WO2021081790A1 - 电机控制装置、设备、系统及其控制方法 - Google Patents

电机控制装置、设备、系统及其控制方法 Download PDF

Info

Publication number
WO2021081790A1
WO2021081790A1 PCT/CN2019/114283 CN2019114283W WO2021081790A1 WO 2021081790 A1 WO2021081790 A1 WO 2021081790A1 CN 2019114283 W CN2019114283 W CN 2019114283W WO 2021081790 A1 WO2021081790 A1 WO 2021081790A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control
signal
motor
phase voltage
Prior art date
Application number
PCT/CN2019/114283
Other languages
English (en)
French (fr)
Inventor
陈鸿滨
邱贞平
马晨旭
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/114283 priority Critical patent/WO2021081790A1/zh
Priority to CN201980033810.8A priority patent/CN112154600B/zh
Publication of WO2021081790A1 publication Critical patent/WO2021081790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • This application relates to the field of electronic technology, and in particular to a motor control device, equipment, system and control method thereof.
  • the brushless DC motor includes a position sensorless brushless DC motor, referred to as a senseless brushless DC motor.
  • the different pulse width modulation (PWM) output terminals of each corresponding control circuit in the three-phase inductionless brushless DC motor the control circuit is based on the voltage of each phase , Using the six-step commutation principle to control the PWM signal of each corresponding PWM output terminal. After the corresponding PWM signal of each PWM output terminal is converted into the drive signal of each phase bridge arm by the driver, the power tube of each phase bridge arm is controlled. Switch state, so as to control the rotation of the three-phase sensorless brushless DC motor.
  • PWM pulse width modulation
  • the embodiments of the present application provide a motor control device, equipment, system, and control method thereof, to solve the problem that the control method of a sensorless brushless DC motor in the prior art occupies too much of the PWM output terminal of the control circuit.
  • an embodiment of the present application provides a motor control device, including: a phase voltage detection circuit, a control circuit, and a drive circuit; the control circuit is electrically connected to the drive circuit and the phase voltage detection circuit, respectively; The phase voltage detection circuit and the drive circuit are respectively used for electrical connection with the switch circuit of the motor;
  • phase voltage detection circuit is used to detect the phase voltage of the motor
  • the control circuit is used to provide a control signal to the drive circuit, the control signal is used to control the speed of the motor, one of the motors corresponds to a control signal, and the drive circuit is provided to the drive circuit according to the phase voltage A rotor position signal, where the rotor position signal is used to indicate the current position of the rotor of the motor;
  • the driving circuit is configured to provide a driving signal to the switch circuit according to a preset commutation logic according to the rotor position signal and the control signal, and the driving signal is used to control the switching state of the switch circuit to Control the rotation of the motor.
  • an embodiment of the present application provides a power system, including: a motor and the motor control device described in any one of the first aspect.
  • an embodiment of the present application provides a multi-rotor unmanned aerial vehicle, including the motor control device according to any one of the first aspect, multiple motors, and multiple propellers, and the motor control device is electrically connected to the multiple motors , Used to control the operation of multiple motors at the same time, each of the propellers is installed on one of the motors, so that the motors can drive the propellers to rotate and provide the power for the multi-rotor unmanned aerial vehicle to fly.
  • an embodiment of the present application provides a control method of a motor control device, which is applied to the motor control device according to any one of the first aspects, and the method includes:
  • control signal is used to control the speed of the motor, one motor corresponds to a control signal; the drive circuit is provided with the rotor position of the motor according to the phase voltage of the motor signal.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes at least one piece of code, the at least one piece of code can be executed by a computer to control the The computer executes the method described in any one of the above fourth aspects.
  • an embodiment of the present application provides a computer program, when the computer program is executed by a computer, it is used to implement the method described in any one of the foregoing fourth aspects.
  • the embodiments of the application provide a motor control device, equipment, system, and control method thereof.
  • the motor control device includes a phase voltage detection circuit, a control circuit, and a drive circuit; wherein the phase voltage detection circuit is used to detect the phase voltage of the motor and control
  • the circuit is used to provide the drive circuit with a control signal for controlling the speed of the motor.
  • One motor corresponds to one control signal, and the drive circuit is provided with a rotor position signal representing the current position of the motor rotor according to the phase voltage.
  • the drive circuit is used to The rotor position signal and the control signal provide the switching circuit with a drive signal for controlling the switching state of the switching circuit according to the preset commutation logic to control the rotation of the motor, and realize the output of the rotor to indicate the current position of the motor rotor through the control circuit
  • the position signal and the control signal used to control the speed of the motor, and the motor control method in which the drive circuit provides the drive signal to the switch circuit of the motor according to the rotor position signal and the control signal according to the preset commutation logic, so that the electronic control device only needs one control Signals such as PWM signals can control a motor.
  • FIG. 1 is a schematic structural diagram of a power system 100 provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of the principle of the motor control device controlling the motor in the traditional technology
  • Figure 3 is a schematic diagram of the principle of controlling the motor by the motor control device in the traditional technology
  • FIG. 4 is a schematic structural diagram of a motor control device 10 provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a motor control device 10 provided by another embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a motor control device 10 provided by another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a phase voltage detection circuit provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a motor control device 10 provided by another embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a motor control device 10 provided by another embodiment of the application.
  • FIG. 10 is a schematic flowchart of a motor control method provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a multi-rotor unmanned aerial vehicle provided by an embodiment of the application.
  • FIG. 1A is a schematic structural diagram of a power system 100 provided by an embodiment of the application.
  • the power system 100 can include a motor control device 10 and a motor 20.
  • the motor control device 10 can be electrically connected to the motor 20.
  • the motor 20 can be a non-inductive brushless DC motor, or any can be used as a non-inductive brushless DC motor.
  • the motor used in the DC motor such as the inductive brushless DC motor with a position sensor failure.
  • the motor control device 10 may include a control circuit and a driving circuit.
  • the power system 100 usually adopts the method shown in FIG. 2 or FIG. 3 to realize the control of the motor 20 by the motor control device 10.
  • the control circuit of the motor control device 10 respectively outputs 6 PWM signals.
  • the output 1A and 1B PWM signals are used to control a group of bridge arms of the motor, and 2A and 2B are two PWM signals.
  • Another set of bridge arms is used to control the motor M.
  • Two PWM signals, 3A and 3B, are used to control another set of bridge arms of the motor M.
  • the 1A and 1B two-channel PWM signals are converted into two-channel drive signals by the drive circuit and used to drive a set of bridge arms corresponding to the switching tube Q1 and the switching tube Q4, and the two-channel PWM signals 2A and 2B are converted into two channels by the drive circuit.
  • the driving signal After the driving signal, it is used to drive a group of bridge arms corresponding to the switching tube Q3 and the switching tube Q6.
  • the two PWM signals of 3A and 3B are converted into two driving signals by the driving circuit and used to drive the corresponding one of the switching tube Q5 and the switching tube Q2. Group bridge arms.
  • the control circuit of the motor control device 10 outputs 3 PWM signals and 3 input/output signals respectively.
  • the output PWM signal 1A and the input/output signal IO1 are used to control a set of bridges of the motor.
  • Arm, one PWM signal 2A and one input/output signal IO2 are used to control another group of bridge arms of the motor, one PWM signal 3A and one input/output signal IO3 are used to control another group of bridge arms of the motor.
  • the 1A and IO1 signals are converted into two drive signals by the drive circuit, which are used to drive a set of bridge arms corresponding to the switch tube Q1 and the switch tube Q4, and the 2A and IO2 signals are converted into two drive signals by the drive circuit. Then it is used to drive a set of bridge arms corresponding to the switching tube Q3 and the switching tube Q6, and the 3A and IO3 signals are converted into two driving signals by the drive circuit and used to drive the switching tube Q5 and the switching tube Q2 corresponding to a set of bridge arms .
  • R1 in FIGS. 2 and 3 represents a resistance.
  • the control circuit outputs a rotor position signal and a control signal (for example, a PWM signal), and the drive circuit provides a drive according to the rotor position signal and the control signal according to the preset commutation logic.
  • the signal is used to control the rotation of the motor, which realizes the control method of a brushless DC motor in which only one PWM output terminal is occupied by a motor.
  • the number of PWM output terminals required to control the motor is reduced, which is conducive to cost saving.
  • the number of motors 20 electrically connected to the motor control device 10 in the power system 100 is taken as an example, and the number of motors 21 can also be multiple, such as two, three, etc. .
  • FIG. 4 is a schematic structural diagram of a motor control device 10 provided by an embodiment of the application.
  • the motor control device 10 is used for electrical connection with the motor 20.
  • the motor control device 10 includes: a phase voltage detection circuit 11, a control circuit 12, and a drive circuit 13; the control circuit 12 is electrically connected to the drive circuit 13 and the phase voltage detection circuit 11, respectively; The phase voltage detection circuit 11 and the drive circuit 13 are respectively used for electrical connection with the switch circuit of the motor 20.
  • the phase voltage detection circuit 11 is used to detect the phase voltage of the motor 20.
  • the control circuit 12 is used to provide a control signal to the drive circuit 13, the control signal is used to control the rotation speed of the motor, one motor 20 corresponds to one control signal, and the control signal is provided to the drive circuit 13 according to the phase voltage.
  • the drive circuit 13 provides a rotor position signal, which is used to indicate the current position of the rotor of the motor.
  • the drive circuit 13 is configured to provide a drive signal to the switch circuit according to a preset commutation logic according to the rotor position signal and the control signal, and the drive signal is used to control the switch state of the switch circuit, To control the rotation of the motor 20.
  • the control circuit 12 can provide the drive circuit 13 with a control signal for controlling the speed of the motor 20, and can provide the drive circuit 13 with the phase voltage of the motor 20 to indicate the rotor of the motor 20.
