WO2021081836A1 - 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品 - Google Patents

基于vrds 4d医学影像的胃肿瘤识别方法及相关产品 Download PDF

Info

Publication number
WO2021081836A1
WO2021081836A1 PCT/CN2019/114472 CN2019114472W WO2021081836A1 WO 2021081836 A1 WO2021081836 A1 WO 2021081836A1 CN 2019114472 W CN2019114472 W CN 2019114472W WO 2021081836 A1 WO2021081836 A1 WO 2021081836A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
data
tumor
stomach
wall
Prior art date
Application number
PCT/CN2019/114472
Other languages
English (en)
French (fr)
Inventor
李戴维伟
李斯图尔特平
Original Assignee
未艾医疗技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未艾医疗技术(深圳)有限公司 filed Critical 未艾医疗技术(深圳)有限公司
Priority to PCT/CN2019/114472 priority Critical patent/WO2021081836A1/zh
Priority to CN201980099975.5A priority patent/CN114401673A/zh
Publication of WO2021081836A1 publication Critical patent/WO2021081836A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • This application relates to the technical field of medical imaging devices, in particular to a method for identifying gastric tumors based on VRDS 4D medical imaging and related products.
  • CT electronic computer tomography
  • MRI magnetic resonance imaging
  • DTI diffusion tensor imaging
  • PET positron emission computed tomography
  • the embodiments of the present application provide a method and related products for gastric tumor identification based on VRDS 4D medical imaging, which is beneficial to improve the efficiency of disease analysis.
  • the embodiments of the present application provide a method for gastric tumor recognition based on VRDS 4D medical imaging, which is applied to a medical imaging device and includes:
  • the gastric tumor type corresponding to the target object is determined.
  • the embodiments of the present application provide a gastric tumor recognition device based on VRDS 4D medical imaging, which is applied to a medical imaging device, and the device includes:
  • the acquiring unit is used to acquire a scanned image of the stomach of the target object through VRDS 4D imaging technology
  • a processing unit configured to process the scanned image of the stomach to obtain 4D image data of the stomach of the target object
  • An extracting unit for extracting 4D image data of the stomach wall located in the stomach wall from the 4D image data of the stomach;
  • the determining unit is configured to determine the target position of the tumor according to the 4D image data of the stomach wall;
  • the determining unit is further configured to determine the type of gastric tumor corresponding to the target object according to the target position of the tumor.
  • an embodiment of the present application provides an electronic device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured by The foregoing processor executes, and the foregoing program includes instructions for executing the steps in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the above-mentioned computer-readable storage medium stores a computer program for electronic data exchange, wherein the above-mentioned computer program enables a computer to execute Some or all of the steps described in one aspect.
  • the embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute as implemented in this application.
  • the computer program product may be a software installation package.
  • FIG. 1 is a schematic structural diagram of a VRDS 4D-based disease analysis and processing system 100 provided by an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a method for gastric tumor identification based on VRDS 4D medical imaging provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a medical imaging device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of a gastric tumor identification device based on VRDS 4D medical images provided by an embodiment of the present application.
  • the medical imaging devices involved in the embodiments of this application refer to various instruments that use various media as information carriers to reproduce the internal structure of the human body as images.
  • the image information and the actual structure of the human body have spatial and temporal distributions.
  • DICOM data refers to the original image file data that reflects the internal structural characteristics of the human body collected by medical equipment, which can include electronic computed tomography CT, magnetic resonance MRI, diffusion tensor imaging DTI, and positron emission computed tomography PET-
  • image source refers to the Texture2D/3D image volume data generated by analyzing the original DICOM data.
  • VRDS refers to the Virtual Reality Doctor system (VRDS for short).
  • FIG. 1 is a schematic structural diagram of a gastric tumor recognition and processing system 100 based on VRDS 4D medical imaging according to an embodiment of this application.
  • the system 100 includes a medical imaging device 110 and a network database 120.
  • the medical imaging The device 110 may include a local medical imaging device 111 and/or a terminal medical imaging device 112.
  • the local medical imaging device 111 or the terminal medical imaging device 112 is used for the stomach based on the original DICOM data and the VRDS 4D medical image presented in the embodiment of this application.
  • the stomach is recognized, localized, four-dimensional volume rendering, abnormal analysis, and four-dimensional three-dimensional imaging effects are realized (the four-dimensional medical image specifically refers to the medical image including the internal spatial structure characteristics and external spatial structure of the displayed tissue
  • the internal spatial structure characteristic means that the slice data inside the tissue is not lost, that is, the medical imaging device can present the internal structure of the stomach, blood vessels and other tissues.
  • the external spatial structural characteristic refers to the environmental characteristics between the tissue and the tissue, including The spatial location characteristics between tissues (including intersections, intervals, fusions), etc., such as the edge structure characteristics of the intersections between organs such as the stomach and blood vessels, etc.), the local medical imaging device 111 is relative to the terminal medical imaging device 112 It can also be used to edit the image source data to form the transfer function result of the four-dimensional human body image.
  • the transfer function result can include the transfer function result of the stomach surface and the tissue structure in the stomach, and the transfer function result of the cube space, such as The cube edit box and arc edit array quantity, coordinates, color, transparency and other information required by the transfer function.
  • the network database 120 may be, for example, a cloud server.
  • the network database 120 is used to store the image source generated by analyzing the original DICOM data and the transfer function result of the four-dimensional human body image edited by the local medical imaging device 111.
  • the image source may be from multiple sources.
  • a local medical imaging device 111 to realize interactive diagnosis of multiple doctors.
  • HMDS head-mounted Displays Set
  • the operating actions refer to the user’s actions through the medical imaging device.
  • External ingestion equipment such as mouse, keyboard, tablet (portable android device, Pad), iPad (internet portable apple device), etc., operate and control the four-dimensional human body image to achieve human-computer interaction.
  • the operation actions include at least the following One: (1) Change the color and/or transparency of a specific organ/tissue, (2) Position the zoom view, (3) Rotate the view, realize the multi-view 360-degree observation of the four-dimensional human body image, (4) "Enter” Observe the internal structure of the stomach, real-time cutting effect rendering, (5) Move the view up and down.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for identifying gastric tumors based on VRDS 4D medical images according to an embodiment of this application.
  • the method for identifying gastric tumors based on VRDS 4D medical images described in this embodiment includes the following steps:
  • the above-mentioned target object may be any user or patient, and the above-mentioned stomach scan image may include any of the following: CT image, MRI image, DTI image, PET-CT image, etc., which are not limited herein.
  • the medical imaging device may acquire a stomach scan image that reflects the internal structure of the stomach of the target subject.
  • the stomach scan images collected by the medical imaging device can be input into the VRDS (Virtual Reality Doctor system, VRDS) system to obtain the stomach 4D image data of the target object.
  • the stomach 4D image data includes the inside of the stomach. Spatial structure characteristics and external spatial structure characteristics.
  • processing the scanned image of the stomach to obtain 4D image data of the stomach of the target object includes:
  • the first medical image data includes a stomach data set and a blood vessel data set, and the stomach data set includes gastric mucosa data set;
  • the foregoing first preset processing may include at least one of the following operations: VRDS restricted contrast adaptive histogram equalization, hybrid partial differential denoising, VRDS Ai elastic deformation processing, etc., which are not limited here;
  • the medical imaging device may be preset Set up the VRDS medical network model, the medical imaging device obtains the BMP data source by processing the stomach scan image data, which increases the amount of information of the original data, and increases the depth dimension information, and finally obtains data that meets the requirements of 4D medical image display.
  • the medical imaging device imports the above-mentioned BMP data source into the preset VRDS medical network model, through which each transfer function in the set of pre-stored transfer functions can be called through the VRDS medical network model, and processed by multiple transfer functions in the transfer function set
  • the above-mentioned BMP data source obtains the first medical image data.
  • the above-mentioned transfer function set may include the transfer function of the blood vessel and the transfer function of the stomach which are preset through the reverse editor. In this way, the first medical image is obtained through the preset VRDS medical network model. Image data can improve the accuracy and efficiency of the data obtained.
  • the medical imaging device may be preset with a cross-vessel network model
  • the preset cross-vessel network model may be a trained neural network model
  • the above-mentioned first medical image data may be imported into the preset cross-vessel network model.
  • the cross blood vessel network model performs data segmentation to obtain the stomach data set blood vessel data set.
  • the blood vessel data set includes the data associated with the cross position of the blood vessel.
  • the second medical image data can be obtained.
  • the cross blood vessel network model can be used, Realize the data segmentation between the data corresponding to the blood vessel and the data corresponding to the stomach.
  • the foregoing second preset processing includes at least one of the following methods: 2D boundary optimization processing, 3D boundary optimization processing, data enhancement processing, etc., which are not limited here; the foregoing 2D boundary optimization processing includes: multiple sampling to obtain low resolution Rate information and high-resolution information.
  • the low-resolution information can provide the contextual semantic information of the segmentation target in the entire image, that is, the features that reflect the relationship between the segmentation target and the environment. These features are used for object category judgment, high resolution
  • the rate information is used to provide more refined features for segmentation targets, such as gradients.
  • the segmentation targets may include stomach and blood vessels.
  • the second medical image data can be processed to obtain a 4D image of the target, and the target 4D image may include Stomach 4D image data and blood vessel data set.
