WO2021081690A1 - 一种位移-电流混合控制拟静力试验加载制度 - Google Patents
一种位移-电流混合控制拟静力试验加载制度 Download PDFInfo
- Publication number
- WO2021081690A1 WO2021081690A1 PCT/CN2019/113575 CN2019113575W WO2021081690A1 WO 2021081690 A1 WO2021081690 A1 WO 2021081690A1 CN 2019113575 W CN2019113575 W CN 2019113575W WO 2021081690 A1 WO2021081690 A1 WO 2021081690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- loading
- displacement
- self
- cycle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
Definitions
- the invention relates to the technical field of self-resetting engineering structures with magnetorheological dampers and seismic tests of components, in particular to a displacement-current hybrid control pseudo-static test loading system.
- a self-resetting structure is a structure that can restore its function without repair or a slight repair after an earthquake. It is mainly through the built-in high-strength reinforcement in the structural member, or by relaxing the constraint between the structural member and the foundation, and in the second place. The high-strength reinforcements are connected between them. After the earthquake, the elastic restoring force provided by the high-strength reinforcements makes the structure return to its original position.
- the self-resetting structure technology is one of the research hotspots in the field of seismic engineering. However, under strong earthquakes, the energy dissipation capacity of self-resetting structures is generally lower than that of reinforced concrete structures and steel structures with plastic deformation capabilities.
- Magnetorheological damper is a kind of rapid flow of magnetorheological fluid under the action of electromagnetic field.
- the pseudo-static test of the self-resetting structure with magnetorheological dampers is to obtain its stiffness, deformation, bearing capacity, energy consumption, failure form, and self-recovery.
- An economical and effective means of resetting information such as performance.
- the pseudo-static test of self-resetting structures generally adopts a force-displacement hybrid control loading system or a displacement control loading system.
- the pseudo-static test of the self-resetting structure of the magnetorheological damper has not been reported. Since the magnetorheological damper can adjust its influence on the performance of the self-resetting structure by changing the current, the existing pseudo-static test The loading system cannot consider the impact of current. Therefore, how to consider the impact of the magnetorheological damper current in the loading system and ensure that the test is efficient and feasible is an urgent problem to be solved for the pseudo-static test of the self-resetting structure of the magnetorheological damper. The key issue.
- the present invention provides a displacement-current hybrid control pseudo-static test loading system, which solves the problem that the existing pseudo-static test loading system cannot consider the effect of magnetorheological damper on the stiffness, deformation, and deformation of the self-resetting structure.
- the adjustment of bearing capacity, energy consumption and other performance provides a suitable loading system and method for the pseudo-static test of the self-resetting structure (structural member) with magnetorheological damper.
- a displacement-current hybrid control pseudo-static test loading system which is characterized in that it specifically includes the following steps:
- S2 Determine the semi-active control parameters for the stabilized DC power supply in the present invention.
- First set the rigidity, deformation, bearing capacity, energy consumption and other targets of the magnetorheological damper self-resetting structural member and the magnetorheological damper.
- the saturation current selects the current level of the magnetorheological damper (dashed line or solid line in Fig. 1 and Fig. 2); secondly, determines the current application time (the starting point of the dashed line or solid line in Fig. 1 and Fig.
- the increment of the displacement angle amplitude of the cyclic loading of different levels in the step S1 is a constant value or a varying value or a combination of the two, for example, when the increment of the displacement angle amplitude is a constant value: 0.1%, 0.3% , 0.5%, 0.7%,..., the displacement angle amplitude increment is a change value: 0.1%, 0.3%, 0.7%, 1.3%,..., the displacement angle amplitude increment is a combination of a constant value and a changing value Circumstances: 0.1%, 0.3%, 0.5%, 1.0%, 1.5%, 2.0%,....
- the number of cyclic loading cycles at each displacement angle in the step S1 is 2 to 4 times, and the cycle of each cyclic loading is at least 300 seconds.