  • the drive circuit 13 can provide the switch circuit of the motor 20 with a drive signal for controlling the switching state of the switch circuit according to the preset commutation logic, thereby controlling the motor 20 turns.
  • the control circuit 12 can provide the driving circuit 13 with a control signal for controlling the speed of a three-phase non-inductive brushless DC motor, and can be based on the three-phase non-inductive brushless DC motor.
  • the phase voltage of the brushless DC motor provides the drive circuit 13 with a rotor position signal indicating the current position of the rotor of the three-phase brushless DC motor.
  • the drive circuit 13 can according to the control signal and the rotor position signal, according to the preset
  • the commutation logic provides the switching circuit of the three-phase sensorless brushless DC motor with 6 driving signals for controlling the switching state of the switching circuit.
  • the 6 driving signals are used to control the three groups of bridge arms to control the three-phase sensorless DC motor.
  • the brushed DC motor rotates.
  • the switching circuit can be, for example, the three groups of bridge arms shown in FIG. 2 and FIG. 3.
  • the control signal may specifically be any type of signal that can be used to control the speed of the motor 20.
  • the control signal includes a PWM signal that controls the speed of the motor through a duty cycle.
  • One control signal can correspond to one or more motors 20. Specifically, when it is necessary to realize independent control of multiple motors, multiple motors can correspond to multiple control signals one-to-one.
  • the rotor position signal is specifically any type of signal that can be used to indicate the position information of the motor rotor.
  • the rotor position signal may specifically be a signal that can simulate the output of a specific position sensor. Taking the specific position sensor as a Hall sensor as an example, the rotor position signal may be, for example, a Hall signal.
  • the signal may include 3 signals, which are the Hall signal HA corresponding to A, the Hall signal HB corresponding to B, and the Hall signal HC corresponding to C.
  • the preset commutation logic is an electronic commutation logic that needs to be met to control the rotation of the motor 20, and the preset commutation logic can be implemented flexibly according to requirements.
  • the motor 20 as a three-phase motor, and its switching circuit as shown in Figs. 2 and 3 as an example, the six-step commutation principle can be as shown in Table 1 below, for example.
  • the drive circuit 13 determines that the position of the rotor is at position 1 ⁇ position 2 according to the rotor position signal, it outputs the drive signal according to Table 1 and the control signal to control Q1 and Q4 by using the upper and lower tubes to chopping in a complementary manner.
  • the upper and lower tubes are chopped in a complementary manner, Q4 is always on, Q1, Q2 and Q5 are closed; when the drive circuit 13 determines that the rotor position is at position 4 ⁇ position 5 according to the rotor position signal, it outputs a drive signal according to Table 1 and the control signal to control Q2 and Q5 are chopped in a complementary manner with upper and lower tubes, Q4 is constant on, and Q1, Q3 and Q6 are closed; when the drive circuit 13 determines the position of the rotor according to the rotor position signal to be in position 5 ⁇ position 6, according to Table 1 and the control signal output drive
  • the signal is chopped in a complementary manner to control Q2 and Q5 with upper and lower tubes, Q6 is always on, Q1, Q3 and Q4 are closed; the drive circuit 13 determines the position of the rotor at position 6 ⁇ position 1 according to the rotor position signal, according to Table 1 and
  • the control signal outputs the driving signal to control Q1 and Q4 to use the upper and lower tubes to chop in a
  • the upper and lower tubes are chopped in a complementary manner, Q2 is always on, Q1, Q4 and Q5 are closed; the drive circuit 13 outputs the drive signal according to Table 1 and the control signal when the rotor position signals of the three phases A, B and C are "010",
  • the upper and lower tubes are complementary to the chop, Q4 is always on, and Q1, Q2 and Q5 are closed; when the rotor position signals of A, B and C three phases are "011" respectively, according to Table 1 and
  • the control signal outputs the drive signal to control Q2 and Q5 with complementary upper and lower tubes.
  • the motor control device includes a phase voltage detection circuit, a control circuit, and a drive circuit; wherein the phase voltage detection circuit is used to detect the phase voltage of the motor, and the control circuit is used to provide the drive circuit with a control circuit for controlling the speed of the motor.
  • Control signal one motor corresponds to one control signal, and according to the phase voltage, it provides the drive circuit with a rotor position signal indicating the current position of the motor rotor.
  • the drive circuit is used to follow the preset commutation logic according to the rotor position signal and the control signal.
  • the switch circuit provides a drive signal for controlling the switch state of the switch circuit to control the rotation of the motor, and realizes that the control circuit outputs a rotor position signal for indicating the current position of the motor rotor and a control signal for controlling the rotation speed of the motor.
  • the drive circuit provides the drive signal to the switch circuit of the motor according to the preset commutation logic.
  • the electronic control device only needs one control signal such as PWM signal to control a motor, which is different from the traditional In the technology, the motor control device needs 6 or 3 PWM signals to control a motor. Compared with that, it reduces the number of PWM output terminals needed to control the motor, thereby reducing the limitation on the number of PWM output terminals of the motor control device, which is conducive to saving costs. .
  • control circuit 12 may be specifically used to determine the current position of the rotor according to the phase voltage, and send the drive circuit to the drive circuit according to the current position of the rotor The rotor position signal is provided.
  • the rotor position signal is used to indicate to the drive circuit how to perform commutation control according to the preset commutation logic, so that the drive circuit can control the switching state of the switch circuit according to the preset commutation logic. For example, assuming that the rotor rotates one revolution and passes through position 1 to position 6, when the control circuit 12 determines that the current position of the rotor is between position 1 and position 2 according to the phase voltage, the rotor position signal "100" can be provided to the drive signal ; When the control circuit 12 determines that the current position of the rotor is between position 2 and position 3 according to the phase voltage, the rotor position signal "110" can be provided to the drive signal; when the control circuit 12 determines that the current position of the rotor is in position according to the phase voltage 3 to position 4, the rotor position signal "010” can be provided to the drive signal; when the control circuit 12 determines that the current position of the rotor is between position 4 and position 5 according to the phase voltage, the rotor can be
  • control circuit 12 may be specifically configured to update the zero-crossing point of the back electromotive force of the motor 20 according to the phase voltage, and then update the The level status of the rotor position signal. Since the zero-crossing point of the back-EMF of the motor indicates the need for commutation, after determining the zero-crossing point of the back-EMF according to the phase voltage, the level state of the rotor position signal is updated according to the phase voltage, which avoids the need for the control circuit to frequently determine the rotor The position signal leads to the realization of complex problems, which is conducive to simplifying the realization.
  • the level state of the rotor position signal can be updated to "100" according to the phase voltage, and the level state of the rotor position signal can be maintained as “100” until the control circuit 12
  • the level state of the rotor position signal is updated to "110" according to the phase voltage. It should be noted that the specific manner of determining the zero-crossing point of the back electromotive force of the motor according to the phase voltage is not limited in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a motor control device 10 provided by another embodiment of this application. Based on the embodiment shown in FIG. 4, this embodiment mainly describes an alternative implementation manner for the control circuit 12 to provide a control signal.
  • the control circuit 12 may include a first connecting terminal 121 and a signal generating sub-circuit 122; the first connecting terminal 121 is electrically connected to the signal generating sub-circuit 122 and the driving circuit 13 respectively; The signal generating sub-circuit 122 is used to generate the control signal.
  • the signal generating sub-circuit 122 can generate a control signal for controlling the speed of the motor 20, and provide the control signal to the driving circuit 13 through the first connection terminal 121.
  • the signal generating sub-circuit 122 is specifically any type of circuit capable of generating control signals.
  • the first connecting end 121 is specifically any type of end that can realize electrical connection between the signal generating sub-circuit 122 and the driving circuit 13.
  • the signal generating sub-circuit 122 may determine the characteristic information of the control signal according to the target rotation speed of the motor 20, and generate the control signal according to the determined characteristic information.
  • the signal generating sub-circuit may be controlled by other circuits or devices (for example, a controller), obtain characteristic information of control signals indicated by other circuits or devices, and generate control signals according to the indicated characteristic information.
  • the characteristic information may include a duty cycle.
  • first connection terminal 121 and the signal generating sub-circuit 122 and the driving circuit 13 may be directly electrically connected, or may also be indirectly electrically connected through other devices.
  • one of the signal generating sub-circuits 122 can independently output multiple signals, and one of the multiple signals is used as a control signal of the motor 20.
  • one signal generating sub-circuit can independently output two PWM signals.
  • one motor 20 may correspond to one signal generation sub-circuit 122, that is, the motor 20 and the signal generation sub-circuit 122 may correspond one-to-one.
  • one of the signal generating sub-circuits can independently output multiple signals, and the multiple signals are used as control signals for different motors.
  • multiple motors correspond to one signal generating sub-circuit.
  • the control circuit 12 includes a controller; the signal generation sub-circuit 122 is a built-in signal generation module of the controller. Taking the control signal as a PWM signal as an example, the built-in signal generation module of the controller can be a PWM module.
  • the signal generation sub-circuit is the built-in signal generation module of the controller, which realizes the function of generating the control signal by the controller, which is beneficial to simplify the hardware implementation.
  • the controller includes a Microcontroller Unit (MCU). Because the MCU has the characteristics of high integration, small size, low price, etc., it is beneficial to reduce the volume of the motor control device and reduce the cost of the motor control device.
  • MCU Microcontroller Unit
  • the first connection terminal is a pin corresponding to the signal generation module of the controller.
  • the signal generation module as the PWM module
  • the first connection terminal may specifically be a pin corresponding to the PWM, that is, the PWM pin.
