WO2021079967A1 - Racket analysis system, racket analysis device, racket analysis program, and racket analysis method - Google Patents

Racket analysis system, racket analysis device, racket analysis program, and racket analysis method Download PDF

Info

Publication number
WO2021079967A1
WO2021079967A1 PCT/JP2020/039825 JP2020039825W WO2021079967A1 WO 2021079967 A1 WO2021079967 A1 WO 2021079967A1 JP 2020039825 W JP2020039825 W JP 2020039825W WO 2021079967 A1 WO2021079967 A1 WO 2021079967A1
Authority
WO
WIPO (PCT)
Prior art keywords
racket
angular velocity
axis
striking surface
analysis
Prior art date
Application number
PCT/JP2020/039825
Other languages
French (fr)
Japanese (ja)
Inventor
俊 ▲高▼浪
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021553545A priority Critical patent/JP7291234B2/en
Priority to CN202080072308.0A priority patent/CN114555196A/en
Publication of WO2021079967A1 publication Critical patent/WO2021079967A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B59/00Bats, rackets, or the like, not covered by groups A63B49/00 - A63B57/00
    • A63B59/40Rackets or the like with flat striking surfaces for hitting a ball in the air, e.g. for table tennis
    • A63B59/42Rackets or the like with flat striking surfaces for hitting a ball in the air, e.g. for table tennis with solid surfaces
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/42Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/46Measurement devices associated with golf clubs, bats, rackets or the like for measuring physical parameters relating to sporting activity, e.g. baseball bats with impact indicators or bracelets for measuring the golf swing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/16Table tennis