  • the 4D image data of the stomach wall located in the stomach wall can be extracted from the above-mentioned 4D image data of the stomach.
  • the 4D image data of the stomach wall may include: the internal spatial structure characteristics and the external spatial structure of the stomach wall.
  • Features, can also present the internal structure of tissues such as the stomach wall and blood vessels.
  • stomach tumors mostly occur in the mucosal layer, submucosa, muscle layer, or outer gastric wall under the stomach wall, and the stomach tissue is thicker. Therefore, the internal space structure characteristics of the stomach wall and the external space structure characteristics can be used to determine the target of the tumor position.
  • step 204 determining the target position of the tumor according to the 4D image data of the stomach wall, may include the following steps:
  • the tumor of the stomach wall is limited to the structure of the above-mentioned stomach wall
  • the internal space structure characteristics and external space structure characteristics of the mucosal layer corresponding to the above-mentioned stomach wall can be determined, and the internal space structure characteristics of the submucosal layer can be determined.
  • the internal space structure characteristics of the muscle layer, the external space structure characteristics, and the internal space structure characteristics and external space structure characteristics of the outer gastric wall are processed to determine the abnormal data in the above-mentioned spatial structure characteristics, for example, if the above-mentioned mucosa If the internal space structure characteristics and external space structure characteristics corresponding to the layer are too different from the normal characteristics, it can be determined that the target location corresponding to the tumor is the mucosal layer; in this way, the location of the tumor can be accurately located through the 4D image data of the stomach wall , No need to perform operations such as gastroscope, which is beneficial to improve the inspection experience of the target object.
  • step 41 determining the mucosal layer image data, submucosal layer image data, muscle layer image data, and gastric outer wall image data corresponding to the stomach wall of the target object according to the gastric wall 4D image data may include the following steps:
  • the stomach wall includes at least one of the following from the inside to the outside: mucosal layer, submucosal layer, muscular layer and Outer wall of the stomach;
  • the mucosal layer space coordinate set determines the mucosal layer space coordinate set, the submucosal layer space coordinate set, the muscle layer space coordinate set, and the outer gastric wall space coordinate set;
  • the submucosal layer space coordinate set, the muscle layer space coordinate set, and the outer gastric wall space coordinate set determine the mucosal layer image data and the location corresponding to the target object.
  • the submucosal layer image data, the muscle layer image data, and the outer gastric wall image data are determined by the mucosal layer space coordinate set, the muscle layer image data, and the outer gastric wall image data.
  • the target position of the tumor of the target object can be determined through the above-mentioned spatial structural characteristics, specifically, the corresponding tissues of the stomach wall may be determined Obtain multiple spatial coordinates corresponding to the multiple tissues.
  • Each tissue can correspond to multiple spatial coordinates. Since the 4D image data of the stomach wall is the image data of each tissue, in order to improve the accuracy, the mucosal layer, Multiple target space coordinates corresponding to the submucosa, muscle layer, and outer gastric wall.
  • the space coordinates of each gastric parietal layer can be classified to obtain the space coordinate set of the mucosal layer and the space coordinates of the submucosal layer.
  • the mucosal layer image data, submucosal image data, muscle layer image data and gastric outer wall image data corresponding to the above-mentioned spatial coordinate set can be obtained from the gastric wall 4D image data. In this way, the accuracy of subsequent determination of the tumor location can be improved.
  • the abnormal data corresponding to the stomach wall is determined based on the mucosal layer image data, the submucosal layer image data, the muscle layer image data, and the outer gastric wall image data, which may include the following data :
  • the mucosal layer image data the submucosal layer image data, the submucosal layer image data, the muscle layer image data, and the gastric outer wall image data, generate the mucosal layer, the submucosal layer, and the outer gastric wall.
  • the mucosal layer feature data, the submucosal layer feature data, the submucosal layer feature data, and the gastric outer wall feature data corresponding to the muscle layer and the outer gastric wall respectively.
  • the feature data includes at least one of the following: spatial position, height, thickness, diameter, and shape;
  • the preset gastric wall normal feature data set includes at least one of the following: mucosal layer standard feature data, submucosal standard feature data, submucosal standard feature data, and gastric outer wall standard feature data
  • the above-mentioned preset threshold can be set by the user or the system defaults, because the stomach may have a tumor, and the tumor is mostly raised or polyps, which will cause different parts of the stomach wall or tissue to swell or sink. Therefore, the characteristic data corresponding to different parts can be generated according to the corresponding internal spatial structure characteristics and external spatial structure characteristics of the mucosal layer, submucosa, muscular layer, and outer gastric wall of the stomach wall, and the characteristic data may include at least one of the following: spatial location , Height, thickness, diameter, length and shape, etc., are not limited here.
  • the medical imaging device can pre-store the above-mentioned mucosal layer, submucosal layer, muscle layer, and outer gastric wall corresponding to the preset normal data set under normal conditions for matching to obtain multiple matching values, if less than or equal to the above preset threshold , It can be considered that the matching fails. Therefore, the feature data corresponding to the matching value less than or equal to the preset threshold can be selected as the abnormal data corresponding to the stomach, that is, the data corresponding to the tumor site may be selected.
  • determining the target location corresponding to the tumor according to the abnormal data may include the following steps:
  • multiple spatial location data can be used to locate the tumor site.
  • the abnormal data can include at least one of the following: spatial location, height, thickness, diameter, length, shape, etc. It is not limited here.
  • multiple spatial location data corresponding to the abnormal data can be filtered from the multiple feature data of the abnormal data, and Traverse the above-mentioned multiple spatial location data, determine multiple target spatial location data corresponding to the tumor, and locate the tumor according to the multiple target spatial location data to obtain the specific location of the tumor.
  • the traversing the locations corresponding to the multiple spatial location data to obtain multiple target spatial location data corresponding to the tumor may include the following steps:
  • the stomach tissue is thicker, it is more difficult to locate the specific location of the tumor. Therefore, the three-dimensional space area corresponding to the multiple spatial location data corresponding to the multiple tissue locations can be used to locate the tumor.
  • the target position of the above-mentioned tumor in addition, because the tumor may grow longitudinally relative to the stomach, the above-mentioned three-dimensional space area can be divided into K-layer subspaces from top to bottom, and each layer of subspace can correspond to one layer.
  • the tissue structure inside the stomach can traverse the spatial position data of each layer of the above-mentioned K-layer subspace to obtain the L-layer target subspace in an abnormal state.
  • the multiple spatial position data corresponding to the above-mentioned L-layer target subspace are For multiple target spatial position data, in this way, the number of spatial layers corresponding to the tumor and the position corresponding to the number of spatial layers can be accurately located for each layer of texture, which is beneficial to improve the accuracy of positioning.
  • the type of tumor after locating the tumor, that is, after determining the target position of the tumor, the type of tumor can be determined through the abnormal data corresponding to the target position.
  • the types of the above-mentioned tumors can be divided into at least one of the following: early tumors and advanced stages Tumors are not limited here; the types of the above-mentioned tumors can be judged based on the characteristics of the tumor's growth position, depth of invasion, diameter, and morphology.
  • determining the type of gastric tumor corresponding to the target object according to the target location of the tumor may include the following steps:
  • the types of the above-mentioned tumors can be divided into at least one of the following: early tumors and advanced tumors, which are not limited here; the types of the above-mentioned tumors can be judged based on the characteristics of tumor growth position, depth of invasion, diameter and morphology, specifically The above abnormal data can be used to determine the depth of tumor infiltration relative to the gastric wall and the morphological characteristics of the tumor to determine the type of the tumor.
  • the diameter of the above-mentioned tumor can be used to determine which type of tumor is.
  • Early tumors are generally located in the mucosal layer or submucosal layer.
  • the diameter of the lesion of this type of tumor is generally less than 0.5 cm. It is a small tumor, 0.6-1.0 cm is called a small tumor. Therefore, for example, the state of the tumor can be determined according to the shape or height of the tumor. Some tumors are raised and may appear as polyps.
  • the shape of the tumor may be Prominence, if the tumor is micro-uplifted and its height is less than twice the thickness of the submucosa, therefore, the type of the above-mentioned tumor can be determined by the various morphological characteristics of the tumor or the depth of invasion.
  • the following steps may be further included:
  • A1. Perform classification processing on the blood vessel data set to obtain a peripheral blood vessel data set and a peripheral cross blood vessel data set;
  • A2 If the target location of the tumor infiltrates the outer gastric wall, determine the positional relationship between the tumor and the peripheral blood vessels according to the peripheral blood vessel data set and the peripheral cross blood vessel data set;
  • the above-mentioned tumor lesions are serious and the depth of infiltration exceeds the outer gastric wall of the outermost layer of the stomach wall, it may metastasize to lymphatics and other parts. After the tumor grows out of the stomach, it is better to observe than in the stomach. Determine whether the above-mentioned tumor has metastasized through the blood vessel data connected to the stomach.
  • the internal spatial structure characteristics corresponding to the above-mentioned stomach 4D image data can show the internal structure of stomach, blood vessels and other tissues, and the external spatial structure characteristics can show the difference between tissues and tissues.
  • the characteristics of the environment including the spatial location characteristics between tissues (including intersection, interval, fusion), etc.
  • the blood vessel data set can be used to obtain the blood vessel data set around the stomach and the peripheral cross blood vessel data set.
  • the positional relationship between the tumor and the surrounding blood vessels can be used to determine whether the above-mentioned metastasis occurs.
