,J=9.8Hz,1H),5.06(d,J=9.8Hz,1H),4.25-4.15(m,3H),4.10(t,J=5.8Hz,1H),3.71-3.54(m,16H),3.08(t,J=6.6Hz,2H),2.33(s,3H),2.08(s,3H),2.06(s,6H),1.92(s,6H); 13C NMR(101MHz,CDCl 3)δ195.8,170.5,169.7,169.7,169.0,119.3,119.2,110.1,110.0,109.9,109.8,82.2,82.1,75.6,71.1,70.6,70.6,70.5,70.3,69.8,69.5,69.4,68.9,66.7,66.6,63.5,63.2,61.5,30.7,28.8,20.9,20.7,20.7,20.6,20.6.
实施例23
Figure PCTCN2019114660-appb-000043
即制即用。化合物XXIV(1g,0.86mmol)溶于甲醇(10mL),加入MeONa,调节反应液pH 8~10,室温下搅拌2小时,TLC(DCM:MeOH=10:1)检测反应完全,加入732型H +阳离子树脂中和反应液至中性,滤除树脂,含化合物XI的滤液可直接用于后续功能分子构建。
实施例24
Figure PCTCN2019114660-appb-000044
同实施例6,得式XII-2化合物(96%),1H NMR(400MHz,CDCl3)δ8.20(s,1H),6.05(d,J=3.9Hz,1H),5.07(dd,J=3.9,2.4Hz,1H),5.02(dd,J=7.0,2.4Hz,1H),4.41(dd,J=7.0,3.9Hz,1H),4.28(td,J=6.7,4.0Hz,1H),4.09(dd,J=8.5,6.9Hz,1H),4.03-3.98(m,1H),3.97(s,3H),1.66(s,3H),1.45(s,3H),1.41(s,3H),1.37(s,3H).13C NMR(101MHz,CDCl3)δ160.9,140.4,128.2,115.5,110.3,105.0,86.1,81.6,73.5,65.7,65.5,52.5,27.9,27.3,26.3,25.2.
实施例25
Figure PCTCN2019114660-appb-000045
式XII-2化合物(1.0g,2.71mmol)溶于甲醇10ml,加入10倍当量正丁基胺nBu-NH 2, 置80℃油浴中回流搅拌反应过夜,TLC(PE:EA=1:1)检测反应完全,反应液冷却至室温,蒸除溶剂,残余物溶于二氯甲烷20ml,先后经1N HCl a.q.、sat.NaHCO 3aq.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩,得式XII-3化合物(1.1g,99%) 1H NMR(400MHz,CDCl 3)δ8.15(s,1H),7.12(s,1H),6.05(d,J=3.7Hz,1H),5.02(dd,J=7.7,5.4Hz,2H),4.36(dd,J=6.6,4.2Hz,1H),4.28(dd,J=10.8,6.6Hz,1H),4.07(t,J=7.6Hz,1H),3.98-3.93(m,2H),3.46(dd,J=13.2,6.2Hz,2H),1.66(s,4H),1.63-1.56(m,2H),1.45(s,4H),1.43-1.38(m,2H),1.41(s,4H),1.36(s,3H),0.96(t,J=7.3Hz,3H). 13C NMR(101MHz,CDCl 3)δ144.,125.8,115.4,110.3,105.1,86.1,82.0,73.7,65.7,65.5,39.0,31.8,27.9,27.2,26.3,25.2,20.2,13.9.
实施例26
Figure PCTCN2019114660-appb-000046
式II化合物(1.0g,3.5mmol)溶于甲醇10ml,加入Pd/C(0.1g),置H 2氛围中(45Psi)搅拌反应3小时,TLC(PE:EA=1:1)检测反应完全,滤除Pd/C粉末,旋干滤液,得式XII-4化合物(0.9g,99%) 1H NMR(400MHz,CDCl 3)δ5.87(d,J=3.8Hz,1H),4.45–4.35(m,1H),4.07(dd,J=8.3,6.7Hz,1H),3.83(dd,J=8.3,6.9Hz,1H),3.74(dd,J=7.0,4.5Hz,1H),3.35(d,J=3.5Hz,1H),1.56(s,2H),1.54(s,1H),1.45(s,2H),1.37(s,2H),1.34(s,1H). 13C NMR(101MHz,CDCl 3)δ113.,5,109.9,105.4,89.0,87.7,75.9,66.0,58.1,27.5,26.8,25.4.