Definitions

  • This disclosure relates to a racket analysis system for analyzing the movement of a racket, a racket analysis device, a racket analysis program, and a racket analysis method.
  • Patent Document 1 A technique for improving a player's skill by attaching a sensor to a racket and analyzing the movement of the racket is known (for example, Patent Document 1 below).
  • Patent Document 1 discloses a technique in which an acceleration sensor and a contact sensor are provided on a racket for table tennis.
  • the contact sensor is composed of a surface contact position coordinate detection type sensor in a tablet or the like, and is provided over the entire surface of the striking surface (face). Then, the contact sensor contributes to estimating which position of the striking surface the ball hits.
  • the racket analysis system analyzes the movement of the racket.
  • the racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the central portion of the striking surface. ..
  • the racket analysis system estimates the position of the ball on the striking surface based on the angular velocity sensor fixed to the racket and the detection value of the angular velocity sensor when the ball hits the racket. It has a processing unit and a processing unit.
  • the racket analysis device analyzes the movement of the racket.
  • the racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface.
  • the racket analysis device has a processing unit that estimates the position of the ball hitting the striking surface based on the angular velocity of the racket when the ball hits the racket.
  • the racket analysis program is for analyzing the movement of the racket.
  • the racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface.
  • the racket analysis program causes a computer to perform an estimation step of estimating a position of the hitting surface where the ball hits, based on the angular velocity of the racket when the ball hits the racket.
  • the racket analysis method analyzes the movement of the racket.
  • the racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface.
  • the racket analysis method includes an estimation step of estimating the position of the ball hitting the striking surface based on the angular velocity of the racket when the ball hits the racket.
  • FIG. 3 (a) and 3 (b) are diagrams for explaining an impact detection method.
  • 4 (a) and 4 (b) are diagrams for explaining a method of estimating the striking surface hit by the ball.
  • 5 (a), 5 (b) and 5 (c) are diagrams for explaining a method of estimating the position where the sphere hits in the left-right direction.
  • 6 (a) and 6 (b) are diagrams for explaining a method of estimating the position where the sphere hits in the vertical direction.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of the analysis system 1 according to the embodiment.
  • the analysis system 1 has, for example, a sensor device 5 fixed to the racket 3 and an analysis device 7 that analyzes the movement of the racket 3 detected by the sensor device 5. Specifically, the analysis device 7 estimates, for example, which position of the racket 3 the sphere hits based on the detected value of the sensor device 5. In the following explanation, the position where the ball hits may be referred to as the impact position.
  • the racket 3 may be considered not to be included in the analysis system 1 or may be considered to be included. In the description of this embodiment, the former is used for convenience. Further, the combination of the racket 3 and the sensor device 5 may be conceptualized as a racket with a sensor.
  • the racket 3 may be used for various sports, and in the description of the present embodiment, a racket for table tennis is taken as an example.
  • Sports other than table tennis include, for example, tennis (hard and soft), badminton, squash and racquetball.
  • the "sphere" may be a ball hit by a racket, and is not only a ball in a narrow sense but also a non-sphere such as a shuttle (feather ball). Also includes.
  • the racket 3 has, for example, a striking portion 9 (head) for striking a ball and a grip 11 for a player to grip.
  • the striking portion 9 has, for example, a flat striking surface 9a for striking a ball.
  • the racket 3 may be a type having a pair of front and back striking surfaces 9a (rubber from another viewpoint) (usually a shake hand type), or a type having only one striking surface 9a. (Usually a pen holder type) may be used. In the description of this embodiment, the former will be taken as an example.
  • the striking surface 9a of the racket 3 for table tennis may have irregularities and that the striking surface of the racket for tennis is composed of guts, the flat surface referred to here is. It does not have to be a plane in the strict sense.
  • the grip 11 is a long member having a thickness that can be gripped by a player.
  • the striking portion 9 and the grip 11 are fixed to each other by being integrally formed with each other. In rackets other than table tennis, the grip and the striking part may be fixed to each other via a throat.
  • the grip 11 extends along the virtual line CL on the outside of the striking surface 9a. “Along the virtual line CL” here does not require that the center line (not shown) of the grip 11 and the virtual line CL are located on the same line or parallel to each other. Within the rules and / or common sense in each competition, the center line of the grip 11 and the virtual line CL may be inclined to each other or may be deviated from each other.
  • the z-axis is parallel to the virtual line CL (generally parallel to the grip 11). It is assumed that the x-axis is orthogonal to the striking surface 9a.
  • the y-axis shall be orthogonal to the x-axis and z-axis. In other words, the y-axis is parallel to the striking surface 9a and orthogonal to the z-axis.
  • the y-axis direction may be referred to as the left-right direction
  • the z-axis direction may be referred to as the up-down direction.
  • the direction of the arrow shown around each axis indicates the positive or negative of the angular velocity around each axis used in the following description.
  • a division region R (RC, RE, RNE, RN, RNW, RW, RSW, RS and RSE) in which the striking surface 9a is divided into a plurality of parts is defined.
  • the estimation of the position (impact position) where the ball in the striking surface 9a hits may be, for example, an estimation of which of the divided regions R in which the striking surface 9a is divided into an appropriate number.
  • the impact position may be estimated in a plurality of regions of the division region R.
  • the coordinates of the impact position or the distance from the reference position to the impact position may be estimated.
  • the number of division areas R (the number of divisions of the striking surface 9a), the position of each division area R, the area ratio of each division area to the striking surface 9a, and the like may be appropriately set.
  • the number of divisions is 9. More specifically, the striking surface 9a is roughly divided into three equal parts in the y-axis direction with respect to the length of the striking surface 9a (for example, the maximum length), and the length of the striking surface 9a in the z-axis direction (for example, the maximum length). It is roughly divided into three equal parts based on the length). That is, the striking surface 9a is divided into 3 ⁇ 3.
  • the central division area R is defined as the division area RC. It is assumed that the other division regions R are the division regions RE, RNE, RN, RNW, RW, RSW, RS, and RSE in order from the division region R on the ⁇ y side in a counterclockwise direction.
  • the striking surface 9a may be divided only in the y-axis direction, and the number of divisions may be 2, 3, or 4 or more. Further, for example, the striking surface 9a may be divided only in the z-axis direction, and the number of divisions may be 2, 3, or 4 or more. Further, the striking surface 9a is divided in each of the y-axis direction and the z-axis direction, and is divided into 2 ⁇ 2, 2 ⁇ 3, 3 ⁇ 2, 2 ⁇ 4, 4 ⁇ 2, 3 ⁇ 4, 4 ⁇ 3 or 4 ⁇ . It may be divided into four.
  • the striking surface 9a may be divided into 1 ⁇ m, n ⁇ 1 or n ⁇ m. Further, the striking surface 9a may be divided by a concept different from the concept of vertically and horizontally divided, such as being divided into one circular region on the center side and a plurality of fan-shaped regions arranged around the circular region. Good.
  • the number of divisions in the y-axis direction and the number of divisions in the z-axis direction may be the same or different. Further, a region embodying the center of the striking surface 9a in the y-axis direction or the z-axis direction (for example, the divided region RC in the illustrated example) may or may not exist.
  • the sensor device 5 is fixed to the racket 3 and functions as an inertial sensor that detects at least an angular velocity.
  • the mounting position, shape, size, and the like of the sensor device 5 with respect to the racket 3 may be appropriately set.
  • the sensor device 5 is located at the end of the grip 11 opposite to the striking portion 9. Further, the sensor device 5 has substantially the same size as the end face of the grip 11 when viewed in the z-axis direction.
  • the sensor device 5 may be detachable from one type of racket 3 or various rackets 3, or may be non-detachably fixed to the racket 3.
  • the analysis device 7 includes a computer.
  • the analyzer 7 is configured by a smart device.
  • the smart device is, for example, a smartphone (illustrated example), a tablet, and a notebook computer, but is not limited to the above as long as it can estimate the impact position.
  • the hardware and basic software of the computer eg, OS (Operating System)
  • OS Operating System
  • the analyzer 7 can be obtained by installing a predetermined application on a general computer.
  • FIG. 2 is a block diagram showing a configuration of a signal processing system of the analysis system 1.
  • the direction indicated by the arrow connecting the blocks indicates the direction in which the main signal is transmitted, but in reality, there may be a signal transmitted in the direction opposite to the arrow.
  • the sensor device 5 includes, for example, an angular velocity sensor 13 (gyro sensor) that detects the angular velocity of the racket 3, an acceleration sensor 15 that detects the acceleration of the racket 3, and a communication unit 17 that communicates with the analysis device 7. It has a detection processing unit 19 that processes a signal to be input or output.
  • an angular velocity sensor 13 gyro sensor
  • an acceleration sensor 15 that detects the acceleration of the racket 3
  • a communication unit 17 that communicates with the analysis device 7. It has a detection processing unit 19 that processes a signal to be input or output.
  • the analysis device 7 processes, for example, an input unit 21 that accepts user operations, a display 23 that displays an image, a communication unit 25 that communicates with the sensor device 5, and signals that are input or output to these. It has an analysis processing unit 27 that performs the above and the like.
  • the analysis processing unit 27 functions as a processing unit that estimates the impact position.
  • the angular velocity sensor 13 is composed of, for example, a three-axis angular velocity sensor capable of detecting the angular velocities of each of the three axes of the x-axis, the y-axis, and the z-axis.
  • a three-axis angular velocity sensor capable of detecting the angular velocities of each of the three axes of the x-axis, the y-axis, and the z-axis.
  • an angular velocity sensor for example, although not particularly shown, a combination of an angular velocity sensor that detects an angular velocity around the x-axis, an angular velocity sensor that detects an angular velocity around the y-axis, and an angular velocity sensor that detects an angular velocity around the z-axis is used.
  • an angular velocity sensor that detects an angular velocity around the x-axis
  • the angular velocity sensor 13 may be a combination of three sensors that detect the angular velocity around each axis of the coordinate system inclined to the relative coordinate system xyz. Even in this case, the angular velocities of the three axes of the x-axis, the y-axis, and the z-axis can be specified by the coordinate transformation by the angular velocity sensor 13 or an external device thereof. Therefore, it can be said that the angular velocity sensor 13 is a sensor capable of detecting the angular velocity of the x-axis, the y-axis, and / or the z-axis.
  • the configuration of the sensor that detects the angular velocity around each of the x-axis, y-axis, and z-axis may be, for example, various known configurations.
  • the angular velocity sensor for detecting the angular velocity around the z-axis in US Patent Application Publication No. 2019/265033 (hereinafter referred to as Prior Document 1; corresponding to International Publication No. 2018/021166) is shown in FIG. It may be used as an angular velocity sensor that detects the angular velocity around the z-axis defined in.
  • the angular velocity sensor that detects the angular velocity around the y-axis in the prior document 1 may be used as the angular velocity sensor that detects the angular velocity around the y-axis defined in FIG.
  • the angular velocity sensor for detecting the angular velocity around the y-axis in the prior document 1 is arranged so that the y-axis of the prior document 1 coincides with the x-axis of FIG. 1 and the x-axis of the prior document 1 coincides with the y-axis of FIG. , May be used as an angular velocity sensor that detects the angular velocity around the x-axis defined in FIG.
  • the content of Prior Document 1 may be cited by reference in the present disclosure.
  • the acceleration sensor 15 is composed of, for example, a three-axis acceleration sensor capable of detecting the acceleration of each of the three axes of the x-axis, y-axis, and z-axis.
  • the configuration of the 3-axis accelerometer may be of various known configurations.
  • a piezoresistive 3-axis accelerometer as disclosed in WO 2009/11840 may be used.
  • the content of this document may be cited by reference in this disclosure.
  • a capacitance type 3-axis acceleration sensor or a heat detection type 3-axis acceleration sensor may be used.
  • the acceleration sensor 15 may be formed by combining two or more acceleration sensors that detect acceleration of one or two axes of an appropriate type. Similar to the angular velocity sensor 13, the direction in which the acceleration sensor 15 directly detects acceleration may be inclined with respect to the x-axis, y-axis, and z-axis.
  • the communication unit 17 has, for example, a configuration capable of communicating with at least the analysis device 7.
  • the communication may only be able to transmit to the analysis device 7, or may be capable of transmitting and receiving to and from the analysis device 7.
  • the communication may be wireless communication (illustrated example), wired communication, or switchable between wireless communication and wired communication. Examples of wireless communication include those using radio waves and those using infrared rays. In addition, examples of those using radio waves include those for short distances such as Bluetooth (registered trademark) and Wi-Fi (registered trademark).
  • the detection processing unit 19 has, for example, a CPU 19a (Central Processing Unit, processor) and a memory 19b.
  • the memory 19b includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), an external storage device, and the like.
  • the detection processing unit 19 is constructed by the CPU 19a executing a predetermined program stored in the memory 19b (ROM and external storage device). For example, the detection processing unit 19 acquires the detected angular velocity information from the angular velocity sensor 13, acquires the detected acceleration information from the acceleration sensor 15, and transmits the acquired information from the communication unit 17.
  • the input unit 21 may have various known configurations.
  • a plate-shaped pointing device constituting the touch panel 29 is included.
  • examples of the input unit 21 include those including a keyboard, a push button switch, and the like.
  • the display 23 can display an arbitrary image, for example, and is composed of a liquid crystal display or an organic EL (Electro-Luminescence) display.
  • the touch panel 29 is configured by being combined with at least a part of the input unit 21.
  • the communication unit 25 communicates with the communication unit 17 of the sensor device 5, the above-mentioned explanation about the communication unit 17 may be appropriately referred to the communication unit 25.
  • the communication unit 25 may only be able to receive from the communication unit 17, or may be capable of transmitting and receiving to and from the communication unit 17.
  • the analysis processing unit 27 has, for example, a CPU 27a (processor) and a memory 27b.
  • the memory 27b includes, for example, a ROM, a RAM, an external storage device, and the like.
  • the analysis processing unit 27 is constructed by the CPU 27a executing the program 31 stored in the memory 27b (ROM and external storage device). For example, the analysis processing unit 27 acquires information on the angular velocity and acceleration detected by the sensor device 5 via the communication unit 25, performs analysis based on the acquired information, and obtains the analysis result (for example, impact position). It is displayed on the display 23.
  • the analysis device 7 may estimate the presence or absence of an impact (the ball is hit by the hitting surface 9a. From another viewpoint, the ball hits the hitting surface 9a) and the time of impact.
  • the estimation method is as follows, for example.
  • FIG. 3A is a diagram showing an example of a time-dependent change in acceleration in the x-axis direction detected by the acceleration sensor 15.
  • the horizontal axis t (sec) indicates time
  • the vertical axis Ax (G) indicates acceleration in the x-axis direction.
  • the symbol G is a unit for expressing how many times the standard gravity is. This figure is obtained by an experiment in which a player swings a racket 3 and hits a ball.
  • FIG. 3B is a diagram showing an example of a time-dependent change in the angular velocity around the z-axis detected by the angular velocity sensor 13.
  • the horizontal axis t (sec) indicates time
  • the vertical axis Gz (dps: degree per second) indicates the angular velocity around the z axis. This figure is obtained from the same experiment as in FIG. 3 (a).
  • FIG. 9 is a diagram showing an example of a time-dependent change in acceleration in the z-axis direction detected by the acceleration sensor 15.
  • the horizontal axis t (sec) indicates time
  • the vertical axis Az (G) indicates acceleration in the z-axis direction. This figure is obtained from the same experiment as in FIGS. 3 (a) and 3 (b).
  • three types are exemplified as physical quantities (acceleration and / or angular velocity) for estimating impact, but it is also possible to estimate impact based on physical quantities related to other axes.
  • an angular velocity around the x-axis, an angular velocity around the y-axis, or an acceleration in the y-axis direction may be used.
  • only one of a plurality of physical quantities for example, acceleration in the x-axis direction, angular velocity around the z-axis, and acceleration in the z-axis direction
  • two or more are combined. It may be used.
  • An example of the latter is a method of estimating an impact when it can be estimated that there was an impact based on at least one of two or more physical quantities, and conversely, an impact is based on all of two or more physical quantities. There is a method of estimating that there was an impact only when it could be estimated that there was.
  • various parameters related to acceleration may be used. For example, focusing only on the absolute value of acceleration, it may be estimated that there was an impact when the acceleration exceeded a predetermined threshold value. Further, for example, it may be estimated that the impact occurs when the absolute value of the rate of change of acceleration (jerk) exceeds a predetermined threshold value in place of the absolute value of acceleration or in addition to the absolute value of acceleration. Further, for example, instead of or in addition to the above, it may be estimated that the impact occurred when the frequency of the acceleration vibration was higher than the predetermined value.
  • any time of change in the acceleration (or angular velocity; the same shall apply hereinafter in this paragraph) that was the basis for determining that there was an impact may be used as the time of impact. It may be appropriately set within a range that is practically acceptable in the analysis.
  • the time point at which the absolute value of acceleration becomes the largest may be set as the time point of impact, such as the time point of the extreme value P1 in FIG.
  • the time point at which the sudden increase in the absolute value of acceleration starts may be set as the time point of impact.
  • the time point of impact may be treated as having a certain time length within a practically permissible range in the analysis, instead of one point of the literal time.
  • the range from the start of the rapid increase in the absolute value of acceleration to the maximum absolute value of acceleration may be treated as the time of impact.
  • the estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI (Artificial Intelligence) technology.
  • the determination procedure may be set based on the above-mentioned estimation method.
  • teacher data in which at least one of the above-mentioned various parameters of acceleration in the x-axis direction (and / or angular velocity around the z-axis) is input and the presence / absence of impact and the time point are output. It may be estimated by generating a learning model and incorporating this learning model into the program 31.
  • the presence / absence and time point of the impact included in the teacher data can be specified by, for example, shooting the racket 3 with a video camera, or teacher data creation provided with an appropriate sensor (for example, a plate-shaped pointing device extending over the striking surface 9a). It may be specified by using a racket for.
  • the AI technology will also be touched upon for front and back estimation, left-right estimation, central estimation, vertical estimation, etc., which will be described later.
  • the information output from the teacher data at this time may also be specified by the photographing and the sensor as described above. Depending on the information, it may be visually identified.
  • the racket 3 has a pair of front and back striking surfaces 9a.
  • the analysis device 7 may estimate which of the pair of striking surfaces 9a the ball hits.
  • the estimation method is as follows, for example.
  • FIG. 4A is a diagram showing an example of a change over time in the angular velocity detected by the angular velocity sensor 13.
  • the horizontal axis t (sec) indicates time
  • the vertical axis ⁇ (dps) indicates angular velocity
  • ⁇ x, ⁇ y and ⁇ z indicate the angular velocities around the x-axis, y-axis and z-axis, respectively.
  • This figure is obtained by an experiment in which a player swings a racket 3 and hits a ball.
  • Postures may be represented, for example, by Euler angles.
  • Euler angles use, for example, roll angles, pitch angles and yaw angles.
  • the angle around the Z axis is the yaw angle
  • the angle around the Y axis is the pitch angle and X.
  • the angle around the axis may be the roll angle.
  • the angular velocity around each axis of the relative coordinate system xyz is converted into the angular velocity around each axis of the absolute coordinate system XYZ (spatial coordinate system).
  • the angular velocity in this absolute coordinate system XYZ is integrated to obtain the roll angle, pitch angle, and yaw angle. Such an operation is repeated along the time axis.
  • Calculation formulas (determinants) for obtaining such Euler angles are known in various fields such as robots and drones, and these formulas may be used.
  • the initial value of Euler angles when calculating along the time axis may be an arbitrary value by, for example, specifying the posture of the racket 3 at the start of measurement in advance.
  • the initial value may be specified by combining the angular velocity sensor with another sensor.
  • the initial values of the roll angle and the pitch angle may be specified based on the acceleration detected by the acceleration sensor 15 (in another viewpoint, the gravitational acceleration).
  • the initial value of the yaw angle may be specified based on the detection value of the geomagnetic sensor, for example, by providing the sensor device 5 with a geomagnetic sensor. Such sensor fusions are also known and may be utilized.
  • FIG. 4B is a diagram showing an example of changes over time in Euler angles calculated as described above.
  • the horizontal axis t (sec) indicates time
  • the vertical axis indicates Euler angles.
  • indicates the roll angle
  • indicates the pitch angle
  • indicates the yaw angle.
  • the posture of the racket 3 at the time of impact can be specified. Based on this specified posture, it is possible to specify which of the pair of striking surfaces 9a the ball hits.
  • the hitting surface 9a on which the ball hits is usually facing the opponent's court. Therefore, for example, when considering the normal of one of the striking surfaces 9a extending to the side facing the one striking surface 9a, this normal has a component in the alignment direction from one's own court to the other's court. In this case, it can be estimated that the ball hits the one hitting surface 9a. In other words, when Euler angles are included in a predetermined first range, it can be estimated that the ball hits one of the striking surfaces 9a, and Euler angles are included in a second range different from the first range. When it is, it can be estimated that the ball hits the other striking surface 9a.
  • the estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology.
  • the determination procedure may be set based on the above-mentioned estimation method.
  • teacher data that inputs Euler angles at the time of impact (and the position of the racket 3 if necessary) and outputs information that identifies the striking surface 9a hit by the ball. It may be estimated by generating a learning model and incorporating this learning model into program 31.
  • the information for identifying the hitting surface 9a hit by the ball which is included in the teacher data, may be obtained by visual inspection, photographing, a sensor, or the like.
  • the analysis device 7 may estimate the position of the position where the ball hits the striking surface 9a (impact position) in the y-axis direction. For example, the analysis device 7 may estimate whether the impact position is on the positive side or the negative side in the y-axis direction with respect to the central side (for example, the virtual line CL) of the striking surface 9a.
  • the estimation method is as follows, for example.
  • FIG. 5 (a) to 5 (c) are diagrams showing an example of changes in the angular velocity around the z-axis detected by the angular velocity sensor 13 with time.
  • the horizontal axis t (msec) indicates time
  • the vertical axis ⁇ z (dps) indicates angular velocity. All of these figures show the change with time when the ball hits the striking surface 9a on the ⁇ x side.
  • FIG. 5A shows the change with time when the sphere hits the divided region RE on the ⁇ y side.
  • FIG. 5B shows the change with time when the sphere hits the divided region RC at the center in the y-axis direction.
  • FIG. 5C shows the change with time when the sphere hits the divided region RW on the + y side.
  • the positive / negative of (see) is opposite when it hits the + y side region and when it hits the ⁇ y side region. Therefore, it can be estimated whether the impact position is on the ⁇ y side or the + y side with respect to the center side of the striking surface 9a based on the positive or negative of the angular velocity around the z-axis at the time of impact.
  • the estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31 based on the above estimation method. However, it may be realized by AI technology. For example, as input of teacher data, not only the positive / negative of the angular velocity at the time of impact (and information for identifying the striking surface 9a hit by the ball as necessary) but also other parameters of the angular velocity and acceleration can be used for manufacturing. It is expected that error corrections that were not noticed by the person will be made. As already described, the information included in the teacher data as an output, that is, the information on whether the impact position is on the ⁇ y side or the + y side may be obtained by visual inspection, photographing, a sensor, or the like.
  • the estimation of the position of the impact position in the y-axis direction may be to estimate which of the divided regions R in which the striking surface 9a is divided in the y-axis direction the ball hits, or the impact. It may estimate the y-axis coordinates of the position.
  • the number of divisions in the y-axis direction may be 3 or more. This is because when the number of divisions is two, it is sufficient to estimate the left and right based on the positive and negative of the angular velocity at the time of the above impact.
  • the estimation of which of the divided regions R the sphere hits may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology. Good.
  • the manufacturer (which may be a user) stores the threshold value of the number corresponding to the number of divisions in the y-axis direction in the memory 27b. For example, if the number of divisions is 3 or 4, the threshold value is 1, and if the number of divisions is 5, the threshold value is 2. Then, the analysis processing unit 27 estimates which region is hit depending on whether or not the absolute value of the angular velocity around the z-axis at the time of impact exceeds the threshold value. In the example shown in FIG.
  • the information on which region divided in the y-axis direction is hit is output.
  • a learning model may be generated and the learning model may be incorporated into the program 31.
  • the information on which area is hit, which is included in the teacher data may be obtained by visual inspection, photographing, a sensor, or the like.
  • the estimation of the y-axis coordinates of the impact position may also be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology.
  • the manufacturer indicates the correlation between the distance from the virtual line CL to the impact position (y-axis coordinates from another viewpoint) and the absolute value of the angular velocity (for example, an approximate expression or a map). Is stored in the memory 27b. Then, the analysis processing unit 27 (CPU27a) estimates the y-axis coordinates corresponding to the detected angular velocities with reference to the above-mentioned information indicating the correlation.
  • the analysis processing unit 27 (CPU27a) estimates the y-axis coordinates corresponding to the detected angular velocities with reference to the above-mentioned information indicating the correlation.
  • the distance of the impact position from the virtual line CL may be obtained by photographing or a sensor or the like.
  • the distance of the impact position from the virtual line CL is not only the absolute value of the angular velocity around the z-axis, but also, for example, the frequency of vibration of the angular velocity around the z-axis and the angular velocity around the z-axis. It also affects the time it takes to decay to a given size. Therefore, in any of the above cases, the values of these parameters may be used in addition to the absolute value of the angular velocity or in place of the absolute value of the angular velocity. For example, the values of these parameters may be used as input for teacher data.
  • the analysis device 7 may estimate the position of the position where the ball hits the striking surface 9a (impact position) in the z-axis direction.
  • the estimation method is as follows, for example.
  • FIGS. 6 (a) and 6 (b) are diagrams showing an example of changes in the angular velocity around the y-axis detected by the angular velocity sensor 13 with time.
  • the horizontal axis t (sec) indicates time
  • the vertical axis ⁇ y (dps) indicates angular velocity. All of these figures show the change with time when the ball hits the striking surface 9a on the ⁇ x side.
  • FIG. 6A shows the change with time when the sphere hits the divided region RN on the + z side.
  • FIG. 6B shows the change with time when the sphere hits the divided region RS on the ⁇ z side.
  • the striking portion 9 rotates parallel to the y-axis and around a rotation axis (not shown) located on the grip 11 side.
  • the angular velocity around the y-axis suddenly drops or rises.
  • the distance of the impact position from the grip 11 in other words, the z-axis coordinate of the impact position
  • the amplitude of the angular velocity around the y-axis are It correlates with the time Ta until it decays to a predetermined magnitude. Specifically, the longer the distance from the grip 11, the longer the time Ta. Therefore, the position of the impact position on the z-axis may be estimated based on the time Ta.
  • the beginning of time Ta may be, for example, the time of impact determined by impact estimation. However, the start of time Ta may be set based on the angular velocity around the y-axis. The end of the time Ta is when the amplitude of the angular velocity around the y-axis is attenuated to a predetermined magnitude (threshold value) as described above, and this threshold value may be appropriately set based on an experiment or the like. For example, in the illustrated example, it is shown that the threshold value may be approximately 0.
  • the estimation of the position of the impact position in the z-axis direction may be to estimate which of the divided regions R in which the striking surface 9a is divided in the z-axis direction the sphere hits, or the impact. It may be used to estimate the z-axis coordinates of the position.
  • the number of divisions in the z-axis direction may be 2 or more (3 in the illustrated example).
  • the estimation of which of the divided regions R the sphere hits may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology. Good.
  • the manufacturer (which may be a user) stores the threshold value in the memory 27b, which is one less than the number of divisions in the z-axis direction. For example, if the number of divisions is two, the threshold value is one, and if the number of divisions is three, the threshold value is two. Then, the analysis processing unit 27 estimates which region is hit depending on whether or not the time Ta until the angular velocity vibration generated at the time of impact is attenuated to a certain magnitude exceeds the threshold value. In the example shown in FIG.
  • a learning model is generated using teacher data in which time Ta is input and information on which region divided in the z-axis direction is hit is output, and this learning model is used. It may be incorporated into program 31. As already described, the information on which area is hit, which is included in the teacher data, may be obtained by visual inspection, photographing, a sensor, or the like.
  • the estimation of the z-axis coordinates of the impact position may also be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology.
  • the manufacturer stores information (for example, an approximate expression or a map) indicating the correlation between the distance of the impact position from the grip 11 (z-axis coordinates from another viewpoint) and the time Ta in the memory 27b. To memorize. Then, the analysis processing unit 27 (CPU27a) estimates the z-axis coordinates corresponding to the detected angular velocity with reference to the above-mentioned information indicating the correlation.
  • information for example, an approximate expression or a map
  • a learning model is generated using teacher data in which time Ta is input and the distance from the grip 11 of the impact position (z-axis coordinate in another viewpoint) is output.
  • This learning model may be estimated by incorporating it into program 31.
  • the distance from the grip 11 included in the teacher data may be obtained by photographing or a sensor or the like.
  • the distance of the impact position from the grip 11 affects not only the time Ta but also, for example, the absolute value of the angular velocity around the y-axis and the vibration frequency of the angular velocity around the y-axis. Therefore, in any of the cases described above, the values of these parameters may be used in addition to or in place of the time Ta. For example, the values of these parameters may be used as input for teacher data.
  • the speed of the racket 3 at the time of impact affects the magnitude of various angular velocities at the time of impact.
  • the accuracy of estimating the impact position based on the angular velocity at the time of impact described above may decrease. For example, if the speed of the racket 3 at the time of impact is high, the absolute value of the angular velocity around the z-axis becomes large even though the distance from the virtual line CL is short, and it is erroneously determined that the distance from the virtual line CL is long. May be done. Therefore, the angular velocity at the time of impact may be corrected, and the various estimations described above may be performed using the corrected angular velocity.
  • the following corrections may be made.
  • the speed of the racket 3 at the time of impact is specified based on the detected value of the acceleration sensor 15.
  • the component in the direction in which the striking surface 9a hit by the ball is facing is specified.
  • Correction may be made so that the larger this component is, the smaller the absolute value of the angular velocity around the y-axis is, the smaller the absolute value of the angular velocity around the z-axis is, and / or the time Ta is shortened.
  • the specific correction amount may be derived theoretically or may be obtained by an experiment or the like.
  • the ball velocity at the time of impact also affects the magnitude of various angular velocities at the time of impact, similar to the speed of the racket 3 described above. Therefore, the ball speed (vector quantity or absolute value) may be measured by a video camera and / or a speed measuring device, and correction may be made based on the ball speed. Even if such a correction is not made, for example, in the analysis of the serve and the analysis of the practice of hitting a ball at a constant velocity emitted from the machine, it is unlikely that the accuracy of estimating the impact position will decrease.
  • the analysis of the movement of the racket may be performed, for example, after the practice (or a match, etc., the same shall apply hereinafter), or may be performed (generally) in real time during the practice.
  • the time series data of the detected value is accumulated in the sensor device 5 during the practice, and the time series data of the detected value is transmitted from the sensor device 5 to the analysis device 7 after the practice for analysis. It's okay.
  • the detection value data may be sequentially transmitted from the sensor device 5 to the analysis device 7 during the practice, and the analysis may be performed after the practice.
  • the detection value data may be sequentially transmitted from the sensor device 5 to the analysis device 7 during the practice, and the analysis device 7 may perform the sequential analysis.
  • the following is an example of a flowchart in which the analysis is performed in real time during practice, which is the most complicated of the above aspects.
  • the processing when the analysis is performed after the practice can be inferred from the processing when the analysis is performed in real time.
  • FIG. 7 is a flowchart showing an example of the procedure of the sensing process executed by the detection processing unit 19 of the sensor device 5. This process is started, for example, when an operation (for example, a switch) of the sensor device 5 (not shown) is performed.
  • an operation for example, a switch
  • step ST1 the detection processing unit 19 determines whether or not the predetermined time T1 has elapsed.
  • This time T1 is a sampling period for detecting the angular velocity and acceleration, as will be understood from the following description.
  • the length of time T1 may be set by the manufacturer or user.
  • the detection processing unit 19 waits for a negative determination (repeats step ST1), and proceeds to step ST2 for an affirmative determination.
  • step ST2 the detection processing unit 19 acquires information on the detected value of the angular velocity from the angular velocity sensor 13. Further, in step ST3, the detection processing unit 19 acquires information on the detected value of the acceleration from the acceleration sensor 15.
  • step ST4 the detection processing unit 19 determines whether or not the predetermined time T2 has elapsed.
  • This time T2 is a cycle for transmitting information on the detected values of the angular velocity and the acceleration, as will be understood from the following description.
  • the time T2 is set to be twice or more the time T1. That is, in the process shown here, in order to reduce the burden of communication, the information of the detected values at a plurality of time points is collectively transmitted. However, transmission may be performed in the same cycle as the detection sampling cycle without providing step ST4.
  • the length of time T2 may be set by the manufacturer or user.
  • the detection processing unit 19 returns to step ST1 when a negative determination is made, and proceeds to step ST5 when an affirmative determination is made. In step ST5, the detection processing unit 19 transmits untransmitted information on the detected values of the angular velocity and the acceleration acquired so far.
  • step ST6 the detection processing unit 19 determines whether or not the end condition for ending the sensing process is satisfied.
  • the end condition is, for example, that an operation has been performed on an operation unit (not shown) of the sensor device 5. Then, the detection processing unit 19 returns to step ST1 to continue the process when the negative determination is made, and ends the process when the affirmative determination is made.
  • FIG. 8 is a flowchart showing an example of the procedure of the analysis process executed by the analysis processing unit 27 of the analysis device 7. This process is started, for example, when a predetermined operation is performed on the input unit 21 (not shown) of the analysis processing unit 27. Note that initialization processing such as setting the initial values of Euler angles is omitted here.
  • step ST11 the analysis processing unit 27 determines whether or not data has been received from the sensor device 5.
  • the analysis processing unit 27 waits for a negative determination (repeats step ST11), and proceeds to step ST12 for an affirmative determination.
  • the sensor device 5 actively transmits data and the analysis processing unit 27 passively receives the data, but the analysis processing unit 27 transmits data at a predetermined cycle (time T2). You may instruct.
  • the estimation regarding the impact is repeated in the cycle of receiving the data.
  • the estimation may be repeated in a cycle longer than the cycle in which the data is received.
  • step ST12 the analysis processing unit 27 estimates the posture of the racket 3 based on the information obtained in step ST11, as described with reference to FIGS. 4 (a) and 4 (b). In this estimation, for example, the posture at each time point (in time T1 increments) within the time T2 corresponding to the data received this time is estimated.
  • step ST13 the analysis processing unit 27 specifies the presence / absence and the time point of impact as described with reference to FIGS. 3 (a), 3 (b) and 9.
  • the presence or absence of impact is estimated in the time series data of at least the time T2 minutes received this time.
  • the data received this time not only the data received this time but also the data received before that (data of the previous time T2, if necessary) so that the impact generated near the boundary between the current time T2 and the previous time T2 can be estimated. Further previous data) may be used.
  • time-series data of the detected value when time-series data of the detected value is required when estimating the impact, the previous detected value may be used as appropriate. The same applies to the other estimates described below. This also applies when the time T2 is not set and the serial estimation is performed at the sampling cycle of the detected value at the time T1.
  • step ST13 the analysis processing unit 27 proceeds to step ST14 when it is estimated that there is an impact, and returns to step ST11 when it is estimated that there is no impact.
  • step ST14 the analysis processing unit 27 estimates the estimation result at the time of impact in step ST13 and the posture of the racket 3 in step ST13, as described with reference to FIGS. 4 (a) and 4 (b). Based on the result, the posture of the racket 3 at the time of impact is estimated. As a result, the analysis processing unit 27 estimates which of the pair of front and back striking surfaces 9a the ball hits.
  • step ST15 the analysis processing unit 27 calculates the speed of the racket 3 at the time of impact based on the estimation result at the time of impact in step ST13 and the detected value of the acceleration sensor 15.
  • the analysis processing unit 27 corrects the detected value of the angular velocity based on the calculated velocity and the estimation result of the posture at the time of impact. In various estimations described below, this corrected angular velocity may be used, but it may not be used.
  • step ST16 the analysis processing unit 27 specifies the angular velocity around the z-axis at the time of impact based on the estimation result at the time of impact in step ST13. Then, the analysis processing unit 27 is based on the above-specified angular velocity and the estimation result of the striking surface hit by the ball in step ST14, as described with reference to FIGS. 5 (a) and 5 (c). Then, it is estimated whether the ball hits the + y side or the ⁇ y side.
  • step ST17 the analysis processing unit 27 virtualizes the impact position based on the absolute value of the angular velocity around the z-axis at the time of impact, as described with reference to FIGS. 5 (a) to 5 (c). Estimate the distance from line CL.
  • step ST18 the analysis processing unit 27 specifies the time Ta at which the amplitude of the angular velocity vibration around the y-axis generated at the time of impact is attenuated to a predetermined magnitude based on the estimation result at the time of impact in step ST13. .. Then, the analysis processing unit 27 estimates the distance of the impact position from the grip 11 based on the time Ta, as described with reference to FIGS. 6 (a) and 6 (b).
  • step ST19 the analysis processing unit 27 has a plurality of impact positions (this implementation) based on the above front and back estimation (step ST14), left / right estimation (step ST16), central estimation (step ST17), and vertical estimation (step ST18). It is determined (classified) which of the nine division regions R the form belongs to.
  • step ST20 the analysis processing unit 27 displays any of the estimation results so far on the display 23.
  • the displayed contents may be appropriate. For example, in a figure schematically showing a plurality of division regions R, it may be indicated which division region R the latest impact position belongs to, or the frequency of impact for each division region R may be indicated.
  • step ST21 the analysis processing unit 27 determines whether or not the end condition for ending the analysis process is satisfied.
  • the end condition is, for example, that a predetermined operation has been performed on the input unit 21. Then, the analysis processing unit 27 returns to step ST11 to continue the process when the negative determination is made, and ends the process when the affirmative determination is made.
  • the analysis system 1 is a racket analysis system that analyzes the movement of the racket 3.
  • the racket 3 has a striking portion 9 and a grip 11.
  • the striking portion 9 has, for example, a flat striking surface 9a.
  • the grip 11 extends outside the striking surface 9a along a virtual line CL that is parallel to the striking surface 9a and passes through the center of the striking surface 9a.
  • the analysis system 1 estimates the position of the ball on the striking surface 9a based on the detection values of the angular velocity sensor 13 fixed to the racket 3 and the angular velocity sensor 13 when the ball hits the racket 3. It has a processor (CPU 27a).
  • the analysis device 7 is a racket analysis device that analyzes the movement of the racket 3.
  • the analysis device 7 has a processor (CPU 27a) that estimates the position of the hitting surface 9a where the ball hits, based on the angular velocity of the racket 3 when the ball hits the racket 3.
  • the program 31 is a racket analysis program for analyzing the movement of the racket 3.
  • the program 31 causes the computer (CPU 27a and memory 27b) to execute an estimation step (for example, at least one of steps ST16 to ST18).
  • the estimation step is a process of estimating the position where the ball hits the striking surface 9a based on the angular velocity of the racket when the ball hits the racket 3.
  • the racket analysis method is an estimation step of estimating the position where the ball hits the striking surface 9a based on the angular velocity of the racket 3 when the ball hits the racket 3. have.
  • the impact position can be specified even if the ball is hidden by the striking portion 9.
  • the angular velocity sensor 13 determines the angular velocity around the z-axis. It is detectable. Based on the positive and negative of the angular velocity around the z-axis when the ball hits the racket 3, the CPU 27a has the position where the ball hits the positive side in the y-axis direction with respect to the center side (for example, the virtual line CL) of the striking surface 9a. And estimate which is the negative side.
  • the angular velocity sensor 13 can detect the angular velocity around the z-axis.
  • the CPU 27a estimates that the smaller the angular velocity around the z-axis when the ball hits the racket 3, the more the position where the ball hits is on the center side of the striking surface 9a in the y-axis direction. Specifically, for example, the CPU 27a estimates that the sphere hits any of the divided regions RC, RN, and RS when the angular velocity around the z-axis is smaller than a predetermined threshold value.
  • the rotation around the z-axis of the racket is actively used as compared with the competition using the bat. Therefore, in order to detect this rotation, it is expected that an angular velocity sensor 13 capable of detecting the angular velocity around the z-axis with high accuracy will be provided.
  • an angular velocity sensor 13 capable of detecting the angular velocity around the z-axis with high accuracy will be provided.
  • the accuracy of the impact position estimation will be improved as the angular velocity sensor 13 becomes more accurate.
  • the CPU 27a is a divided region in which the position where the ball hits divides the striking surface 9a into three or more in the y-axis direction based on the positive and negative values and the absolute value of the angular velocity around the z-axis when the ball hits the racket 3. You may estimate where it is located.
  • the angular velocity sensor can detect the angular velocity around the y-axis.
  • the longer the time Ta at which the amplitude of the angular velocity vibration around the y-axis generated when the ball hits the racket 3 is attenuated to a predetermined magnitude the more the position where the ball hits is separated from the grip 11 in the z-axis direction. Presumed to be.
  • the CPU 27a estimates that the longer the time Ta, the more the ball hits the divided region R, which has a relatively longer distance from the grip 11.
  • the maximum value or the minimum value of the angular velocity generated at the time of impact reflects the inertial force momentarily received by the racket 3.
  • one of the factors causing the difference in the length of time Ta is that the speed at which the vibration energy is dissipated into the grip 11 and the player's hand differs depending on the distance from the grip 11. That is, time Ta is not a parameter governed only by the momentary inertial force. From this, for example, if the impact position is estimated based on the time Ta as described above, the influence of the ball speed on the estimation can be reduced.
  • the CPU 27a may estimate which of the divided regions where the hitting surface 9a is divided into two or more in the z-axis direction.
  • the same effect as that of estimating which of the divided regions in which the striking surface 9a is divided in the y-axis direction belongs to the impact position is produced.
  • the burden of calculation is reduced.
  • the possibility of presenting the user with a relative relationship opposite to the actual one is reduced.
  • the angular velocity sensor 13 can detect the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis.
  • the CPU 27a estimates the posture of the striking portion 9 in the absolute coordinate system based on the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis. Then, the CPU 27a presumes that the ball hits the striking surface 9a when the posture of the racket 3 when the ball hits the racket 3 is included in the predetermined first range, and when the ball hits the racket 3. When the posture of the racket 3 is included in the second range different from the first range, it is presumed that the ball hits the back surface of the striking surface 9a (another striking surface 9a).
  • the number of angular velocity sensors 13 does not increase even if the number of striking surfaces 9a to be analyzed increases. Therefore, the probability that the weight of the racket with the sensor deviates from the weight of the racket 3 is reduced.
  • posture estimation technology that has been put into practical use in other technical fields such as robots and drones can be applied.
  • the angular velocity sensor 13 can detect the angular velocity around the z-axis.
  • the CPU 27a estimates the time when the ball hits the racket 3 based on the angular velocity around the z-axis.
  • the configuration of the analysis system 1 is simplified as compared with a mode in which the presence / absence and a time point of impact are estimated by, for example, shooting with a video camera (the mode is also included in the present disclosure).
  • the mode is also included in the present disclosure.
  • the data that is the basis of the estimation at the time of impact and the data that is the basis of the estimation of the impact position can be made the same, there is an inconvenience that the detection results are inconsistent or deviated between different sensors. The probability of occurrence is reduced.
  • the analysis system 1 further includes an acceleration sensor 15 capable of detecting acceleration in the x-axis direction orthogonal to the striking surface 9a.
  • the CPU 27a estimates the time when the ball hits based on the detected value of the acceleration in the direction orthogonal to the striking surface 9a.
  • the influence of the impact position is reduced as compared with the method of estimating the time when the ball hits the racket 3 based on the above-mentioned angular velocity around the z-axis. That is, the estimation accuracy at the time of impact can be improved.
  • the analysis system 1 further includes an acceleration sensor 15 capable of detecting acceleration in the z-axis direction parallel to the virtual line CL.
  • the CPU 27a estimates the time when the sphere hits based on the detected value of the acceleration in the z-axis direction.
  • the normal line (x) of the hitting surface 9a in the direction in which the ball hits the hitting surface 9a is reduced.
  • the acceleration sensor capable of detecting the acceleration in the x-axis direction orthogonal to the striking surface 9a is further provided.
  • the CPU 27a corrects the detection value of the angular velocity so that the larger the detection value of the acceleration in the direction in which the hit surface 9a faces when the ball hits the hitting surface 9a, the smaller the absolute value of the angular velocity, and after the correction.
  • the position where the ball hits the striking surface 9a is estimated using the angular velocity of.
  • the influence of the speed of the racket 3 on the angular velocity at the time of impact can be reduced.
  • the accuracy of estimating the impact position based on the angular velocity can be improved.
  • the angular velocity sensor 13 may be located at the end of the grip 11 opposite to the striking portion 9.
  • the angular velocity sensor 13 is used as another member (for example, in the swing). , Ball, table or floor) is reduced.
  • the various elements or functions mentioned in the embodiment may be omitted.
  • the impact position based only on the angular velocity sensor, and if high accuracy is not required for the impact position, the acceleration sensor may be omitted. Good.
  • the angular velocity sensor may be a biaxial angular velocity sensor.
  • the angular velocity sensor may only detect the angular velocity around one axis.
  • the analysis device 7 analyzes the impact position and the like.
  • the sensor device 5 may perform analysis such as estimation of the impact position. That is, the step described as being performed by the CPU 27a of the analysis device 7 may be performed by the CPU 19a of the sensor device 5. Further, the analysis process may be shared between the CPU 27a and the CPU 19a. In other words, in the racket analysis system, the processor that performs analysis such as estimation of the impact position may be CPU 19a instead of CPU 27a, or may be a combination of both.
  • the technique according to the present disclosure may be used not only for analysis of competition practice, etc., but also for determining the quality of play in an arcade game machine that imitates competition.