  • the morphological characteristics of the surrounding blood vessels and the cross-over position can be obtained. Morphological characteristics. If the morphological characteristics are twisted or deformed, the positional relationship between the tumor and the blood vessel is determined. If it is close, it indicates that the deformed or twisted blood vessel is caused by the tumor. Therefore, it can be determined that the tumor has metastasized.
  • the medical imaging device first obtains the stomach scan image of the target object through VRDS 4D imaging technology, and compares the stomach tumor according to the target position of the tumor. Partially scanned images are processed to obtain 4D image data of the stomach of the target object according to the target position of the tumor, and the 4D image data of the stomach wall located in the stomach wall is extracted from the 4D image data of the stomach of the target object according to the target position of the tumor.
  • the 4D image data of the stomach wall of the target location of the tumor determines the target location of the tumor, and the type of stomach tumor corresponding to the target object is determined according to the target location of the tumor. In this way, the location of the tumor can be accurately located based on the 4D image data. It is helpful to improve the accuracy of judging the type of gastric tumor.
  • FIG. 3 is a schematic structural diagram of a medical imaging device 300 provided by an embodiment of the application.
  • the medical imaging device 300 includes a processor 310, a memory 320, a communication interface 330, One or more programs 321, wherein the one or more programs 321 are stored in the above-mentioned memory 320 and are configured to be executed by the above-mentioned processor 310, and the one or more programs 321 include: instruction:
  • the gastric tumor type corresponding to the target object is determined.
  • the stomach scan image of the target object can be acquired through VRDS 4D imaging technology, and the stomach scan image according to the target position of the tumor is processed to obtain the The 4D image data of the stomach of the target object at the target position of the tumor, the 4D image data of the stomach wall located on the stomach wall is extracted from the 4D image data of the stomach of the target position of the tumor, and the 4D image data of the stomach wall according to the target position of the tumor , Determine the target position of the tumor, and determine the type of gastric tumor corresponding to the target object according to the target position of the tumor. In this way, the position of the tumor can be accurately located based on the 4D image data, which is beneficial to improve the accuracy of determining the type of gastric tumor.
  • the program further includes instructions for performing the following operations:
  • the target location corresponding to the tumor is determined.
  • the program It also includes instructions for performing the following operations:
  • the spatial coordinates of each data in the 4D image data of the stomach wall are determined to obtain a plurality of spatial coordinates
  • the stomach wall includes at least one of the following from the inside to the outside: mucosal layer, submucosal layer, muscular layer, and outer gastric wall ;
  • the mucosal layer image data and the mucosal layer image data corresponding to the target object are determined Lower layer image data, the muscle layer image data, and the outer gastric wall image data.
  • the The program also includes instructions for performing the following operations:
  • the mucosal layer image data the submucosal layer image data, the submucosal layer image data, the muscle layer image data, and the gastric outer wall image data
  • the mucosal layer, the submucosal layer, and the muscle are generated Mucosal layer feature data, submucosal layer feature data, submucosal layer feature data, and gastric outer wall feature data respectively corresponding to the layer and the outer gastric wall, the feature data including at least one of the following: spatial position, height, thickness, diameter, and shape;
  • the preset gastric wall normal feature data set includes at least one of the following: mucosal standard feature data, submucosal standard feature data, submucosal standard feature data, and gastric outer wall standard feature data;
  • Feature data corresponding to a matching value less than or equal to a preset threshold is selected from the multiple matching values as abnormal data corresponding to the stomach wall.
  • the program further includes instructions for performing the following operations:
  • the tumor is located according to the multiple target spatial position data, and the target position corresponding to the tumor is obtained.
  • the program further includes instructions for performing the following operations:
  • Multiple spatial position data corresponding to the L-layer target subspace are the target space position data, where L is less than or equal to K Is a positive integer.
  • the program further includes instructions for performing the following operations:
  • the type of the tumor is determined according to the target position, the depth, and the morphological characteristics of the tumor.
  • the program further includes instructions for performing the following operations:
  • the target location of the tumor infiltrates the outer wall of the stomach, determining the positional relationship between the tumor and the peripheral blood vessels according to the peripheral blood vessel data set and the peripheral cross blood vessel data set;
  • the program further includes instructions for performing the following operations:
  • the first medical image data includes a stomach data set and a blood vessel data set, and the stomach data set includes a gastric mucosa data set ;
  • the 4D image data includes: stomach 4D image data and a blood vessel data set.
  • FIG. 4 is a schematic structural diagram of an embodiment of a gastric tumor identification device based on VRDS 4D medical images provided by an embodiment of the application.
  • the device for gastric tumor recognition based on VRDS 4D medical images described in this embodiment includes: an acquisition unit 401, a processing unit 402, an extraction unit 403, and a determination unit 404, which are specifically as follows:
  • the acquiring unit 401 is configured to acquire a scanned image of the stomach of the target object through VRDS 4D imaging technology
  • the processing unit 402 is configured to process the scanned image of the stomach to obtain 4D image data of the stomach of the target object;
  • the extraction unit 403 is configured to extract 4D image data of the stomach wall located in the stomach wall from the 4D image data of the stomach;
  • the determining unit 404 is configured to determine the target location of the tumor according to the 4D image data of the stomach wall;
  • the determining unit 404 is further configured to determine the type of gastric tumor corresponding to the target object according to the target position of the tumor.
  • the stomach scan image of the target object can be obtained through VRDS 4D imaging technology, and the stomach scan image according to the target position of the tumor
  • the 4D image data of the stomach of the target object according to the target position of the tumor is obtained, and the 4D image data of the stomach wall in the stomach wall is extracted from the 4D image data of the stomach of the target position of the tumor according to the target position of the tumor.
  • Determine the target position of the tumor based on the 4D image data of the gastric wall of the target position, and determine the type of gastric tumor corresponding to the target object according to the target position of the tumor.
  • the position of the tumor can be accurately located based on the 4D image data, which is beneficial to improve judgment Accuracy of gastric tumor types.
  • the determining unit 404 is specifically configured to:
  • the target location corresponding to the tumor is determined.
  • the determining unit 404 is also specifically used for:
  • the spatial coordinates of each data in the 4D image data of the stomach wall are determined to obtain a plurality of spatial coordinates
  • the stomach wall includes at least one of the following from the inside to the outside: a mucosal layer, a submucosal layer, a muscular layer, and an outer gastric wall;
  • the mucosal layer image data and the mucosal layer image data corresponding to the target object are determined Lower layer image data, the muscle layer image data, and the outer gastric wall image data.
  • the determining The unit 404 is specifically also used for:
  • the mucosal layer image data the submucosal layer image data, the submucosal layer image data, the muscle layer image data, and the gastric outer wall image data
  • the mucosal layer, the submucosal layer, and the muscle are generated Mucosal layer feature data, submucosal layer feature data, submucosal layer feature data, and gastric outer wall feature data respectively corresponding to the layer and the outer gastric wall, the feature data including at least one of the following: spatial position, height, thickness, diameter, and shape;
  • the preset gastric wall normal feature data set includes at least one of the following: mucosal standard feature data, submucosal standard feature data, submucosal standard feature data, and gastric outer wall standard feature data;
  • Feature data corresponding to a matching value less than or equal to a preset threshold is selected from the multiple matching values as abnormal data corresponding to the stomach wall.
  • the determining unit 404 is specifically further configured to:
  • the tumor is located according to the multiple target spatial position data, and the target position corresponding to the tumor is obtained.
  • the determining unit 404 is specifically further configured to:
  • Multiple spatial position data corresponding to the L-layer target subspace are the target space position data, where L is less than or equal to K Is a positive integer.
  • the determining unit 404 is specifically further configured to:
  • the type of the tumor is determined according to the target position, the depth, and the morphological characteristics of the tumor.
  • the processing unit 402 is specifically configured to:
  • the first medical image data includes a stomach data set and a blood vessel data set, and the stomach data set includes a gastric mucosa data set ;
  • the 4D image data includes: stomach 4D image data and a blood vessel data set.
  • each program module of the gastric tumor recognition device based on VRDS 4D medical imaging of this embodiment can be implemented according to the method in the above method embodiment, and the specific implementation process can refer to the relevant description of the above method embodiment. , I won’t repeat it here.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program enables the computer to execute any of the VRDS-based 4D medical images recorded in the above method embodiments Part or all of the steps of the gastric tumor identification method.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is operable to cause a computer to execute the method described in the foregoing method embodiment. Part or all of the steps of any gastric tumor identification method based on VRDS 4D medical imaging.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software program module.
  • the integrated unit is implemented in the form of a software program module and sold or used as an independent product, it can be stored in a computer readable memory.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the foregoing memory includes: U disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable memory, and the memory can include: a flash disk , ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种基于VRDS 4D医学影像的胃肿瘤识别方法及相关产品,应用于医学成像装置,该方法包括:通过VRDS 4D影像技术获取目标对象的胃部扫描图像(201),对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据(202),从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据(203),根据所述胃壁4D影像数据,确定肿瘤的目标位置(204),根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类(205),如此,可基于4D影像数据精确定位肿瘤的位置,有利于提高判断胃肿瘤种类的准确性。