- the application, change or termination time of the current in step S2 is selected at the time when the loading displacement angle is 0 in each cycle of loading; the current continues for 1 cycle of loading cycle (as shown in Figure 1) or for half of the cycle. Cycle loading circle ( Figure 2) as shown.
- the number of current levels of the magnetorheological damper in the step S2 is 2 to 4 times, and the current of the last cycle (Figure 1) or the last half cycle ( Figure 2) of the displacement angle is loaded at each stage The level is zero.
- the number of cyclic loading cycles at each displacement angle in step S1 is greater than or equal to the number of current levels of the magnetorheological damper in step S2.
- the invention provides a displacement-current hybrid control pseudo-static test loading system. Compared with the prior art, it has the following beneficial effects:
- the magnitude of the semi-active control current applied by the magnetorheological damper during the cyclic loading process at each displacement angle is not the same, and the last cyclic magnetorheological damping
- the semi-active control current applied by the device is zero, and it can be tested with a test piece to obtain the stiffness, deformation, bearing capacity, energy consumption, failure form, self-reset performance, etc. of the self-resetting structure of the magnetorheological damper under different currents. With performance data, the self-reset performance of the test piece can be measured at zero current.
- the displacement-current hybrid control pseudo-static test loading system can complete multiple current working conditions at the same time.
- the loading system has high efficiency and can effectively reduce the number of tests for self-resetting structural members with magnetorheological dampers and reduce test costs.
- FIG. 1 is a schematic diagram of Embodiment 1 of a displacement-current hybrid control loading system of the present invention
- Embodiment 2 is a schematic diagram of Embodiment 2 of a displacement-current hybrid control loading system of the present invention
- Figure 3 is a pseudo-static test assembly drawing of a self-resetting structural member with magnetorheological dampers.
- Figure 3 is a pseudo-static test assembly drawing of a self-resetting structural member with magnetorheological dampers.
- the left side of the top of the test stand 1 is fixedly connected with a reinforced concrete reaction wall 3, and the top of the right side of the reaction wall 3 is connected with the work
- the actuator 4 is hinged, and both sides of the top of the test stand 1 are fixedly connected with a reaction frame 5.
- the tops of the two reaction frames 5 are screw rods and are connected with a cross beam 6 that can move up and down, and the middle of the bottom of the cross beam 6 is fixedly connected
- There is a rolling guide 7, and both sides of the bottom of the rolling guide 7 are provided with top jacks 8.
- the self-resetting structural member base 10 is fixedly connected to the top of the test bench 1 through the anchor 9 located between the two reaction frames 5.
- the bottom end of the output shaft of the top jack 8 is fixedly connected with the top of the self-resetting structural member 2, and the outer side of the self-resetting structural member 2 is hinged and fixed to the left side of the magnetorheological damper 11, the coil inside the magnetorheological damper 11 It is connected to a regulated DC power supply 14 through a wire, a bracket 12 is fixedly connected to the right side of the self-resetting structural component base 10, and the top of the left side of the bracket 12 is fixedly connected to the right side of the magnetorheological damper 11, and the top of the test stand 1 is connected to the right side of the magnetorheological damper 11.
- the bottom jacks 13 are fixedly connected to both sides of the self-resetting structural member base 10, and the contents not described in detail in FIG. 3 belong to the prior art known to those skilled in the art.
- the embodiment of the present invention provides a pseudo-static loading scheme for the self-resetting structural member with magnetorheological damper in Fig. 3: a displacement-current Hybrid control pseudo-static test loading system, the specific implementation is as follows:
- the active control parameters of the actuator 4 in the figure should be determined first.
- the multi-stage loading displacement angle (the ordinate in Fig. 1 or Fig.
- Fig. 1 Take Fig. 1 as an example.
- the current application time is the start time of each loading cycle
- the current duration is one loading cycle period T
- the current change or termination time is each The end of the loading cycle is also the beginning of the next loading cycle.