Abstract

A racket has a striking portion and a grip. The striking portion has a striking surface. The grip extends parallel to the striking surface, outside the striking surface on a virtual line that passes through the center of the striking surface. This analysis system analyzes the movement of the racket, and includes: an angular velocity sensor fixed to the racket; and a processing portion which, on the basis of a detected value obtained from the angular velocity sensor when the racket has been hit by a ball, estimates the position at which the ball hit, within the striking surface.

Description

ラケット用解析システム、ラケット用解析装置、ラケット用解析プログラム及びラケット用解析方法Racket analysis system, racket analysis device, racket analysis program and racket analysis method
 本開示は、ラケットの動きを解析するためのラケット用解析システム、ラケット用解析装置、ラケット用解析プログラム及びラケット用解析方法に関する。 This disclosure relates to a racket analysis system for analyzing the movement of a racket, a racket analysis device, a racket analysis program, and a racket analysis method.
 ラケットにセンサを取り付け、ラケットの動きを解析することによって選手の技量の向上を図る技術が知られている(例えば下記特許文献1)。特許文献1では、卓球用のラケットに、加速度センサと、接触センサとを設けた技術が開示されている。接触センサは、タブレット等における面接触位置座標検出型センサによって構成されており、打面(フェイス)の全面に亘って設けられている。そして、接触センサは、球が打面のうちのいずれの位置に当たったかを推定することに寄与している。 A technique for improving a player's skill by attaching a sensor to a racket and analyzing the movement of the racket is known (for example, Patent Document 1 below). Patent Document 1 discloses a technique in which an acceleration sensor and a contact sensor are provided on a racket for table tennis. The contact sensor is composed of a surface contact position coordinate detection type sensor in a tablet or the like, and is provided over the entire surface of the striking surface (face). Then, the contact sensor contributes to estimating which position of the striking surface the ball hits.
特開2009-183455号公報Japanese Unexamined Patent Publication No. 2009-183455
 本開示の一態様に係るラケット用解析システムは、ラケットの動きを解析する。ラケットは、打面を有している打部と、前記打面に平行で前記打面の中央部を通る仮想線に沿って前記打面の外側で延びているグリップと、を有している。ラケット用解析システムは、前記ラケットに固定されている角速度センサと、前記ラケットに球が当たったときの前記角速度センサの検出値に基づいて、前記打面のうちの前記球が当たった位置を推定する処理部と、を有している。 The racket analysis system according to one aspect of the present disclosure analyzes the movement of the racket. The racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the central portion of the striking surface. .. The racket analysis system estimates the position of the ball on the striking surface based on the angular velocity sensor fixed to the racket and the detection value of the angular velocity sensor when the ball hits the racket. It has a processing unit and a processing unit.
 本開示の一態様に係るラケット用解析装置は、ラケットの動きを解析する。ラケットは、打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有している。ラケット用解析装置は、前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する処理部を有している。 The racket analysis device according to one aspect of the present disclosure analyzes the movement of the racket. The racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. The racket analysis device has a processing unit that estimates the position of the ball hitting the striking surface based on the angular velocity of the racket when the ball hits the racket.
 本開示の一態様に係るラケット用解析プログラムは、ラケットの動きを解析するためのものである。ラケットは、打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有している。ラケット用解析プログラムは、コンピュータに、前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する推定ステップ、を実行させる。 The racket analysis program according to one aspect of the present disclosure is for analyzing the movement of the racket. The racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. The racket analysis program causes a computer to perform an estimation step of estimating a position of the hitting surface where the ball hits, based on the angular velocity of the racket when the ball hits the racket.
 本開示の一態様に係るラケット用解析方法は、ラケットの動きを解析する。ラケットは、打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有している。ラケット用解析方法は、前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する推定ステップ、を有している。 The racket analysis method according to one aspect of the present disclosure analyzes the movement of the racket. The racket has a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. The racket analysis method includes an estimation step of estimating the position of the ball hitting the striking surface based on the angular velocity of the racket when the ball hits the racket.
実施形態に係るラケット用解析システムの構成の一例を示す模式的な斜視図である。It is a schematic perspective view which shows an example of the structure of the racket analysis system which concerns on embodiment. 図1の解析システムの信号処理系の構成を示すブロック図である。It is a block diagram which shows the structure of the signal processing system of the analysis system of FIG. 図3(a)及び図3(b)はインパクトの検出方法を説明するための図である。3 (a) and 3 (b) are diagrams for explaining an impact detection method. 図4(a)及び図4(b)は球が当たった打面の推定方法を説明するための図である。4 (a) and 4 (b) are diagrams for explaining a method of estimating the striking surface hit by the ball. 図5(a)、図5(b)及び図5(c)は左右方向における球が当たった位置の推定方法を説明するための図である。5 (a), 5 (b) and 5 (c) are diagrams for explaining a method of estimating the position where the sphere hits in the left-right direction. 図6(a)及び図6(b)は上下方向における球が当たった位置の推定方法を説明するための図である。6 (a) and 6 (b) are diagrams for explaining a method of estimating the position where the sphere hits in the vertical direction. 図1の解析システムのセンサ装置が実行するセンシング処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the sensing process executed by the sensor device of the analysis system of FIG. 図1の解析システムの解析装置が実行する解析処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the analysis processing executed by the analysis apparatus of the analysis system of FIG. インパクトの検出方法を説明するための図である。It is a figure for demonstrating the impact detection method.
 図1は、実施形態に係る解析システム1の構成の一例を示す模式的な斜視図である。 FIG. 1 is a schematic perspective view showing an example of the configuration of the analysis system 1 according to the embodiment.
 解析システム1は、例えば、ラケット3に固定されたセンサ装置5と、センサ装置5が検出したラケット3の動きを解析する解析装置7とを有している。解析装置7は、具体的には、例えば、センサ装置5の検出値に基づいて、球がラケット3のどの位置に当たったかを推定する。以下の説明では、球が当たった位置をインパクト位置ということがある。 The analysis system 1 has, for example, a sensor device 5 fixed to the racket 3 and an analysis device 7 that analyzes the movement of the racket 3 detected by the sensor device 5. Specifically, the analysis device 7 estimates, for example, which position of the racket 3 the sphere hits based on the detected value of the sensor device 5. In the following explanation, the position where the ball hits may be referred to as the impact position.
 ラケット3は、解析システム1に含まれていないと捉えられてもよいし、含まれていると捉えられてもよい。本実施形態の説明では、便宜上、前者とする。また、ラケット3とセンサ装置5との組み合わせは、センサ付きラケットとして概念されてもよい。 The racket 3 may be considered not to be included in the analysis system 1 or may be considered to be included. In the description of this embodiment, the former is used for convenience. Further, the combination of the racket 3 and the sensor device 5 may be conceptualized as a racket with a sensor.
(ラケット)
 ラケット3は、種々のスポーツに用いられるものとされてよく、本実施形態の説明では、卓球用のラケットを例に取る。卓球以外のスポーツとしては、例えば、テニス(硬式及び軟式)、バドミントン、スカッシュ及びラケットボールを挙げることができる。バドミントンが挙げられていることから理解されるように、本開示において、「球」はラケットで打つものであればよく、狭義の球だけでなく、例えば、シャトル(羽球)などの球形以外のものも含む。
(racket)
The racket 3 may be used for various sports, and in the description of the present embodiment, a racket for table tennis is taken as an example. Sports other than table tennis include, for example, tennis (hard and soft), badminton, squash and racquetball. As can be understood from the fact that badminton is mentioned, in the present disclosure, the "sphere" may be a ball hit by a racket, and is not only a ball in a narrow sense but also a non-sphere such as a shuttle (feather ball). Also includes.
 ラケット3は、例えば、球を打つための打部9(ヘッド)と、選手が握るためのグリップ11とを有している。 The racket 3 has, for example, a striking portion 9 (head) for striking a ball and a grip 11 for a player to grip.
 打部9は、球を打つための例えば平面状の打面9aを有している。ラケット3は、表裏1対の打面9a(別の観点ではラバー)を有しているタイプ(通常はシェークハンドタイプ)であってもよいし、1つの打面9aのみを有しているタイプ(通常はペンホルダータイプ)であってもよい。本実施形態の説明では、前者を例に取る。なお、卓球用のラケット3の打面9aが凹凸を有することがあること、及びテニス用のラケットの打面がガットによって構成されていることなどから明らかなように、ここでいう平面状は、厳密な意味での平面であることを要しない。 The striking portion 9 has, for example, a flat striking surface 9a for striking a ball. The racket 3 may be a type having a pair of front and back striking surfaces 9a (rubber from another viewpoint) (usually a shake hand type), or a type having only one striking surface 9a. (Usually a pen holder type) may be used. In the description of this embodiment, the former will be taken as an example. As is clear from the fact that the striking surface 9a of the racket 3 for table tennis may have irregularities and that the striking surface of the racket for tennis is composed of guts, the flat surface referred to here is. It does not have to be a plane in the strict sense.
 グリップ11は、選手が握ることができる太さの長尺状の部材である。打部9とグリップ11とは互いに一体的に形成されることなどによって互いに固定されている。卓球以外のラケットでは、グリップと打部とは、スロートを介して互いに固定されていることがある。 The grip 11 is a long member having a thickness that can be gripped by a player. The striking portion 9 and the grip 11 are fixed to each other by being integrally formed with each other. In rackets other than table tennis, the grip and the striking part may be fixed to each other via a throat.
 打面9aに平行で打面9aの中央を通る(すなわち打面9aを概ね2等分する)仮想線CLを仮定する。このとき、グリップ11は、打面9aの外側で仮想線CLに沿って延びている。ここでいう「仮想線CLに沿っている」は、グリップ11の中心線(不図示)と仮想線CLとが同一線上に位置していたり、互いに平行であったりすることを要しない。各競技におけるルール及び/又は常識の範囲内において、グリップ11の中心線と仮想線CLとは互いに傾斜していてもよいし、互いにずれていてもよい。 Assume a virtual line CL that is parallel to the striking surface 9a and passes through the center of the striking surface 9a (that is, the striking surface 9a is roughly bisected). At this time, the grip 11 extends along the virtual line CL on the outside of the striking surface 9a. “Along the virtual line CL” here does not require that the center line (not shown) of the grip 11 and the virtual line CL are located on the same line or parallel to each other. Within the rules and / or common sense in each competition, the center line of the grip 11 and the virtual line CL may be inclined to each other or may be deviated from each other.
(座標系)
 図1では、ラケット3に固定的な相対座標系xyz(センサ座標系)と、ラケット3が移動可能な空間に固定的な絶対座標系XYZ(空間座標系)とが示されている。これらの座標系の各軸の向きは適宜に設定されてよい。
(Coordinate system)
In FIG. 1, a relative coordinate system xyz (sensor coordinate system) fixed to the racket 3 and an absolute coordinate system XYZ (spatial coordinate system) fixed to the space in which the racket 3 can move are shown. The orientation of each axis of these coordinate systems may be set as appropriate.
 本実施形態の説明では、z軸は、仮想線CLに平行(概ねグリップ11に平行)であるものとする。x軸は打面9aに直交するものとする。y軸はx軸及びz軸に直交するものとする。換言すれば、y軸は打面9aに平行で、かつz軸に直交するものとする。以下の説明では、便宜上、y軸方向を左右方向と言うことがあり、z軸方向を上下方向と言うことがある。各軸回りに示す矢印の向きは、以下の説明に用いる各軸回りの角速度の正負を示している。 In the description of this embodiment, it is assumed that the z-axis is parallel to the virtual line CL (generally parallel to the grip 11). It is assumed that the x-axis is orthogonal to the striking surface 9a. The y-axis shall be orthogonal to the x-axis and z-axis. In other words, the y-axis is parallel to the striking surface 9a and orthogonal to the z-axis. In the following description, for convenience, the y-axis direction may be referred to as the left-right direction, and the z-axis direction may be referred to as the up-down direction. The direction of the arrow shown around each axis indicates the positive or negative of the angular velocity around each axis used in the following description.
(打面の分割領域)
 図1では、打面9aを複数に分割した分割領域R(RC、RE、RNE、RN、RNW、RW、RSW、RS及びRSE)を定義している。打面9a内の球が当たった位置(インパクト位置)の推定は、例えば、このように打面9aを適宜な数に分割した分割領域Rのいずれに当たったかの推定とされてよい。ただし、分割領域Rの複数領域でインパクト位置が推定されることもあり得る。もちろん、このようなインパクト位置をいずれかの分割領域Rに分類するのではなく、インパクト位置の座標、又は基準位置からインパクト位置までの距離が推定されてもよい。
(Divided area of striking surface)
In FIG. 1, a division region R (RC, RE, RNE, RN, RNW, RW, RSW, RS and RSE) in which the striking surface 9a is divided into a plurality of parts is defined. The estimation of the position (impact position) where the ball in the striking surface 9a hits may be, for example, an estimation of which of the divided regions R in which the striking surface 9a is divided into an appropriate number. However, the impact position may be estimated in a plurality of regions of the division region R. Of course, instead of classifying such an impact position into any of the divided regions R, the coordinates of the impact position or the distance from the reference position to the impact position may be estimated.
 分割領域Rの数(打面9aの分割数)、各分割領域Rの位置及び各分割領域が打面9aに占める面積割合等は適宜に設定されてよい。図示の例では、分割数は9とされている。より詳細には、打面9aは、y軸方向において打面9aの長さ(例えば最大長さ)を基準として概ね3等分されるとともに、z軸方向において打面9aの長さ(例えば最大長さ)を基準として概ね3等分されている。すなわち、打面9aは、3×3に分割されている。中央の分割領域Rを分割領域RCとする。他の分割領域Rは、-y側の分割領域Rから半時計回りに順に、分割領域RE、RNE、RN、RNW、RW、RSW、RS及びRSEであるものとする。 The number of division areas R (the number of divisions of the striking surface 9a), the position of each division area R, the area ratio of each division area to the striking surface 9a, and the like may be appropriately set. In the illustrated example, the number of divisions is 9. More specifically, the striking surface 9a is roughly divided into three equal parts in the y-axis direction with respect to the length of the striking surface 9a (for example, the maximum length), and the length of the striking surface 9a in the z-axis direction (for example, the maximum length). It is roughly divided into three equal parts based on the length). That is, the striking surface 9a is divided into 3 × 3. The central division area R is defined as the division area RC. It is assumed that the other division regions R are the division regions RE, RNE, RN, RNW, RW, RSW, RS, and RSE in order from the division region R on the −y side in a counterclockwise direction.
 9分割以外の分割態様について以下に例示する。例えば、打面9aは、y軸方向のみにおいて分割され、その分割数が、2つ、3つ、又は4つ以上とされてよい。また、例えば、打面9aは、z軸方向のみにおいて分割され、その分割数が、2つ、3つ、又は4つ以上とされてよい。また、打面9aは、y軸方向及びz軸方向のそれぞれにおいて分割され、2×2、2×3、3×2、2×4、4×2、3×4、4×3又は4×4に分割されてよい。別の観点では、n及びmを2以上の整数としたときに、打面9aは、1×m、n×1又はn×mに分割されてよい。また、打面9aは、中央側の1つの円形状の領域と、その周囲に配置された複数の扇状の領域とに分割されるなど、縦横に分割する概念とは異なる概念で分割されてもよい。 Examples of division modes other than 9 divisions are given below. For example, the striking surface 9a may be divided only in the y-axis direction, and the number of divisions may be 2, 3, or 4 or more. Further, for example, the striking surface 9a may be divided only in the z-axis direction, and the number of divisions may be 2, 3, or 4 or more. Further, the striking surface 9a is divided in each of the y-axis direction and the z-axis direction, and is divided into 2 × 2, 2 × 3, 3 × 2, 2 × 4, 4 × 2, 3 × 4, 4 × 3 or 4 ×. It may be divided into four. From another viewpoint, when n and m are integers of 2 or more, the striking surface 9a may be divided into 1 × m, n × 1 or n × m. Further, the striking surface 9a may be divided by a concept different from the concept of vertically and horizontally divided, such as being divided into one circular region on the center side and a plurality of fan-shaped regions arranged around the circular region. Good.
 上記から理解されるように、y軸方向の分割数とz軸方向の分割数とは同一であってもよいし、異なっていてもよい。また、y軸方向又はz軸方向において打面9aの中央を体現する領域(例えば図示の例の分割領域RC)は、存在してもよいし、存在しなくてもよい。 As understood from the above, the number of divisions in the y-axis direction and the number of divisions in the z-axis direction may be the same or different. Further, a region embodying the center of the striking surface 9a in the y-axis direction or the z-axis direction (for example, the divided region RC in the illustrated example) may or may not exist.
(センサ装置の概要)
 センサ装置5は、ラケット3に固定されており、少なくとも角速度を検出する慣性センサとして機能する。センサ装置5のラケット3に対する取付位置、形状及び大きさ等は適宜に設定されてよい。図示の例では、センサ装置5は、グリップ11の打部9とは反対側の端部に位置している。また、センサ装置5は、z軸方向に見て、グリップ11の端面と概ね同等の大きさを有している。センサ装置5は、1種類のラケット3又は種々のラケット3に対して着脱可能であってもよいし、ラケット3に対して着脱不可能に固定されていてもよい。
(Overview of sensor device)
The sensor device 5 is fixed to the racket 3 and functions as an inertial sensor that detects at least an angular velocity. The mounting position, shape, size, and the like of the sensor device 5 with respect to the racket 3 may be appropriately set. In the illustrated example, the sensor device 5 is located at the end of the grip 11 opposite to the striking portion 9. Further, the sensor device 5 has substantially the same size as the end face of the grip 11 when viewed in the z-axis direction. The sensor device 5 may be detachable from one type of racket 3 or various rackets 3, or may be non-detachably fixed to the racket 3.
(解析装置の概要)
 解析装置7は、コンピュータを含んで構成されている。図示の例では、解析装置7は、スマートデバイスによって構成されている。スマートデバイスは、例えば、スマートフォン(図示の例)、タブレット及びノートパソコンであるが、インパクト位置を推定できるものであればよく、上記のものに限定されない。コンピュータのハードウェア及び基本的なソフトウェア(例えばOS(Operating System))は、公知の種々のもの(別の観点では一般的なもの)と同様とされてよい。所定のアプリケーションを一般的なコンピュータにインストールすることによって、解析装置7を得ることができる。
(Overview of analyzer)
The analysis device 7 includes a computer. In the illustrated example, the analyzer 7 is configured by a smart device. The smart device is, for example, a smartphone (illustrated example), a tablet, and a notebook computer, but is not limited to the above as long as it can estimate the impact position. The hardware and basic software of the computer (eg, OS (Operating System)) may be similar to various known ones (common in another respect). The analyzer 7 can be obtained by installing a predetermined application on a general computer.
(信号処理系の構成)
 図2は、解析システム1の信号処理系の構成を示すブロック図である。この図において、ブロック同士を結ぶ矢印が示す方向は、主要な信号が伝達される方向を示しているが、実際には、矢印とは逆方向へ伝達される信号が存在してもよい。
(Structure of signal processing system)
FIG. 2 is a block diagram showing a configuration of a signal processing system of the analysis system 1. In this figure, the direction indicated by the arrow connecting the blocks indicates the direction in which the main signal is transmitted, but in reality, there may be a signal transmitted in the direction opposite to the arrow.
 センサ装置5は、例えば、ラケット3の角速度を検出する角速度センサ13(ジャイロセンサ)と、ラケット3の加速度を検出する加速度センサ15と、解析装置7と通信を行う通信部17と、これらに対して入力又は出力がなされる信号の処理等を行う検出処理部19とを有している。 The sensor device 5 includes, for example, an angular velocity sensor 13 (gyro sensor) that detects the angular velocity of the racket 3, an acceleration sensor 15 that detects the acceleration of the racket 3, and a communication unit 17 that communicates with the analysis device 7. It has a detection processing unit 19 that processes a signal to be input or output.
 解析装置7は、例えば、ユーザの操作を受け付ける入力部21と、画像を表示するディスプレイ23と、センサ装置5と通信を行う通信部25と、これらに対して入力又は出力がなされる信号の処理等を行う解析処理部27とを有している。解析処理部27は、インパクト位置の推定を行う処理部として機能する。 The analysis device 7 processes, for example, an input unit 21 that accepts user operations, a display 23 that displays an image, a communication unit 25 that communicates with the sensor device 5, and signals that are input or output to these. It has an analysis processing unit 27 that performs the above and the like. The analysis processing unit 27 functions as a processing unit that estimates the impact position.
(センサ装置の各部の構成)
 角速度センサ13は、例えば、x軸、y軸及びz軸の3軸それぞれの角速度を検出可能な3軸角速度センサによって構成されている。このような角速度センサとしては、例えば、特に図示しないが、x軸回りの角速度を検出する角速度センサ、y軸回りの角速度を検出する角速度センサ及びz軸回りの角速度を検出する角速度センサの組み合わせが挙げられる。ただし、角速度センサ13は、相対座標系xyzに傾斜した座標系の各軸の回りの角速度を検出する3つのセンサの組み合わせであってもよい。この場合においても、角速度センサ13又はその外部の機器による座標変換によって、x軸、y軸及びz軸の3軸それぞれの角速度を特定可能である。このため、角速度センサ13は、x軸、y軸及び/又はz軸の角速度を検出可能なセンサであるといってよい。
(Structure of each part of the sensor device)
The angular velocity sensor 13 is composed of, for example, a three-axis angular velocity sensor capable of detecting the angular velocities of each of the three axes of the x-axis, the y-axis, and the z-axis. As such an angular velocity sensor, for example, although not particularly shown, a combination of an angular velocity sensor that detects an angular velocity around the x-axis, an angular velocity sensor that detects an angular velocity around the y-axis, and an angular velocity sensor that detects an angular velocity around the z-axis is used. Can be mentioned. However, the angular velocity sensor 13 may be a combination of three sensors that detect the angular velocity around each axis of the coordinate system inclined to the relative coordinate system xyz. Even in this case, the angular velocities of the three axes of the x-axis, the y-axis, and the z-axis can be specified by the coordinate transformation by the angular velocity sensor 13 or an external device thereof. Therefore, it can be said that the angular velocity sensor 13 is a sensor capable of detecting the angular velocity of the x-axis, the y-axis, and / or the z-axis.
 x軸、y軸及びz軸の各軸回りの角速度を検出するセンサの構成は、例えば、公知の種々のものとされて構わない。例えば、米国特許出願公開第2019/265033号明細書(以下、先行文献1という。国際公開第2018/021166号に対応している。)におけるz軸回りの角速度を検出する角速度センサが、図1で定義したz軸の回りの角速度を検出する角速度センサとして用いられてよい。先行文献1におけるy軸回りの角速度を検出する角速度センサが、図1で定義したy軸の回りの角速度を検出する角速度センサとして用いられてよい。先行文献1におけるy軸回りの角速度を検出する角速度センサが、先行文献1のy軸が図1のx軸に、先行文献1のx軸が図1のy軸に一致するように配置されて、図1で定義したx軸の回りの角速度を検出する角速度センサとして用いられてよい。先行文献1の内容は、本開示において参照による引用(Incorporation by reference)がなされてよい。 The configuration of the sensor that detects the angular velocity around each of the x-axis, y-axis, and z-axis may be, for example, various known configurations. For example, the angular velocity sensor for detecting the angular velocity around the z-axis in US Patent Application Publication No. 2019/265033 (hereinafter referred to as Prior Document 1; corresponding to International Publication No. 2018/021166) is shown in FIG. It may be used as an angular velocity sensor that detects the angular velocity around the z-axis defined in. The angular velocity sensor that detects the angular velocity around the y-axis in the prior document 1 may be used as the angular velocity sensor that detects the angular velocity around the y-axis defined in FIG. The angular velocity sensor for detecting the angular velocity around the y-axis in the prior document 1 is arranged so that the y-axis of the prior document 1 coincides with the x-axis of FIG. 1 and the x-axis of the prior document 1 coincides with the y-axis of FIG. , May be used as an angular velocity sensor that detects the angular velocity around the x-axis defined in FIG. The content of Prior Document 1 may be cited by reference in the present disclosure.
 加速度センサ15は、例えば、x軸、y軸及びz軸の3軸それぞれの加速度を検出可能な3軸加速度センサによって構成されている。3軸加速度センサの構成は、公知の種々のものとされて構わない。例えば、国際公開第2009/119840号公報に開示されているようなピエゾ抵抗型の3軸加速度センサが用いられてよい。当該文献の内容は、本開示において参照による引用がなされてよい。また、例えば、静電容量型の3軸加速度センサ又は熱検知型の3軸加速度センサが用いられてもよい。適宜な形式の1軸又は2軸の加速度を検出する加速度センサが2つ以上組み合わされて、加速度センサ15を構成していてもよい。角速度センサ13と同様に、加速度センサ15が加速度を直接的に検出する方向は、x軸、y軸及びz軸に対して傾斜していてもよい。 The acceleration sensor 15 is composed of, for example, a three-axis acceleration sensor capable of detecting the acceleration of each of the three axes of the x-axis, y-axis, and z-axis. The configuration of the 3-axis accelerometer may be of various known configurations. For example, a piezoresistive 3-axis accelerometer as disclosed in WO 2009/11840 may be used. The content of this document may be cited by reference in this disclosure. Further, for example, a capacitance type 3-axis acceleration sensor or a heat detection type 3-axis acceleration sensor may be used. The acceleration sensor 15 may be formed by combining two or more acceleration sensors that detect acceleration of one or two axes of an appropriate type. Similar to the angular velocity sensor 13, the direction in which the acceleration sensor 15 directly detects acceleration may be inclined with respect to the x-axis, y-axis, and z-axis.
 通信部17は、例えば、少なくとも解析装置7と通信を行うことができる構成を有している。通信は、解析装置7へ送信を行うことができるだけであってもよいし、解析装置7と送受信を行うことができるものであってもよい。通信は、無線通信であってもよいし(図示の例)、有線通信であってもよく、また、無線通信と有線通信とを切り換え可能であってもよい。無線通信としては、電波を用いるもの、赤外線を用いるものを挙げることができる。また、電波を用いるものとしては、例えば、Bluetooth(登録商標)及びWi-Fi(登録商標)のような近距離用のものを挙げることができる。 The communication unit 17 has, for example, a configuration capable of communicating with at least the analysis device 7. The communication may only be able to transmit to the analysis device 7, or may be capable of transmitting and receiving to and from the analysis device 7. The communication may be wireless communication (illustrated example), wired communication, or switchable between wireless communication and wired communication. Examples of wireless communication include those using radio waves and those using infrared rays. In addition, examples of those using radio waves include those for short distances such as Bluetooth (registered trademark) and Wi-Fi (registered trademark).
 検出処理部19は、例えば、CPU19a(Central Processing Unit、プロセッサ)及びメモリ19bを有している。メモリ19bは、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)及び外部記憶装置等を含んでいる。CPU19aがメモリ19b(ROM及び外部記憶装置)に記憶されている所定のプログラムを実行することによって検出処理部19が構築される。検出処理部19は、例えば、検出された角速度の情報を角速度センサ13から取得するとともに、検出された加速度の情報を加速度センサ15から取得し、取得した情報を通信部17から送信する。 The detection processing unit 19 has, for example, a CPU 19a (Central Processing Unit, processor) and a memory 19b. The memory 19b includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), an external storage device, and the like. The detection processing unit 19 is constructed by the CPU 19a executing a predetermined program stored in the memory 19b (ROM and external storage device). For example, the detection processing unit 19 acquires the detected angular velocity information from the angular velocity sensor 13, acquires the detected acceleration information from the acceleration sensor 15, and transmits the acquired information from the communication unit 17.
(解析装置の各部の構成)
 入力部21は、公知の種々の構成とされてよい。図示の例では、タッチパネル29(図1の参照)を構成する板状のポインティングデバイスを含んで構成されている。この他、入力部21としては、例えば、キーボード及び押しボタンスイッチ等を含むものを挙げることができる。
(Structure of each part of the analyzer)
The input unit 21 may have various known configurations. In the illustrated example, a plate-shaped pointing device constituting the touch panel 29 (see FIG. 1) is included. In addition, examples of the input unit 21 include those including a keyboard, a push button switch, and the like.
 ディスプレイ23は、例えば、任意の画像を表示可能なものであり、液晶ディスプレイ又は有機EL(Electro-Luminescence)ディスプレイによって構成されている。図示の例では、入力部21の少なくとも一部と組み合わされて、タッチパネル29を構成している。 The display 23 can display an arbitrary image, for example, and is composed of a liquid crystal display or an organic EL (Electro-Luminescence) display. In the illustrated example, the touch panel 29 is configured by being combined with at least a part of the input unit 21.