实施例27
Figure PCTCN2019114660-appb-000047
式XII-4化合物(1.0g,3.86mmol)溶于吡啶10ml,加入2-萘甲酰氯(1.47g,7.71mmol),置室温下搅拌反应6小时,经TLC(DCM:MeOH10:1)检测显示反应完全,滴入甲醇2ml,搅拌10分钟后,蒸干溶剂,残余物溶于二氯甲烷20ml,先后经1N HCl a.q.、sat.NaHCO 3aq.和饱和食盐水洗涤,无水硫酸钠干燥,浓缩后经柱层析(PE:EA=2:1)分离纯化得式XII-5化 合物(1.5g,94%)。 1H NMR(400MHz,CDCl 3)δ8.27(s,1H),7.87(t,J=7.9Hz,3H),7.80(dd,J=8.6,1.5Hz,1H),7.55(tt,J=13.7,6.7Hz,2H),6.75(d,J=7.0Hz,1H),6.02(d,J=3.7Hz,1H),4.82(d,J=3.0Hz,1H),4.50(q,J=6.7Hz,1H),4.31(dd,J=6.4,4.3Hz,1H),4.19(dd,J=7.3,4.1Hz,1H),4.13(dd,J=8.4,6.7Hz,1H),3.91(dd,J=8.4,6.7Hz,1H),1.61(s,3H),1.45(s,3H),1.37(s,3H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ167.6,135.0,132.6,130.7,129.1,128.8,128.1,127.9,127.8,127.1,123.4,113.7,110.1,105.7,85.9,85.2,75.8,66.0,57.5,27.3,26.8,26.5,25.4.
实施例28
Figure PCTCN2019114660-appb-000048
同实施例6,得式XII-6化合物(95%), 1H NMR(400MHz,CDCl 3)δ6.86(d,J=2.2Hz,2H),6.59(t,J=2.2Hz,1H),6.40(d,J=7.0Hz,1H),5.99(d,J=3.7Hz,1H),4.77(dd,J=3.6,0.8Hz,1H),4.46(q,J=6.7Hz,1H),4.21(dd,J=6.4,4.4Hz,1H),4.16-4.07(m,2H),3.89(dd,J=8.5,6.6Hz,1H),3.82(s,6H),1.61(s,3H),1.44(s,3H),1.38(s,3H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ167.3,161.1,135.7,113.7,110.1,105.7,105.0,104.2,85.8,84.9,75.7,66.0,57.5,55.7,27.4,26.8,26.6,25.4.
实施例29
Figure PCTCN2019114660-appb-000049
同实施例8,得式XIII-5粗品,为端基  异构体混合物,直接用于下步反应。
实施例30
Figure PCTCN2019114660-appb-000050
同实施例8,得式XIII-6粗品,为端基异构体混合物,直接用于下步反应。
实施例31
Figure PCTCN2019114660-appb-000051
同实施例15,得式XIX-2化合物(89%), 1H NMR(400MHz,CDCl 3)δ8.20(s,1H),6.11(d,J=4.0Hz,1H),5.23(dd,J=5.3,1.6Hz,1H),5.12-5.07(m,1H),4.47(t,J=5.1Hz,1H),3.96(s,3H),3.87-3.75(m,3H),2.79(s,1H),2.05(s,1H),1.64(s,3H),1.39(s,3H). 13C NMR(101MHz,CDCl 3)δ160.9,140.5,128.0,114.9,105.7,85.8,85.3,69.3,66.1,63.9,52.5,27.6,26.9.
实施例32
Figure PCTCN2019114660-appb-000052
同实施例15,得式XIX-6化合物(92%), 1H NMR(400MHz,CDCl 3)δ6.87(d,J=2.3Hz,2H),6.60(t,J=2.2Hz,1H),6.43(d,J=6.7Hz,1H),6.01(d,J=4.0Hz,1H),4.80(dd,J=4.0,1.0Hz,1H),4.40(dd,J=6.0,4.3Hz,1H),4.21(dd,J=7.3,3.8Hz,1H),3.99-3.92(m,1H),3.82(s,6H),3.82-3.79(m,2H),1.59(s,3H),1.35(s,3H).