- the increment of the displacement angle amplitude of the cyclic loading of different levels in the step S1 may be a constant value, a variable value, or a combination of a constant value and a variable value.
- the number of cyclic loading cycles at each displacement angle in the step S1 is 2 to 4 times, and the minimum period of each cyclic loading is 300 seconds.
- the application, change or termination time of the current in step S2 is selected at the time when the loading displacement angle is 0 in each cycle of loading; the current can last for one cycle of loading cycle, as shown in Figure 1, or can continue A half-cycle loading circle, as shown in Figure 2.
- the number of current levels of the magnetorheological damper that needs to be applied to a test component in step S2 is 2 to 4 times, which is consistent with the number of cyclic loading cycles at each level of displacement angle, and each level of loading
- the current level of the last cycle ( Figure 1) or the last half cycle ( Figure 2) of the displacement angle is zero.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
一种位移-电流混合控制拟静力试验加载制度,为设置磁流变阻尼器自复位结构的拟静力试验提供加载制度和方法,包括以下步骤:S1、确定用于作动器的主动控制参数,包括多级加载位移角、每级加载位移角下的循环加载圈数、每个循环加载的周期;S2、确定用于稳压直流电源的半主动控制参数,包括磁流变阻尼器的电流等级、电流施加时刻、电流持续时间、电流改变或终止时刻、电流等级个数;S3、将S1确定的参数输入作动器,将S2确定的参数输入稳压直流电源。该加载制度可通过持续施加电流增加自复位结构的刚度、承载力和耗能性能等,试验后切断电流,从而消除磁流变阻尼器对自复位结构自复位性能的影响。
Description
本发明涉及设置磁流变阻尼器的自复位工程结构和构件抗震试验技术领域,具体为一种位移-电流混合控制拟静力试验加载制度。
自复位结构是一种地震后不需修复或稍加修复即可恢复其使用功能的结构,主要通过在结构构件中内置高强筋材,或通过放松结构构件与基础之间的约束、并在二者之间贯通高强筋材进行连接,震后依靠高强筋材提供的弹性恢复力使结构回复到原位,自复位结构技术是工程结构抗震领域研究热点之一。然而,在强烈的地震作用下,自复位结构的耗能能力普遍低于具有塑性变形能力的钢筋混凝土结构和钢结构,磁流变阻尼器是一种利用磁流变液在电磁场作用下快速流——固逆变特性进行阻尼力调节的半主动耗能装置,对设置磁流变阻尼器的自复位结构进行拟静力试验是获得其刚度、变形、承载力、耗能、破坏形态、自复位性能等信息的经济有效手段。
目前自复位结构拟静力试验普遍采用力-位移混合控制加载制度或位移控制加载制度。然而,关于设置磁流变阻尼器自复位结构的拟静力试验尚未见报道,由于磁流变阻尼器能够通过改变电流调节其对自复位结构各项性能的影响,现有的拟静力试验加载制度均无法考虑电流的影响,因此,如何在加载制度中考虑磁流变阻尼器电流的影响,并保证试验高效、可行是设置磁流变阻尼器自复位结构拟静力试验亟待解决的一个关键问题。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种位移-电流混合控制拟静力试验加载制度,解决了现有拟静力试验加载制度无法考虑磁流变阻尼器对自复位结构刚度、变形、承载力、耗能等性能的调节作用,为设置磁流变阻尼器自 复位结构(结构构件)的拟静力试验提供合适的加载制度和方法。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种位移-电流混合控制拟静力试验加载制度,其特征在于:具体包括以下步骤:
