WO2021079985A1 - Property prediction device - Google Patents

Property prediction device Download PDF

Info

Publication number
WO2021079985A1
WO2021079985A1 PCT/JP2020/039900 JP2020039900W WO2021079985A1 WO 2021079985 A1 WO2021079985 A1 WO 2021079985A1 JP 2020039900 W JP2020039900 W JP 2020039900W WO 2021079985 A1 WO2021079985 A1 WO 2021079985A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
polymer composite
prediction model
composite material
characteristic
Prior art date
Application number
PCT/JP2020/039900
Other languages
French (fr)
Japanese (ja)
Inventor
祐子 池田
倫弘 奥山
幸仁 中澤
押山 智寛
船津 公人
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021553561A priority Critical patent/JP7468542B2/en
Publication of WO2021079985A1 publication Critical patent/WO2021079985A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Definitions

  • the present invention relates to a characteristic prediction device.
  • MI Materials Informatics
  • Non-Patent Document 1 a library of prediction models for predicting physical property values of organic molecules is created by machine learning using a descriptor obtained by fingerprinting, which is data obtained by quantifying the molecular structure, as an explanatory variable. Can be used for transfer learning.
  • Non-Patent Document 2 a database including the physical property values of the polymer resin, the mixing ratio of the filler, and the physical properties of the obtained polymer composite material is classified into classes by machine learning, and the physical properties of the polymer composite material are classified. It is described that the characteristics that contribute to the above are searched.
  • Non-Patent Document 1 and Non-Patent Document 2 attempts have been made to predict and analyze the characteristics of composite materials containing polymer resins using MI. However, for the reasons described below, it is very difficult to apply MI to polymer composite materials, and even with the methods described in these documents, it cannot be said that the desired efficiency improvement has been achieved yet.
  • Non-Patent Document 2 the types of the physical characteristic values disclosed differ depending on the manufacturer that provides the material, and the physical characteristic values are known for all the materials. is not it. Furthermore, as a condition for purchasing materials, it is required not to measure the physical property values, and it is very difficult to prepare the data of the physical property values.
  • the descriptor converted into a fingerprint which is a method for quantifying molecular structure information
  • a fingerprint is used as an explanatory variable, and machine learning is used to predict the desired physical property value of the new material. Proposals are being made.
  • information on the molecular structure which is one of the physicochemical properties, is often not sufficiently disclosed.
  • the monomer structure is converted to a fingerprint as an alternative index, but even with the same polypropylene, basic physical properties such as viscosity, glass transition temperature, decomposition temperature, etc.
  • the present invention has been made based on the above findings, and an object of the present invention is to provide a property prediction device capable of predicting the properties of a polymer composite material without using the molecular structure or physical property value of the material as a descriptor. To do.
  • the above-mentioned problems include a prediction model storage unit that stores a prediction model that outputs mechanical properties of a manufactured polymer composite material in response to input of material information regarding the material of the polymer composite material, and the material information.
  • the data including the mechanical properties of the polymer composite material produced from the material is used as training data, and the learning processing unit for performing the learning process on the prediction model is provided.
  • the material information is information that makes it difficult to prepare information indicating physicochemical properties for all candidate materials, and the property predictor directly indicates physicochemical properties as the material information. Information including no information and the compounding ratio of the material is used.
  • the above-mentioned problem is the material information acquisition unit for acquiring the material information regarding the material of the polymer composite material, and the polymer composite material manufactured by using the predicted model learned for the input material information.
  • a characteristic predictor having a characteristic information output unit that outputs mechanical characteristics.
  • the material information is information that is difficult to prepare information indicating physicochemical properties for all candidate materials, and in the property prediction device, the input material information directly obtains physicochemical properties.
  • the prediction model uses learning data including information not shown in the above and the compounding ratio of the material, and the prediction model includes the material information and the mechanical properties of the polymer composite material produced from the material. The learning process that was used has been applied.
  • the present invention provides a property prediction device capable of predicting the properties of a polymer composite material without using the molecular structure or physical property value of the material as a descriptor.
  • FIG. 1 is a block diagram showing a hardware configuration of a characteristic prediction device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the characteristic prediction device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing a learning operation example of the characteristic prediction device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a prediction operation example of the characteristic prediction device according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the number of latent variables and ⁇ 2 at the time of constructing the prediction model 2 constructed in the specific example.
  • FIG. 1 is a block diagram showing a hardware configuration of a characteristic prediction device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the characteristic prediction device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing a learning operation example of the characteristic prediction device according to the embodiment of the present invention.
  • FIG. 6 shows the predicted elastic modulus output from the material information of each of the 180 experimental data using the prediction model 2 constructed in the specific example, and the measured elastic modulus in each of the 180 experimental data. It is a graph showing the relationship of.
  • FIG. 7 shows the predicted value of the elastic modulus of the polymer composite material calculated from the data of the predicted value and the measured value shown in FIG. 6 and the absolute value of the residual between the predicted value and the measured value. It is a graph which shows the relationship.
  • FIG. 8 shows the relationship between the predicted elastic modulus output from each material information using the predicted model 2 and the measured elastic modulus for the nine levels used for the verification of the predicted model 2. It is a graph showing.
  • FIG. 9 is a graph showing the relationship between the filler content and the measured and predicted elastic modulus of the five data used for examining the factors contributing to the elastic modulus in the high elastic modulus region.
  • One embodiment of the present invention relates to a property predictor that outputs the mechanical properties of a polymer composite material to be manufactured in response to input of material information which is information about the material of the polymer composite material.
  • the characteristic prediction device has a prediction model for making the prediction, and learns (newly constructs or updates) the prediction model by machine learning.
  • FIG. 1 is a block diagram showing a hardware configuration of a characteristic prediction device according to an embodiment of the present invention.
  • the characteristic prediction device 100 is, for example, a computer including a CPU 110, a ROM 120, a RAM 130, an external storage device 140, a communication interface 150, an input device 160, an output device 170, and the like.
  • Examples of the external storage device 140 include HDDs, SSDs, flash memories, and the like.
  • Examples of the communication interface 150 include a communication controller for a LAN line and the like.
  • Examples of the input device 160 include a keyboard, mouse, touch panel, scanner, bar code reader, and the like.
  • Examples of the output device 170 include display devices such as CRTs and liquid crystals, as well as printers and the like.
  • Each function described later in the characteristic prediction device 100 is realized, for example, by the CPU 110 referring to a processing program and various data stored in the ROM 120, the RAM 130, the external storage device 140, and the like. However, some or all of the above-mentioned functions may be realized by processing by a dedicated hardware circuit instead of or by processing by software.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the characteristic prediction device 100 according to the present embodiment.
  • the characteristic prediction device 100 includes a material information acquisition unit 210, a characteristic information output unit 220, an experimental data acquisition unit 230, a learning processing unit 240, and a prediction model storage unit 250.
  • the material information acquisition unit 210 acquires the material information input from the input device 160.
  • the above material information is information about a material used for manufacturing a polymer composite material to be manufactured.
  • the polymer composite material is a composite material containing a polymer resin and an additive such as a filler. Therefore, in the present embodiment, the material information includes at least information on the polymer resin and information on the filler.
  • the mechanical properties (for example, elastic modulus) of the produced polymer composite material will be greatly influenced by the information indicating the physicochemical properties of the polymer resin and additives that are the materials. Therefore, when it is desired to predict the mechanical properties of a polymer composite material, it is considered desirable to construct and use a prediction model using the information indicating the physicochemical properties as an identifier.
  • the information indicating the physicochemical properties includes, for example, the weight average molecular weight and the number average molecular weight of the polymer resin, the molecular weight distribution, the degree of copolymerization, the degree of cross-linking, various other physical property values, the size of the additive, and the like. Various physical property values and the like.
  • the above-mentioned additives are polymers that affect the mechanical properties of the polymer composite material to be produced, such as fillers, plasticizers, colorants, flame retardants, ultraviolet absorbers, antioxidants and elastomers. It is a compound other than resin.
  • information that does not directly indicate the physicochemical properties and the compounding ratio of the material are used as identifiers.
  • Information that does not directly indicate the physicochemical properties is to specify the material, although it does not directly indicate the physicochemical properties of the material, such as information indicating the brand of the material. It can be ancillary information that can be used.
  • the characteristic information output unit 220 outputs the mechanical characteristics of the polymer composite material to be manufactured by using the learned prediction model. Specifically, the characteristic information output unit 220 is manufactured by inputting the material information into the prediction model when the material information acquisition unit 210 acquires the material information, specifically, the brand of the material and the blending ratio thereof. Obtain the output of the mechanical properties of polymer composites.
  • the output mechanical characteristics are transmitted to the output device and output so that they can be recognized from the outside.
  • the experiment data acquisition unit 230 acquires the experiment data input from the input device 160.
  • the above experimental data is data including the above material information and mechanical properties obtained by an experiment in which the above polymer material is manufactured and its mechanical properties are measured.
  • the above experimental data is data including information that does not directly indicate the physicochemical properties, the compounding ratio of the material, and the mechanical properties measured from the obtained polymer composite material. It is used as teacher data for the learning processing unit 240 to train and process the prediction model.
  • the learning processing unit 240 uses the experimental data acquired by the experimental data acquisition unit 230 as learning data, and applies mechanical learning processing to the prediction model stored in the prediction model storage unit 250, and performs the above learning processing.
  • the prediction model is stored in the prediction model storage unit 250.
  • the prediction model is a prediction model using the following linear regression equation (1) constructed by using partial least squares regression (PLS).
  • beta is a constant term
  • c i is the i-th partial regression coefficients
  • x i is the i-th explanatory variable
  • y is the dependent variable
  • N is the in the number of explanatory variables is there.
  • the prediction model may be composed of any known statistical model, and a neural network, a decision tree, and a random PP and a filler are constructed by a method such as Niforest, Kernel-Based PLS (KPLS) support vector regression, or the like. It may be a prediction model. Further, it may be a prediction model constructed by a regression analysis method other than PLS, such as principal component regression (PCR) or ridge regression.
  • KPLS Kernel-Based PLS
  • the prediction model storage unit 250 stores the prediction model learned by the learning processing unit 240.
  • the prediction model storage unit 250 may store only one prediction model, or may store a plurality of prediction models having different types of input material information or output mechanical properties.
  • FIG. 3 is a flowchart showing an example of learning operation of the characteristic prediction device 100.
  • the experimental data acquisition unit 230 was measured from the information input to the input device 160 that does not directly indicate the physicochemical properties, the blending ratio of the material, and the obtained polymer composite material. Obtain experimental data including mechanical properties (step S110).
  • the experiment data acquisition unit 230 outputs the acquired experiment data to the learning processing unit 240.
  • the experimental data acquisition unit 230 may output to the learning processing unit 240 each time one experimental data is acquired, or may output to the learning processing unit 240 after acquiring a plurality of experimental data.
  • the learning processing unit 240 uses the material information (information that does not directly indicate the physicochemical properties and the blending ratio of the material) included in the experimental data as explanatory variables in the prediction model storage unit 250. , It is determined whether or not there is a prediction model whose output value is the mechanical characteristics included in the above experimental data (step S120).
  • step S120 when the prediction model exists (step S120, YES), the learning processing unit 240 uses the material information included in the experimental data and the mechanical characteristics as training data to perform the learning process of the prediction model. (Step S130). After that, the process proceeds to step S150.
  • the learning process in step S130 uses a large amount of experimental data, and the error between the mechanical characteristics of each experiment included in the experimental data and the output value from the prediction model becomes small (converges). ) May be repeated.
  • step S120 when the prediction model does not exist (step S120, NO), the learning processing unit 240 newly creates a prediction model in which the material information included in the experimental data is used as an explanatory variable and the mechanical characteristics are used as the output value. Build (step S140).
  • the learning processing unit 240 stores the learned (or newly constructed) prediction model in the prediction model storage unit 250 (step S150).
  • FIG. 4 is a flowchart showing an example of prediction operation of the characteristic prediction device 100.
  • the experimental data was created by the following procedure.
  • the elastic modulus was measured by a tensile test using a Tencilon universal material tester (manufactured by A & D Co., Ltd.) according to an initial load of 0.3 N and a moving speed of 1 mm / min.
  • the material information acquisition unit 210 includes information that is input to the input device 160 and that does not directly indicate the physicochemical properties of the material of the polymer composite material to be manufactured, and the mixing ratio of the material. Acquire material information including, (step S210). The material information acquisition unit 210 outputs the acquired material information to the characteristic information output unit 220.
  • the characteristic information output unit 220 acquires the predicted mechanical characteristic value of the polymer composite material, which is output as a result of inputting the material information into the prediction model stored in the prediction model storage unit 250. (Step S220).
  • the characteristic information output unit 220 outputs the acquired mechanical characteristic value to the output device 170 (step S230).
  • the output mechanical characteristic value is displayed on the output device 170 or the like as a mechanical characteristic value predicted from the material information.
  • Candidate materials were 11 types of polypropylene (PP), 18 types of fillers, and 20 types of other additives. Data including the selection of the material and the compounding ratio thereof of the polymer composite material produced by the combination arbitrarily selected from the above candidate materials and the elastic modulus measured for the obtained 180 kinds of polymer composite materials are provided. It was used as experimental data.
  • the other additives are additives other than fillers, such as colorants, flame retardants, ultraviolet absorbers, antioxidants and elastomers.
  • x ai is the explanatory variable of the other additive
  • c ai is the amount of the other additive added relative to the amount of PP added. (Mass%) and ⁇ indicate that the material indicated by the explanatory variable was added.
  • the explanatory variables by the vector representation illustrated in the equation (5) were set.
  • the formula (5) is, PP stock p 1, 10 wt% of a filler stock f 1 with respect to the addition amount of PP, and other additives stock a 1 added 5% by weight, based on the weight of the PP It is shown that a polymer composite material was prepared using the agent.
  • mean square square error epsilon 1 in the test data (Root Mean Square Error: RMSE) is the smallest value.
  • N is the number of experimental data (180)
  • yobs, i are the measured values of elastic modulus in the test data i
  • ypred, i are the material information of the test data i using the constructed learning data. The output predicted value of elastic modulus is shown.
  • the number of latent variables was set to the value that minimizes the error ⁇ 2 expressed by the following equation (7), which is obtained by Leave-One-Out cross-validation (LOOCV).
  • N is the number of experimental data (180)
  • y i is the measured elastic modulus in the test data i
  • FIG. 5 is a graph showing the relationship between the number of latent variables and ⁇ 2 at this time. From FIG. 5, it can be seen that ⁇ 2 is the minimum value (309 MPa) when the number of latent variables is four. Therefore, the prediction model when there are four latent variables is set as the prediction model 2. The coefficient of determination R 2 of the prediction model 2 was 0.73.
  • FIG. 6 shows the relationship between the predicted elastic modulus output from the material information of each of the 180 experimental data using the prediction model 2 and the measured elastic modulus in each of the 180 experimental data. It is a graph. From the value of the coefficient of determination and the result of FIG. 5, it can be said that the accuracy of the prediction model 2 is generally good.
  • Fig. 7 shows the predicted value of the elastic modulus of the polymer composite material calculated from the data of the predicted value and the measured value shown in FIG. 6, and the predicted value and the measured value. It is a graph which shows the relationship with the absolute value of the residual between the values.
  • the total number of data for which the absolute value of the residual can be set to 300 MPa or less (a value smaller than 309 MPa, which is ⁇ 2 of the prediction model) is the total. It was 90% of.
  • the number of data for which the absolute value of the residual could be 300 MPa or less was smaller, but the number of teacher data was smaller (see FIG. 6). ) It is thought that it depends.
  • Prediction model 2 for material information of 570,000 polymer composite materials in which the combination of PP, filler and other additives, and the amount of filler and other additives added were changed. was used to calculate the predicted elastic modulus.
  • the explanatory variables (Equation (5)) include (i) a level close to the experimental data used to create the prediction model and (ii) a level far from the experimental data. , Nine levels were selected to make a polymer composite and the elastic modulus was measured. The preparation of the polymer composite material and the measurement of the elastic modulus were carried out in the same manner as when the experimental data were prepared.
  • FIG. 8 is a graph showing the relationship between the predicted value of the elastic modulus output from each material information using the prediction model 2 and the measured value of the elastic modulus for the above nine levels.
  • FIG. 9 is a graph showing the relationship between the filler content and the measured and predicted elastic moduli of the above five data.
  • the predicted value of the elastic modulus by the prediction model 2 tends to increase linearly as the filler content increases.
  • the measured elastic modulus has a point (appropriate point) where the increase in elastic modulus due to the content of the filler reaches a plateau.
  • the level H which also has a high elastic modulus and a decrease in prediction accuracy, is a polymer composite material to which a filler (f 10) of a type different from the data in FIG. 9 is added. This suggests that the prediction accuracy may decrease at a high level of filler content regardless of the type of filler.
  • the accuracy of the prediction model 2 is good in the range where the filler content is more than 0% by mass and 35% by mass or less.
  • the brand of the material is used as an identifier, but the identifier is not limited to the brand.
  • a catalog number, a production number, a lot number, or the like may be used as an identifier.
  • the manufacturing time (manufacturing year, etc.) may be combined with these to form an identifier.
  • the elastic modulus of the polymer composite material is used as the objective variable, but the objective variable is not limited to the elastic modulus.
  • strength such as tensile strength, compressive strength and shear strength, hardness, elongation at break, impact resistance, wear resistance, flame retardancy, heat resistance, light resistance, weather resistance, acid resistance, alkali resistance, resistance to alkali.
  • the objective variables may be solvent-based and color tone.
  • the present invention is suitable as a property predictor for predicting the mechanical properties of a polymer composite material.
  • Characteristic prediction device 110 CPU 120 ROM 130 RAM 140 External storage device 150 Communication interface 160 Input device 170 Output device 210 Material information acquisition unit 220 Characteristic information output unit 230 Experimental data acquisition unit 240 Learning processing unit 250 Prediction model storage unit