Description

基于VRDS 4D医学影像的胃肿瘤识别方法及相关产品 技术领域
本申请涉及医学成像装置技术领域,具体涉及一种基于VRDS 4D医学影像的胃肿瘤识别方法及相关产品。
背景技术
目前,医生仍然采用观看阅读连续的二维切片扫描图像,例如,CT(电子计算机断层扫描)、MRI(磁共振成像)、DTI(弥散张量成像)、PET(正电子发射型计算机断层显像)等,以此对患者的病变组织如肿瘤进行判断分析。然而,仅仅通过直接观看两维切片数据无法确定肿瘤的具体位置,严重影响到医生对疾病的诊断。随着医学成像技术的飞速发展,人们对医学成像提出了新的需求。
发明内容
本申请实施例提供了一种基于VRDS 4D医学影像的胃肿瘤识别方法及相关产品,有利于提高病情分析的效率。
第一方面,本申请实施例提供了一种基于VRDS 4D医学影像的胃肿瘤识别方法,应用于医学成像装置,包括:
通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
从,所述胃部4D影像数据中提取位于胃壁的包括胃壁4D影像数据;
根据所述胃壁4D影像数据,确定肿瘤的目标位置;
根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
第二方面,本申请实施例提供了一种基于VRDS 4D医学影像的胃肿瘤识别装置,应用于医学成像装置,所述装置包括:
获取单元,用于通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
处理单元,用于对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
提取单元,用于从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据;
确定单元,用于根据所述胃壁4D影像数据,确定肿瘤的目标位置;
所述确定单元,还用于根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
第三方面,本申请实施例提供了一种电子设备,包括处理器、存储器、通信接口,以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种基于VRDS 4D的病情分析处理系统100的结构示意图;
图2是本申请实施例提供的一种基于VRDS 4D医学影像的胃肿瘤识别方法的流程示意图;
图3是本申请实施例提供的一种医学成像装置的结构示意图;
图4是本申请实施例提供的一种基于VRDS 4D医学影像的胃肿瘤识别装置的实施例结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式 地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的医学成像装置是指利用各种不同媒介作为信息载体,将人体内部的结构重现为影像的各种仪器,其影像信息与人体实际结构有着空间和时间分布上的对应关系。“DICOM数据”是指通过医疗设备采集的反映人体内部结构特征的原始图像文件数据,可以包括电子计算机断层扫描CT、核磁共振MRI、弥散张量成像DTI、正电子发射型计算机断层显像PET-CT等信息,“图源”是指解析原始DICOM数据生成的Texture2D/3D图像体数据。“VRDS”是指虚拟现实医用系统(Virtual Reality Doctor system,简称为VRDS)。
请参阅图1,为本申请实施例提供的一种基于VRDS 4D医学影像的胃肿瘤识别处理系统100的结构示意图,该系统100包括该系统100包括医学成像装置110和网络数据库120,其中医学成像装置110可以包括本地医学成像装置111和/或终端医学成像装置112,本地医学成像装置111或终端医学成像装置112用于基于原始DICOM数据,以本申请实施例所呈现的VRDS 4D医学影像的胃肿瘤识别算法为基础,进行胃部的识别、定位、四维体绘制、异常分析,实现四维立体成像效果(该4维医学影像具体是指医学影像包括所显示组织的内部空间结构特征及外部空间结构特征,所述内部空间结构特征是指组织内部的切片数据未丢失,即医学成像装置可以呈现胃部、血管等组织的内部构造,外部空间结构特性是指组织与组织之间的环境特征,包括组织与组织之间的空间位置特性(包括交叉、间隔、融合)等,如胃部等器官与血管之间的交叉位置的边缘结构特性等),本地医学成像装置111相对于终端医学成像装置112还可以用于对图源数据进行编辑,形成四维人体图像的传递函数结果,该传递函数结果可以包括胃部表面和胃部内的组织结构的传递函数结果,以及立方体空间的传递函数结果,如传递函数所需的立方编辑框与弧线编辑的数组数量、坐标、颜色、透明度等信息。网络数据库120例如可以是云服务器等,该网络数据库120用于存储解析原始DICOM数据生成的图源,以及本地医学成像装置111编辑得到的四维人体图像的传递函数结果,图源可以是来自于多个本地医学成像装置111以实现多个医生的交互诊断。
用户通过上述医学成像装置110进行具体的图像显示时,可以选择显示器或者虚拟现实VR的头戴式显示器(Head mounted Displays Set,HMDS)结合操作动作进行显示,操作动作是指用户通过医学成像装置的外部摄入设备,如鼠标、键盘、平板电脑(portable android device,Pad)、iPad(internet portable apple device)等,对四维人体图像进行的操作控制,以实现人机交互,该操作动作包括以下至少一种:(1)改变某个具体器官/组织的颜色和/或透明度,(2)定位缩放视图,(3)旋转视图,实现四维人体图像的多视角360度观察,(4)“进入”胃部内部观察内部构造,实时剪切效果渲染,(5)上下移动视图。
下面对本申请实施例涉及到的基于VRDS 4D医学影像的胃肿瘤识别方法进行详细介绍。
请参阅图2,为本申请实施例提供的一种基于VRDS 4D医学影像的胃肿瘤识别方法的实施例的流程示意图。本实施例中所描述的基于VRDS 4D医学影像的胃肿瘤识别方法,包 括以下步骤:
201、通过VRDS 4D影像技术获取目标对象的胃部扫描图像。
其中,上述目标对象可为任意一个用户或者患者,上述胃部扫描图像可包括以下任意一种:CT图像、MRI图像、DTI图像、PET-CT图像等等,在此不作限定。医学成像装置可采集反应目标对象的胃部的内部结构的胃部扫描图像。
202、对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据。
其中,可针对上述医学成像装置采集到的胃部扫描图像输入VRDS(Virtual Reality Doctor system,VRDS)系统,以得到上述目标对象的胃部4D影像数据,该胃部4D影像数据包括胃部的内部空间结构特征以及外部空间结构特征。
可选地,上述步骤202,对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据,包括:
21、针对所述胃部扫描图像执行第一预设处理得到位图BMP数据源;
22、将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括胃部数据集和血管数据集,所述胃部数据集中包括胃黏膜数据集;
23、将所述第一医学影像数据导入预设的交叉血管网络模型,得到第二医学影像数据,所述第二医学影像数据包括血管数据集;
24、针对所述第二医学影像数据执行第二预设处理得到所述目标4D影像,所述4D影像数据包括:胃部4D影像数据和血管数据集。
其中,上述第一预设处理可包括以下至少一种操作:VRDS限制对比度自适应直方图均衡、混合偏微分去噪、VRDS Ai弹性变形处理等等,在此不作限定;医学成像装置中可预设VRDS医学网络模型,医学成像装置通过对胃部扫描图像数据的处理,得到BMP数据源,提高了原始数据的信息量,且增加了深度维度信息,最终得到符合4D医学影像显示需求的数据。
此外,医学成像装置将上述BMP数据源导入预设的VRDS医学网络模型,可通过该VRDS医学网络模型调用预存的传递函数集合中的每个传递函数,通过传递函数集合中的多个传递函数处理上述BMP数据源,得到第一医学影像数据,上述传递函数集合可包括通过反向编辑器预先设置的血管的传递函数、胃部的传递函数,如此,通过预设VRDS医学网络模型得到第一医学影像数据,可提高得到数据的准确性和效率。
进一步地,医学成像装置中可预设交叉血管网络模型,该预设交叉血管网络模型可为训练好的神经网络模型,可将上述第一医学影像数据导入预设的交叉血管网络模型,可通过交叉血管网络模型进行数据分割,得到胃部的数据集血管数据集,该血管数据集中包括与血管交叉位置关联的数据,最后,可得到第二医学影像数据,如此,可通过交叉血管网络模型,实现血管对应的数据与胃部对应的数据之间的数据分割。
进一步地,上述第二预设处理包括以下至少一种方法:2D边界优化处理、3D边界优化处理、数据增强处理等等,在此不作限定;上述2D边界优化处理包括:多次采样获取低分辨率信息和高分辨率信息,其中,低分辨率信息能够提供分割目标在整个图像中上下文语义信息,即反映所述分割目标与环境之间关系的特征,这些特征用于物体类别判断,高分辨率信息用于为分割目标提供更加精细的特征,如梯度等,其中,上述分割目标可包括胃部和血管,如此,处理上述第二医学影像数据可得到目标4D影像,该目标4D影像可包括胃部4D影像数据和血管数据集。
203、从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据。
其中,由于胃部肿瘤一般多发于胃壁中,因此,可从上述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据,该胃壁4D影像数据可包括:胃壁的内部空间结构特征以及外部空间结构特征,也可呈现胃壁与血管等组织的内部构造。
204、根据所述胃壁4D影像数据,确定肿瘤的目标位置。
其中,胃部肿瘤多发于胃壁之下的粘膜层、黏膜下层、肌层或者胃外壁,而胃部组织较厚,因此,可通过胃壁的内部空间结构特征以及外部空间结构特征,确定肿瘤的目标位置。
可选地,上述步骤204,根据所述胃壁4D影像数据,确定肿瘤的目标位置,可包括如下步骤:
41、根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据;
42、根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据;
43、根据所述异常数据,确定所述肿瘤对应的所述目标位置。
其中,由于胃壁的肿瘤仅限于上述胃壁结构中,为了确定上述肿瘤所对应的目标位置,可确定上述胃壁对应的显示黏膜层的内部空间结构特征及外部空间结构特征、黏膜下层的内部空间结构特征及外部空间结构特征、肌层的内部空间结构特征及外部空间结构特征和胃外壁的内部空间结构特征及外部空间结构特征进行处理,以确定上述空间结构特征中的异常数据,例如,若上述黏膜层所对应的内部空间结构特征及外部空间结构特征与正常特征差异性过大,则可确定上述肿瘤对应的目标位置为粘膜层;如此,可通过胃壁4D影像数据,精确定位肿瘤所处的位置,不需要进行胃镜等操作,有利于提高目标对象的检查体验。
可选地,上述步骤41,根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据,可包括如下步骤:
411、根据所述胃壁4D影像数据,确定所述胃壁4D影像数据中每一数据的空间坐标,得到多个空间坐标;
