JP2020038493A - Method and device for predicting physical property data - Google Patents

Method and device for predicting physical property data Download PDF

Info

Publication number
JP2020038493A
JP2020038493A JP2018165276A JP2018165276A JP2020038493A JP 2020038493 A JP2020038493 A JP 2020038493A JP 2018165276 A JP2018165276 A JP 2018165276A JP 2018165276 A JP2018165276 A JP 2018165276A JP 2020038493 A JP2020038493 A JP 2020038493A
Authority
JP
Japan
Prior art keywords
raw material
physical property
data
raw materials
property data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018165276A
Other languages
Japanese (ja)
Other versions
JP7139801B2 (en
Inventor
隆太郎 中川
Ryutaro Nakagawa
隆太郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018165276A priority Critical patent/JP7139801B2/en
Publication of JP2020038493A publication Critical patent/JP2020038493A/en
Application granted granted Critical
Publication of JP7139801B2 publication Critical patent/JP7139801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To allow for accurately and efficiently predicting physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition comprising a mix of multiple raw materials using a mixing ratio of each raw material.SOLUTION: A method disclosed herein comprises: making a prediction module of a computer machine-learn physical property data of multiple vulcanized rubber compositions using the physical property data, identification names of raw materials of the vulcanized rubber compositions, mixing ratios of the raw materials, and information on processing conditions; making the machine-learned prediction module predict physical property data of a target vulcanized rubber composition using names of constituent raw materials constituting an unvulcanized rubber composition of the target vulcanized rubber composition before being vulcanized, mixing ratios of the constituent raw materials, and processing conditions for a process of producing the target vulcanized rubber composition; and performing preprocessing for classifying each of the names of the constituent raw materials into one of the identification names that was used as learning input data on the basis of material properties of the constituent raw materials prior to proceeding with the prediction by the prediction module.SELECTED DRAWING: Figure 1

Description

本発明は、加硫ゴム組成物の物性データを予測する物性データ予測方法及び物性データ予測装置に関する。   The present invention relates to a physical property data prediction method and a physical property data prediction device for predicting physical property data of a vulcanized rubber composition.

近年、コンピュータに機械学習をさせて、入力されたデータから種々の予測を行う技術が活発に提案されている。複数のゴム材料、充填材、及びオイル等を原材料として配合して作製される加硫ゴム組成物についても、その物性データを予測することを、上記技術に適用することが考えられる。
従来より、複数のゴム材料、充填材、及びオイル等を試行錯誤により配合して加硫ゴム組成物を試作して物性データを計測することが行われている。このため、加硫ゴム組成物の配合情報と物性データとを紐付けたデータが多数蓄積されている。この蓄積データを活用して、コンピュータに機械学習させて、物性データを予測することができる。
In recent years, techniques for making computers perform machine learning and performing various predictions from input data have been actively proposed. For the vulcanized rubber composition prepared by blending a plurality of rubber materials, fillers, oils, and the like as raw materials, it is conceivable to apply the above technique to predicting physical property data.
BACKGROUND ART Conventionally, a vulcanized rubber composition has been prepared by mixing a plurality of rubber materials, fillers, oils, and the like by trial and error, and physical property data has been measured. For this reason, a large number of data in which the compounding information of the vulcanized rubber composition and the physical property data are linked. By utilizing this accumulated data, a computer can make machine learning to predict physical property data.

例えば、ニューラルネットワークの手法を用いて、設計・配合等の実験データの要因群と特性群との写像関係を学習し、要因条件から特性値を推定するとともに、任意の特性データに対して、それを作り出す要因データの最適値を効率的にかつ容易に求める方法を提供する技術が知られている(特許文献1)。   For example, using a neural network technique, learn the mapping relationship between the group of factors and the group of characteristics of experimental data such as design and composition, estimate the characteristic values from the factor conditions, and apply it to any characteristic data. (Patent Document 1) is known which provides a method for efficiently and easily finding an optimum value of factor data for generating the data.

特開2003−58582号公報JP-A-2003-58582

この技術におけるニューラルネットワークの学習では、用意したデータを全て一律に読み取って複数の学習データに用いる。
例えば、予測しようとするゴム組成物内の化学組成物毎の含有比率を表した要因データを用いてニューラルネットワークの学習が行われる。このような要因データは、複数の化学組成物で構成された原材料の括りをはずしたデータ構造となるため、特性データの予測を行う上での学習データとするのは好ましくない。
In learning of a neural network in this technique, all prepared data are read uniformly and used for a plurality of learning data.
For example, learning of the neural network is performed using factor data representing the content ratio of each chemical composition in the rubber composition to be predicted. Since such factor data has a data structure in which raw materials composed of a plurality of chemical compositions are ungrouped, it is not preferable to use learning data for predicting characteristic data.

一般に、複数の化学組成物を含有する原材料を組み合わせて配合した未加硫ゴム組成物から加硫ゴム組成物を作製するので、原材料毎の配合比率を要因データとすることが、ゴム設計者にとって好ましい。   Generally, a vulcanized rubber composition is prepared from an unvulcanized rubber composition in which raw materials containing a plurality of chemical compositions are combined and compounded. preferable.

そこで、本発明は、予め設定された複数の原材料を組み合わせて配合した未加硫ゴム組成物から作製される加硫ゴム組成物の物性データを、コンピュータに予測させる際に、効率よくかつ精度よく加硫ゴム組成物の物性データ(特性データ)を予測させることができる物性データ予測方法及び物性データ予測装置を提供することを目的とする。   Thus, the present invention provides a computer for predicting the physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition prepared by combining a plurality of preset raw materials, with high efficiency and accuracy. An object of the present invention is to provide a physical property data prediction method and a physical property data prediction device capable of predicting physical property data (characteristic data) of a vulcanized rubber composition.

本発明の一態様は、予め設定された複数の原材料を組み合わせて配合した未加硫ゴム組成物から作製される加硫ゴム組成物の物性データを、コンピュータに予測させる物性データ予測方法である。当該予測方法は、
加硫ゴム組成物に用いる複数の原材料を、設定された配合比率で配合し、設定された加工条件で加工することにより作製される複数の加硫ゴム組成物に関する物性データを学習用出力データとし、前記加硫ゴム組成物における前記原材料それぞれの識別名称と、前記原材料それぞれの配合比率と、前記加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、前記物性データをコンピュータ内の予測モジュールに機械学習させるステップと、
予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、該構成原材料の配合比率と、前記予測対象加硫ゴム組成物を作製するための加工における加工条件と、を用いて、前記予測対象加硫ゴム組成物の物性データを前記予測モジュールに予測させるステップと、
前記予測モジュールに前記予測対象加硫ゴム組成物の物性データを予測させるステップの前に、
前記構成原材料の名称を、前記構成原材料の材料特性に基づいて、コンピュータに前記学習用入力データとして用いた前記識別名称の1つに分類する前処理を行わせるステップと、
前記予測モジュールによる予測のために、コンピュータに、分類した前記識別名称の1つを、前記構成原材料に対応した名称として前記予測モジュールに入力させるステップと、
を備える。
One embodiment of the present invention is a method for predicting physical property data in which a computer predicts physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition obtained by combining a plurality of preset raw materials. The prediction method is
A plurality of raw materials used for the vulcanized rubber composition are blended at a set blending ratio, and physical property data on a plurality of vulcanized rubber compositions produced by processing under the set processing conditions are used as learning output data. The identification data of each of the raw materials in the vulcanized rubber composition, the compounding ratio of each of the raw materials, and information of each of the processing conditions, using the learning data as learning input data, the physical property data, Machine learning a prediction module in a computer;
The names of constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the predicted vulcanized rubber composition, the mixing ratio of the constituent raw materials, and the processing for producing the predicted vulcanized rubber composition Using processing conditions, the step of causing the prediction module to predict the physical property data of the vulcanized rubber composition to be predicted,
Before the step of causing the prediction module to predict the physical property data of the vulcanized rubber composition to be predicted,
Causing the computer to perform a pre-process of classifying the name of the constituent raw material into one of the identification names used as the learning input data, based on the material characteristics of the constituent raw material;
Causing the computer to input one of the classified identification names to the prediction module as a name corresponding to the constituent raw material for the prediction by the prediction module;
Is provided.

前記構成原材料の名称は、前記構成原材料の原材料物性データを前記材料特性として用いて、前記構成原材料の原材料物性データと前記学習データに用いた前記原材料の原材料物性データとの比較結果に基づいて、前記識別名称の1つに分類される、ことが好ましい。   The name of the constituent raw material, using raw material physical property data of the constituent raw material as the material property, based on a comparison result of raw material physical property data of the constituent raw material and raw material physical property data of the raw material used for the learning data, It is preferable to be classified into one of the identification names.

前記原材料物性データは、異なる複数種類の原材料物性値を含み、
前記構成原材料の名称は、前記複数種類の原材料物性値と、前記学習データに用いた前記原材料における対応する種類の原材料物性値との間の相関係数に基づいて前記識別名称の1つに分類される、ことが好ましい。
The raw material property data includes a plurality of different types of raw material property values,
The names of the constituent raw materials are classified into one of the identification names based on a correlation coefficient between the physical property values of the plurality of types of raw materials and the physical property values of the corresponding types of the raw materials used in the learning data. Is preferably performed.

前記学習データに用いた前記原材料及び前記予測対象加硫ゴム組成物における前記構成原材料は、複数の化学組成物の混合物であり、
前記前処理では、前記化学組成物の組成比率を前記材料特性として用いて、前記構成原材料の名称を前記識別名称の1つに分類する、ことが好ましい。
The raw material used for the learning data and the constituent raw material in the predicted vulcanized rubber composition is a mixture of a plurality of chemical compositions,
In the pretreatment, it is preferable that a name of the constituent raw material is classified into one of the identification names by using a composition ratio of the chemical composition as the material property.