 通信部25は、センサ装置5の通信部17と通信を行うものであるから、通信部17についての既述の説明は適宜に通信部25に援用されてよい。通信部25は、通信部17からの受信を行うことができるだけであってもよいし、通信部17と送受信を行うことができるものであってもよい。 Since the communication unit 25 communicates with the communication unit 17 of the sensor device 5, the above-mentioned explanation about the communication unit 17 may be appropriately referred to the communication unit 25. The communication unit 25 may only be able to receive from the communication unit 17, or may be capable of transmitting and receiving to and from the communication unit 17.
 解析処理部27は、例えば、CPU27a(プロセッサ)及びメモリ27bを有している。メモリ27bは、例えば、ROM、RAM及び外部記憶装置等を含んでいる。CPU27aがメモリ27b(ROM及び外部記憶装置)に記憶されているプログラム31を実行することによって解析処理部27が構築される。解析処理部27は、例えば、センサ装置5によって検出された角速度及び加速度の情報を、通信部25を介して取得し、取得した情報に基づいて解析を行い、その解析結果(例えばインパクト位置)をディスプレイ23に表示させる。 The analysis processing unit 27 has, for example, a CPU 27a (processor) and a memory 27b. The memory 27b includes, for example, a ROM, a RAM, an external storage device, and the like. The analysis processing unit 27 is constructed by the CPU 27a executing the program 31 stored in the memory 27b (ROM and external storage device). For example, the analysis processing unit 27 acquires information on the angular velocity and acceleration detected by the sensor device 5 via the communication unit 25, performs analysis based on the acquired information, and obtains the analysis result (for example, impact position). It is displayed on the display 23.
(解析項目及び解析方法)
 以下、センサ装置5の検出結果に基づいて解析装置7(より詳細には解析処理部27)が行う解析の項目及びその方法について説明する。以下では、基本的に、-x側の打面9aに球が当たる場合を例に取って説明する。+x側の打面9aに球が当たる場合についても同様に推定されてよい。
(Analysis items and analysis methods)
Hereinafter, the analysis items and the method thereof performed by the analysis device 7 (more specifically, the analysis processing unit 27) based on the detection result of the sensor device 5 will be described. In the following, basically, a case where the ball hits the striking surface 9a on the −x side will be described as an example. Similarly, the case where the ball hits the striking surface 9a on the + x side may be estimated.
(インパクトの推定)
 解析装置7は、インパクト(打面9aによって球が打たれること。別の観点では球が打面9aに当たること。)の有無、及びインパクトの時点を推定してよい。その推定方法は、例えば、以下のとおりである。
(Impact estimation)
The analysis device 7 may estimate the presence or absence of an impact (the ball is hit by the hitting surface 9a. From another viewpoint, the ball hits the hitting surface 9a) and the time of impact. The estimation method is as follows, for example.
 図3(a)は、加速度センサ15によって検出されるx軸方向の加速度の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸Ax(G)はx軸方向の加速度を示している。記号のGは、標準重力の何倍であるかを表すための単位である。この図は、選手がラケット3を振って球を打つ実験によって得られている。 FIG. 3A is a diagram showing an example of a time-dependent change in acceleration in the x-axis direction detected by the acceleration sensor 15. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis Ax (G) indicates acceleration in the x-axis direction. The symbol G is a unit for expressing how many times the standard gravity is. This figure is obtained by an experiment in which a player swings a racket 3 and hits a ball.
 この図では、図1の-x側の打面9aによって球が打たれたときの経時変化が示されている。極値P1によって示されているように、球が打面9aに当たると、打面9aが面する側とは反対側への加速度が急激に立ち上がる。別の観点では、インパクトのときの加速度と、ラケット3を振ったときの加速度とは種々のパラメータ(例えば絶対値、変化率及び/又は周波数)が異なる。従って、このようなx軸方向における加速度の立ち上り(又は立ち下り)を検出することによって、インパクトの有無及びその時点を推定することができる。 In this figure, the change with time when the ball is struck by the striking surface 9a on the −x side of FIG. 1 is shown. As indicated by the extremum P1, when the ball hits the striking surface 9a, the acceleration to the side opposite to the side facing the striking surface 9a suddenly rises. From another point of view, various parameters (for example, absolute value, rate of change and / or frequency) are different between the acceleration at the time of impact and the acceleration at the time of shaking the racket 3. Therefore, by detecting the rising (or falling) of the acceleration in the x-axis direction, it is possible to estimate the presence or absence of the impact and the time point at that time.
 図3(b)は、角速度センサ13によって検出されるz軸回りの角速度の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸Gz(dps:degree per second)はz軸回りの角速度を示している。この図は、図3(a)と同一の実験から得られている。 FIG. 3B is a diagram showing an example of a time-dependent change in the angular velocity around the z-axis detected by the angular velocity sensor 13. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis Gz (dps: degree per second) indicates the angular velocity around the z axis. This figure is obtained from the same experiment as in FIG. 3 (a).
 この図では、図1の-x側の打面9aのうちの+y側の領域(分割領域RW)によって球が打たれたときの経時変化が示されている。極値P2によって示されているように、打面9aのうち仮想線CLから離れた位置に球が当たると、打面9aが仮想線CL回りに回転し、角速度が急激に立ち下がる(又は立ち上がる)。別の観点では、インパクトのときの角速度と、ラケット3を振ったときの角速度とは種々のパラメータ(例えば絶対値、変化率及び/又は周波数)が異なる。従って、このようなz軸回りの角速度の立ち上り及び立ち下りを検出することによって、インパクトの有無及びその時点を推定することができる。 In this figure, the change with time when the ball is struck by the region on the + y side (divided region RW) of the striking surface 9a on the −x side in FIG. 1 is shown. As indicated by the extremum P2, when the ball hits a position of the striking surface 9a away from the virtual line CL, the striking surface 9a rotates around the virtual line CL, and the angular velocity suddenly drops (or rises). ). From another point of view, various parameters (for example, absolute value, rate of change and / or frequency) are different between the angular velocity at the time of impact and the angular velocity at the time of swinging the racket 3. Therefore, by detecting such rising and falling angular velocities around the z-axis, the presence or absence of impact and the time point can be estimated.
 図9は、加速度センサ15によって検出されるz軸方向の加速度の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸Az(G)はz軸方向の加速度を示している。この図は、図3(a)及び図3(b)と同一の実験から得られている。 FIG. 9 is a diagram showing an example of a time-dependent change in acceleration in the z-axis direction detected by the acceleration sensor 15. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis Az (G) indicates acceleration in the z-axis direction. This figure is obtained from the same experiment as in FIGS. 3 (a) and 3 (b).
 この図に示されるように、球を打つためにスイングがなされると、遠心力によって+z側への加速度が一時的に大きくなる(tが概ね2.7~3.2の範囲)。極値P3によって示されているように、この加速度は瞬間的に低下する。これは、球が当たった瞬間にわすかにスイングの速度が変化(低下)することによって、遠心力も変化したものと考えられる。従って、このようなz軸方向における加速度の瞬間的な変化を検出することによって、インパクトの有無及びその時点を推定することができる。 As shown in this figure, when a swing is made to hit a ball, the acceleration to the + z side temporarily increases due to centrifugal force (t is in the range of approximately 2.7 to 3.2). This acceleration drops momentarily, as indicated by the extremum P3. It is considered that this is because the centrifugal force also changed due to a slight change (decrease) in the swing speed at the moment when the ball hit. Therefore, by detecting such a momentary change in acceleration in the z-axis direction, the presence or absence of impact and the time point can be estimated.
 ここでは、インパクトを推定する物理量(加速度及び/又は角速度)として3種を例示したが、他の軸に係る物理量に基づいてインパクトを推定することも可能である。具体的には、x軸回りの角速度、y軸回りの角速度又はy軸方向の加速度が用いられてもよい。インパクトの推定においては、複数の物理量(例えばx軸方向の加速度、z軸回りの角速度及びz軸方向の加速度)のいずれか1つのみが用いられてもよいし、2つ以上が組み合わされて用いられてもよい。後者の例としては、例えば、2以上の物理量の少なくとも1つに基づいてインパクトがあったと推定できたときにインパクトがあったと推定する方法、逆に、2以上の物理量の全てに基づいてインパクトがあったと推定できたときにのみインパクトがあったと推定する方法が挙げられる。 Here, three types are exemplified as physical quantities (acceleration and / or angular velocity) for estimating impact, but it is also possible to estimate impact based on physical quantities related to other axes. Specifically, an angular velocity around the x-axis, an angular velocity around the y-axis, or an acceleration in the y-axis direction may be used. In estimating the impact, only one of a plurality of physical quantities (for example, acceleration in the x-axis direction, angular velocity around the z-axis, and acceleration in the z-axis direction) may be used, or two or more are combined. It may be used. An example of the latter is a method of estimating an impact when it can be estimated that there was an impact based on at least one of two or more physical quantities, and conversely, an impact is based on all of two or more physical quantities. There is a method of estimating that there was an impact only when it could be estimated that there was.
 インパクトの有無の推定においては、加速度(又は角速度。本段落において、以下同様。)に係る種々のパラメータが用いられてよい。例えば、加速度の絶対値のみに着目し、加速度が所定の閾値を超えたときにインパクトがあったと推定してよい。また、例えば、加速度の絶対値に代えて、又は加速度の絶対値に加えて、加速度の変化率(加加速度)の絶対値が所定の閾値を超えたときにインパクトがあったと推定してよい。また、例えば、上記に代えて、又は上記に加えて、加速度の振動の周波数が所定値よりも高いときにインパクトがあったと推定してよい。 In estimating the presence or absence of impact, various parameters related to acceleration (or angular velocity; the same shall apply hereinafter in this paragraph) may be used. For example, focusing only on the absolute value of acceleration, it may be estimated that there was an impact when the acceleration exceeded a predetermined threshold value. Further, for example, it may be estimated that the impact occurs when the absolute value of the rate of change of acceleration (jerk) exceeds a predetermined threshold value in place of the absolute value of acceleration or in addition to the absolute value of acceleration. Further, for example, instead of or in addition to the above, it may be estimated that the impact occurred when the frequency of the acceleration vibration was higher than the predetermined value.
 また、インパクトの時点の推定においては、インパクトがあったと判定した元になった加速度(又は角速度。本段落において、以下同様。)の変化のいずれの時点をインパクトの時点としてもよい。解析において実用上許容される範囲内で、適宜に設定されてよい。例えば、図3(a)の極値P1の時点ように、最も加速度の絶対値が大きくなった時点をインパクトの時点としてもよい。また、例えば、加速度の絶対値の急激な増加の開始時点をインパクトの時点としてもよい。また、例えば、インパクトの時点は、その字句どおりの時間の1点ではなく、解析において実用上許容される範囲内で、ある程度の時間長さを有するものとして扱われてもよい。例えば、加速度の絶対値の急激な増加の開始時点から加速度の絶対値が最も大きくなるまでの範囲がインパクトの時点として扱われてもよい。 In estimating the time of impact, any time of change in the acceleration (or angular velocity; the same shall apply hereinafter in this paragraph) that was the basis for determining that there was an impact may be used as the time of impact. It may be appropriately set within a range that is practically acceptable in the analysis. For example, the time point at which the absolute value of acceleration becomes the largest may be set as the time point of impact, such as the time point of the extreme value P1 in FIG. Further, for example, the time point at which the sudden increase in the absolute value of acceleration starts may be set as the time point of impact. Further, for example, the time point of impact may be treated as having a certain time length within a practically permissible range in the analysis, instead of one point of the literal time. For example, the range from the start of the rapid increase in the absolute value of acceleration to the maximum absolute value of acceleration may be treated as the time of impact.
 推定は、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI(Artificial Intelligence)技術によって実現されてもよい。前者の場合においては、上述した推定方法に基づいて判定手順が設定されてよい。後者の場合においては、例えば、x軸方向の加速度(及び/又はz軸回りの角速度)の上述した各種のパラメータの少なくとも1つを入力とし、インパクトの有無及び時点を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれることによって推定されてよい。 The estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI (Artificial Intelligence) technology. In the former case, the determination procedure may be set based on the above-mentioned estimation method. In the latter case, for example, using teacher data in which at least one of the above-mentioned various parameters of acceleration in the x-axis direction (and / or angular velocity around the z-axis) is input and the presence / absence of impact and the time point are output. It may be estimated by generating a learning model and incorporating this learning model into the program 31.
 教師データに含まれるインパクトの有無及び時点は、例えば、ビデオカメラでラケット3を撮影して特定されたり、適宜なセンサ(例えば打面9aに亘る板状のポインティングデバイス)が設けられた教師データ作成用のラケットを用いることによって特定されたりしてよい。後述する、表裏の推定、左右推定、中央推定及び上下推定等についても、AI技術に関して触れる。このときの教師データが出力とする情報も、上記のように、撮影及びセンサによって特定されてよい。情報によっては、目視によって特定されてもよい。 The presence / absence and time point of the impact included in the teacher data can be specified by, for example, shooting the racket 3 with a video camera, or teacher data creation provided with an appropriate sensor (for example, a plate-shaped pointing device extending over the striking surface 9a). It may be specified by using a racket for. The AI technology will also be touched upon for front and back estimation, left-right estimation, central estimation, vertical estimation, etc., which will be described later. The information output from the teacher data at this time may also be specified by the photographing and the sensor as described above. Depending on the information, it may be visually identified.
(表裏の推定)
 本実施形態では、ラケット3は、表裏1対の打面9aを有している。このような場合において、解析装置7は、1対の打面9aのいずれに球が当たったかを推定してよい。その推定方法は、例えば、以下のとおりである。
(Estimation of front and back)
In the present embodiment, the racket 3 has a pair of front and back striking surfaces 9a. In such a case, the analysis device 7 may estimate which of the pair of striking surfaces 9a the ball hits. The estimation method is as follows, for example.
 図4(a)は、角速度センサ13によって検出される角速度の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸ω(dps)は角速度を示している。ωx、ωy及びωzは、それぞれx軸回り、y軸回り及びz軸回りの角速度を示している。この図は、選手がラケット3を振って球を打つ実験によって得られている。 FIG. 4A is a diagram showing an example of a change over time in the angular velocity detected by the angular velocity sensor 13. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis ω (dps) indicates angular velocity. ωx, ωy and ωz indicate the angular velocities around the x-axis, y-axis and z-axis, respectively. This figure is obtained by an experiment in which a player swings a racket 3 and hits a ball.
 このように3軸の角速度が時系列データで得られる場合においては、この時系列データに基づいて、ラケット3の姿勢を示す時系列データを得ることができる。姿勢は、例えば、オイラー角で表されてよい。オイラー角は、例えば、ロール角、ピッチ角及びヨー角を使用するものである。このオイラー角では、例えば、絶対座標系XYZをZ軸回り、Y軸回り、X軸回りに順に回転させたときに、Z軸回りの角度をヨー角、Y軸回りの角度をピッチ角及びX軸回りの角度をロール角としてよい。 When the angular velocities of the three axes are obtained from the time-series data in this way, the time-series data indicating the posture of the racket 3 can be obtained based on the time-series data. Postures may be represented, for example, by Euler angles. Euler angles use, for example, roll angles, pitch angles and yaw angles. In this Euler angle, for example, when the absolute coordinate system XYZ is rotated in order around the Z axis, the Y axis, and the X axis, the angle around the Z axis is the yaw angle, and the angle around the Y axis is the pitch angle and X. The angle around the axis may be the roll angle.
 具体的には、例えば、相対座標系xyz(センサ座標系)の各軸回りの角速度を絶対座標系XYZ(空間座標系)の各軸回りの角速度に変換する。この絶対座標系XYZにおける角速度を積分してロール角、ピッチ角及びヨー角を得る。このような演算を時間軸に沿って繰り返す。このようなオイラー角を得る計算式(行列式)は、ロボット及びドローン等の種々の分野で公知であり、これが利用されてよい。時間軸に沿って演算していくときのオイラー角の初期値は、例えば、計測開始時のラケット3の姿勢を予め指定することによって任意の値とされてよい。又は、角速度センサと他のセンサとを組み合わせることによって、初期値が特定されてもよい。例えば、ロール角及びピッチ角の初期値は、加速度センサ15の検出する加速度(別の観点では重力加速度)に基づいて特定されてよい。ヨー角の初期値は、例えば、センサ装置5に地磁気センサを設け、地磁気センサの検出値に基づいて特定されてよい。このようなセンサ・ヒュージョンも公知であり、これが利用されてよい。 Specifically, for example, the angular velocity around each axis of the relative coordinate system xyz (sensor coordinate system) is converted into the angular velocity around each axis of the absolute coordinate system XYZ (spatial coordinate system). The angular velocity in this absolute coordinate system XYZ is integrated to obtain the roll angle, pitch angle, and yaw angle. Such an operation is repeated along the time axis. Calculation formulas (determinants) for obtaining such Euler angles are known in various fields such as robots and drones, and these formulas may be used. The initial value of Euler angles when calculating along the time axis may be an arbitrary value by, for example, specifying the posture of the racket 3 at the start of measurement in advance. Alternatively, the initial value may be specified by combining the angular velocity sensor with another sensor. For example, the initial values of the roll angle and the pitch angle may be specified based on the acceleration detected by the acceleration sensor 15 (in another viewpoint, the gravitational acceleration). The initial value of the yaw angle may be specified based on the detection value of the geomagnetic sensor, for example, by providing the sensor device 5 with a geomagnetic sensor. Such sensor fusions are also known and may be utilized.
 図4(b)は、上記のようにして算出したオイラー角の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸はオイラー角を示している。φはロール角を示し、θはピッチ角を示し、ψはヨー角を示している。 FIG. 4B is a diagram showing an example of changes over time in Euler angles calculated as described above. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis indicates Euler angles. φ indicates the roll angle, θ indicates the pitch angle, and ψ indicates the yaw angle.
 このようにオイラー角の時系列データが得られ、かつ既述のようにインパクトの有無及びその時点が特定されると、インパクトのときのラケット3の姿勢を特定することができる。この特定した姿勢に基づいて、1対の打面9aのうちのいずれに球が当たったかを特定することができる。 When the time series data of Euler angles are obtained in this way and the presence or absence of impact and the time point are specified as described above, the posture of the racket 3 at the time of impact can be specified. Based on this specified posture, it is possible to specify which of the pair of striking surfaces 9a the ball hits.
 例えば、インパクトのとき、球が当たる打面9aは、通常、相手コートに向いている。従って、例えば、一方の打面9aが面する側へ延びる当該一方の打面9aの法線を考えたときに、この法線が自分のコートから相手のコートへの並び方向への成分を有している場合においては、前記一方の打面9aに球が当たったと推定することができる。換言すれば、オイラー角が所定の第1範囲に含まれているときは、球が一方の打面9aに当たったと推定することができ、オイラー角が第1範囲とは異なる第2範囲に含まれているときは、球が他方の打面9aに当たったと推定することができる。 For example, at the time of impact, the hitting surface 9a on which the ball hits is usually facing the opponent's court. Therefore, for example, when considering the normal of one of the striking surfaces 9a extending to the side facing the one striking surface 9a, this normal has a component in the alignment direction from one's own court to the other's court. In this case, it can be estimated that the ball hits the one hitting surface 9a. In other words, when Euler angles are included in a predetermined first range, it can be estimated that the ball hits one of the striking surfaces 9a, and Euler angles are included in a second range different from the first range. When it is, it can be estimated that the ball hits the other striking surface 9a.
 上記では、オイラー角のみに着目した。ただし、オイラー角に加えて、他の検出値が考慮されてもよい。例えば、加速度センサ15の検出値に基づいて絶対座標系XYZにおけるラケット3の位置を検出し、ラケット3と相手コートとの位置関係の変化に応じて第1範囲及び第2範囲を変化させてもよい。 In the above, we focused only on Euler angles. However, in addition to Euler angles, other detected values may be considered. For example, even if the position of the racket 3 in the absolute coordinate system XYZ is detected based on the detected value of the acceleration sensor 15, the first range and the second range are changed according to the change in the positional relationship between the racket 3 and the mating court. Good.
 推定は、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI技術によって実現されてもよい。前者の場合においては、上述した推定方法に基づいて判定手順が設定されてよい。後者の場合においては、例えば、インパクトのときのオイラー角(及び必要に応じてラケット3の位置等)を入力とし、球が当たった打面9aを特定する情報を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれることによって推定されてよい。教師データに含まれる、球が当たった打面9aを特定する情報が目視、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 The estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology. In the former case, the determination procedure may be set based on the above-mentioned estimation method. In the latter case, for example, using teacher data that inputs Euler angles at the time of impact (and the position of the racket 3 if necessary) and outputs information that identifies the striking surface 9a hit by the ball. It may be estimated by generating a learning model and incorporating this learning model into program 31. As already described, the information for identifying the hitting surface 9a hit by the ball, which is included in the teacher data, may be obtained by visual inspection, photographing, a sensor, or the like.
(左右の推定)
 解析装置7は、打面9aに球が当たった位置(インパクト位置)のy軸方向における位置を推定してよい。例えば、解析装置7は、インパクト位置が打面9aの中央側(例えば仮想線CL)に対してy軸方向の正側及び負側のいずれであるかを推定してよい。その推定方法は、例えば、以下のとおりである。
(Right and left estimation)
The analysis device 7 may estimate the position of the position where the ball hits the striking surface 9a (impact position) in the y-axis direction. For example, the analysis device 7 may estimate whether the impact position is on the positive side or the negative side in the y-axis direction with respect to the central side (for example, the virtual line CL) of the striking surface 9a. The estimation method is as follows, for example.
 図5(a)~図5(c)は、角速度センサ13によって検出されるz軸回りの角速度の経時変化の一例を示す図である。この図において、横軸t(msec)は時間を示しており、縦軸ωz(dps)は角速度を示している。これらの図は、いずれも-x側の打面9aに球が当たったときの経時変化を示している。図5(a)は、-y側の分割領域REに球が当たったときの経時変化を示している。図5(b)は、y軸方向中央の分割領域RCに球が当たったときの経時変化を示している。図5(c)は、+y側の分割領域RWに球が当たったときの経時変化を示している。これらの図は、選手によって一定の位置に保持されているラケット3に対して球を当てる実験によって得られている。 5 (a) to 5 (c) are diagrams showing an example of changes in the angular velocity around the z-axis detected by the angular velocity sensor 13 with time. In this figure, the horizontal axis t (msec) indicates time, and the vertical axis ωz (dps) indicates angular velocity. All of these figures show the change with time when the ball hits the striking surface 9a on the −x side. FIG. 5A shows the change with time when the sphere hits the divided region RE on the −y side. FIG. 5B shows the change with time when the sphere hits the divided region RC at the center in the y-axis direction. FIG. 5C shows the change with time when the sphere hits the divided region RW on the + y side. These figures are obtained by an experiment in which a ball is hit against a racket 3 held in a fixed position by a player.
 インパクトの推定の説明でも述べたように、打面9aのうち仮想線CLから離れた位置に球が当たると、打面9aが仮想線CL回りに回転し、角速度が急激に立ち下がる又は立ち上がる。このときの回転方向は、仮想線CLに対して+y側の領域(例えば分割領域RW)に当たったときと、仮想線CLに対して-y側の領域(例えば分割領域RE)に当たったときとで逆である。ひいては、図5(a)及び図5(c)に示されているように、インパクトのときのz軸回りの角速度(例えば図5(a)の極大値及び図5(b)の極小値を参照)の正負は、+y側の領域に当たったときと、-y側の領域に当たったときとで逆になる。従って、インパクトのときのz軸回りの角速度の正負に基づいて、インパクト位置が打面9aの中央側に対して-y側及び+y側のいずれであったかを推定することができる。 As described in the explanation of impact estimation, when a ball hits a position of the striking surface 9a away from the virtual line CL, the striking surface 9a rotates around the virtual line CL, and the angular velocity suddenly drops or rises. The rotation direction at this time is when it hits the region on the + y side with respect to the virtual line CL (for example, the division region RW) and when it hits the region on the −y side with respect to the virtual line CL (for example, the division region RE). And the opposite. As a result, as shown in FIGS. 5 (a) and 5 (c), the angular velocity around the z-axis at the time of impact (for example, the maximum value in FIG. 5 (a) and the minimum value in FIG. 5 (b)) are set. The positive / negative of (see) is opposite when it hits the + y side region and when it hits the −y side region. Therefore, it can be estimated whether the impact position is on the −y side or the + y side with respect to the center side of the striking surface 9a based on the positive or negative of the angular velocity around the z-axis at the time of impact.
 推定は、例えば、上記の推定方法に基づいて、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてよい。ただし、AI技術によって実現されてもよい。例えば、教師データの入力として、インパクトのときの角速度の正負(及び必要に応じて球が当たった打面9aを特定する情報)だけでなく、角速度の他のパラメータ及び加速度等も用いれば、製造者の気付いていなかった誤差補正がなされることが期待される。教師データが出力として含む情報、つまりインパクト位置が-y側及び+y側のいずれであるかの情報が、目視、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 The estimation may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31 based on the above estimation method. However, it may be realized by AI technology. For example, as input of teacher data, not only the positive / negative of the angular velocity at the time of impact (and information for identifying the striking surface 9a hit by the ball as necessary) but also other parameters of the angular velocity and acceleration can be used for manufacturing. It is expected that error corrections that were not noticed by the person will be made. As already described, the information included in the teacher data as an output, that is, the information on whether the impact position is on the −y side or the + y side may be obtained by visual inspection, photographing, a sensor, or the like.
(中央からの距離の推定)
 球がy軸方向中央に当たった場合に対応する図5(b)と、球がy軸方向中央から離れた位置に当たった場合に対応する図5(a)及び図5(c)との比較から理解されるように、インパクト位置の仮想線CLからの距離と、z軸回りの角速度の絶対値とは相関している。具体的には、仮想線CLからの距離が長くなるほど、角速度の絶対値は大きくなる。従って、角速度の絶対値に基づいて、インパクト位置のy軸における位置が推定されてよい。
(Estimation of distance from the center)
5 (b) corresponding to the case where the sphere hits the center in the y-axis direction, and FIGS. 5 (a) and 5 (c) corresponding to the case where the sphere hits a position away from the center in the y-axis direction. As can be understood from the comparison, the distance of the impact position from the virtual line CL and the absolute value of the angular velocity around the z-axis are correlated. Specifically, the longer the distance from the virtual line CL, the larger the absolute value of the angular velocity. Therefore, the position of the impact position on the y-axis may be estimated based on the absolute value of the angular velocity.
 インパクト位置のy軸方向における位置の推定は、既に述べたように、y軸方向において打面9aを分割した分割領域Rのいずれに球が当たったかを推定するものであってもよいし、インパクト位置のy軸座標を推定するものであってもよい。 As described above, the estimation of the position of the impact position in the y-axis direction may be to estimate which of the divided regions R in which the striking surface 9a is divided in the y-axis direction the ball hits, or the impact. It may estimate the y-axis coordinates of the position.
 y軸方向において分割領域Rのいずれに球が当たったかを推定する場合には、例えば、y軸方向の分割数は3以上とされてよい。分割数が2つの場合は、上記のインパクトのときの角速度の正負に基づく左右の推定のみで足りるからである。分割領域Rのいずれに球が当たったかの推定は、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI技術によって実現されてもよい。 When estimating which of the division regions R the sphere hits in the y-axis direction, for example, the number of divisions in the y-axis direction may be 3 or more. This is because when the number of divisions is two, it is sufficient to estimate the left and right based on the positive and negative of the angular velocity at the time of the above impact. The estimation of which of the divided regions R the sphere hits may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology. Good.