412、根据所述多个空间坐标,确定所述目标对象对应的所述胃壁对应的多个目标空间坐标,所述胃壁由内到外包括以下至少一种:黏膜层、黏膜下层、肌层和胃外壁;
413、根据所述胃壁对应的多个目标空间坐标,确定黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集;
414、根据所述黏膜层空间坐标集、所述黏膜下层空间坐标集、所述肌层空间坐标集和所述胃外壁空间坐标集,确定所述目标对象对应的所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据。
其中,由于上述胃壁4D影像数据反映了胃壁部位的各个组织结构的空间结构特征,因此,可通过上述空间结构特征,确定目标对象的肿瘤的目标位置,具体地,可确定胃壁部位的各个组织对应的多个数据,获取上述多个组织对应的多个空间坐标,每一组织可对应多个空间坐标,由于上述胃壁4D影像数据为各个组织的影像数据,为了提高准确性,可确定黏膜层、黏膜下层、肌层和胃外壁对应的多个目标空间坐标,继而,为了具体定位肿瘤的目标位置,可对上述每一胃壁层进行空间坐标的分类,得到黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集,最后,可从胃壁4D影像数据中获取上述空间坐标集分别对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据,如此,可提高后续确定肿瘤位置的准确性。
可选地,上述步骤42,根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据,可包括如下数据:
421、根据所述黏膜层影像数据、所述黏膜下层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,生成所述黏膜层、所述黏膜下层、所述肌层和所述胃外壁分别对应的黏膜层特征数据、黏膜下层特征数据、黏膜下层特征数据和胃外壁特征数据,所述特征数据包括以下至少一种:空间位置、高度、厚度、直径和形状;
422、将所述黏膜层特征数据、所述黏膜下层特征数据、所述黏膜下层特征数据和所述胃外壁特征数据与所述胃壁对应的预设正常数据集合进行匹配,得到多个匹配值,所述预设胃壁正常特征数据集合包括以下至少一种:黏膜层标准特征数据、黏膜下层标准特征数据、黏膜下层标准特征数据和胃外壁标准特征数据
423、从所述多个匹配值中选取小于或等于预设阈值的匹配值对应的特征数据为所述胃壁对应的异常数据。
其中,上述预设阈值可为用户自行设置或者系统默认,由于胃部发生病变后,可能会产生肿瘤,而肿瘤多为隆起形态或者为息肉,会造成胃壁不同的部位或者组织肿大或者凹陷,因此,可根据胃壁的粘膜层、黏膜下层、肌层和胃外壁分别对应的内部空间结构特征及外部空间结构特征,生成不同部位对应的特征数据,该特征数据可包括以下至少一种:空间位置、高度、厚度、直径、长度和形状等等,在此不作限定。
此外,医学成像装置中可预先存储上述粘膜层、黏膜下层、肌层和胃外壁分别对应的 正常情况下的预设正常数据集合进行匹配,得到多个匹配值,若小于或等于上述预设阈值,则可认为匹配失败,因此,可选取小于或等于预设阈值的匹配值对应的特征数据为上述胃部对应的异常数据,也就是说可能为肿瘤部位对应的数据。
可选地,上述步骤43,所述根据所述异常数据,确定所述肿瘤对应的所述目标位置,可包括如下步骤:
431、筛选所述异常数据对应的多个空间位置数据;
432、遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据;
433、根据所述多个目标空间位置数据对所述肿瘤进行定位,得到所述肿瘤对应目标位置。
其中,为了确定肿瘤部位对应的具体位置,可通过多个空间位置数据,对上述肿瘤部位进行定位,上述异常数据可包括以下至少一种:空间位置、高度、厚度、直径、长度和形状等等,在此不作限定,具体地,由于上述异常数据对应的可能为多个部位或者组织,因此,可从上述异常数据的多种特征数据中筛选出异常数据所对应的多个空间位置数据,并遍历上述多个空间位置数据,确定肿瘤对应的多个目标空间位置数据,根据多个目标空间位置数据对肿瘤进行定位,以得到肿瘤的具体位置。
可选地,上述步骤432,所述遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据,可包括如下步骤:
4321、根据所述多个空间位置数据,确定所述多个空间位置数据对应的立体空间区域;
4322、将所述立体空间区域从上到下分割为K层子空间,其中,K为大于1的正整数;
4323、遍历所述K层子空间,得到所述肿瘤对应的L层目标子空间,所述L层目标子空间对应的多个空间位置数据为所述目标空间位置数据,其中,L为小于或等于K的正整数。
其中,由于胃部组织较厚,在定位肿瘤的具体位置时较为困难,因此,可将上述多个组织部位对应的多个空间位置数据所对应的立体空间区域,通过该空间位置区域,可定位上述肿瘤的目标位置,此外,由于肿瘤相对于胃部来说可能为纵向生长的,因此,可将上述立体空间区域从上到下分为K层子空间,每一层子空间可对应一层胃内部的组织结构,可对上述K层子空间的每一层的空间位置数据进行遍历,以得到处于异常状态的L层目标子空间,上述L层目标子空间对应的多个空间位置数据即为多个目标空间位置数据,如此,可针对每一层肌理,去准确定位出肿瘤对应的空间层数,以及该空间层数对应的位置,有利于提高定位的准确性。
205、根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
其中,当对肿瘤进行定位以后,即确定了肿瘤的目标位置以后,可通过该目标位置对应的异常数据,确定肿瘤的种类,上述肿瘤的种类可分为以下至少一种:早期肿瘤和进展 期肿瘤,在此不作限定;上述肿瘤的种类可基于肿瘤的生长位置、浸润深度、直径和形态等特征进行判断。
可选地,上述步骤205,所述根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类,可包括如下步骤:
51、根据所述肿瘤的目标位置对应的所述异常数据,确定所述肿瘤相对于所述胃壁浸润的深度和所述肿瘤的形态特征;
52、根据所述肿瘤的目标位置、所述深度以及所述形态特征,确定所述肿瘤的类型。
其中,上述肿瘤的种类可分为以下至少一种:早期肿瘤和进展期肿瘤,在此不作限定;上述肿瘤的种类可基于肿瘤的生长位置、浸润深度、直径和形态等特征进行判断,具体地,可通过上述异常数据,确定肿瘤相对于所述胃壁浸润的深度和所述肿瘤的形态特征等方面,确定上述肿瘤的类型。
例如,若上述肿瘤的位置处于黏膜层或者黏膜下层,则可通过上述肿瘤的直径判定为哪种肿瘤,早期肿瘤一般处于黏膜层或者黏膜下层,该种类的肿瘤的病变直径一般小于0.5厘米的称为微小肿瘤,0.6~1.0厘米的称为小肿瘤,因此,又例如,可根据肿瘤的形态或者高度判定肿瘤的状态,有些肿瘤为隆起状态,可呈现为息肉,此时,肿瘤的形态可为隆起状,若肿瘤微隆起,并且其高度小于黏膜下层厚度的2倍,因此,可通过肿瘤的各种形态特征或者浸润深度等等,确定上述肿瘤的类型。
在一种可能的示例中,若所述胃部4D影像数据包括血管数据集,还可包括如下步骤:
A1、对所述血管数据集进行分类处理,得到周边血管数据集和周边交叉血管数据集;
A2、若所述肿瘤的目标位置浸润到所述胃外壁,则根据周边血管数据集和周边交叉血管数据集,确定所述肿瘤与周边血管的位置关联关系;
A3、若所述位置关联关系为靠近,则确定所述肿瘤发生转移。
其中,若上述肿瘤病变严重,浸润深度超过了胃壁最外层的胃外壁,可能会向淋巴等部位转移,肿瘤生长出胃部以后,与在胃部内相比更好观察,此时,可通过与胃部相连接的血管数据确定上述肿瘤是否发生转移,上述胃部4D影像数据对应的内部空间结构特征可以呈现胃部、血管等组织的内部构造,外部空间结构特性可呈现组织与组织之间的环境特征,包括组织与组织之间的空间位置特性(包括交叉、间隔、融合)等,因此,可通过血管数据集合,得到胃部周边的血管数据集合和周边交叉血管数据集,当肿瘤的浸润深度超过胃外壁时,其周围的血管组织也会发生变化,可通过该肿瘤与周边血管的位置关联关系,确定上述是否发生转移,具体的,可获取周边血管的形态特征以及交叉部位的形态特征,若形态特征发生扭曲或者形变,则确定上述肿瘤与血管之间的位置关联关系,若为靠近,则表明血管形变或者扭曲是由于肿瘤造成的,因此,可确定上述肿瘤发生转移。
可以看出,通过本申请实施例所提供的基于VRDS 4D医学影像的胃肿瘤识别方法,医学成像装置首先通过VRDS 4D影像技术获取目标对象的胃部扫描图像,对根据所述肿瘤的 目标位置胃部扫描图像进行处理,得到根据所述肿瘤的目标位置目标对象的胃部4D影像数据,根据所述肿瘤的目标位置肿瘤的目标位置胃部4D影像数据中提取位于胃壁的胃壁4D影像数据,根据所述肿瘤的目标位置胃壁4D影像数据,确定肿瘤的目标位置,根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类,如此,可基于4D影像数据精确定位肿瘤的位置,有利于提高判断胃肿瘤种类的准确性。
与上述一致地,请参阅图3,为本申请实施例提供的一种医学成像装置300的结构示意图,如图所示,所述医学成像装置300包括处理器310、存储器320、通信接口330以及一个或多个程序321,其中,所述一个或多个程序321被存储在上述存储器320中,并且被配置由上述处理器310执行,所述一个或多个程序321包括用于执行以下步骤的指令:
通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据;
根据所述胃壁4D影像数据,确定肿瘤的目标位置;
根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
可以看出,通过本申请实施例所提供的医学成像装置,可通过VRDS 4D影像技术获取目标对象的胃部扫描图像,对根据所述肿瘤的目标位置胃部扫描图像进行处理,得到根据所述肿瘤的目标位置目标对象的胃部4D影像数据,根据所述肿瘤的目标位置肿瘤的目标位置胃部4D影像数据中提取位于胃壁的胃壁4D影像数据,根据所述肿瘤的目标位置胃壁4D影像数据,确定肿瘤的目标位置,根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类,如此,可基于4D影像数据精确定位肿瘤的位置,有利于提高判断胃肿瘤种类的准确性。
在一种可能的示例中,在根据所述胃壁4D影像数据,确定肿瘤的目标位置方面,所述程序还包括用于执行以下操作的指令:
根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据;
根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据;
根据所述异常数据,确定所述肿瘤对应的所述目标位置。
在一种可能的示例中,在根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据方面,所述程序还包括用于执行以下操作的指令:
根据所述胃壁4D影像数据,确定所述胃壁4D影像数据中每一数据的空间坐标,得到多个空间坐标;
根据所述多个空间坐标,确定所述目标对象对应的所述胃壁对应的多个目标空间坐标,所述胃壁由内到外包括以下至少一种:黏膜层、黏膜下层、肌层和胃外壁;
根据所述胃壁对应的多个目标空间坐标,确定黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集;