S1、确定本发明中用于作动器的主动控制参数,首先,根据设置磁流变阻尼器自复位结构构件的高度和磁流变阻尼器的冲程确定本发明的多级加载位移角(图1、图2的纵坐标);其次,确定每级加载位移角下设置磁流变阻尼器自复位结构构件的循环加载圈数(图1、图2的横坐标);最后,在保证应变率对试验结果不造成任何影响的前提下,确定每个循环加载的周期T。
S2、确定本发明中用于稳压直流电源的半主动控制参数,首先,根据设置磁流变阻尼器自复位结构构件的刚度、变形、承载力、耗能等目标和磁流变阻尼器的饱和电流选择磁流变阻尼器的电流等级(图1、图2中的虚线或实线);其次,确定电流的施加时刻(图1、图2中的虚线或实线的起点)、电流持续时间(图1、图2中的虚线或实线水平投影的时长)、电流改变或终止时刻(图1、图2中的虚线或实线的终点);最后,确定一个测试构件需要施加的磁流变阻尼器的电流等级个数(由图1、图2中左上角线条个数表示)。
S3、首先将S1确定的多级加载位移角乘以自复位结构构件的高度来确定作动器的往复加载位移;然后将往复加载位移、S1确定的循环加载圈数、每个循环加载的周期作为作动器的输入参数;最后将S2确定的电流等级、电流施加时刻、电流持续时间、电流改变或终止时刻作为稳压直流电源的输入参数。将上述参数分别输入作动器和稳压直流电源后,即可对设置磁流变阻尼器自复位结构构件进行拟静力加载试验。
优选的,所述步骤S1中不同等级循环加载的位移角幅值增量是恒定值或变化值或二者的结合,例如,位移角幅值增量是恒定值的情况:0.1%、0.3%、0.5%、0.7%、……,位移角幅值增量是变化值的情况:0.1%、0.3%、0.7%、 1.3%、……,位移角幅值增量是恒定值和变化值结合的情况:0.1%、0.3%、0.5%、1.0%、1.5%、2.0%、……。
优选的,所述步骤S1中每级位移角下的循环加载圈数为2次至4次,并且每个循环加载的周期最小为300秒。
优选的,所述步骤S2中电流的施加、改变或终止时刻均选在每个循环加载中加载位移角为0的时刻;电流持续1个循环加载圈(如图1所示)或持续半个循环加载圈(如图2)所示。
优选的,所述步骤S2中磁流变阻尼器的电流等级个数为2次至4次,并且每级加载位移角的最后一个循环(图1)或最后半个循环(图2)的电流等级为零。
优选的,所述步骤S1中每级位移角下的循环加载圈数大于等于所述步骤S2中磁流变阻尼器的电流等级个数。
(三)有益效果
本发明提供了一种位移-电流混合控制拟静力试验加载制度。与现有技术相比具备以下有益效果:
(1)该位移-电流混合控制拟静力试验加载制度,每一级加载位移角下的作动器均循环2次至4次,如图1与图2所示,每一级位移角下的循环为2次至4次,既能考虑试件循环累积损伤效应,包含刚度、强度退化,又能够避免因循环次数过多造成疲劳破坏而无法得到试件的极限承载力。
(2)该位移-电流混合控制拟静力试验加载制度,通过每级位移角下循环加载过程中磁流变阻尼器施加的半主动控制电流大小均不相同,且最后一个循环磁流变阻尼器施加的半主动控制电流为零,既能采用一个试件测试得到不同电流下设置磁流变阻尼器自复位结构的刚度、变形、承载力、耗能、破坏形态、自复位性能等各项性能数据,又能在零电流时测得试件的自复位性能。
(3)该位移-电流混合控制拟静力试验加载制度,可同时完成多个电流工况,加载制度效率高,能有效减少设置磁流变阻尼器自复位结构构件的试验次数,降低试验成本,并为设置磁流变阻尼器的自复位结构(结构构件)的拟静力试验提供高效可行的加载制度。
图1为本发明一种位移-电流混合控制加载制度实施例一的示意图;
图2为本发明一种位移-电流混合控制加载制度实施例二的示意图;
图3为设置磁流变阻尼器的自复位结构构件拟静力试验装配图。
图3中,1-试验台座、2-自复位结构构件、3-反力墙、4-作动器、5-反力架、6-横梁、7-滚动导轨、8-顶部千斤顶、9-锚固件、10-自复位结构构件底座、11-磁流变阻尼器、12-支架、13-底部千斤顶、14-稳压直流电源。