 推定手順が直接的に規定される場合においては、例えば、角速度の絶対値が大きいほど、外側の領域に当たったと推定する手順が規定される。具体的には、例えば、製造者(ユーザとすることも可)は、y軸方向における分割数に応じた数の閾値をメモリ27bに記憶させる。例えば、分割数が3つ又は4つであれば閾値は1つであり、分割数が5つであれば閾値は2つである。そして、解析処理部27は、インパクトのときのz軸回りの角速度の絶対値が閾値を超えたか否かによって、いずれの領域に当たったかを推定する。図1に示す例では、角速度の絶対値が所定の閾値よりも小さいときは、中央側の分割領域R(RC、RN及びRS)のいずれかに球が当たったと推定され、それ以外のときは、外側の分割領域R(RE、RNE、RNW、RW、RSW及びRSE)のいずれかに球が当たったと推定されてよい。 When the estimation procedure is directly specified, for example, the larger the absolute value of the angular velocity, the more the procedure for estimating that the outer region is hit is specified. Specifically, for example, the manufacturer (which may be a user) stores the threshold value of the number corresponding to the number of divisions in the y-axis direction in the memory 27b. For example, if the number of divisions is 3 or 4, the threshold value is 1, and if the number of divisions is 5, the threshold value is 2. Then, the analysis processing unit 27 estimates which region is hit depending on whether or not the absolute value of the angular velocity around the z-axis at the time of impact exceeds the threshold value. In the example shown in FIG. 1, when the absolute value of the angular velocity is smaller than a predetermined threshold value, it is estimated that the sphere hits one of the division regions R (RC, RN and RS) on the central side, and in other cases, it is estimated that the sphere hits. , It may be presumed that the sphere hits any of the outer division regions R (RE, RNE, RNW, RW, RSW and RSE).
 AI技術によって実現される場合においては、例えば、インパクトのときのz軸回りの角速度の絶対値を入力とし、y軸方向に分割したいずれの領域に当たったかの情報を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれてよい。教師データに含まれる、いずれの領域に当たったかの情報が、目視、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 In the case of being realized by AI technology, for example, using teacher data in which the absolute value of the angular velocity around the z-axis at the time of impact is input and the information on which region divided in the y-axis direction is hit is output. A learning model may be generated and the learning model may be incorporated into the program 31. As already described, the information on which area is hit, which is included in the teacher data, may be obtained by visual inspection, photographing, a sensor, or the like.
 インパクト位置のy軸座標の推定も、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI技術によって実現されてもよい。 The estimation of the y-axis coordinates of the impact position may also be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology.
 前者の場合においては、例えば、製造者は、仮想線CLからインパクト位置までの距離(別の観点ではy軸座標)と、角速度の絶対値との相関関係を示す情報(例えば近似式又はマップ)をメモリ27bに記憶させる。そして、解析処理部27(CPU27a)は、上記の相関関係を示す情報を参照して、検出された角速度に対応するy軸座標を推定する。 In the former case, for example, the manufacturer indicates the correlation between the distance from the virtual line CL to the impact position (y-axis coordinates from another viewpoint) and the absolute value of the angular velocity (for example, an approximate expression or a map). Is stored in the memory 27b. Then, the analysis processing unit 27 (CPU27a) estimates the y-axis coordinates corresponding to the detected angular velocities with reference to the above-mentioned information indicating the correlation.
 AI技術によって実現される場合においては、例えば、z軸回りの角速度の絶対値を入力とし、インパクト位置の仮想線CLからの距離(別の観点ではy軸座標)を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれることによって推定されてよい。教師データに含まれる、インパクト位置の仮想線CLからの距離が、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 In the case of being realized by AI technology, for example, using teacher data in which the absolute value of the angular velocity around the z-axis is input and the distance of the impact position from the virtual line CL (y-axis coordinate in another viewpoint) is output. It may be estimated by generating a learning model and incorporating this learning model into the program 31. As already described, the distance of the impact position from the virtual line CL, which is included in the teacher data, may be obtained by photographing or a sensor or the like.
 インパクト位置の仮想線CLからの距離(別の観点ではy軸座標)は、z軸回りの角速度の絶対値だけでなく、例えば、z軸回りの角速度の振動の周波数及びz軸回りの角速度が所定の大きさに減衰するまでの時間にも影響する。従って、上述したいずれの場合においても、角速度の絶対値に加えて、又は角速度の絶対値に代えて、これらのパラメータの値が用いられてもよい。例えば、これらのパラメータの値が教師データの入力として用いられてもよい。 The distance of the impact position from the virtual line CL (y-axis coordinate from another viewpoint) is not only the absolute value of the angular velocity around the z-axis, but also, for example, the frequency of vibration of the angular velocity around the z-axis and the angular velocity around the z-axis. It also affects the time it takes to decay to a given size. Therefore, in any of the above cases, the values of these parameters may be used in addition to the absolute value of the angular velocity or in place of the absolute value of the angular velocity. For example, the values of these parameters may be used as input for teacher data.
(上下の推定)
 解析装置7は、打面9aに球が当たった位置(インパクト位置)のz軸方向における位置を推定してよい。その推定方法は、例えば、以下のとおりである。
(Estimation of top and bottom)
The analysis device 7 may estimate the position of the position where the ball hits the striking surface 9a (impact position) in the z-axis direction. The estimation method is as follows, for example.
 図6(a)及び図6(b)は、角速度センサ13によって検出されるy軸回りの角速度の経時変化の一例を示す図である。この図において、横軸t(sec)は時間を示しており、縦軸ωy(dps)は角速度を示している。これらの図は、いずれも-x側の打面9aに球が当たったときの経時変化を示している。図6(a)は、+z側の分割領域RNに球が当たったときの経時変化を示している。図6(b)は、-z側の分割領域RSに球が当たったときの経時変化を示している。これらの図は、選手がラケット3を振って球を打つ実験によって得られている。 6 (a) and 6 (b) are diagrams showing an example of changes in the angular velocity around the y-axis detected by the angular velocity sensor 13 with time. In this figure, the horizontal axis t (sec) indicates time, and the vertical axis ωy (dps) indicates angular velocity. All of these figures show the change with time when the ball hits the striking surface 9a on the −x side. FIG. 6A shows the change with time when the sphere hits the divided region RN on the + z side. FIG. 6B shows the change with time when the sphere hits the divided region RS on the −z side. These figures are obtained by an experiment in which a player swings a racket 3 and hits a ball.
 打面9aに球が当たると、打部9は、y軸に平行で、グリップ11側に位置する不図示の回転軸回りに回転する。その結果、y軸回りの角速度が急激に立ち下がる又は立ち上がる。図6(a)と図6(b)との比較から理解されるように、インパクト位置のグリップ11からの距離(換言すればインパクト位置のz軸座標)と、y軸回りの角速度の振幅が所定の大きさに減衰するまでの時間Taとは相関している。具体的には、グリップ11からの距離が長くなるほど、時間Taは長くなる。従って、時間Taに基づいて、インパクト位置のz軸における位置が推定されてよい。 When the ball hits the striking surface 9a, the striking portion 9 rotates parallel to the y-axis and around a rotation axis (not shown) located on the grip 11 side. As a result, the angular velocity around the y-axis suddenly drops or rises. As can be understood from the comparison between FIGS. 6 (a) and 6 (b), the distance of the impact position from the grip 11 (in other words, the z-axis coordinate of the impact position) and the amplitude of the angular velocity around the y-axis are It correlates with the time Ta until it decays to a predetermined magnitude. Specifically, the longer the distance from the grip 11, the longer the time Ta. Therefore, the position of the impact position on the z-axis may be estimated based on the time Ta.
 時間Taの始期は、例えば、インパクトの推定によって求められたインパクトの時点とされてよい。ただし、時間Taの始期は、y軸回りの角速度に基づいて設定されてもよい。時間Taの終期は、上記のようにy軸回りの角速度の振幅が所定の大きさ(閾値)まで減衰したときであり、この閾値は、実験等に基づいて適宜に設定されてよい。例えば、図示の例では、閾値は、概ね0としてよいことが示されている。 The beginning of time Ta may be, for example, the time of impact determined by impact estimation. However, the start of time Ta may be set based on the angular velocity around the y-axis. The end of the time Ta is when the amplitude of the angular velocity around the y-axis is attenuated to a predetermined magnitude (threshold value) as described above, and this threshold value may be appropriately set based on an experiment or the like. For example, in the illustrated example, it is shown that the threshold value may be approximately 0.
 インパクト位置のz軸方向における位置の推定は、既に述べたように、z軸方向において打面9aを分割した分割領域Rのいずれに球が当たったかを推定するものであってもよいし、インパクト位置のz軸座標を推定するものであってもよい。 As described above, the estimation of the position of the impact position in the z-axis direction may be to estimate which of the divided regions R in which the striking surface 9a is divided in the z-axis direction the sphere hits, or the impact. It may be used to estimate the z-axis coordinates of the position.
 z軸方向において分割領域Rのいずれに球が当たったかを推定する場合においては、例えば、z軸方向の分割数は2以上(図示の例では3)とされてよい。分割領域Rのいずれに球が当たったかの推定は、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI技術によって実現されてもよい。 When estimating which of the division regions R the sphere hits in the z-axis direction, for example, the number of divisions in the z-axis direction may be 2 or more (3 in the illustrated example). The estimation of which of the divided regions R the sphere hits may be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology. Good.
 推定手順が規定される場合においては、例えば、時間Taが長いほど、グリップ11から離れた領域に当たったと推定する手順が規定される。具体的には、例えば、製造者(ユーザとすることも可)は、z軸方向における分割数よりも1つ少ない数の閾値をメモリ27bに記憶させる。例えば、分割数が2つであれば閾値は1つであり、分割数が3つであれば閾値は2つである。そして、解析処理部27は、インパクトのときに生じた角速度の振動がある程度の大きさに減衰するまでの時間Taが閾値を超えたか否かによって、いずれの領域に当たったかを推定する。図1に示す例では、角速度の絶対値が第1の閾値よりも小さいときは、グリップ11に最も近い分割領域R(RSW、RS及びRSE)のいずれかに球が当たったと推定される。一方、角速度の絶対値が第1の閾値以上であり、第2の閾値(>第1の閾値)よりも小さいときは、中央の分割領域R(RE、RC及びRW)に当たったと推定され、角速度の絶対値が上記以外のときは、グリップ11から最も離れた分割領域R(RNE、RN及びRNW)のいずれかに球が当たったと推定されてよい。 When the estimation procedure is specified, for example, the longer the time Ta, the more the procedure for presuming that the area away from the grip 11 is hit is specified. Specifically, for example, the manufacturer (which may be a user) stores the threshold value in the memory 27b, which is one less than the number of divisions in the z-axis direction. For example, if the number of divisions is two, the threshold value is one, and if the number of divisions is three, the threshold value is two. Then, the analysis processing unit 27 estimates which region is hit depending on whether or not the time Ta until the angular velocity vibration generated at the time of impact is attenuated to a certain magnitude exceeds the threshold value. In the example shown in FIG. 1, when the absolute value of the angular velocity is smaller than the first threshold value, it is presumed that the ball hits any of the division regions R (RSW, RS and RSE) closest to the grip 11. On the other hand, when the absolute value of the angular velocity is equal to or higher than the first threshold value and smaller than the second threshold value (> first threshold value), it is presumed that the central divided region R (RE, RC and RW) is hit. When the absolute value of the angular velocity is other than the above, it may be estimated that the ball hits any of the divided regions R (RNE, RN and RNW) farthest from the grip 11.
 AI技術によって実現される場合においては、例えば、時間Taを入力とし、z軸方向に分割したいずれの領域に当たったかの情報を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれてよい。教師データに含まれる、いずれの領域に当たったかの情報が、目視、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 In the case of being realized by AI technology, for example, a learning model is generated using teacher data in which time Ta is input and information on which region divided in the z-axis direction is hit is output, and this learning model is used. It may be incorporated into program 31. As already described, the information on which area is hit, which is included in the teacher data, may be obtained by visual inspection, photographing, a sensor, or the like.
 インパクト位置のz軸座標の推定も、例えば、解析システム1の製造者がプログラム31内において推定手順を直接的に規定することによって実現されてもよいし、AI技術によって実現されてもよい。 The estimation of the z-axis coordinates of the impact position may also be realized, for example, by the manufacturer of the analysis system 1 directly defining the estimation procedure in the program 31, or by AI technology.
 前者の場合においては、例えば、製造者は、インパクト位置のグリップ11からの距離(別の観点ではz軸座標)と、時間Taとの相関関係を示す情報(例えば近似式又はマップ)をメモリ27bに記憶させる。そして、解析処理部27(CPU27a)は、上記の相関関係を示す情報を参照して、検出された角速度に対応するz軸座標を推定する。 In the former case, for example, the manufacturer stores information (for example, an approximate expression or a map) indicating the correlation between the distance of the impact position from the grip 11 (z-axis coordinates from another viewpoint) and the time Ta in the memory 27b. To memorize. Then, the analysis processing unit 27 (CPU27a) estimates the z-axis coordinates corresponding to the detected angular velocity with reference to the above-mentioned information indicating the correlation.
 AI技術によって実現される場合においては、例えば、時間Taを入力とし、インパクト位置のグリップ11からの距離(別の観点ではz軸座標)を出力とする教師データを用いて学習モデルを生成し、この学習モデルがプログラム31に組み込まれることによって推定されてよい。教師データに含まれる、グリップ11からの距離が、撮影又はセンサ等によって得られてよいことは既に述べたとおりである。 In the case of being realized by AI technology, for example, a learning model is generated using teacher data in which time Ta is input and the distance from the grip 11 of the impact position (z-axis coordinate in another viewpoint) is output. This learning model may be estimated by incorporating it into program 31. As already described, the distance from the grip 11 included in the teacher data may be obtained by photographing or a sensor or the like.
 インパクト位置のグリップ11からの距離(別の観点ではz軸座標)は、時間Taだけでなく、例えば、y軸回りの角速度の絶対値及びy軸回りの角速度の振動の周波数にも影響する。従って、上述したいずれの場合においても、時間Taに加えて、又は時間Taに代えて、これらのパラメータの値が用いられてもよい。例えば、これらのパラメータの値が教師データの入力として用いられてもよい。 The distance of the impact position from the grip 11 (z-axis coordinate from another viewpoint) affects not only the time Ta but also, for example, the absolute value of the angular velocity around the y-axis and the vibration frequency of the angular velocity around the y-axis. Therefore, in any of the cases described above, the values of these parameters may be used in addition to or in place of the time Ta. For example, the values of these parameters may be used as input for teacher data.
(角速度の補正)
 インパクトのときのラケット3の速度等は、インパクトのときの各種の角速度の大きさに影響を及ぼす。ひいては、上述したインパクトのときの角速度に基づくインパクト位置の推定の精度が低下する可能性がある。例えば、インパクトのときのラケット3の速度が速いと、仮想線CLからの距離が短いにも関わらず、z軸回りの角速度の絶対値が大きくなり、仮想線CLからの距離が長いと誤判定される可能性がある。そこで、インパクトのときの角速度を補正して、補正後の角速度を用いて上記の種々の推定を行ってもよい。
(Correction of angular velocity)
The speed of the racket 3 at the time of impact affects the magnitude of various angular velocities at the time of impact. As a result, the accuracy of estimating the impact position based on the angular velocity at the time of impact described above may decrease. For example, if the speed of the racket 3 at the time of impact is high, the absolute value of the angular velocity around the z-axis becomes large even though the distance from the virtual line CL is short, and it is erroneously determined that the distance from the virtual line CL is long. May be done. Therefore, the angular velocity at the time of impact may be corrected, and the various estimations described above may be performed using the corrected angular velocity.
 具体的には、例えば、以下のような補正がなされてよい。まず、加速度センサ15の検出値に基づいて、インパクトのときのラケット3の速度を特定する。この速度のうち、球が当たった打面9aが面している方向の成分を特定する。この成分が大きいほど、y軸回りの角速度の絶対値が小さくなるように、z軸回りの角速度の絶対値が小さくなるように、及び/又は時間Taが短くなるように補正がなされてよい。具体的な補正量は、理論的に導かれてもよいし、実験等によって求められてもよい。 Specifically, for example, the following corrections may be made. First, the speed of the racket 3 at the time of impact is specified based on the detected value of the acceleration sensor 15. Of this velocity, the component in the direction in which the striking surface 9a hit by the ball is facing is specified. Correction may be made so that the larger this component is, the smaller the absolute value of the angular velocity around the y-axis is, the smaller the absolute value of the angular velocity around the z-axis is, and / or the time Ta is shortened. The specific correction amount may be derived theoretically or may be obtained by an experiment or the like.
 また、インパクトのとき(厳密にはインパクトの直前)の球速も、上記のラケット3の速度と同様に、インパクトのときの各種の角速度の大きさに影響を及ぼす。そこで、ビデオカメラ及び/又はスピード測定器によって球速(ベクトル量又は絶対値)を測定し、球速に基づく補正がなされてもよい。また、そのような補正がなされないとしても、例えば、サーブの解析、及び機械から放出される一定の速度の球を打ち返す練習の解析では、インパクト位置の推定の精度が低下する蓋然性は低い。 Also, the ball velocity at the time of impact (strictly, immediately before the impact) also affects the magnitude of various angular velocities at the time of impact, similar to the speed of the racket 3 described above. Therefore, the ball speed (vector quantity or absolute value) may be measured by a video camera and / or a speed measuring device, and correction may be made based on the ball speed. Even if such a correction is not made, for example, in the analysis of the serve and the analysis of the practice of hitting a ball at a constant velocity emitted from the machine, it is unlikely that the accuracy of estimating the impact position will decrease.
(その他の推定方法)
 上記の説明では、y軸方向の位置の推定とz軸方向の位置の推定とを分けるなど、インパクト位置の推定を複数の項目に分けて行う方法を示した。しかし、上記の推定項目の2以上が纏めて推定されてもよい。例えば、AI技術を用いる場合において、3軸それぞれの角速度及び加速度の時系列データを入力とし、インパクトの時点及びインパクト位置(9個の分割領域Rのいずれに属するか、又はyz座標)を出力とする教師データを用いて学習モデルを生成してもよい。これまで示してきたように、角速度及び加速度と、インパクトの時点及びインパクト位置との間には相関があり、適切な学習モデルが得られることは明らかである。
(Other estimation methods)
In the above description, a method of estimating the impact position by dividing it into a plurality of items, such as separating the estimation of the position in the y-axis direction and the estimation of the position in the z-axis direction, has been shown. However, two or more of the above estimation items may be estimated together. For example, when using AI technology, time-series data of angular velocity and acceleration for each of the three axes is input, and the time of impact and impact position (which of the nine divided regions R belongs to, or yz coordinates) are output. A learning model may be generated using the teacher data to be used. As shown above, there is a correlation between the angular velocity and acceleration and the time and position of impact, and it is clear that an appropriate learning model can be obtained.
(フローチャート)
 センサ装置5の検出処理部19(CPU19a)及び解析装置7の解析処理部27(CPU27a)が実行する手順の一例について、フローチャートを参照して説明する。なお、以下に示すフローチャートは、処理の概念の理解を容易にするように描かれており、必ずしも実際の処理とは合致しない。
(flowchart)
An example of the procedure executed by the detection processing unit 19 (CPU 19a) of the sensor device 5 and the analysis processing unit 27 (CPU 27a) of the analysis device 7 will be described with reference to the flowchart. The flowchart shown below is drawn to facilitate understanding of the concept of processing, and does not necessarily match the actual processing.
 ラケットの動きの解析は、例えば、練習(又は試合等。以下、同様。)が終わった後になされてもよいし、練習中に(概ね)リアルタイムで行われてもよい。前者の場合においては、例えば、練習中においては検出値の時系列データがセンサ装置5に蓄積され、練習後にセンサ装置5から解析装置7へ検出値の時系列データが送信されて解析が行われてよい。また、例えば、練習中においてセンサ装置5から解析装置7へ検出値のデータが逐次送信され、練習後に解析が行われてもよい。また、リアルタイムで行われる場合においては、例えば、練習中にセンサ装置5から解析装置7へ検出値のデータが逐次送信され、解析装置7において逐次解析が行われてよい。 The analysis of the movement of the racket may be performed, for example, after the practice (or a match, etc., the same shall apply hereinafter), or may be performed (generally) in real time during the practice. In the former case, for example, the time series data of the detected value is accumulated in the sensor device 5 during the practice, and the time series data of the detected value is transmitted from the sensor device 5 to the analysis device 7 after the practice for analysis. It's okay. Further, for example, the detection value data may be sequentially transmitted from the sensor device 5 to the analysis device 7 during the practice, and the analysis may be performed after the practice. Further, in the case of performing in real time, for example, the detection value data may be sequentially transmitted from the sensor device 5 to the analysis device 7 during the practice, and the analysis device 7 may perform the sequential analysis.
 以下では、上記の態様のうち、最も処理が複雑な、練習中にリアルタイムで解析が行われる場合のフローチャートの一例を示す。練習後に解析を行う場合の処理については、リアルタイムで解析が行われる場合の処理から類推できる。 The following is an example of a flowchart in which the analysis is performed in real time during practice, which is the most complicated of the above aspects. The processing when the analysis is performed after the practice can be inferred from the processing when the analysis is performed in real time.
 図7は、センサ装置5の検出処理部19が実行するセンシング処理の手順の一例を示すフローチャートである。この処理は、例えば、センサ装置5の不図示の操作部(例えばスイッチ)に対する操作がなされたときに開始される。 FIG. 7 is a flowchart showing an example of the procedure of the sensing process executed by the detection processing unit 19 of the sensor device 5. This process is started, for example, when an operation (for example, a switch) of the sensor device 5 (not shown) is performed.
 ステップST1では、検出処理部19は、所定の時間T1が経過したか否か判定する。この時間T1は、以下の説明から理解されるように、角速度及び加速度を検出するサンプリング周期である。時間T1の長さは、製造者又はユーザによって設定されてよい。検出処理部19は、否定判定のときは待機し(ステップST1を繰り返し)、肯定判定のときはステップST2に進む。ステップST2では、検出処理部19は、角速度センサ13から角速度の検出値の情報を取得する。また、ステップST3では、検出処理部19は、加速度センサ15から加速度の検出値の情報を取得する。 In step ST1, the detection processing unit 19 determines whether or not the predetermined time T1 has elapsed. This time T1 is a sampling period for detecting the angular velocity and acceleration, as will be understood from the following description. The length of time T1 may be set by the manufacturer or user. The detection processing unit 19 waits for a negative determination (repeats step ST1), and proceeds to step ST2 for an affirmative determination. In step ST2, the detection processing unit 19 acquires information on the detected value of the angular velocity from the angular velocity sensor 13. Further, in step ST3, the detection processing unit 19 acquires information on the detected value of the acceleration from the acceleration sensor 15.
 ステップST4では、検出処理部19は、所定の時間T2が経過したか否か判定する。この時間T2は、以下の説明から理解されるように、角速度及び加速度の検出値の情報を送信する周期である。時間T2は、時間T1の2倍以上とされている。すなわち、ここで示す処理では、通信の負担を低減するために、複数時点における検出値の情報を纏めて送信している。ただし、ステップST4を設けずに、検出のサンプリング周期と同じ周期で送信が行われても構わない。時間T2の長さは、製造者又はユーザによって設定されてよい。検出処理部19は、否定判定のときはステップST1に戻り、肯定判定のときはステップST5に進む。ステップST5では、検出処理部19は、これまでに取得した角速度及び加速度の検出値の情報のうち未送信のものを送信する。 In step ST4, the detection processing unit 19 determines whether or not the predetermined time T2 has elapsed. This time T2 is a cycle for transmitting information on the detected values of the angular velocity and the acceleration, as will be understood from the following description. The time T2 is set to be twice or more the time T1. That is, in the process shown here, in order to reduce the burden of communication, the information of the detected values at a plurality of time points is collectively transmitted. However, transmission may be performed in the same cycle as the detection sampling cycle without providing step ST4. The length of time T2 may be set by the manufacturer or user. The detection processing unit 19 returns to step ST1 when a negative determination is made, and proceeds to step ST5 when an affirmative determination is made. In step ST5, the detection processing unit 19 transmits untransmitted information on the detected values of the angular velocity and the acceleration acquired so far.
 ステップST6では、検出処理部19は、センシング処理を終了する終了条件が満たされたか否か判定する。終了条件は、例えば、センサ装置5が有する不図示の操作部に対する操作がなされたことである。そして、検出処理部19は、否定判定のときは、ステップST1に戻って処理を継続し、肯定判定のときは処理を終了する。 In step ST6, the detection processing unit 19 determines whether or not the end condition for ending the sensing process is satisfied. The end condition is, for example, that an operation has been performed on an operation unit (not shown) of the sensor device 5. Then, the detection processing unit 19 returns to step ST1 to continue the process when the negative determination is made, and ends the process when the affirmative determination is made.
 図8は、解析装置7の解析処理部27が実行する解析処理の手順の一例を示すフローチャートである。この処理は、例えば、解析処理部27の不図示の入力部21に対して所定の操作がなされたときに開始される。なお、ここではオイラー角の初期値の設定等の初期化の処理は省略されている。 FIG. 8 is a flowchart showing an example of the procedure of the analysis process executed by the analysis processing unit 27 of the analysis device 7. This process is started, for example, when a predetermined operation is performed on the input unit 21 (not shown) of the analysis processing unit 27. Note that initialization processing such as setting the initial values of Euler angles is omitted here.
 ステップST11では、解析処理部27は、センサ装置5からデータを受信したか否か判定する。解析処理部27は、否定判定のときは待機し(ステップST11を繰り返し)、肯定判定のときはステップST12に進む。ここでは、センサ装置5が能動的にデータを送信し、解析処理部27が受動的にデータを受信しているが、解析処理部27が所定の周期(時間T2)でデータ送信をセンサ装置5に指示してもよい。 In step ST11, the analysis processing unit 27 determines whether or not data has been received from the sensor device 5. The analysis processing unit 27 waits for a negative determination (repeats step ST11), and proceeds to step ST12 for an affirmative determination. Here, the sensor device 5 actively transmits data and the analysis processing unit 27 passively receives the data, but the analysis processing unit 27 transmits data at a predetermined cycle (time T2). You may instruct.
 以下の説明から理解されるように、ここでは、データを受信する周期でインパクトに関する推定を繰り返している。ただし、データを受信する周期よりも長い周期で推定が繰り返されても構わない。 As can be understood from the following explanation, here, the estimation regarding the impact is repeated in the cycle of receiving the data. However, the estimation may be repeated in a cycle longer than the cycle in which the data is received.
 ステップST12では、解析処理部27は、図4(a)及び図4(b)を参照して説明したように、ステップST11で得られた情報に基づいてラケット3の姿勢を推定する。この推定に際しては、例えば、今回受信したデータに対応する時間T2内の各時点(時間T1刻み)の姿勢が推定される。 In step ST12, the analysis processing unit 27 estimates the posture of the racket 3 based on the information obtained in step ST11, as described with reference to FIGS. 4 (a) and 4 (b). In this estimation, for example, the posture at each time point (in time T1 increments) within the time T2 corresponding to the data received this time is estimated.
 ステップST13では、解析処理部27は、図3(a)、図3(b)及び図9を参照して説明したように、インパクトの有無及び時点を特定する。この推定に際しては、例えば、少なくとも今回受信した時間T2分の時系列データにおいてインパクトの有無を推定する。また、今回の時間T2と前回の時間T2との境界付近に生じたインパクトも推定できるように、今回受信したデータだけでなく、それ以前に受信したデータ(前回の時間T2のデータ、必要に応じて更に以前のデータ)を用いてもよい。 In step ST13, the analysis processing unit 27 specifies the presence / absence and the time point of impact as described with reference to FIGS. 3 (a), 3 (b) and 9. In this estimation, for example, the presence or absence of impact is estimated in the time series data of at least the time T2 minutes received this time. In addition, not only the data received this time but also the data received before that (data of the previous time T2, if necessary) so that the impact generated near the boundary between the current time T2 and the previous time T2 can be estimated. Further previous data) may be used.