根据所述黏膜层空间坐标集、所述黏膜下层空间坐标集、所述肌层空间坐标集和所述胃外壁空间坐标集,确定所述目标对象对应的所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据。
在一种可能的示例中,在根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据方面,所述程序还包括用于执行以下操作的指令:
根据所述黏膜层影像数据、所述黏膜下层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,生成所述黏膜层、所述黏膜下层、所述肌层和所述胃外壁分别对应的黏膜层特征数据、黏膜下层特征数据、黏膜下层特征数据和胃外壁特征数据,所述特征数据包括以下至少一种:空间位置、高度、厚度、直径和形状;
将所述黏膜层特征数据、所述黏膜下层特征数据、所述黏膜下层特征数据和所述胃外壁特征数据与所述胃壁对应的预设正常数据集合进行匹配,得到多个匹配值,所述预设胃壁正常特征数据集合包括以下至少一种:黏膜层标准特征数据、黏膜下层标准特征数据、黏膜下层标准特征数据和胃外壁标准特征数据;
从所述多个匹配值中选取小于或等于预设阈值的匹配值对应的特征数据为所述胃壁对应的异常数据。
在一种可能的示例中,在根据所述异常数据,确定所述肿瘤对应的所述目标位置方面,所述程序还包括用于执行以下操作的指令:
筛选所述异常数据对应的多个空间位置数据;
遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据;
根据所述多个目标空间位置数据对所述肿瘤进行定位,得到所述肿瘤对应目标位置。
在一种可能的示例中,在遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据方面,所述程序还包括用于执行以下操作的指令:
根据所述多个空间位置数据,确定所述多个空间位置数据对应的立体空间区域;
将所述立体空间区域从上到下分割为K层子空间,其中,K为大于1的正整数;
遍历所述K层子空间,得到所述肿瘤对应的L层目标子空间,所述L层目标子空间对应的多个空间位置数据为所述目标空间位置数据,其中,L为小于或等于K的正整数。
在一种可能的示例中,在根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类方面,所述程序还包括用于执行以下操作的指令:
根据所述肿瘤的目标位置对应的所述异常数据,确定所述肿瘤相对于所述胃壁浸润的 深度和所述肿瘤的形态特征;
根据所述肿瘤的目标位置、所述深度以及所述形态特征,确定所述肿瘤的类型。
在一种可能的示例中,若所述胃部4D影像数据包括血管数据集,所述程序还包括用于执行以下操作的指令:
对所述血管数据集进行分类处理,得到周边血管数据集和周边交叉血管数据集;
若所述肿瘤的目标位置浸润到所述胃外壁,则根据周边血管数据集和周边交叉血管数据集,确定所述肿瘤与周边血管的位置关联关系;
若所述位置关联关系为靠近,则确定所述肿瘤发生转移。
在一种可能的示例中,在对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据方面,所述程序还包括用于执行以下操作的指令:
针对所述胃部扫描图像执行第一预设处理得到位图BMP数据源;
将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括胃部数据集和血管数据集,所述胃部数据集中包括胃黏膜数据集;
将所述第一医学影像数据导入预设的交叉血管网络模型,得到第二医学影像数据,所述第二医学影像数据包括血管数据集;
针对所述第二医学影像数据执行第二预设处理得到所述目标4D影像,所述4D影像数据包括:胃部4D影像数据和血管数据集。
与上述一致地,以下为实施上述基于VRDS 4D医学影像的胃肿瘤识别方法的装置,具体如下:
请参阅图4,为本申请实施例提供的一种基于VRDS 4D医学影像的胃肿瘤识别装置的实施例结构示意图。本实施例中所描述的基于VRDS 4D医学影像的胃肿瘤识别装置,包括:获取单元401、处理单元402、提取单元403和确定单元404,具体如下:
所述获取单元401,用于通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
所述处理单元402,用于对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
所述提取单元403,用于从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据;
所述确定单元404,用于根据所述胃壁4D影像数据,确定肿瘤的目标位置;
所述确定单元404,还用于根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
可以看出,通过本申请实施例所描述的基于VRDS 4D医学影像的胃肿瘤识别装置,可通过VRDS 4D影像技术获取目标对象的胃部扫描图像,对根据所述肿瘤的目标位置胃部扫描图像进行处理,得到根据所述肿瘤的目标位置目标对象的胃部4D影像数据,根据所述肿瘤的目标位置肿瘤的目标位置胃部4D影像数据中提取位于胃壁的胃壁4D影像数据,根据所述肿瘤的目标位置胃壁4D影像数据,确定肿瘤的目标位置,根据所述肿瘤的目标位 置,确定所述目标对象对应的胃肿瘤种类,如此,可基于4D影像数据精确定位肿瘤的位置,有利于提高判断胃肿瘤种类的准确性。
在一个可能的示例中,在所述根据所述胃壁4D影像数据,确定肿瘤的目标位置方面,所述确定单元404具体用于:
根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据;
根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据;
根据所述异常数据,确定所述肿瘤对应的所述目标位置。
在一个可能的示例中,在根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据方面,所述确定单元404具体还用于:
根据所述胃壁4D影像数据,确定所述胃壁4D影像数据中每一数据的空间坐标,得到多个空间坐标;
根据所述多个空间坐标,确定所述目标对象对应的胃壁对应的多个目标空间坐标,所述胃壁由内到外包括以下至少一种:黏膜层、黏膜下层、肌层和胃外壁;
根据所述胃壁对应的多个目标空间坐标,确定黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集;
根据所述黏膜层空间坐标集、所述黏膜下层空间坐标集、所述肌层空间坐标集和所述胃外壁空间坐标集,确定所述目标对象对应的所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据。
在一个可能的示例中,在根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据方面,所述确定单元404具体还用于:
根据所述黏膜层影像数据、所述黏膜下层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,生成所述黏膜层、所述黏膜下层、所述肌层和所述胃外壁分别对应的黏膜层特征数据、黏膜下层特征数据、黏膜下层特征数据和胃外壁特征数据,所述特征数据包括以下至少一种:空间位置、高度、厚度、直径和形状;
将所述黏膜层特征数据、所述黏膜下层特征数据、所述黏膜下层特征数据和所述胃外壁特征数据与所述胃壁对应的预设正常数据集合进行匹配,得到多个匹配值,所述预设胃壁正常特征数据集合包括以下至少一种:黏膜层标准特征数据、黏膜下层标准特征数据、黏膜下层标准特征数据和胃外壁标准特征数据;
从所述多个匹配值中选取小于或等于预设阈值的匹配值对应的特征数据为所述胃壁对应的异常数据。
在一个可能的示例中,在所述根据所述异常数据,确定所述肿瘤对应的所述目标位置方面时,所述确定单元404具体还用于:
筛选所述异常数据对应的多个空间位置数据;
遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据;
根据所述多个目标空间位置数据对所述肿瘤进行定位,得到所述肿瘤对应目标位置。
在一个可能的示例中,在所述遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据方面,所述确定单元404具体还用于:
根据所述多个空间位置数据,确定所述多个空间位置数据对应的立体空间区域;
将所述立体空间区域从上到下分割为K层子空间,其中,K为大于1的正整数;
遍历所述K层子空间,得到所述肿瘤对应的L层目标子空间,所述L层目标子空间对应的多个空间位置数据为所述目标空间位置数据,其中,L为小于或等于K的正整数。
在一个可能的示例中,在所述根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类方面,所述确定单元404具体还用于:
根据所述肿瘤的目标位置对应的所述异常数据,确定所述肿瘤相对于所述胃壁浸润的深度和所述肿瘤的形态特征;
根据所述肿瘤的目标位置、所述深度以及所述形态特征,确定所述肿瘤的类型。
在一个可能的示例中,在所述对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据方面,所述处理单元402具体用于:
针对所述胃部扫描图像执行第一预设处理得到位图BMP数据源;
将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括胃部数据集和血管数据集,所述胃部数据集中包括胃黏膜数据集;
将所述第一医学影像数据导入预设的交叉血管网络模型,得到第二医学影像数据,所述第二医学影像数据包括血管数据集;
针对所述第二医学影像数据执行第二预设处理得到所述目标4D影像,所述4D影像数据包括:胃部4D影像数据和血管数据集。
可以理解的是,本实施例的基于VRDS 4D医学影像的胃肿瘤识别装置的各程序模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种基于VRDS 4D医学影像的胃肿瘤识别方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实 施例中记载的任何一种基于VRDS 4D医学影像的胃肿瘤识别方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种基于VRDS 4D医学影像的胃肿瘤识别方法,其特征在于,应用于医学成像装置,所述方法包括:
    通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
    对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
    从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据;
    根据所述胃壁4D影像数据,确定肿瘤的目标位置;
    根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述胃壁4D影像数据,确定肿瘤的目标位置,包括:
    根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据;