下面将结合本发明实施例中的附图,对本发明实施例中的具体实施方式进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图3为设置磁流变阻尼器的自复位结构构件拟静力试验装配图,图中试验台座1顶部的左侧固定连接有钢筋混凝土反力墙3,反力墙3右侧的顶部与作动器4铰接,试验台座1顶部的两侧均固定连接有反力架5,此外,两个反力架5的顶端为螺杆且连接有可上下移动的横梁6,横梁6底部的中部固定连接有滚动导轨7,滚动导轨7底部的两侧均设置有顶部千斤顶8,自复位结构构件底座10通过位于两个反力架5之间的锚固件9固定连接在试验台座1的顶部,两个顶部千斤顶8输出轴的底端与自复位结构构件2的顶部固定连接,自复位结构构件2的外侧与磁流变阻尼器11的左侧铰接固定在一起,磁流变阻尼器11内部的线圈通过导线与稳压直流电源14相连,自复位结构构件底 座10的右侧固定连接有支架12,并且支架12左侧的顶部与磁流变阻尼器11的右侧固定连接,试验台座1顶部且位于自复位结构构件底座10的两侧均固定连接有底部千斤顶13,同时图3中未作详细描述的内容均属于本领域技术人员公知的现有技术。
参阅本发明实施例一的示意图1和实施例二的示意图2,本发明实施例为图3设置磁流变阻尼器的自复位结构构件提供了一种拟静力加载方案:一种位移-电流混合控制拟静力试验加载制度,具体实施方式如下:
S1、在对图3中设置磁流变阻尼器自复位结构构件进行拟静力试验之前,应先确定图中作动器4的主动控制参数。首先,根据自复位结构构件2的高度和磁流变阻尼器11的冲程确定多级加载位移角(图1或图2的纵坐标)为0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%、2.0%、2.5%、3.0%、3.5%,然后将加载位移角乘以图3中自复位结构构件2的高度来确定作动器4的往复多级加载位移;其次,确定每级加载位移角下设置磁流变阻尼器自复位结构构件的循环加载圈数(图1或图2的横坐标)均为2圈;最后,在保证应变率对试验结果不造成任何影响的前提下,确定每个循环加载的周期T,如每个循环加载的周期T取为400秒。
S2、确定图3中稳压直流电源14的半主动控制参数。首先,根据设置磁流变阻尼器自复位结构构件的刚度、变形、承载力、耗能等目标和磁流变阻尼器11的饱和电流选择磁流变阻尼器11的电流等级(图1、图2中的虚线或实线),电流等级取值范围为0A至饱和电流;其次,确定电流的施加时刻(图1、图2中的虚线或实线的起点)、电流持续时间(图1、图2中的虚线或实线水平投影的时长)、电流改变或终止时刻(图1、图2中的虚线或实线的终点);最后,确定一个测试构件需要施加的磁流变阻尼器的电流等级个数。以图1为例说明,图1中电流等级为2个,电流的施加时刻为每个加载循环的开始时刻,电流的持续时间为1个加载循环周期T,电流的改变或终止时刻为每个 加载循环的结束时刻,也是下一个加载循环的开始时刻。
S3、将S1确定的多级往复加载位移、循环加载圈数、每个循环加载的周期作为作动器4的输入参数;然后将S2确定的电流等级、电流施加时刻、电流持续时间、电流改变或终止时刻作为稳压直流电源14的输入参数。上述参数分别输入给作动器和稳压直流电源后,即可对设置磁流变阻尼器自复位结构构件进行拟静力加载试验。
本发明中,所述步骤S1中不同等级循环加载的位移角幅值增量可以是恒定值、可以是变化值、也可以是恒定值和变化值相结合。
本发明中,所述步骤S1中每级位移角下的循环加载圈数为2次至4次,并且每个循环加载的周期最小为300秒。
本发明中,所述步骤S2中电流的施加、改变或终止时刻选在每个循环加载中加载位移角为0的时刻;电流可以持续1个循环加载圈,如图1所示,也可以持续半个循环加载圈,如图2所示。
本发明中,所述步骤S2中一个测试构件需要施加的磁流变阻尼器的电流等级个数为2次至4次,和每级位移角下的循环加载圈数保持一致,并且每级加载位移角的最后一个循环(图1)或最后半个循环(图2)的电流等级为零。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (6)
- 一种位移-电流混合控制拟静力试验加载制度,其特征在于:具体包括以下步骤:S1、确定本发明中用于作动器的主动控制参数,首先,根据设置磁流变阻尼器自复位结构构件的高度和磁流变阻尼器的冲程确定本发明的多级加载位移角;其次,确定每级加载位移角下设置磁流变阻尼器自复位结构构件的循环加载圈数;最后,在保证应变率对试验结果不造成任何影响的前提下,确定每个循环加载的周期T;S2、确定本发明中用于稳压直流电源的半主动控制参数,首先,根据设置磁流变阻尼器自复位结构构件的刚度、变形、承载力、耗能等目标和磁流变阻尼器的饱和电流选择磁流变阻尼器的电流等级;其次,确定电流的施加时刻、电流持续时间、电流改变或终止时刻;最后,确定一个测试构件需要施加的磁流变阻尼器的电流等级个数;S3、首先将S1确定的多级加载位移角乘以自复位结构构件的高度来确定作动器的往复加载位移;然后将往复加载位移、S1确定的循环加载圈数、每个循环加载的周期作为作动器的输入参数;最后将S2确定的电流等级、电流施加时刻、电流持续时间、电流改变或终止时刻作为稳压直流电源的输入参数,将上述参数分别输入作动器和稳压直流电源后,即可对设置磁流变阻尼器自复位结构构件进行拟静力加载试验;