前記構成原材料の名称は、前記構成原材料における前記化学組成物の組成比率と、前記学習データに用いた前記原材料における前記化学組成物の組成比率との間の相関係数に基づいて前記識別名称の1つに分類される、ことが好ましい。   The name of the constituent raw material, the composition ratio of the chemical composition in the constituent raw material, the identification name of the identification name based on the correlation coefficient between the composition ratio of the chemical composition in the raw material used for the learning data Preferably, they are classified into one.

前記構成原材料及び前記学習データに用いた前記原材料は、前記組成比率が80%以上の主成分化学組成物を有し、
前記構成原材料の名称は、前記学習データに用いた前記原材料のうち、前記構成原材料の前記主成分化学組成物の組成比率の、前記原材料の前記主成分化学組成物の組成比率に対する差分が5%以内となる原材料の識別名称に分類される、ことが好ましい。
The constituent raw materials and the raw materials used for the learning data have a main component chemical composition having the composition ratio of 80% or more,
The name of the constituent raw material is such that, among the raw materials used for the learning data, the difference between the composition ratio of the main component chemical composition of the constituent raw material and the composition ratio of the main component chemical composition of the raw material is 5%. It is preferable that the raw materials are classified into the identification names of the raw materials within.

前記学習データに用いた前記原材料及び前記構成原材料は、形状パラメータによって形状が特定される材料を含み、
前記前処理では、前記形状パラメータを前記材料特性として用いて、前記構成原材料の名称を、前記学習データに用いた前記原材料の前記識別名称の1つに分類する、ことが好ましい。
The raw material and the constituent raw materials used for the learning data include a material whose shape is specified by a shape parameter,
In the preprocessing, it is preferable that a name of the constituent raw material is classified into one of the identification names of the raw material used for the learning data, using the shape parameter as the material characteristic.

前記形状パラメータは、前記原材料及び前記構成原材料の形状、形状サイズ、あるいは形状のアスペクト比を含む、ことが好ましい。   It is preferable that the shape parameters include shapes, shape sizes, or shape aspect ratios of the raw material and the constituent raw materials.

前記構成原材料の名称は、前記構成原材料の前記形状パラメータの値が、前記学習データに用いた前記原材料の前記形状パラメータの値に許容範囲内で一致する前記原材料の前記識別名称の1つに分類される、ことが好ましい。   The name of the constituent raw material is classified into one of the identification names of the raw material in which the value of the shape parameter of the constituent raw material matches within an allowable range the value of the shape parameter of the raw material used in the learning data. Is preferably performed.

前記学習データに用いた前記原材料及び前記構成原材料は、結合様式及び該結合様式の比率が異なるポリマーである複数の合成ゴムを含み、
前記前処理では、前記結合様式の比率を前記材料特性として用いて、前記構成原材料の名称を、前記学習データに用いた前記原材料の前記識別名称の1つに分類する、ことが好ましい。
The raw materials and the constituent raw materials used for the learning data include a plurality of synthetic rubbers that are polymers having different bonding modes and ratios of the bonding modes,
In the preprocessing, it is preferable that a name of the constituent raw material is classified into one of the identification names of the raw material used in the learning data, using a ratio of the bonding mode as the material characteristic.

前記構成原材料の名称は、前記構成原材料における前記結合様式の比率と、前記学習データに用いた前記原材料における前記結合様式の比率との間の相関係数に基づいて、前記識別名称の1つに分類される、ことが好ましい。   The name of the constituent raw material is one of the identification names based on a correlation coefficient between the ratio of the bond mode in the constituent raw material and the ratio of the bond mode in the raw material used for the learning data. Preferably, they are classified.

前記構成原材料の名称は、前記学習データに用いた前記原材料のうち前記相関係数が所定値を越える原材料の識別名称に分類される、ことが好ましい。   It is preferable that the names of the constituent raw materials are classified into identification names of raw materials in which the correlation coefficient exceeds a predetermined value among the raw materials used for the learning data.

本発明の他の一態様は、予め設定された複数の原材料を組み合わせて配合した未加硫ゴム組成物から作製される加硫ゴム組成物の物性データを予測する物性データ予測装置である。当該装置は、
加硫ゴム組成物に用いる複数の原材料を、設定された配合比率で配合し、設定された加工条件で加工することにより作製される、複数の加硫ゴム組成物の物性データを学習用出力データとし、前記原材料それぞれの識別名称と、前記原材料それぞれの配合比率と、前記加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、前記物性データを機械学習する予測部と、
予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、該構成原材料の配合比率と、前記予測対象加硫ゴム組成物を作製するための加工における加工条件と、を用いて、前記予測対象加硫ゴム組成物の物性データを前記予測部に予測させるデータ操作部と、を備え、
前記データ操作部は、
前記構成原材料の名称を、前記構成原材料の材料特性に基づいて、前記予測部が前記学習用入力データとして用いた前記識別名称の1つに分類する前処理を行う前処理部と、
前記前処理部が、分類した前記識別名称の1つを、前記構成原材料に対応した名称として、前記予測部による予測のために前記予測部に入力する入力部と、
を備える。
Another embodiment of the present invention is a physical property data prediction device for predicting physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition in which a plurality of preset raw materials are combined and compounded. The device is
Output data for learning is obtained by blending a plurality of raw materials used in a vulcanized rubber composition at a set blending ratio and processing them under set processing conditions. And an identification name of each of the raw materials, a blending ratio of each of the raw materials, and information of each of the processing conditions, using a learning data with learning input data as a prediction unit for machine learning the physical property data. ,
The names of constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the predicted vulcanized rubber composition, the mixing ratio of the constituent raw materials, and the processing for producing the predicted vulcanized rubber composition And a processing condition, using a data operation unit that makes the prediction unit predict physical property data of the vulcanized rubber composition to be predicted,
The data operation unit includes:
A preprocessing unit that performs preprocessing of classifying the name of the constituent raw material into one of the identification names used as the learning input data by the prediction unit based on the material characteristics of the constituent raw material;
An input unit configured to input one of the identification names classified by the preprocessing unit to the prediction unit for prediction by the prediction unit, as a name corresponding to the constituent raw material;
Is provided.

上述の物性データ予測方法及び物性データ予測装置によれば、加硫ゴム組成物の物性データを、コンピュータに予測させる際に、効率よくかつ精度よく加硫ゴム組成物の物性データ(特性データ)を予測させることができる。   According to the physical property data prediction method and the physical property data predicting apparatus described above, when causing the computer to predict the physical property data of the vulcanized rubber composition, the physical property data (characteristic data) of the vulcanized rubber composition is efficiently and accurately calculated. Can be predicted.

(a)は、一実施形態の物性データ予測方法における予測モジュールに機械学習をさせるフローの一例を示す図であり、(b)は、機械学習した予測モジュールを用いて、物性データを予測するフローの一例を示す図である。(A) is a figure showing an example of a flow which makes a prediction module perform machine learning in a physical data prediction method of one embodiment, and (b) is a flow which predicts physical data using a prediction module which carried out machine learning. It is a figure showing an example of. 一実施形態の物性データ予測方法で用いるそれぞれの原材料を説明する図である。It is a figure explaining each raw material used by the physical-property data prediction method of one Embodiment. 一実施形態の物性データ予測装置の構成を説明する図である。It is a figure explaining composition of a physical property data prediction device of one embodiment.

以下、一実施形態の物性データ予測方法及び物性データ予測装置について詳細に説明する。   Hereinafter, a physical property data prediction method and a physical property data prediction apparatus according to an embodiment will be described in detail.

(物性データ予測方法の概略説明)
一実施形態の物性データ予測方法は、コンピュータに、複数の加硫ゴム組成物に関する物性データと要因データとの関連付けを機械学習させ、機械学習したコンピュータの予測モジュールを用いて、予測対象加硫ゴム組成物の物性データを予測する方法である。
図1(a)は、コンピュータの予測モジュールに機械学習をさせるフローの一例を示す図であり、図1(b)は、機械学習した予測モジュールを用いて、物性データを予測するフローの一例を示す図である。コンピュータは、メモリから呼び出したプログラムを起動することにより、前処理モジュールと予測モジュールを少なくとも形成する。
(Schematic explanation of physical property data prediction method)
Physical property data prediction method of one embodiment, the computer, the machine learning of the association between the physical property data and the factor data for a plurality of vulcanized rubber compositions, using a prediction module of the machine-learned computer, the vulcanized rubber to be predicted This is a method for predicting physical property data of a composition.
FIG. 1A is a diagram illustrating an example of a flow of causing a prediction module of a computer to perform machine learning, and FIG. 1B is an example of a flow of predicting physical property data using a prediction module that has performed machine learning. FIG. The computer forms at least the preprocessing module and the prediction module by activating the program called from the memory.

コンピュータの前処理モジュールは、機械学習のために、図1(a)に示すように、学習用の未加硫ゴムを含む原材料の配合情報、原材料から加工して加硫ゴム組成物を作製するための加工条件、及び作製した加硫ゴム組成物の物性データを取得する(ステップS10)。ここで、原材料とは、市販される1つの材料、1つの化学組成物で構成された化学組成物単体、あるいは、予め定めた組成比率の複数の化学組成物で構成されたもの、を含む。配合情報とは、加硫ゴム組成物における原材料それぞれの名称と、原材料それぞれの配合比率を含む。加工条件とは、例えば、未加硫ゴムを含む原材料を混ぜる混合機械装置の種類、混合する際の温度、混合する機械の混合回転数、混合圧力、及び、混合する機械への原材料の投入量合計量、を少なくとも1つ含む混合処理条件、あるいは、混合した未加硫ゴムを加硫するときの加硫温度、加硫時間、を少なくとも1つ含む加硫条件を含む。加硫ゴム組成物の物性データは、例えば、ゴム弾性、tanδ、比重、ムーニービス粘度、ムーニースコーチ、レオメータ測定結果、リュプケJIS硬度、モジュラス、破断強度、破断エネルギ、フィラー分散度、反撥弾性係数、定歪試験結果、摩耗試験結果、疲労試験結果、及びクラック成長特性の少なくとも1つを含む。   As shown in FIG. 1 (a), the pre-processing module of the computer processes the raw material including the unvulcanized rubber for learning and processing from the raw material to produce a vulcanized rubber composition, as shown in FIG. 1 (a). For processing and physical property data of the produced vulcanized rubber composition are obtained (Step S10). Here, the raw materials include one commercially available material, a chemical composition alone composed of one chemical composition, or a material composed of a plurality of chemical compositions having a predetermined composition ratio. The blending information includes the name of each raw material in the vulcanized rubber composition and the blending ratio of each raw material. The processing conditions include, for example, the type of mixing machine for mixing the raw materials including unvulcanized rubber, the temperature at the time of mixing, the number of rotations of the mixing machine, the mixing pressure, and the input amount of the raw materials to the mixing machine. And a vulcanization condition including at least one vulcanization temperature and vulcanization time when vulcanizing the mixed unvulcanized rubber. Physical properties data of the vulcanized rubber composition include, for example, rubber elasticity, tan δ, specific gravity, Mooney viscosity, Mooney scorch, rheometer measurement result, Lupke JIS hardness, modulus, breaking strength, breaking energy, filler dispersion, coefficient of rebound resilience, constant It includes at least one of a strain test result, a wear test result, a fatigue test result, and crack growth characteristics.

