WO2021079782A1 - Insulated transmission device - Google Patents

Insulated transmission device Download PDF

Info

Publication number
WO2021079782A1
WO2021079782A1 PCT/JP2020/038557 JP2020038557W WO2021079782A1 WO 2021079782 A1 WO2021079782 A1 WO 2021079782A1 JP 2020038557 W JP2020038557 W JP 2020038557W WO 2021079782 A1 WO2021079782 A1 WO 2021079782A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission device
insulated transmission
resonator
multilayer film
dielectric multilayer
Prior art date
Application number
PCT/JP2020/038557
Other languages
French (fr)
Japanese (ja)
Inventor
成伯 崔
榎本 真悟
昇 根来
田畑 修
雄太 永冨
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021079782A1 publication Critical patent/WO2021079782A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers

Definitions

  • the present disclosure relates to an insulated transmission device using an electromagnetic resonance coupler.
  • An example of such an application is a gate drive circuit of a power device that switches a voltage on the order of several hundred volts to several kV.
  • the primary side of the several V system used in the gate drive circuit and the secondary side that handles power of several hundred V or more are electrically cut off to secure the insulation between the primary side and the secondary side.
  • it is also required to block the influence of noise generated when switching the large power on the secondary side.
  • insulated gate drivers Elements used in gate drive circuits that ensure insulation in this way are generally called insulated gate drivers, and are the main application examples of insulated signal / power transmission devices, which is the technical field of the present application.
  • insulated gate drivers There are several methods for insulated gate drivers, but the most commonly used method is an insulated transmission method using light called a photocoupler.
  • Photocouplers are widely used because they can easily achieve electrical insulation by light, can relatively increase the insulation distance, and are low in cost.
  • the primary side frame on which the LED transmitter is mounted and the secondary side frame on which the light receiver is mounted are insulated by the sealing material of the package, and the distance between them is 0.4 mm or more. It is possible to design.
  • photocouplers While photocouplers have the characteristic of being able to increase the insulation distance, they also have problems such as deterioration over time and the possibility of isolated transmission of signals only, making it difficult to transmit power.
  • Such a method using inductive coupling or capacitive coupling does not have a problem of aging deterioration of an optical element like a photocoupler, has a long life, and in an inductive coupling method, not only a signal but also power can be transmitted. Insulated transmission devices of body type have also been reported, and it is possible to realize miniaturization of an insulated gate driver.
  • the insulation distance of inductive coupling and capacitive coupling methods is generally as small as several tens of ⁇ m. It is a difficult method to secure an insulation distance of 0.4 mm or more that meets the above-mentioned reinforced insulation specifications, and in order to increase the insulation distance, the size of the coil and capacitor must be increased, which is a characteristic of the small size. Cannot maintain the conversion.
  • the insulation distance is set to 0 by configuring an insulated transmission device by an electromagnetic field resonance coupling method using a high frequency (GHz band, for example, 2.4 GHz) signal. It is disclosed that a highly efficient and compact insulated transmission IC structure can be realized while having a size of .4 mm or more.
  • GHz band for example, 2.4 GHz
  • the coupler is separated into two parts, an LED transmitter and a receiver, and each element is mounted on the primary side lead frame and the secondary side lead frame, and the transmitting side and the receiving side seal the package. It is completely electrically separated by a waterproof resin material (including a resin material for maintaining light transmission).
  • the coupler is an integrated type. That is, the coupler is composed of a laminated structure of dielectric layers in which the electrode structure is patterned by a printed circuit board (PCB), and insulation is maintained by a part of the layer thickness.
  • PCB printed circuit board
  • the coupler is mounted on either the primary side lead frame or the secondary side lead frame, and the frame that is not mounted is It is generally electrically connected by wire bonding.
  • the integrated coupler is mounted so as to straddle both lead frames.
  • the reliability is evaluated while changing the temperature / humidity conditions multiple times by a temperature cycle test or the like, but there is a concern that problems may remain in such a test.
  • Patent Document 2 discloses the structure of an insulated transmission device in which the primary side and the secondary side are completely separated by using an inductive coupling method.
  • the package size and the size of the IC structure depend on the coil shape.
  • Patent Document 2 as shown in FIG. 2 of Patent Document 2, the coil on the primary side and the coil on the secondary side are provided in the direction perpendicular to the substrate on which the insulated transmission device IC is mounted (hereinafter, in the vertical direction). It discloses a structure in which they are arranged facing each other, inductively coupled, and each is connected to each frame.
  • the structure is such that the primary and secondary coils face each other in the vertical direction, and each coil cannot be mounted on the same surface of the primary and secondary lead frames.
  • the package structure becomes complicated, the assembly method becomes sophisticated, and there is a concern that the cost will increase.
  • Patent Document 3 discloses a lateral coupling using a transformer, as shown in FIG. 11 of Patent Document 3. In this case, inductive coupling is realized by using a flexible substrate.
  • the present disclosure provides an insulated transmission device having high insulation reliability for a long period of time and suitable for miniaturization, high efficiency, and low cost.
  • the insulated transmission device includes a first dielectric multilayer film composed of a plurality of dielectric layers and a second dielectric multilayer film composed of a plurality of dielectric layers.
  • the first resonator provided on the first dielectric multilayer film and the second resonator provided on the second dielectric multilayer film are provided, and the first resonator and the above-mentioned
  • the second resonator is electrically insulated from the DC current, and an electromagnetic wave within a predetermined frequency band is transmitted between the first resonator and the second resonator.
  • the first resonator has a first inducing element and a first electrode constituting a capacitive element
  • the second resonator has a second inducing element and the said. It has a second electrode that constitutes a capacitive element.
  • the insulated transmission device of the present disclosure has high insulation reliability for a long period of time, and is suitable for miniaturization, high efficiency, and low cost.
  • FIG. 1 is a block diagram showing a system configuration example of the insulated transmission device of the first embodiment.
  • FIG. 2A is a bird's-eye view showing a structural example of the electromagnetic field resonance coupling portion of the first embodiment.
  • FIG. 2B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of the first embodiment.
  • FIG. 2C is a perspective view of the first resonator of the first embodiment as viewed from above.
  • FIG. 2D is a perspective view of the first resonator of the first embodiment as viewed from below.
  • FIG. 3A is a bird's-eye view showing an example of the package structure of the first embodiment.
  • FIG. 3B is a side perspective view showing an example of the package structure of the first embodiment.
  • FIG. 4A is a bird's-eye view showing a conventional package structure.
  • FIG. 4B is a cross-sectional view showing a conventional electromagnetic field resonance coupler.
  • FIG. 5A is a diagram showing a first modification of the inductively coupled element.
  • FIG. 5B is a diagram showing a second modification of the inductively coupled element.
  • FIG. 5C is a diagram showing a third modification of the inductively coupled element.
  • FIG. 6A is a bird's-eye view showing a first modification of the resonator of the first embodiment.
  • FIG. 6B is a cross-sectional view showing a first modification of the resonator of the first embodiment.
  • FIG. 6C is a bird's-eye view showing a second modification of the resonator of the first embodiment.
  • FIG. 6D is a bird's-eye view showing a third modification of the resonator of the first embodiment.
  • FIG. 7 is a bird's-eye view showing a fourth modification of the resonator of the first embodiment.
  • FIG. 8A is a bird's-eye view showing a fifth modification of the resonator of the first embodiment.
  • FIG. 8B is a bird's-eye view showing a fifth modification of the resonator of the first embodiment.
  • FIG. 9A is a Smith chart showing actually measured values of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 9B is a diagram showing the characteristics of the amount of reflection with respect to the frequency in the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 9C is a diagram showing the characteristics of the amount of transmission with respect to the frequency in the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 9D is a diagram showing an example of design parameters of the resonator according to FIGS. 9A to 9C.
  • FIG. 10A is a diagram showing an electric field distribution of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 10B is a diagram showing a magnetic field distribution of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 11A is a diagram showing a first example of an equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 11B is a diagram showing a second example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 11C is a diagram showing a third example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 11D is a diagram showing a fourth example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment.
  • FIG. 12A is a bird's-eye view showing a modified example of the resonator of the first embodiment.
  • 12B is a perspective view of the resonator of FIG. 12A as viewed from the side.
  • FIG. 13A is a perspective view seen from an upper oblique direction showing a modified example of the package structure of the insulated transmission device of the first embodiment.
  • FIG. 13B is a perspective view showing the package structure of FIG. 13A as viewed from an oblique direction.
  • FIG. 14 is a diagram showing a modified example of the package structure of the insulated transmission device of the first embodiment.
  • FIG. 15 is a diagram showing a structural example of the electromagnetic field resonance coupling portion of the second embodiment.
  • FIG. 16 is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment.
  • FIG. 17A is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment.
  • FIG. 17B is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment.
  • FIG. 17C is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment.
  • FIG. 18A is a diagram showing the amount of transmission with respect to the frequency of the electromagnetic field resonance coupling portion in which adjacent inductive coupling elements are arranged on the same surface.
  • FIG. 18B is a diagram showing the transmission amount with respect to the frequency of the electromagnetic field resonance coupling portion in which adjacent inductive coupling elements are arranged on different surfaces as shown in FIG. 17C.
  • FIG. 19 is a diagram showing an example of a package structure of the insulated transmission device of the third embodiment.
  • FIG. 20A is a perspective view showing a structural example of the electromagnetic field resonance coupling portion of the fourth embodiment.
  • FIG. 20B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of FIG. 20A.
  • FIG. 1 is a block diagram showing a system configuration of the insulated transmission device according to the first embodiment.
  • the insulated transmission device 1000 includes an electromagnetic field resonance coupling unit 100, a transmission circuit 201, and a reception circuit 202.
  • the transmission circuit 201 acquires the power supplied from the power supply 2 and the input signal supplied from the signal source 1.
  • the transmission circuit 201 includes a modulation circuit, which modulates the high frequency signal according to the input signal and transmits it to the electromagnetic field resonance coupling unit 100. That is, the transmission circuit 201 transmits a signal (that is, a high-frequency signal after modulation) obtained by modulating the high-frequency signal according to the input signal to the first resonator 101 as a transmission signal.
  • the high frequency signal here is, in other words, a signal having a higher frequency than the input signal.
  • the transmission circuit 201 is realized by, for example, a semiconductor chip.
  • the transmission circuit 201 may include a high-frequency signal generation circuit that generates a high-frequency signal, or the transmission circuit 201 may acquire a high-frequency signal from the outside.
  • the frequency band of the high frequency signal in the first embodiment is, for example, a microwave band (including a millimeter wave band).
  • the frequency of the high frequency signal is 2.4 GHz or more and 5.875 GHz or less (ISM band), but is not particularly limited. It may be in the MHz band.
  • the electromagnetic field resonance coupling unit 100 can be further miniaturized by using a signal having a frequency much higher than that of an inductively coupled element using a coil or a transformer element.
  • the electromagnetic field resonance coupling portion 100 has a first resonator 101 and a second resonator 102.
  • the electromagnetic field resonance coupling unit 100 utilizes a resonance phenomenon based on LC resonance that occurs between the first resonator 101 and the second resonator 102, and secures insulation between the transmitting side and the receiving side. , Power and signals can be transmitted and received.
  • the transmission signal transmitted from the transmission circuit 201 is received by the second resonator 102 via the first resonator 101.
  • the first resonator 101 transmits the transmission signal transmitted by the transmission circuit 201 to the second resonator 102 in a non-contact manner.
  • the second resonator 102 transmits the transmission signal non-contact transmitted by the first resonator 101 to the receiving circuit 202.
  • the receiving circuit 202 includes a rectifier circuit, and the rectifier circuit rectifies (demodulates) the transmission signal received by the second resonator 102. That is, the receiving circuit 202 receives the transmission signal transmitted by the second resonator 102 and demodulates the received transmission signal to generate an output signal corresponding to the input signal.
  • the receiving circuit 202 is realized by, for example, a semiconductor chip.
  • the signal demodulated in the receiving circuit 202 is transmitted to, for example, the gate electrode 3 of the power device, and the power device can be driven while ensuring insulation according to the input of the signal source 1.
  • an insulated gate driver such as a photocoupler
  • another power system for example, an insulated DCDC converter
  • an insulated DCDC converter must be used on the secondary side to supply the power required to drive the gate of the power device.
  • the electromagnetic field resonance coupling portion 100 of the present embodiment includes a first resonator 101 and a second resonator 102, which are two independent couplers.
  • 2A to 2D show an example of the electromagnetic field resonance coupling portion 100 including the first and second resonators.
  • FIG. 2A is a bird's-eye view of the electromagnetic field resonance coupling portion 100 including the two resonators 101 and 102.
  • the x direction is the horizontal direction and the z direction is the vertical direction.
  • the distance g1 is the distance between the dielectric multilayer film 65 and the dielectric multilayer film 66, and more accurately, the distance between the capacitive coupling element 20 and the capacitive coupling element 21.
  • the capacitive coupling element 20 and the capacitive coupling element 21 are a first electrode and a second electrode constituting one capacitive element.
  • a scale bar showing an example of the size is also shown. In this example, the distance g1 is 0.4 mm.
  • the two resonators 101 and 102 have a substantially symmetrical structure and have a structure facing each other in the lateral direction.
  • Each resonator is formed by two or more elements, that is, inductively coupled elements 10 and 11, and capacitively coupled elements 20 and 21, each of which is arranged on a different surface.
  • the resonator of the present embodiment has an inductively coupled element 10 formed on its main surface, and capacitive coupling elements 20 and 21 formed on its side surface (the coupling interface between the primary side and the secondary side mainly responsible for coupling). ..
  • the capacitive coupling elements 20 and 21 in the figure are two planar electrodes provided so as to face each other that constitute the capacitive element.
  • Each resonator consists of, for example, a dielectric multilayer film (60, 61, 70, 71).
  • a dielectric multilayer film 60, 61, 70, 71.
  • ground layers 30 and 31 made of metal are formed on the bottom surface of the dielectric layer of each resonator.
  • FIG. 2B is a cross-sectional view of an electromagnetic field resonance coupling portion 100 composed of two resonators.
  • the resonator of the present embodiment has a structure in which an inductively coupled element 10 formed on the surface and a capacitive coupling element 20 formed on the side surface are arranged in series from the input terminal 40 for a signal.
  • the inductively coupled element 10 and the capacitive coupling element 20 can be electrically connected by the through via 80 and the wiring layer 90 in the drawing.
  • the L and C values of such an inductively coupled element and a capacitively coupled element By appropriately selecting the L and C values of such an inductively coupled element and a capacitively coupled element, a resonance phenomenon can be generated, and high efficiency can be realized even with a coupled element having an insulation distance of 0.4 mm or more.
  • the insulation distance corresponds to the distance g1 between the capacitive coupling element 20 and the capacitive coupling element 21.
  • FIG. 2C and 2D are schematic views of the resonator structure on one side only.
  • FIG. 2C is a view seen from above
  • FIG. 2D is a view seen from below.
  • the ground layer 30 formed on the bottom surface of the dielectric layer is formed at a certain distance from the side surface on which the capacitive coupling element 20 is formed.
  • the electromagnetic field resonance coupling portion 100 and the resonators 101 and 102 of the present embodiment have the following features.
  • the two resonators are completely electrically isolated, and the two structures are approximately symmetrical.
  • the electromagnetic field resonance coupling of the present embodiment is characterized in that it is mainly coupled in the lateral direction.
  • the resonator is composed of an inductively coupled element and a capacitively coupled element, and the inductively coupled element and the capacitively coupled element are formed on different surfaces of the dielectric layer of the resonator. That is, it is characterized in that an inductively coupled element is formed on the main surface of each resonator and a capacitive coupling element is formed on the side surface (the surface where the primary and secondary are coupled).
  • the resonator in the present embodiment is characterized in that the inductively coupled element and the capacitively coupled element are not formed on the same element surface, but are formed on different surfaces (surface and side surface).
  • the structure of this embodiment can partially achieve its effect even if an inductively coupled element is formed on the side surface.
  • a complex electrode pattern such as a coil or transformer on the surface, but it is difficult to form it on the side surface. is there.
  • the resonator in the present embodiment forms a capacitive coupling component on the side forming the coupling.
  • the electromagnetic field resonance coupling portion of the present embodiment can be manufactured at low cost by using a multilayer dielectric film structure such as a printed circuit board, but it can also be realized by forming a metal pattern on the surface of a ceramic substrate such as a sapphire substrate.
  • FIG. 3A and 3B are a bird's-eye view and a side perspective view of a schematic view of the package structure 2000 in the present embodiment based on the system configuration shown in FIG.
  • the first resonator 101 and the second resonator 102 are connected to the transmission circuit 201 and the reception circuit 202 mounted on the lead frames (120, 130) on the primary side and the secondary side, respectively, by wires. Has been done.
  • the primary side and the secondary side are completely electrically separated by the insulation distances of the first and second resonators, and only the package sealing resin 110 exists between them.
  • FIG. 4A and 4B show a schematic view of the package structure 900 of a general insulated transmission device.
  • FIG. 4A is a bird's-eye view showing the entire package structure
  • FIG. 4B shows a detailed cross-sectional view of the electromagnetic field resonance coupler 900a.
  • the electromagnetic field resonance coupler 900a of a general insulated transmission device is an integrated type, and is not separated like the first and second resonators as shown in FIGS. 3A and 3B of the present embodiment. Insulation is ensured in a part of the layer thickness of the multilayer dielectric film inside the integrated structure.
  • an integrated electromagnetic field resonance coupler is formed by a laminated structure of three dielectric layers 975, 976, and 977, and the resonator is formed by metal wiring on the surface of the formed dielectric layer. Can be formed.
  • the resonator structures facing each other via the dielectric layer 976 are formed in the region surrounded by the dotted line. That is, the lower side is the primary resonator and the upper side is the secondary resonator, and electrical insulation is maintained in the intermediate layer.
  • the coupling is in the vertical direction, and it becomes an integrated resonance coupler.
  • the integrated electromagnetic field resonance coupler 900a is mounted on the primary frame 920a and electrically connected to the secondary frame 930a by wire bonding.
  • the insulating layer exists inside the electromagnetic field resonance coupler 900a, it cannot be completely separated by the package sealing resin 910 as in the present embodiment.
  • the primary and secondary are structurally connected by a wire.
  • the conventional structure using such an integrated electromagnetic field resonance coupler is easy to manufacture, but as described above, a gap is generated at the interface between the integrated electromagnetic field resonance coupler 900a and the package sealing resin 910. However, since the risk of dielectric breakdown increases, there is a problem in the reliability of dielectric strength.
  • Patent Document 2 discloses a package structure using two resonators coupled in the vertical direction, unlike the present embodiment.
  • Patent Document 2 is considered to have the same effect as that of the present embodiment, but since the bonding direction is the vertical direction, the package encapsulating resin is compared with FIG. The flow becomes complicated, and unfilled parts of the resin are likely to occur.
  • both the first resonator and the second resonator are mounted at the same height, but Patent Document 2 has different heights, and the lead frame shape and mounting method are complicated.
  • Patent Document 3 discloses a lateral coupling using a transformer. In this case, inductive coupling is realized by using a flexible substrate. As already described, when trying to realize lateral coupling, how to couple the couplers is an issue, and the method of Patent Document 3 has a high degree of difficulty in package assembly, such as using a flexible substrate. ..
  • the coupling uses a signal in the MHz band, the coil shape becomes large and it is difficult to reduce the size.
  • Patent Document 1 discloses that high-efficiency transmission is possible even at an insulation distance of 0.4 mm or more by an electromagnetic field resonance coupling method using a high-frequency signal in the GHz band.
  • Patent Document 1 has a problem in terms of the reliability of insulation described above with respect to the lateral coupling by one coupler.
  • the main resonance portion and the sub-resonance portion are composed of a meander pattern and a capacitive coupling element formed on the same surface on which the meander pattern is formed, so that the resonator is large. There is a problem.
  • it is possible to form a lateral coupling with a meander pattern there is a problem that it is highly difficult to form a zigzag electrode pattern on the side surface.