    根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据;
    根据所述异常数据,确定所述肿瘤对应的所述目标位置。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据,包括:
    根据所述胃壁4D影像数据,确定所述胃壁4D影像数据中每一数据的空间坐标,得到多个空间坐标;
    根据所述多个空间坐标,确定所述目标对象对应的所述胃壁对应的多个目标空间坐标,所述胃壁由内到外包括以下至少一种:黏膜层、黏膜下层、肌层和胃外壁;
    根据所述胃壁对应的多个目标空间坐标,确定黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集;
    根据所述黏膜层空间坐标集、所述黏膜下层空间坐标集、所述肌层空间坐标集和所述胃外壁空间坐标集,确定所述目标对象对应的所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据,包括:
    根据所述黏膜层影像数据、所述黏膜下层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,生成所述黏膜层、所述黏膜下层、所述肌层和所述胃外壁分别对应的黏膜层特征数据、黏膜下层特征数据、黏膜下层特征数据和胃外壁特征数据,所述特征数据包括以下至少一种:空间位置、高度、厚度、直径和形状;
    将所述黏膜层特征数据、所述黏膜下层特征数据、所述黏膜下层特征数据和所述胃外壁特征数据与所述胃壁对应的预设正常数据集合进行匹配,得到多个匹配值,所述预设胃壁正常特征数据集合包括以下至少一种:黏膜层标准特征数据、黏膜下层标准特征数据、黏膜下层标准特征数据和胃外壁标准特征数据;
    从所述多个匹配值中选取小于或等于预设阈值的匹配值对应的特征数据为所述胃壁对应的异常数据。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述异常数据,确定所述肿瘤对应的所述目标位置,包括:
    筛选所述异常数据对应的多个空间位置数据;
    遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据;
    根据所述多个目标空间位置数据对所述肿瘤进行定位,得到所述肿瘤对应目标位置。
  6. 根据权利要求5所述的方法,其特征在于,所述遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据,包括:
    根据所述多个空间位置数据,确定所述多个空间位置数据对应的立体空间区域;
    将所述立体空间区域从上到下分割为K层子空间,其中,K为大于1的正整数;
    遍历所述K层子空间,得到所述肿瘤对应的L层目标子空间,所述L层目标子空间对应的多个空间位置数据为所述目标空间位置数据,其中,L为小于或等于K的正整数。
  7. 根据权利要求2所述的方法,其特征在于,所述根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类,包括:
    根据所述肿瘤的目标位置对应的所述异常数据,确定所述肿瘤相对于所述胃壁浸润的深度和所述肿瘤的形态特征;
    根据所述肿瘤的目标位置、所述深度以及所述形态特征,确定所述肿瘤的类型。
  8. 根据权利要求7所述的方法,其特征在于,若所述胃部4D影像数据包括血管数据集,所述方法还包括:
    对所述血管数据集进行分类处理,得到周边血管数据集和周边交叉血管数据集;
    若所述肿瘤的目标位置浸润到所述胃外壁,则根据周边血管数据集和周边交叉血管数据集,确定所述肿瘤与周边血管的位置关联关系;
    若所述位置关联关系为靠近,则确定所述肿瘤发生转移。
  9. 根据权利要求1所述的方法,其特征在于,所述对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据,包括:
    针对所述胃部扫描图像执行第一预设处理得到位图BMP数据源;
    将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括胃部数据集和血管数据集,所述胃部数据集中包括胃黏膜数据集;
    将所述第一医学影像数据导入预设的交叉血管网络模型,得到第二医学影像数据,所 述第二医学影像数据包括血管数据集;
    针对所述第二医学影像数据执行第二预设处理得到所述目标4D影像,所述4D影像数据包括:胃部4D影像数据和血管数据集。
  10. 一种基于VRDS 4D医学影像的胃肿瘤识别装置,其特征在于,应用于医学成像装置,所述装置包括:
    获取单元,用于通过VRDS 4D影像技术获取目标对象的胃部扫描图像;
    处理单元,用于对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据;
    提取单元,用于从所述胃部4D影像数据中提取位于胃壁的胃壁4D影像数据;
    确定单元,用于根据所述胃壁4D影像数据,确定肿瘤的目标位置;
    所述确定单元,还用于根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类。
  11. 根据权利要求10所述的装置,其特征在于,在所述根据所述胃壁4D影像数据,确定肿瘤的目标位置方面,所述确定单元具体用于:
    根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据;
    根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据;
    根据所述异常数据,确定所述肿瘤对应的所述目标位置。
  12. 根据权利要求11所述的装置,其特征在于,在根据所述胃壁4D影像数据,确定所述目标对象的胃壁对应的黏膜层影像数据、黏膜下层影像数据、肌层影像数据和胃外壁影像数据方面,所述确定单元具体还用于:
    根据所述胃壁4D影像数据,确定所述胃壁4D影像数据中每一数据的空间坐标,得到多个空间坐标;
    根据所述多个空间坐标,确定所述目标对象对应的胃壁对应的多个目标空间坐标,所述胃壁由内到外包括以下至少一种:黏膜层、黏膜下层、肌层和胃外壁;
    根据所述胃壁对应的多个目标空间坐标,确定黏膜层空间坐标集、黏膜下层空间坐标集、肌层空间坐标集和胃外壁空间坐标集;
    根据所述黏膜层空间坐标集、所述黏膜下层空间坐标集、所述肌层空间坐标集和所述胃外壁空间坐标集,确定所述目标对象对应的所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据。
  13. 根据权利要求11所述的装置,其特征在于,在根据所述黏膜层影像数据、所述黏膜下层影像数据、所述肌层影像数据和所述胃外壁影像数据,确定所述胃壁对应的异常数据方面,所述确定单元具体还用于:
    根据所述黏膜层影像数据、所述黏膜下层影像数据、所述黏膜下层影像数据、所述肌 层影像数据和所述胃外壁影像数据,生成所述黏膜层、所述黏膜下层、所述肌层和所述胃外壁分别对应的黏膜层特征数据、黏膜下层特征数据、黏膜下层特征数据和胃外壁特征数据,所述特征数据包括以下至少一种:空间位置、高度、厚度、直径和形状;
    将所述黏膜层特征数据、所述黏膜下层特征数据、所述黏膜下层特征数据和所述胃外壁特征数据与所述胃壁对应的预设正常数据集合进行匹配,得到多个匹配值,所述预设胃壁正常特征数据集合包括以下至少一种:黏膜层标准特征数据、黏膜下层标准特征数据、黏膜下层标准特征数据和胃外壁标准特征数据;
    从所述多个匹配值中选取小于或等于预设阈值的匹配值对应的特征数据为所述胃壁对应的异常数据。
  14. 根据权利要求13所述的装置,其特征在于,在所述根据所述异常数据,确定所述肿瘤对应的所述目标位置方面,所述确定单元具体还用于:
    筛选所述异常数据对应的多个空间位置数据;
    遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据;
    根据所述多个目标空间位置数据对所述肿瘤进行定位,得到所述肿瘤对应目标位置。
  15. 根据权利要求14所述的装置,其特征在于,在所述遍历所述多个空间位置数据对应的部位,得到所述肿瘤对应的多个目标空间位置数据方面,所述确定单元具体还用于:
    根据所述多个空间位置数据,确定所述多个空间位置数据对应的立体空间区域;
    将所述立体空间区域从上到下分割为K层子空间,其中,K为大于1的正整数;
    遍历所述K层子空间,得到所述肿瘤对应的L层目标子空间,所述L层目标子空间对应的多个空间位置数据为所述目标空间位置数据,其中,L为小于或等于K的正整数。
  16. 根据权利要求11所述的装置,其特征在于,在所述根据所述肿瘤的目标位置,确定所述目标对象对应的胃肿瘤种类方面,所述确定单元具体还用于:
    根据所述肿瘤的目标位置对应的所述异常数据,确定所述肿瘤相对于所述胃壁浸润的深度和所述肿瘤的形态特征;
    根据所述肿瘤的目标位置、所述深度以及所述形态特征,确定所述肿瘤的类型。
  17. 根据权利要求16所述的装置,其特征在于,在所述对所述胃部扫描图像进行处理,得到所述目标对象的胃部4D影像数据方面,所述处理单元具体用于:
    针对所述胃部扫描图像执行第一预设处理得到位图BMP数据源;
    将所述BMP数据源导入预设的VRDS医学网络模型,得到第一医学影像数据,所述第一医学影像数据包括胃部数据集和血管数据集,所述胃部数据集中包括胃黏膜数据集;
    将所述第一医学影像数据导入预设的交叉血管网络模型,得到第二医学影像数据,所述第二医学影像数据包括血管数据集;
    针对所述第二医学影像数据执行第二预设处理得到所述目标4D影像,所述4D影像数据包括:胃部4D影像数据和血管数据集。
  18. 一种医学成像装置,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-9任一项所述的方法中的步骤的指令。
  19. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-9任一项所述的方法。
PCT/CN2019/114472 2019-10-30 2019-10-30 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品 WO2021081836A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114472 WO2021081836A1 (zh) 2019-10-30 2019-10-30 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品
CN201980099975.5A CN114401673A (zh) 2019-10-30 2019-10-30 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114472 WO2021081836A1 (zh) 2019-10-30 2019-10-30 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品