 上記のように、インパクトに関する推定に際して、検出値の時系列データが必要である場合においては、適宜に以前の検出値が用いられてよい。以下に述べる他の推定についても同様である。また、このことは、時間T2が設定されず、時間T1で検出値のサンプリング周期で逐次推定を行う場合も同様である。 As described above, when time-series data of the detected value is required when estimating the impact, the previous detected value may be used as appropriate. The same applies to the other estimates described below. This also applies when the time T2 is not set and the serial estimation is performed at the sampling cycle of the detected value at the time T1.
 また、ステップST13では、解析処理部27は、インパクトがあったと推定したときは、ステップST14に進み、インパクトがなかったと推定したときは、ステップST11に戻る。 Further, in step ST13, the analysis processing unit 27 proceeds to step ST14 when it is estimated that there is an impact, and returns to step ST11 when it is estimated that there is no impact.
 以下の説明から理解されるように、ここでは、インパクトがあったと推定されると、他の種々の推定が順次行われる。ただし、推定項目によっては、インパクトのときの情報だけでなく、その前後の情報が必要な場合がある(例えば時間Taの特定)。従って、実際の処理では、種々の推定は、例えば、インパクトがあったと推定されたことをトリガとして開始されつつ、他の推定処理及び次のインパクトの推定処理と並列に行われてよい。 As can be understood from the following explanation, here, if it is estimated that there was an impact, various other estimations are sequentially performed. However, depending on the estimation item, not only the information at the time of impact but also the information before and after it may be required (for example, specifying the time Ta). Therefore, in the actual processing, various estimations may be performed in parallel with other estimation processing and the next impact estimation processing, for example, starting with the estimation that there was an impact as a trigger.
 ステップST14では、解析処理部27は、図4(a)及び図4(b)を参照して説明したように、ステップST13におけるインパクトの時点の推定結果と、ステップST13におけるラケット3の姿勢の推定結果とに基づいて、インパクトのときのラケット3の姿勢を推定する。ひいては、解析処理部27は、表裏1対の打面9aのいずれに球が当たったかを推定する。 In step ST14, the analysis processing unit 27 estimates the estimation result at the time of impact in step ST13 and the posture of the racket 3 in step ST13, as described with reference to FIGS. 4 (a) and 4 (b). Based on the result, the posture of the racket 3 at the time of impact is estimated. As a result, the analysis processing unit 27 estimates which of the pair of front and back striking surfaces 9a the ball hits.
 ステップST15では、解析処理部27は、ステップST13におけるインパクトの時点の推定結果及び加速度センサ15の検出値に基づいて、インパクトのときのラケット3の速度を算出する。次に、解析処理部27は、その算出した速度と、インパクトのときの姿勢の推定結果とに基づいて、角速度の検出値を補正する。以下に説明する各種の推定では、この補正後の角速度が用いられてよいが、用いられなくてもよい。 In step ST15, the analysis processing unit 27 calculates the speed of the racket 3 at the time of impact based on the estimation result at the time of impact in step ST13 and the detected value of the acceleration sensor 15. Next, the analysis processing unit 27 corrects the detected value of the angular velocity based on the calculated velocity and the estimation result of the posture at the time of impact. In various estimations described below, this corrected angular velocity may be used, but it may not be used.
 ステップST16では、解析処理部27は、ステップST13におけるインパクトの時点の推定結果に基づいてインパクトのときのz軸回りの角速度を特定する。そして、解析処理部27は、図5(a)及び図5(c)を参照して説明したように、上記の特定した角速度と、ステップST14における球が当たった打面の推定結果とに基づいて、+y側及び-y側のいずれに球が当たったかを推定する。 In step ST16, the analysis processing unit 27 specifies the angular velocity around the z-axis at the time of impact based on the estimation result at the time of impact in step ST13. Then, the analysis processing unit 27 is based on the above-specified angular velocity and the estimation result of the striking surface hit by the ball in step ST14, as described with reference to FIGS. 5 (a) and 5 (c). Then, it is estimated whether the ball hits the + y side or the −y side.
 ステップST17では、解析処理部27は、図5(a)~図5(c)を参照して説明したように、インパクトのときのz軸回りの角速度の絶対値に基づいて、インパクト位置の仮想線CLからの距離を推定する。 In step ST17, the analysis processing unit 27 virtualizes the impact position based on the absolute value of the angular velocity around the z-axis at the time of impact, as described with reference to FIGS. 5 (a) to 5 (c). Estimate the distance from line CL.
 ステップST18では、解析処理部27は、ステップST13におけるインパクトの時点の推定結果に基づいて、インパクトのときに生じたy軸回りの角速度の振動の振幅が所定の大きさまで減衰する時間Taを特定する。そして、解析処理部27は、図6(a)及び図6(b)を参照して説明したように、時間Taに基づいてインパクト位置のグリップ11からの距離を推定する。 In step ST18, the analysis processing unit 27 specifies the time Ta at which the amplitude of the angular velocity vibration around the y-axis generated at the time of impact is attenuated to a predetermined magnitude based on the estimation result at the time of impact in step ST13. .. Then, the analysis processing unit 27 estimates the distance of the impact position from the grip 11 based on the time Ta, as described with reference to FIGS. 6 (a) and 6 (b).
 ステップST19では、解析処理部27は、以上の表裏推定(ステップST14)、左右推定(ステップST16)、中央推定(ステップST17)、上下推定(ステップST18)に基づいて、インパクト位置が複数(本実施形態は9個)の分割領域Rのいずれに属するかを判定する(分類する)。 In step ST19, the analysis processing unit 27 has a plurality of impact positions (this implementation) based on the above front and back estimation (step ST14), left / right estimation (step ST16), central estimation (step ST17), and vertical estimation (step ST18). It is determined (classified) which of the nine division regions R the form belongs to.
 ステップST20では、解析処理部27は、これまでの推定結果のいずれかをディスプレイ23に表示させる。表示内容は、適宜なものとされてよい。例えば、複数の分割領域Rを模式的に示す図形において、最新のインパクト位置がいずれの分割領域Rに属するかを示したり、分割領域R毎のインパクトの度数を示したりしてよい。 In step ST20, the analysis processing unit 27 displays any of the estimation results so far on the display 23. The displayed contents may be appropriate. For example, in a figure schematically showing a plurality of division regions R, it may be indicated which division region R the latest impact position belongs to, or the frequency of impact for each division region R may be indicated.
 ステップST21では、解析処理部27は、解析処理を終了する終了条件が満たされたか否か判定する。終了条件は、例えば、入力部21に対する所定の操作がなされたことである。そして、解析処理部27は、否定判定のときは、ステップST11に戻って処理を継続し、肯定判定のときは処理を終了する。 In step ST21, the analysis processing unit 27 determines whether or not the end condition for ending the analysis process is satisfied. The end condition is, for example, that a predetermined operation has been performed on the input unit 21. Then, the analysis processing unit 27 returns to step ST11 to continue the process when the negative determination is made, and ends the process when the affirmative determination is made.
 以上のとおり、本実施形態に係る解析システム1は、ラケット3の動きを解析するラケット用解析システムである。ラケット3は、打部9及びグリップ11を有している。打部9は、例えば平面状の打面9aを有している。グリップ11は、打面9aに平行で打面9aの中央を通る仮想線CLに沿って打面9aの外側で延びている。解析システム1は、ラケット3に固定されている角速度センサ13と、ラケット3に球が当たったときの角速度センサ13の検出値に基づいて、打面9aのうちの球が当たった位置を推定するプロセッサ(CPU27a)とを有している。 As described above, the analysis system 1 according to the present embodiment is a racket analysis system that analyzes the movement of the racket 3. The racket 3 has a striking portion 9 and a grip 11. The striking portion 9 has, for example, a flat striking surface 9a. The grip 11 extends outside the striking surface 9a along a virtual line CL that is parallel to the striking surface 9a and passes through the center of the striking surface 9a. The analysis system 1 estimates the position of the ball on the striking surface 9a based on the detection values of the angular velocity sensor 13 fixed to the racket 3 and the angular velocity sensor 13 when the ball hits the racket 3. It has a processor (CPU 27a).
 別の観点では、本実施形態に係る解析装置7は、ラケット3の動きを解析するラケット用解析装置である。解析装置7は、ラケット3に球が当たったときのラケット3の角速度に基づいて、打面9aのうちの球が当たった位置を推定するプロセッサ(CPU27a)を有している。 From another point of view, the analysis device 7 according to the present embodiment is a racket analysis device that analyzes the movement of the racket 3. The analysis device 7 has a processor (CPU 27a) that estimates the position of the hitting surface 9a where the ball hits, based on the angular velocity of the racket 3 when the ball hits the racket 3.
 さらに別の観点では、本実施形態に係るプログラム31は、ラケット3の動きを解析するためのラケット用解析プログラムである。プログラム31は、コンピュータ(CPU27a及びメモリ27b)に推定ステップ(例えば、ステップST16~ST18の少なくともいずれか1つ)を実行させる。推定ステップは、ラケット3に球が当たったときのラケットの角速度に基づいて打面9aのうちの球が当たった位置を推定する処理である。 From yet another point of view, the program 31 according to the present embodiment is a racket analysis program for analyzing the movement of the racket 3. The program 31 causes the computer (CPU 27a and memory 27b) to execute an estimation step (for example, at least one of steps ST16 to ST18). The estimation step is a process of estimating the position where the ball hits the striking surface 9a based on the angular velocity of the racket when the ball hits the racket 3.
 さらに別の観点では、本実施形態に係るラケット用解析方法は、ラケット3に球が当たったときのラケット3の角速度に基づいて、打面9aのうちの球が当たった位置を推定する推定ステップを有している。 From yet another viewpoint, the racket analysis method according to the present embodiment is an estimation step of estimating the position where the ball hits the striking surface 9a based on the angular velocity of the racket 3 when the ball hits the racket 3. have.
 従って、例えば、ラケット3に板状のポインティングデバイスを設ける必要がない。その結果、例えば、センサ付きラケットの重量がラケット3の重量から乖離してしまう蓋然性が低減される。また、例えば、ビデオカメラでインパクト位置を特定する場合と異なり、球が打部9によって隠れてしまっても、インパクト位置を特定することができる。 Therefore, for example, it is not necessary to provide a plate-shaped pointing device on the racket 3. As a result, for example, the probability that the weight of the racket with a sensor deviates from the weight of the racket 3 is reduced. Further, for example, unlike the case where the impact position is specified by a video camera, the impact position can be specified even if the ball is hidden by the striking portion 9.
 また、本実施形態では、仮想線CLに平行な軸をz軸とし、打面9aに平行かつz軸に直交する軸をy軸としたときに、角速度センサ13は、z軸回りの角速度を検出可能である。CPU27aは、ラケット3に球が当たったときのz軸回りの角速度の正負に基づいて、球が当たった位置が打面9aの中央側(例えば仮想線CL)に対してy軸方向の正側及び負側のいずれであるかを推定する。 Further, in the present embodiment, when the axis parallel to the virtual line CL is the z-axis and the axis parallel to the striking surface 9a and orthogonal to the z-axis is the y-axis, the angular velocity sensor 13 determines the angular velocity around the z-axis. It is detectable. Based on the positive and negative of the angular velocity around the z-axis when the ball hits the racket 3, the CPU 27a has the position where the ball hits the positive side in the y-axis direction with respect to the center side (for example, the virtual line CL) of the striking surface 9a. And estimate which is the negative side.
 この場合、例えば、インパクト位置がy軸方向の正側及び負側のいずれであったかの推定方法が簡便である。その結果、例えば、推定のための負担を軽減することができる。ひいては、例えば、一般的なスマートデバイスによってリアルタイムで解析を行うことも容易化される。 In this case, for example, it is convenient to estimate whether the impact position is on the positive side or the negative side in the y-axis direction. As a result, for example, the burden for estimation can be reduced. As a result, for example, it becomes easy to perform analysis in real time by a general smart device.
 また、本実施形態では、角速度センサ13は、z軸回りの角速度を検出可能である。CPU27aは、ラケット3に球が当たったときのz軸回りの角速度が小さいほど、球が当たった位置がy軸方向において打面9aの中央側であると推定する。具体的には、例えば、CPU27aは、z軸回りの角速度が所定の閾値よりも小さいときに、分割領域RC、RN及びRSのいずれかに球が当たったと推定する。 Further, in the present embodiment, the angular velocity sensor 13 can detect the angular velocity around the z-axis. The CPU 27a estimates that the smaller the angular velocity around the z-axis when the ball hits the racket 3, the more the position where the ball hits is on the center side of the striking surface 9a in the y-axis direction. Specifically, for example, the CPU 27a estimates that the sphere hits any of the divided regions RC, RN, and RS when the angular velocity around the z-axis is smaller than a predetermined threshold value.
 ここで、ラケットを用いる競技においては、例えば、バットを用いる競技に比較して、ラケットのz軸回りの回転が積極的に利用されている。従って、この回転を検出するために、z軸回りの角速度を高精度に検出可能な角速度センサ13が設けられることが予想される。その結果、例えば、上記のようにz軸回りの角速度に基づいてインパクト位置のy軸方向の位置を推定すると、角速度センサ13の高精度化に伴って、インパクト位置の推定の精度向上も期待される。 Here, in the competition using the racket, for example, the rotation around the z-axis of the racket is actively used as compared with the competition using the bat. Therefore, in order to detect this rotation, it is expected that an angular velocity sensor 13 capable of detecting the angular velocity around the z-axis with high accuracy will be provided. As a result, for example, when the position of the impact position in the y-axis direction is estimated based on the angular velocity around the z-axis as described above, it is expected that the accuracy of the impact position estimation will be improved as the angular velocity sensor 13 becomes more accurate. To.
 CPU27aは、ラケット3に球が当たったときのz軸回りの角速度の、正負および絶対値に基づいて、球が当たった位置が、打面9aをy軸方向において3つ以上に分割した分割領域のいずれに位置するかを推定してよい。 The CPU 27a is a divided region in which the position where the ball hits divides the striking surface 9a into three or more in the y-axis direction based on the positive and negative values and the absolute value of the angular velocity around the z-axis when the ball hits the racket 3. You may estimate where it is located.
 この場合、例えば、インパクト位置が繰り返し推定され、推定された多数のインパクト位置に係る統計処理が行われるとき、インパクト位置が属する分割領域に関して統計処理を行う。これにより、インパクト位置の座標に関して統計処理を行う態様(そのような態様も本開示に係る技術に含まれる。)に比較して、演算の負担を軽減できる。また、例えば、インパクト位置の座標の推定の精度が低く、前回のインパクト位置と今回のインパクト位置とが互いに近い場合においては、当該2つのインパクト位置の相対関係として、実際の相対関係とは逆の相対関係が推定されることがある。そして、そのような実際とは逆の相対関係がユーザに提示されると、ユーザの技量の向上を却って妨げる可能性が生じる。しかし、インパクト位置が属する分割領域が推定されて提示される場合においては、座標の微小な誤差はユーザに提示されないから、上記のような不都合が生じる蓋然性が低減される。 In this case, for example, when the impact position is repeatedly estimated and statistical processing is performed for a large number of estimated impact positions, statistical processing is performed for the divided region to which the impact position belongs. As a result, the burden of calculation can be reduced as compared with a mode in which statistical processing is performed on the coordinates of the impact position (such a mode is also included in the technique according to the present disclosure). Further, for example, when the accuracy of estimating the coordinates of the impact position is low and the previous impact position and the current impact position are close to each other, the relative relationship between the two impact positions is opposite to the actual relative relationship. Relative relationships may be estimated. Then, when such a relative relationship opposite to the actual one is presented to the user, there is a possibility that the improvement of the user's skill is rather hindered. However, when the divided region to which the impact position belongs is estimated and presented, since the minute error of the coordinates is not presented to the user, the possibility that the above-mentioned inconvenience will occur is reduced.
 また、本実施形態では、角速度センサは、y軸回りの角速度を検出可能である。CPU27aは、ラケット3に球が当たったときに生じたy軸回りの角速度の振動の振幅が所定の大きさまで減衰する時間Taが長いほど、球が当たった位置がz軸方向においてグリップ11から離れていると推定する。具体的には、例えば、CPU27aは、時間Taが長いほど、グリップ11からの距離が相対的に長い分割領域Rに球が当たったと推定する。 Further, in the present embodiment, the angular velocity sensor can detect the angular velocity around the y-axis. In the CPU 27a, the longer the time Ta at which the amplitude of the angular velocity vibration around the y-axis generated when the ball hits the racket 3 is attenuated to a predetermined magnitude, the more the position where the ball hits is separated from the grip 11 in the z-axis direction. Presumed to be. Specifically, for example, the CPU 27a estimates that the longer the time Ta, the more the ball hits the divided region R, which has a relatively longer distance from the grip 11.
 ここで、インパクトのときに生じる角速度の極大値又は極小値には、瞬間的にラケット3が受けた慣性力が反映されている。一方、時間Taの長さの差が生じる要因の一つとして、振動のエネルギーがグリップ11及び選手の手に散逸される速さがグリップ11との距離によって異なることが挙げられる。すなわち、時間Taは、瞬間的な慣性力のみによって支配されるパラメータではない。このことから、例えば、上記のように時間Taに基づいてインパクト位置を推定すると、球速が推定に及ぼす影響を低減することができる。 Here, the maximum value or the minimum value of the angular velocity generated at the time of impact reflects the inertial force momentarily received by the racket 3. On the other hand, one of the factors causing the difference in the length of time Ta is that the speed at which the vibration energy is dissipated into the grip 11 and the player's hand differs depending on the distance from the grip 11. That is, time Ta is not a parameter governed only by the momentary inertial force. From this, for example, if the impact position is estimated based on the time Ta as described above, the influence of the ball speed on the estimation can be reduced.
 CPU27aは、時間Taに基づいて、球が当たった位置が、打面9aをz軸方向において2つ以上に分割した分割領域のいずれに位置するかを推定してよい。 Based on the time Ta, the CPU 27a may estimate which of the divided regions where the hitting surface 9a is divided into two or more in the z-axis direction.
 この場合、例えば、打面9aをy軸方向に分割した分割領域のいずれにインパクト位置が属するかを推定する場合の効果と同様の効果が奏される。例えば、演算の負担が低減される。また、例えば、2以上のインパクト位置に関して、実際とは逆の相対関係をユーザに提示してしまう蓋然性が低減される。 In this case, for example, the same effect as that of estimating which of the divided regions in which the striking surface 9a is divided in the y-axis direction belongs to the impact position is produced. For example, the burden of calculation is reduced. Further, for example, with respect to two or more impact positions, the possibility of presenting the user with a relative relationship opposite to the actual one is reduced.
 また、本実施形態では、角速度センサ13は、x軸回りの角速度、y軸回りの角速度及びz軸回りの角速度を検出可能である。CPU27aは、x軸回りの角速度、y軸回りの角速度及びz軸回りの角速度に基づいて絶対座標系における打部9の姿勢を推定する。そして、CPU27aは、ラケット3に球が当たったときのラケット3の姿勢が所定の第1範囲に含まれているときは球が打面9aに当たったと推定し、ラケット3に球が当たったときのラケット3の姿勢が第1範囲とは異なる第2範囲に含まれているときは球が打面9aの背面(他の打面9a)に当たったと推定する。 Further, in the present embodiment, the angular velocity sensor 13 can detect the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis. The CPU 27a estimates the posture of the striking portion 9 in the absolute coordinate system based on the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis. Then, the CPU 27a presumes that the ball hits the striking surface 9a when the posture of the racket 3 when the ball hits the racket 3 is included in the predetermined first range, and when the ball hits the racket 3. When the posture of the racket 3 is included in the second range different from the first range, it is presumed that the ball hits the back surface of the striking surface 9a (another striking surface 9a).
 この場合、例えば、板状のポインティングデバイスを設ける場合とは異なり、解析対象の打面9aが増えても、角速度センサ13の数は増加しない。従って、センサ付きラケットの重量がラケット3の重量から乖離する蓋然性が低減される。また、ロボット及びドローン等の他の技術分野で実用化されている姿勢推定の技術を応用することができる。 In this case, for example, unlike the case where a plate-shaped pointing device is provided, the number of angular velocity sensors 13 does not increase even if the number of striking surfaces 9a to be analyzed increases. Therefore, the probability that the weight of the racket with the sensor deviates from the weight of the racket 3 is reduced. In addition, posture estimation technology that has been put into practical use in other technical fields such as robots and drones can be applied.
 また、本実施形態では、角速度センサ13は、z軸回りの角速度を検出可能である。CPU27aは、z軸回りの角速度に基づいてラケット3に球が当たった時点を推定する。 Further, in the present embodiment, the angular velocity sensor 13 can detect the angular velocity around the z-axis. The CPU 27a estimates the time when the ball hits the racket 3 based on the angular velocity around the z-axis.
 この場合、例えば、ビデオカメラの撮影等によってインパクトの有無及び時点を推定する態様(当該態様も本開示に含まれる。)に比較して、解析システム1の構成が簡素化される。また、例えば、インパクトの時点の推定の元になるデータと、インパクト位置の推定の元になるデータとを同一にできるから、互いに異なるセンサ同士で検出結果に齟齬又はずれが生じるというような不都合が生じる蓋然性が低減される。 In this case, the configuration of the analysis system 1 is simplified as compared with a mode in which the presence / absence and a time point of impact are estimated by, for example, shooting with a video camera (the mode is also included in the present disclosure). Further, for example, since the data that is the basis of the estimation at the time of impact and the data that is the basis of the estimation of the impact position can be made the same, there is an inconvenience that the detection results are inconsistent or deviated between different sensors. The probability of occurrence is reduced.
 また、本実施形態では、解析システム1は、打面9aに直交するx軸方向の加速度を検出可能な加速度センサ15を更に有している。CPU27aは、打面9aに直交する方向における加速度の検出値に基づいて球が当たった時点を推定する。 Further, in the present embodiment, the analysis system 1 further includes an acceleration sensor 15 capable of detecting acceleration in the x-axis direction orthogonal to the striking surface 9a. The CPU 27a estimates the time when the ball hits based on the detected value of the acceleration in the direction orthogonal to the striking surface 9a.
 この場合、例えば、既述のz軸回りの角速度に基づいてラケット3に球が当たった時点を推定する方法に比較して、インパクト位置の影響が低減される。すなわち、インパクトの時点の推定精度を向上させることができる。 In this case, for example, the influence of the impact position is reduced as compared with the method of estimating the time when the ball hits the racket 3 based on the above-mentioned angular velocity around the z-axis. That is, the estimation accuracy at the time of impact can be improved.
 また、本実施形態では、解析システム1は、仮想線CLに平行なz軸方向の加速度を検出可能な加速度センサ15を更に有している。CPU27aは、z軸方向における加速度の検出値に基づいて球が当たった時点を推定する。 Further, in the present embodiment, the analysis system 1 further includes an acceleration sensor 15 capable of detecting acceleration in the z-axis direction parallel to the virtual line CL. The CPU 27a estimates the time when the sphere hits based on the detected value of the acceleration in the z-axis direction.
 この場合、例えば、既述のx軸方向の加速度に基づいてラケット3に球が当たった時点を推定する方法に比較して、球が打面9aに当たる方向の、打面9aの法線(x軸)に対する傾斜角の影響が低減される。 In this case, for example, as compared with the method of estimating the time when the ball hits the racket 3 based on the acceleration in the x-axis direction described above, the normal line (x) of the hitting surface 9a in the direction in which the ball hits the hitting surface 9a. The effect of the tilt angle on the axis) is reduced.
 また、本実施形態では、打面9aに直交するx軸方向の加速度を検出可能な加速度センサを更に有している。CPU27aは、打面9aに球が当たったときの打面9aが面する方向への加速度の検出値が大きいほど、角速度の絶対値が小さくなるように角速度の検出値を補正し、その補正後の角速度を用いて打面9aのうちの球が当たった位置を推定する。 Further, in the present embodiment, the acceleration sensor capable of detecting the acceleration in the x-axis direction orthogonal to the striking surface 9a is further provided. The CPU 27a corrects the detection value of the angular velocity so that the larger the detection value of the acceleration in the direction in which the hit surface 9a faces when the ball hits the hitting surface 9a, the smaller the absolute value of the angular velocity, and after the correction. The position where the ball hits the striking surface 9a is estimated using the angular velocity of.
 この場合、例えば、ラケット3の速度がインパクトのときの角速度に及ぼす影響を低減できる。ひいては、角速度に基づくインパクト位置の推定の精度を向上させることができる。 In this case, for example, the influence of the speed of the racket 3 on the angular velocity at the time of impact can be reduced. As a result, the accuracy of estimating the impact position based on the angular velocity can be improved.
 角速度センサ13(センサ装置5)は、グリップ11の打部9とは反対側の端部に位置してよい。 The angular velocity sensor 13 (sensor device 5) may be located at the end of the grip 11 opposite to the striking portion 9.
 この場合、例えば、角速度センサ13が打部9に位置している態様(当該態様も本開示に係る技術に含まれる。)に比較して、スイングのときに角速度センサ13が他の部材(例えば、球、テーブル又は床)に衝突する蓋然性が低減される。 In this case, for example, as compared with the embodiment in which the angular velocity sensor 13 is located at the striking portion 9 (the embodiment is also included in the technique according to the present disclosure), the angular velocity sensor 13 is used as another member (for example, in the swing). , Ball, table or floor) is reduced.
 本開示に係る技術は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The technique according to the present disclosure is not limited to the above embodiments, and may be implemented in various embodiments.
 ラケット用解析システムに要求される性能によって、実施形態で挙げた種々の要素又は機能は省略されてよい。例えば、実施形態の説明からも理解されるように、角速度センサのみに基づいてインパクト位置を特定することも可能であり、インパクト位置に高い精度が要求されないのであれば、加速度センサは省略されてもよい。また、例えば、ラケットの姿勢を推定しない場合においては、x軸回りの角速度の検出は不要である。すなわち、角速度センサは、2軸角速度センサであってもよい。さらに、y軸方向及びz軸方向のいずれか一方のみについてインパクト位置を特定するのであれば、角速度センサは、1軸の回りの角速度を検出できるだけであっても構わない。 Depending on the performance required for the racket analysis system, the various elements or functions mentioned in the embodiment may be omitted. For example, as can be understood from the description of the embodiment, it is possible to specify the impact position based only on the angular velocity sensor, and if high accuracy is not required for the impact position, the acceleration sensor may be omitted. Good. Further, for example, when the posture of the racket is not estimated, it is not necessary to detect the angular velocity around the x-axis. That is, the angular velocity sensor may be a biaxial angular velocity sensor. Further, if the impact position is specified only in either the y-axis direction or the z-axis direction, the angular velocity sensor may only detect the angular velocity around one axis.
 実施形態では、解析装置7がインパクト位置等の解析を行うものとして説明した。ただし、センサ装置5がインパクト位置の推定等の解析を行ってよい。すなわち、解析装置7のCPU27aが行うものとして説明したステップは、センサ装置5のCPU19aが行ってもよい。また、解析の処理は、CPU27aとCPU19aとで分担してもよい。換言すれば、ラケット用解析システムにおいて、インパクト位置の推定等の解析を行うプロセッサは、CPU27aでなく、CPU19aであってもよいし、両者の組み合わせであってもよい。 In the embodiment, it has been described that the analysis device 7 analyzes the impact position and the like. However, the sensor device 5 may perform analysis such as estimation of the impact position. That is, the step described as being performed by the CPU 27a of the analysis device 7 may be performed by the CPU 19a of the sensor device 5. Further, the analysis process may be shared between the CPU 27a and the CPU 19a. In other words, in the racket analysis system, the processor that performs analysis such as estimation of the impact position may be CPU 19a instead of CPU 27a, or may be a combination of both.
 本開示に係る技術は、競技の練習等の解析に利用されるだけでなく、競技を模したアーケードゲーム機におけるプレイの良否判定に利用されてもよい。 The technique according to the present disclosure may be used not only for analysis of competition practice, etc., but also for determining the quality of play in an arcade game machine that imitates competition.
 1…解析システム(ラケット用解析システム)、3…ラケット、9…打部、9a…打面、11…グリップ、13…角速度センサ、27a…CPU(プロセッサ)、CL…仮想線。 1 ... analysis system (racket analysis system), 3 ... racket, 9 ... striking part, 9a ... striking surface, 11 ... grip, 13 ... angular velocity sensor, 27a ... CPU (processor), CL ... virtual line.