  • the first connection terminal is the pin corresponding to the signal generating module of the controller, so that the control signal generated by the signal generating module built in the controller can be provided to the driving circuit through the corresponding pin of the signal generating module.
  • control circuit includes a first connection terminal and a signal generation sub-circuit, wherein the first connection terminal is electrically connected to the signal generation sub-circuit and the drive circuit, respectively, and the signal generation sub-circuit is used to generate the control signal, which realizes the For a motor, the signal generating sub-circuit can generate a control signal and provide the control signal to the drive circuit through the first connection end, so that the control circuit can provide the control signal to the drive circuit.
  • FIG. 6 is a schematic structural diagram of a motor control device 10 provided by another embodiment of the application. Based on the embodiment shown in FIG. 4, this embodiment mainly describes an alternative implementation manner for the control circuit 12 to provide a rotor position signal.
  • the control circuit 12 may include a second connection terminal 123 and a position sub-circuit 124; the second connection terminal 123 is electrically connected to the position sub-circuit 124 and the drive circuit 13 respectively; The position sub-circuit 124 is used to generate a rotor position signal according to the phase voltage of the motor 20.
  • the position sub-circuit 124 can generate a rotor position signal according to the phase voltage of the motor 20, and provide the rotor position signal to the drive circuit 13 through the second connection terminal 123.
  • the position sub-circuit 124 is specifically any type of circuit capable of generating a rotor position signal according to the phase voltage of the motor 20.
  • the second connecting end 123 is specifically any type of end that can realize electrical connection between the position sub-circuit 124 and the driving circuit 13.
  • the position sub-circuit includes a controller. Since the rotor position signal is generated according to the phase voltage of the motor, it is easy to realize by programming the controller, so including the controller through the position sub-circuit is beneficial to simplify the realization.
  • the controller includes a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the second connection terminal is a pin of the controller.
  • the second connection terminal may be a general-purpose input/output (GPIO) pin of the controller.
  • the second connection terminal is the pin of the controller, so that the rotor position signal generated by the controller can be provided to the drive circuit through the pin.
  • connection terminal 123 may be directly electrically connected to the position sub-circuit 124 and the driving circuit 13 or may also be indirectly electrically connected through other devices.
  • control circuit 23 may further include: a third connection terminal 125 and an analog-to-digital conversion (ADC) sub-circuit 126; the third connection terminals 125 are respectively Is electrically connected to the phase voltage detection circuit 11 and the analog-to-digital conversion sub-circuit 126; the analog-to-digital conversion sub-circuit 126 is also electrically connected to the position sub-circuit 124; the analog-to-digital conversion sub-circuit 126 is used for The phase voltage is converted from an analog signal to a digital signal to obtain a converted phase voltage; the position sub-circuit 124 is specifically configured to generate a rotor position signal according to the converted phase voltage.
  • ADC analog-to-digital conversion
  • the analog-to-digital conversion sub-circuit 126 converts the phase voltage detected by the phase voltage detection circuit 11 from an analog signal to a digital signal, obtains the converted phase voltage, and provides the converted phase voltage to the third connection terminal 125
  • the position sub-circuit 124 further, the position sub-circuit 124 generates a rotor position signal according to the converted phase voltage.
  • digital signals are easier to further process than analog signals.
  • the analog-to-digital conversion sub-circuit can convert the phase voltage detected by the phase voltage detection circuit from an analog signal to a digital signal, which facilitates the further processing of the position sub-circuit.
  • connection terminal 125 may be directly electrically connected to the analog-to-digital conversion sub-circuit 126 and the position sub-circuit 124, or may also be indirectly electrically connected through other devices.
  • the analog-to-digital conversion sub-circuit 126 is specifically any type of circuit that can realize the analog-to-digital conversion function.
  • the third connecting end 125 is specifically any type of end that can realize electrical connection between the analog-to-digital conversion sub-circuit 126 and the position sub-circuit 124.
  • control circuit includes a controller
  • analog-to-digital conversion sub-circuit 126 is a built-in analog-to-digital conversion module of the controller.
  • the controller includes an MCU.
  • the third connection terminal 125 is a pin corresponding to the analog-to-digital conversion module of the controller.
  • the third connection terminal is the pin corresponding to the analog-to-digital conversion module of the controller, so that the analog phase voltage detected by the phase voltage detection circuit can be provided to the analog-to-digital conversion module through the corresponding pin of the built-in analog-to-digital conversion module of the controller.
  • the phase voltage detection circuit 11 may be as shown in FIG. 7, for example. Referring to Figure 7, the voltage Ua of the a-phase bridge arm of the switching circuit can be divided by resistors R5 and R6, and the phase voltage of a-phase can be detected by the divided voltage of R6.
  • the phase voltage of a-phase can be passed through the built-in modulus of the controller.
  • the analog-to-digital AD3 pin corresponding to the conversion module is input to the analog-to-digital conversion module; the voltage Ub of the b-phase bridge arm of the switch circuit can be divided by the resistors R3 and R4, and the phase voltage of the b-phase can be detected by the divided voltage of R4, b
  • the phase voltage of the phase can be input to the analog-to-digital conversion module through the analog-to-digital AD2 pin corresponding to the built-in analog-to-digital conversion module of the controller; the voltage Uc of the c-phase bridge arm of the switching circuit can be divided by the resistors R1 and R2, and through the R2
  • the voltage divider can detect the phase voltage of phase c, and the phase voltage of phase c can be input to the analog-to-digital conversion module through the AD1 pin corresponding to the built-in analog-to-digital conversion module of the controller.
  • the control circuit includes a second connection terminal and a position sub-circuit, wherein the second connection terminal is electrically connected to the position sub-circuit and the drive circuit, respectively, and the position sub-circuit is used to generate the rotor position according to the phase voltage of the motor.
  • the signal realizes that the position sub-circuit can generate the rotor position signal and provide the rotor position signal to the drive circuit through the second connection end, so that the control circuit can provide the rotor position signal to the drive circuit.
  • the motor control device may further include: the switch circuit; the switch circuit is electrically connected to the drive circuit 12; the switch circuit is used to drive the motor 20 to rotate ;
  • the motor control device including the switch circuit it is realized that the motor control device can be directly electrically connected with the motor body, so that the motor control device can be used to control the motor body, which expands the use scenarios of the motor control device.
  • the motor control device may further include: a current detection circuit, the current detection circuit is configured to be electrically connected to the switch circuit; the current detection circuit, and the control circuit 12 The electrical connection is used to detect the bus current of the motor 20; the control circuit 12 is also used to perform the first abnormality protection process when it is determined that the bus current is abnormal.
  • the protection processing when the bus current is abnormal can be realized, which is beneficial to improve the safety of the motor control.
  • the current detection circuit may detect the bus current of the motor through the switch circuit. Further, the control circuit 12 may perform the first abnormality protection process when determining that the bus current is abnormal according to the bus current of the motor.
  • the abnormal bus current may include, for example, excessive bus current.
  • the current detection circuit is specifically any type of circuit capable of detecting bus current, for example, it can be realized by a differential amplifier circuit built by an operational amplifier, or for a controller with a built-in operational amplifier, it can be realized by using a built-in operational amplifier to reduce the number of operational amplifier chips.
  • the first abnormality protection process can be implemented flexibly according to requirements. For example, it can include canceling the control signal provided to the drive circuit to stop the drive motor from rotating.
  • the drive circuit 13 is also used to provide an abnormal signal to the control circuit 12 when it is determined that the switch circuit is abnormal; the control circuit 12 is also used to When the abnormal signal is received, the second abnormal protection process is performed.
  • the drive circuit provides an abnormal signal to the control circuit when the switch circuit is abnormal, and the control circuit performs the second abnormality protection process when receiving the abnormal signal, which can realize the protection process when the switch circuit is abnormal, which is beneficial to improve the safety of motor control.
  • the drive circuit 13 may provide an abnormal signal to the control circuit 12 when it is determined that the switch circuit is abnormal. Further, the control circuit 12 may perform the second abnormality protection process when the abnormal signal is received.
  • the abnormality of the switching circuit may include, for example, a short circuit of a switching tube, over-temperature, under-voltage, etc.
  • the switching tube may be a metal oxide semiconductor (MOS) tube.
  • the abnormal signal can be used as an interrupt processing signal of the control circuit 12, for example, and the abnormal signal can be used as the interrupt processing signal to improve the response speed of the control circuit to the abnormality of the switching circuit.
  • the second abnormality protection process can be implemented flexibly according to requirements. For example, it can include canceling the control signal provided to the drive circuit to stop the drive motor from rotating.
  • the drive circuit 13 includes a driver with a built-in rotor position signal input and preset commutation logic.
  • the driver can be, for example, a MOS tube driver with built-in Hall (HALL) input and 120° commutation logic.
  • the drive circuit includes a driver with a built-in rotor position signal input and preset commutation logic, so that the function of the aforementioned drive circuit 13 can be realized based on the driver that supports the provision of drive signals according to the rotor position signal according to the preset commutation logic, which is beneficial to simplify the implementation. .
  • the control circuit includes MCU, the controller has built-in PWM module and ADC module, the rotor position signal output by the control circuit simulates the Hall signal, and the drive circuit includes a driver with built-in Hall input and 120° commutation logic, and
  • the motor control device controls one three-phase motor 20 as an example.
  • the schematic diagram of the motor control device 10 controlling the motor 20 can be shown in FIG. 8. Referring to Figure 8, for a motor M1, the phase voltage detection circuit detects the phase voltage of M1 through the switch circuit of M1 to obtain the phase voltage signal.
  • the built-in ADC of the controller converts the phase voltage signal from an analog signal to a digital signal, and the controller converts the phase voltage signal from an analog signal to a digital signal.
  • the controller controls the built-in PWM1 module to output a PWM signal 1A.