  • miniaturization is realized by using a high-frequency signal, and inductively coupled elements and capacitively coupled elements are formed on different surfaces of the resonator, that is, the main surface and the side surface, respectively, so that the height is high even in the lateral direction. Achieve efficient electromagnetic resonance coupling.
  • the resonators 101 and 102 shown in this embodiment are composed of one layer or a plurality of dielectric films.
  • Such a structure can be formed by using a glass epoxy board (printed circuit board, PCB) or a ceramic substrate.
  • the first and second resonators are structurally symmetrical, the first resonator 101 will be mainly described.
  • An input terminal 40, a transmission side ground terminal 50, and an inductively coupled element 10 are formed on the surface of the dielectric film of the resonator to be connected to the transmission circuit.
  • a capacitive coupling element 20 is formed on the side surface (bonding surface side) of the dielectric film.
  • the inductive coupling element 10 and the capacitive coupling element 20 are electrically connected by a through via 80 and a wiring layer 90.
  • a ground layer 30 is formed on the back surface of the resonator 101.
  • the ground layer 30 has the same potential as the transmission side ground terminal 50. Therefore, in the dielectric film, the ground terminal 50 and the ground layer 30 may be electrically connected by a through via.
  • the inductively coupled element 10 formed on the surface of the dielectric film can be easily formed on the surface of a printed circuit board or a ceramic substrate.
  • the inductive coupling element 10 preferably has a planar coil shape. By having such a coil shape, it is possible to strengthen the magnetic coupling with the inductive coupling element 11 on the main surface of the second resonator 102 formed on the same plane, and realize highly efficient insulated transmission.
  • the inductively coupled elements 10 and 11 may have a shape other than the circular planar coil as shown in FIGS. 2A to 2D.
  • a rectangular planar coil shape may be used, or an element having an inductive component may be used, and if a resonance state can be realized with the capacitive coupling elements 20 and 21, it is appropriately selected. Can be done.
  • the inductively coupled element includes not only an inductively coupled component but also a capacitively coupled component, and its influence is the shape of the element, the layer thickness of the dielectric film, the relative permittivity, etc. Affected by.
  • the inductive coupling element manufactured on the main surface may have a meander pattern shape as shown in FIG. 5C, or a part thereof. May include a capacitor shape such as a capacitive component.
  • a metal pattern corresponding to the area can be formed on the side surface by using side wiring technology or the like. it can.
  • the capacitive coupling elements 20 and 21 can be formed by controlling the film thickness and the length in the depth direction of the metal film.
  • 6A and 6B are bird's-eye views and cross-sectional views showing a first modification of the resonator 101.
  • FIG. 2B shows an example of forming on the side surface of the dielectric film of the resonator 101, but as shown in FIGS. 6A and 6B, a capacitive coupling element is formed by partially forming metal layers having different thicknesses in the vertical direction. Can be easily formed.
  • the metal film can be thickened to the order of mm, and the capacitive coupling element formation on the side surface in the present embodiment can be easily realized.
  • the side capacitance coupling elements 20 and 21 can be formed by using a plurality of plated through vias.
  • the cross-sectional area of vias and their number, and the land and its layer thickness can be converted into the area of capacity.
  • FIG. 6C is a bird's-eye view showing a second modification of the resonator of the first embodiment.
  • FIG. 6C shows an example of a side capacitance coupling element in which a penetrating via and a land layer are combined.
  • FIG. 6D is a bird's-eye view showing a third modification of the resonator of the first embodiment.
  • FIG. 6D is an example of a side capacitance coupling element in the case of performing a slotted hole processing that can be realized by continuously connecting through vias.
  • Capacitive coupling elements can be easily manufactured by connecting these penetrating vias.
  • the area of the capacitive coupling element in this case is about 2.4 mm ⁇ 0.84 mm.
  • the capacitive coupling elements 20 and 21 in this embodiment are the locations where the largest withstand voltage is applied, it is desirable that the opposing surfaces of the capacitive coupling elements are flat.
  • the land layer is larger in the lateral direction than the surface of the elongated hole structure made of through vias, electric field concentration occurs on the circumference of the land as it is, and there is a concern that the withstand voltage may decrease.
  • FIG. 6D is a structure in which the land structure is removed.
  • the land structure can be physically removed after the printed circuit board is manufactured.
  • the inside of the long holes of the capacitive coupling elements 20 and 21 formed by the long hole processing can be easily manufactured by plating the side surfaces of the holes with metal after forming the through vias. Therefore, the inside of the capacitive coupling elements 20 and 21 with the elongated holes may be hollow as shown in FIG. 6D. Further, the insides of the capacitive coupling elements 20 and 21 may be resin-filled with a dielectric material of the same quality, or a metal may be embedded.
  • the coupling portion is an inductive coupling or a structure using an antenna, it has not a little capacitive coupling component.
  • the coupling capacitance component between the primary and secondary has a finite value even when the resonator is configured only by the inductive coupling element on the main surface.
  • the capacitive coupling in order to make the coupling capacitance component (Cio) in the lateral direction as large as possible, the capacitive coupling having a thickness more than twice that of the metal layer forming the inductive coupling element on the main surface in the longitudinal direction.
  • the elements 20 and 21 are characterized in that they are formed on the side surface of the resonator.
  • the metal layer thickness of the inductively coupled element on the main surface is 18 um, but the length in the vertical direction of the capacitive coupling element formed on the side surface is the elongated hole machining shown in FIG. 6D. If so, the thickness of the dielectric layer is, for example, 0.84 mm.
  • the inductively coupled element is formed on the main surface of the resonator and the capacitive coupling component is formed on the side surface thereof, thereby realizing miniaturization and high efficiency transmission.
  • the structures of the resonators 101 and 102 of the present embodiment may have the ground layers 30 and 31 shown in FIGS. 2A to 2D.
  • ground layers 30 and 31 do not have to be formed on the entire back surface of the resonator. This is because, as described above, in the vicinity of the primary-secondary coupling portion, it can also be coupled to the capacitive coupling elements 20 and 21 and the opposing ground layer on the secondary side.
  • the above problem can be solved by retracting the ground layer from the coupling region as shown in FIG. 2D to form a region without the ground layer on a part of the back surface of the resonator.
  • d1 + g1 + d1 which is the distance between the first ground layer (30) and the second ground layer (31)
  • d1 + g1 + d1 which is the distance between the first ground layer (30) and the second ground layer (31)
  • the distance to the electrode (21) is larger than g1.
  • the resonators 101 and 102 are mounted on the primary lead frame 120 and the secondary lead frame 130 as shown in the package structures of FIGS. 3A and 3B. Since the two lead frames are usually formed of a copper plate, when the resonators 101 and 102 are mounted, the ground layers 30 and 31 described above have the same potential as the two lead frames, so that these lead frames themselves are 1 It is conceivable that the capacitance coupling element 20 on the secondary side, the capacitance coupling element 21 on the secondary side, and the ground layers 30 and 31 are coupled.
  • a dielectric layer 70a is formed in the resonator to secure a distance between the ground layer 30 and the primary lead frame 120. can do.
  • the influence of the ground layer 30 and the primary lead frame 120 on the electromagnetic field resonance can be controlled independently.
  • the ground layer can also be formed on the upper part of the inductively coupled element 10.
  • 8A and 8B show an example of the resonator structure 101b. That is, one dielectric layer 60a may be added, formed on the surface of the inductively coupled element 10, and the ground layer 30a may be formed on the surface thereof. In this case, the input terminal 40a and the ground terminal 50a may be newly formed via the through vias 80a, b, and c.
  • ground layer 30a may be formed so as to have an equipotential potential with the ground terminals 50 and 50a.
  • ground layer on the bottom surface of the dielectric layer 70 is not used in FIGS. 8A and 8B, the structure may be used.
  • ground layer 30a on the upper part of such an inductively coupled element 10, it is expected to have an effect of suppressing the influence of electromagnetic field noise from the outside and the electromagnetic field radiation to the outside of the electromagnetic field resonator of the present embodiment.
  • 9A to 9C are S-parameters (S11, S22) of the electromagnetic field resonance coupling portion of the present embodiment, and actual measurement values of the transmission amount and the reflection amount.
  • FIG. 9D the design parameters of the resonator 101 are shown in FIG. 9D. Since the model structures of FIGS. 9A to 9C are based on the resonators 101 and 102 shown in FIGS. 2A to 2D and have a symmetrical structure, the parameters of the resonator 102 are the same as those of 101.
  • FIG. 9A shows a Smith chart
  • the reflection amount is -26 dB (Fig. 9B) and the transmission amount is -0.6 dB (Fig. 9C).
  • the operating bandwidth was defined in the range where the transmission amount was -10 dB or less, and was in the range of 1.7 to 3.7 GHz, that is, about 2.0 GHz.
  • Such a wide operating bandwidth is preferable in designing an insulated transmission device. This is because high-efficiency transmission is possible even if the oscillation frequency of the transmitter deviates slightly.
  • Such a wide band can be achieved by designing the electromagnetic resonance coupling so as to have two resonance frequencies as is clear from FIG. 9B, and the parameters in FIG. 9D including the inductive coupling element and the capacitive coupling element. It can be realized by adjusting.
  • 10A and 10B are diagrams showing the results of simulating the state of electromagnetic field resonance coupling (vector distribution) of the present embodiment by dividing it into an electric field and a magnetic field from the side surfaces of the first and second resonators.
  • FIGS. 10A and 10B shows the distribution of electric and magnetic fields in a certain phase with a plurality of arrows. It can be confirmed that the electric field components are strongly coupled in the capacitive coupling elements 20 and 21 facing the side surfaces of the resonators (FIG. 10A).
  • the coupling between the inductively coupled elements 10 and 11 is not as strong as that of the capacitive coupling element, but a lateral coupling is observed (FIG. 10B), and the coupling is high due to the two electromagnetic resonance couplings of the inductive coupling and the capacitive coupling. It can be seen that efficient insulated transmission is realized.
  • the insulation distance is determined by the electromagnetic resonance coupling between the inductive coupling element formed on the main surface of the resonator and the capacitive coupling element formed on the side surface thereof. High-efficiency transmission can be realized while maintaining 0.4 mm or more.
  • the dielectric layers 60, 60a, 70 of FIGS. 8A and 8B and a part or all of the package sealing resin 110 are made of a material having a function of promoting the magnetic field coupling of FIG. 10B. May be good. That is, it may be a layer containing a part or all of the magnetic material.
  • the magnetic material is, for example, a material such as ferrite, cobalt, or manganese.
  • These magnetic materials can be easily used as materials for printed circuit boards and have the effect of promoting inductive coupling (magnetic field coupling) in FIG. 10B.
  • 11A to 11C are equivalent circuit diagrams according to this embodiment. 11A to 11C show only the region of the electromagnetic field resonance coupling portion 100.
  • the self-inducing components 10a and 11a also have a mutual-inducing component.
  • the resonance frequencies of the self-inducing components 10a and 11a and the capacitance components 12 and 13 in the first and second resonator structures match, respectively, and the coupling capacitance component 22 (Cio) and the mutual induction component are matched. It is confirmed that the transmission by the highly efficient electromagnetic resonance coupling shown in FIGS. 9A to 9C can be realized.
  • the structure of the present embodiment is more than inductive coupling because the capacitive coupling elements 20 and 21 are formed on the surfaces where the first and second resonators 101 and 102 are closest to each other. It can be said that capacitive coupling plays a leading role.
  • the equivalent circuit of such an insulated transmission circuit in which capacitive coupling is the main component is a capacitive coupling 23 (Cret) as shown in FIG. 11B rather than FIG. 11A, which is a capacitive coupling path different from the coupling capacitive component 22 (Cio). Assuming a sub-resonance path is more accurate as an equivalent circuit. Cret is an abbreviation for Creturn.
  • GND1 (30b) and GND2 (31b), which are the grounds of each other's circuits, are electrically connected. Not connected to.
  • the capacitive coupling 23 (Cret) is composed of a capacitive component mainly formed between the first and second lead frames.
  • the assumed capacitive coupling 23 (Cret) value is about 0.1 to 1.0 pF.
  • the capacitance is about 0.5 pF.
  • the total capacitance between the first and second resonators including the lead frame can be estimated to be approximately (coupling capacitance component 22 (Cio) + capacitive coupling 23 (Cret)), and the value is, for example, 1 pF or less. Can be designed.
  • noise current C total coupling capacitance ⁇ dV / dt.
  • the coupling capacitance component 22 (Cio) and the capacitive coupling 23 (Cret), which have a large area, are as small as possible.
  • the coupling capacitance component 22 (Cio) but also the capacitive coupling 23 (Cret) is optimally designed, so that both noise resistance and high-efficiency transmission can be achieved at the same time.
  • FIG. 11C is an equivalent circuit in which the inductance L of FIG. 11B is replaced with a transmission line (10b, 11b). Even if the electromagnetic field resonance coupling circuit of the present embodiment is given its characteristic impedance as a transmission line, characteristics such as efficiency can be evaluated as an equivalent circuit.
  • the electromagnetic field resonance coupling portion 100 of the present embodiment is completely separated, and has a structure in which two resonators 101 and 102 are coupled in the lateral direction.
  • Capacitive coupling 23 (Modification 1 related to Cret design)
  • the primary and secondary lead frame end faces 120b and 130b facing each other at an insulation distance of 0.4 mm are designed as capacitive coupling 23 (Cret).
  • the thickness and width of the lead frame become large, which imposes design restrictions.
  • the capacitive coupling 23 (Cret) is formed in the first and second resonators, and the coupling capacitive component 22 (Cio) is increased.
  • 12A and 12B are schematic structural diagrams showing only the primary side (101c) of the paired resonators. Since the resonator on the secondary side has a symmetrical structure, the description thereof will be omitted.
  • the dielectric layer 70b is further added to form the capacitive component 23a on the side surface to be the primary-secondary coupling surface, whereby the capacitive coupling 23 (Cret) is formed in the resonator. Can be formed.
  • the capacitance component 23a is also referred to as a return electrode. This return electrode forms a capacitive coupling 23 (Cret) together with the return electrode of the opposing resonator 102a.
  • At least one of the height (that is, the thickness) and the width of the opposite lead frame end faces (120c, 130c) is increased or decreased to increase or decrease the area of the lead frame end faces, and the capacitance coupling is performed.
  • the value of 23 (Cret) can be determined.
  • FIG. 14 is an example of another package structure 2000b of the capacitive coupling 23 (Cret) using a lead frame.
  • (A), (b) and (c) of the figure show a perspective view, a side view and an enlarged view of a part of the side surface.
  • the second modification since the thickness of only a part of the lead frame is changed, the shape of the lead frame becomes complicated, and there is a concern that the manufacturing cost increases.
  • FIG. 14 proposes a method capable of easily designing the capacitance value of the capacitive coupling 23 (Cret) without deforming the lead frame.
  • the metal shield plate 4 is installed in the package so as to straddle the primary lead frame 120 and the secondary lead frame 130.
  • the metal shield plate 4 is electrically insulated from the primary lead frame 120 and the secondary lead frame 130 and has an intermediate potential.
  • the distance between the metal shield plate 4 and each lead frame can be set arbitrarily, and can be 0.4 mm or more. Further, the capacitive coupling 23 (Cret) can be controlled by changing the overlapping area in the vertical direction with each lead frame.
  • the capacitive coupling 23 (Cret) has a value of C0 / 2.
  • Modification 3 has merits that the capacitive coupling 23 (Cret) can be easily increased only by controlling the overlapping area, and the design of the resonator and the lead frame itself does not need to be changed.
  • the capacitive coupling 23 can be formed including the capacitance formed on the end face of the lead frame, and the coupling capacitance can be easily increased by design.
  • the metal shield plate 4 may be a two-layer substrate formed on the surface of the dielectric layer. By doing so, it can be easily handled even when it is implemented in a package.
  • the insulated transmission device has a first dielectric multilayer film 65 composed of a plurality of dielectric layers and a second dielectric multilayer film 66 composed of a plurality of dielectric layers.
  • the resonator 101 and the second resonator 102 are electrically isolated from a DC current, and a predetermined frequency band is provided between the first resonator 101 and the second resonator 102.
  • the first resonator 101 has an inductive coupling element 10 as a first inducing element and a capacitive coupling element 20 as a first electrode constituting the capacitive element.
  • the resonator 102 of 2 has an inductive coupling element 11 as a second inducing element and a capacitive coupling element 21 as a second electrode constituting the capacitive element.
  • the first induction element is provided on the surface of one dielectric layer of the first dielectric multilayer film 65, and the first electrode is provided on the side surface of the first dielectric multilayer film 65.
  • the second induction element is provided on the surface of one of the dielectric layers of the second dielectric multilayer film 66, and the second electrode is provided on the side surface of the second dielectric multilayer film 66. May be good.
  • first electrode and the second electrode may be provided so as to face each other.
  • the distance between the first electrode and the second electrode may be 0.4 mm or more.
  • the insulated transmission device has a first ground layer 30 provided on the first dielectric multilayer film 65 and a second ground layer 31 provided on the second dielectric multilayer film 66.
  • the first ground layer 30 is provided on the surface of one of the first dielectric multilayer films 65
  • the second ground layer 31 is 66 of the second dielectric multilayer films. It may be provided on the surface of one dielectric layer.
  • first ground layer 30 and the second ground layer 31 may be provided between the one dielectric layer 70 and the other dielectric layer 70a.
  • the influence of the lead frame and the first and second ground layers on the electromagnetic field resonance can be controlled independently.
  • first inducing element and the second inducing element may be provided between one dielectric layer and the other dielectric layer.
  • the first inductive element and the second inductive element may have a flat coil-shaped conductor pattern.
  • the first and second induction elements can be easily formed in a planar shape.
  • first guiding element and the second guiding element may be a conductor pattern having a meander pattern shape.
  • the first and second induction elements can be easily formed in a planar shape.
  • a capacitive coupling 23 may be provided in which the first dielectric multilayer film 65 and the second dielectric multilayer film 66 are capacitively coupled to form a return path of an electromagnetic wave.
  • the capacitive circuit element can provide a sub-resonance path as a return path of the transmitted electromagnetic wave.
  • (capacitive coupling 23 (Cret) is formed on the side surface of the first planar return electrode 23a formed on the side surface of the first dielectric multilayer film 65 and the side surface of the second dielectric multilayer film 66.
  • a second return electrode having a planar shape may be provided, and the first return electrode 23a and the second return electrode may be provided so as to face each other.
  • the return path design of the transmitted electromagnetic wave can be facilitated by the design of the first and second return path electrodes.
  • a first lead frame 120 on which the first dielectric multilayer film 65 is placed and a second lead frame 130 on which the second dielectric multilayer film 66 is placed are provided, and the capacitive coupling 23 ( Cret) is composed of an end face of the first lead frame 120 and an end face of the second lead frame 130, and the end face of the first lead frame 120 and the end face of the second lead frame 130 face each other. May be provided.
  • the area design of the end faces of the first and second lead frames makes it possible to facilitate the return path design of the transmitted electromagnetic wave.
  • the area of the end face 120c of the first lead frame 120 is larger than the area of one cross section parallel to the end face 120c of the first lead frame 120, and the area of the end face 130c of the second lead frame 130 is the second. It may be larger than the area of one cross section parallel to the end face 130c in the lead frame 130 of 2.
  • the return path design of the transmitted electromagnetic wave can be facilitated by designing the height (that is, the thickness) of the end faces of the first and second lead frames.
  • the capacitive coupling 23 is a metal shield plate 4 parallel to the surfaces of the first dielectric multilayer film 65 and the second dielectric multilayer film 66, and is the first dielectric in a plan view.
  • a metal shield plate that overlaps a part or all of the multilayer film 65 and also overlaps a part or all of the second dielectric multilayer film 66 may be included.
  • the return path design of the transmitted electromagnetic wave can be facilitated by the arrangement design of the metal shield plate.
  • the permittivity between the first electrode and the second electrode provided so as to face each other is the permittivity of the first dielectric multilayer film 65 and the permittivity of the second dielectric multilayer film 66. It may be different from at least one of.
  • the capacitance value of the capacitive element can be controlled according to the dielectric constant between the first electrode and the second electrode.