实施例33
Figure PCTCN2019114660-appb-000053
同实施例16,反应条件,仅对反应原料进行替换,得式XVIII化合物(96%), 1H NMR(400MHz,CDCl 3)δ8.16(s,1H),6.11(d,J=3.9Hz,1H),5.28(d,J=3.9Hz,1H),5.11-5.04(m,1H),4.36(t,J=5.2Hz,1H),3.97(s,3H),3.64(dd,J=9.6,6.0Hz,1H),3.46(dd,J=12.8,6.3Hz,3H),3.27(t,J=6.8Hz,2H),2.62(d,J=4.3Hz,1H),1.64(s,3H),1.58(dt,J=14.2,7.0Hz,2H),1.47-1.34(m,4H),1.38(s,3H). 13C NMR(101MHz,CDCl 3)δ176.7,144.7,140.3,127.6,105.5,85.7,85.2,71.8,71.5,68.5,66.0,65.4,53.3,52.4,51.3,29.1,28.6,27.3,26.6,23.3.
实施例34
Figure PCTCN2019114660-appb-000054
同实施例16,仅对反应原料进行替换,得式XVIII-6化合物(94%), 1H NMR(400MHz,CDCl 3)δ8.02(s,1H),6.89(d,J=2.2Hz,2H),6.60(t,J=2.2Hz,1H),6.54(d,J=7.0Hz,1H),5.98(d,J=4.0Hz,1H),4.81(dd,J=3.9,1.2Hz,1H),4.41(t,J=5.2Hz,1H),4.14(dd,J=6.5,4.7Hz,1H),4.01(p,J=5.2Hz,1H),3.82(s,6H),3.66(dd,J=11.3,4.8Hz,1H),3.58(d,J=5.1Hz,2H),3.51–3.41(m,2H),3.29(t,J=6.8Hz,1H),3.22(t,J=6.9Hz,2H),2.96(s,3H),2.88(s,3H),1.67-1.62(m,1H),1.60-1.55(m,4H),1.44-1.36(m,2H). 13C NMR(101MHz,CDCl 3)δ161.1,113.6,105.5,105.1,104.0,86.3,84.9,71.8,71.6,70.3,57.7,55.8,51.4,29.2,28.8,27.4,26.6,23.5.
实施例35
Figure PCTCN2019114660-appb-000055
同实施例16,仅将Ts-PEG4-ONap替换为Ts-PEG 3-ONap得式XVIII-1化合物(94%)。 1H NMR(400MHz,CDCl 3)δ8.16(s,1H),7.84-7.74(m,3H),7.71(s,1H),7.55-7.42(m,5H),6.13(d,J=4.0Hz,1H),5.32(d,J=3.3Hz,1H),5.10-5.06(m,1H),4.67(s,2H),4.30(dd,J=6.6,4.2Hz,1H),4.04(dd,J=12.0,6.6Hz,1H),3.74(dd,J=9.6,5.6Hz,1H),3.73-3.56(m,12H),3.46(dd,J=9.6,6.6Hz,1H),1.64(s,3H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ135.5,133.1,133.0,128.2,127.8,127.6,126.5,126.0,125.7,125.6,121.4,114.3,110.2,109.7,105.4,86.6,85.5,77.3,73.4,72.7,70.8,70.7,70.6,70.2,70.1,69.8,68.9,65.7,31.1,27.5,26.4.
实施例36
Figure PCTCN2019114660-appb-000056
同实施例16,仅对反应原料进行替换,得式XVIII-1化合物(96%) 1H NMR(400MHz,CDCl 3)δ8.19(s,1H),7.80-7.72(m,3H),7.68(s,1H),7.53-7.41(m,5H),6.12(d,J=4.0Hz,1H),5.35(d,J=3.3Hz,1H),5.05-4.95(m,1H),4.72(t,J=6.9Hz,2H),4.62(s,2H),4.26(dd,J=6.6,4.2Hz,1H),4.01(dd,J=12.0,6.6Hz,1H),3.60(dd,J=9.6,5.6Hz,1H),3.51(t,J=6.9Hz,2H),3.31(dd,J=9.6,6.6Hz,1H),1.67-1.58(m,4H),1.64(s,3H),1.40-1.31(m,2H),1.34(s,3H). 13C NMR(101MHz,CDCl 3)δ134.9,132.6,132.2,126.4,125.1,124.8,123.8,123.3,122.9,122.6,121.6,114.7,110.4,108.6,104.9,87.5,77.1,72.5, 75.4,70.3,70.1,69.6,61.8,29.0,28.4,27.8,26.6,23.4.