次に、前処理モジュールは、取得した複数の原材料の名称を、原材料の材料特性に基づいて、学習用入力データとするために、識別名称に分類する前処理を行う(ステップS12)。例えば、市販される1つの原材料は、1つの化学組成物である場合の他、複数の化学組成物の混合物である場合も多い。このため、前処理モジュールは、この複数の化学組成物の組成比率を材料特性として、組成比率の近似の程度に基づいて、原材料の名称を統合する。すなわち、近似する原材料を1つの識別名称として纏める。また、統合は、原材料の物性データ同士の近似の程度にしたがって行われてもよい。したがって、学習用入力データの原材料の数は、取得した原材料の数に比べて少なくなる。例えば、A社の原材料αとB社の原材料βが、組成比率の点で近似している場合、B社の原材料βの名称を、A社の原材料αの名称に統合する。原材料は、未加硫ゴムの他、フィラー、オイル等の添加材料も含む。   Next, the preprocessing module performs preprocessing of classifying the acquired names of the raw materials into identification names in order to use the obtained raw material names as learning input data based on the material characteristics of the raw materials (step S12). For example, one commercially available raw material is often a mixture of a plurality of chemical compositions in addition to a single chemical composition. For this reason, the pretreatment module integrates the names of the raw materials based on the degree of approximation of the composition ratios, using the composition ratios of the plurality of chemical compositions as the material characteristics. That is, similar raw materials are put together as one identification name. Further, the integration may be performed according to the degree of approximation between the physical property data of the raw materials. Therefore, the number of raw materials of the input data for learning is smaller than the number of acquired raw materials. For example, when the raw material α of Company A and the raw material β of Company B are similar in terms of the composition ratio, the name of the raw material β of Company B is integrated with the name of the raw material α of Company A. Raw materials include unvulcanized rubber as well as additional materials such as fillers and oils.

予測モジュールは、前処理して得られた学習用入力データと、加硫ゴム組成物の物性データ(学習用出力データ)と、を用いて機械学習をする(ステップS14)。すなわち、予測モジュールは、複数の加硫ゴム組成物に関する物性データを学習用出力データとし、前処理で作成された加硫ゴム組成物に用いる、前処理された原材料それぞれの識別名称と、原材料それぞれの配合比率と、加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、物性データを機械学習することにより、学習用入力データと学習用出力データを関連付ける。予測モジュールにおけるモデルの機械学習として、例えば、ニューラルネットワークによる深層学習(ディープラーニング)が用いられる。また、木構造を利用したランダムフォレストを用いることができる。モデルは、畳み込むニューラルネットワーク、スタッグドオートエンコーダ等、公知のモデルを用いることができる。
こうして、予測モジュールは、機械学習が完了する。
The prediction module performs machine learning using the learning input data obtained by the preprocessing and the physical property data (learning output data) of the vulcanized rubber composition (step S14). That is, the prediction module uses physical property data relating to a plurality of vulcanized rubber compositions as learning output data, and uses the vulcanized rubber composition created in the pre-processing, the identification name of each of the pre-processed raw materials, and the raw materials, respectively. The learning input data and the learning output data are associated by machine learning the physical property data using the learning data in which the mixing ratio and the respective processing condition information are used as the learning input data. As the machine learning of the model in the prediction module, for example, deep learning (deep learning) using a neural network is used. In addition, a random forest using a tree structure can be used. As the model, a known model such as a convolutional neural network or a stagged auto encoder can be used.
Thus, the prediction module completes the machine learning.

次に、機械学習した予測モジュールは、入力したデータに基づいて物性データを予測する。
まず、前処理モジュールは、予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、この構成原材料の配合比率と、予測対象加硫ゴム組成物を作製するための加工における加工条件の入力を受ける(ステップS20)。
入力を受けた前処理モジュールは、入力された構成原材料の名称を、構成原材料の材料特性に基づいて、学習用入力データとして用いた識別名称の1つに分類する前処理を行う(ステップS22)。このとき分類は、例えば、構成原材料の化学組成物の組成比率を材料特性として、この組成比率と、学習用入力データとした統合した原材料の名称の組成比率との近似の程度にしたがって行われる。また、分類は、構成原材料の物性データと、学習用入力データとして統合した原材料の物性データとの近似の程度にしたがって行われる。
このように、前処理モジュールは、構成原材料の名称を、学習用入力データとして用いた原材料の識別名称の1つに分類して、分類した識別名称における配合比率と加工条件とともに、予測モジュールに入力する。
予測モジュールは、入力された識別名称と、配合比率と、加工条件とを用いて、予測対象加硫ゴム組成物の物性データを予測する(ステップS24)。
Next, the machine learning-based prediction module predicts physical property data based on the input data.
First, the pretreatment module is configured to name the constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the predicted vulcanized rubber composition, the compounding ratio of the constituent raw materials, and the predicted vulcanized rubber composition. The input of processing conditions in the processing for manufacturing is received (step S20).
Upon receiving the input, the preprocessing module performs preprocessing for classifying the input constituent raw material names into one of the identification names used as the learning input data based on the material characteristics of the constituent raw materials (step S22). . At this time, the classification is performed, for example, using the composition ratio of the chemical composition of the constituent raw materials as a material characteristic, according to the degree of approximation between the composition ratio and the composition ratio of the name of the integrated raw material used as the learning input data. The classification is performed according to the degree of approximation between the physical property data of the constituent raw materials and the physical property data of the raw materials integrated as input data for learning.
As described above, the preprocessing module classifies the names of the constituent raw materials into one of the identification names of the raw materials used as the input data for learning, and inputs the names to the prediction module together with the mixing ratio and the processing conditions in the classified identification names. I do.
The prediction module predicts physical property data of the vulcanized rubber composition to be predicted using the input identification name, compounding ratio, and processing conditions (step S24).

このように、予測モジュールで物性データを予測する前に、予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称を、構成原材料の材料特性に基づいて、学習用入力データとして用いた識別名称の1つに分類する前処理を行い、分類した識別名称の1つを、構成原材料に対応した名称として、予測モジュールによる予測のために予測モジュールに入力する。このため、原材料毎の配合比率を用いて、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。   Thus, before predicting the physical property data in the prediction module, the name of the constituent raw material constituting the unvulcanized rubber composition before vulcanization of the vulcanized rubber composition to be predicted is based on the material properties of the constituent raw material. Performs preprocessing to classify into one of the identification names used as input data for learning, and inputs one of the classified identification names to the prediction module for prediction by the prediction module as a name corresponding to a constituent raw material. . For this reason, it is possible to efficiently and accurately predict physical property data (characteristic data) of the vulcanized rubber composition using the compounding ratio of each raw material.

前処理では、化学組成物の組成比率を材料特性として用いて、構成原材料の名称を識別名称の1つに分類する場合、組成比率が近似しているとき、原材料を製造したメーカ毎の異なる原材料の名称を、統合して1つの名称に纏めることができる。
一実施形態によれば、構成原材料の名称は、構成原材料における化学組成物の組成比率と、学習データに用いた原材料における化学組成物の組成比率との間の相関係数に基づいて、識別名称の1つに分類されることが好ましい。
In the pretreatment, when the names of the constituent raw materials are classified into one of the identification names using the composition ratio of the chemical composition as a material property, when the composition ratios are similar, different raw materials for each manufacturer that manufactured the raw materials Can be integrated into one name.
According to one embodiment, the names of the constituent raw materials are identified based on a correlation coefficient between the composition ratio of the chemical composition in the constituent raw materials and the composition ratio of the chemical composition in the raw materials used for the learning data. It is preferable to be classified into one of the following.

図2は、構成原材料Aの組成と、識別名称に対応する原材料B,Cの組成の一例を示す図である。このとき、構成原材料Aと原材料Bの組成比率の相関係数は、(a1・b1+a2・b2+a3・b3+a4・b4)/{(a1+a2+a3+a4(1/2)・(b1+b2+b3+b4(1/2)}であり、構成原材料Aと原材料Cの組成比率の相関係数は、(a1・c1+a2・c2+a3・c3+a4・c4)/{(a1+a2+a3+a4(1/2)・(c1+c2+c3+c4(1/2)}である。構成原材料Aと原材料Bの組成比率の相関係数が、構成原材料Aと原材料Cの組成比率の相関係数に比べて大きく、その値が所定の閾値を越える場合、構成材料Aの名称を原材料Bの識別名称とする。このように相関係数を用いて分類することにより、精度のよい分類ができ、ひいては、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。 FIG. 2 is a diagram showing an example of the composition of the constituent raw material A and the compositions of the raw materials B and C corresponding to the identification names. In this case, the correlation coefficient of the composition ratios of the constituent raw material A and raw materials B is, (a1 · b1 + a2 · b2 + a3 · b3 + a4 · b4) / {(a1 2 + a2 2 + a3 2 + a4 2) (1/2) · (b1 2 + B2 2 + b3 2 + b4 2 ) (1/2) }, and the correlation coefficient of the composition ratio between the constituent raw materials A and C is (a1 · c1 + a2 · c2 + a3 · c3 + a4 · c4) / {(a1 2 + a2 2 + a3). 2 + a4 2) (1/2) · (c1 2 + c2 2 + c3 2 + c4 2) is (1/2)}. If the correlation coefficient of the composition ratio of the constituent raw materials A and B is larger than the correlation coefficient of the composition ratio of the constituent raw materials A and C and the value exceeds a predetermined threshold, the name of the constituent material A is changed to B is the identification name. By performing classification using the correlation coefficient as described above, accurate classification can be performed, and thus, prediction of physical property data (characteristic data) of the vulcanized rubber composition can be performed efficiently and accurately. .