Abstract

The objective of the present invention is to provide a property prediction device capable of predicting the properties of a polymer composite material without using the molecular structure or a physical property value of a material as a descriptor. The present invention for achieving this objective relates to a property prediction device comprising: a prediction model storage unit for storing a prediction model, which, with respect to an input of material information regarding the material of a polymer composite material, outputs mechanical properties of the polymer composite material to be produced; and a learning processing unit for performing learning processing on the prediction model on the basis of the material information and the mechanical properties of the polymer composite material produced from the material. Regarding the material information, it is difficult to gather information indicating the physicochemical properties for all the candidate materials. As the material information, the property prediction device uses information including the material mixture ratio and information not directly indicating a physicochemical property.

Description

特性予測装置Characteristic predictor
 本発明は、特性予測装置に関する。 The present invention relates to a characteristic prediction device.
 マテリアルズ・インフォマティクス(MI)によれば、過去の実験結果やシミュレーションデータに基づいて、所望の特性を実現する材料の設計や探索を機械的に行うことができるため、新規材料の開発をより効率的に行うことできると期待されている。 According to Materials Informatics (MI), it is possible to mechanically design and search for materials that achieve desired properties based on past experimental results and simulation data, making the development of new materials more efficient. It is expected that it can be done in a targeted manner.
 たとえば、非特許文献1には、分子構造を数値化したデータであるフィンガープリントにより得られる記述子を説明変数として、有機分子の物性値を予測する予測モデルのライブラリを機械学習により作成し、これを転移学習に用い得ることが記載されている。 For example, in Non-Patent Document 1, a library of prediction models for predicting physical property values of organic molecules is created by machine learning using a descriptor obtained by fingerprinting, which is data obtained by quantifying the molecular structure, as an explanatory variable. Can be used for transfer learning.
 また、非特許文献2には、高分子樹脂の物性値やフィラーの混合比率などと、得られる高分子複合材料の物性と、を含むデータベースを機械学習によりクラス分類し、高分子複合材料の物性に寄与する特性を探索したことが記載されている。 Further, in Non-Patent Document 2, a database including the physical property values of the polymer resin, the mixing ratio of the filler, and the physical properties of the obtained polymer composite material is classified into classes by machine learning, and the physical properties of the polymer composite material are classified. It is described that the characteristics that contribute to the above are searched.
 非特許文献1および非特許文献2にも記載のように、MIを用いての、高分子樹脂を含む複合材料の特性の予測や解析が試みられている。しかし、以下に述べる理由により、高分子複合材料へのMIの適用は非常に困難であり、これらの文献に記載の方法でも、未だ所望の効率化が達成されているといえない。 As described in Non-Patent Document 1 and Non-Patent Document 2, attempts have been made to predict and analyze the characteristics of composite materials containing polymer resins using MI. However, for the reasons described below, it is very difficult to apply MI to polymer composite materials, and even with the methods described in these documents, it cannot be said that the desired efficiency improvement has been achieved yet.
 まず、非特許文献1で記述子に用いている分子構造や、非特許文献2でクラス分類に用いている物性値などに関して、これまでに報告された実験データが同じ実験方法により得られたものではなく、これらを同じ条件で比較できないという問題がある。たとえば、平均分子量の実験値は、測定に使用する溶離液の温度、流速、種類によって変動することが知られている。また、分解温度の実験値も、測定の際の昇温温度、ガスの流速によって変動することが知られている。また、非特許文献2でクラス分類に用いている物性値については、材料を提供するメーカーによって開示している物性値の種類が異なっており、全ての材料について当該物性値が判明しているわけではない。さらには、材料の購入の条件として、物性値を測定しないことが求められることなどもあり、物性値のデータを揃えることは非常に困難である。 First, the experimental data reported so far regarding the molecular structure used for the descriptor in Non-Patent Document 1 and the physical property values used for classification in Non-Patent Document 2 were obtained by the same experimental method. However, there is a problem that these cannot be compared under the same conditions. For example, it is known that the experimental value of the average molecular weight varies depending on the temperature, flow rate, and type of the eluent used for the measurement. It is also known that the experimental value of the decomposition temperature also fluctuates depending on the temperature rise temperature at the time of measurement and the flow velocity of the gas. Further, regarding the physical characteristic values used for the classification in Non-Patent Document 2, the types of the physical characteristic values disclosed differ depending on the manufacturer that provides the material, and the physical characteristic values are known for all the materials. is not it. Furthermore, as a condition for purchasing materials, it is required not to measure the physical property values, and it is very difficult to prepare the data of the physical property values.
 低分子化合物の場合には、分子構造の情報を数値化する手法であるフィンガープリントに変換した記述子を説明変数とし、機械学習を駆使して目的の物性値を予測することで、新規材料の提案が行なわれている。しかしながら、高分子化合物やフィラーの場合には、市販品であっても、上述したように、物理化学的な特性の一つである分子構造の情報が十分に開示されない場合が多い。モノマー構造を代替指標としてフィンガープリントに変換する場合もあるが、同じポリプロピレンでも、その重合度、平均分子量、分子量分布、共重合比等の違いで、粘度、ガラス転移温度、分解温度等の基本物性が変化するため機械特性に大きな影響を与える。そのため、高分子材料に対してMIを用いた解析をするための適切なデータを揃えることは非常に困難である。 In the case of low-molecular-weight compounds, the descriptor converted into a fingerprint, which is a method for quantifying molecular structure information, is used as an explanatory variable, and machine learning is used to predict the desired physical property value of the new material. Proposals are being made. However, in the case of polymer compounds and fillers, even if they are commercially available products, as described above, information on the molecular structure, which is one of the physicochemical properties, is often not sufficiently disclosed. In some cases, the monomer structure is converted to a fingerprint as an alternative index, but even with the same polypropylene, basic physical properties such as viscosity, glass transition temperature, decomposition temperature, etc. are different due to differences in the degree of polymerization, average molecular weight, molecular weight distribution, copolymerization ratio, etc. Has a great effect on the mechanical characteristics because it changes. Therefore, it is very difficult to prepare appropriate data for analysis using MI for polymer materials.
 本発明は、上記知見に基づいてなされたものであり、材料の分子構造や物性値を記述子として用いずに、高分子複合材料の特性を予測できる特性予測装置を提供することを、目的とする。 The present invention has been made based on the above findings, and an object of the present invention is to provide a property prediction device capable of predicting the properties of a polymer composite material without using the molecular structure or physical property value of the material as a descriptor. To do.
 上記課題は、高分子複合材料の材料に関する材料情報の入力に対して、製造される高分子複合材料の機械的な特性を出力する予測モデルを記憶する、予測モデル記憶部と、前記材料情報と、前記材料から製造された高分子複合材料の機械的な特性とを含むデータを学習データとして、前記予測モデルに学習処理を施す学習処理部と、を有する、特性予測装置によって解決される。前記材料情報は、物理化学的な特性を示す情報を全ての候補材料について揃えることが困難な情報であり、前記特性予測装置は、前記材料情報として、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を含む情報を用いる。 The above-mentioned problems include a prediction model storage unit that stores a prediction model that outputs mechanical properties of a manufactured polymer composite material in response to input of material information regarding the material of the polymer composite material, and the material information. The data including the mechanical properties of the polymer composite material produced from the material is used as training data, and the learning processing unit for performing the learning process on the prediction model is provided. The material information is information that makes it difficult to prepare information indicating physicochemical properties for all candidate materials, and the property predictor directly indicates physicochemical properties as the material information. Information including no information and the compounding ratio of the material is used.
 また、上記課題は、高分子複合材料の材料に関する材料情報を取得する材料情報取得部と、前記入力された材料情報に対し、学習された予測モデルを用いて、製造される高分子複合材料の機械的な特性を出力する特性情報出力部と、を有する、特性予測装置によって解決される。前記材料情報は、物理化学的な特性を示す情報を全ての候補材料について揃えることが困難な情報であり、前記特性予測装置において、前記入力された材料情報は、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を含み、前記予測モデルは、前記材料情報と、前記材料から製造された高分子複合材料の機械的な特性と、を含む学習データを用いた学習処理が施されている。 Further, the above-mentioned problem is the material information acquisition unit for acquiring the material information regarding the material of the polymer composite material, and the polymer composite material manufactured by using the predicted model learned for the input material information. This is solved by a characteristic predictor having a characteristic information output unit that outputs mechanical characteristics. The material information is information that is difficult to prepare information indicating physicochemical properties for all candidate materials, and in the property prediction device, the input material information directly obtains physicochemical properties. The prediction model uses learning data including information not shown in the above and the compounding ratio of the material, and the prediction model includes the material information and the mechanical properties of the polymer composite material produced from the material. The learning process that was used has been applied.