  • the driver with built-in Hall input and 120° commutation logic provides 6 drive signals to the switch circuit of the motor M1 according to the 120° commutation logic according to one PWM signal 1A and three IO signals HA, HB and HC, respectively It is used to drive a group of bridge arms composed of switch circuits Q1 and Q4, another group of bridge arms composed of Q3 and Q6, and another group of bridge arms composed of Q5 and Q2, thereby controlling the rotation of the motor M1.
  • the circuit detection circuit detects the bus current of the motor M1 through the switch circuit of M1 to obtain the bus current signal.
  • the built-in ADC of the controller converts the bus current signal from an analog signal to a digital signal. The converted bus current signal is protected against abnormality.
  • R in the switch circuit in FIG. 8 represents resistance
  • the schematic diagram of the motor control device 10 controlling the motor 20 may be as shown in FIG. 9.
  • the control principle of motor M2-motor M4 is similar to that of M1
  • the two PWM signals 1A and 1B independently output by the built-in PWM1 module of the controller are respectively used as the control signals of the motor M1 and the motor M2
  • the two PWM signals 2A and 2B independently output by the built-in PWM2 module of the controller are respectively used as the control signals of the motor M1 and M2.
  • An embodiment of the present application also provides a power system, including a motor 20 and the motor control device 10 described in the foregoing embodiment.
  • the system is applied to a movable platform.
  • the movable platform may include an unmanned aerial vehicle.
  • the number of the motors 20 is 4, and the control signals of the 4 motors are independent of each other.
  • the motor 20 includes a non-inductive brushless DC motor.
  • FIG. 10 is a schematic flowchart of a motor control method provided by an embodiment of this application; the method of this embodiment can be applied to the aforementioned motor control device 10, and can be specifically executed by the control circuit in the motor control device 10. As shown in FIG. 10, the method of this embodiment may include:
  • Step 1001 Provide a control signal to the drive circuit 13, where the control signal is used to control the rotation speed of the motor, and one motor corresponds to one control signal.
  • Step 1002 Provide a rotor position signal of the motor to the drive circuit 13 according to the phase voltage of the motor.
  • step 1001 and step 1002 may not be restricted in sequence.
  • the motor control method provided in this embodiment can implement the aforementioned technical solution of the control circuit in the motor control device 10, and its implementation principles and technical effects are similar to the device embodiments, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a multi-rotor unmanned aerial vehicle 110 provided by an embodiment of the application.
  • the multi-rotor UAV includes the motor control device 10 described in the above embodiment, multiple motors 20, and multiple propellers 30.
  • the motor control device 10 is electrically connected to the multiple motors 20 for A plurality of the motors 20 are controlled to work at the same time, and each of the propellers 30 is installed on one of the motors 20, so that the motors 20 can drive the propellers 30 to rotate and provide the power for the multi-rotor unmanned aerial vehicle to fly.
  • the specific content of the motor control device 10 can refer to the description of the foregoing embodiment, and will not be repeated here.
  • the number of motors 20 is 4 as an example.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种电机控制装置(10)、设备、系统及其控制方法。该电机控制装置包括(10):相电压检测电路(11)、控制电路(12)和驱动电路(13);相电压检测电路(11),用于检测电机(20)的相电压;控制电路(12),用于向驱动电路(13)提供控制信号,控制信号用于控制电机(20)的转速,一个电机(20)对应一路控制信号,以及根据相电压向驱动电路(13)提供转子位置信号,转子位置信号用于表示电机(20)的转子的当前位置;驱动电路(13),用于根据转子位置信号以及控制信号,按照预设换相逻辑向开关电路提供驱动信号,驱动信号用于控制开关电路的开关状态,以控制电机(20)转动。该电机控制装置减少了控制电机(20)所需要的PWM输出端的数量。

Description

电机控制装置、设备、系统及其控制方法 技术领域
本申请涉及电子技术领域,尤其涉及一种电机控制装置、设备、系统及其控制方法。
背景技术
无刷直流电机相比于有刷直流电机具有电机结构简单、无换相火花等优点,其应用也越来越广泛。其中,无刷直流电机包括无位置传感器的无刷直流电机,简称无感无刷直流电机。
通常,以三相无感无刷直流电机为例,三相无感无刷直流电机中各相对应控制电路的不同脉冲宽度调制(Pulse Width Modulation,PWM)输出端,控制电路依据各相的电压,采用六步换相原理,分别控制各相对应PWM输出端的PWM信号,各相对应PWM输出端的PWM信号经过驱动器对应转换为各相桥臂的驱动信号后,控制各相桥臂的功率管的开关状态,从而实现控制三相无感无刷直流电机转动。
然而,上述无感无刷直流电机的控制方式,存在对控制电路的PWM输出端占用过多的问题。
发明内容
本申请实施例提供一种电机控制装置、设备、系统及其控制方法,用以解决现有技术中无感无刷直流电机的控制方式,对控制电路的PWM输出端占用过多的问题。
第一方面,本申请实施例提供一种电机控制装置,包括:相电压检测电路、控制电路和驱动电路;所述控制电路分别与所述驱动电路和所述相电压 检测电路电连接;所述相电压检测电路和所述驱动电路分别用于与电机的开关电路电连接;
其中,所述相电压检测电路,用于检测所述电机的相电压;
所述控制电路,用于向所述驱动电路提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机对应一路控制信号,以及根据所述相电压向所述驱动电路提供转子位置信号,所述转子位置信号用于表示所述电机的转子的当前位置;
所述驱动电路,用于根据所述转子位置信号以及所述控制信号,按照预设换相逻辑向所述开关电路提供驱动信号,所述驱动信号用于控制所述开关电路的开关状态,以控制所述电机转动。