また、構成原材料及び学習データに用いた原材料は、組成比率が80%以上の主成分化学組成物を有する場合、構成原材料の名称は、学習データに用いた原材料のうち、構成原材料の主成分化学組成物の組成比率の、識別名称に対応する原材料の主成分化学組成物の組成比率に対する差分が5%以内となる原材料の識別名称に分類されることが好ましい。この場合においても、精度のよい分類ができ、ひいては、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。   When the constituent raw materials and the raw materials used for the learning data have a main component chemical composition having a composition ratio of 80% or more, the names of the constituent raw materials are the main constituent chemical components of the constituent raw materials among the raw materials used for the learning data. It is preferable that the composition ratio of the composition is classified into an identification name of the raw material in which a difference between the composition ratio of the main component chemical composition of the raw material corresponding to the identification name is within 5%. In this case as well, accurate classification can be performed, and prediction of the physical property data (characteristic data) of the vulcanized rubber composition can be performed efficiently and accurately.

また、一実施形態の前処理では、構成原材料の原材料物性データを材料特性として用いて、構成原材料の名称は、この構成原材料の原材料物性データと、学習データに用いた原材料の原材料物性データとの比較結果に基づいて、識別名称の1つに分類される、ことも好ましい。
材料物性データを複数種類測定し、測定した材料物性データを用いて、原材料を分類することができる。例えば、原材料物性データは、異なる複数種類の原材料物性値を含む場合、構成原材料の名称は、複数種類の原材料物性値と、学習データに用いた原材料における対応する種類の原材料物性値との間の相関係数に基づいて識別名称の1つに分類される、ことが好ましい。このように相関係数を用いて分類することにより、精度のよい分類ができ、ひいては、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。
Further, in the preprocessing of one embodiment, the raw material property data of the constituent raw materials are used as the material characteristics, and the names of the constituent raw materials are obtained by combining the raw material property data of the constituent raw materials and the raw material property data of the raw materials used in the learning data. It is also preferable that the information is classified into one of the identification names based on the comparison result.
A plurality of types of material property data are measured, and raw materials can be classified using the measured material property data. For example, when the raw material property data includes a plurality of different types of raw material property values, the names of the constituent raw materials are different between the plurality of types of raw material property values and the corresponding types of raw material property values in the raw materials used for the learning data. It is preferable that the data is classified into one of the identification names based on the correlation coefficient. By performing classification using the correlation coefficient as described above, accurate classification can be performed, and thus, prediction of physical property data (characteristic data) of the vulcanized rubber composition can be performed efficiently and accurately. .

一実施形態によれば、学習データに用いた原材料及び構成原材料は、形状パラメータによって形状が特定される材料を含む場合、前処理では、形状パラメータを材料特性として用いて、構成原材料の名称を、学習データに用いた原材料の識別名称の1つに分類することが好ましい。例えば構成原材料及び識別名称に対応する原材料として、カーボンブラックを用いる場合がある。カーボンブラックは、粒子で構成されており、粒子のサイズや粒子で作られるストラクチャによって、ゴムにおけるカーボンブラックの分散度に影響を与える。したがって、形状パラメータの値の差分が、所定値以下である場合、同じ原材料として取り扱うことができる。この点で、粒子のサイズやストラクチャを含む形状パラメータを分類するための材料特性として用いて、構成原材料の名称を、学習データに用いた原材料の識別名称の1つに分類することが好ましい。   According to one embodiment, when the raw material and the constituent raw material used for the learning data include a material whose shape is specified by the shape parameter, in the preprocessing, the name of the constituent raw material is used by using the shape parameter as a material property, It is preferable to classify as one of the identification names of the raw materials used for the learning data. For example, carbon black may be used as a raw material corresponding to a constituent raw material and an identification name. The carbon black is composed of particles, and the size of the particles and the structure formed by the particles affect the degree of dispersion of the carbon black in the rubber. Therefore, when the difference between the values of the shape parameters is equal to or less than the predetermined value, they can be handled as the same raw material. In this regard, it is preferable to classify the names of the constituent raw materials into one of the identification names of the raw materials used for the learning data by using the shape parameters including the particle size and the structure as the material characteristics for classification.

形状パラメータは、原材料及び構成原材料の形状、形状サイズ、あるいは形状のアスペクト比を含むことが好ましい。例えば、原材料の1つであるタルクは、板状のフィラーである。このような板状フィラーのアスペクト比(板形状の縦横比)は、ゴムの物性データに影響を与えることからアスペクト比は、形状パラメータとして含まれることが好ましい。
したがって、構成原材料の名称は、構成原材料の形状パラメータの値が、学習データに用いた原材料の形状パラメータの値に許容範囲内で一致する原材料の識別名称の1つに分類される、ことが好ましい。
The shape parameter preferably includes the shape, shape size, or shape aspect ratio of the raw material and constituent raw materials. For example, talc, which is one of the raw materials, is a plate-like filler. Since the aspect ratio (the aspect ratio of the plate shape) of such a plate-like filler affects the physical property data of rubber, the aspect ratio is preferably included as a shape parameter.
Therefore, it is preferable that the names of the constituent raw materials are classified into one of the identification names of the raw materials in which the values of the shape parameters of the constituent raw materials match the values of the shape parameters of the raw materials used in the learning data within an allowable range. .

一実施形態によれば、学習データに用いた原材料及び構成原材料は、結合様式及び結合様式の比率が異なるポリマー(合成ゴム)を含む場合、前処理では、結合様式の比率を材料特性として用いて、構成原材料の名称を、学習データに用いた原材料の識別名称の1つに分類する、ことが好ましい。例えば、合成ゴムのジエン系ゴムは、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴムを含む。例えば、スチレンゴムやイソプレンゴムは、cis、trans、ビニル等の異なる結合様式を含む。このような結合様式の比率を材料特性として用いて、構成原材料の名称を、学習データに用いた原材料の識別名称の1つに分類することで、効率よく原材料を分類することができ、ひいては、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。
例えば、構成原材料の名称は、構成原材料における結合様式の比率と、学習データに用いた原材料における結合様式の比率との間の相関係数に基づいて、識別名称の1つに分類される、ことが好ましい。上記構成原材料の名称は、この構成材料と原材料との間の上記相関係数が所定値以上である原材料の識別名称の1つに分類される。このように相関係数を用いて分類することにより、精度のよい分類ができ、ひいては、加硫ゴム組成物の物性データ(特性データ)を予測することを、効率よくかつ精度よく行なうことができる。構成原材料の名称は、構成原材料における上記相関係数が予め定めた閾値を越える原材料の識別名称に分類されることが好ましい。
According to an embodiment, when the raw materials and constituent raw materials used for the learning data include polymers (synthetic rubber) having different bonding modes and different bonding mode ratios, the pretreatment uses the bonding mode ratios as material characteristics. It is preferable to classify the names of the constituent raw materials into one of the identification names of the raw materials used for the learning data. For example, the diene rubber of synthetic rubber includes styrene butadiene rubber, isoprene rubber, and butadiene rubber. For example, styrene rubber and isoprene rubber include different bonding modes such as cis, trans, vinyl, and the like. By using the ratio of such a binding mode as a material property and classifying the names of the constituent raw materials into one of the identification names of the raw materials used in the learning data, the raw materials can be efficiently classified. Prediction of physical property data (characteristic data) of the vulcanized rubber composition can be performed efficiently and accurately.
For example, the names of the constituent raw materials are classified into one of the identification names based on the correlation coefficient between the ratio of the bonding style in the constituent raw materials and the ratio of the bonding style in the raw materials used for the learning data. Is preferred. The names of the constituent raw materials are classified into one of the identification names of the raw materials in which the correlation coefficient between the constituent materials and the raw materials is equal to or more than a predetermined value. By performing classification using the correlation coefficient as described above, accurate classification can be performed, and thus, prediction of physical property data (characteristic data) of the vulcanized rubber composition can be performed efficiently and accurately. . It is preferable that the names of the constituent raw materials are classified into the identification names of the constituent raw materials in which the correlation coefficient exceeds a predetermined threshold value.

図3は、このような予測方法を行う物性データ予測装置100の構成の一例を示す図である。物性データ予測装置100は、予測部102とデータ操作部104とを備える。
予測部102は、複数の加硫ゴム組成物の物性データを学習用出力データとし、原材料それぞれの識別名称と、原材料それぞれの配合比率と、加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、物性データを機械学習するように構成される。物性データを学習用出力データに用いる上記複数の加硫ゴム組成物は、加硫ゴム組成物に用いる複数の原材料を、設定された配合比率で配合し、設定された加工条件で加工することにより作製される。
FIG. 3 is a diagram illustrating an example of the configuration of the physical property data prediction device 100 that performs such a prediction method. The physical property data prediction device 100 includes a prediction unit 102 and a data operation unit 104.
The prediction unit 102 uses the physical property data of the plurality of vulcanized rubber compositions as learning output data, and identifies the identification name of each raw material, the blending ratio of each raw material, and the information of each processing condition as learning input data. It is configured to perform machine learning on physical property data using learning data to be executed. The plurality of vulcanized rubber compositions using the physical property data as the learning output data are obtained by blending a plurality of raw materials used for the vulcanized rubber composition at a set blending ratio and processing under the set processing conditions. It is made.