实施例36
Figure PCTCN2019114660-appb-000057
同实施例8,得式XIII-7粗品,为端基异构体混合物,直接用于下步反应。
实施例37
Figure PCTCN2019114660-appb-000058
同实施例8,得式XIII-8粗品,为端基异构体混合物,直接用于下步反应。
实施例38合成策略对比
采用常规方法或者现有方法对先糖基化偶联获得XXVI,然后再进行侧链衍生化,侧链衍生化反应无法进行。
糖基化偶联:
Figure PCTCN2019114660-appb-000059
脱乙酰化反应:
Figure PCTCN2019114660-appb-000060
以式XXVI化合物为原料进行侧链衍生化反应,
Figure PCTCN2019114660-appb-000061
其中,针对侧链衍生化试剂LG-(CH 2CH 2-X) n-CH 2CH 2-R 3”’进行了合成实验,已针对下表侧链衍生化试剂进行了实验,操作以以下条件A或B尝试,均未获得产物
Figure PCTCN2019114660-appb-000062
条件A:NaH(1.1~3.0eq.),LG-(CH 2CH 2-X)n-CH 2CH 2-R 3”’(1.1~2.0eq),反应溶剂选自DMF,THF,未能分离纯化得目标产物。
条件B:Bu 2SnO/CsF试剂组合,操作过程同实施例16,无反应发生。
实施例39检测实验
将式XI化合物同十六烷基三甲基溴化铵(CTAB)表面稳定的金纳米棒(gold nanorods,GNR)混合,静置反应24小时,离心纯化后,构建得糖-金纳米棒探针复合物,该探针复合物可用于血清中肿瘤生物标志物半乳凝素1(Galectin-1)蛋白的检测,进而实现肿瘤诊断:将糖-金纳米棒探针均匀分散在水溶液中,加入Galectin-1,探针复合物的糖基部分是Galectin-1的配体,可与Galectin-1结合而引起均匀分散的金纳米棒探针发生团聚,金纳米棒 本身的LSPR效应在团聚前后能表现出明显的光学吸收信号变化,从而实现了Galectin-1的检测,进而实现肿瘤诊断。

Claims (31)

  1. 一种糖类化合物,其结构如式X所示,
    Figure PCTCN2019114660-appb-100001
    其中,R 1、R 2独立地选自取代的酰胺基、取代的三氮唑基、取代的氨基;
    R 3选自巯基,叠氮基、氨基、羧基;
    A为
    Figure PCTCN2019114660-appb-100002
    或-C mH 2mR 3
    X选自氧原子;
    n选自0、1、2、3、4、5、6、7;
    m选自2、3、4、5、6、7、8、9、10。
  2. 根据权利要求1所述的糖类化合物,其中,
    所述酰胺基为
    Figure PCTCN2019114660-appb-100003
    其中,R 4选自烷基、取代的烷基、芳基、取代的芳基;
    所述取代的三氮唑基为
    Figure PCTCN2019114660-appb-100004
    其中,R 5选自芳基、取代的芳基、芳酰胺基、取代的芳酰胺基、烷酰胺基、酯基;
    所述取代的氨基为
    Figure PCTCN2019114660-appb-100005
    其中,R 6选自烷基、取代的烷基、芳基、取代的芳基、芳酰胺基、取代的芳酰胺基、烷酰胺基。
  3. 根据权利要求2所述的糖类化合物,其中,
    所述芳基或取代的芳基中的芳基选自苯基、萘基、芘基、蒽基、菲基、呋喃、噻吩。
  4. 根据权利要求2所述的糖类化合物,其中,
    所述烷基或取代的烷基中的烷基选自C1~C6的烃基。
  5. 根据权利要求2所述的糖类化合物,其中,
    所述取代芳基上的取代基是氢、卤素、C1~C6的烃基或烃氧基、C1~C6的卤代烷基或硝基、羟基;优选地,所述卤素选自,Cl、Br、I、F。
  6. 根据权利要求2所述的糖类化合物,其中,
    所述取代芳基上的任选独立地被1至3个取代基取代。
  7. 根据权利要求2所述的糖类化合物,其中,
    R 5选自
    Figure PCTCN2019114660-appb-100006
    -COOR 12,-CONHR 13,其中,R 7-R 11如下表所述,A独立地选自F、Cl、Br、I:
    R 12选自C1-6的烷基,R 13选自C1-6的烷基,芳基或取代的芳基中,其中芳基选自苯基、萘基、芘基、蒽基、菲基、呋喃、噻吩;