  • the distance between the first ground layer 30 and the second ground layer 31 may be larger than the distance between the first electrode and the second electrode.
  • the capacitance value of the above-mentioned capacitive element may be 1 pF or less.
  • One of the applications of the insulated transmission device of the present disclosure is an insulated gate driver for driving a power device.
  • the insulated gate driver may be required not only for signal input but also for power transmission for driving the power device and a signal feedback path (hereinafter, fault signal path) for monitoring the state of the power device. ..
  • FIG. 15 shows only the electromagnetic field resonance coupling portion of the package structure using two pairs of the first and second resonators described in the first embodiment.
  • a small inductive coupling element and a capacitive coupling element can be realized by using a high frequency signal, and a plurality of resonator pairs can be mounted inside the insulated gate driver IC.
  • one resonator pair can be used for the isolated power transmission / reception path, and the other resonator pair can be used for the isolated signal transmission / reception path.
  • each resonator (4) has a separate structure. In this case, there is a demerit that the number of times of die bonding increases, but there is a merit that the resin flow is promoted at the time of resin sealing of the package, and problems such as unfilling are less likely to occur.
  • FIG. 16 is an example in which three resonator pairs 101e and 102e are mounted. In this case, three first and second resonators on the transmitting side and the receiving side are integrated.
  • one resonator pair can be used for the isolated power transmission / reception path
  • the second resonator pair can be used for the isolated signal transmission / reception path
  • the third resonator pair can be used for the fault signal path.
  • the number of die bondings can be reduced (cost reduction by reducing the man-hours), and the risk of misalignment between the primary resonator and the secondary resonator can be suppressed.
  • 17A to 17C are examples in which three resonator pairs 101f and 102f are used as in FIG. 16, and the resonator structure is changed according to the path.
  • the requirements for the power level and efficiency to be transmitted differ between the power transmission path and the signal path.
  • the power transmission path makes the efficiency as high as possible and transmits high power, but since the signal path sends a small amount of power in the first place, even if the efficiency is a little poor, it may not be a big problem.
  • the signal path crosstalk from other paths causes malfunction, so there is a demand to eliminate the influence from other paths as much as possible.
  • FIG. 17A For such applications, the configuration shown in FIG. 17A is desirable. That is, a resonator pair using a planar coil that promotes magnetic coupling on the dielectric surface may be used for the power system, and a resonator pair using a meander pattern on the dielectric surface may be used for other paths.
  • the capacitive coupling element on the side surface of the dielectric layer is designed according to each resonator.
  • planar coil resonator that transmits high power is suitable for high-efficiency transmission, there is concern about interference with other patterns.
  • the influence of the magnetic field of the power system is reduced by using a structure using a meander pattern with a small magnetic coupling component in the signal path and the fault signal path. Crosstalk can be suppressed.
  • crosstalk countermeasures can be flexibly taken by changing the structure and arrangement of the inductively coupled elements on the main surface for each route.
  • FIG. 17B shows the winding direction of the flat coil of a part of the path.
  • the middle pair of the three pairs has the plane coil winding direction opposite.
  • the winding direction of the planar coil of each pair is opposite to the winding direction of the other adjacent pairs.
  • FIG. 17C shows an example of a two-path structure. As shown in this figure, the inductively coupled elements of some paths and the ground plane may be turned upside down. Such a structure is possible because the inductively coupled element and the capacitive element are formed on the main surface and the side surface, respectively, as in the present embodiment.
  • the arrangement of the inductive coupling element on the main surface and its ground surface can be changed without changing the arrangement of the capacitive coupling element at all.
  • FIGS. 18A and 18B are the evaluation results of crosstalk when such an arrangement is taken.
  • 18A and 18B are the results of evaluating the crosstalk of two paths, respectively.
  • FIG. 18A shows the case where the inductively coupled elements are arranged on the same surface
  • FIG. 18B shows the result when the inductively coupled elements and the ground surface are arranged oppositely in the first path and the second path (FIG. 17C). ..
  • the inductive coupling element and the capacitive coupling element are arranged on the main surface and the side surface of the structure of the present embodiment, there is an advantage that the arrangement of the inductive coupling element can be controlled independently.
  • the capacitive coupling 23 may be formed independently in each path or may be one.
  • Fig. 11D shows the equivalent circuit of the electromagnetic field resonance coupling part consisting of three paths. As described above, even if there is only one capacitive coupling 23 (Cret), it functions on the circuit, so that miniaturization can be realized.
  • the insulated transmission device includes a plurality of first resonators 101 and a plurality of second resonators 102.
  • the plurality of first resonators may include a first inductive coupling element 10 having a different shape
  • the plurality of second resonators may include a second inductive coupling element 11 having a different shape. ..
  • FIG. 3A, 3B, 13A, 13B and 14 show examples of package structures 2000, 2000a and 2000b using the electromagnetic field resonator according to the present disclosure, but in the third embodiment, other package structures 2000c are shown. An example of is described.
  • FIG. 19 is a diagram showing an example of a package structure of the insulated transmission device 1000 according to the third embodiment.
  • (A), (b), (c), and (d) of the figure show a bird's-eye view, a top view, a side view, and a bottom view, respectively, and all of them are perspective views.
  • the chip of the transmitting circuit 201 and the first resonator 101a are mounted on the same surface of the lead frame, and the chip of the receiving circuit 202 and the second resonator 102a are mounted on the same surface of the lead frame.
  • each chip and each resonator are mounted on opposite surfaces of the lead frame.
  • the wires of the transmission circuit 201 and the reception circuit 202 of FIG. 19 are connected to the back surfaces of the first and second resonators 101a and 102a.
  • the input terminals and ground terminals formed on the back surface of each resonator are the input terminals 40, output terminals 41 and ground terminals 50, 51 of FIGS. 2A to 2D, and the wiring (via or metal wiring) in the resonator. Can be easily designed using.
  • the transmission circuit 201 is mounted on the lower surface of the lead frame, the metal surface of the lead frame and the ground surface of the resonator act as a shield for the transmitter, so that resistance to external noise and resonance The effect of suppressing noise emission (EMI) from the vessel can be expected.
  • EMI noise emission
  • the resonator side may be the lower surface and the chip side may be the upper surface. In this case, it can be easily dealt with by changing the design so that the lead is bent to the opposite side.
  • the capacitive coupling 23 (Cret) is formed of the metal shield plates 4a and 4b having the intermediate potential of FIG. In this case, a plurality of metal plates are used to design the capacitance value of the capacitive coupling 23 (Cret).
  • the shape of the capacitive coupling 23 is not limited to the examples of FIGS. 14 and 19, and the structures of FIGS. 3A, 3B, 12A, 12B, 13A and 13B shown above may be used.
  • the first and second resonators used in FIG. 19 may be the resonators 101 and 102 shown in FIG. 2A.
  • the distance between the first lead frame and the second lead frame is intentionally made larger than the distance between the first and second resonators. That is, the entire resonator is not mounted on the lead frame, but a part of the resonator is in contact with the lead frame surface.
  • the dielectric layer 70a of FIG. 7 becomes unnecessary, and a simpler structure can be used.
  • one problem of the electromagnetic field resonance coupling coupled in the lateral direction of the present disclosure is the misalignment at the time of mounting. Since the first resonator and the second resonator are completely separated, the capacitance coupling elements on the side surfaces do not completely face each other, and if the displacement occurs, the efficiency deteriorates.
  • the area of the capacitive coupling element in one resonator may be larger than that of the other.
  • the structure of the resonator in the present disclosure does not have to be completely symmetrical, and the electrode area on one side of the capacitive coupling element may be increased, for example, in order to cope with the mounting misalignment.
  • the present disclosure is characterized in that it consists of two completely separated resonators, and electrodes of an inductively coupled element and a capacitively coupled element are formed on the main surface and the side surface of the resonator, respectively.
  • the main purpose is to promote miniaturization
  • the main purpose is to use a high frequency signal (GHz), but it is on the order of MHz used in a general inductive coupling method or capacitive coupling method.
  • GHz high frequency signal
  • the two elements on different surfaces of the resonator, the effects of miniaturization, increase in insulation distance, and improvement in efficiency can be obtained.
  • one of the surfaces of the first electrode and the second electrode facing each other is larger than the other.
  • the capacitance value is lowered when the mounting position is deviated. It is possible to suppress the deterioration of the characteristics of.
  • the resonator according to the present embodiment has an integrated resonator structure and is further miniaturized, unlike the resonators shown in the first to third embodiments.
  • FIG. 20A is a perspective view showing a structural example of the electromagnetic field resonance coupling portion 100b in the present embodiment.
  • FIG. 20B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of FIG. 20A.
  • the first and second resonators are integrated.
  • the inductively coupled element and the capacitive coupling element formed by the metal wiring in this structure are equivalent to the structures shown in FIGS. 2A to 2D.
  • This structure is formed by multilayer films made of different materials.
  • the difference from the above-described embodiment is that the resonator structures on the primary side and the secondary side coexist in the dielectric layer in the resonator.
  • the dielectric layers 60, 70, 61, and 71 of the first resonator 101 and the second resonator 102 are independent of each other, but the two resonances.
  • the vessels are in physical contact with the package encapsulating resin 110.
  • the dielectric layers 60 and 70 are separated mainly for the purpose of forming the through via 80 and the wiring layer 90, and the dielectric layers 60 and 70 are separated from each other.
  • the relative permittivity of 70 may be equal in design.
  • the dielectric layers 73 and 74 may use a low dielectric material in order to prevent the inductively coupled element from capacitively coupling with the lower ground layer.
  • the dielectric layer 74 has a region in which capacitive coupling mainly occurs in the lateral direction
  • a layer having a high dielectric constant for example, a material having a relative permittivity of 11 or more can be used in order to increase the capacitance.
  • each dielectric layer of the fourth embodiment may contain a magnetic material in part or all of it in order to control the magnetic coupling.
  • layers having different dielectric constants can be used for each dielectric layer, one-dimensional bonding can be realized in a layered manner (horizontal direction), and the package encapsulant region is used.
  • An electromagnetic field resonance coupling different from that of the first to third embodiments showing a "two-dimensional" coupling is realized.
  • “Two-dimensional” is an expression based on the distribution of materials having the same relative permittivity as shown in FIG. 2B, and the electromagnetic field resonance coupling portion of the first to third embodiments has a coupling capacitance component 22. Since the dielectric material that determines (Cio) is determined by the sealing material of the package, the relative permittivity is not fixed in layers.
  • the structure of the dielectric constant is completely different from the structure of the fourth embodiment.
  • the relative permittivity can be changed in layers as shown in FIG. 20B, but between the inductive coupling element and the ground surface which affects the Cg of the equivalent circuit shown in FIGS. 11A and 11B.
  • the relative permittivity of the dielectric layer 74 and the relative permittivity of the dielectric layer 74 between the electrodes of the capacitive coupling elements that determine the coupling capacitance component 22 (Cio) are the same value.
  • the configuration of the fourth embodiment is not appropriate.
  • the structure of the first to third embodiments is a feature of the present disclosure in that the relative permittivity that determines the coupling capacitance component 22 (Cio) can be controlled independently of the dielectric of the coupling element. It can be said that it is a clear difference from the form.
  • the resonator structure in this embodiment is an integrated structure, it is possible to realize a more compact miniaturization than the package structure described in the above embodiment by using the feature.
  • the input / output terminals can be formed on the surface of the dielectric layer 72 by using the via structure.
  • a package structure generally called a compression mold can also be obtained. It can be easily formed.
  • FIGS. 20A and 20B it is a package structure in which a transmission circuit and a reception circuit are mounted on the surfaces of FIGS. 20A and 20B, and the surface of the electromagnetic field resonance coupling portion 100b is molded together with the transmission circuit and the reception circuit with a sealing resin.
  • an electrode is formed on the bottom surface of the package, and the electrode on the bottom surface is soldered to the mounting substrate.
  • the insulated transmission device includes a dielectric substrate having a first dielectric multilayer film 65 and a second dielectric multilayer film 66 formed therein.
  • This disclosure is used for an isolated transmission device that insulates and transmits signals and electric power.
  • it is used as an alternative technology for photocouplers used in insulated gate drivers for driving power devices, semiconductor relays, and photoMOS relays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An electromagnetic resonance coupling unit (100) has a first dielectric multilayer film (65), a second dielectric multilayer film (66), a first resonator (101) of the first dielectric multilayer film (65), a second resonator (102) of the second dielectric multilayer film (66), wherein the first resonator (101) and the second resonator (102) transmit electromagnetic waves in a predetermined frequency band, the first resonator (101) has a first inductive element (10) and a first electrode (20) constituting a capacitive element, and the second resonator (102) has a second inductive element (11) and a second electrode (21) constituting the capacitive element.

Description

絶縁伝送装置Insulated transmission equipment
 本開示は、電磁界共鳴結合器を用いた絶縁伝送装置に関する。 The present disclosure relates to an insulated transmission device using an electromagnetic resonance coupler.
 様々な電子機器において、回路間で電気的な絶縁を確保しながら信号を伝送することが求められている。 In various electronic devices, it is required to transmit signals while ensuring electrical insulation between circuits.
 このようなアプリケーションの一例として挙げられるのが、数百Vから数kVオーダーの電圧をスイッチングするパワーデバイスのゲート駆動回路である。 An example of such an application is a gate drive circuit of a power device that switches a voltage on the order of several hundred volts to several kV.
 このようなシステムにおいてはゲート駆動回路で用いる数V系の1次側と、数百V以上の電力を扱う2次側を電気的に遮断し、1次側と2次側の絶縁を確保することはもちろん、2次側の大電力をスイッチングする時に発生する、ノイズの影響も遮断することが求められる。 In such a system, the primary side of the several V system used in the gate drive circuit and the secondary side that handles power of several hundred V or more are electrically cut off to secure the insulation between the primary side and the secondary side. Of course, it is also required to block the influence of noise generated when switching the large power on the secondary side.
 このように絶縁を確保したゲート駆動回路に用いられる素子を一般に絶縁ゲートドライバと呼び、本願の技術分野である絶縁信号・電力伝送装置の主な適用例である。 Elements used in gate drive circuits that ensure insulation in this way are generally called insulated gate drivers, and are the main application examples of insulated signal / power transmission devices, which is the technical field of the present application.
 絶縁ゲートドライバにはいくつかの方式が存在するが、もっとも一般的に用いられている方式はフォトカプラと呼ばれる、光を用いた絶縁伝送方式である。 There are several methods for insulated gate drivers, but the most commonly used method is an insulated transmission method using light called a photocoupler.
 フォトカプラは、光により電気的絶縁を容易に達成することができ、且つ、絶縁距離を比較的大きくすることができ、低コストであるため広く使われている。 Photocouplers are widely used because they can easily achieve electrical insulation by light, can relatively increase the insulation distance, and are low in cost.
 例えばフォトカプラ構造においては、LED送信機を実装した1次側フレームと、受光機が実装された2次側フレームが、パッケージの封止材料で絶縁されており、その距離を0.4mm以上に設計することが可能である。 For example, in the photocoupler structure, the primary side frame on which the LED transmitter is mounted and the secondary side frame on which the light receiver is mounted are insulated by the sealing material of the package, and the distance between them is 0.4 mm or more. It is possible to design.
 この絶縁距離を0.4mm以上に設計することは、強化絶縁の仕様に関する安全規格における要望であるが、絶縁ゲートドライバなどに用いられるICには適用が除外されている場合があり、絶縁を必要とするアプリケーションにおいて必ずしもこのように大きな絶縁距離を確保する必要があるとは言えない。 Designing this insulation distance to 0.4 mm or more is a requirement in safety standards for reinforced insulation specifications, but application may be excluded for ICs used in insulated gate drivers, etc., and insulation is required. It cannot always be said that it is necessary to secure such a large insulation distance in the application.
 しかし、昨今のパワーデバイスの高耐圧化や高速駆動化による耐ノイズ性強化のニーズや、更なる堅牢システム構築のニーズを考慮すると、絶縁ゲートドライバにおいても0.4mm以上の絶縁距離を確保することは重要である。 However, considering the needs for strengthening noise resistance by increasing the withstand voltage and high-speed drive of power devices and the needs for building a more robust system, it is necessary to secure an insulation distance of 0.4 mm or more even for an insulated gate driver. Is important.
 フォトカプラは絶縁距離を大きくできるという特徴がある一方で、経年劣化の問題や、信号のみの絶縁伝送が可能で電力の伝送が困難であるといった課題もある。 While photocouplers have the characteristic of being able to increase the insulation distance, they also have problems such as deterioration over time and the possibility of isolated transmission of signals only, making it difficult to transmit power.
 近年、このようなフォトカプラの代替技術としてMHzオーダーの信号を用いた誘導結合や容量結合方式を用いた新しい絶縁ゲートドライバも報告されている。 In recent years, new insulated gate drivers using inductive coupling using MHz-order signals and capacitive coupling methods have been reported as alternative technologies for such photocouplers.
 このような誘導結合や容量結合を用いた方式は、フォトカプラのような光素子の経年劣化の問題がなく、長寿命であり、また誘導結合方式においては、信号だけでなく電力も伝送できる一体型の絶縁伝送装置も報告されており、絶縁ゲートドライバの小型化を実現することができる。 Such a method using inductive coupling or capacitive coupling does not have a problem of aging deterioration of an optical element like a photocoupler, has a long life, and in an inductive coupling method, not only a signal but also power can be transmitted. Insulated transmission devices of body type have also been reported, and it is possible to realize miniaturization of an insulated gate driver.
 その一方で、誘導結合や容量結合方式の絶縁距離は一般的に数十μm程度と小さい。前述した強化絶縁の仕様を満たす0.4mm以上の絶縁距離の確保は困難な方式であり、絶縁距離を増やそうとすると、コイルやコンデンサのサイズを大きくしなければならず、そもそもの特徴である小型化を維持できない。 On the other hand, the insulation distance of inductive coupling and capacitive coupling methods is generally as small as several tens of μm. It is a difficult method to secure an insulation distance of 0.4 mm or more that meets the above-mentioned reinforced insulation specifications, and in order to increase the insulation distance, the size of the coil and capacitor must be increased, which is a characteristic of the small size. Cannot maintain the conversion.
 特許文献1では、従来の誘導結合や容量結合とは異なり、高周波(GHz帯、例えば2.4GHz)の信号を用いた電磁界共鳴結合方式による絶縁伝送装置を構成することにより、絶縁距離を0.4mm以上としつつ高効率且つ小型の絶縁伝送IC構造を実現できることが開示されている。 In Patent Document 1, unlike the conventional inductive coupling and capacitive coupling, the insulation distance is set to 0 by configuring an insulated transmission device by an electromagnetic field resonance coupling method using a high frequency (GHz band, for example, 2.4 GHz) signal. It is disclosed that a highly efficient and compact insulated transmission IC structure can be realized while having a size of .4 mm or more.
特許第5868490号公報Japanese Patent No. 5868490 特開2015-12614号公報JP 2015-12614 特許第4654228号公報Japanese Patent No. 4654228
 しかしながら、前記従来の構成では、0.4mm以上の絶縁距離を確保することはできるが、そのパッケージ構造(IC構造)は、フォトカプラ方式のパッケージ構造とは異なる。 However, in the conventional configuration, an insulation distance of 0.4 mm or more can be secured, but the package structure (IC structure) is different from the photocoupler type package structure.
 フォトカプラ方式では、結合器がLED送信機と受光機の2つに分離しており、それぞれの素子が1次側リードフレームおよび2次側リードフレームに実装され、送信側と受信側がパッケージの封止樹脂材(光透過性を維持するための樹脂材含む)により電気的に完全に分離されている。 In the photocoupler method, the coupler is separated into two parts, an LED transmitter and a receiver, and each element is mounted on the primary side lead frame and the secondary side lead frame, and the transmitting side and the receiving side seal the package. It is completely electrically separated by a waterproof resin material (including a resin material for maintaining light transmission).