予測部102は、コンピュータ内に形成される予測モジュールである。
データ操作部104は、予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、この構成原材料の配合比率と、予測対象加硫ゴム組成物を作製するための加工における加工条件と、を用いて、予測対象加硫ゴム組成物の物性データを予測部102に予測させるように予測部102を制御するように構成される。データ操作部104は、コンピュータ内に形成されるデータ操作モジュールである。
The prediction unit 102 is a prediction module formed in the computer.
The data operation unit 104 prepares the names of constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the vulcanized rubber composition to be predicted, the mixing ratio of the constituent raw materials, and the vulcanized rubber composition to be predicted. The prediction unit 102 is configured to control the prediction unit 102 to cause the prediction unit 102 to predict the physical property data of the vulcanized rubber composition to be predicted using the processing conditions in the processing for performing the processing. The data operation unit 104 is a data operation module formed in the computer.

このデータ操作部104は、詳細には、前処理部104aと、入力部104bと、を備える。
前処理部104aは、構成原材料の名称を、構成原材料の材料特性に基づいて、予測部が学習用入力データとして用いた識別名称の1つに分類する前処理を行うように構成される。前処理部104aは、コンピュータ内に形成される予測モジュールである。
入力部104bは、前処理部104aが分類した前記識別名称の1つを、構成原材料に対応した名称として、予測部102による予測のために予測部102に入力するように構成される。入力部104bは、コンピュータ内に形成される入力モジュールである。
データ操作部104は、予測部102を機械学習させるために、前処理部104aが取得した複数の原材料の名称を、原材料の材料特性に基づいて、学習用入力データとして統合することができる。
The data operation unit 104 includes a preprocessing unit 104a and an input unit 104b in detail.
The preprocessing unit 104a is configured to perform preprocessing for classifying the names of the constituent raw materials into one of the identification names used as input data for learning by the prediction unit based on the material characteristics of the constituent raw materials. The pre-processing unit 104a is a prediction module formed in the computer.
The input unit 104b is configured to input one of the identification names classified by the preprocessing unit 104a to the prediction unit 102 for prediction by the prediction unit 102 as a name corresponding to a constituent raw material. The input unit 104b is an input module formed in a computer.
The data operation unit 104 can integrate the names of a plurality of raw materials acquired by the preprocessing unit 104a as learning input data based on the material characteristics of the raw materials so that the prediction unit 102 performs machine learning.

構成原材料の名称、配合比率、及び加工条件を用いて物性データを予測した結果に対して実際の物性データを計測等により取得した場合、この構成原材料の名称、配合比率、及び加工条件を学習用入力データ、実際の物性データを学習用出力データとして用いて、予測部102に機械学習させるようにしてもよい。
以下、より具体的な例を挙げて説明する。
When the actual physical property data is obtained by measurement etc. for the result of predicting the physical property data using the name of the constituent raw materials, the mixing ratio, and the processing conditions, the name of this constituent raw material, the mixing ratio, and the processing conditions are used for learning. Using the input data and the actual physical property data as learning output data, the prediction unit 102 may be made to perform machine learning.
Hereinafter, a more specific example will be described.

(ゴム材料の前処理の一例)
5種類のゴム材料を用いて、前処理の効果を確認するために、前処理の有無に対する予測対象加硫ゴム組成物の物性の予測精度を調べた。予測精度は、実際に作製した加硫ゴム組成物の物性を実測して、実測結果に予測結果がどの程度近づくかを調べた。
5種類のゴム材料は、A社〜D社の商品名A1,A2,B1,C1,D1とし、充填材として、E社の商品名E1のカーボンブラックを用い、これ以外に配合剤I〜Nと促進剤Fとを用いた。混合回数を2回に揃えた。
(Example of rubber material pretreatment)
In order to confirm the effect of the pretreatment using five types of rubber materials, the prediction accuracy of the physical properties of the vulcanized rubber composition to be predicted with or without the pretreatment was examined. The prediction accuracy was measured by actually measuring the physical properties of the vulcanized rubber composition produced, and examining how close the predicted result was to the measured result.
The five types of rubber materials are A1, A2, B1, C1, and D1 of company A to company D, and carbon black of company E is used as a filler. And accelerator F were used. The number of times of mixing was adjusted to two times.

下記表1には、ゴム材料の商品名と、原材料物性データを示している。
ゴム材料は、SBR(スチレン・ブタジエンゴム)あるいはブタジエンゴムである。下記表1中、“St”は、ゴム材料全体に対するスチレンの重量%を示す。“cis”、“trans”、及び“Vinyl”は、それぞれの結合様式の比率(重量%)を示す(“cis”、“trans”、及び“Vinyl”の各値の合計が100%となる)。“Tg”は、ガラス転移温度を示し、“MW”は、重量平均分子量を示し、“MW/MN”は、分子量分布を示す値を示す。
Table 1 below shows the names of the rubber materials and the physical property data of the raw materials.
The rubber material is SBR (styrene-butadiene rubber) or butadiene rubber. In Table 1 below, “St” indicates the weight% of styrene based on the whole rubber material. “Cis”, “trans”, and “Vinyl” indicate the ratio (% by weight) of each binding mode (the sum of the values of “cis”, “trans”, and “Vinyl” becomes 100%) . “Tg” indicates a glass transition temperature, “MW” indicates a weight average molecular weight, and “MW / MN” indicates a value indicating a molecular weight distribution.

Figure 2020038493
Figure 2020038493

上記表1では、商品名A1,B1,C1は、“St”の重量%、“cis”、“trans”、及び“Vinyl”の比率もほぼ同一であり、“Tg”、“MW”、及び“MW/MN”も略同じ物性値を示している。一方、商品名D1,A2は、“cis”、“trans”、及び“Vinyl”の比率もほぼ同一であり、“Tg”、“MW”、及び“MW/MN”も略同じ物性値を示しているが、商品名A1,B1,C1の結合様式の比率及び“Tg”、“MW”、及び“MW/MN”の物性値と異なる。例えば、“Tg”は50℃程度異なる。
このことから、商品名A1,B1,C1を1つの識別名称として用いて、予測モジュールに学習させることが好ましい。さらに、商品名D1,A2を1つの識別名称として用いて、予測モジュールに学習させることが好ましい。
1つの識別名所にまとめるか否かは、組成比率あるいは物性値の相関係数を算出し、この相関係数の大小によって、1つの識別名称として纏めることができる。
本例でも、結合様式の3つの比率及び/あるいは“Tg”、“MW”、及び“MW/MN”の3つの物性値の相関係数を算出し、この相関係数の大小によって、商品名A1,B1,C1を1つの識別名称としてまとめ、商品名D1,A2を1つの識別名称として纏めることができる。
In Table 1 above, the trade names A1, B1, and C1 have almost the same weight percentage of “St”, the proportions of “cis”, “trans”, and “Vinyl”, and “Tg”, “MW”, and “MW / MN” also shows substantially the same physical property values. On the other hand, in the trade names D1 and A2, the ratios of “cis”, “trans”, and “Vinyl” are almost the same, and “Tg”, “MW”, and “MW / MN” show substantially the same physical property values. However, they are different from the ratios of the bonding modes of the trade names A1, B1, and C1 and the physical property values of “Tg”, “MW”, and “MW / MN”. For example, “Tg” differs by about 50 ° C.
For this reason, it is preferable to make the prediction module learn using the product names A1, B1, and C1 as one identification name. Further, it is preferable that the prediction module learns using the product names D1 and A2 as one identification name.
Whether or not to be combined into one identification landmark can be determined by calculating a correlation coefficient of a composition ratio or a physical property value, and can be integrated as one identification name according to the magnitude of the correlation coefficient.
Also in this example, the correlation coefficient of the three ratios of the binding mode and / or the three physical property values of “Tg”, “MW”, and “MW / MN” is calculated. A1, B1, and C1 can be put together as one identification name, and the product names D1 and A2 can be put together as one identification name.

下記表2,3には、原材料の配合の組み合わせの例を示す。このような配合の組み合わせで加硫ゴム組成物を作製する場合、以下のようにして加硫ゴム組成物を作製した。
加硫促進剤等の加硫系配合剤以外の配合剤とゴム材料を1.7リットルの密閉式バンバリーミキサーを用いて150℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得る。さらに、上記バンバリーミキサーを用いて、最終的に得られたマスターバッチに硫黄および加硫促進剤を混合し、未加硫ゴム組成物を得る。得られた未加硫ゴム組成物を所定の金型中で、140℃〜190℃、で10分〜90分間プレス加硫して加硫ゴム試験片を調製する。以降に示す表において空欄の部分は、対応する材料がないことを意味する。
Tables 2 and 3 below show examples of combinations of raw materials. In the case of producing a vulcanized rubber composition by such a combination of blending, a vulcanized rubber composition was produced as follows.
A compounding agent other than a vulcanizing compounding agent such as a vulcanization accelerator and a rubber material are heated to about 150 ° C. using a 1.7-liter closed Banbury mixer, mixed for 5 minutes, and then released. Cool to obtain a masterbatch. Further, sulfur and a vulcanization accelerator are mixed with the finally obtained master batch using the Banbury mixer to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition is press-vulcanized in a predetermined mold at 140 ° C. to 190 ° C. for 10 minutes to 90 minutes to prepare a vulcanized rubber test piece. In the following tables, blank sections mean that there is no corresponding material.