Publications (1)

Publication Number Publication Date
WO2021081836A1 true WO2021081836A1 (zh) 2021-05-06

Family

ID=75715696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114472 WO2021081836A1 (zh) 2019-10-30 2019-10-30 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品

Country Status (2)

Country Link
CN (1) CN114401673A (zh)
WO (1) WO2021081836A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744633A (zh) * 2008-12-03 2010-06-23 株式会社东芝 图像显示装置及x射线ct装置
US20120101372A1 (en) * 2010-10-25 2012-04-26 Fujifilm Corporation Diagnosis support apparatus, diagnosis support method, lesioned part detection apparatus, and lesioned part detection method
CN106725275A (zh) * 2017-01-13 2017-05-31 上海市第五人民医院 一种用于检查直肠‑肛管黏膜病灶组织的装置
CN108852294A (zh) * 2017-05-16 2018-11-23 战国策智权股份有限公司 检测与分析消化道黏膜组织的方法及系统
CN109949899A (zh) * 2019-02-28 2019-06-28 未艾医疗技术(深圳)有限公司 图像三维测量方法、电子设备、存储介质及程序产品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595750B2 (ja) * 2010-02-17 2014-09-24 株式会社東芝 医用画像処理装置、及び医用画像処理プログラム
CN103608662B (zh) * 2011-06-29 2016-09-28 京都府公立大学法人 肿瘤部位的识别装置以及识别方法
DE102011114146A1 (de) * 2011-09-23 2013-03-28 Scopis Gmbh Verfahren und Vorrichtung zum Darstellen eins Objektes
WO2015054597A2 (en) * 2013-10-12 2015-04-16 H. Lee Moffitt Cancer Center And Research Institute, Inc. Systems and methods for diagnosing tumors in a subject by performing a quantitative analysis of texture-based features of a tumor object in a radiological image
US10282588B2 (en) * 2016-06-09 2019-05-07 Siemens Healthcare Gmbh Image-based tumor phenotyping with machine learning from synthetic data
CN108399354A (zh) * 2017-02-08 2018-08-14 上海点医计算机科技有限公司 计算机视觉识别肿瘤的方法和装置
CN108231194A (zh) * 2018-04-04 2018-06-29 苏州医云健康管理有限公司 一种疾病诊断系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744633A (zh) * 2008-12-03 2010-06-23 株式会社东芝 图像显示装置及x射线ct装置
US20120101372A1 (en) * 2010-10-25 2012-04-26 Fujifilm Corporation Diagnosis support apparatus, diagnosis support method, lesioned part detection apparatus, and lesioned part detection method
CN106725275A (zh) * 2017-01-13 2017-05-31 上海市第五人民医院 一种用于检查直肠‑肛管黏膜病灶组织的装置
CN108852294A (zh) * 2017-05-16 2018-11-23 战国策智权股份有限公司 检测与分析消化道黏膜组织的方法及系统
CN109949899A (zh) * 2019-02-28 2019-06-28 未艾医疗技术(深圳)有限公司 图像三维测量方法、电子设备、存储介质及程序产品

Also Published As

Publication number Publication date
CN114401673A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
EP3929869A1 (en) Vrds 4d medical image-based vein ai endoscopic analysis method and product
WO2021030995A1 (zh) 基于vrds ai下腔静脉影像的分析方法及产品
WO2021081771A1 (zh) 基于vrds ai医学影像的心脏冠脉的分析方法和相关装置
WO2020173054A1 (zh) Vrds 4d医学影像处理方法及产品
WO2021081839A1 (zh) 基于vrds 4d的病情分析方法及相关产品
AU2019430258B2 (en) VRDS 4D medical image-based tumor and blood vessel ai processing method and product
WO2021081836A1 (zh) 基于vrds 4d医学影像的胃肿瘤识别方法及相关产品
WO2022227193A1 (zh) 肝脏区域分割方法、装置、电子设备及存储介质
AU2019429940B2 (en) AI identification method of embolism based on VRDS 4D medical image, and product
WO2021081850A1 (zh) 基于vrds 4d医学影像的脊椎疾病识别方法及相关装置
WO2021081846A1 (zh) 静脉血管肿瘤影像处理方法及相关产品
WO2021081845A1 (zh) 一种基于vrds ai的肝脏肿瘤和血管分析方法及相关产品
WO2021081842A1 (zh) 基于vrds ai医学影像的肠肿瘤与血管分析方法和相关装置
AU2019430773B2 (en) VRDS 4D medical image-based AI processing method and product for tumors
WO2021081772A1 (zh) 基于vrds ai脑部影像的分析方法和相关装置
WO2020168696A1 (zh) 基于VRDS 4D医学影像的动脉与静脉Ai处理方法及产品
WO2021030994A1 (zh) 基于vrds ai静脉影像的识别方法及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950936

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19950936

Country of ref document: EP

Kind code of ref document: A1