 一方、特許文献1記載の絶縁伝送装置では、特許文献1の図8および図9に示されるように、結合器は一体型となっている。つまり、結合器はプリント基板(PCB)により、電極構造がパターニングされた誘電体層の積層構造により構成され、絶縁はその一部の層厚により維持されている。 On the other hand, in the insulated transmission device described in Patent Document 1, as shown in FIGS. 8 and 9 of Patent Document 1, the coupler is an integrated type. That is, the coupler is composed of a laminated structure of dielectric layers in which the electrode structure is patterned by a printed circuit board (PCB), and insulation is maintained by a part of the layer thickness.
 このような特許文献1記載の絶縁伝送装置では、結合器は1つであるため、その結合器は1次側リードフレームか、2次側リードフレームのいずれかに実装され、実装されないフレームとはワイヤボンディングにより、電気的に接続されるのが一般的である。 In such an insulated transmission device described in Patent Document 1, since there is only one coupler, the coupler is mounted on either the primary side lead frame or the secondary side lead frame, and the frame that is not mounted is It is generally electrically connected by wire bonding.
 また他の実装方式としては、一体型結合器が、両方のリードフレームに跨ぐ形式で実装されることも考えられる。 As another mounting method, it is conceivable that the integrated coupler is mounted so as to straddle both lead frames.
 このように1つの結合器により絶縁伝送装置の絶縁が維持されるのは前述した誘導結合や容量結合方式においても一般的に用いられている方法である。 It is a method generally used in the above-mentioned inductive coupling and capacitive coupling method that the insulation of the insulated transmission device is maintained by one coupler in this way.
 しかし、このような1つの結合器による絶縁伝送装置は、0.4mm以上の絶縁距離を容易に確保することは可能だが、使用環境によっては結合器と封止樹脂材料の界面に空隙が発生し、絶縁破壊が起こる場合があり、長期にわたる絶縁信頼性を維持できない懸念がある。 However, although it is possible to easily secure an insulation distance of 0.4 mm or more in such an insulated transmission device using a single coupler, voids may occur at the interface between the coupler and the sealing resin material depending on the usage environment. , Dielectric breakdown may occur, and there is a concern that insulation reliability cannot be maintained for a long period of time.
 例えば車載、鉄道車両、航空機向けなどといった振動、環境に対して長期信頼性が求められる用途においては、このような課題が顕著である。 For example, in applications where long-term reliability is required for vibration and the environment, such as for in-vehicle use, railroad vehicles, and aircraft, such problems are remarkable.
 この場合、温度サイクルテストなどにより、温度・湿度条件を複数回変化させながら信頼性を評価されるが、このようなテストにおいて課題を残すことが懸念される。 In this case, the reliability is evaluated while changing the temperature / humidity conditions multiple times by a temperature cycle test or the like, but there is a concern that problems may remain in such a test.
 このような課題を根本から解決するには、フォトカプラ方式と同様に1次側と2次側にそれぞれ分離した結合器を配置し、1次側と2次側を、パッケージ封止樹脂により完全に分離することが適当であると考えられる。 In order to solve such a problem from the ground up, as in the photocoupler method, separate couplers are arranged on the primary side and the secondary side, respectively, and the primary side and the secondary side are completely covered with a package sealing resin. It is considered appropriate to separate into.
 特許文献2では、誘導結合方式を用いて1次側と2次側を完全に分離した絶縁伝送装置の構造について開示されている。 Patent Document 2 discloses the structure of an insulated transmission device in which the primary side and the secondary side are completely separated by using an inductive coupling method.
 しかし、この方式では、MHz帯の信号を用いたコイル(トランス)による結合であるため、パッケージサイズ、IC構造の大きさは、そのコイル形状に依存する。 However, in this method, since the coupling is performed by a coil (transformer) using a MHz band signal, the package size and the size of the IC structure depend on the coil shape.
 特許文献2では、特許文献2の図2に示されるように、絶縁伝送装置ICを実装する基板に対して垂直方向(以後、縦方向)に1次側のコイルと、2次側のコイルが向かい合うように配置し、誘導結合させ、それぞれがそれぞれのフレームに接続される構造を開示している。 In Patent Document 2, as shown in FIG. 2 of Patent Document 2, the coil on the primary side and the coil on the secondary side are provided in the direction perpendicular to the substrate on which the insulated transmission device IC is mounted (hereinafter, in the vertical direction). It discloses a structure in which they are arranged facing each other, inductively coupled, and each is connected to each frame.
 しかし、この方式では次のような問題があると考えられる。 However, this method is considered to have the following problems.
 ・前述したようにMHz帯の信号を用いた誘導結合であるため、絶縁距離を0.4mm以上に保つためには、コイル形状が大きくなり小型化が難しいこと。 -As mentioned above, since it is an inductive coupling using a MHz band signal, it is difficult to reduce the size because the coil shape becomes large in order to keep the insulation distance at 0.4 mm or more.
 ・1次と2次コイルが縦方向に向かい合うような構造となり、1次と2次のリードフレームの同一面上にそれぞれのコイルを実装できない。必然的にパッケージ構造が複雑になり、組立方式も高度化し、コスト増加が懸念される。 ・ The structure is such that the primary and secondary coils face each other in the vertical direction, and each coil cannot be mounted on the same surface of the primary and secondary lead frames. Inevitably, the package structure becomes complicated, the assembly method becomes sophisticated, and there is a concern that the cost will increase.
 ・パッケージの封止樹脂を封入する場合、対向するコイルの面積が大きければ大きいほど、その隙間に樹脂を流し込むのが困難になり、未充填領域が発生し、不具合が生じやすい。 ・ When encapsulating the sealing resin of the package, the larger the area of the opposing coils, the more difficult it is to pour the resin into the gap, and an unfilled area is generated, which is likely to cause a problem.
 特許文献3では、特許文献3の図11に示されるように、トランスを用いた横方向結合について開示されている。この場合、フレキシブル基板を用いて誘導結合を実現している。 Patent Document 3 discloses a lateral coupling using a transformer, as shown in FIG. 11 of Patent Document 3. In this case, inductive coupling is realized by using a flexible substrate.
 本開示は、長期の高い絶縁信頼性を有し、且つ小型化・高効率化および低コスト化に適した絶縁伝送装置を提供する。 The present disclosure provides an insulated transmission device having high insulation reliability for a long period of time and suitable for miniaturization, high efficiency, and low cost.
 上記課題を解決するため、本開示の一態様に係る絶縁伝送装置は、複数の誘電体層からなる第1の誘電体多層膜と、複数の誘電体層からなる第2の誘電体多層膜と、第1の誘電体多層膜に設けられた、第1の共鳴器と、第2の誘電体多層膜に設けられた、第2の共鳴器とを有し、前記第1の共鳴器と前記第2の共鳴器との間は直流電流に対しては電気的に絶縁されており、前記第1の共鳴器と前記第2の共鳴器との間で、所定の周波数帯域内の電磁波を伝送させるものであり、前記第1の共鳴器は、第1の誘導素子と、容量素子を構成する第1の電極とを有し、前記第2の共鳴器は、第2の誘導素子と、前記容量素子を構成する第2の電極とを有する。 In order to solve the above problems, the insulated transmission device according to one aspect of the present disclosure includes a first dielectric multilayer film composed of a plurality of dielectric layers and a second dielectric multilayer film composed of a plurality of dielectric layers. The first resonator provided on the first dielectric multilayer film and the second resonator provided on the second dielectric multilayer film are provided, and the first resonator and the above-mentioned The second resonator is electrically insulated from the DC current, and an electromagnetic wave within a predetermined frequency band is transmitted between the first resonator and the second resonator. The first resonator has a first inducing element and a first electrode constituting a capacitive element, and the second resonator has a second inducing element and the said. It has a second electrode that constitutes a capacitive element.
 本開示の絶縁伝送装置によれば、長期の高い絶縁信頼性を有し、且つ小型化、高効率化および低コスト化に適している。 According to the insulated transmission device of the present disclosure, it has high insulation reliability for a long period of time, and is suitable for miniaturization, high efficiency, and low cost.
図1は、第1実施形態の絶縁伝送装置のシステム構成例を示すブロック図である。FIG. 1 is a block diagram showing a system configuration example of the insulated transmission device of the first embodiment. 図2Aは、第1実施形態の電磁界共鳴結合部の構造例を示す鳥観図である。FIG. 2A is a bird's-eye view showing a structural example of the electromagnetic field resonance coupling portion of the first embodiment. 図2Bは、第1実施形態の電磁界共鳴結合部の構造例を示す断面図である。FIG. 2B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of the first embodiment. 図2Cは、第1実施形態の第1の共鳴器の上から見た斜視図である。FIG. 2C is a perspective view of the first resonator of the first embodiment as viewed from above. 図2Dは、第1実施形態の第1の共鳴器の下から見た斜視図である。FIG. 2D is a perspective view of the first resonator of the first embodiment as viewed from below. 図3Aは、第1実施形態のパッケージ構造例を示す鳥観図である。FIG. 3A is a bird's-eye view showing an example of the package structure of the first embodiment. 図3Bは、第1実施形態のパッケージ構造例を示す側面透視図である。FIG. 3B is a side perspective view showing an example of the package structure of the first embodiment. 図4Aは、従来のパッケージ構造を示す鳥観図である。FIG. 4A is a bird's-eye view showing a conventional package structure. 図4Bは、従来の電磁界共鳴結合器を示す断面図である。FIG. 4B is a cross-sectional view showing a conventional electromagnetic field resonance coupler. 図5Aは、誘導結合素子の第1の変形例を示す図である。FIG. 5A is a diagram showing a first modification of the inductively coupled element. 図5Bは、誘導結合素子の第2の変形例を示す図である。FIG. 5B is a diagram showing a second modification of the inductively coupled element. 図5Cは、誘導結合素子の第3の変形例を示す図である。FIG. 5C is a diagram showing a third modification of the inductively coupled element. 図6Aは、第1実施形態の共鳴器の第1の変形例を示す鳥観図である。FIG. 6A is a bird's-eye view showing a first modification of the resonator of the first embodiment. 図6Bは、第1実施形態の共鳴器の第1の変形例を示す断面図である。FIG. 6B is a cross-sectional view showing a first modification of the resonator of the first embodiment. 図6Cは、第1実施形態の共鳴器の第2の変形例を示す鳥観図である。FIG. 6C is a bird's-eye view showing a second modification of the resonator of the first embodiment. 図6Dは、第1実施形態の共鳴器の第3の変形例を示す鳥観図である。FIG. 6D is a bird's-eye view showing a third modification of the resonator of the first embodiment. 図7は、第1実施形態の共鳴器の第4の変形例を示す鳥観図である。FIG. 7 is a bird's-eye view showing a fourth modification of the resonator of the first embodiment. 図8Aは、第1実施形態の共鳴器の第5の変形例を示す鳥観図である。FIG. 8A is a bird's-eye view showing a fifth modification of the resonator of the first embodiment. 図8Bは、第1実施形態の共鳴器の第5の変形例を示す鳥観図である。FIG. 8B is a bird's-eye view showing a fifth modification of the resonator of the first embodiment. 図9Aは、第1実施形態に係る電磁界共鳴結合部の実測値を示すスミスチャートである。FIG. 9A is a Smith chart showing actually measured values of the electromagnetic field resonance coupling portion according to the first embodiment. 図9Bは、第1実施形態に係る電磁界共鳴結合部における周波数に対する反射量の特性を示す図である。FIG. 9B is a diagram showing the characteristics of the amount of reflection with respect to the frequency in the electromagnetic field resonance coupling portion according to the first embodiment. 図9Cは、第1実施形態に係る電磁界共鳴結合部における周波数に対する透過量の特性を示す図である。FIG. 9C is a diagram showing the characteristics of the amount of transmission with respect to the frequency in the electromagnetic field resonance coupling portion according to the first embodiment. 図9Dは、図9A~図9Cに係る共鳴器の設計パラメータ例を示す図である。FIG. 9D is a diagram showing an example of design parameters of the resonator according to FIGS. 9A to 9C. 図10Aは、第1実施形態に係る電磁界共鳴結合部の電界分布を示す図である。FIG. 10A is a diagram showing an electric field distribution of the electromagnetic field resonance coupling portion according to the first embodiment. 図10Bは、第1実施形態に係る電磁界共鳴結合部の磁界分布を示す図である。FIG. 10B is a diagram showing a magnetic field distribution of the electromagnetic field resonance coupling portion according to the first embodiment. 図11Aは、第1実施形態に係る電磁界共鳴結合部の等価回路の第1例を示す図である。FIG. 11A is a diagram showing a first example of an equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment. 図11Bは、第1実施形態に係る電磁界共鳴結合部の等価回路の第2例を示す図である。FIG. 11B is a diagram showing a second example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment. 図11Cは、第1実施形態に係る電磁界共鳴結合部の等価回路の第3例を示す図である。FIG. 11C is a diagram showing a third example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment. 図11Dは、第1実施形態に係る電磁界共鳴結合部の等価回路の第4例を示す図である。FIG. 11D is a diagram showing a fourth example of the equivalent circuit of the electromagnetic field resonance coupling portion according to the first embodiment. 図12Aは、第1実施形態の共鳴器の変形例を示す鳥観図である。FIG. 12A is a bird's-eye view showing a modified example of the resonator of the first embodiment. 図12Bは、図12Aの共鳴器を側面から見た透視図である。12B is a perspective view of the resonator of FIG. 12A as viewed from the side. 図13Aは、第1実施形態の絶縁伝送装置のパッケージ構造の変形例を示す上斜め方向から見た斜視図である。FIG. 13A is a perspective view seen from an upper oblique direction showing a modified example of the package structure of the insulated transmission device of the first embodiment. 図13Bは、図13Aのパッケージ構造を示す斜め方向から見た斜視図である。FIG. 13B is a perspective view showing the package structure of FIG. 13A as viewed from an oblique direction. 図14は、第1実施形態の絶縁伝送装置のパッケージ構造の変形例を示す図である。FIG. 14 is a diagram showing a modified example of the package structure of the insulated transmission device of the first embodiment. 図15は、第2実施形態の電磁界共鳴結合部の構造例を示す図である。FIG. 15 is a diagram showing a structural example of the electromagnetic field resonance coupling portion of the second embodiment. 図16は、第2実施形態の電磁界共鳴結合部の変形例を示す図である。FIG. 16 is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment. 図17Aは、第2実施形態の電磁界共鳴結合部の変形例を示す図である。FIG. 17A is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment. 図17Bは、第2実施形態の電磁界共鳴結合部の変形例を示す図である。FIG. 17B is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment. 図17Cは、第2実施形態の電磁界共鳴結合部の変形例を示す図である。FIG. 17C is a diagram showing a modified example of the electromagnetic field resonance coupling portion of the second embodiment. 図18Aは、隣り合う誘導結合素子が同じ面に配置された電磁界共鳴結合部の周波数に対する伝送量を示す図である。FIG. 18A is a diagram showing the amount of transmission with respect to the frequency of the electromagnetic field resonance coupling portion in which adjacent inductive coupling elements are arranged on the same surface. 図18Bは、図17Cのように隣り合う誘導結合素子が異なる面に配置された電磁界共鳴結合部の周波数に対する伝送量を示す図である。FIG. 18B is a diagram showing the transmission amount with respect to the frequency of the electromagnetic field resonance coupling portion in which adjacent inductive coupling elements are arranged on different surfaces as shown in FIG. 17C. 図19は、第3実施形態の絶縁伝送装置のパッケージ構造例を示す図である。FIG. 19 is a diagram showing an example of a package structure of the insulated transmission device of the third embodiment. 図20Aは、第4実施形態の電磁界共鳴結合部の構造例を示す斜視図である。FIG. 20A is a perspective view showing a structural example of the electromagnetic field resonance coupling portion of the fourth embodiment. 図20Bは、図20Aの電磁界共鳴結合部の構造例を示す断面図である。FIG. 20B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of FIG. 20A.
 以下本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (第1実施形態)
 [1.1 システム構成]
 まず、第1実施形態に係る絶縁伝送装置のシステム構成について説明する。図1は、第1実施形態に係る絶縁伝送装置のシステム構成を示すブロック図である。
(First Embodiment)
[1.1 System configuration]
First, the system configuration of the insulated transmission device according to the first embodiment will be described. FIG. 1 is a block diagram showing a system configuration of the insulated transmission device according to the first embodiment.
 第1実施形態に係る絶縁伝送装置1000は、電磁界共鳴結合部100と、送信回路201と、受信回路202とを備える。 The insulated transmission device 1000 according to the first embodiment includes an electromagnetic field resonance coupling unit 100, a transmission circuit 201, and a reception circuit 202.
 送信回路201は、電源2から供給される電力、及び、信号源1から供給される入力信号を取得する。送信回路201は、変調回路を含み、変調回路は、高周波信号を入力信号に応じて変調し、電磁界共鳴結合部100に送信する。つまり、送信回路201は、高周波信号を入力信号に応じて変調することによって得られる信号(つまり変調後の高周波信号)を伝送信号として第1の共鳴器101に送信する。ここでの高周波信号は、言い換えれば、入力信号よりも周波数の高い信号である。 The transmission circuit 201 acquires the power supplied from the power supply 2 and the input signal supplied from the signal source 1. The transmission circuit 201 includes a modulation circuit, which modulates the high frequency signal according to the input signal and transmits it to the electromagnetic field resonance coupling unit 100. That is, the transmission circuit 201 transmits a signal (that is, a high-frequency signal after modulation) obtained by modulating the high-frequency signal according to the input signal to the first resonator 101 as a transmission signal. The high frequency signal here is, in other words, a signal having a higher frequency than the input signal.
 送信回路201は、例えば、半導体チップにより実現される。なお、送信回路201は、高周波信号を生成する高周波信号生成回路を含んでもよいし、送信回路201は、外部から高周波信号を取得してもよい。 The transmission circuit 201 is realized by, for example, a semiconductor chip. The transmission circuit 201 may include a high-frequency signal generation circuit that generates a high-frequency signal, or the transmission circuit 201 may acquire a high-frequency signal from the outside.
 第1実施形態における高周波信号の周波数帯は、例えば、マイクロ波帯(ミリ波帯を含む)である。高周波信号の周波数は、具体的には、2.4GHz以上5.875GHz以下(ISMバンド)であるが、特に限定されない。MHz帯であってもよい。ただし、電磁界共鳴結合部100では、コイルやトランス素子を用いた誘導結合素子に比べて非常に高い周波数の信号を用いることで、更なる小型化が実現可能である。 The frequency band of the high frequency signal in the first embodiment is, for example, a microwave band (including a millimeter wave band). Specifically, the frequency of the high frequency signal is 2.4 GHz or more and 5.875 GHz or less (ISM band), but is not particularly limited. It may be in the MHz band. However, the electromagnetic field resonance coupling unit 100 can be further miniaturized by using a signal having a frequency much higher than that of an inductively coupled element using a coil or a transformer element.
 電磁界共鳴結合部100は、第1の共鳴器101と第2の共鳴器102とを有する。 The electromagnetic field resonance coupling portion 100 has a first resonator 101 and a second resonator 102.
 電磁界共鳴結合部100は、第1の共鳴器101と第2の共鳴器102との間で生じる、LC共鳴に基づく共鳴現象を利用し、送信側と受信側との絶縁を確保した状態で、電力及び信号を送受信することができる。 The electromagnetic field resonance coupling unit 100 utilizes a resonance phenomenon based on LC resonance that occurs between the first resonator 101 and the second resonator 102, and secures insulation between the transmitting side and the receiving side. , Power and signals can be transmitted and received.
 送信回路201から送信された伝送信号は、第1の共鳴器101を介して第2の共鳴器102によって受信される。具体的には、第1の共鳴器101は、送信回路201によって送信された伝送信号を、第2の共鳴器102に非接触伝送する。第2の共鳴器102は、第1の共鳴器101によって非接触伝送された伝送信号を受信回路202に送信する。 The transmission signal transmitted from the transmission circuit 201 is received by the second resonator 102 via the first resonator 101. Specifically, the first resonator 101 transmits the transmission signal transmitted by the transmission circuit 201 to the second resonator 102 in a non-contact manner. The second resonator 102 transmits the transmission signal non-contact transmitted by the first resonator 101 to the receiving circuit 202.