Figure 2020038493
Figure 2020038493

Figure 2020038493
Figure 2020038493

ゴム材料の商品名A1、A2、B1〜D1を前処理しない200個の学習データを機械学習させた予測モジュールに、表2,3に示す配合1〜12のそれぞれに対して、加硫ゴム組成物の物性データを予測させた。物性データは、ゴム硬度、破断強度、破断伸び、及び粘弾性特性のtanδ(60℃)である。tanδ(60℃)は、加硫ゴム組成物の試験片について、JISK6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度60℃の条件で測定した値である。ゴム硬度は、加硫ゴム組成物の試験片を、JIS K6253に準拠しデュロメータのタイプAにより温度20℃で測定した値である。   A prediction module that machine-learned 200 pieces of learning data without pre-processing the rubber material trade names A1, A2, and B1 to D1 was used to obtain a vulcanized rubber composition for each of Formulations 1 to 12 shown in Tables 2 and 3. The physical property data of the object was predicted. Physical property data are rubber hardness, breaking strength, breaking elongation, and tan δ (60 ° C.) of viscoelastic properties. The tan δ (60 ° C.) was determined for a test piece of the vulcanized rubber composition using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisaku-sho, Ltd.) in accordance with JIS K6394: 2007, with an elongation and deformation ratio of 10% ± 2% and a vibration frequency. This is a value measured under the conditions of 20 Hz and a temperature of 60 ° C. The rubber hardness is a value obtained by measuring a test piece of a vulcanized rubber composition at a temperature of 20 ° C. using a durometer type A in accordance with JIS K6253.

一方、前処理により、ゴム材料の商品名A1,B1,C1を1つの識別名称(商品名A1)とし、ゴム材料の商品名D1,A2を1つの識別名称(商品名D1)とした。
下記表4,5には、配合1〜12を示す。
On the other hand, the product names A1, B1, and C1 of the rubber material were made into one identification name (product name A1), and the product names D1 and A2 of the rubber material were made one identification name (product name D1) by the pre-processing.
Tables 4 and 5 below show formulations 1 to 12.

Figure 2020038493
Figure 2020038493

Figure 2020038493
Figure 2020038493

ゴム材料の商品名A1、A2、B1〜D1を前処理した200個の学習データを機械学習させた予測モジュールに、表4,5に示す前処理した配合1〜12のそれぞれに対して、加硫ゴム組成物の物性データを予測させた。物性データは、ゴム硬度、破断強度、破断伸び、及び粘弾性特性のtanδ(60℃)である。   A prediction module that machine-learned 200 learning data obtained by pre-processing the rubber material product names A1, A2, and B1 to D1 was added to each of the pre-processed formulations 1 to 12 shown in Tables 4 and 5. The physical property data of the vulcanized rubber composition was predicted. Physical property data are rubber hardness, breaking strength, breaking elongation, and tan δ (60 ° C.) of viscoelastic properties.

前処理をなしの場合の物性データの予測結果と、前処理ありの場合の物性データの予測結果の、実測結果に対する比率の平均値を下記表6に示す。比率が1.00に近い程、予測結果が実測結果に近いことを意味する。   Table 6 below shows the average value of the ratio of the prediction result of the physical property data without the pre-processing and the prediction result of the physical property data with the pre-processing to the actual measurement result. The closer the ratio is to 1.00, the closer the prediction result is to the actual measurement result.

Figure 2020038493
Figure 2020038493

表6より、前処理ありの場合の物性データの破断強度、破断伸び、及びtanδ(60℃)の比率が、前処理なしの場合の破断強度、破断伸び、及びtanδ(60℃)の比率に較べて、1.00に近いことがわかる。   From Table 6, the ratio of the breaking strength, breaking elongation, and tan δ (60 ° C.) of the physical property data with the pre-treatment was changed to the ratio of the breaking strength, breaking elongation, and tan δ (60 ° C.) without the pre-treatment. In comparison, it turns out that it is close to 1.00.

(充填材の前処理の一例)
5種類の充填材を用いて、前処理の効果を確認するために、前処理の有無に対する予測対象加硫ゴム組成物の物性の予測精度を調べた。予測精度は、実際に作製した加硫ゴム組成物の物性を実測して、実測結果に予測結果がどの程度近づくかを調べた。
加硫ゴム組成物は、ゴム材料A1(表1参照)を固定して、5種類の充填材の配合を変更した。充填材は、E社〜G社の商品名E1,E2,F1,G1,G2のカーボンブラックを用い、これ以外に配合剤I〜Nと促進剤Fとを用いた。
(Example of pretreatment of filler)
In order to confirm the effect of the pretreatment using five types of fillers, the prediction accuracy of the physical properties of the vulcanized rubber composition to be predicted with or without the pretreatment was examined. The prediction accuracy was measured by actually measuring the physical properties of the vulcanized rubber composition produced, and examining how close the predicted result was to the measured result.
In the vulcanized rubber composition, the rubber material A1 (see Table 1) was fixed, and the composition of the five types of fillers was changed. As the filler, carbon blacks having brand names E1, E2, F1, G1, and G2 of companies E to G were used, and in addition, ingredients I to N and accelerator F were used.

下記表7には、充填材の商品名と、その原材料物性データを示している。
物性値1〜4は、カーボンブラックの窒素吸着量、吸油量、着色力等のカーボンブラックの比表面積、粒子径の指標となる物性値である。
Table 7 below shows the trade names of the fillers and their raw material property data.
Physical property values 1 to 4 are physical property values which are indicators of carbon black specific surface area and particle diameter such as nitrogen adsorption amount, oil absorption amount and coloring power of carbon black.

Figure 2020038493
Figure 2020038493

上記表7では、商品名E1,F1,G1は、略同じ物性値1〜4を示し、商品名G2、E2は略同じ物性値1〜4を示しているが、商品名E1,F1,G1の物性値と、商品名G2、E2の物性値は、大きく異なる
このことから、商品名E1,F1,G1を1つの識別名称として用いて、予測モジュールに学習させることが好ましい。さらに、商品名G2,E2を1つの識別名称として用いて、予測モジュールに学習させることが好ましい。
1つにまとめるか否かは、物性値1〜4の相関係数を算出し、この相関係数の大小によって、商品名E1,F1,G1を1つの識別名称としてまとめ、商品名G2,E2を1つの識別名称として纏めることができる。
In Table 7, the trade names E1, F1, and G1 indicate substantially the same physical property values 1 to 4, and the trade names G2 and E2 indicate the substantially same physical property values 1 to 4. Therefore, it is preferable that the prediction module learns using the product names E1, F1, and G1 as one identification name. Further, it is preferable that the prediction module learns using the product names G2 and E2 as one identification name.
To determine whether to combine them into one, the correlation coefficients of the physical property values 1 to 4 are calculated, and the trade names E1, F1, and G1 are collected as one identification name, and the trade names G2, E2 As one identification name.

下記表8,9には、原材料の配合の組み合わせの例を示す。このような配合の組み合わせで加硫ゴム組成物を作製する場合、以下のようにして加硫ゴム組成物を作製した。
加硫促進剤等の加硫系配合剤以外の配合剤とゴム材料を1.7リットルの密閉式バンバリーミキサーを用いて150℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得る。さらに、上記バンバリーミキサーを用いて、最終的に得られたマスターバッチに硫黄および加硫促進剤を混合し、未加硫ゴム組成物を得る。得られた未加硫ゴム組成物を所定の金型中で、140℃〜190℃、で10分〜90分間プレス加硫して加硫ゴム試験片を調製する。
Tables 8 and 9 below show examples of combinations of raw material combinations. In the case of producing a vulcanized rubber composition by such a combination of blending, a vulcanized rubber composition was produced as follows.
A compounding agent other than a vulcanizing compounding agent such as a vulcanization accelerator and a rubber material are heated to about 150 ° C. using a 1.7-liter closed Banbury mixer, mixed for 5 minutes, and then released. Cool to obtain a masterbatch. Further, sulfur and a vulcanization accelerator are mixed with the finally obtained master batch using the Banbury mixer to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition is press-vulcanized in a predetermined mold at 140 ° C. to 190 ° C. for 10 minutes to 90 minutes to prepare a vulcanized rubber test piece.

Figure 2020038493
Figure 2020038493

Figure 2020038493
Figure 2020038493

充填材の商品名E1、E2、F1、G1、G2を前処理しなかった学習データを機械学習させた予測モジュールに、表8,9に示す配合1〜14のそれぞれに対して、加硫ゴム組成物の物性データを予測させた。物性データは、ゴム硬度、破断強度、破断伸び、及び粘弾性特性のtanδ(60℃)である。   The prediction module which machine-learned the learning data which did not pre-process the filler product names E1, E2, F1, G1, and G2 was used for the vulcanized rubber for each of Formulations 1 to 14 shown in Tables 8 and 9. The physical property data of the composition was predicted. Physical property data are rubber hardness, breaking strength, breaking elongation, and tan δ (60 ° C.) of viscoelastic properties.

一方、充填材の商品名E1,F1,G1を1つの識別名称(商品名E1)とし、充填材の商品名E2,G2を1つの識別名称(商品名G2)とした。
下記表10,11には、配合1〜14を示す。
On the other hand, the product names E1, F1, and G1 of the filler are one identification name (product name E1), and the product names E2 and G2 of the filler are one identification name (product name G2).
Tables 10 and 11 below show formulations 1 to 14.

Figure 2020038493
Figure 2020038493

Figure 2020038493
Figure 2020038493

充填材の商品名E1、E2、F1,G1,G2を前処理した学習データを機械学習させた予測モジュールに、表10,11に示す前処理した配合1〜14のそれぞれに対して、加硫ゴム組成物の物性データを予測させた。物性データは、ゴム硬度、破断強度、破断伸び、及び粘弾性特性のtanδ(60℃)である。tanδ(60℃)は、加硫ゴム組成物の試験片について、JISK6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度60℃の条件で測定した値である。ゴム硬度は、加硫ゴム組成物の試験片を、JIS K6253に準拠しデュロメータのタイプAにより温度20℃で測定した値である。   A prediction module that machine-learned learning data obtained by pre-processing the filler product names E1, E2, F1, G1, and G2 was vulcanized for each of the pre-processed formulations 1 to 14 shown in Tables 10 and 11. The physical property data of the rubber composition was predicted. Physical property data are rubber hardness, breaking strength, breaking elongation, and tan δ (60 ° C.) of viscoelastic properties. The tan δ (60 ° C.) was determined for a test piece of the vulcanized rubber composition using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisaku-sho, Ltd.) in accordance with JIS K6394: 2007, with an elongation and deformation ratio of 10% ± 2% and a vibration frequency. This is a value measured under the conditions of 20 Hz and a temperature of 60 ° C. The rubber hardness is a value obtained by measuring a test piece of a vulcanized rubber composition at a temperature of 20 ° C. using a durometer type A in accordance with JIS K6253.