 本発明により、材料の分子構造や物性値を記述子として用いずに、高分子複合材料の特性を予測できる特性予測装置が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a property prediction device capable of predicting the properties of a polymer composite material without using the molecular structure or physical property value of the material as a descriptor.
図1は、本発明の一実施形態に関する特性予測装置のハードウェア構成を示すブロック図である。FIG. 1 is a block diagram showing a hardware configuration of a characteristic prediction device according to an embodiment of the present invention. 図2は、本発明の一実施形態に関する特性予測装置の機能構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the functional configuration of the characteristic prediction device according to the embodiment of the present invention. 図3は、本発明の一実施形態に関する特性予測装置の学習動作例を示すフローチャートである。FIG. 3 is a flowchart showing a learning operation example of the characteristic prediction device according to the embodiment of the present invention. 図4は、本発明の一実施形態に関する特性予測装置の予測動作例を示すフローチャートである。FIG. 4 is a flowchart showing a prediction operation example of the characteristic prediction device according to the embodiment of the present invention. 図5は、具体例で構築した予測モデル2の構築時における潜在変数の数とεとの関係を表すグラフである。FIG. 5 is a graph showing the relationship between the number of latent variables and ε 2 at the time of constructing the prediction model 2 constructed in the specific example. 図6は、具体例で構築した予測モデル2を用いて180個の実験データのそれぞれの材料情報から出力された弾性率の予測値と、180個の実験データのそれぞれにおける弾性率の実測値と、の関係を表すグラフである。FIG. 6 shows the predicted elastic modulus output from the material information of each of the 180 experimental data using the prediction model 2 constructed in the specific example, and the measured elastic modulus in each of the 180 experimental data. It is a graph showing the relationship of. 図7は、図6に示した予測値と実測値とのデータから算出した、高分子複合材料の弾性率の予測値と、予測値と実測値との間の残差の絶対値と、の関係を示すグラフである。FIG. 7 shows the predicted value of the elastic modulus of the polymer composite material calculated from the data of the predicted value and the measured value shown in FIG. 6 and the absolute value of the residual between the predicted value and the measured value. It is a graph which shows the relationship. 図8は、予測モデル2の検証に用いた9個の水準についての、予測モデル2を用いてそれぞれの材料情報から出力された弾性率の予測値と、弾性率の実測値と、の関係を表すグラフである。FIG. 8 shows the relationship between the predicted elastic modulus output from each material information using the predicted model 2 and the measured elastic modulus for the nine levels used for the verification of the predicted model 2. It is a graph showing. 図9は、高弾性率領域において弾性率に寄与する要因の検討に用いた5つのデータについての、フィラーの含有量と、弾性率の実測値および予測値と、の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the filler content and the measured and predicted elastic modulus of the five data used for examining the factors contributing to the elastic modulus in the high elastic modulus region.
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、本発明は、以下の形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following forms.
 [特性予測装置]
 本発明の一実施形態は、高分子複合材料の材料に関する情報である材料情報の入力に対して、製造される高分子複合材料の機械的な特性を出力する、特性予測装置に関する。上記特性予測装置は、上記予測を行うための予測モデルを有し、機械学習により、上記予測モデルを学習(新規構築または更新)する。
[Characteristic prediction device]
One embodiment of the present invention relates to a property predictor that outputs the mechanical properties of a polymer composite material to be manufactured in response to input of material information which is information about the material of the polymer composite material. The characteristic prediction device has a prediction model for making the prediction, and learns (newly constructs or updates) the prediction model by machine learning.
 図1は、本発明の一実施形態に関する特性予測装置のハードウェア構成を示すブロック図である。 FIG. 1 is a block diagram showing a hardware configuration of a characteristic prediction device according to an embodiment of the present invention.
 特性予測装置100は、例えば、CPU110、ROM120、RAM130、外部記憶装置140、通信インターフェイス150、入力装置160、および出力装置170などを備えたコンピュータである。外部記憶装置140の例には、HDD、SSD、およびフラッシュメモリなどが含まれる。通信インターフェイス150の例には、LAN回線用の通信コントローラなどが含まれる。入力装置160の例には、キーボード、マウス、タッチパネル、スキャナ、およびバーコードリーダなどが含まれる。出力装置170の例には、CRTおよび液晶などのディスプレイ装置、ならびにプリンタなどが含まれる。 The characteristic prediction device 100 is, for example, a computer including a CPU 110, a ROM 120, a RAM 130, an external storage device 140, a communication interface 150, an input device 160, an output device 170, and the like. Examples of the external storage device 140 include HDDs, SSDs, flash memories, and the like. Examples of the communication interface 150 include a communication controller for a LAN line and the like. Examples of the input device 160 include a keyboard, mouse, touch panel, scanner, bar code reader, and the like. Examples of the output device 170 include display devices such as CRTs and liquid crystals, as well as printers and the like.
 特性予測装置100の後述する各機能は、たとえば、CPU110がROM120、RAM130、および外部記憶装置140などに記憶された処理プログラムや各種データを参照することによって実現される。ただし、上記した各機能の一部または全部は、ソフトウェアによる処理に代えて、またはソフトウェアによる処理と共に、専用のハードウェア回路による処理によって実現されてもよい。 Each function described later in the characteristic prediction device 100 is realized, for example, by the CPU 110 referring to a processing program and various data stored in the ROM 120, the RAM 130, the external storage device 140, and the like. However, some or all of the above-mentioned functions may be realized by processing by a dedicated hardware circuit instead of or by processing by software.
 (各構成部の機能)
 図2は、本実施の形態における特性予測装置100の機能構成の一例を示すブロック図である。
(Functions of each component)
FIG. 2 is a block diagram showing an example of the functional configuration of the characteristic prediction device 100 according to the present embodiment.
 図2に示すように、特性予測装置100は、材料情報取得部210、特性情報出力部220、実験データ取得部230、学習処理部240、および予測モデル記憶部250を備える。 As shown in FIG. 2, the characteristic prediction device 100 includes a material information acquisition unit 210, a characteristic information output unit 220, an experimental data acquisition unit 230, a learning processing unit 240, and a prediction model storage unit 250.
 材料情報取得部210は、入力装置160から入力された材料情報を取得する。 The material information acquisition unit 210 acquires the material information input from the input device 160.
 上記材料情報は、製造しようとする高分子複合材料の製造に用いる材料に関する情報である。本実施形態において、上記高分子複合材料は、高分子樹脂と、フィラーなどの添加剤と、を含有する複合材料である。そのため、本実施形態において、上記材料情報は、少なくとも高分子樹脂に関する情報と、フィラーに関する情報と、を有する。 The above material information is information about a material used for manufacturing a polymer composite material to be manufactured. In the present embodiment, the polymer composite material is a composite material containing a polymer resin and an additive such as a filler. Therefore, in the present embodiment, the material information includes at least information on the polymer resin and information on the filler.
 製造される高分子複合材料の機械的な特性(たとえば弾性率)は、材料である高分子樹脂および添加剤の物理化学的な特性を示す情報の影響を大きく受けることが予想される。そのため、高分子複合材料の機械的な特性を予測したいときには、上記物理化学的な特性を示す情報を識別子とした予測モデルを構築および使用することが望ましいと考えられる。なお、上記物理化学的な特性を示す情報とは、たとえば高分子樹脂の重量平均分子量および数平均分子量、分子量分布、共重合度、架橋度、その他の各種物性値や、添加剤のサイズその他の各種物性値などである。また、上記添加剤とは、フィラー、可塑剤、着色剤、難燃剤、紫外線吸収剤、酸化防止剤およびエラストマーなどの、製造される高分子複合材料の機械的な特性に影響を与える、高分子樹脂以外の配合物である。 It is expected that the mechanical properties (for example, elastic modulus) of the produced polymer composite material will be greatly influenced by the information indicating the physicochemical properties of the polymer resin and additives that are the materials. Therefore, when it is desired to predict the mechanical properties of a polymer composite material, it is considered desirable to construct and use a prediction model using the information indicating the physicochemical properties as an identifier. The information indicating the physicochemical properties includes, for example, the weight average molecular weight and the number average molecular weight of the polymer resin, the molecular weight distribution, the degree of copolymerization, the degree of cross-linking, various other physical property values, the size of the additive, and the like. Various physical property values and the like. Further, the above-mentioned additives are polymers that affect the mechanical properties of the polymer composite material to be produced, such as fillers, plasticizers, colorants, flame retardants, ultraviolet absorbers, antioxidants and elastomers. It is a compound other than resin.
 しかし、一般に、高分子複合材料の製造に用いる可能性がある材料の候補(以下、単に「候補材料」ともいう。)の全てについて、これらの物理化学的な特性を示す情報を揃えることは、困難である。たとえば、これらの物理化学的な特性を示す情報のうち、いずれを開示していずれを非開示としているかは、材料を提供するメーカーによって異なっている。そのため、これらの物理化学的な特性を示す情報を識別子とする予測モデルを構築しようとしても、識別子のデータと、当該材料から製造された高分子複合材料の機械的な特性(弾性率)を含む実験結果のデータと、が揃った教師データを揃えることは、困難である。 However, in general, it is not possible to gather information showing these physicochemical properties for all of the material candidates that may be used in the production of polymer composite materials (hereinafter, also simply referred to as "candidate materials"). Have difficulty. For example, which of the information indicating these physicochemical properties is disclosed and which is not disclosed depends on the manufacturer that provides the material. Therefore, even if an attempt is made to construct a prediction model using information indicating these physicochemical properties as an identifier, the identifier data and the mechanical properties (elastic modulus) of the polymer composite material manufactured from the material are included. It is difficult to prepare the data of the experimental results and the teacher data that are complete.