 受信回路202は、整流回路を含み、整流回路は、第2の共鳴器102によって受信された伝送信号を整流(復調)する。つまり、受信回路202は、第2の共鳴器102によって送信された伝送信号を受信し、受信した伝送信号を復調することにより、入力信号に対応する出力信号を生成する。受信回路202は、例えば、半導体チップにより実現される。 The receiving circuit 202 includes a rectifier circuit, and the rectifier circuit rectifies (demodulates) the transmission signal received by the second resonator 102. That is, the receiving circuit 202 receives the transmission signal transmitted by the second resonator 102 and demodulates the received transmission signal to generate an output signal corresponding to the input signal. The receiving circuit 202 is realized by, for example, a semiconductor chip.
 受信回路202において復調された信号は、例えばパワーデバイスのゲート電極3へ送信され、信号源1の入力に応じて、絶縁を確保しながら、パワーデバイス駆動を実現することができる。 The signal demodulated in the receiving circuit 202 is transmitted to, for example, the gate electrode 3 of the power device, and the power device can be driven while ensuring insulation according to the input of the signal source 1.
 この際、フォトカプラなどの絶縁ゲートドライバでは、2次側に別の電力系統(例えば絶縁DCDCコンバータなど)を用いて、パワーデバイスのゲート駆動に必要な電力を供給しなければならない。 At this time, in an insulated gate driver such as a photocoupler, another power system (for example, an insulated DCDC converter) must be used on the secondary side to supply the power required to drive the gate of the power device.
 図1に示したシステムにおいて、信号と同時に電力も絶縁伝送するシステムであれば、外部の別の電力系統は不要となり、ゲート駆動回路の更なる小型化が実現できる。 In the system shown in FIG. 1, if the power is isolated and transmitted at the same time as the signal, another external power system becomes unnecessary, and the gate drive circuit can be further miniaturized.
 [1.2 電磁界共鳴結合部の構成]
 次に、電磁界共鳴結合部100の構成について説明する。
[1.2 Configuration of electromagnetic field resonance coupling part]
Next, the configuration of the electromagnetic field resonance coupling portion 100 will be described.
 本実施形態の電磁界共鳴結合部100は2つの独立した結合器である第1の共鳴器101と第2の共鳴器102からなる。図2A~図2Dに第1および第2の共鳴器からなる電磁界共鳴結合部100の1例を示す。 The electromagnetic field resonance coupling portion 100 of the present embodiment includes a first resonator 101 and a second resonator 102, which are two independent couplers. 2A to 2D show an example of the electromagnetic field resonance coupling portion 100 including the first and second resonators.
 図2Aは、2つの共鳴器101、102からなる電磁界共鳴結合部100の鳥観図である。同図のx方向を横方向、z方向を縦方向とする。また、距離g1は、誘電体多層膜65と誘電体多層膜66との距離であり、より正確には、容量結合素子20と容量結合素子21との間の距離である。なお、容量結合素子20と容量結合素子21は、1つの容量素子を構成する第1の電極と第2の電極である。また、同図では、サイズの一例を示すスケールバーを併記してある。この例では、距離g1は0.4mmである。 FIG. 2A is a bird's-eye view of the electromagnetic field resonance coupling portion 100 including the two resonators 101 and 102. In the figure, the x direction is the horizontal direction and the z direction is the vertical direction. Further, the distance g1 is the distance between the dielectric multilayer film 65 and the dielectric multilayer film 66, and more accurately, the distance between the capacitive coupling element 20 and the capacitive coupling element 21. The capacitive coupling element 20 and the capacitive coupling element 21 are a first electrode and a second electrode constituting one capacitive element. In addition, in the figure, a scale bar showing an example of the size is also shown. In this example, the distance g1 is 0.4 mm.
 2つの共鳴器101、102はおよそ対称な構造であり、横方向に向き合う構造を有する。各共鳴器は2以上の素子、つまり、誘導結合素子10、11、容量結合素子20、21で形成され、それぞれが異なる面に配置されることを特徴とする。本実施形態の共鳴器は、その主面に誘導結合素子10が、そしてその側面(主に結合を担う1次側と2次側の結合界面)に容量結合素子20、21が形成されている。同図における容量結合素子20、21は、容量素子を構成する互いに対向して設けられた2つの面状電極である。各共鳴器は例えば誘電体多層膜(60,61,70,71)からなる。誘電体の表面もしくは側面(本実施形態では60、61の表面、70、71の側面)に電極をパターニングすることで、容易に共鳴器構造が形成される。 The two resonators 101 and 102 have a substantially symmetrical structure and have a structure facing each other in the lateral direction. Each resonator is formed by two or more elements, that is, inductively coupled elements 10 and 11, and capacitively coupled elements 20 and 21, each of which is arranged on a different surface. The resonator of the present embodiment has an inductively coupled element 10 formed on its main surface, and capacitive coupling elements 20 and 21 formed on its side surface (the coupling interface between the primary side and the secondary side mainly responsible for coupling). .. The capacitive coupling elements 20 and 21 in the figure are two planar electrodes provided so as to face each other that constitute the capacitive element. Each resonator consists of, for example, a dielectric multilayer film (60, 61, 70, 71). By patterning the electrodes on the surface or side surface of the dielectric (the surface of 60, 61 and the side surface of 70, 71 in this embodiment), the resonator structure is easily formed.
 また各共鳴器の誘電体層の底面には、金属によるグランド層30、31を形成する。 Further, on the bottom surface of the dielectric layer of each resonator, ground layers 30 and 31 made of metal are formed.
 図2Bは、2つの共鳴器からなる電磁界共鳴結合部100の断面図である。本実施形態の共鳴器は、信号用の入力端子40から表面に形成された誘導結合素子10と側面に形成された容量結合素子20が直列に配置されている構造である。これら誘導結合素子10と容量結合素子20は図中の貫通ビア80や配線層90により電気的に接続可能である。 FIG. 2B is a cross-sectional view of an electromagnetic field resonance coupling portion 100 composed of two resonators. The resonator of the present embodiment has a structure in which an inductively coupled element 10 formed on the surface and a capacitive coupling element 20 formed on the side surface are arranged in series from the input terminal 40 for a signal. The inductively coupled element 10 and the capacitive coupling element 20 can be electrically connected by the through via 80 and the wiring layer 90 in the drawing.
 このような誘導結合素子と容量結合素子のLやCの値を適宜選択することによって共鳴現象を発生させ、絶縁距離0.4mm以上の結合素子であっても高い効率を実現することができる。絶縁距離は、容量結合素子20と容量結合素子21との距離g1に相当する。 By appropriately selecting the L and C values of such an inductively coupled element and a capacitively coupled element, a resonance phenomenon can be generated, and high efficiency can be realized even with a coupled element having an insulation distance of 0.4 mm or more. The insulation distance corresponds to the distance g1 between the capacitive coupling element 20 and the capacitive coupling element 21.
 図2Cおよび図2Dは、片側の共鳴器構造のみの模式図である。図2Cは上方向から見た図であり、図2Dは下方向から見た図である。 2C and 2D are schematic views of the resonator structure on one side only. FIG. 2C is a view seen from above, and FIG. 2D is a view seen from below.
 図2Dからわかるように、誘電体層底面に形成しているグランド層30は、容量結合素子20が形成されている側面から一定の距離を置いて形成されている。 As can be seen from FIG. 2D, the ground layer 30 formed on the bottom surface of the dielectric layer is formed at a certain distance from the side surface on which the capacitive coupling element 20 is formed.
 これは、グランド層30が側面部分まで形成されていると、側面に形成された容量結合素子20、21(1次、2次含む)や2次側の相対するグランド層31との結合が大きく、高効率伝送設計に支障がでるためである。 This is because when the ground layer 30 is formed up to the side surface portion, the coupling with the capacitive coupling elements 20 and 21 (including the primary and secondary) formed on the side surface and the opposing ground layer 31 on the secondary side is large. This is because it interferes with the high-efficiency transmission design.
 本実施形態の電磁界共鳴結合部100および共鳴器101、102は以下の特徴を有する。 The electromagnetic field resonance coupling portion 100 and the resonators 101 and 102 of the present embodiment have the following features.
 2つの共鳴器は電気的に完全に絶縁されており、2つの構造はおよそ対称な構造である。 The two resonators are completely electrically isolated, and the two structures are approximately symmetrical.
 本実施形態の電磁界共鳴結合は、横方向に主に結合させることを特徴とする。 The electromagnetic field resonance coupling of the present embodiment is characterized in that it is mainly coupled in the lateral direction.
 共鳴器は、誘導結合素子と容量結合素子から構成され、誘導結合素子と容量結合素子が共鳴器の誘電体層のそれぞれ異なる面に形成されることを特徴とする。つまり、各共鳴器の主面に誘導結合素子を、側面(1次と2次が結合する面)に容量結合素子を形成することを特徴とする。 The resonator is composed of an inductively coupled element and a capacitively coupled element, and the inductively coupled element and the capacitively coupled element are formed on different surfaces of the dielectric layer of the resonator. That is, it is characterized in that an inductively coupled element is formed on the main surface of each resonator and a capacitive coupling element is formed on the side surface (the surface where the primary and secondary are coupled).
 このように本実施形態における共鳴器は、誘導結合素子と容量結合素子が同じ素子面に形成されておらず、異なる面(表面と側面)に形成されることを特徴としている。 As described above, the resonator in the present embodiment is characterized in that the inductively coupled element and the capacitively coupled element are not formed on the same element surface, but are formed on different surfaces (surface and side surface).
 なお、本実施形態の構造は、側面に誘導結合素子を形成しても、その効果は一部達成できる。しかし、低コストの多層誘電膜構造を用いたプリント基板で共鳴器を作製する場合、その表面にコイルやトランスなどの複雑な電極パターンを形成することは容易だが、側面に形成することは困難である。 Note that the structure of this embodiment can partially achieve its effect even if an inductively coupled element is formed on the side surface. However, when manufacturing a resonator on a printed circuit board using a low-cost multilayer dielectric film structure, it is easy to form a complex electrode pattern such as a coil or transformer on the surface, but it is difficult to form it on the side surface. is there.
 よって、本実施形態における共鳴器は、量産時のプロセスや信頼性を考慮し、結合をなす側面には容量結合成分を形成している。この場合、金属層の膜厚や、スルーホールビアを複数用いた長穴加工、もしくは単純な側面配線で対応可能であり、複雑なパターンを形成する必要がない。 Therefore, in consideration of the process and reliability at the time of mass production, the resonator in the present embodiment forms a capacitive coupling component on the side forming the coupling. In this case, it is possible to deal with the film thickness of the metal layer, long hole processing using a plurality of through-hole vias, or simple side wiring, and it is not necessary to form a complicated pattern.
 なお、本実施形態の電磁界共鳴結合部はプリント基板などの多層誘電膜構造により低コストで作製可能であるが、サファイア基板などのセラミック基板表面に金属パターンを形成することによっても実現できる。 The electromagnetic field resonance coupling portion of the present embodiment can be manufactured at low cost by using a multilayer dielectric film structure such as a printed circuit board, but it can also be realized by forming a metal pattern on the surface of a ceramic substrate such as a sapphire substrate.
 [1.3 パッケージ構造模式図]
 図3Aおよび図3Bは、図1で示したシステム構成に基づく本実施形態におけるパッケージ構造2000の模式図の鳥観図と側面透視図である。
[1.3 Schematic diagram of package structure]
3A and 3B are a bird's-eye view and a side perspective view of a schematic view of the package structure 2000 in the present embodiment based on the system configuration shown in FIG.
 図のように、第1の共鳴器101と第2の共鳴器102はそれぞれ1次側、2次側のリードフレーム(120,130)に実装された送信回路201と受信回路202にワイヤにより接続されている。 As shown in the figure, the first resonator 101 and the second resonator 102 are connected to the transmission circuit 201 and the reception circuit 202 mounted on the lead frames (120, 130) on the primary side and the secondary side, respectively, by wires. Has been done.
 1次側と2次側は第1および第2共鳴器の絶縁距離を隔てて完全に電気的に分離されており、その間はパッケージ封止樹脂110のみが存在する。 The primary side and the secondary side are completely electrically separated by the insulation distances of the first and second resonators, and only the package sealing resin 110 exists between them.
 本実施形態のパッケージ構造を従来例と改めて比較する。 The package structure of this embodiment will be compared again with the conventional example.
 図4Aおよび図4Bに一般的な絶縁伝送装置のパッケージ構造900の模式図を示す。図4Aはパッケージ構造の全体を示す鳥観図であり、図4Bは電磁界共鳴結合器900aの断面詳細図を示す。 4A and 4B show a schematic view of the package structure 900 of a general insulated transmission device. FIG. 4A is a bird's-eye view showing the entire package structure, and FIG. 4B shows a detailed cross-sectional view of the electromagnetic field resonance coupler 900a.
 一般的な絶縁伝送装置の電磁界共鳴結合器900aは、一体型であり、本実施形態の図3Aおよび図3Bのように第1、第2の共鳴器のように分離しておらず、その一体型構造の内部の多層誘電体膜の一部の層厚において絶縁を確保している。 The electromagnetic field resonance coupler 900a of a general insulated transmission device is an integrated type, and is not separated like the first and second resonators as shown in FIGS. 3A and 3B of the present embodiment. Insulation is ensured in a part of the layer thickness of the multilayer dielectric film inside the integrated structure.
 図4Bの例では、3層の誘電体層975、976、977の積層構造による一体型電磁界共鳴結合器が形成されており、構成される誘電体層表面に金属配線することで共鳴器を形成できる。 In the example of FIG. 4B, an integrated electromagnetic field resonance coupler is formed by a laminated structure of three dielectric layers 975, 976, and 977, and the resonator is formed by metal wiring on the surface of the formed dielectric layer. Can be formed.
 この例では、誘電体層976を介して対向する共鳴器構造が点線で囲った領域に形成される。つまり、下側が1次共鳴器、上側が2次共鳴器となり、中間層で電気的絶縁が保持される。 In this example, the resonator structures facing each other via the dielectric layer 976 are formed in the region surrounded by the dotted line. That is, the lower side is the primary resonator and the upper side is the secondary resonator, and electrical insulation is maintained in the intermediate layer.
 よって、結合は縦方向となり、一体型の共鳴結合器となる。 Therefore, the coupling is in the vertical direction, and it becomes an integrated resonance coupler.
 また、この場合図4Aのように、一体型の電磁界共鳴結合器900aは1次フレーム920a上に実装され、2次フレーム930aとはワイヤボンディングで電気的に接続される。 Further, in this case, as shown in FIG. 4A, the integrated electromagnetic field resonance coupler 900a is mounted on the primary frame 920a and electrically connected to the secondary frame 930a by wire bonding.
 このように、従来のパッケージ構造900では絶縁層が電磁界共鳴結合器900a内部に存在するため、本実施形態のように、パッケージ封止樹脂910により完全に分離することができない。 As described above, in the conventional package structure 900, since the insulating layer exists inside the electromagnetic field resonance coupler 900a, it cannot be completely separated by the package sealing resin 910 as in the present embodiment.
 図4Aの場合は、ワイヤにより1次と2次が構造的に結合している。 In the case of FIG. 4A, the primary and secondary are structurally connected by a wire.
 このような一体型の電磁界共鳴結合器を用いた従来構造は、作製が容易であるが、前述したように一体型電磁界共鳴結合器900aとパッケージ封止樹脂910との界面で空隙が発生し、絶縁破壊が起こるリスクが増大するため、絶縁耐圧の信頼性に課題がある。 The conventional structure using such an integrated electromagnetic field resonance coupler is easy to manufacture, but as described above, a gap is generated at the interface between the integrated electromagnetic field resonance coupler 900a and the package sealing resin 910. However, since the risk of dielectric breakdown increases, there is a problem in the reliability of dielectric strength.
 よって、本実施形態におけるパッケージ構造は、横方向に電磁界共鳴結合させ、且つ、1次と2次がパッケージ封止樹脂110で完全に分離しているため高い絶縁信頼性が確保できる。 Therefore, in the package structure of the present embodiment, high insulation reliability can be ensured because the electromagnetic field resonance coupling is performed in the lateral direction and the primary and secondary are completely separated by the package sealing resin 110.
 以下に先行文献と第1実施形態とを比較する。 The prior literature and the first embodiment are compared below.
 特許文献2では、本実施形態とは異なり、縦方向に結合した2つの共鳴器を用いたパッケージ構造が開示されている。 Patent Document 2 discloses a package structure using two resonators coupled in the vertical direction, unlike the present embodiment.
 高い絶縁信頼性を確保するという点では、特許文献2は、本実施形態と同様の効果が得られると考えられるが、結合方向が縦方向であるため、図3と比較するとパッケージ封止樹脂の流れが複雑になり、樹脂の未充填部分が発生しやすい。 In terms of ensuring high insulation reliability, Patent Document 2 is considered to have the same effect as that of the present embodiment, but since the bonding direction is the vertical direction, the package encapsulating resin is compared with FIG. The flow becomes complicated, and unfilled parts of the resin are likely to occur.
 また、図3Aおよび図3Bは第1の共鳴器も第2の共鳴器も同じ高さに実装されるが、特許文献2は高さが異なり、リードフレーム形状や実装方法が複雑である。 Further, in FIGS. 3A and 3B, both the first resonator and the second resonator are mounted at the same height, but Patent Document 2 has different heights, and the lead frame shape and mounting method are complicated.
 特許文献3では、トランスを用いた横方向結合について開示されている。この場合、フレキシブル基板を用いて誘導結合を実現している。すでに説明したように、横方向結合を実現しようとする場合、どのように結合器を結合させるかが課題であり、特許文献3の手法は、フレキシブル基板を使うなど、パッケージ組立の難易度が高い。 Patent Document 3 discloses a lateral coupling using a transformer. In this case, inductive coupling is realized by using a flexible substrate. As already described, when trying to realize lateral coupling, how to couple the couplers is an issue, and the method of Patent Document 3 has a high degree of difficulty in package assembly, such as using a flexible substrate. ..
 また、本実施形態と異なり、MHz帯の信号を用いた結合であるため、コイル形状が大きくなり、小型化が困難である。 Further, unlike the present embodiment, since the coupling uses a signal in the MHz band, the coil shape becomes large and it is difficult to reduce the size.
 横方向の結合については、特許文献1においても開示されている。特許文献1はGHz帯の高周波信号を用いた電磁界共鳴結合方式により、0.4mm以上の絶縁距離においても高効率伝送が可能であることが開示されている。 The lateral coupling is also disclosed in Patent Document 1. Patent Document 1 discloses that high-efficiency transmission is possible even at an insulation distance of 0.4 mm or more by an electromagnetic field resonance coupling method using a high-frequency signal in the GHz band.
 しかし、特許文献1は、特許文献2とは異なり、1つの結合器による横方向結合に関し、前述した絶縁の信頼性の面で課題がある。また高効率の電磁界共鳴結合を実現するために、主共鳴部と副共鳴部をメアンダパターンとそのメアンダパターンが形成されている同じ面に形成した容量結合素子で構成するため、共鳴器が大きくなる課題がある。また横方向結合についてもメアンダパターンで形成可能としているが、側面にジグザクの電極パターンを形成するのは困難性が高いという課題があった。 However, unlike Patent Document 2, Patent Document 1 has a problem in terms of the reliability of insulation described above with respect to the lateral coupling by one coupler. Further, in order to realize highly efficient electromagnetic resonance coupling, the main resonance portion and the sub-resonance portion are composed of a meander pattern and a capacitive coupling element formed on the same surface on which the meander pattern is formed, so that the resonator is large. There is a problem. In addition, although it is possible to form a lateral coupling with a meander pattern, there is a problem that it is highly difficult to form a zigzag electrode pattern on the side surface.
 本実施形態は、高周波信号を用いることにより小型化を実現し、且つ、共鳴器の異なる面、つまり主面と側面にそれぞれ誘導結合素子と容量結合素子を形成することで、横方向においても高効率の電磁界共鳴結合を実現する。 In this embodiment, miniaturization is realized by using a high-frequency signal, and inductively coupled elements and capacitively coupled elements are formed on different surfaces of the resonator, that is, the main surface and the side surface, respectively, so that the height is high even in the lateral direction. Achieve efficient electromagnetic resonance coupling.