    R 7 R 8 R 9 R 10 R 11 H Z Z Z H Z Z X H H H H Z Z Z Z H Z H Z Z Z H Z H Z Z H H Z Z Z H H H Z H Z H H Z H H Z H Z H H H Z H Z Z H H H Z H Z H Z H H H H H Z H H H H H Z H H H H H Z H H H H H Z
  8. 根据权利要求1-7任一项所述糖类化合物的制备方法,其包括如下步骤:
    1)式IV化合物与式VII化合物在促进剂的作用下进行糖基化偶联获得式VIII化合物,
    2)式VIII化合物经过侧链基团转换得到式IX化合物;
    3)式IX化合物经过去乙酰化获得式X化合物;
    化合物结构如下所示
    Figure PCTCN2019114660-appb-100007
    其中,R 3”选自乙酰丙酰氧基(LevO-),4-甲氧基苯氧基(4-MP-O-),A、R 1、R 2、R 3定义如权利要求1-7任一项所述。
  9. 根据权利要求8所述的制备方法,其中,步骤2)中侧链基团转换包括如下步骤:
    步骤2-1)选择性脱保护基R 3”得关键中间体;
    步骤2-2)将步骤2-1)中所得关键中间体经连续的酰化反应、然后进行取代反应实现基团转换,制备式IX化合物;
    其中,步骤2-1)中脱除保护基的试剂为醋酸肼(N 2H 4.AcOH)、硝酸铈铵(CAN)。保护基脱除剂同R 3”基团相对应,当R 3”为LevO-时,脱除保护基试剂为醋酸肼N 2H 4.AcOH,当R 3”为4-MP-O-时,脱除保护基试剂选择硝酸铈铵CAN;
    其中,步骤2-2)中酰化反应条件中酰化试剂选自三氟甲磺酸酐、对甲苯磺酰氯、甲磺酰氯、三氟甲磺酰氯;
    其中,步骤2-2)中取代反应中取代试剂选自硫代乙酸钾、硫代乙酸钠、硫代乙酸钾、硫代乙酸、硫氢化钠、叠氮化锂、叠氮化钠、四丁基叠氮化铵、叠氮基三甲基硅烷和氟化物组合试剂。
  10. 根据权利要求9所述的制备方法,其中,步骤2-2)在碱性条件下进行,优选地,碱选自三乙胺、吡啶、二异丙基乙胺、三异丙基胺。
  11. 根据权利要求9所述的制备方法,其中,步骤2-2)中氟化物选自氟化锂,氟化钠,氟化钾,氟化铵,氟化氢钠,氟化氢钾,氟化氢铵,四丁基氟化铵,四甲基氟化铵。
  12. 根据权利要求8所述的制备方法,所述的式IV化合物通过以下步骤获得,
    1-11)式III化合物在溴代试剂作用下制备溴代糖粗品,其中溴代试剂选自33%氢溴酸醋酸溶液HBr/AcOH,甲醇/乙酰溴组合试剂、四溴化钛、三溴化磷;
    1-12)将1-11)中所得溴代糖粗品经取代反应制备中间体,取代试剂选自硫代乙酸钾、硫氢化钠、硫代乙酸,硫代乙酸钠,硫代乙酸铵;
    1-13)将1-12)中所得中间体经端基选择性脱乙酰化反应,制备式IV化合物,
    其中,端基选择性脱乙酰化试剂选自N,N-二甲氨基丙胺、乙二胺/乙酸组合试剂、苄胺、苯胺;
    Figure PCTCN2019114660-appb-100008
  13. 根据权利要求8所述的制备方法,所述的式VII化合物通过以下步骤获得,
    1-21)式V化合物经1,2位丙叉酸水解开环、乙酰化反应制备式VI中间体;
    1-22)式VI化合物经保护基转换反应制备中间体;
    1-23)将步骤1-22)中所得中间体在溴代试剂作用下发生溴代反应,制备式VII化合物;
    Figure PCTCN2019114660-appb-100009
    其中,R 3’为2-萘甲基(Nap),苄基(Bn-),烯丙基(All-)。
  14. 根据权利要求13所述的制备方法,步骤1-21)中,1,2位丙叉酸水解开环的反应试 剂为甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸,回流进行开环反应;乙酰化反应条件为乙酸钠和乙酸酐的混合物,醋酐和吡啶的混合物,乙酰溴和吡啶的混合物,乙酰氯和吡啶的混合物,高氯酸和醋酐的混合物。
  15. 根据权利要求13所述的制备方法,步骤1-22)中,经脱保护剂2,3-二氯-5,6-二氰基-1,4-苯醌或硝酸铈铵脱除R 3’Nap保护,或者通过脱保护剂钯碳(Pd/C)、氢氧化钯(Pd(OH) 2)脱除R 3’Bn保护基,或者通过脱保护剂PdCl 2脱除R 3’All-保护。
  16. 根据权利要求13所述的制备方法,步骤1-22)中,脱保护后在乙酰丙酸或乙酰丙酸酐下反应获得R3”为Lev,或者在4-甲氧基苯酚下反应获得R3”为4-MP-OH。