Claims (15)

  1.  打面を有している打部と、前記打面に平行で前記打面の中央部を通る仮想線に沿って前記打面の外側で延びているグリップと、を有しているラケットの動きを解析するラケット用解析システムであって、
     前記ラケットに固定されている角速度センサと、
     前記ラケットに球が当たったときの前記角速度センサの検出値に基づいて、前記打面のうちの前記球が当たった位置を推定する処理部と、
     を有しているラケット用解析システム。
    The movement of a racket having a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the central portion of the striking surface. It is an analysis system for rackets that analyzes
    The angular velocity sensor fixed to the racket and
    A processing unit that estimates the position of the ball hitting the striking surface based on the detection value of the angular velocity sensor when the ball hits the racket.
    An analysis system for rackets that has.
  2.  前記仮想線に平行なz軸と、前記打面に平行かつ前記z軸に直交するy軸とを定義したときに、
     前記角速度センサは、前記z軸回りの角速度を検出可能であり、
     前記処理部は、前記ラケットに前記球が当たったときの前記z軸回りの角速度の正負に基づいて、前記球が当たった位置が前記打面の中央側に対して前記y軸方向の正側及び負側のいずれであるかを推定する
     請求項1に記載のラケット用解析システム。
    When the z-axis parallel to the virtual line and the y-axis parallel to the striking surface and orthogonal to the z-axis are defined,
    The angular velocity sensor can detect the angular velocity around the z-axis and can detect the angular velocity.
    In the processing unit, the position where the ball hits is the positive side in the y-axis direction with respect to the center side of the striking surface, based on the positive and negative of the angular velocity around the z-axis when the ball hits the racket. The racket analysis system according to claim 1, wherein it estimates which of the two is on the negative side.
  3.  前記仮想線に平行なz軸と、前記打面に平行かつ前記z軸に直交するy軸とを定義したときに、
     前記角速度センサは、前記z軸回りの角速度を検出可能であり、
     前記処理部は、前記ラケットに前記球が当たったときの前記z軸回りの角速度が小さいほど、前記球が当たった位置が前記y軸方向において前記打面の中央側であると推定する
     請求項1又は2に記載のラケット用解析システム。
    When the z-axis parallel to the virtual line and the y-axis parallel to the striking surface and orthogonal to the z-axis are defined,
    The angular velocity sensor can detect the angular velocity around the z-axis and can detect the angular velocity.
    The processing unit estimates that the smaller the angular velocity around the z-axis when the ball hits the racket, the more the position where the ball hits is on the center side of the striking surface in the y-axis direction. The racket analysis system according to 1 or 2.
  4.  前記処理部は、前記ラケットに前記球が当たったときの前記z軸回りの角速度の、正負および絶対値に基づいて、前記球が当たった位置が、前記打面を前記y軸方向において3つ以上に分割した分割領域のいずれに位置するかを推定する
     請求項2又は3に記載のラケット用解析システム。
    Based on the positive and negative values and absolute values of the angular velocity around the z-axis when the ball hits the racket, the processing unit has three positions where the ball hits the striking surface in the y-axis direction. The racket analysis system according to claim 2 or 3, which estimates which of the divided regions is located.
  5.  前記仮想線に平行なz軸と、前記打面に平行かつ前記z軸に直交するy軸とを定義したときに、
     前記角速度センサは、前記y軸回りの角速度を検出可能であり、
     前記処理部は、前記ラケットに前記球が当たったときに生じた前記y軸回りの角速度の振動の振幅が所定の大きさまで減衰する時間が長いほど、前記球が当たった位置が前記z軸方向において前記グリップから離れていると推定する
     請求項1~4のいずれか1項に記載のラケット用解析システム。
    When the z-axis parallel to the virtual line and the y-axis parallel to the striking surface and orthogonal to the z-axis are defined,
    The angular velocity sensor can detect the angular velocity around the y-axis and can detect the angular velocity.
    In the processing unit, the longer the amplitude of the angular velocity vibration around the y-axis generated when the sphere hits the racket decays to a predetermined magnitude, the longer the position where the sphere hits is in the z-axis direction. The racket analysis system according to any one of claims 1 to 4, which is presumed to be away from the grip.
  6.  前記処理部は、前記時間に基づいて、前記球が当たった位置が、前記打面を前記z軸方向において2つ以上に分割した分割領域のいずれに位置するかを推定する
     請求項5に記載のラケット用解析システム。
    The fifth aspect of the present invention, wherein the processing unit estimates, based on the time, which of the divided regions in which the hitting surface is hit is located in two or more divided regions in the z-axis direction. Analysis system for rackets.
  7.  前記仮想線に平行なz軸と、前記打面に直交するx軸と、前記x軸及び前記z軸に直交するy軸とを定義したときに、
     前記角速度センサは、前記x軸回りの角速度、前記y軸回りの角速度及び前記z軸回りの角速度を検出可能であり、
     前記処理部は、前記x軸回りの角速度、前記y軸回りの角速度及び前記z軸回りの角速度に基づいて、絶対座標系における前記打部の姿勢を推定し、前記ラケットに前記球が当たったときの前記ラケットの姿勢が所定の第1範囲に含まれているときは前記球が前記打面に当たったと推定し、前記ラケットに前記球が当たったときの前記ラケットの姿勢が前記第1範囲とは異なる第2範囲に含まれているときは前記球が前記打面の背面に当たったと推定する
     請求項1~6のいずれか1項に記載のラケット用解析システム。
    When the z-axis parallel to the virtual line, the x-axis orthogonal to the striking surface, and the x-axis and the y-axis orthogonal to the z-axis are defined,
    The angular velocity sensor can detect the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis.
    The processing unit estimates the posture of the striking portion in the absolute coordinate system based on the angular velocity around the x-axis, the angular velocity around the y-axis, and the angular velocity around the z-axis, and the ball hits the racket. When the posture of the racket is included in the predetermined first range, it is estimated that the ball hits the striking surface, and the posture of the racket when the ball hits the racket is in the first range. The racket analysis system according to any one of claims 1 to 6, wherein it is estimated that the ball hits the back surface of the striking surface when it is included in the second range different from the above.
  8.  前記仮想線に平行なz軸を定義したときに、
     前記角速度センサは、前記z軸回りの角速度を検出可能であり、
     前記処理部は、前記z軸回りの角速度に基づいて前記ラケットに前記球が当たった時点を推定する
     請求項1~7のいずれか1項に記載のラケット用解析システム。
    When the z-axis parallel to the virtual line is defined,
    The angular velocity sensor can detect the angular velocity around the z-axis and can detect the angular velocity.
    The racket analysis system according to any one of claims 1 to 7, wherein the processing unit estimates the time when the ball hits the racket based on the angular velocity around the z-axis.
  9.  前記仮想線に平行なz軸方向の加速度を検出可能な加速度センサを更に有しており、
     前記処理部は、前記z軸方向における加速度の検出値に基づいて前記球が当たった時点を推定する
     請求項1~8のいずれか1項に記載のラケット用解析システム。
    It further has an acceleration sensor capable of detecting acceleration in the z-axis direction parallel to the virtual line.
    The racket analysis system according to any one of claims 1 to 8, wherein the processing unit estimates the time when the sphere hits based on the detected value of the acceleration in the z-axis direction.
  10.  前記打面に直交するx軸方向の加速度を検出可能な加速度センサを更に有しており、
     前記処理部は、前記x軸方向における加速度の検出値に基づいて前記球が当たった時点を推定する
     請求項1~9のいずれか1項に記載のラケット用解析システム。
    It further has an acceleration sensor capable of detecting acceleration in the x-axis direction orthogonal to the striking surface.
    The racket analysis system according to any one of claims 1 to 9, wherein the processing unit estimates the time when the sphere hits based on the detected value of the acceleration in the x-axis direction.
  11.  前記打面に直交するx軸方向の加速度を検出可能な加速度センサを更に有しており、
     前記処理部は、前記打面に前記球が当たったときの、前記x軸方向かつ前記打面が面する側への加速度の検出値が大きいほど、角速度の絶対値が小さくなるように角速度の検出値を補正し、その補正後の角速度を用いて前記打面のうちの前記球が当たった位置を推定する
     請求項1~10のいずれか1項に記載のラケット用解析システム。
    It further has an acceleration sensor capable of detecting acceleration in the x-axis direction orthogonal to the striking surface.
    The processing unit determines that the larger the detected value of the acceleration in the x-axis direction and the side facing the striking surface when the ball hits the striking surface, the smaller the absolute value of the angular velocity. The racket analysis system according to any one of claims 1 to 10, wherein the detected value is corrected and the position where the ball hits the striking surface is estimated using the corrected angular velocity.
  12.  前記角速度センサが、前記グリップの前記打部とは反対側の端部に位置している
     請求項1~11のいずれか1項に記載のラケット用解析システム。
    The racket analysis system according to any one of claims 1 to 11, wherein the angular velocity sensor is located at an end portion of the grip opposite to the striking portion.
  13.  打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有しているラケットの動きを解析するラケット用解析装置であって、
     前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する処理部を有している
     ラケット用解析装置。
    The movement of a racket having a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. It is an analysis device for rackets to analyze,
    A racket analysis device having a processing unit that estimates the position of the ball hitting the striking surface based on the angular velocity of the racket when the ball hits the racket.
  14.  打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有しているラケットの動きを解析するためのラケット用解析プログラムであって、コンピュータに、
     前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する推定ステップ、を実行させる
     ラケット用解析プログラム。
    The movement of a racket having a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. A racket analysis program for analysis, which can be applied to a computer.
    An analysis program for a racket that executes an estimation step of estimating a position where the ball hits the striking surface based on the angular velocity of the racket when the ball hits the racket.
  15.  打面を有している打部と、前記打面に平行で前記打面の中央を通る仮想線に沿って前記打面の外側で延びているグリップと、を有しているラケットの動きを解析するラケット用解析方法であって、
     前記ラケットに球が当たったときの前記ラケットの角速度に基づいて、前記打面のうちの前記球が当たった位置を推定する推定ステップ、を有している
     ラケット用解析方法。
    The movement of a racket having a striking portion having a striking surface and a grip extending outside the striking surface along a virtual line parallel to the striking surface and passing through the center of the striking surface. It is an analysis method for rackets to be analyzed.
    An analysis method for a racket, which comprises an estimation step of estimating a position of the hitting surface where the ball hits, based on the angular velocity of the racket when the ball hits the racket.
PCT/JP2020/039825 2019-10-25 2020-10-23 Racket analysis system, racket analysis device, racket analysis program, and racket analysis method WO2021079967A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021553545A JP7291234B2 (en) 2019-10-25 2020-10-23 Racket analysis system, racket analysis device, racket analysis program, and racket analysis method
CN202080072308.0A CN114555196A (en) 2019-10-25 2020-10-23 Racket analysis system, racket analysis device, racket analysis program, and racket analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194190 2019-10-25
JP2019194190 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079967A1 true WO2021079967A1 (en) 2021-04-29