- 根据权利要求1所述的一种位移-电流混合控制拟静力试验加载制度,其特征在于:所述步骤S1中不同等级循环加载的位移角幅值增量是恒定值或变化值或二者的结合。
- 根据权利要求1所述的一种位移-电流混合控制拟静力试验加载制度,其特征在于:所述步骤S1中每级位移角下的循环加载圈数为2次至4次,并且每个循环加载的周期最小为300秒。
- 根据权利要求1所述的一种位移-电流混合控制拟静力试验加载制度, 其特征在于:所述步骤S2中电流的施加、改变或终止时刻选在每个循环加载中加载位移角为0的时刻;电流持续1个循环加载圈或持续半个循环加载圈。
- 根据权利要求1所述的一种位移-电流混合控制拟静力试验加载制度,其特征在于:所述步骤S2中一个测试构件需要施加的磁流变阻尼器的电流等级个数为2次至4次,和每级位移角下的循环加载圈数保持一致,并且每级加载位移角的最后一个循环或最后半个循环的电流等级为零。
- 根据权利要求1所述的一种位移-电流混合控制拟静力试验加载制度,其特征在于:所述步骤S1中每级位移角下的循环加载圈数大于等于所述步骤S2中磁流变阻尼器的电流等级个数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/113575 WO2021081690A1 (zh) | 2019-10-28 | 2019-10-28 | 一种位移-电流混合控制拟静力试验加载制度 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/113575 WO2021081690A1 (zh) | 2019-10-28 | 2019-10-28 | 一种位移-电流混合控制拟静力试验加载制度 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021081690A1 true WO2021081690A1 (zh) | 2021-05-06 |
Family
ID=75714880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/113575 WO2021081690A1 (zh) | 2019-10-28 | 2019-10-28 | 一种位移-电流混合控制拟静力试验加载制度 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021081690A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140138195A1 (en) * | 2003-04-04 | 2014-05-22 | Millenworks | Magnetorheological Damper System |
CN105840718A (zh) * | 2016-05-16 | 2016-08-10 | 中国人民解放军装甲兵工程学院 | 磁流变阻尼器快速优化设计方法 |
CN109632535A (zh) * | 2018-12-21 | 2019-04-16 | 长安大学 | 一种反映激励作用特性的拟静力试验方法 |
CN110286586A (zh) * | 2019-05-09 | 2019-09-27 | 江苏大学 | 一种磁流变阻尼器混合建模方法 |
-
2019
- 2019-10-28 WO PCT/CN2019/113575 patent/WO2021081690A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140138195A1 (en) * | 2003-04-04 | 2014-05-22 | Millenworks | Magnetorheological Damper System |
CN105840718A (zh) * | 2016-05-16 | 2016-08-10 | 中国人民解放军装甲兵工程学院 | 磁流变阻尼器快速优化设计方法 |
CN109632535A (zh) * | 2018-12-21 | 2019-04-16 | 长安大学 | 一种反映激励作用特性的拟静力试验方法 |
CN110286586A (zh) * | 2019-05-09 | 2019-09-27 | 江苏大学 | 一种磁流变阻尼器混合建模方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11821816B2 (en) | Test device for quasi zero stiffness isolator | |
CN102444219B (zh) | 软钢屈服与摩擦联合阻尼器 | |
CN103207121B (zh) | 一种不同柱截面节点恒定轴力自平衡加载装置 | |