第二方面,本申请实施例提供一种动力系统,包括:电机以及第一方面任一项所述的电机控制装置。
第三方面,本申请实施例提供一种多旋翼无人飞行器,包括第一方面任一项所述的电机控制装置、多个电机以及多个螺旋桨,所述电机控制装置与多个电机电连接,用于同时控制多个所述电机工作,每个所述螺旋桨安装在一个所述电机上,使得所述电机能够驱动所述螺旋桨转动,提供所述多旋翼无人飞行器飞行的动力。
第四方面,本申请实施例提供一种电机控制装置的控制方法,应用于第一方面任一项所述的电机控制装置,所述方法包括:
向所述驱动电路提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机对应一路控制信号;根据所述电机的相电压向所述驱动电路提供所述电机的转子位置信号。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行上述第四方面任一项所述的方法。
第六方面,本申请实施例提供一种计算机程序,当所述计算机程序被计算机执行时,用于实现上述第四方面任一项所述的方法。
本申请实施例提供一种电机控制装置、设备、系统及其控制方法,通过电机控制装置包括相电压检测电路、控制电路和驱动电路;其中,相电压检测电路用于检测电机的相电压,控制电路用于向驱动电路提供用于控制电机 的转速的控制信号,一个电机对应一路控制信号,以及根据相电压向驱动电路提供用于表示电机转子的当前位置的转子位置信号,驱动电路用于根据转子位置信号以及控制信号,按照预设换相逻辑向开关电路提供用于控制开关电路的开关状态的驱动信号,以控制电机转动,实现了通过控制电路输出用于表示电机转子的当前位置的转子位置信号和用于控制电机转速的控制信号,并由驱动电路根据转子位置信号以及控制信号按照预设换相逻辑向电机的开关电路提供驱动信号的电机控制方式,使得电子控制装置只需要一路控制信号例如PWM信号即可对一个电机进行控制,与传统技术中电机控制装置需要6路或3路PWM信号才能控制一个电机相比,减少了控制电机所需要的PWM输出端的数量,从而降低了对于电机控制装置的PWM输出端的数量限制,有利于节省成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的动力系统100的结构示意图;
图2为传统技术中电机控制装置控制电机的原理示意图;
图3为传统技术中电机控制装置控制电机的原理示意图;
图4为本申请一实施例提供的电机控制装置10的结构示意图;
图5为本申请另一实施例提供的电机控制装置10的结构示意图;
图6为本申请又一实施例提供的电机控制装置10的结构示意图;
图7为本申请一实施例提供的相电压检测电路的结构示意图;
图8为本申请又一实施例提供的电机控制装置10的结构示意图;
图9为本申请又一实施例提供的电机控制装置10的结构示意图;
图10为本申请一实施例提供的电机控制方法的流程示意图;
图11为本申请一实施例提供的多旋翼无人飞行器的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1A为本申请实施例提供的动力系统100的结构示意图。如图1所示,该动力系统100可以包括电机控制装置10和电机20,电机控制装置10可以与电机20电连接,电机20可以为无感无刷直流电机,或者任何可以作为无感无刷直流电机使用的电机,例如位置传感器故障的有感无刷直流电机。电机控制装置10可以包括控制电路和驱动电路。
传统技术中,以电机20为三相电机为例,动力系统100通常采用图2或图3所示的方式,实现电机控制装置10对电机20的控制。如图2所示,对于一个电机,电机控制装置10的控制电路分别输出6路PWM信号,输出的1A和1B两路PWM信号用于控制电机的一组桥臂,2A和2B两路PWM信号用于控制电机M的另一组桥臂,3A和3B两路PWM信号用于控制电机M的又一组桥臂。其中,1A和1B两路PWM信号经驱动电路转换为两路驱动信号后用于驱动开关管Q1和开关管Q4对应的一组桥臂,2A和2B两路PWM信号经驱动电路转换为两路驱动信号后用于驱动开关管Q3和开关管Q6对应的一组桥臂,3A和3B两路PWM信号经驱动电路转换为两路驱动信号后用于驱动开关管Q5和开关管Q2对应的一组桥臂。
参考图2可以看出,采用传统技术中图2所示的无刷无感直流电机的控制方式,控制一个电机需要占用6个PWM输出端。
如图3所示,对于一个电机,电机控制装置10的控制电路分别输出3路PWM信号和3路输入输出信号,输出的一路PWM信号1A和一路输入输出信号IO1用于控制电机的一组桥臂,一路PWM信号2A和一路输入输信号出IO2用于控制电机的另一组桥臂,一路PWM信号3A和一路输入输出信号IO3用于控制电机的又一组桥臂。其中,1A和IO1两路信号经驱动电路转换成两路驱动信号后用于驱动开关管Q1和开关管Q4对应的一组桥臂,2A和IO2两路信号经驱动电路转换成两路驱动信号后用于驱动开关管Q3和开关管Q6对应的一组桥臂,3A 和IO3两路信号经驱动电路转换成两路驱动信号后用于驱动开关管Q5和开关管Q2对应的一组桥臂。需要说明的是,图2、图3中R1表示电阻。
可以看出,采用传统技术中图2所示的无刷无感直流电机的控制方式,控制一个电机需要占用6个PWM输出端,采用传统技术中图3所示的无刷无感直流电机的控制方式,控制一个电机需要占用3个PWM输出端,均存在占用PWM输出端较多的问题。
本申请实施例提供的电机控制装置,通过对于一个电机,控制电路输出转子位置信号和一路控制信号(例如,PWM信号),驱动电路根据转子位置信号以及控制信号,按照预设换相逻辑提供驱动信号,以控制所述电机转动,实现了一个电机只需要占用一个PWM输出端的无刷无感直流电机的控制方式,与传统技术中需要一个电机需要占用6个或3个PWM输出端相比,减少了控制电机所需要的PWM输出端的数量,有利于节省成本。
需要说明的是,图1中以动力系统100中与电机控制装置10电连接的电机20的个数为1个为例,电机21的个数也可以为多个,例如2个,3个等。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图4为本申请一实施例提供的电机控制装置10的结构示意图,电机控制装置10用于与电机20电连接。如图4所示,电机控制装置10包括:相电压检测电路11、控制电路12和驱动电路13;所述控制电路12分别与所述驱动电路13和所述相电压检测电路11电连接;所述相电压检测电路11和所述驱动电路13分别用于与电机20的开关电路电连接。
其中,所述相电压检测电路11,用于检测所述电机20的相电压。所述控制电路12,用于向所述驱动电路13提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机20对应一路控制信号,以及根据所述相电压向所述驱动电路13提供转子位置信号,所述转子位置信号用于表示所述电机的转子的当前位置。所述驱动电路13,用于根据所述转子位置信号以及所述控制信号,按照预设换相逻辑向所述开关电路提供驱动信号,所述驱动信号用于控制所述开关电路的开关状态,以控制所述电机20转动。
具体的,对于一个电机20,控制电路12能够向驱动电路13提供一路用于控制该电机20转速的控制信号,并能够根据该电机20的相电压向驱动电路13提供用于表示该电机20转子的当前位置的转子位置信号,驱动电路13能够根 据该控制信号和该转子位置信号,按照预设换相逻辑向电机20的开关电路提供用于控制开关电路的开关状态的驱动信号,从而控制电机20转动。
以电机20为三相无感无刷直流电机为例,控制电路12能够向驱动电路13提供一路用于控制一个三相无感无刷直流电机转速的控制信号,并能够根据该三相无感无刷直流电机的相电压向驱动电路13提供用于表示该三相无感无刷直流电机转子的当前位置的转子位置信号,驱动电路13能够根据该控制信号和该转子位置信号,按照预设换相逻辑向三相无感无刷直流电机的开关电路提供用于控制开关电路的开关状态的6路驱动信号,该6路驱动信号用于控制三组桥臂,从而控制三相无感无刷直流电机转动。其中,对于三相无刷无感直流电机,开关电路例如可以图2、图3中的三组桥臂。
其中,控制信号具体可以为能够用于控制电机20转速的任意类型信号,示例性的,控制信号包括通过占空比控制电机转速的PWM信号。一路控制信号可以对应一个或多个电机20,具体的,当需要实现多个电机的独立控制时,多个电机可以与多个控制信号一一对应。
转子位置信号具体为能够用于表示电机转子的位置信息的任意类型信号。可选的,为了简化实现,转子位置信号具体可以为能够模拟特定位置传感器输出的信号,以特定位置传感器为霍尔传感器为例,转子位置信号例如可以为霍尔信号。例如假设电机20为三相电机且特定位置传感器为霍尔传感器,且霍尔传感器相互之间间隔120°则三相分别为A相、B相和C相时,一个电机20可以对应的转子位置信号可以包括3路信号,分别为A相对应的霍尔信号HA、B相对应的路霍尔信号HB和C相对应的路霍尔信号HC。
预设换相逻辑为控制电机20转动需要满足的电子换相逻辑,预设换相逻辑具体可以根据需求灵活实现。以电机20为三相电机,其开关电路如图2、图3中所示为例,六步换相原理例如可以如下表1所示。
表1
转子位置的变化 Q1 Q3 Q5 Q4 Q6 Q2
位置1→位置2 1 0 0 0 0 1
位置2→位置3 0 1 0 0 0 1
位置3→位置4 0 1 0 1 0 0
位置4→位置5 0 0 1 1 0 0
位置5→位置6 0 0 1 0 1 0
位置6→位置1 1 0 0 0 1 0
以表1为例,驱动电路13在根据转子位置信号确定转子的位置处于位置1→位置2时,根据表1以及控制信号输出驱动信号,以控制Q1和Q4采用上下管互补的方式斩波,Q2恒通,Q3、Q5和Q6关闭;驱动电路13在根据转子位置信号确定转子的位置处于位置2→位置3时,根据表1以及控制信号输出驱动信号,以控制Q3和Q6采用上下管互补的方式斩波,Q2恒通,Q1、Q4和Q5关闭;驱动电路13在根据转子位置信号确定转子的位置处于位置3→位置4时,根据表1以及控制信号输出驱动信号,以控制Q3和Q6采用上下管互补的方式斩波,Q4恒通,Q1、Q2和Q5关闭;驱动电路13在根据转子位置信号确定转子的位置处于位置4→位置5时,根据表1以及控制信号输出驱动信号,以控制Q2和Q5采用上下管互补的方式斩波,Q4恒通,Q1、Q3和Q6关闭;驱动电路13在根据转子位置信号确定转子的位置处于位置5→位置6时,根据表1以及控制信号输出驱动信号,以控制Q2和Q5采用上下管互补的方式斩波,Q6恒通,Q1、Q3和Q4关闭;驱动电路13在根据转子位置信号确定转子的位置处于位置6→位置1时,根据表1以及控制信号输出驱动信号,以控制Q1和Q4采用上下管互补的方式斩波,Q6恒通,Q2、Q3和Q5关闭。
在表1的基础上,假设转子位置信号模拟120°霍尔传感器输出的信号,则六步换相原理例如可以如下表2所示。
表2
HA HB HC Q1 Q3 Q5 Q4 Q6 Q2
1 0 0 1 0 0 0 0 1
1 1 0 0 1 0 0 0 1
0 1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0
0 0 1 0 0 1 0 1 0
1 0 1 1 0 0 0 1 0