前処理なしの場合の物性データの予測結果と、前処理ありの場合の物性データの予測結果の、実測結果に対する比率の平均値を下記表12に示す。比率が1.00に近い程、予測結果が実測結果に近いことを示す。   Table 12 below shows the average of the ratio of the prediction result of the physical property data without pre-processing and the prediction result of the physical property data with pre-processing to the actual measurement result. The closer the ratio is to 1.00, the closer the prediction result is to the actual measurement result.

Figure 2020038493
Figure 2020038493

表12より、前処理ありの場合の物性データの破断強度、破断伸び、及びtanδ(60℃)の比率が、前処理なしの場合の破断強度、破断伸び、及びtanδ(60℃)の比率に較べて、1.00に近いことがわかる。
これより、前処理の効果は明らかである。
このような前処理は、ゴム材料及び充填材のような異なるグループの原材料二つに対して同時に前処理を行って予測モジュールに予測させることもできる。
From Table 12, the ratio of the breaking strength, breaking elongation, and tan δ (60 ° C.) of the physical property data with the pretreatment to the ratio of the breaking strength, breaking elongation, and tan δ (60 ° C.) without the pretreatment are shown. In comparison, it turns out that it is close to 1.00.
From this, the effect of the pretreatment is clear.
Such a pre-processing may be performed by simultaneously performing pre-processing on two raw materials of different groups, such as a rubber material and a filler, and having the prediction module predict the same.

このように、加硫ゴム組成物の物性データをコンピュータが予測する際に、原材料毎の配合比率あるいは物性値を用いて、加硫ゴム組成物の物性データ(特性データ)を効率よくかつ精度よく予測することができる。   As described above, when the computer predicts the physical property data of the vulcanized rubber composition, the physical property data (characteristic data) of the vulcanized rubber composition is efficiently and accurately used by using the mixing ratio or the physical property value of each raw material. Can be predicted.

以上、本発明の物性データ予測方法及び物性データ予測装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよいのはもちろんである。   As described above, the physical property data prediction method and the physical property data prediction apparatus of the present invention have been described in detail. However, the present invention is not limited to the above embodiment, and various improvements and changes may be made without departing from the gist of the present invention. Of course it is good.

100 物性データ予測装置
102 予測部
104 データ操作部
104a 前処理部
104b 入力部
Reference Signs List 100 Physical property prediction device 102 Prediction unit 104 Data operation unit 104a Preprocessing unit 104b Input unit

Claims (13)

予め設定された複数の原材料を組み合わせて配合した未加硫ゴム組成物から作製される加硫ゴム組成物の物性データを、コンピュータに予測させる物性データ予測方法であって、
加硫ゴム組成物に用いる複数の原材料を、設定された配合比率で配合し、設定された加工条件で加工することにより作製される複数の加硫ゴム組成物に関する物性データを学習用出力データとし、前記加硫ゴム組成物における前記原材料それぞれの識別名称と、前記原材料それぞれの配合比率と、前記加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、前記物性データをコンピュータ内の予測モジュールに機械学習させるステップと、
予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、該構成原材料の配合比率と、前記予測対象加硫ゴム組成物を作製するための加工における加工条件と、を用いて、前記予測対象加硫ゴム組成物の物性データを前記予測モジュールに予測させるステップと、
前記予測モジュールに前記予測対象加硫ゴム組成物の物性データを予測させるステップの前に、
前記構成原材料の名称を、前記構成原材料の材料特性に基づいて、コンピュータに前記学習用入力データとして用いた前記識別名称の1つに分類する前処理を行わせるステップと、
前記予測モジュールによる予測のために、コンピュータに、分類した前記識別名称の1つを、前記構成原材料に対応した名称として前記予測モジュールに入力させるステップと、
を備えることを特徴とする物性データ予測方法。
Physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition blended by combining a plurality of raw materials set in advance, a physical property data prediction method for making a computer predict,
A plurality of raw materials used for the vulcanized rubber composition are blended at a set blending ratio, and physical property data on a plurality of vulcanized rubber compositions produced by processing under the set processing conditions are used as learning output data. The identification data of each of the raw materials in the vulcanized rubber composition, the compounding ratio of each of the raw materials, and information of each of the processing conditions, using the learning data as learning input data, the physical property data, Machine learning a prediction module in a computer;
The names of constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the predicted vulcanized rubber composition, the mixing ratio of the constituent raw materials, and the processing for producing the predicted vulcanized rubber composition Using processing conditions, the step of causing the prediction module to predict the physical property data of the vulcanized rubber composition to be predicted,
Before the step of causing the prediction module to predict the physical property data of the vulcanized rubber composition to be predicted,
Causing the computer to perform a pre-process of classifying the name of the constituent raw material into one of the identification names used as the learning input data, based on the material characteristics of the constituent raw material;
Causing the computer to input one of the classified identification names to the prediction module as a name corresponding to the constituent raw material for the prediction by the prediction module;
A physical property data prediction method comprising:
前記構成原材料の名称は、前記構成原材料の原材料物性データを前記材料特性として用いて、前記構成原材料の原材料物性データと前記学習データに用いた前記原材料の原材料物性データとの比較結果に基づいて、前記識別名称の1つに分類される、請求項1に記載の物性データ予測方法。   The name of the constituent raw material, using raw material physical property data of the constituent raw material as the material property, based on a comparison result of raw material physical property data of the constituent raw material and raw material physical property data of the raw material used for the learning data, The physical property data prediction method according to claim 1, wherein the physical property data is classified into one of the identification names. 前記原材料物性データは、異なる複数種類の原材料物性値を含み、
前記構成原材料の名称は、前記複数種類の原材料物性値と、前記学習データに用いた前記原材料における対応する種類の原材料物性値との間の相関係数に基づいて前記識別名称の1つに分類される、請求項2に記載の物性データ予測方法。
The raw material property data includes a plurality of different types of raw material property values,
The names of the constituent raw materials are classified into one of the identification names based on a correlation coefficient between the physical property values of the plurality of types of raw materials and the physical property values of the corresponding types of the raw materials used in the learning data. 3. The physical property data prediction method according to claim 2, wherein the method is performed.
前記学習データに用いた前記原材料及び前記予測対象加硫ゴム組成物における前記構成原材料は、複数の化学組成物の混合物であり、
前記前処理では、前記化学組成物の組成比率を前記材料特性として用いて、前記構成原材料の名称を前記識別名称の1つに分類する、請求項1〜3のいずれか1項に記載の物性データ予測方法。
The raw material used for the learning data and the constituent raw material in the predicted vulcanized rubber composition is a mixture of a plurality of chemical compositions,
The physical property according to any one of claims 1 to 3, wherein, in the pretreatment, a name of the constituent raw material is classified into one of the identification names by using a composition ratio of the chemical composition as the material property. Data prediction method.
前記構成原材料の名称は、前記構成原材料における前記化学組成物の組成比率と、前記学習データに用いた前記原材料における前記化学組成物の組成比率との間の相関係数に基づいて前記識別名称の1つに分類される、請求項4に記載の物性データ予測方法。   The name of the constituent raw material, the composition ratio of the chemical composition in the constituent raw material, the identification name of the identification name based on the correlation coefficient between the composition ratio of the chemical composition in the raw material used for the learning data The physical property data prediction method according to claim 4, wherein the physical property data is classified into one. 前記構成原材料及び前記学習データに用いた前記原材料は、前記組成比率が80%以上の主成分化学組成物を有し、
前記構成原材料の名称は、前記学習データに用いた前記原材料のうち、前記構成原材料の前記主成分化学組成物の組成比率の、前記原材料の前記主成分化学組成物の組成比率に対する差分が5%以内となる原材料の識別名称に分類される、請求項4に記載の物性データ予測方法。
The constituent raw materials and the raw materials used for the learning data have a main component chemical composition having the composition ratio of 80% or more,
The name of the constituent raw material is such that, among the raw materials used for the learning data, the difference between the composition ratio of the main component chemical composition of the constituent raw material and the composition ratio of the main component chemical composition of the raw material is 5%. The physical property data prediction method according to claim 4, wherein the physical property data is classified into identification names of raw materials falling within the range.
前記学習データに用いた前記原材料及び前記構成原材料は、形状パラメータによって形状が特定される材料を含み、
前記前処理では、前記形状パラメータを前記材料特性として用いて、前記構成原材料の名称を、前記学習データに用いた前記原材料の前記識別名称の1つに分類する、請求項1〜6のいずれか1項に記載の物性データ予測方法。
The raw material and the constituent raw materials used for the learning data include a material whose shape is specified by a shape parameter,
7. The pre-processing according to claim 1, wherein the name of the constituent raw material is classified into one of the identification names of the raw material used for the learning data, using the shape parameter as the material characteristic. Item 2. The physical property data prediction method according to Item 1.
前記形状パラメータは、前記原材料及び前記構成原材料の形状、形状サイズ、あるいは形状のアスペクト比を含む、請求項7に記載に記載の物性データ予測方法。   The physical property data prediction method according to claim 7, wherein the shape parameter includes a shape, a shape size, or an aspect ratio of the shape of the raw material and the constituent raw material. 前記構成原材料の名称は、前記構成原材料の前記形状パラメータの値が、前記学習データに用いた前記原材料の前記形状パラメータの値に許容範囲内で一致する前記原材料の前記識別名称の1つに分類される、請求項7または8に記載の物性データ予測方法。   The name of the constituent raw material is classified into one of the identification names of the raw material in which the value of the shape parameter of the constituent raw material matches within an allowable range the value of the shape parameter of the raw material used in the learning data. 9. The physical property data prediction method according to claim 7, wherein the method is performed. 前記学習データに用いた前記原材料及び前記構成原材料は、結合様式及び該結合様式の比率が異なるポリマーである複数の合成ゴムを含み、
前記前処理では、前記結合様式の比率を前記材料特性として用いて、前記構成原材料の名称を、前記学習データに用いた前記原材料の前記識別名称の1つに分類する、請求項1〜9のいずれか1項に記載の物性データ予測方法。
The raw materials and the constituent raw materials used for the learning data include a plurality of synthetic rubbers that are polymers having different bonding modes and ratios of the bonding modes,
The preprocessing, wherein the name of the constituent raw material is classified into one of the identification names of the raw material used for the learning data, using the ratio of the bonding mode as the material characteristic. The physical property data predicting method according to any one of the preceding claims.
前記構成原材料の名称は、前記構成原材料における前記結合様式の比率と、前記学習データに用いた前記原材料における前記結合様式の比率との間の相関係数に基づいて、前記識別名称の1つに分類される、請求項10に記載の物性データ予測方法。   The name of the constituent raw material is one of the identification names based on a correlation coefficient between the ratio of the bond mode in the constituent raw material and the ratio of the bond mode in the raw material used for the learning data. The physical property data prediction method according to claim 10, which is classified. 前記構成原材料の名称は、前記学習データに用いた前記原材料のうち前記相関係数が所定値を越える原材料の識別名称に分類される、請求項3、5、および11のいずれか1項に記載の物性データ予測方法。   The name of the constituent raw material is classified as an identification name of a raw material in which the correlation coefficient exceeds a predetermined value among the raw materials used for the learning data. Physical property data prediction method. 予め設定された複数の原材料を組み合わせて配合した未加硫ゴム組成物から作製される加硫ゴム組成物の物性データを予測する物性データ予測装置であって、
加硫ゴム組成物に用いる複数の原材料を、設定された配合比率で配合し、設定された加工条件で加工することにより作製される、複数の加硫ゴム組成物の物性データを学習用出力データとし、前記原材料それぞれの識別名称と、前記原材料それぞれの配合比率と、前記加工条件のそれぞれの情報と、を学習用入力データとする学習データを用いて、前記物性データを機械学習する予測部と、
予測対象加硫ゴム組成物の加硫前の未加硫ゴム組成物を構成する構成原材料の名称と、該構成原材料の配合比率と、前記予測対象加硫ゴム組成物を作製するための加工における加工条件と、を用いて、前記予測対象加硫ゴム組成物の物性データを前記予測部に予測させるデータ操作部と、を備え、
前記データ操作部は、
前記構成原材料の名称を、前記構成原材料の材料特性に基づいて、前記予測部が前記学習用入力データとして用いた前記識別名称の1つに分類する前処理を行う前処理部と、
前記前処理部が、分類した前記識別名称の1つを、前記構成原材料に対応した名称として、前記予測部による予測のために前記予測部に入力する入力部と、
を備えることを特徴とする物性データ予測装置。
A physical property data prediction device that predicts physical property data of a vulcanized rubber composition produced from an unvulcanized rubber composition that is compounded by combining a plurality of raw materials set in advance,
Output data for learning is obtained by blending a plurality of raw materials used in a vulcanized rubber composition at a set blending ratio and processing them under set processing conditions. And an identification name of each of the raw materials, a blending ratio of each of the raw materials, and information of each of the processing conditions, using a learning data with learning input data as a prediction unit for machine learning the physical property data. ,
The names of constituent raw materials constituting the unvulcanized rubber composition before vulcanization of the predicted vulcanized rubber composition, the mixing ratio of the constituent raw materials, and the processing for producing the predicted vulcanized rubber composition And a processing condition, using a data operation unit that makes the prediction unit predict physical property data of the vulcanized rubber composition to be predicted,
The data operation unit includes:
A preprocessing unit that performs preprocessing of classifying the name of the constituent raw material into one of the identification names used as the learning input data by the prediction unit based on the material characteristics of the constituent raw material;
An input unit configured to input one of the identification names classified by the preprocessing unit to the prediction unit for prediction by the prediction unit, as a name corresponding to the constituent raw material;
A physical property data prediction device comprising:
JP2018165276A 2018-09-04 2018-09-04 Physical property data prediction method and physical property data prediction device Active JP7139801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018165276A JP7139801B2 (en) 2018-09-04 2018-09-04 Physical property data prediction method and physical property data prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165276A JP7139801B2 (en) 2018-09-04 2018-09-04 Physical property data prediction method and physical property data prediction device