 これに対し、本実施形態では、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を識別子として用いる。上記物理化学的な特性を直接的には示さない情報は、たとえば前記材料の銘柄を示す情報などの、上記材料の物理化学的な特性を直接的には示さないものの、上記材料を特定することができるような付帯情報とすることができる。 On the other hand, in the present embodiment, information that does not directly indicate the physicochemical properties and the compounding ratio of the material are used as identifiers. Information that does not directly indicate the physicochemical properties is to specify the material, although it does not directly indicate the physicochemical properties of the material, such as information indicating the brand of the material. It can be ancillary information that can be used.
 特性情報出力部220は、学習された予測モデルを用いて、製造される高分子複合材料の機械的な特性を出力する。具体的には、特性情報出力部220は、材料情報取得部210が材料情報、具体的には材料の銘柄およびその配合率を取得すると、上記材料情報を上記予測モデルに入力し、製造される高分子複合材料の機械的な特性の出力を得る。 The characteristic information output unit 220 outputs the mechanical characteristics of the polymer composite material to be manufactured by using the learned prediction model. Specifically, the characteristic information output unit 220 is manufactured by inputting the material information into the prediction model when the material information acquisition unit 210 acquires the material information, specifically, the brand of the material and the blending ratio thereof. Obtain the output of the mechanical properties of polymer composites.
 出力された機械的な特性は、出力装置に送信されて外部から認識可能なように出力される。 The output mechanical characteristics are transmitted to the output device and output so that they can be recognized from the outside.
 実験データ取得部230は、入力装置160から入力された実験データを取得する。 The experiment data acquisition unit 230 acquires the experiment data input from the input device 160.
 上記実験データは、上記高分子材料を製造し、その機械的な特性を測定した実験によって得られた、上記材料情報および機械的な特性を含むデータである。上記実験データは、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、得られた高分子複合材料から測定された機械的な特性と、を含むデータであり、学習処理部240が予測モデルを学習処理するための、教師データとして用いられる。 The above experimental data is data including the above material information and mechanical properties obtained by an experiment in which the above polymer material is manufactured and its mechanical properties are measured. The above experimental data is data including information that does not directly indicate the physicochemical properties, the compounding ratio of the material, and the mechanical properties measured from the obtained polymer composite material. It is used as teacher data for the learning processing unit 240 to train and process the prediction model.
 学習処理部240は、実験データ取得部230が取得した実験データを学習データとして、予測モデル記憶部250に記憶されている予測モデルに、機械的な学習処理を施し、上記学習処理を施された予測モデルを、予測モデル記憶部250に記憶させる。 The learning processing unit 240 uses the experimental data acquired by the experimental data acquisition unit 230 as learning data, and applies mechanical learning processing to the prediction model stored in the prediction model storage unit 250, and performs the above learning processing. The prediction model is stored in the prediction model storage unit 250.
 本実施形態において、上記予測モデルは、部分的最小二乗回帰(Partial Least Squares regression:PLS)を用いて構築された、以下の線形回帰式(1)を用いる予測モデルである。 In the present embodiment, the prediction model is a prediction model using the following linear regression equation (1) constructed by using partial least squares regression (PLS).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)中、βは定数項であり、cはi番目の偏回帰係数であり、xはi番目の説明変数であり、yは目的変数であり、Nは説明変数の個数である。 Wherein (1), beta is a constant term, c i is the i-th partial regression coefficients, x i is the i-th explanatory variable, y is the dependent variable, N is the in the number of explanatory variables is there.
 なお、上記予測モデルは、公知の任意の統計モデルで構成されてよく、ニューラルネットワーク、決定木、およびランダムPPおよびフィラーを二フォレスト、Kernel-Based PLS(KPLS)サポートベクター回帰などの方法により構築された予測モデルであってもよい。また、主成分回帰(Principal Component Regression:PCR)やリッジ回帰などの、PLS以外の回帰分析法により構築された予測モデルであってもよい。 The prediction model may be composed of any known statistical model, and a neural network, a decision tree, and a random PP and a filler are constructed by a method such as Niforest, Kernel-Based PLS (KPLS) support vector regression, or the like. It may be a prediction model. Further, it may be a prediction model constructed by a regression analysis method other than PLS, such as principal component regression (PCR) or ridge regression.
 予測モデル記憶部250は、学習処理部240により学習された予測モデルを記憶する。 The prediction model storage unit 250 stores the prediction model learned by the learning processing unit 240.
 予測モデル記憶部250は、1つの予測モデルのみを記憶してもよいし、入力される材料情報の種類または出力される機械的な特性の種類が異なる複数の予測モデルを記憶してもよい。 The prediction model storage unit 250 may store only one prediction model, or may store a plurality of prediction models having different types of input material information or output mechanical properties.
 (学習動作例)
 次に、本実施形態に関する特性予測装置100の学習動作例について説明する。図3は、特性予測装置100の学習動作例を示すフローチャートである。
(Example of learning operation)
Next, an example of the learning operation of the characteristic prediction device 100 according to the present embodiment will be described. FIG. 3 is a flowchart showing an example of learning operation of the characteristic prediction device 100.
 まず、実験データ取得部230は、入力装置160に入力された、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、得られた高分子複合材料から測定された機械的な特性と、を含む実験データを取得する(ステップS110)。実験データ取得部230は、取得した実験データを学習処理部240に出力する。なお、実験データ取得部230は、1つの実験データを取得するたびに学習処理部240に出力してもよいし、複数の実験データを取得した後に学習処理部240に出力してもよい。 First, the experimental data acquisition unit 230 was measured from the information input to the input device 160 that does not directly indicate the physicochemical properties, the blending ratio of the material, and the obtained polymer composite material. Obtain experimental data including mechanical properties (step S110). The experiment data acquisition unit 230 outputs the acquired experiment data to the learning processing unit 240. The experimental data acquisition unit 230 may output to the learning processing unit 240 each time one experimental data is acquired, or may output to the learning processing unit 240 after acquiring a plurality of experimental data.
 次に、学習処理部240は、予測モデル記憶部250に、上記実験データに含まれる材料情報(物理化学的な特性を直接的には示さない情報、および上記材料の配合率)を説明変数として、上記実験データに含まれる機械的な特性を出力値とする予測モデルが存在するか否かを判定する(ステップS120)。 Next, the learning processing unit 240 uses the material information (information that does not directly indicate the physicochemical properties and the blending ratio of the material) included in the experimental data as explanatory variables in the prediction model storage unit 250. , It is determined whether or not there is a prediction model whose output value is the mechanical characteristics included in the above experimental data (step S120).
 判定の結果、上記予測モデルが存在するときは(ステップS120、YES)、学習処理部240は、実験データに含まれる材料情報と、機械的な特性と、を学習データとして、予測モデルの学習処理を行う(ステップS130)。その後、処理はステップS150に遷移する。なお、ステップS130における学習処理は、大量の実験データを使用して、実験データに含まれる実験ごとの機械的な特性と、予測モデルからの出力値と、の間の誤差が小さくなる(収束する)まで繰り返し行われてもよい。 As a result of the determination, when the prediction model exists (step S120, YES), the learning processing unit 240 uses the material information included in the experimental data and the mechanical characteristics as training data to perform the learning process of the prediction model. (Step S130). After that, the process proceeds to step S150. The learning process in step S130 uses a large amount of experimental data, and the error between the mechanical characteristics of each experiment included in the experimental data and the output value from the prediction model becomes small (converges). ) May be repeated.
 一方で、上記予測モデルが存在しないときは(ステップS120、NO)、学習処理部240は、実験データに含まれる材料情報を説明変数とし、機械的な特性を出力値とする予測モデルを新規に構築する(ステップS140)。 On the other hand, when the prediction model does not exist (step S120, NO), the learning processing unit 240 newly creates a prediction model in which the material information included in the experimental data is used as an explanatory variable and the mechanical characteristics are used as the output value. Build (step S140).
 その後、学習処理部240は、学習された(または新規に構築された)予測モデルを、予測モデル記憶部250に記憶させる(ステップS150)。 After that, the learning processing unit 240 stores the learned (or newly constructed) prediction model in the prediction model storage unit 250 (step S150).
 (予測動作例)
 次に、本実施の形態における特性予測装置100の予測動作例について説明する。図4は、特性予測装置100の予測動作例を示すフローチャートである。
(Example of predicted operation)
Next, an example of the prediction operation of the characteristic prediction device 100 according to the present embodiment will be described. FIG. 4 is a flowchart showing an example of prediction operation of the characteristic prediction device 100.
 実験データは、以下の手順で作成した。 The experimental data was created by the following procedure.
 1-1.高分子複合材料の作製
 PPおよびフィラーを二軸混練機(Xplore Instruments社製、製品名MC15)により混練して、混練物を得た。混練時の温度は200℃、材料投入時の回転数は80rpm、材料投入後は130rpmに上げ、5分間混練した。射出成形機(Xplore Instruments社製、製品名IM12)により、ISO527-2-1BA(2012年)に準じた形状の成形体を作製した。成形条件は、シリンダー温度200℃、金型温度60℃、射出圧力、時間は10barr~15barr、18秒とした。
1-1. Preparation of Polymer Composite Material PP and filler were kneaded with a twin-screw kneader (manufactured by Xplore Instruments, product name MC15) to obtain a kneaded product. The temperature at the time of kneading was 200 ° C., the rotation speed at the time of adding the material was 80 rpm, and after the material was added, the temperature was raised to 130 rpm and kneaded for 5 minutes. An injection molding machine (manufactured by Xplore Instruments, product name IM12) was used to produce a molded product having a shape conforming to ISO527-2-1BA (2012). The molding conditions were a cylinder temperature of 200 ° C., a mold temperature of 60 ° C., an injection pressure, and a time of 10 barr to 15 barr, 18 seconds.