CN103196756B (zh) | 组合剪力墙试件反复加载试验装置 | |
Hori et al. | Damaging properties of ground motions and prediction of maximum response of structures based on momentary energy response | |
CN203216811U (zh) | 一种不同柱截面节点恒定轴力自平衡加载装置 | |
McKevitt et al. | Hysteretic energy spectra in seismic design | |
Zhang et al. | Experimental study on the dynamic performance of a winding rope fluid viscous damper | |
Elkady et al. | Full-scale cyclic testing of deep slender wide-flange steel beam-columns under unidirectional and bidirectional lateral drift demands | |
WO2021081690A1 (zh) | 一种位移-电流混合控制拟静力试验加载制度 | |
CN110940573B (zh) | 一种位移-电流混合控制拟静力试验加载制度 | |
CN110208020A (zh) | 一种防屈曲支撑结构试验机减振装置 | |
CN108489724A (zh) | 一种用于轴向面外弯曲阻尼器拟静力试验的装置 | |
Wang et al. | Finite element analysis of behavior in semi-rigid steel frames | |
Zhou et al. | The load degradation model of reinforced concrete columns under constant amplitude hysteretic loading | |
CN202370117U (zh) | 基于磁致伸缩摩擦减震控制装置 | |
Zhandong | Research on seismic behavior of beam-column joints of new prefabricated steel structure | |
Saotome et al. | Critical Earthquake Response of 2DOF Elastic-Perfectly Plastic Model Under Multiple Impulse as Substitute for Long-Duration Earthquake Ground Motions | |
Adam et al. | Large displacements of elastic-plastic frames exposed to pulse-type ground motion | |
Bońkowski et al. | Nonlinear interaction of initial leaning of r/c slender tower with its seismic response | |
Tan et al. | Structural design of twin towers with vibration absorbers | |
Lee et al. | EFFECTIVENESS OF SEISMIC DISPLACEMENT RESPONSE CONTROL FOR NONLINEAR ISO-LATED BRIDGE | |
CN201521043U (zh) | 记忆合金减震控制装置 | |
Chang et al. | Analysis of seismic energy response and distribution of RC frame structures | |
Zheng | Analysis on the Mechanical Properties of Viscoelastic Damper and Its Application in Construction Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19950588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19950588 Country of ref document: EP Kind code of ref document: A1 |