Publications (2)

Publication Number Publication Date
JP2020038493A true JP2020038493A (en) 2020-03-12
JP7139801B2 JP7139801B2 (en) 2022-09-21

Family

ID=69737997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165276A Active JP7139801B2 (en) 2018-09-04 2018-09-04 Physical property data prediction method and physical property data prediction device

Country Status (1)

Country Link
JP (1) JP7139801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113945A1 (en) * 2020-11-27 2022-06-02 昭和電工マテリアルズ株式会社 Information processing system, information processing method, and information processing program
WO2022112584A1 (en) * 2020-11-30 2022-06-02 Bridgestone Europe Nv/Sa Predictive method based upon machine learning for the development of composites for tyre tread compounds
WO2022176945A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Preparation-process output device, preparation-process output method, and program
JP7453053B2 (en) 2020-04-27 2024-03-19 Toyo Tire株式会社 Rubber material property prediction system and rubber material property prediction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055348A (en) * 1996-08-08 1998-02-24 Bridgestone Corp Device and method for optimized analysis of multicomponent material
JP2016167149A (en) * 2015-03-09 2016-09-15 Kddi株式会社 Program, equipment, and method that estimate number of persons with which contract is expected to be made at shop according to market area
JP2017188032A (en) * 2016-04-08 2017-10-12 住友ゴム工業株式会社 Prediction method of performance of polymer composition
WO2019087382A1 (en) * 2017-11-06 2019-05-09 日本電気株式会社 Operation state prediction system, operation state prediction method, and operation state prediction program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055348A (en) * 1996-08-08 1998-02-24 Bridgestone Corp Device and method for optimized analysis of multicomponent material
JP2016167149A (en) * 2015-03-09 2016-09-15 Kddi株式会社 Program, equipment, and method that estimate number of persons with which contract is expected to be made at shop according to market area
JP2017188032A (en) * 2016-04-08 2017-10-12 住友ゴム工業株式会社 Prediction method of performance of polymer composition
WO2019087382A1 (en) * 2017-11-06 2019-05-09 日本電気株式会社 Operation state prediction system, operation state prediction method, and operation state prediction program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453053B2 (en) 2020-04-27 2024-03-19 Toyo Tire株式会社 Rubber material property prediction system and rubber material property prediction method
WO2022113945A1 (en) * 2020-11-27 2022-06-02 昭和電工マテリアルズ株式会社 Information processing system, information processing method, and information processing program
WO2022112584A1 (en) * 2020-11-30 2022-06-02 Bridgestone Europe Nv/Sa Predictive method based upon machine learning for the development of composites for tyre tread compounds
WO2022176945A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Preparation-process output device, preparation-process output method, and program

Also Published As

Publication number Publication date
JP7139801B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP2020038493A (en) Method and device for predicting physical property data
JP7218519B2 (en) Physical property data prediction method and physical property data prediction device
US9108386B2 (en) Elastomeric compositions comprising reclaimed vulcanized elastomer particles of broad size distribution and chemically modified vulcanized elastomer particles
JP6953926B2 (en) Method of predicting the performance of rubber-like elastic body
WO2021079985A1 (en) Property prediction device
CA2933957C (en) Method and system for predicting biocomposite formulations and processing considerations based on product to be formed from biocomposite material
Ansarifar et al. Enhancing the mechanical properties of styrene–butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber
Pornprasit et al. Determination of the Mechanical Properties of Rubber by FT-NIR
JP7348488B2 (en) Physical property data prediction method and physical property data prediction device
JP6401010B2 (en) Fracture strength prediction method and tire rubber composition
Pires et al. Performance evaluation of high‐cis 1, 4‐polybutadienes
Ahmad et al. Comparison properties of natural rubber/virgin acrylonitrile–butadiene rubber and natural rubber/recycled acrylonitrile–butadiene rubber blends
JP7352079B2 (en) Physical property data prediction method and physical property data prediction device
Bülbül et al. Effect of mica powder-filled styrene-butadiene rubber compounds on crosslink density and mechanical properties
JP7348489B2 (en) Physical property data prediction method and device Physical property data prediction device
Mazliah et al. Optimization of physical and mechanical properties of glycerol-modified natural rubber/starch-filled carbon black composites using two level factorial design
Ismail et al. Fatigue, resilience, hardness, and swelling behaviour of natural rubber/recycled acrylonitrile-butadiene rubber (NR/NBRr) blends
Palaty et al. Studies on xanthate/dithiocarbamate accelerator combination in NR/BR blends
Wahab et al. Mechanical properties of rubber vulcanizates containing ethylene propylene diene rubber waste at different types of vulcanization system
Köktürk et al. Evaluating ethylene propylene diene monomer rubber for dynamic applications instead of natural rubber
Andreolli et al. Formulations of sustainable rubbers and characterization for the use in sports equipments
Pogodaev et al. Enhancing the composition of the polymer compound on the basis of the “composition-property” model
Rehman et al. Characterisation and properties of polyisoprene (IR)/polybutadiene (BR) rubber blends-reinforced silanised silica nano-filler
NL2020806B1 (en) Rubber composition for tyres with good wet grip and rolling resistance properties
JP6724558B2 (en) Method for producing rubber composition for tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R150 Certificate of patent or registration of utility model

Ref document number: 7139801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350