 1-2.弾性率の測定
 弾性率は、テンシロン万能材料試験機(エー・アンド・ディ社製)を用い、初荷重0.3N、移動速度1mm/minに準じて引張試験により測定を行った。
1-2. Measurement of elastic modulus The elastic modulus was measured by a tensile test using a Tencilon universal material tester (manufactured by A & D Co., Ltd.) according to an initial load of 0.3 N and a moving speed of 1 mm / min.
 2.予測モデルの構築
 2-1.説明変数の設定
 PPの説明変数は、以下の式(2)によって記述した。
2. Construction of prediction model 2-1. Setting of explanatory variables The explanatory variables of PP are described by the following equation (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(2)中、xpiはPPの説明変数、pはPPの銘柄(i=1~11)、αは当該説明変数が示す材料を添加したことを示す。
 まず、材料情報取得部210は、入力装置160に入力された、製造しようとする高分子複合材料の材料に関する、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を含む材料情報を取得する(ステップS210)。材料情報取得部210は、取得した材料情報を特性情報出力部220に出力する。
Equation (2), x pi is PP explanatory variables, p i is PP stock (i = 1 ~ 11), α indicates that the addition of material indicated by the explanatory variable.
First, the material information acquisition unit 210 includes information that is input to the input device 160 and that does not directly indicate the physicochemical properties of the material of the polymer composite material to be manufactured, and the mixing ratio of the material. Acquire material information including, (step S210). The material information acquisition unit 210 outputs the acquired material information to the characteristic information output unit 220.
 次に、特性情報出力部220は、予測モデル記憶部250が記憶している予測モデルに上記材料情報を入力した結果として出力される、高分子複合材料の予測される機械的な特性値を取得する(ステップS220)。 Next, the characteristic information output unit 220 acquires the predicted mechanical characteristic value of the polymer composite material, which is output as a result of inputting the material information into the prediction model stored in the prediction model storage unit 250. (Step S220).
 次に、特性情報出力部220は、取得された機械的な特性値を出力装置170に出力する(ステップS230)。出力された機械的な特性値は、材料情報から予測される機械的な特性値として、出力装置170に表示等される。 Next, the characteristic information output unit 220 outputs the acquired mechanical characteristic value to the output device 170 (step S230). The output mechanical characteristic value is displayed on the output device 170 or the like as a mechanical characteristic value predicted from the material information.
 [具体例]
 以下に、特性予測装置100による予測モデルの構築および実際の予測について行った具体的な方法およびその結果を示す。
[Concrete example]
The specific methods and results of the construction of the prediction model by the characteristic prediction device 100 and the actual prediction are shown below.
 1.実験データの作成
 候補材料を、11種類のポリプロピレン(PP)、18種類のフィラー、および20種類のその他の添加剤とした。上記候補材料から任意に選択した組み合わせにより作製した高分子複合材料の、材料の選択およびその配合率と、得られた180種類の高分子複合材料について測定された弾性率と、を含むデータを、実験データとして用いた。なお、その他の添加剤とは、着色剤、難燃剤、紫外線吸収剤、酸化防止剤およびエラストマーなどの、フィラー以外の添加剤である。
1. 1. Preparation of experimental data Candidate materials were 11 types of polypropylene (PP), 18 types of fillers, and 20 types of other additives. Data including the selection of the material and the compounding ratio thereof of the polymer composite material produced by the combination arbitrarily selected from the above candidate materials and the elastic modulus measured for the obtained 180 kinds of polymer composite materials are provided. It was used as experimental data. The other additives are additives other than fillers, such as colorants, flame retardants, ultraviolet absorbers, antioxidants and elastomers.
 フィラーの説明変数は、以下の式(3)によって記述した。 The explanatory variables of the filler are described by the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)中、xfiはフィラーの説明変数、fはフィラーの銘柄(i=1~18)、cfiはPPの添加量に対する当該フィラーの添加量の割合(質量%)、αは当該説明変数が示す材料を添加したことを示す。 Wherein (3), x fi filler explanatory variables, f i filler stock (i = 1 ~ 18), c fi the ratio of the added amount of the fillers with respect to the addition amount of PP (wt%), alpha is It indicates that the material indicated by the explanatory variable was added.
 その他の添加剤の説明変数は、以下の式(4)によって記述した。 The explanatory variables of other additives are described by the following formula (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(4)中、xaiはその他の添加剤の説明変数、aはその他の添加剤の銘柄(i=1~20)、caiはPPの添加量に対する当該その他の添加剤の添加量の割合(質量%)、αは当該説明変数が示す材料を添加したことを示す。 In formula (4), x ai is the explanatory variable of the other additive, a i is the brand of the other additive (i = 1 to 20), and c ai is the amount of the other additive added relative to the amount of PP added. (Mass%) and α indicate that the material indicated by the explanatory variable was added.
 式(2)~式(4)を用いて、式(5)に例示するベクトル表現による説明変数を設定した。なお、式(5)は、銘柄pのPP、PPの添加量に対して10質量%の銘柄fのフィラー、およびPPの添加量に対して5質量%の銘柄aのその他の添加剤を用いて高分子複合材料を作製したことを示す。 Using the equations (2) to (4), the explanatory variables by the vector representation illustrated in the equation (5) were set. Incidentally, the formula (5) is, PP stock p 1, 10 wt% of a filler stock f 1 with respect to the addition amount of PP, and other additives stock a 1 added 5% by weight, based on the weight of the PP It is shown that a polymer composite material was prepared using the agent.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 2-2.予測モデルの構築
 上記実験データを用いて、部分的最小二乗回帰(PLS)により、線形回帰式(1)を用いる予測モデルを構築した。このとき、潜在変数の数を変化させて、複数の予測モデルを構築した。
2-2. Construction of Prediction Model Using the above experimental data, a prediction model using linear regression equation (1) was constructed by partial least squares regression (PLS). At this time, a plurality of prediction models were constructed by changing the number of latent variables.
 2-2-1.予測モデル1の構築
 予測モデル1の構築時には、180個の実験データのうち、ランダムに選択した153個(85%)を教師データとして予測モデルを構築し、残りの27個(15%)を試験データとした。
2-2-1. Construction of Prediction Model 1 At the time of construction of Prediction Model 1, 153 (85%) randomly selected out of 180 experimental data were used as teacher data to construct a prediction model, and the remaining 27 (15%) were tested. It was used as data.
 このとき、潜在変数の数を、以下の式(6)により表される、試験データにおける平均平方二乗誤差ε(Root Mean Square Error:RMSE)が最小となる値とした。 At this time, the number of latent variables, expressed by the following equation (6), mean square square error epsilon 1 in the test data (Root Mean Square Error: RMSE) is the smallest value.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(6)中、Nは実験データの数(180)、yobs,iは試験データiにおける弾性率の実測値、ypred,iは構築した学習データを用いて試験データiの材料情報から出力された弾性率の予測値、を示す。 In formula (6), N is the number of experimental data (180), yobs, i are the measured values of elastic modulus in the test data i, and ypred, i are the material information of the test data i using the constructed learning data. The output predicted value of elastic modulus is shown.
 予測モデル1では、潜在変数が13個としたところ、εは最小である156MPaとなり、このときの決定係数Rは0.95であった。上記決定係数の値から、予測モデル1の精度は概ね良好であるといえた。 In the prediction model 1, when the number of latent variables was 13, ε 1 was the minimum of 156 MPa, and the coefficient of determination R 2 at this time was 0.95. From the value of the coefficient of determination, it can be said that the accuracy of the prediction model 1 is generally good.
 2-2-2.予測モデル2の構築
 予測モデル2の構築時には、潜在変数の数を予測モデル1より少なくし、教師データの選択によらない汎化性を高め、かつ、誤差もより少ない予測モデルの構築を試みた。
2-2-2. Construction of Prediction Model 2 At the time of construction of Prediction Model 2, we tried to construct a prediction model in which the number of latent variables was smaller than that of Prediction Model 1, the generalization was improved regardless of the selection of teacher data, and the error was smaller. ..
 具体的には、潜在変数の数を、Leave-One-Out交差検証(LOOCV)により求められる、以下の式(7)により表される誤差εが最小となる値とした。 Specifically, the number of latent variables was set to the value that minimizes the error ε 2 expressed by the following equation (7), which is obtained by Leave-One-Out cross-validation (LOOCV).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(7)中、Nは実験データの数(180)、yは試験データiにおける弾性率の実測値、
Figure JPOXMLDOC01-appb-M000009
 は試験データiを除いた179個のデータを教師データとして構築した予測モデルを用いて試験データiの材料情報から出力された弾性率の予測値、を示す。
In formula (7), N is the number of experimental data (180), y i is the measured elastic modulus in the test data i,
Figure JPOXMLDOC01-appb-M000009
 Shows the predicted value of the elastic modulus output from the material information of the test data i using the prediction model constructed by constructing 179 data excluding the test data i as the teacher data.
 図5は、このときの潜在変数の数とεとの関係を表すグラフである。図5から、潜在変数の数が4個のときにεが最小値(309MPa)となることがわかる。そのため、潜在変数が4個のときの予測モデルを、予測モデル2とした。予測モデル2の決定係数Rは0.73だった。 FIG. 5 is a graph showing the relationship between the number of latent variables and ε 2 at this time. From FIG. 5, it can be seen that ε 2 is the minimum value (309 MPa) when the number of latent variables is four. Therefore, the prediction model when there are four latent variables is set as the prediction model 2. The coefficient of determination R 2 of the prediction model 2 was 0.73.