以表2为例,驱动电路13在A、B和C三相的转子位置信号分别为“100”时,根据表1以及控制信号输出驱动信号,以控制Q1和Q4采用上下管互补的方式斩波,Q2恒通,Q3、Q5和Q6关闭;驱动电路13在A、B和C三相的转子位置信号分别为“110”时,根据表1以及控制信号输出驱动信号,以控制Q3和Q6采用上下管互补的方式斩波,Q2恒通,Q1、Q4和Q5关闭;驱动电路13 在A、B和C三相的转子位置信号分别为“010”时,根据表1以及控制信号输出驱动信号,以控制Q3和Q6采用上下管互补的方式斩波,Q4恒通,Q1、Q2和Q5关闭;驱动电路13在A、B和C三相的转子位置信号分别为“011”时,根据表1以及控制信号输出驱动信号,以控制Q2和Q5采用上下管互补的方式斩波,Q4恒通,Q1、Q3和Q6关闭;驱动电路13在A、B和C三相的转子位置信号分别为“001”时,根据表1以及控制信号输出驱动信号,以控制Q2和Q5采用上下管互补的方式斩波,Q6恒通,Q1、Q3和Q4关闭;驱动电路13在A、B和C三相的转子位置信号分别为“101”时,根据表1以及控制信号输出驱动信号,以控制Q1和Q4采用上下管互补的方式斩波,Q6恒通,Q2、Q3和Q5关闭。
需要说明的是,表1以及表2所述的情况仅为代表实施例,当然,在其他实施例中,上述表格中的映射关系可能不相同。
本实施例中,通过电机控制装置包括相电压检测电路、控制电路和驱动电路;其中,相电压检测电路用于检测电机的相电压,控制电路用于向驱动电路提供用于控制电机的转速的控制信号,一个电机对应一路控制信号,以及根据相电压向驱动电路提供用于表示电机转子的当前位置的转子位置信号,驱动电路用于根据转子位置信号以及控制信号,按照预设换相逻辑向开关电路提供用于控制开关电路的开关状态的驱动信号,以控制电机转动,实现了通过控制电路输出用于表示电机转子的当前位置的转子位置信号和用于控制电机转速的控制信号,并由驱动电路根据转子位置信号以及控制信号按照预设换相逻辑向电机的开关电路提供驱动信号的电机控制方式,使得电子控制装置只需要一路控制信号例如PWM信号即可对一个电机进行控制,与传统技术中电机控制装置需要6路或3路PWM信号才能控制一个电机相比,减少了控制电机所需要的PWM输出端的数量,从而降低了对于电机控制装置的PWM输出端的数量限制,有利于节省成本。
在图4所示实施例的基础上,进一步的,所述控制电路12,具体可以用于根据所述相电压确定所述转子的当前位置,并根据所述转子的当前位置向所述驱动电路提供所述转子位置信号。
其中,转子位置信号是用于向驱动电路指示如何根据预设换相逻辑进行换相控制,以使驱动电路能够按照预设换相逻辑控制开关电路的开关状态。例如,假设转子转动一圈依次经过位置1至位置6,则当控制电路12根据相电压确定转子的当前位置处于位置1到位置2之间时,可以向驱动信号提供的转 子位置信号“100”;当控制电路12根据相电压确定转子的当前位置处于位置2到位置3之间时,可以向驱动信号提供的转子位置信号“110”;当控制电路12根据相电压确定转子的当前位置处于位置3到位置4之间时,可以向驱动信号提供的转子位置信号“010”;当控制电路12根据相电压确定转子的当前位置处于位置4到位置5之间时,可以向驱动信号提供的转子位置信号“011”;当控制电路12根据相电压确定转子的当前位置处于位置5到位置6之间时,可以向驱动信号提供的转子位置信号“001”;当控制电路12根据相电压确定转子的当前位置处于位置6到位置1之间时,可以向驱动信号提供的转子位置信号“101”。需要说明的是,驱动电路和控制电路对于转子位置信号的理解应一致,例如,当转子位置信号为“100”,驱动电路可以确定转子的当前位置处于位置1到位置2之间。
需要说明的是,对于根据相电压确定转子的当前位置的具体方式,本申请实施例不做限定。
在图4所示实施例的基础上,进一步的,所述控制电路12,具体可以用于在根据所述相电压确定所述电机20的反电动势过零点之后,根据所述相电压更新所述转子位置信号的电平状态。由于在电机的反电动势过零点时,表示需要进行换相,因此通过在根据相电压确定反电动势过零点之后,再根据相电压更新转子位置信号的电平状态,避免了控制电路需要频繁确定转子位置信号导致实现复杂的问题,有利于简化实现。例如,首先,控制电路12确定电机的反电动势过零点之后,可以根据相电压更新转子位置信号的电平状态为“100”,转子位置信号的电平状态可以维持为“100”直至控制电路12再次确定电机的反电动势过零点之后,再根据相电压更新转子位置信号的电平状态为“110”。需要说明的是,对于根据相电压确定电机的反电动势过零点的具体方式,本申请实施例不做限定。
图5为本申请另一实施例提供的电机控制装置10的结构示意图,本实施例在图4所示实施例的基础上,主要描述了控制电路12提供控制信号可选实现方式。如图5所示,所述控制电路12可以包括第一连接端121和信号产生子电路122;所述第一连接端121分别与所述信号产生子电路122和所述驱动电路13电连接;所述信号产生子电路122,用于产生所述控制信号。
具体的,对于一个电机20,信号产生子电路122能够产生一路用于控制该电机20的转速的控制信号,并通过第一连接端121向驱动电路13提供该控制信 号。其中,信号产生子电路122具体为能够产生控制信号的任意类型电路。第一连接端121具体为能够实现将所述信号产生子电路122与所述驱动电路13电连接的任意类型端。
示例性的,信号产生子电路122可以根据电机20的目标转速,确定控制信号的特征信息,并根据所确定的特征信息产生控制信号。示例性的,信号产生子电路可以受控于其他电路或器件(例如,控制器),获得其他电路或器件指示的控制信号的特征信息,并根据指示的特征信息产生控制信号。以控制信号为PWM信号为例,特征信息可以包括占空比。
需要说明的是,第一连接端121与信号产生子电路122和驱动电路13可以直接电连接,或者也可以通过其他器件间接电连接。
示例性的,一个所述信号产生子电路122能够独立输出多路信号,所述多路信号中的一路信号用于作为所述电机20的控制信号。示例性的,一个信号产生子电路能够独立输出两路PWM信号。通过多路信号中的一路信号用于作为电机20的控制信号,实现了虽然一个信号产生子电路能够产生多路信号,但在进行电机控制时只使用多路信号中的一路,避免了在实现时考虑一个信号产生子电路输出的不同路信号之间的限制问题,有利于简化实现。进一步的,一个所述电机20可以对应一个所述信号产生子电路122,即电机20与信号产生子电路122可以一一对应。通过电机20与信号产生子电路122一一对应,既能够简化实现,又能够实现不同电机的独立控制。
示例性的,一个所述信号产生子电路能够独立输出多路信号,所述多路信号用于作为不同所述电机的控制信号,此时多个电机对应一个信号产生子电路。通过多路信号用于作为不同电机20的控制信号,实现了能够最大限度利用一个信号产生子电路所能够产生的信号,有利于减少控制电机所需的信号产生子电路的数量,降低了对信号产生子电路的数量要求,有利于节省成本。
示例性的,所述控制电路12包括控制器(controller);所述信号产生子电路122为所述控制器内置的信号产生模块。以控制信号为PWM信号为例,控制器可以内置的信号产生模块可以为PWM模块。通过信号产生子电路为控制器内置的信号产生模块,实现了由控制器完成产生控制信号的功能,有利于简化硬件实现。示例性的,所述控制器包括微控制单元(Microcontroller Unit,MCU)。由于MCU具有集成度高、体积小、价格低等特点,从而有利于减小 电机控制装置的体积、降低电机控制装置的成本。
示例性的,所述第一连接端为所述控制器的所述信号产生模块对应的引脚。以信号产生模块为PWM模块为例,第一连接端具体可以为PWM对应的引脚,即PWM引脚。通过第一连接端为控制器的信号产生模块对应的引脚,使得控制器内置的信号产生模块产生控制信号能够通过信号产生模块对应的引脚提供给驱动电路。
本实施例中,通过控制电路包括第一连接端和信号产生子电路,其中,第一连接端分别与信号产生子电路和驱动电路电连接,信号产生子电路用于产生控制信号,实现了对于一个电机,信号产生子电路能够产生控制信号并通过第一连接端向驱动电路提供该控制信号,从而使得控制电路能够向驱动电路提供控制信号。
图6为本申请另一实施例提供的电机控制装置10的结构示意图,本实施例在图4所示实施例的基础上,主要描述了控制电路12提供转子位置信号的可选实现方式。如图6所示,所述控制电路12可以包括第二连接端123和位置子电路124;所述第二连接端123分别与所述位置子电路124和所述驱动电路13电连接;所述位置子电路124,用于根据所述电机20的相电压产生转子位置信号。
具体的,位置子电路124能够根据电机20的相电压产生转子位置信号,并通过第二连接端123将转子位置信号提供给驱动电路13。其中,位置子电路124具体为能够根据电机20的相电压产生转子位置信号的任意类型电路。第二连接端123具体为能够实现将所述位置子电路124与所述驱动电路13电连接的任意类型端。
示例性的,所述位置子电路包括控制器。由于根据电机的相电压产生转子位置信号,通过对控制器进行编程容易实现,因此通过位置子电路包括控制器有利于简化实现。示例性的,所述控制器包括微控制单元(Microcontroller Unit,MCU)。
示例性的,所述第二连接端为所述控制器的引脚。示例性的,所述第二连接端具体可以为控制器的通用型之输入输出(General-purpose input/output,GPIO)引脚。通过第二连接端为控制器的引脚,使得控制器产生的转子位置信号能够通过其引脚提供给驱动电路。
需要说明的是,第二连接端123与位置子电路124和驱动电路13可以直接电连接,或者也可以通过其他器件间接电连接。
示例性的,如图6所示,所述控制电路23还可以包括:第三连接端125和模数转换(Analog-to-digital conversion,ADC)子电路126;所述第三连接端125分别与所述相电压检测电路11和所述模数转换子电路126电连接;所述模数转换子电路126还与所述位置子电路124电连接;所述模数转换子电路126,用于将所述相电压由模拟信号转换为数字信号,得到转换后的相电压;所述位置子电路124,具体用于根据所述转换后的相电压产生转子位置信号。
具体的,模数转换子电路126将相电压检测电路11检测到的相电压由模拟信号转换为数字信号,得到转换后的相电压,并通过第三连接端125将转换后的相电压提供给位置子电路124,进一步的,位置子电路124根据转换后的相电压产生转子位置信号。由于数字信号相比于模拟信号便于进一步处理通过模数转换子电路能够实现将相电压检测电路检测到的相电压由模拟信号转换为数字信号,能够便于位置子电路的进一步处理。
需要说明的是,第三连接端125与模数转换子电路126和位置子电路124可以直接电连接,或者也可以通过其他器件间接电连接。
其中,模数转换子电路126具体为能够实现模数转换功能的任意类型电路。第三连接端125具体为能够实现将模数转换子电路126与位置子电路124电连接的任意类型端。
示例性的,所述控制电路包括控制器,所述模数转换子电路126为所述控制器内置的模数转换模块。通过模数转换子电路为控制器内置的模数转换模块,实现了由控制器完成产生模数转换的功能,有利于简化硬件实现。示例性的,所述控制器包括MCU。