  17. 根据权利要求13所述的制备方法,步骤1-23)中,溴代试剂选自33%氢溴酸醋酸溶液HBr/AcOH,甲醇/乙酰溴组合试剂、四溴化钛、三溴化磷。
  18. 根据权利要求13-17任一项所述的制备方法,所述的式V化合物通过以下步骤获得,
    1-21-1)式II化合物进行5,6位丙叉选择性开环;
    1-21-2)进行侧链衍生化;
    在步骤1-21-1)之前或之后或在步骤1-21-2)之后还包括步骤1-21-3)进行基团转换反应;
    其中
    Figure PCTCN2019114660-appb-100010
  19. 根据权利要求18所述的制备方法,步骤1-21-1)中5,6位丙叉选择性开环反应的条件为在酸性条件,常温下进行反应,酸性条件通过加入对甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸获得,并在有水存在的条件进行反应。
  20. 根据权利要求18所述的制备方法,步骤1-21-2)LG-PEG n+1-R 3’或者LG-C mH 2m-R 3’在催化剂条件下进行反应,所述催化剂选自二丁基氧化锡和氟化铯,LG选自氯原子,溴原子,对甲苯磺酰氧基。
  21. 根据权利要求18所述的制备方法,步骤1-21-3)基团转换反应的条件为在催化剂的条件下与R1-C≡C反应,所述催化剂为CuI和N,N-二异丙基乙胺DIPEA组合、CuSO 4和Vc-Na组合;或者首先氢化还原式II化合物上的-N 3为-NH 2,在与R 6-Cl反应获得。
  22. 根据权利要求12所述的制备方法,所述的式III化合物通过以下步骤获得,
    1-11-1)式II化合物进行丙叉开环;
    1-11-2)进行糖环羟基的乙酰化;
    在步骤1-11-1)之前或之后或在步骤1-11-2)之后还包括步骤1-11-3)进行基团转换反应;
    其中
    Figure PCTCN2019114660-appb-100011
  23. 根据权利要求22所述的制备方法,步骤1-11-1)中开环反应的条件为在酸性条件回流下进行,酸性条件通过加入对甲苯磺酸,苯磺酸、樟脑磺酸、三氟乙酸获得,并在有水存在的条件进行反应。
  24. 根据权利要求22所述的制备方法,步骤1-11-2)中乙酰化反应条件为乙酸钠和乙酸酐的混合物,醋酐和吡啶的混合物,乙酰溴和吡啶的混合物,乙酰氯和吡啶的混合物,高氯酸和醋酐的混合物。
  25. 根据权利要求22所述的制备方法,步骤1-11-3)基团转换反应的条件为在催化剂的条件下与R 2-C≡C反应,所述催化剂为CuI和N,N-二异丙基乙胺DIPEA组合、CuSO 4和Vc-Na;或者首先氢化还原式II化合物上的-N 3为-NH 2,在与R 6-Cl反应获得。
  26. 根据权利要求18-25任一项所述的制备方法,所述的式II化合物通过以下步骤获得,
    i)通过双丙酮葡萄糖经糖环翻转,制备式I化合物双丙酮古洛糖
    Figure PCTCN2019114660-appb-100012
    ii)式I化合物经酰化、叠氮取代反应制备式II化合物。
  27. 根据权利要求26所述的制备方法,其中步骤i)包括以下两个步骤:
    i-1)氧化反应得到式I-1化合物
    Figure PCTCN2019114660-appb-100013
    加入氧化剂进行氧化反应,
    i-2)催氢化脱乙酰基反应,催化剂选自Pd/C,Pd(OH) 2/C。
  28. 根据权利要求26所述的制备方法,其中步骤ii)包括以下两个步骤:
    ii-1)加入酰化试剂进行反应,所述酰化试剂选自三氟甲磺酸酐、对甲苯磺酰氯、甲磺酰氯、三氟甲磺酰氯,优选地在碱性条件下进行,更优选地,碱选自三乙胺、吡啶、二异丙基乙胺、三异丙基胺;
    ii-2)加入叠氮试剂进行反应,所述叠氮试剂选自叠氮基三甲基硅烷、叠氮化锂、叠氮化钠、四丁基叠氮化铵,或者叠氮基三甲基硅烷与氟化物的组合,所述氟化物选自氟化锂,氟化钠,氟化钾,氟化铵,氟化氢钠,氟化氢钾,氟化氢铵,四丁基氟化铵,四甲基氟化铵。
  29. 权利要求1-7任一项所述糖类化合物在制备用于靶向、识别或检测半乳凝素蛋白1的药物或检测试剂的用途。
  30. 权利要求1-7任一项所述糖类化合物作为主动靶向配体的用途,所述主动靶向配体特异性识别半乳凝素蛋白1,且所述糖类化合物能与活性成分或检测试剂连接。
  31. 根据权利要求30所述的用途,所述的活性成分包括抗肿瘤药物或抗炎药物,所述检测试剂包括荧光标记、探针。