 図6は、予測モデル2を用いて180個の実験データのそれぞれの材料情報から出力された弾性率の予測値と、180個の実験データのそれぞれにおける弾性率の実測値と、の関係を表すグラフである。上記決定係数の値および図5の結果から、予測モデル2の精度は概ね良好であるといえた。 FIG. 6 shows the relationship between the predicted elastic modulus output from the material information of each of the 180 experimental data using the prediction model 2 and the measured elastic modulus in each of the 180 experimental data. It is a graph. From the value of the coefficient of determination and the result of FIG. 5, it can be said that the accuracy of the prediction model 2 is generally good.
 3.予測モデルの検証
 3-1.予測値と実測値との間の残差の検証
 図7は、図6に示した予測値と実測値とのデータから算出した、高分子複合材料の弾性率の予測値と、予測値と実測値との間の残差の絶対値と、の関係を示すグラフである。
3. 3. Verification of prediction model 3-1. Verification of the residual between the predicted value and the measured value Fig. 7 shows the predicted value of the elastic modulus of the polymer composite material calculated from the data of the predicted value and the measured value shown in FIG. 6, and the predicted value and the measured value. It is a graph which shows the relationship with the absolute value of the residual between the values.
 図7中、弾性率の予測値が2500MPa以下の範囲では、残差の絶対値を300MPa以下(予測モデルのεである309MPaよりも小さい値)とすることができたデータの個数が、全体の90%であった。なお、弾性率の予測値が2500MPaより大きい範囲では、残差の絶対値を300MPa以下とすることができたデータの個数はより少なかったが、これは教師データの個数が少なかった(図6参照)ことによると考えられる。 In FIG. 7, in the range where the predicted elastic modulus is 2500 MPa or less, the total number of data for which the absolute value of the residual can be set to 300 MPa or less (a value smaller than 309 MPa, which is ε 2 of the prediction model) is the total. It was 90% of. In the range where the predicted elastic modulus was larger than 2500 MPa, the number of data for which the absolute value of the residual could be 300 MPa or less was smaller, but the number of teacher data was smaller (see FIG. 6). ) It is thought that it depends.
 3-2.追加実験結果の予測による精度の検証
 PP、フィラーおよびその他の添加剤の組み合わせ、ならびにフィラーおよびその他の添加剤の添加量を変化させた57万通りの高分子複合材料の材料情報について、予測モデル2を用いて弾性率の予測値を算出した。
3-2. Verification of accuracy by prediction of additional experimental results Prediction model 2 for material information of 570,000 polymer composite materials in which the combination of PP, filler and other additives, and the amount of filler and other additives added were changed. Was used to calculate the predicted elastic modulus.
 上記57万通りの組み合わせのうち、説明変数(式(5))が、(i)予測モデルの作成に用いた実験データに近い水準と、(ii)実験データから遠い水準とが含まれるように、9個の水準を選択して、高分子複合材料を作製して弾性率を測定した。高分子複合材料の作製および弾性率の測定は、実験データの作成時と同様に行った。 Of the above 570,000 combinations, the explanatory variables (Equation (5)) include (i) a level close to the experimental data used to create the prediction model and (ii) a level far from the experimental data. , Nine levels were selected to make a polymer composite and the elastic modulus was measured. The preparation of the polymer composite material and the measurement of the elastic modulus were carried out in the same manner as when the experimental data were prepared.
 図8は、上記9個の水準についての、予測モデル2を用いてそれぞれの材料情報から出力された弾性率の予測値と、弾性率の実測値と、の関係を表すグラフである。 FIG. 8 is a graph showing the relationship between the predicted value of the elastic modulus output from each material information using the prediction model 2 and the measured value of the elastic modulus for the above nine levels.
 予測値が1500~3500MPaの範囲内にある水準B~H((i)説明変数が実験データに近い水準に該当)については、予測値と実測値との間の残差の絶対値が300MPa以内であり、予測モデル2の精度が良好であるといえた。なお、予測値が1500~3500MPaの範囲外である水準AおよびH((ii)説明変数が実験データから遠い水準に該当)については、予測値と実測値との間の残差の絶対値が300MPaより大きく、予測精度が低かった。これは、これは教師データの個数が少なかった(図6参照)ことによると考えられる。 For levels B to H whose predicted values are in the range of 1500 to 3500 MPa ((i) the explanatory variables correspond to levels close to the experimental data), the absolute value of the residual between the predicted values and the measured values is within 300 MPa. Therefore, it can be said that the accuracy of the prediction model 2 is good. For levels A and H whose predicted values are outside the range of 1500 to 3500 MPa ((ii) explanatory variables correspond to levels far from the experimental data), the absolute value of the residual between the predicted values and the measured values is It was larger than 300 MPa and the prediction accuracy was low. It is considered that this is because the number of teacher data was small (see FIG. 6).
 3-3.高弾性率領域において弾性率に寄与する要因の検討
 180個の実験データ、およびこれらの材料情報から出力された弾性率の予測値について、弾性率の実測値と予測値との残差が最も大きいデータについて、説明変数の特徴を調べたところ、フィラーの含有率が高い(40質量%)データだった。
3-3. Examination of factors contributing to elastic modulus in the high elastic modulus region Regarding the 180 experimental data and the predicted elastic modulus output from these material information, the residual between the measured elastic modulus and the predicted elastic modulus is the largest. When the characteristics of the explanatory variables were examined for the data, the data had a high filler content (40% by mass).
 そこで、180個の実験データおよび予測値から、材料情報における同一のフィラー(f)の含有量が40%、30%、20%、10%、および1%の5つのデータを抽出し、これらのデータの実測値および予測値を調べた。 Therefore, five data having the same filler (f 4 ) content of 40%, 30%, 20%, 10%, and 1% in the material information were extracted from 180 experimental data and predicted values, and these were extracted. The measured value and the predicted value of the data of were examined.
 図9は、上記5つのデータについての、フィラーの含有量と、弾性率の実測値および予測値と、の関係を示すグラフである。 FIG. 9 is a graph showing the relationship between the filler content and the measured and predicted elastic moduli of the above five data.
 図9に示すように、予測モデル2による弾性率の予測値は、フィラーの含有量が増えるにつれて予測値も直線的に増加する傾向がある。しかし、弾性率の実測値は、フィラーの含有量による弾性率の増加が頭打ちになる点(適正点)があることがわかる。 As shown in FIG. 9, the predicted value of the elastic modulus by the prediction model 2 tends to increase linearly as the filler content increases. However, it can be seen that the measured elastic modulus has a point (appropriate point) where the increase in elastic modulus due to the content of the filler reaches a plateau.
 なお、図8において同様に高弾性率で予測精度の低下がみられる水準Hは、図9のデータとは異なる種類のフィラー(f10)を添加した高分子複合材料である。このことから、フィラーの種類によらず、フィラーの含有量が高い水準では予測精度が低下している可能性が示唆される。 In FIG. 8, the level H, which also has a high elastic modulus and a decrease in prediction accuracy, is a polymer composite material to which a filler (f 10) of a type different from the data in FIG. 9 is added. This suggests that the prediction accuracy may decrease at a high level of filler content regardless of the type of filler.
 これらの結果から、フィラーの含有量が0質量%より多く35質量%以下の範囲については、予測モデル2の精度が良好であるといえる。フィラーの含有量が多い範囲での予測精度を高めるために、説明変数に非線形項を導入したり、非線形の予測モデルを活用したりする方法が考えられる。 From these results, it can be said that the accuracy of the prediction model 2 is good in the range where the filler content is more than 0% by mass and 35% by mass or less. In order to improve the prediction accuracy in the range where the filler content is high, it is conceivable to introduce a non-linear term into the explanatory variables or utilize a non-linear prediction model.
 [その他の実施形態]
 なお、上記実施形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、上記実施形態によって本発明の技術的範囲が限定的に解釈されてはならない。本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
[Other Embodiments]
It should be noted that the above-described embodiment is merely an example of the embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by the above-described embodiment. The present invention can be practiced in various forms without departing from its gist or its main features.
 たとえば、上記実施の形態では、材料の銘柄を識別子として用いていたが、識別子は銘柄には限定されない。たとえば、カタログ番号、生産番号、ロット番号などを識別子としてもよい。また、これらに製造時期(製造年など)を組み合わせて、識別子としてもよい。 For example, in the above embodiment, the brand of the material is used as an identifier, but the identifier is not limited to the brand. For example, a catalog number, a production number, a lot number, or the like may be used as an identifier. Further, the manufacturing time (manufacturing year, etc.) may be combined with these to form an identifier.
 また、上記実施の形態では、高分子複合材料の弾性率を目的変数としていたが、目的変数は弾性率には限定されない。たとえば、引張強さ、圧縮強さおよびせん断強さなどの強度、硬度、破断伸び、耐衝撃強度、耐摩耗性、難燃性、耐熱性、耐光性、耐候性、耐酸性、耐アルカリ性、耐溶剤性および色調などを目的変数としてもよい。 Further, in the above embodiment, the elastic modulus of the polymer composite material is used as the objective variable, but the objective variable is not limited to the elastic modulus. For example, strength such as tensile strength, compressive strength and shear strength, hardness, elongation at break, impact resistance, wear resistance, flame retardancy, heat resistance, light resistance, weather resistance, acid resistance, alkali resistance, resistance to alkali. The objective variables may be solvent-based and color tone.
 本出願は、2019年10月25日出願の日本国出願番号2019-194086号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。 This application is an application claiming priority based on Japanese Application No. 2019-194086 filed on October 25, 2019, and the contents described in the claims, specification and drawings of the application are the present. Incorporated in the application.
 本発明は、高分子複合材料の機械的な特性を予測する特性予測装置として好適である。 The present invention is suitable as a property predictor for predicting the mechanical properties of a polymer composite material.
 100 特性予測装置
 110 CPU
 120 ROM
 130 RAM
 140 外部記憶装置
 150 通信インターフェイス
 160 入力装置
 170 出力装置
 210 材料情報取得部
 220 特性情報出力部
 230 実験データ取得部
 240 学習処理部
 250 予測モデル記憶部
100 Characteristic prediction device 110 CPU
120 ROM
130 RAM
140 External storage device 150 Communication interface 160 Input device 170 Output device 210 Material information acquisition unit 220 Characteristic information output unit 230 Experimental data acquisition unit 240 Learning processing unit 250 Prediction model storage unit