 [1.4 第1および第2共鳴器の構造詳細]
 図2B~図2Dを用いて各共鳴器の構造について詳細に説明する。
[1.4 Structural details of the first and second resonators]
The structure of each resonator will be described in detail with reference to FIGS. 2B to 2D.
 本実施形態で示す共鳴器101、102は1層または複数の誘電体膜からなる。このような構造はガラスエポキシ基板(プリント基板、PCB)やセラミック基板を用いて形成することができる。 The resonators 101 and 102 shown in this embodiment are composed of one layer or a plurality of dielectric films. Such a structure can be formed by using a glass epoxy board (printed circuit board, PCB) or a ceramic substrate.
 第1および第2の共鳴器は構造上対称であるため、主に第1共鳴器101を用いて説明する。 Since the first and second resonators are structurally symmetrical, the first resonator 101 will be mainly described.
 共鳴器の誘電体膜表面には、送信回路と接続する入力端子40、送信側グランド端子50、誘導結合素子10が形成されている。 An input terminal 40, a transmission side ground terminal 50, and an inductively coupled element 10 are formed on the surface of the dielectric film of the resonator to be connected to the transmission circuit.
 また誘電体膜側面(結合面側)には、容量結合素子20が形成されている。 Further, a capacitive coupling element 20 is formed on the side surface (bonding surface side) of the dielectric film.
 誘導結合素子10と容量結合素子20は、貫通ビア80と配線層90で電気的に接続されている。 The inductive coupling element 10 and the capacitive coupling element 20 are electrically connected by a through via 80 and a wiring layer 90.
 共鳴器101の裏面にはグランド層30が形成されている。このグランド層30は送信側グランド端子50と等電位である。よって、誘電体膜内において、グランド端子50とグランド層30が貫通ビアによって電気的に接続されていてもよい。 A ground layer 30 is formed on the back surface of the resonator 101. The ground layer 30 has the same potential as the transmission side ground terminal 50. Therefore, in the dielectric film, the ground terminal 50 and the ground layer 30 may be electrically connected by a through via.
 誘電体膜表面に形成する、誘導結合素子10は、プリント基板やセラミック基板表面に容易に形成することができる。 The inductively coupled element 10 formed on the surface of the dielectric film can be easily formed on the surface of a printed circuit board or a ceramic substrate.
 誘導結合素子10は図2A~図2Dに示したように、平面コイル形状が望ましい。このようなコイル形状を有することで、同じ平面に形成されている第2共鳴器102主面上の誘導結合素子11と磁気結合を強化し、高効率の絶縁伝送を実現することができる。 As shown in FIGS. 2A to 2D, the inductive coupling element 10 preferably has a planar coil shape. By having such a coil shape, it is possible to strengthen the magnetic coupling with the inductive coupling element 11 on the main surface of the second resonator 102 formed on the same plane, and realize highly efficient insulated transmission.
 誘導結合素子10および11は、図2A~図2Dに示すような円形状の平面コイル以外の形状であってもよい。例えば図5Aや図5Bに示すように矩形状の平面コイル形状であってもよいし、誘導成分を有する素子でよく、容量結合素子20、21と共鳴状態を実現することができれば適宜選択することができる。 The inductively coupled elements 10 and 11 may have a shape other than the circular planar coil as shown in FIGS. 2A to 2D. For example, as shown in FIGS. 5A and 5B, a rectangular planar coil shape may be used, or an element having an inductive component may be used, and if a resonance state can be realized with the capacitive coupling elements 20 and 21, it is appropriately selected. Can be done.
 本実施形態において、高周波信号伝送を想定した場合、誘導結合素子は誘導結合成分だけでなく、容量結合成分も含んでおり、その影響は素子の形状や誘電体膜の層厚や比誘電率などに影響される。 In the present embodiment, assuming high-frequency signal transmission, the inductively coupled element includes not only an inductively coupled component but also a capacitively coupled component, and its influence is the shape of the element, the layer thickness of the dielectric film, the relative permittivity, etc. Affected by.
 よって、側面に設計された容量結合素子も含めた電磁界結合の設計においては、主面に作製される誘導結合素子は図5Cに示したようなメアンダパターン形状であってもよく、また一部に容量成分のようなコンデンサ形状を含んでいてもよい。 Therefore, in the design of the electromagnetic field coupling including the capacitive coupling element designed on the side surface, the inductive coupling element manufactured on the main surface may have a meander pattern shape as shown in FIG. 5C, or a part thereof. May include a capacitor shape such as a capacitive component.
 側面に形成する容量結合素子20、21は、例えば共鳴器101、102がプリント基板で作製されている場合、側面配線技術などを用いてその面積に応じた金属パターンをその側面に形成することができる。 For the capacitive coupling elements 20 and 21 formed on the side surface, for example, when the resonators 101 and 102 are made of a printed circuit board, a metal pattern corresponding to the area can be formed on the side surface by using side wiring technology or the like. it can.
 または、比較的厚い金属膜を用いて、それをパターニングすることで、その金属膜の膜厚と奥行き方向の長さの制御により、容量結合素子20、21を形成することができる。 Alternatively, by using a relatively thick metal film and patterning it, the capacitive coupling elements 20 and 21 can be formed by controlling the film thickness and the length in the depth direction of the metal film.
 図6A、図6Bは共鳴器101の第1の変形例を示す鳥観図、断面図である。 6A and 6B are bird's-eye views and cross-sectional views showing a first modification of the resonator 101.
 図2Bは、共鳴器101の誘電体膜側面に形成する例を示したが、図6Aおよび図6Bに示すように、一部に縦方向に厚みが異なる金属層を形成することで容量結合素子を容易に形成することができる。 FIG. 2B shows an example of forming on the side surface of the dielectric film of the resonator 101, but as shown in FIGS. 6A and 6B, a capacitive coupling element is formed by partially forming metal layers having different thicknesses in the vertical direction. Can be easily formed.
 例えば、大電流用途のプリント基板であればmmオーダーまで金属膜を厚くすることができ、本実施形態における側面の容量結合素子形成が容易に実現できる。 For example, in the case of a printed circuit board for large current applications, the metal film can be thickened to the order of mm, and the capacitive coupling element formation on the side surface in the present embodiment can be easily realized.
 別の例として、側面の容量結合素子20、21は、メッキ加工を施した貫通ビアを複数用いることで形成することもできる。この場合、ビアの断面積とその本数、ランドとその層厚で容量の面積と換算することができる。 As another example, the side capacitance coupling elements 20 and 21 can be formed by using a plurality of plated through vias. In this case, the cross-sectional area of vias and their number, and the land and its layer thickness can be converted into the area of capacity.
 図6Cは、第1実施形態の共鳴器の第2の変形例を示す鳥観図である。図6Cでは、貫通ビアとランド層を組み合わせた側面の容量結合素子の例を示している。 FIG. 6C is a bird's-eye view showing a second modification of the resonator of the first embodiment. FIG. 6C shows an example of a side capacitance coupling element in which a penetrating via and a land layer are combined.
 また、図6Dは、第1実施形態の共鳴器の第3の変形例を示す鳥観図である。図6Dでは、貫通ビアを連続的に連結することで実現可能な長穴加工を施した場合の側面容量結合素子の実施例である。 Further, FIG. 6D is a bird's-eye view showing a third modification of the resonator of the first embodiment. FIG. 6D is an example of a side capacitance coupling element in the case of performing a slotted hole processing that can be realized by continuously connecting through vias.
 長穴加工を行う場合、貫通ビアの径は大きくする必要がある。例えば図6Dはφ=0.6mmである。これらの貫通ビアを連結することで容易に容量結合素子を作製可能である。この場合の容量結合素子の面積は約2.4mm×0.84mmである。 When machining a long hole, it is necessary to increase the diameter of the through via. For example, FIG. 6D shows φ = 0.6 mm. Capacitive coupling elements can be easily manufactured by connecting these penetrating vias. The area of the capacitive coupling element in this case is about 2.4 mm × 0.84 mm.
 ただし、長穴加工を施した貫通ビアの終端面には通常ランドが必要である。ランドは貫通ビアの径よりも必然的に大きくなる。 However, a land is usually required on the end surface of the through via that has been subjected to slotted hole processing. The land is inevitably larger than the diameter of the penetrating via.
 本実施形態における容量結合素子20、21はもっとも大きな耐圧が印加される個所であるため、容量結合素子の対向する面は平坦であることが望ましい。 Since the capacitive coupling elements 20 and 21 in this embodiment are the locations where the largest withstand voltage is applied, it is desirable that the opposing surfaces of the capacitive coupling elements are flat.
 ランド層は貫通ビアで作製した長穴構造の面よりも横方向に大きくなるため、このままではランドの円周部に電界集中が起こり、耐圧低下が懸念される。 Since the land layer is larger in the lateral direction than the surface of the elongated hole structure made of through vias, electric field concentration occurs on the circumference of the land as it is, and there is a concern that the withstand voltage may decrease.
 よって、本実施形態の開示の効果を実現するためには、このランド構造を除去した長穴構造が望ましい。 Therefore, in order to realize the effect of the disclosure of the present embodiment, it is desirable to have an elongated hole structure in which this land structure is removed.
 図6Dの例は、ランド構造を除去した構造である。ランド構造の除去はプリント基板作製後に、ランド部分を物理的に除去することもできる。 The example of FIG. 6D is a structure in which the land structure is removed. The land structure can be physically removed after the printed circuit board is manufactured.
 なお、長穴加工により形成した容量結合素子20、21の長穴の内部は、貫通ビアを形成した後にその穴の側面を金属でメッキ加工することで容易に作製できる。よって、長穴加工した容量結合素子20、21の内部は、図6Dのように空洞であってもよい。また、容量結合素子20、21の内部は、同質の誘電体材料による樹脂埋めを実施してもよいし、金属を埋め込んでもよい。 The inside of the long holes of the capacitive coupling elements 20 and 21 formed by the long hole processing can be easily manufactured by plating the side surfaces of the holes with metal after forming the through vias. Therefore, the inside of the capacitive coupling elements 20 and 21 with the elongated holes may be hollow as shown in FIG. 6D. Further, the insides of the capacitive coupling elements 20 and 21 may be resin-filled with a dielectric material of the same quality, or a metal may be embedded.
 長穴部の内部を空洞化した場合は、後の封止工程においてパッケージ封止樹脂110の流れが良くなる効果が期待できる。 When the inside of the elongated hole is hollowed out, the effect of improving the flow of the package sealing resin 110 can be expected in the subsequent sealing process.
 一般的な絶縁伝送装置において、その結合部が誘導性結合であろうと、アンテナを用いた構造であろうと、少なからず容量性結合成分を有する。 In a general insulated transmission device, whether the coupling portion is an inductive coupling or a structure using an antenna, it has not a little capacitive coupling component.
 よって、本実施形態においては、主面の誘導結合素子のみで共鳴器を構成した場合であっても、1次-2次間の結合容量成分は有限の値をもつ。 Therefore, in the present embodiment, the coupling capacitance component between the primary and secondary has a finite value even when the resonator is configured only by the inductive coupling element on the main surface.
 しかし、本実施形態では、共鳴器主面に作製が容易な誘導結合素子を形成し、且つ、横方向の容量結合成分を大きくすることで、絶縁距離を保ちつつ、小型且つ高効率な絶縁伝送を実現する。 However, in the present embodiment, by forming an inductively coupled element that is easy to manufacture on the main surface of the resonator and increasing the capacitive coupling component in the lateral direction, compact and highly efficient insulation transmission is performed while maintaining the insulation distance. To realize.
 本実施形態においては、横方向の結合容量成分(Cio)を可能な限り大きくするため、主面の誘導結合素子を形成する金属層厚よりも、その倍以上の厚みを縦方向に有する容量結合素子20、21(図2Bや図6Bを参照)を、その共鳴器側面に形成することを特徴としている。 In the present embodiment, in order to make the coupling capacitance component (Cio) in the lateral direction as large as possible, the capacitive coupling having a thickness more than twice that of the metal layer forming the inductive coupling element on the main surface in the longitudinal direction. The elements 20 and 21 (see FIGS. 2B and 6B) are characterized in that they are formed on the side surface of the resonator.
 例えば、本実施形態の構造においては、主面の誘導結合素子の金属層厚は18umであるが、その側面に形成した容量結合素子に縦方向の長さは、図6Dの長穴加工を用いた場合にはその誘電体層厚になり、例えば0.84mmである。 For example, in the structure of the present embodiment, the metal layer thickness of the inductively coupled element on the main surface is 18 um, but the length in the vertical direction of the capacitive coupling element formed on the side surface is the elongated hole machining shown in FIG. 6D. If so, the thickness of the dielectric layer is, for example, 0.84 mm.
 このように、本実施形態においては、この誘導結合素子が共鳴器主面に形成され、容量結合成分がその側面に形成されることで、小型化且つ高効率伝送を実現している。 As described above, in the present embodiment, the inductively coupled element is formed on the main surface of the resonator and the capacitive coupling component is formed on the side surface thereof, thereby realizing miniaturization and high efficiency transmission.
 本実施形態の共鳴器101および102の構造は図2A~図2Dに示すグランド層30、31を有していてもよい。 The structures of the resonators 101 and 102 of the present embodiment may have the ground layers 30 and 31 shown in FIGS. 2A to 2D.
 グランド層30、31は共鳴器の裏面全体に形成されている必要はない。前述したように、1次-2次の結合部付近においては、容量結合素子20、21や2次側の相対するグランド層とも結合し得るからである。 The ground layers 30 and 31 do not have to be formed on the entire back surface of the resonator. This is because, as described above, in the vicinity of the primary-secondary coupling portion, it can also be coupled to the capacitive coupling elements 20 and 21 and the opposing ground layer on the secondary side.
 よって、図2Dに示すようにグランド層を結合領域から後退させて、共鳴器裏面の一部にグランド層がない領域を形成すれば、上記問題は解決できる。言い換えれば、共鳴器101の平面視において、第1のグランド層(30)と前記第2のグランド層(31)との距離であるd1+g1+d1は、前記第1の電極(20)と前記第2の電極(21)との距離g1よりも大きくなっている。 Therefore, the above problem can be solved by retracting the ground layer from the coupling region as shown in FIG. 2D to form a region without the ground layer on a part of the back surface of the resonator. In other words, in the plan view of the resonator 101, d1 + g1 + d1, which is the distance between the first ground layer (30) and the second ground layer (31), is the distance between the first electrode (20) and the second ground layer (31). The distance to the electrode (21) is larger than g1.
 一方で、共鳴器101、102は図3Aおよび図3Bのパッケージ構造に示すように、1次リードフレーム120、2次リードフレーム130に実装する。2つのリードフレームは通常銅板で形成されるため、共鳴器101、102を実装した際、前述のグランド層30、31は、2つのリードフレームと同電位になるため、これらのリードフレーム自体が1次側の容量結合素子20や2次側の容量結合素子21、グランド層30、31と結合することが考えられる。 On the other hand, the resonators 101 and 102 are mounted on the primary lead frame 120 and the secondary lead frame 130 as shown in the package structures of FIGS. 3A and 3B. Since the two lead frames are usually formed of a copper plate, when the resonators 101 and 102 are mounted, the ground layers 30 and 31 described above have the same potential as the two lead frames, so that these lead frames themselves are 1 It is conceivable that the capacitance coupling element 20 on the secondary side, the capacitance coupling element 21 on the secondary side, and the ground layers 30 and 31 are coupled.
 これらの問題を解決する方法としては、図7に示す共鳴器101aのように、共鳴器にもう1層、誘電体層70aを形成し、グランド層30と1次リードフレーム120間の距離を確保することができる。 As a method of solving these problems, as in the resonator 101a shown in FIG. 7, another layer, a dielectric layer 70a, is formed in the resonator to secure a distance between the ground layer 30 and the primary lead frame 120. can do.
 このような構造においては、グランド層30と1次リードフレーム120の電磁界共鳴に及ぼす影響をそれぞれ独立に制御できる。 In such a structure, the influence of the ground layer 30 and the primary lead frame 120 on the electromagnetic field resonance can be controlled independently.
 また前記グランド層は、前記誘導結合素子10の上部に形成することもできる。図8Aおよび図8Bにその共鳴器構造101bの例を示す。つまり、誘電体層60aを1層追加し、誘導結合素子10の面上に形成し、その表面にグランド層30aを形成してもよい。この場合、入力端子40aとグランド端子50aを貫通ビア80a、b、cを介して新たに形成してもよい。 The ground layer can also be formed on the upper part of the inductively coupled element 10. 8A and 8B show an example of the resonator structure 101b. That is, one dielectric layer 60a may be added, formed on the surface of the inductively coupled element 10, and the ground layer 30a may be formed on the surface thereof. In this case, the input terminal 40a and the ground terminal 50a may be newly formed via the through vias 80a, b, and c.
 また、このグランド層30aは、前記グランド端子50、50aと等電位になるように形成してもよい。 Further, the ground layer 30a may be formed so as to have an equipotential potential with the ground terminals 50 and 50a.
 図8Aおよび図8Bでは誘電体層70の底面のグランド層は用いていないが、用いた構造でもよい。 Although the ground layer on the bottom surface of the dielectric layer 70 is not used in FIGS. 8A and 8B, the structure may be used.
 このような誘導結合素子10上部にグランド層30aを設けることで、外部からの電磁界ノイズの影響や本実施形態の電磁界共鳴器の外部への電磁界放射を抑制する効果が期待される。 By providing the ground layer 30a on the upper part of such an inductively coupled element 10, it is expected to have an effect of suppressing the influence of electromagnetic field noise from the outside and the electromagnetic field radiation to the outside of the electromagnetic field resonator of the present embodiment.
 [1.5 本実施形態における絶縁伝送素子の特性]
 図9A~図9Cは、本実施形態の電磁界共鳴結合部のSパラメータ(S11、S22)と透過量と反射量の実測値である。
[1.5 Characteristics of Insulated Transmission Element in the Present Embodiment]
9A to 9C are S-parameters (S11, S22) of the electromagnetic field resonance coupling portion of the present embodiment, and actual measurement values of the transmission amount and the reflection amount.
 ここで、共鳴器101の設計パラメータを図9Dに示す。図9A~図9Cのモデル構造は図2A~図2Dに示した共鳴器101、102をベースにしており、対称構造としているため、共鳴器102のパラメータは101のそれと同じである。 Here, the design parameters of the resonator 101 are shown in FIG. 9D. Since the model structures of FIGS. 9A to 9C are based on the resonators 101 and 102 shown in FIGS. 2A to 2D and have a symmetrical structure, the parameters of the resonator 102 are the same as those of 101.
 図9Aはスミスチャートを示しているが、入力端子から見たS11と出力端子からみたS22の値は完全に一致しており、対称構造になっていることが確認された。 Although FIG. 9A shows a Smith chart, it was confirmed that the values of S11 seen from the input terminal and S22 seen from the output terminal were completely the same and had a symmetrical structure.
 設計周波数を2.4GHzとした場合、反射量は-26dB(図9B)、透過量は-0.6dB(図9C)という値が得られている。 When the design frequency is 2.4 GHz, the reflection amount is -26 dB (Fig. 9B) and the transmission amount is -0.6 dB (Fig. 9C).
 また動作帯域幅は透過量が-10dB以下になる範囲で定義すると、1.7~3.7GHzの範囲、つまり、およそ2.0GHzであった。 The operating bandwidth was defined in the range where the transmission amount was -10 dB or less, and was in the range of 1.7 to 3.7 GHz, that is, about 2.0 GHz.
 このような広い動作帯域幅は、絶縁伝送装置の設計する上で好ましい。なぜなら送信機の発振周波数が多少ずれても、高効率伝送が可能であるからである。 Such a wide operating bandwidth is preferable in designing an insulated transmission device. This is because high-efficiency transmission is possible even if the oscillation frequency of the transmitter deviates slightly.