PCT/CN2019/114660 2019-10-31 2019-10-31 一种基于tdg分子骨架的功能糖类分子及其制备方法 WO2021081881A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114660 WO2021081881A1 (zh) 2019-10-31 2019-10-31 一种基于tdg分子骨架的功能糖类分子及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114660 WO2021081881A1 (zh) 2019-10-31 2019-10-31 一种基于tdg分子骨架的功能糖类分子及其制备方法

Publications (1)

Publication Number Publication Date
WO2021081881A1 true WO2021081881A1 (zh) 2021-05-06

Family

ID=75714816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114660 WO2021081881A1 (zh) 2019-10-31 2019-10-31 一种基于tdg分子骨架的功能糖类分子及其制备方法

Country Status (1)

Country Link
WO (1) WO2021081881A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158467A (zh) * 2015-07-30 2015-12-16 中国科学院深圳先进技术研究院 一种用于检测肿瘤标记物半乳凝集素-1的生物探针及其制备方法
CN105241872A (zh) * 2015-09-01 2016-01-13 中国科学院深圳先进技术研究院 检测血液中半乳凝集素-1的方法及所用试剂
WO2016113335A1 (en) * 2015-01-16 2016-07-21 Galecto Biotech Ab Novel galactoside inhibitor of galectins
CN106536537A (zh) * 2014-07-09 2017-03-22 卡雷多生物技术公司 半乳凝素的新型杂合半乳糖苷抑制剂
CN108602848A (zh) * 2015-11-09 2018-09-28 格莱克特生物技术公司 1,1’-硫烷二基-二-β-D-吡喃半乳糖苷作为半乳糖凝集素的抑制剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536537A (zh) * 2014-07-09 2017-03-22 卡雷多生物技术公司 半乳凝素的新型杂合半乳糖苷抑制剂
WO2016113335A1 (en) * 2015-01-16 2016-07-21 Galecto Biotech Ab Novel galactoside inhibitor of galectins
CN105158467A (zh) * 2015-07-30 2015-12-16 中国科学院深圳先进技术研究院 一种用于检测肿瘤标记物半乳凝集素-1的生物探针及其制备方法
CN105241872A (zh) * 2015-09-01 2016-01-13 中国科学院深圳先进技术研究院 检测血液中半乳凝集素-1的方法及所用试剂
CN108602848A (zh) * 2015-11-09 2018-09-28 格莱克特生物技术公司 1,1’-硫烷二基-二-β-D-吡喃半乳糖苷作为半乳糖凝集素的抑制剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KRISTOFFER PETERSON ET AL.: "Systematic Tuning of Fluoro-galectin-3 Interactions Provides Thiodigalactoside Derivatives with Single-Digit nM Affinity and High Selectivity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, no. 3, 28 December 2017 (2017-12-28), XP055527952, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.7b01626 *