Claims (8)

  1.  高分子複合材料の材料に関する材料情報の入力に対して、製造される高分子複合材料の機械的な特性を出力する予測モデルを記憶する、予測モデル記憶部と、
     前記材料情報と、前記材料から製造された高分子複合材料の機械的な特性とを含むデータを学習データとして、前記予測モデルに学習処理を施す学習処理部と、
     を有し、
     前記材料情報は、物理化学的な特性を示す情報を全ての候補材料について揃えることが困難な情報であり、
     前記材料情報として、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を含む情報を用いる、
     特性予測装置。
    A predictive model storage unit that stores a predictive model that outputs the mechanical properties of the polymer composite material to be manufactured in response to input of material information regarding the material of the polymer composite material.
    A learning processing unit that performs learning processing on the prediction model using data including the material information and mechanical properties of the polymer composite material manufactured from the material as learning data.
    Have,
    The material information is information that makes it difficult to prepare information indicating physicochemical properties for all candidate materials.
    As the material information, information including information that does not directly indicate the physicochemical properties and the compounding ratio of the material is used.
    Characteristic predictor.
  2.  高分子複合材料の材料に関する材料情報を取得する材料情報取得部と、
     入力された材料情報に対し、学習された予測モデルを用いて、製造される高分子複合材料の機械的な特性を出力する特性情報出力部と、
     を有し、
     前記材料情報は、物理化学的な特性を示す情報を全ての候補材料について揃えることが困難な情報であり、
     前記入力された材料情報は、物理化学的な特性を直接的には示さない情報と、前記材料の配合率と、を含み、
     前記予測モデルは、前記材料情報と、前記材料から製造された高分子複合材料の機械的な特性と、を含む学習データを用いた学習処理が施されている、
     特性予測装置。
    The Material Information Acquisition Department, which acquires material information regarding materials for polymer composite materials,
    A characteristic information output unit that outputs the mechanical properties of the polymer composite material to be manufactured using the learned prediction model for the input material information.
    Have,
    The material information is information that makes it difficult to prepare information indicating physicochemical properties for all candidate materials.
    The input material information includes information that does not directly indicate physicochemical properties and a compounding ratio of the material.
    The prediction model is subjected to learning processing using learning data including the material information and the mechanical properties of the polymer composite material produced from the material.
    Characteristic predictor.
  3.  前記高分子複合材料は、高分子樹脂と添加剤とを含有する複合材料である、請求項1または2に記載の特性予測装置。 The characteristic prediction device according to claim 1 or 2, wherein the polymer composite material is a composite material containing a polymer resin and an additive.
  4.  前記添加剤は、フィラーである、請求項3に記載の特性予測装置。 The characteristic prediction device according to claim 3, wherein the additive is a filler.
  5.  前記物理化学的な特性を直接的には示さない情報は、前記材料の銘柄を示す情報である、請求項1~4のいずれか1項に記載の特性予測装置。 The characteristic prediction device according to any one of claims 1 to 4, wherein the information that does not directly indicate the physicochemical characteristics is information that indicates the brand of the material.
  6.  前記機械的な特性は、前記高分子複合材料の弾性率である、請求項1~5のいずれか1項に記載の特性予測装置。 The characteristic prediction device according to any one of claims 1 to 5, wherein the mechanical property is an elastic modulus of the polymer composite material.
  7.  前記予測モデルは、以下の線形回帰式(1)を用いる予測モデルである、請求項1~6のいずれか1項に記載の特性予測装置。
    Figure JPOXMLDOC01-appb-M000001
     (式(1)中、βは定数項であり、cはi番目の偏回帰係数であり、xはi番目の説明変数であり、yは目的変数であり、Nは説明変数の個数である。)
    The characteristic prediction device according to any one of claims 1 to 6, wherein the prediction model is a prediction model using the following linear regression equation (1).
    Figure JPOXMLDOC01-appb-M000001
    (In the formula (1), beta is a constant term, c i is the i-th partial regression coefficients, x i is the i-th explanatory variable, y is the dependent variable, N is the number of explanatory variables Is.)
  8.  前記偏回帰係数は、部分的最小二乗回帰を用いて求められた係数である、請求項7に記載の特性予測装置。 The characteristic prediction device according to claim 7, wherein the partial regression coefficient is a coefficient obtained by using partial least squares regression.
PCT/JP2020/039900 2019-10-25 2020-10-23 Property prediction device WO2021079985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021553561A JP7468542B2 (en) 2019-10-25 2020-10-23 Characteristics prediction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194086 2019-10-25
JP2019194086 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079985A1 true WO2021079985A1 (en) 2021-04-29