示例性的,所述第三连接端125为所述控制器的所述模数转换模块对应的引脚。通过第三连接端为控制器的模数转换模块对应的引脚,使得相电压检测电路检测到的模拟相电压能够通过控制器内置的模数转换模块对应的引脚提供给模数转换模块。其中,以电机20为三相电机为例,相电压检测电路11例如可以如图7所示。参考图7,开关电路的a相桥臂的电压Ua可以经电阻R5和R6分压,通过R6的分压可以检测得到a相的相电压,a相的相电压可以经过控制器内置的模数转换模块对应的模数AD3引脚输入至模数转换模块;开关电路的b相桥臂的电压Ub可以经电阻R3和R4分压,通过R4的分压可以检测得到b相的相电压,b相的相电压可以经过控制器内置的模数转换模块对应的模数AD2引脚输入至模数转换模块;开关电路的c相桥臂的电压Uc可以经电阻R1 和R2分压,通过R2的分压可以检测得到c相的相电压,c相的相电压可以经过控制器内置的模数转换模块对应的AD1引脚输入至模数转换模块。
本实施例中,通过控制电路包括第二连接端和位置子电路,其中,第二连接端分别与位置子电路和所述驱动电路电连接,位置子电路用于根据电机的相电压产生转子位置信号,实现了位置子电路能够产生转子位置信号并通过第二连接端向驱动电路提供该转子位置信号,从而使得控制电路能够向驱动电路提供转子位置信号。
在上述实施例的基础上,可选的,电机控制装置还可以包括:所述开关电路;所述开关电路与所述驱动电路12电连接;所述开关电路,用于驱动所述电机20转动;通过电机控制装置包括开关电路,实现了电机控制装置能够直接与电机本体电连接,使得电机控制装置能够用于对电机本体的控制,扩大了电机控制装置的使用场景。
在上述实施例的基础上,可选的,电机控制装置还可以包括:电流检测电路,所述电流检测电路用于与所述开关电路电连接;所述电流检测电路,与所述控制电路12电连接,用于检测所述电机20的母线电流;所述控制电路12,还用于在确定所述母线电流异常时,进行第一异常保护处理。通过电机控制装置包括电流检测电路,能够实现母线电流异常时的保护处理,有利于提高电机控制的安全性。
具体的,电流检测电路可以通过开关电路检测获得电机的母线电流,进一步的,控制电路12可以根据电机的母线电流在确定母线电流异常时进行第一异常保护处理。其中,母线电流异常例如可以包括母线电流过大。
电流检测电路具体为能够检测母线电流的任意类型电路,例如可采用运放搭建的差分放大电路实现,又例如对于内置运放的控制器,可使用内置运放实现,减少运放芯片。第一异常保护处理可以根据需求灵活实现,例如,可以包括取消向驱动电路提供控制信号,以停止驱动电机转动。
在上述实施例的基础上,可选的,所述驱动电路13,还用于在确定所述开关电路异常时,向所述控制电路12提供异常信号;所述控制电路12,还用于在接收到所述异常信号时,进行第二异常保护处理。通过驱动电路在开关电路异常时向控制电路提供异常信号,控制电路在接收到异常信号时进行第二异常保护处理,能够实现开关电路异常时的保护处理,有利于提高电机控制的安全性。
具体的,驱动电路13可以在确定开关电路异常时,向控制电路12提供异常信号,进一步的,控制电路12可以在接收到所述异常信号时,进行第二异常保护处理。
其中,开关电路异常例如可以包括开关管短路、过温、欠压等,开关管可以为金属氧化物半导体(Metal Oxide Semiconductor,MOS)管。异常信号例如可以作为控制电路12的中断处理信号,通过异常信号作为中断处理信号可以提高控制电路对开关电路异常的响应速度。第二异常保护处理可以根据需求灵活实现,例如,可以包括取消向驱动电路提供控制信号,以停止驱动电机转动。
在上述实施例的基础上,可选的,所述驱动电路13包括内置转子位置信号输入和预设换相逻辑的驱动器(Driver)。该驱动器例如可以为内置霍尔(HALL)输入及120°换相逻辑的MOS管驱动器。通过驱动电路包括内置转子位置信号输入和预设换相逻辑的驱动器,使得能够基于支持根据转子位置信号按照预设换相逻辑提供驱动信号的驱动器,实现前述驱动电路13的功能,有利于简化实现。
以控制信号为PWM信号,控制电路包括MCU,控制器内置PWM模块和ADC模块,控制电路输出的转子位置信号模拟霍尔信号,驱动电路包括内置霍尔输入及120°换相逻辑的驱动器,且电机控制装置控制1个三相电机20为例,电机控制装置10控制电机20的示意图可以如图8所示。参考图8,对于一个电机M1,相电压检测电路通过M1的开关电路检测M1的相电压获得相电压信号,控制器内置的ADC将相电压信号由模拟信号转换为数字信号,控制器根据转换后的相电压信号产生转子位置信号HA、HB和HC并通过GPIO输出三路IO信号HA、HB和HC,另外,控制器控制内置的PWM1模块输出一路PWM信号1A。进一步的,内置霍尔输入及120°换相逻辑的驱动器根据一路PWM信号1A和三路IO信号HA、HB和HC,按照120°换相逻辑向电机M1的开关电路提供6路驱动信号,分别用于驱动开关电路Q1和Q4组成的一组桥臂,Q3和Q6组成的另一组桥臂,Q5和Q2组成的又一组桥臂,从而控制电机M1转动。在电机M1转动的过程中,电路检测电路通过M1的开关电路检测电机M1的母线电流获得母线电流信号,控制器内置的ADC将母线电流信号由模拟信号转换为数字信号,进一步的控制器能够根据转换后的母线电流信号进行异常保护。
需要说明的是,图8中开关电路中的R表示电阻。
在图8的基础上,假设电机的个数等于4,且四个电机之间独立控制,则电机控制装置10控制电机20的示意图可以如图9所示。参考图9,对于电机M1、M2、M3和M4,4个电机,每个电机均有对应的开关电路、驱动器、电流检测电路和相电压检测电路,电机M2-电机M4的控制原理与M1类似,区别主要在于:控制器内置的PWM1模块独立输出的两路PWM信号1A和1B分别作为电机M1和电机M2的控制信号,控制器内置的PWM2模块独立输出的两路PWM信号2A和2B分别作为电机M4和M3的控制信号,以降低对PWM模块的数量要求。
需要说明的是,图9中电机M1、M2、M3和M4开关电路的结构与图8中电机M1开关电路的结构类似,均可以包括三组桥臂,在此不再赘述。
本申请实施例还提供一种动力系统,包括电机20以及上述实施例所述的电机控制装置10。
示例性的,所述系统应用于可移动平台。示例性的,可移动平台可以包括无人飞行器。
示例性的,所述电机20的个数为4个,且4个所述电机的控制信号相互独立。
示例性的,所述电机20包括无感无刷直流电机。
图10为本申请一实施例提供的电机控制方法的流程示意图;本实施例的方法可以应用于前述电机控制装置10,具体可以由电机控制装置10中的控制电路执行。如图10所示,本实施例的方法可以包括:
步骤1001,向所述驱动电路13提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机对应一路控制信号。
步骤1002,根据所述电机的相电压向所述驱动电路13提供所述电机的转子位置信号。
需要说明的是,步骤1001与步骤1002可以没有先后顺序限制。
本实施例提供的电机控制方法,可以实现前述电机控制装置10中控制电路的技术方案,其实现原理和技术效果与装置实施例类似,在此不再赘述。
图1所示的动力系统100可以应用于多旋翼无人飞行器,图11为本申请一实施例提供的多旋翼无人飞行器110的结构示意图。如图11所示,该多旋翼无人飞行器包括上述实施例所述的电机控制装置10、多个电机20以及多个螺旋 桨30,所述电机控制装置10与多个电机20电连接,用于同时控制多个所述电机20工作,每个所述螺旋桨30安装在一个所述电机20上,使得所述电机20能够驱动所述螺旋桨30转动,提供所述多旋翼无人飞行器飞行的动力。需要说明的是,电机控制装置10的具体内容可以参见前述实施例的描述,在此不再赘述。
需要说明的是,图11中以电机20的个数为4个为例。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (29)

  1. 一种电机控制装置,其特征在于,包括:相电压检测电路、控制电路和驱动电路;所述控制电路分别与所述驱动电路和所述相电压检测电路电连接;所述相电压检测电路和所述驱动电路分别用于与电机的开关电路电连接;
    其中,所述相电压检测电路,用于检测所述电机的相电压;
    所述控制电路,用于向所述驱动电路提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机对应一路控制信号,以及根据所述相电压向所述驱动电路提供转子位置信号,所述转子位置信号用于表示所述电机的转子的当前位置;
    所述驱动电路,用于根据所述转子位置信号以及所述控制信号,按照预设换相逻辑向所述开关电路提供驱动信号,所述驱动信号用于控制所述开关电路的开关状态,以控制所述电机转动。
  2. 根据权利要求1所述的装置,其特征在于,所述控制电路,具体用于根据所述相电压确定所述转子的当前位置,并根据所述转子的当前位置向所述驱动电路提供所述转子位置信号。
  3. 根据权利要求1所述的装置,其特征在于,所述控制电路,具体用于在根据所述相电压确定所述电机的反电动势过零点之后,根据所述相电压更新所述转子位置信号的电平状态。
  4. 根据权利要求1所述的装置,其特征在于,所述控制电路包括第一连接端和信号产生子电路;所述第一连接端分别与所述信号产生子电路和所述驱动电路电连接;
    所述信号产生子电路,用于产生所述控制信号。
  5. 根据权利要求4所述的装置,其特征在于,一个所述信号产生子电路能够独立输出多路信号,一个所述电机对应一个所述信号产生子电路。
  6. 根据权利要求4所述的装置,其特征在于,一个所述信号产生子电路能够独立输出多路信号,多个所述电机对应一个所述信号产生子电路。
  7. 根据权利要求4所述的装置,其特征在于,所述控制电路包括控制器;所述信号产生子电路为所述控制器内置的信号产生模块。
  8. 根据权利要求7所述的装置,其特征在于,所述第一连接端为所述控制器的所述信号产生模块对应的引脚。
  9. 根据权利要求1所述的装置,其特征在于,所述控制电路包括第二连 接端和位置子电路;所述第二连接端分别与所述位置子电路和所述驱动电路电连接;
    所述位置子电路,用于根据所述电机的相电压产生转子位置信号。
  10. 根据权利要求9所述的装置,其特征在于,所述位置子电路包括控制器。
  11. 根据权利要求10所述的装置,其特征在于,所述第二连接端为所述控制器的引脚。
  12. 根据权利要求9所述的装置,其特征在于,所述控制电路还包括:第三连接端和模数转换子电路;所述第三连接端分别与所述相电压检测电路和所述模数转换子电路电连接;所述模数转换子电路还与所述位置子电路电连接;
    所述模数转换子电路,用于将所述相电压由模拟信号转换为数字信号,得到转换后的相电压;
    所述位置子电路,具体用于根据所述转换后的相电压产生转子位置信号。
  13. 根据权利要求12所述的装置,其特征在于,所述控制电路包括控制器,所述模数转换子电路为所述控制器内置的模数转换模块。
  14. 根据权利要求13所述的装置,其特征在于,所述第三连接端为所述控制器的所述模数转换模块对应的引脚。
  15. 根据权利要求7、8、10、11、13或14中任一项所述的装置,其特征在于,所述控制器包括微控制单元MCU。
  16. 根据权利要求1所述的装置,其特征在于,所述装置还包括:所述开关电路;所述开关电路与所述驱动电路电连接;