Family

ID=75620153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039825 WO2021079967A1 (en) 2019-10-25 2020-10-23 Racket analysis system, racket analysis device, racket analysis program, and racket analysis method

Country Status (3)

Country Link
JP (1) JP7291234B2 (en)
CN (1) CN114555196A (en)
WO (1) WO2021079967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088460A1 (en) * 2020-09-23 2022-03-24 Sensor Maestros, LLC Visual Or Audible Indicators Of Sensed Motion In A Hockey Puck
WO2023276640A1 (en) * 2021-06-30 2023-01-05 国立大学法人筑波大学 Flying object control system, flying object control method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125499A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Tennis swing improvement supporting system
JP2012130414A (en) * 2010-12-20 2012-07-12 Seiko Epson Corp Swing analysis device
JP2015016289A (en) * 2013-06-13 2015-01-29 ソニー株式会社 Information processing device, storage medium, and information processing method
US20150120021A1 (en) * 2012-05-10 2015-04-30 Lubin Kerhuel Method for analyzing the game of a user of a racket
JP2015126813A (en) * 2013-12-27 2015-07-09 カシオ計算機株式会社 State estimation apparatus, state estimation method and program
JP2016010714A (en) * 2015-09-03 2016-01-21 ソニー株式会社 Information processing device, information processing system and recording medium
JP2016209122A (en) * 2015-04-30 2016-12-15 セイコーエプソン株式会社 Hitting analysis device, hitting analysis system, hitting analysis method, and program
JP2017051580A (en) * 2014-12-26 2017-03-16 ダンロップスポーツ株式会社 Golf swing analysis apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125499A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Tennis swing improvement supporting system
JP2012130414A (en) * 2010-12-20 2012-07-12 Seiko Epson Corp Swing analysis device
US20150120021A1 (en) * 2012-05-10 2015-04-30 Lubin Kerhuel Method for analyzing the game of a user of a racket
JP2015016289A (en) * 2013-06-13 2015-01-29 ソニー株式会社 Information processing device, storage medium, and information processing method
JP2015126813A (en) * 2013-12-27 2015-07-09 カシオ計算機株式会社 State estimation apparatus, state estimation method and program
JP2017051580A (en) * 2014-12-26 2017-03-16 ダンロップスポーツ株式会社 Golf swing analysis apparatus
JP2016209122A (en) * 2015-04-30 2016-12-15 セイコーエプソン株式会社 Hitting analysis device, hitting analysis system, hitting analysis method, and program
JP2016010714A (en) * 2015-09-03 2016-01-21 ソニー株式会社 Information processing device, information processing system and recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONY: "Instant analysis of tennis shots and easy-to-understand display on your smartphone, Launched a racket-mounted Smart Tennis Sensor that can be checking data, enjoyable, and also helpful to improve your skill", SMART TENNIS SENSOR SONY CORPORATION, 24 January 2014 (2014-01-24), Retrieved from the Internet <URL:https://web.archive.org/web/20200922120401/https://www.sorry.co.jp/SonyInfo/News/Press/201401/14-008> [retrieved on 20201218] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220088460A1 (en) * 2020-09-23 2022-03-24 Sensor Maestros, LLC Visual Or Audible Indicators Of Sensed Motion In A Hockey Puck
WO2023276640A1 (en) * 2021-06-30 2023-01-05 国立大学法人筑波大学 Flying object control system, flying object control method, and program

Also Published As

Publication number Publication date
JPWO2021079967A1 (en) 2021-04-29
CN114555196A (en) 2022-05-27
JP7291234B2 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP6467766B2 (en) Motion analysis method, motion analysis apparatus, and motion analysis program
CN104225897B (en) Method of motion analysis and motion analyzing apparatus
US10459002B2 (en) Motion analysis method and motion analysis device
US9962591B2 (en) Motion analysis method, program, and motion analysis device
US9864904B2 (en) Motion analysis device and motion analysis system
KR20150005447A (en) Motion analysis device
US20150111657A1 (en) Movement analysis method, movement analysis apparatus, and movement analysis program
US20170239520A1 (en) Motion analysis apparatus, motion analysis system, motion analysis method, recording medium, and display method
WO2015083429A1 (en) Analysis device, analysis method and recording medium
JP6168279B2 (en) Analysis control device, motion analysis system, program, recording medium, and orientation adjusting method
WO2021079967A1 (en) Racket analysis system, racket analysis device, racket analysis program, and racket analysis method
US20170007880A1 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and program
JP2016067410A (en) Motion analysis device, motion analysis system, and motion analysis method and program
JP2016067408A (en) Sensor, arithmetic unit, movement measurement method, movement measurement system, and program
JP6380733B2 (en) Motion analysis device, motion analysis system, motion analysis method, motion analysis information display method and program
US20170028252A1 (en) Swing diagnosis apparatus, swing diagnosis system, swing diagnosis method, and recording medium
JP2016116615A (en) Motion analysis device, motion analysis system, motion analysis method, and program
US20170011652A1 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and program
JP2015084955A (en) Motion analysis device and motion analysis program
JP6862931B2 (en) Motion analysis device, motion analysis method, motion analysis system and display method
JP2016116572A (en) Motion analysis device, motion analysis method, program, and motion analysis system
JP2016116745A (en) Tilt determination device, tilt determination system, tilt determination method and program
JP2021058301A (en) Fitting device of golf club
JP7306206B2 (en) golf club fitting device
JP6984326B2 (en) Hitting tool fitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878508

Country of ref document: EP

Kind code of ref document: A1