 このような広帯域化は、図9Bに明らかなように2つの共鳴周波数をもつように電磁界共鳴結合を設計することで達成可能であり、誘導結合素子や容量結合素子を含めた図9Dのパラメータを調整することで実現できる。 Such a wide band can be achieved by designing the electromagnetic resonance coupling so as to have two resonance frequencies as is clear from FIG. 9B, and the parameters in FIG. 9D including the inductive coupling element and the capacitive coupling element. It can be realized by adjusting.
 当然、単一周波数で共鳴するような設計も可能であり、この場合は共鳴周波数以外では損失が大きくなるため、フィルタとしての効果(ノイズ除去などの効果)が顕著になる。反面、精密な周波数制御が送信回路201や受信回路202に求められる。 Of course, it is also possible to design so that it resonates at a single frequency. In this case, the loss becomes large except for the resonance frequency, so the effect as a filter (effect such as noise removal) becomes remarkable. On the other hand, precise frequency control is required for the transmission circuit 201 and the reception circuit 202.
 図10A、図10Bは本実施形態の電磁界共鳴結合の様子(ベクトル分布)を電界、磁界に分けて第1および第2共鳴器の側面からシミュレーションした結果を示す図である。 10A and 10B are diagrams showing the results of simulating the state of electromagnetic field resonance coupling (vector distribution) of the present embodiment by dividing it into an electric field and a magnetic field from the side surfaces of the first and second resonators.
 図10Aおよび図10Bのそれぞれは、ある位相における電界、磁界の分布の様子を複数の矢線で示す。各共鳴器の側面に相対する容量結合素子20と21において電界成分が強く結合している様子が確認できる(図10A)。 Each of FIGS. 10A and 10B shows the distribution of electric and magnetic fields in a certain phase with a plurality of arrows. It can be confirmed that the electric field components are strongly coupled in the capacitive coupling elements 20 and 21 facing the side surfaces of the resonators (FIG. 10A).
 一方、誘導結合素子10と11同士の結合は、容量結合素子ほど強くはないが、横方向に結合がみられ(図10B)、これら誘導結合と容量結合の二つの電磁界共鳴結合により、高効率絶縁伝送が実現していることがわかる。 On the other hand, the coupling between the inductively coupled elements 10 and 11 is not as strong as that of the capacitive coupling element, but a lateral coupling is observed (FIG. 10B), and the coupling is high due to the two electromagnetic resonance couplings of the inductive coupling and the capacitive coupling. It can be seen that efficient insulated transmission is realized.
 以上のように、本実施形態の電磁界共鳴結合構造における横方向結合方式において、共鳴器主面に形成した誘導結合素子とその側面に形成した容量結合素子による電磁界共鳴結合により、絶縁距離を0.4mm以上保った状態で高効率伝送が実現できる。 As described above, in the lateral coupling method in the electromagnetic field resonance coupling structure of the present embodiment, the insulation distance is determined by the electromagnetic resonance coupling between the inductive coupling element formed on the main surface of the resonator and the capacitive coupling element formed on the side surface thereof. High-efficiency transmission can be realized while maintaining 0.4 mm or more.
 なお、前記図2A~図2Dも図8Aおよび図8Bの誘電体層60、60a、70やパッケージ封止樹脂110の一部もしくは全部は図10Bの磁界結合を促進させる機能をもつ材料を用いてもよい。つまり磁性体材料を一部または全部含有するような層であってもよい。磁性体としては例えばフェライト、コバルト、マンガンなどの材料である。 In addition, also in FIGS. 2A to 2D, the dielectric layers 60, 60a, 70 of FIGS. 8A and 8B and a part or all of the package sealing resin 110 are made of a material having a function of promoting the magnetic field coupling of FIG. 10B. May be good. That is, it may be a layer containing a part or all of the magnetic material. The magnetic material is, for example, a material such as ferrite, cobalt, or manganese.
 これらの磁性材料はプリント基板用材料として容易に用いることができ、図10Bの誘導結合(磁界結合)を促進させる効果を持つ。 These magnetic materials can be easily used as materials for printed circuit boards and have the effect of promoting inductive coupling (magnetic field coupling) in FIG. 10B.
 [1.6 等価回路]
 次に、電磁界共鳴結合部100の等価回路について説明する。
[1.6 Equivalent circuit]
Next, the equivalent circuit of the electromagnetic field resonance coupling unit 100 will be described.
 図11A~図11Cは本実施形態に係る等価回路図である。図11A~図11Cは電磁界共鳴結合部100の領域のみが対象である。 11A to 11C are equivalent circuit diagrams according to this embodiment. 11A to 11C show only the region of the electromagnetic field resonance coupling portion 100.
 図11Aの等価回路は、第1および第2の誘導結合素子10、11が持つ自己誘導成分10a、11aと、主に誘導結合素子10、11とグランド層間で形成される静電容量成分12、13(Cg)と、第1の共鳴器101と第2の共鳴器102とを繋ぐ結合容量成分22(Cio)とで構成されている。 In the equivalent circuit of FIG. 11A, the self- inductive components 10a and 11a of the first and second inductively coupled elements 10 and 11 and the capacitance component 12 mainly formed between the inductively coupled elements 10 and 11 and the ground layer, It is composed of 13 (Cg) and a coupling capacitance component 22 (Cio) connecting the first resonator 101 and the second resonator 102.
 同図には示していないが、図10Bから明らかなように、自己誘導成分10aと11aは、相互誘導成分も有することがわかる。 Although not shown in the figure, as is clear from FIG. 10B, it can be seen that the self-inducing components 10a and 11a also have a mutual-inducing component.
 よって、この等価回路から、第1および第2の共鳴器構造における自己誘導成分10a、11a、静電容量成分12、13による共鳴周波数がそれぞれ一致し、結合容量成分22(Cio)と相互誘導成分を介して、図9A~図9Cに示した高効率の電磁界共鳴結合による伝送が実現できていることが確認される。 Therefore, from this equivalent circuit, the resonance frequencies of the self-inducing components 10a and 11a and the capacitance components 12 and 13 in the first and second resonator structures match, respectively, and the coupling capacitance component 22 (Cio) and the mutual induction component are matched. It is confirmed that the transmission by the highly efficient electromagnetic resonance coupling shown in FIGS. 9A to 9C can be realized.
 図2Bや図10Aからわかるように、本実施形態の構造は第1および第2の共鳴器101と102が最も近接する面に容量結合素子20と21が形成されているため、誘導結合よりも容量結合が主体的な役割を果たしているといえる。 As can be seen from FIGS. 2B and 10A, the structure of the present embodiment is more than inductive coupling because the capacitive coupling elements 20 and 21 are formed on the surfaces where the first and second resonators 101 and 102 are closest to each other. It can be said that capacitive coupling plays a leading role.
 このような容量結合が主体的な絶縁伝送回路の等価回路は図11Aよりもむしろ図11Bのように容量結合23(Cret)という、結合容量成分22(Cio)とは別の容量結合経路として、副共鳴経路を想定することが等価回路としてはより正確である。なお、Cretは、Creturnの略である。 The equivalent circuit of such an insulated transmission circuit in which capacitive coupling is the main component is a capacitive coupling 23 (Cret) as shown in FIG. 11B rather than FIG. 11A, which is a capacitive coupling path different from the coupling capacitive component 22 (Cio). Assuming a sub-resonance path is more accurate as an equivalent circuit. Cret is an abbreviation for Creturn.
 図11Aの等価回路において、第1の共鳴器101側と第2の共鳴器102側は完全に絶縁されているため、お互いの回路のグランドであるGND1(30b)とGND2(31b)は電気的に接続されていない。 In the equivalent circuit of FIG. 11A, since the first resonator 101 side and the second resonator 102 side are completely insulated, GND1 (30b) and GND2 (31b), which are the grounds of each other's circuits, are electrically connected. Not connected to.
 図11Bに示すように容量結合23(Cret)を、GND1(30b)およびGND2(31b)を接続することで、等価回路として実験結果と近い値を得ることができる。 By connecting the capacitive coupling 23 (Cret) to the GND1 (30b) and the GND2 (31b) as shown in FIG. 11B, a value close to the experimental result can be obtained as an equivalent circuit.
 図9Dの設計例において、結合容量成分22(Cio)を3mm×0.4mmの並行平板とみなした場合は約0.1pFと見積もることができる。このような小さい結合容量でも高い効率の絶縁信号伝送が実現できるのは、図11Aおよび図11Bの誘導結合成分(10a,11a)も含めた電磁界共鳴結合を実現しているためである。 In the design example of FIG. 9D, when the coupling capacitance component 22 (Cio) is regarded as a parallel flat plate of 3 mm × 0.4 mm, it can be estimated to be about 0.1 pF. Highly efficient insulation signal transmission can be realized even with such a small coupling capacitance because the electromagnetic field resonance coupling including the inductive coupling components (10a, 11a) of FIGS. 11A and 11B is realized.
 本実施形態においては、容量結合23(Cret)は第1及び第2のリードフレーム間を主に形成される容量成分で構成している。想定している容量結合23(Cret)の値は0.1~1.0pF程度である。例えば、図3Aおよび図3Bのリードフレーム120および130のリードフレーム端面120bおよび130bそれぞれの幅を10mm、その厚みを0.5mmとした場合の容量はおよそ0.5pFである。 In the present embodiment, the capacitive coupling 23 (Cret) is composed of a capacitive component mainly formed between the first and second lead frames. The assumed capacitive coupling 23 (Cret) value is about 0.1 to 1.0 pF. For example, when the widths of the lead frame end faces 120b and 130b of the lead frames 120 and 130 of FIGS. 3A and 3B are 10 mm and the thickness thereof is 0.5 mm, the capacitance is about 0.5 pF.
 つまり、リードフレームも含めた第1および第2の共鳴器間の総容量はおよそ(結合容量成分22(Cio)+容量結合23(Cret))と見積もることができ、その値は例えば1pF以下に設計することができる。 That is, the total capacitance between the first and second resonators including the lead frame can be estimated to be approximately (coupling capacitance component 22 (Cio) + capacitive coupling 23 (Cret)), and the value is, for example, 1 pF or less. Can be designed.
 このような第1および第2の共鳴器間の総容量、いわゆる1次-2次間の総結合容量は、大きい値になるほど、2次側のパワーデバイスの高速スイッチング時のノイズ電流の影響が大きくなることが分かっている。例えば、ノイズ電流=C総結合容量×dV/dtで表される。 The larger the total capacitance between the first and second resonators, the so-called primary-secondary coupling capacitance, the greater the effect of noise current during high-speed switching of the secondary power device. It is known to grow. For example, it is expressed as noise current = C total coupling capacitance × dV / dt.
 一方で、結合容量成分22(Cio)と容量結合23(Cret)を大きくすることにより、結合量が増えるため、効率増大に貢献する。 On the other hand, by increasing the coupling capacitance component 22 (Cio) and the capacitive coupling 23 (Cret), the binding amount increases, which contributes to an increase in efficiency.
 小型化を実現する上では面積が大きくなる結合容量成分22(Cio)や容量結合23(Cret)はなるべく小さい方が好ましい。 In order to realize miniaturization, it is preferable that the coupling capacitance component 22 (Cio) and the capacitive coupling 23 (Cret), which have a large area, are as small as possible.
 このように本実施形態においては、結合容量成分22(Cio)だけではなく、容量結合23(Cret)についても最適な設計を行うことで、耐ノイズ性と高効率伝送の両立が可能である。 As described above, in the present embodiment, not only the coupling capacitance component 22 (Cio) but also the capacitive coupling 23 (Cret) is optimally designed, so that both noise resistance and high-efficiency transmission can be achieved at the same time.
 図11Cは、図11BのインダクタンスLを伝送線路(10b、11b)に置き換えた等価回路である。本実施形態の電磁界共鳴結合回路は伝送線路としてその特性インピーダンスを与えても、等価回路として効率などの特性を評価することができる。 FIG. 11C is an equivalent circuit in which the inductance L of FIG. 11B is replaced with a transmission line (10b, 11b). Even if the electromagnetic field resonance coupling circuit of the present embodiment is given its characteristic impedance as a transmission line, characteristics such as efficiency can be evaluated as an equivalent circuit.
 [1.7 副共鳴経路:容量結合23(Cret)の設計例]
 図11A~図11Cに示したように、本実施形態の絶縁伝送装置の高効率化を実現する上で、容量結合23(Cret)の設計は重要である。
[1.7 Secondary Resonance Path: Capacitive Coupling 23 (Cret) Design Example]
As shown in FIGS. 11A to 11C, the design of the capacitive coupling 23 (Cret) is important for realizing high efficiency of the insulated transmission device of the present embodiment.
 しかし、本実施形態の電磁界共鳴結合部100は完全に分離されており、横方向に2つの共鳴器101と102が結合する構造である。 However, the electromagnetic field resonance coupling portion 100 of the present embodiment is completely separated, and has a structure in which two resonators 101 and 102 are coupled in the lateral direction.
 こういった電磁界共鳴結合部100において、副共鳴経路と考えられる容量結合23(Cret)を如何に設計するかは、効率およびパッケージの小型化を両立される上で重要である。 In such an electromagnetic field resonance coupling portion 100, how to design the capacitive coupling 23 (Cret) considered to be a sub-resonance path is important in order to achieve both efficiency and miniaturization of the package.
 以下に、本実施形態に係る容量結合23(Cret)の設計例を示す。 The design example of the capacitive coupling 23 (Cret) according to this embodiment is shown below.
 [1.7.1 容量結合23(Cretの設計に係る変形例その1]
 本実施形態においては、図3Aおよび図3Bに示すように、絶縁距離0.4mmで相対する、1次と2次のリードフレーム端面120bおよび130bを容量結合23(Cret)として設計したが、この場合、リードフレームの厚みや幅が大きくなり設計上の制約があった。
[1.7.1 Capacitive coupling 23 (Modification 1 related to Cret design]
In the present embodiment, as shown in FIGS. 3A and 3B, the primary and secondary lead frame end faces 120b and 130b facing each other at an insulation distance of 0.4 mm are designed as capacitive coupling 23 (Cret). In this case, the thickness and width of the lead frame become large, which imposes design restrictions.
 変形例その1では、第1、第2共鳴器に容量結合23(Cret)を形成し、結合容量成分22(Cio)を増加させている。 In the first modification, the capacitive coupling 23 (Cret) is formed in the first and second resonators, and the coupling capacitive component 22 (Cio) is increased.
 図12A、図12Bは対をなす共鳴器の1次側のみ(101c)を示した構造模式図である。2次側の共鳴器は対称構造であるため説明は省略する。 12A and 12B are schematic structural diagrams showing only the primary side (101c) of the paired resonators. Since the resonator on the secondary side has a symmetrical structure, the description thereof will be omitted.
 図12Aおよび図12Bに示したように、誘電体層70bを更に追加し、1次-2次結合面となる側面に容量成分23aを形成することで、共鳴器内に容量結合23(Cret)を形成することができる。容量成分23aは復路電極とも呼ぶ。この復路電極は、対向する共鳴器102aの復路電極とともに容量結合23(Cret)を形成する。 As shown in FIGS. 12A and 12B, the dielectric layer 70b is further added to form the capacitive component 23a on the side surface to be the primary-secondary coupling surface, whereby the capacitive coupling 23 (Cret) is formed in the resonator. Can be formed. The capacitance component 23a is also referred to as a return electrode. This return electrode forms a capacitive coupling 23 (Cret) together with the return electrode of the opposing resonator 102a.
 しかし、この場合、共鳴器のサイズ増加(高さや幅)や、信号経路との干渉などが懸念されるが、共鳴器に作り込むことができるため、設計が容易である。 However, in this case, there are concerns about an increase in the size (height and width) of the resonator and interference with the signal path, but the design is easy because it can be built into the resonator.
 [1.7.2 容量結合23(Cret)の設計に係る変形例その2]
 前述したように本実施形態で示したリードフレーム端を容量結合23(Cret)として活用する方法では、図3Aおよび図3Bに示した例において、リードフレームの幅によって容量成分を制御するため、容量結合23(Cret)の設計値によってはリードフレーム幅が増大し、パッケージサイズが増大する。
[1.7.2 Deformation example 2 related to the design of capacitive coupling 23 (Cret)]
As described above, in the method of utilizing the lead frame end shown in the present embodiment as the capacitive coupling 23 (Cret), in the examples shown in FIGS. 3A and 3B, the capacitance component is controlled by the width of the lead frame. Depending on the design value of the bond 23 (Cret), the lead frame width increases and the package size increases.
 図13Aおよび図13Bのパッケージ構造2000aでは、相対するリードフレーム端面(120c,130c)のみ高さ(つまり厚さ)および幅の少なくとも一方を増減させて、リードフレーム端面の面積を増減させ、容量結合23(Cret)の値を決定することができる。 In the package structure 2000a of FIGS. 13A and 13B, at least one of the height (that is, the thickness) and the width of the opposite lead frame end faces (120c, 130c) is increased or decreased to increase or decrease the area of the lead frame end faces, and the capacitance coupling is performed. The value of 23 (Cret) can be determined.
 [1.7.3 容量結合23(Cret)の設計に係る変形例その3]
 図14は、リードフレームを利用した容量結合23(Cret)の別のパッケージ構造2000bの例である。同図の(a)、(b)および(c)は、斜視図、側面図および側面の一部の拡大図を示す。変形例2ではリードフレームの一部のみの厚みを変化させるため、リードフレーム形状が複雑になり、製造コストが増加する懸念がある。
[1.7.3 Deformation example 3 related to the design of capacitive coupling 23 (Cret)]
FIG. 14 is an example of another package structure 2000b of the capacitive coupling 23 (Cret) using a lead frame. (A), (b) and (c) of the figure show a perspective view, a side view and an enlarged view of a part of the side surface. In the second modification, since the thickness of only a part of the lead frame is changed, the shape of the lead frame becomes complicated, and there is a concern that the manufacturing cost increases.
 図14では、リードフレームの変形を行わず、容易に容量結合23(Cret)の容量値を設計できる手法を提案している。 FIG. 14 proposes a method capable of easily designing the capacitance value of the capacitive coupling 23 (Cret) without deforming the lead frame.
 同図のように1次リードフレーム120と2次リードフレーム130とに跨るように金属シールド板4をパッケージ内に設置する。この場合、金属シールド板4は1次リードフレーム120および2次リードフレーム130とは電気的に絶縁されており、中間電位を有する。 As shown in the figure, the metal shield plate 4 is installed in the package so as to straddle the primary lead frame 120 and the secondary lead frame 130. In this case, the metal shield plate 4 is electrically insulated from the primary lead frame 120 and the secondary lead frame 130 and has an intermediate potential.
 金属シールド板4と各リードフレーム間の距離は任意に設定することができ、0.4mm以上とすることもできる。またそれぞれのリードフレームとの縦方向の重なり面積を変えることで容量結合23(Cret)を制御できる。 The distance between the metal shield plate 4 and each lead frame can be set arbitrarily, and can be 0.4 mm or more. Further, the capacitive coupling 23 (Cret) can be controlled by changing the overlapping area in the vertical direction with each lead frame.
 ただし、この場合金属板と各リードフレーム間に形成された容量成分C0が等しいと仮定すると、容量結合23(Cret)はC0/2の値となる。 However, in this case, assuming that the capacitance component C0 formed between the metal plate and each lead frame is equal, the capacitive coupling 23 (Cret) has a value of C0 / 2.
 変形例3は重なり面積を制御するだけで容易に容量結合23(Cret)を増加させることができ、共鳴器やリードフレーム自体の設計変更を必要としないなどのメリットがある。 Modification 3 has merits that the capacitive coupling 23 (Cret) can be easily increased only by controlling the overlapping area, and the design of the resonator and the lead frame itself does not need to be changed.
 当然、リードフレーム端面に形成される容量も含めて、容量結合23(Cret)を形成することができ、設計上結合容量の増加が容易になる。 Naturally, the capacitive coupling 23 (Cret) can be formed including the capacitance formed on the end face of the lead frame, and the coupling capacitance can be easily increased by design.
 金属シールド板4は誘電体層表面に形成された2層基板であってもよい。こうすることでパッケージ内に実装する場合も容易に取り扱うことができる。 The metal shield plate 4 may be a two-layer substrate formed on the surface of the dielectric layer. By doing so, it can be easily handled even when it is implemented in a package.