    所述开关电路,用于驱动所述电机转动;
  17. 根据权利要求1所述的装置,其特征在于,所述装置还包括:电流检测电路,所述电流检测电路用于与所述开关电路电连接;
    所述电流检测电路,与所述控制电路电连接,用于检测所述电机的母线电流;
    所述控制电路,还用于在确定所述母线电流异常时,进行第一异常保护处理。
  18. 根据权利要求1所述的装置,其特征在于,所述驱动电路,还用于在确定所述开关电路异常时,向所述控制电路提供异常信号;
    所述控制电路,还用于在接收到所述异常信号时,进行第二异常保护处理。
  19. 根据权利要求1所述的装置,其特征在于,所述驱动电路包括内置转子位置信号输入和预设换相逻辑的驱动器。
  20. 根据权利要求1所述的装置,其特征在于,所述转子位置信号包括霍尔信号。
  21. 根据权利要求1所述的装置,其特征在于,所述控制信号包括脉冲宽度调制PWM信号。
  22. 一种动力系统,其特征在于,包括电机以及权利要求1-21任一项所述的电机控制装置。
  23. 根据权利要求22所述的系统,其特征在于,所述系统应用于可移动平台。
  24. 根据权利要求23所述的系统,其特征在于,所述电机的个数为4个,且4个所述电机的控制信号相互独立。
  25. 根据权利要求22所述的系统,其特征在于,所述电机包括无感无刷直流电机。
  26. 一种多旋翼无人飞行器,其特征在于,包括权利要求1-21任一项所述的电机控制装置、多个电机以及多个螺旋桨,所述电机控制装置与多个电机电连接,用于同时控制多个所述电机工作,每个所述螺旋桨安装在一个所述电机上,使得所述电机能够驱动所述螺旋桨转动,提供所述多旋翼无人飞行器飞行的动力。
  27. 一种电机控制装置的控制方法,其特征在于,应用于权利要求1-21任一项所述的电机控制装置,所述方法包括:
    向所述驱动电路提供控制信号,所述控制信号用于控制所述电机的转速,一个所述电机对应一路控制信号;
    根据所述电机的相电压向所述驱动电路提供所述电机的转子位置信号。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包含至少一段代码,所述至少一段代码可由计算机执行,以控制所述计算机执行如权利要求27所述的方法。
  29. 一种计算机程序,其特征在于,当所述计算机程序被计算机执行时,用于实现如权利要求27所述的方法。
PCT/CN2019/114283 2019-10-30 2019-10-30 电机控制装置、设备、系统及其控制方法 WO2021081790A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114283 WO2021081790A1 (zh) 2019-10-30 2019-10-30 电机控制装置、设备、系统及其控制方法
CN201980033810.8A CN112154600B (zh) 2019-10-30 2019-10-30 电机控制装置、设备、系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114283 WO2021081790A1 (zh) 2019-10-30 2019-10-30 电机控制装置、设备、系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2021081790A1 true WO2021081790A1 (zh) 2021-05-06

Family

ID=73891204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114283 WO2021081790A1 (zh) 2019-10-30 2019-10-30 电机控制装置、设备、系统及其控制方法

Country Status (2)

Country Link
CN (1) CN112154600B (zh)
WO (1) WO2021081790A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122886A (ja) * 1997-10-16 1999-04-30 Honda Motor Co Ltd 回転電機
CN201383783Y (zh) * 2009-04-20 2010-01-13 江苏华风科技有限公司 车载制冷压缩机的电机控制器
CN104242749A (zh) * 2014-07-30 2014-12-24 合肥工业大学 无位置传感器无刷直流电机换向控制方法
CN104579046A (zh) * 2015-01-22 2015-04-29 南京工程学院 一种无刷直流电机换向控制装置及方法
CN108011559A (zh) * 2016-11-01 2018-05-08 南京德朔实业有限公司 电动工具及电动工具的控制方法
CN207638583U (zh) * 2017-11-27 2018-07-20 深圳市道通智能航空技术有限公司 一种电子调速器、电机控制系统及无人机
CN108599260A (zh) * 2018-06-22 2018-09-28 合肥为民电源有限公司 一种抑制谐波电流的发电机输出功率控制方法及装置
CN108649858A (zh) * 2018-04-28 2018-10-12 北京机械设备研究所 一种基于igbt的高压大功率电动舵机驱动系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879124B1 (en) * 2004-01-07 2005-04-12 Quan Jiang Method to detect the true zero-crossing points of the phase back EMF for sensorless control of brushless DC motors
CN101242154B (zh) * 2008-03-14 2010-04-14 重庆大学 一种无位置传感器的内嵌式永磁无刷直流电机控制系统
CN103384127A (zh) * 2012-05-03 2013-11-06 苏州工业园区艾思科技有限公司 一种无刷电机的驱动控制系统及其控制方法
CN104767434A (zh) * 2015-04-22 2015-07-08 华中科技大学 一种无刷直流电动机转子换相位置检测及换相控制方法
CN208158473U (zh) * 2018-04-18 2018-11-27 南京航空航天大学 一种无刷直流电机控制系统
CN211557182U (zh) * 2019-10-30 2020-09-22 深圳市大疆创新科技有限公司 电机控制装置、动力系统及多旋翼无人飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122886A (ja) * 1997-10-16 1999-04-30 Honda Motor Co Ltd 回転電機
CN201383783Y (zh) * 2009-04-20 2010-01-13 江苏华风科技有限公司 车载制冷压缩机的电机控制器
CN104242749A (zh) * 2014-07-30 2014-12-24 合肥工业大学 无位置传感器无刷直流电机换向控制方法
CN104579046A (zh) * 2015-01-22 2015-04-29 南京工程学院 一种无刷直流电机换向控制装置及方法
CN108011559A (zh) * 2016-11-01 2018-05-08 南京德朔实业有限公司 电动工具及电动工具的控制方法
CN207638583U (zh) * 2017-11-27 2018-07-20 深圳市道通智能航空技术有限公司 一种电子调速器、电机控制系统及无人机
CN108649858A (zh) * 2018-04-28 2018-10-12 北京机械设备研究所 一种基于igbt的高压大功率电动舵机驱动系统
CN108599260A (zh) * 2018-06-22 2018-09-28 合肥为民电源有限公司 一种抑制谐波电流的发电机输出功率控制方法及装置

Also Published As

Publication number Publication date
CN112154600A (zh) 2020-12-29
CN112154600B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN101565003A (zh) 一种电动汽车的电机控制器及其控制方法
CN109239635B (zh) 一种永磁同步电机旋变零位标定系统及标定方法
US10164563B2 (en) Method and apparatus for controlling an electric machine
JP2011239515A (ja) モータ駆動装置
WO2021207988A1 (zh) 电机控制方法、装置、可移动平台及存储介质
TWI469502B (zh) 無刷馬達的無感測器換相電路以及無感測器驅動裝置
CN211557182U (zh) 电机控制装置、动力系统及多旋翼无人飞行器
WO2021081790A1 (zh) 电机控制装置、设备、系统及其控制方法
CN213633738U (zh) 一种带三相电机缺相检测的数字式交流伺服驱动器
CN102777391A (zh) 汽车电子水泵控制器
Papathanasopoulos et al. Fault identification on hall-effect sensors positioning in brushless DC motor drives via a fuzzy inference system
CN112737428A (zh) 电机转速脉冲反馈控制方法、装置、控制器及空调系统
CN108173472B (zh) 一种双三相电机五相逆变器及控制方法
CN115913028A (zh) 一种电流采样方法、装置、电子设备及存储介质
CN205545053U (zh) 一种集成变频电机控制器
CN209896947U (zh) 一种电机控制电路
CN108183636B (zh) 一种双电机七开关逆变器及其控制方法
CN101877566A (zh) 反电动势测速器
TWI777544B (zh) 直流無刷馬達驅動電路
CN211860006U (zh) 一种电机无传感器控制装置以及电机装置
CN110611294A (zh) 一种无刷直流电机驱动控制系统
CN116827180A (zh) 直流电机反电动势检测方法、装置、设备及存储介质
TW201427267A (zh) 模組化風扇馬達控制電路及其控制方法
CN104682784A (zh) 一种直流无刷电机驱动器
CN112910363B (zh) 一种磁悬浮永磁电机用方波与正弦波一体化控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951143

Country of ref document: EP

Kind code of ref document: A1