Family

ID=75619316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039900 WO2021079985A1 (en) 2019-10-25 2020-10-23 Property prediction device

Country Status (2)

Country Link
JP (1) JP7468542B2 (en)
WO (1) WO2021079985A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002804A1 (en) * 2021-07-20 2023-01-26 株式会社トクヤマ Model generation device, prediction device, model generation method, prediction method, and resin composition manufacturing system
WO2023032809A1 (en) * 2021-08-31 2023-03-09 株式会社レゾナック Property prediction device, property prediction method, and program
WO2023058576A1 (en) * 2021-10-04 2023-04-13 ダイキン工業株式会社 Low-molecular-weight-compound search method, program, device, and system
WO2023243544A1 (en) * 2022-06-15 2023-12-21 Dic株式会社 Thermosetting epoxy resin composition search method, information processing device, and program
JP7416155B1 (en) 2022-09-02 2024-01-17 株式会社プロテリアル Apparatus and method for predicting physical properties of resin composition
WO2024090511A1 (en) * 2022-10-28 2024-05-02 コニカミノルタ株式会社 Prediction device, prediction method, and prediction program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063243A (en) * 1992-06-23 1994-01-11 Asahi Chem Ind Co Ltd Method for estimating physical property of rubber polymer
WO2019172280A1 (en) * 2018-03-09 2019-09-12 昭和電工株式会社 Polymer physical property prediction device, storage medium, and polymer physical property prediction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063243A (en) * 1992-06-23 1994-01-11 Asahi Chem Ind Co Ltd Method for estimating physical property of rubber polymer
WO2019172280A1 (en) * 2018-03-09 2019-09-12 昭和電工株式会社 Polymer physical property prediction device, storage medium, and polymer physical property prediction method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIDA, AKIRA ET AL.: "Overview of Materials Informatics", CICSJ BULLETIN, vol. 36, no. 1, 2018, pages 9 - 13 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002804A1 (en) * 2021-07-20 2023-01-26 株式会社トクヤマ Model generation device, prediction device, model generation method, prediction method, and resin composition manufacturing system
WO2023032809A1 (en) * 2021-08-31 2023-03-09 株式会社レゾナック Property prediction device, property prediction method, and program
WO2023058576A1 (en) * 2021-10-04 2023-04-13 ダイキン工業株式会社 Low-molecular-weight-compound search method, program, device, and system
JP2023054446A (en) * 2021-10-04 2023-04-14 ダイキン工業株式会社 Method for searching for low-molecular compound, program, device, and system
JP7288207B2 (en) 2021-10-04 2023-06-07 ダイキン工業株式会社 Low-molecular-weight compound search method, program, device, and system
WO2023243544A1 (en) * 2022-06-15 2023-12-21 Dic株式会社 Thermosetting epoxy resin composition search method, information processing device, and program
JP7416131B2 (en) 2022-06-15 2024-01-17 Dic株式会社 Thermosetting epoxy resin composition search method, information processing device, and program
JP7416155B1 (en) 2022-09-02 2024-01-17 株式会社プロテリアル Apparatus and method for predicting physical properties of resin composition
WO2024090511A1 (en) * 2022-10-28 2024-05-02 コニカミノルタ株式会社 Prediction device, prediction method, and prediction program

Also Published As

Publication number Publication date
JP7468542B2 (en) 2024-04-16
JPWO2021079985A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2021079985A1 (en) Property prediction device
JP7218519B2 (en) Physical property data prediction method and physical property data prediction device
US20160017132A1 (en) Method And System For Predicting Biocomposite Formulations And Processing Considerations Based On Product To Be Formed From Biocomposite Material
Veropalumbo et al. Verifying laboratory measurement of the performance of hot asphalt mastics containing plastic waste
Kumar et al. Characterization of thermal storage stability of waste plastic pyrolytic char modified asphalt binders with sulfur
Nobari Azar et al. Effects of accelerator type on stress relaxation behavior and network structure of aged natural rubber/chloroprene rubber vulcanizates
JP2020030683A (en) Rubber material design method, rubber material design device, and program
JP2020038493A (en) Method and device for predicting physical property data
Saeb et al. Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
Loos et al. Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a multiphase approach
Ding et al. Stress‐strain curves for polyurethane elastomers: A statistical assessment of constitutive models
JP7348488B2 (en) Physical property data prediction method and physical property data prediction device
Cravero et al. Computational modelling of mechanical properties for new polymeric materials with high molecular weight
Reig et al. Rheological behavior modeling of recycled ABS/PC blends applied to injection molding process
David et al. Towards realistic simulations of polymer networks: tuning vulcanisation and mechanical properties
JP7352079B2 (en) Physical property data prediction method and physical property data prediction device
WO2023095008A1 (en) Predictive method based upon machine learning for the development of composites for tyre tread compounds
JP2020030680A (en) Rubber material design method, rubber material design device, and program
Scott Maximum likelihood estimation using the empirical fisher information matrix
WO2023106022A1 (en) Interaction impact evaluation method, element material identifying method, and substitute material search method
JP2021026739A (en) Physical property data prediction method and device Physical property data prediction device
Liu et al. Predicting the complex stress-strain curves of polymeric solids by classification-embedded dual neural network
JP2023051839A (en) Learning model generation program, compounding condition setting program, learning model generation method, compounding condition setting method, and fiber-reinforced polyphenylene sulfide resin composition
JP7482470B2 (en) Method, system and program for estimating physical properties of rubber material
Traintinger et al. Investigation on strategies for optimizing process definition in rubber processing: A study on mechanical and chemical properties of vulcanizates as basis for the development of a new calculation model for quality prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878765

Country of ref document: EP

Kind code of ref document: A1