TAMARA DELAINE ET AL.: "Galectin-3-Binding Glycomimetics That Strongly Reduce Bleomycin-Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition", CHEMBIOCHEM, vol. 17, no. 18, 12 August 2016 (2016-08-12), XP055527926, ISSN: 1439-4227, DOI: 10.1002/cbic.201600285 *

Similar Documents

Publication Publication Date Title
Stirchak et al. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoade otigomers with carbamate internucleoside linkages
JP5364380B2 (ja) ポリヌクレオチド標識試薬
US6998484B2 (en) Synthesis of purine locked nucleic acid analogues
EP0877751B1 (en) Linker arm for solid support oligonucleotide synthesis and process for production thereof
WO2014124952A1 (en) "clickable" alkyne-lna oligonucleotides
EP0728763B1 (en) Ganglioside gm3 analog having sialic acid residue fluorinated at the 9-position and intermediate therefor
WO2021081881A1 (zh) 一种基于tdg分子骨架的功能糖类分子及其制备方法
JP2006513244A (ja) 新規フォスフォアミダイト化合物
CN112745372B (zh) 一种基于tdg分子骨架的功能糖类分子及其制备方法
CN107236055B (zh) 一种葡聚糖衍生物及其应用
EP4130016A1 (en) Sugar compound having polyethylene glycol chain, and precursor of antibody-drug complex
Cai et al. Synthesis of aminodisaccharide–nucleoside conjugates for RNA binding
JP6898323B2 (ja) 6−アジド−2,4−ジアセトアミド−2,4,6−トリデオキシ−d−マンノースの調製方法
CN108948106B (zh) 一种2-羟基古洛糖受体衍生物、博来霉素二糖及其前体的制备方法
JP5717281B2 (ja) ダブルビオチンアンカー型リガンド固定化分子
JP3202240B2 (ja) 3−アミノ置換グリコシル化胆汁酸の製造方法
CN116444589B (zh) 新型GalNAc化合物及其硫代寡核苷酸缀合物和偶联方法
CN111732623B (zh) 一种三异丙基硅乙炔修饰的脱氧胞苷亚磷酰胺单体及其制备方法与应用
US8168766B2 (en) Process of making 2-deoxy-2,2-difluoro-D-ribofuranosyl nucleosides and intermediates therefor
Timofeev et al. New indocyanine derivatives for the synthesis of fluorescently labeled oligonucleotides
CN116082420A (zh) 一种eps-g7的化学合成方法
CA3187159A1 (en) Ligand compounds, conjugates, and applications thereof
Chidambaram et al. Targeting of Antisense: Synthesis of Steroid-Linked and Steroid-Bridged Oligodeoxynucleotides
CN114085233A (zh) 一种用于蛋白质修饰的聚乙二醇链接剂及其合成方法
JPH06166696A (ja) フコシル‐グルコサミン誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950316

Country of ref document: EP

Kind code of ref document: A1