 以上説明してきたように、第1実施形態に係る絶縁伝送装置は、複数の誘電体層からなる第1の誘電体多層膜65と、複数の誘電体層からなる第2の誘電体多層膜66と、第1の誘電体多層膜65に設けられた、第1の共鳴器101と、第2の誘電体多層膜66に設けられた、第2の共鳴器102とを有し、第1の共鳴器101と第2の共鳴器102との間は直流電流に対しては電気的に絶縁されており、第1の共鳴器101と第2の共鳴器102との間で、所定の周波数帯域内の電磁波を伝送させるものであり、第1の共鳴器101は、第1の誘導素子として誘導結合素子10と、容量素子を構成する第1の電極として容量結合素子20とを有し、第2の共鳴器102は、第2の誘導素子として誘導結合素子11と、容量素子を構成する第2の電極として容量結合素子21とを有する。 As described above, the insulated transmission device according to the first embodiment has a first dielectric multilayer film 65 composed of a plurality of dielectric layers and a second dielectric multilayer film 66 composed of a plurality of dielectric layers. A first resonator 101 provided on the first dielectric multilayer film 65 and a second resonator 102 provided on the second dielectric multilayer film 66. The resonator 101 and the second resonator 102 are electrically isolated from a DC current, and a predetermined frequency band is provided between the first resonator 101 and the second resonator 102. The first resonator 101 has an inductive coupling element 10 as a first inducing element and a capacitive coupling element 20 as a first electrode constituting the capacitive element. The resonator 102 of 2 has an inductive coupling element 11 as a second inducing element and a capacitive coupling element 21 as a second electrode constituting the capacitive element.
 これによれば、長期の高い絶縁信頼性を有し、且つ小型化、高効率化および低コスト化を可能にする。 According to this, it has high insulation reliability for a long period of time, and enables miniaturization, high efficiency, and low cost.
 ここで、第1の誘導素子は、第1の誘電体多層膜65のうち一の誘電体層の表面に設けられ、第1の電極は、第1の誘電体多層膜65の側面に設けられ、第2の誘導素子は、第2の誘電体多層膜66のうち一の誘電体層の表面に設けられ、第2の電極は、第2の誘電体多層膜66の側面に設けられていてもよい。 Here, the first induction element is provided on the surface of one dielectric layer of the first dielectric multilayer film 65, and the first electrode is provided on the side surface of the first dielectric multilayer film 65. The second induction element is provided on the surface of one of the dielectric layers of the second dielectric multilayer film 66, and the second electrode is provided on the side surface of the second dielectric multilayer film 66. May be good.
 これによれば、主面と側面にそれぞれ誘導結合素子と容量結合素子を形成することで、横方向の結合において高効率の電磁界共鳴結合を実現する。 According to this, by forming an inductive coupling element and a capacitive coupling element on the main surface and the side surface, respectively, highly efficient electromagnetic field resonance coupling is realized in the lateral coupling.
 ここで、第1の電極と、第2の電極は互いに対向して設けられていてもよい。 Here, the first electrode and the second electrode may be provided so as to face each other.
 これによれば、横方向の容量性結合を主として高効率の電磁界共鳴結合を実現できる。 According to this, it is possible to realize highly efficient electromagnetic resonance coupling mainly by capacitive coupling in the lateral direction.
 ここで、第1の電極と、第2の電極の間の距離は0.4mm以上であってもよい。 Here, the distance between the first electrode and the second electrode may be 0.4 mm or more.
 これによれば、長期の高い絶縁信頼性を確保することができる。 According to this, high insulation reliability for a long period of time can be ensured.
 ここで、絶縁伝送装置は、第1の誘電体多層膜65に設けられた、第1のグランド層30と、第2の誘電体多層膜66に設けられた、第2のグランド層31とを有し、第1のグランド層30は、第1の誘電体多層膜65のうち一の誘電体層の表面に設けられ、第2のグランド層31は、第2の誘電体多層膜の66うち一の誘電体層の表面に設けられていてもよい。 Here, the insulated transmission device has a first ground layer 30 provided on the first dielectric multilayer film 65 and a second ground layer 31 provided on the second dielectric multilayer film 66. The first ground layer 30 is provided on the surface of one of the first dielectric multilayer films 65, and the second ground layer 31 is 66 of the second dielectric multilayer films. It may be provided on the surface of one dielectric layer.
 これによれば、誘電体多層膜65および誘電体多層膜66それぞれのグランドレベルの安定化を確保することができる。 According to this, it is possible to secure the stabilization of the ground level of each of the dielectric multilayer film 65 and the dielectric multilayer film 66.
 ここで、第1のグランド層30および第2のグランド層31は一の誘電体層70と他の一の誘電体層70aの間に設けられていてもよい。 Here, the first ground layer 30 and the second ground layer 31 may be provided between the one dielectric layer 70 and the other dielectric layer 70a.
 これによれば、例えば、第1および第2のグランド層の配置設計により、リードフレームと第1および第2のグランド層との電磁界共鳴に及ぼす影響をそれぞれ独立に制御できる。 According to this, for example, by designing the arrangement of the first and second ground layers, the influence of the lead frame and the first and second ground layers on the electromagnetic field resonance can be controlled independently.
 ここで、第1の誘導素子および第2の誘導素子は一の誘電体層と他の一の誘電体層の間に設けられていてもよい。 Here, the first inducing element and the second inducing element may be provided between one dielectric layer and the other dielectric layer.
 これによれば、外部からの電磁界ノイズの影響や、界共鳴器の外部への電磁界放射を抑制することができる。 According to this, the influence of electromagnetic field noise from the outside and the electromagnetic field radiation to the outside of the field resonator can be suppressed.
 ここで、第1の誘導素子および第2の誘導素子は、平面コイル形状の導体パターンであってもよい。 Here, the first inductive element and the second inductive element may have a flat coil-shaped conductor pattern.
 これによれば、第1および第2の誘導素子を面状に容易に形成することができる。 According to this, the first and second induction elements can be easily formed in a planar shape.
 ここで、第1の誘導素子および第2の誘導素子は、メアンダパターン形状の導体パターンであってもよい。 Here, the first guiding element and the second guiding element may be a conductor pattern having a meander pattern shape.
 これによれば、第1および第2の誘導素子を面状に容易に形成することができる。 According to this, the first and second induction elements can be easily formed in a planar shape.
 ここで、第1の誘電体多層膜65と第2の誘電体多層膜66とを容量結合し、電磁波の復路を構成する容量結合23(Cret)を備えてもよい。 Here, a capacitive coupling 23 (Cret) may be provided in which the first dielectric multilayer film 65 and the second dielectric multilayer film 66 are capacitively coupled to form a return path of an electromagnetic wave.
 これによれば、容量性回路要素により、伝送される電磁波のリターンパスとしての副共鳴経路を設けることができる。 According to this, the capacitive circuit element can provide a sub-resonance path as a return path of the transmitted electromagnetic wave.
 ここで、(容量結合23(Cret)は、第1の誘電体多層膜65の側面に形成された面状の第1の復路電極23aと、第2の誘電体多層膜66の側面に形成された面状の第2の復路電極と、を備え、第1の復路電極23aと第2の復路電極とは、互いに対向して設けられてもよい。 Here, (capacitive coupling 23 (Cret) is formed on the side surface of the first planar return electrode 23a formed on the side surface of the first dielectric multilayer film 65 and the side surface of the second dielectric multilayer film 66. A second return electrode having a planar shape may be provided, and the first return electrode 23a and the second return electrode may be provided so as to face each other.
 これによれば、第1および第2の復路電極の設計により、伝送される電磁波の復路設計を容易にすることができる。 According to this, the return path design of the transmitted electromagnetic wave can be facilitated by the design of the first and second return path electrodes.
 ここで、第1の誘電体多層膜65を載置する第1のリードフレーム120と、第2の誘電体多層膜66を載置する第2のリードフレーム130と、を備え、容量結合23(Cret)は、第1のリードフレーム120の端面と、第2のリードフレーム130の端面と、により構成され、第1のリードフレーム120の端面と、第2のリードフレーム130の端面は、互いに対向して設けられてもよい。 Here, a first lead frame 120 on which the first dielectric multilayer film 65 is placed and a second lead frame 130 on which the second dielectric multilayer film 66 is placed are provided, and the capacitive coupling 23 ( Cret) is composed of an end face of the first lead frame 120 and an end face of the second lead frame 130, and the end face of the first lead frame 120 and the end face of the second lead frame 130 face each other. May be provided.
 これによれば、第1および第2のリードフレームの端面の面積設計により、伝送される電磁波の復路設計を容易にすることができる。 According to this, the area design of the end faces of the first and second lead frames makes it possible to facilitate the return path design of the transmitted electromagnetic wave.
 ここで、第1のリードフレーム120の端面120cの面積は、第1のリードフレーム120における端面120cと平行な一断面の面積よりも大きく、第2のリードフレーム130の端面130cの面積は、第2のリードフレーム130における端面130cと平行な一断面の面積よりも大きくてもよい。 Here, the area of the end face 120c of the first lead frame 120 is larger than the area of one cross section parallel to the end face 120c of the first lead frame 120, and the area of the end face 130c of the second lead frame 130 is the second. It may be larger than the area of one cross section parallel to the end face 130c in the lead frame 130 of 2.
 これによれば、第1および第2のリードフレームの端面の高さ(つまり厚さ)の設計により、伝送される電磁波の復路設計を容易にすることができる。 According to this, the return path design of the transmitted electromagnetic wave can be facilitated by designing the height (that is, the thickness) of the end faces of the first and second lead frames.
 ここで、容量結合23(Cret)は、第1の誘電体多層膜65および第2の誘電体多層膜66の表面と平行な金属シールド板4であって、平面視において、第1の誘電体多層膜65の一部または全部と重なり、かつ、第2の誘電体多層膜66の一部または全部と重なる金属シールド板を含んでいてもよい。 Here, the capacitive coupling 23 (Cret) is a metal shield plate 4 parallel to the surfaces of the first dielectric multilayer film 65 and the second dielectric multilayer film 66, and is the first dielectric in a plan view. A metal shield plate that overlaps a part or all of the multilayer film 65 and also overlaps a part or all of the second dielectric multilayer film 66 may be included.
 これによれば、金属シールド板の配置設計により、伝送される電磁波の復路設計を容易にすることができる。 According to this, the return path design of the transmitted electromagnetic wave can be facilitated by the arrangement design of the metal shield plate.
 ここで、互いに対向して設けられた第1の電極と第2の電極との間の誘電率は、第1の誘電体多層膜65の誘電率および第2の誘電体多層膜66の誘電率の少なくとも一方と異なっていてもよい。 Here, the permittivity between the first electrode and the second electrode provided so as to face each other is the permittivity of the first dielectric multilayer film 65 and the permittivity of the second dielectric multilayer film 66. It may be different from at least one of.
 これによれば、第1の電極と第2の電極と間の誘電率に応じて、容量素子の容量値を制御することができる。 According to this, the capacitance value of the capacitive element can be controlled according to the dielectric constant between the first electrode and the second electrode.
 ここで、平面視において、第1のグランド層30と第2のグランド層31との距離は、第1の電極と第2の電極との距離よりも大きくてもよい。 Here, in a plan view, the distance between the first ground layer 30 and the second ground layer 31 may be larger than the distance between the first electrode and the second electrode.
 これによれば、第1および第2のグランド層による電磁界結合への影響を抑制することができる。 According to this, the influence of the first and second ground layers on the electromagnetic field coupling can be suppressed.
 ここで、上記の容量素子の容量値は、1pF以下であってもよい。 Here, the capacitance value of the above-mentioned capacitive element may be 1 pF or less.
 これによれば、1pF以下の容量値であっても、効率的な電磁界結合を実現することができる。 According to this, even if the capacitance value is 1 pF or less, efficient electromagnetic field coupling can be realized.
 (第2実施形態)
 本開示の絶縁伝送装置の応用の一つとしては、パワーデバイス駆動用の絶縁ゲートドライバが挙げられる。
(Second Embodiment)
One of the applications of the insulated transmission device of the present disclosure is an insulated gate driver for driving a power device.
 この場合、絶縁ゲートドライバには信号入力だけではなく、パワーデバイスを駆動するための電力伝送や、パワーデバイスの状態をモニタする信号のフィードバック経路(以後、フォルト信号経路)などが求められる場合がある。 In this case, the insulated gate driver may be required not only for signal input but also for power transmission for driving the power device and a signal feedback path (hereinafter, fault signal path) for monitoring the state of the power device. ..
 本実施形態ではこういった要望に応えることができる、複数経路を一体化したパッケージ構造について説明する。 In this embodiment, a package structure in which a plurality of routes are integrated, which can meet such a demand, will be described.
 図15は、第1実施形態で説明した第1、第2共鳴器のペアを二つ用いたパッケージ構造の電磁界共鳴結合部のみを示す。 FIG. 15 shows only the electromagnetic field resonance coupling portion of the package structure using two pairs of the first and second resonators described in the first embodiment.
 本実施形態においては、高周波信号を用いることで小型の誘導性結合素子、容量結合素子が実現可能で、複数の共鳴器ペアを絶縁ゲートドライバICの内部に実装できる。 In the present embodiment, a small inductive coupling element and a capacitive coupling element can be realized by using a high frequency signal, and a plurality of resonator pairs can be mounted inside the insulated gate driver IC.
 例えば1つの共鳴器ペアは絶縁電力送受信経路に、他方の共鳴器ペアは絶縁信号送受信経路に用いることができる。 For example, one resonator pair can be used for the isolated power transmission / reception path, and the other resonator pair can be used for the isolated signal transmission / reception path.
 また図15ではそれぞれの共鳴器(4つ)が分離した構造をとっている。この場合、ダイボンディングの回数が増えるデメリットはあるが、パッケージの樹脂封止の際、樹脂流れが促進され、未充填などの不具合が発生しにくいメリットがある。 Also, in FIG. 15, each resonator (4) has a separate structure. In this case, there is a demerit that the number of times of die bonding increases, but there is a merit that the resin flow is promoted at the time of resin sealing of the package, and problems such as unfilling are less likely to occur.
 図16は3つの共鳴器ペア101e、102eを実装した例である。この場合は、送信側および受信側のそれぞれ3つの第1、第2共鳴器を一体化している。 FIG. 16 is an example in which three resonator pairs 101e and 102e are mounted. In this case, three first and second resonators on the transmitting side and the receiving side are integrated.
 この場合、例えば1つの共鳴器ペアを絶縁電力送受信経路に、2つ目の共鳴器ペアを絶縁信号送受信経路に、3つ目の共鳴器ペアをフォルト信号経路に用いることができる。 In this case, for example, one resonator pair can be used for the isolated power transmission / reception path, the second resonator pair can be used for the isolated signal transmission / reception path, and the third resonator pair can be used for the fault signal path.
 このように送信側、受信側の共鳴器を作製することで、ダイボンディングの回数削減(工数削減による低コスト化)や、1次共鳴器と2次共鳴器の位置ずれのリスク抑制につながる。 By manufacturing the resonators on the transmitting side and the receiving side in this way, the number of die bondings can be reduced (cost reduction by reducing the man-hours), and the risk of misalignment between the primary resonator and the secondary resonator can be suppressed.
 図17A~図17Cは、図16と同じく3つの共鳴器ペア101fと102fを用いた例であり、経路に応じて共鳴器構造を変化させた例である。 17A to 17C are examples in which three resonator pairs 101f and 102f are used as in FIG. 16, and the resonator structure is changed according to the path.
 本実施形態においては複数経路を用いた電磁界共鳴結合方式を用いる場合、それぞれの共鳴器がまったく同じである必要はない。 In the present embodiment, when the electromagnetic field resonance coupling method using a plurality of paths is used, it is not necessary for each resonator to be exactly the same.
 例えば、図17Aにおいては、電力伝送経路と信号経路では送る電力レベルや効率に対する要求は異なる。 For example, in FIG. 17A, the requirements for the power level and efficiency to be transmitted differ between the power transmission path and the signal path.
 つまり、電力伝送経路は可能な限り効率を高くし、高い電力を伝送するが、信号経路は送る電力がそもそも小さいため、効率が多少悪くても大きな問題にならない場合がある。一方で、信号経路は他の経路からのクロストークは誤動作の要因となるので、可能な限り他経路からの影響を排除したいという要望がある。 In other words, the power transmission path makes the efficiency as high as possible and transmits high power, but since the signal path sends a small amount of power in the first place, even if the efficiency is a little poor, it may not be a big problem. On the other hand, in the signal path, crosstalk from other paths causes malfunction, so there is a demand to eliminate the influence from other paths as much as possible.
 こういった用途においては、図17Aのような構成が望ましい。つまり、誘電体表面に磁気結合を促進する平面コイルを用いた共鳴器ペアを電力系統に用い、その他の経路は誘電体表面にメアンダパターンを用いた共鳴器ペアを用いてもよい。 For such applications, the configuration shown in FIG. 17A is desirable. That is, a resonator pair using a planar coil that promotes magnetic coupling on the dielectric surface may be used for the power system, and a resonator pair using a meander pattern on the dielectric surface may be used for other paths.
 この時、誘電体層側面の容量結合素子はそれぞれの共鳴器に応じた設計となっている。 At this time, the capacitive coupling element on the side surface of the dielectric layer is designed according to each resonator.
 この場合、大電力を送信する平面コイルの共鳴器は高効率伝送に適している一方で、他のパターンへの干渉が懸念される。 In this case, while the planar coil resonator that transmits high power is suitable for high-efficiency transmission, there is concern about interference with other patterns.
 よって、電力系統の共鳴器による影響を低減するために、信号経路やフォルト信号経路にはそもそも磁気結合成分が小さいメアンダパターンを用いた構造を用いることで、電力系統の磁界の影響を低減し、クロストークを抑制できる。 Therefore, in order to reduce the influence of the resonator of the power system, the influence of the magnetic field of the power system is reduced by using a structure using a meander pattern with a small magnetic coupling component in the signal path and the fault signal path. Crosstalk can be suppressed.
 本実施形態の構造は主面の誘導結合素子の構造や配置を経路ごとに変更させることでクロストークの対策を柔軟に行うことができる。 In the structure of this embodiment, crosstalk countermeasures can be flexibly taken by changing the structure and arrangement of the inductively coupled elements on the main surface for each route.
 図17Bのように、一部の経路の平面コイルの巻く方向を変化させてもよい。図17Bでは、3つのペアのうち真ん中のペアは、平面コイルの巻回方向が逆になっている。言い換えれば、各ペアの平面コイルの巻回方向は、隣り合う他のペアの巻回方向と逆になっている。 また図17Cは2経路の構造例を示す。この図に示すように、一部の経路の誘導結合素子とグランド面を上下逆にしてもよい。このような構造は、本実施形態のように誘導結合素子と容量素子とがそれぞれ主面と側面に形成しているため、可能となる。 As shown in FIG. 17B, the winding direction of the flat coil of a part of the path may be changed. In FIG. 17B, the middle pair of the three pairs has the plane coil winding direction opposite. In other words, the winding direction of the planar coil of each pair is opposite to the winding direction of the other adjacent pairs. FIG. 17C shows an example of a two-path structure. As shown in this figure, the inductively coupled elements of some paths and the ground plane may be turned upside down. Such a structure is possible because the inductively coupled element and the capacitive element are formed on the main surface and the side surface, respectively, as in the present embodiment.
 つまり、容量結合素子の配置はまったく変化させずに、主面の誘導結合素子とそのグランド面の配置を変化させることができる。 That is, the arrangement of the inductive coupling element on the main surface and its ground surface can be changed without changing the arrangement of the capacitive coupling element at all.
 例えばこのような配置を取った場合のクロストークの評価結果を図18A、図18Bに示す。図18Aおよび図18Bはそれぞれ2経路のクロストークを評価した結果である。 For example, the evaluation results of crosstalk when such an arrangement is taken are shown in FIGS. 18A and 18B. 18A and 18B are the results of evaluating the crosstalk of two paths, respectively.
 図18Aは誘導結合素子が同じ面に配置された場合であり、図18Bは第1経路と第2経路において誘導結合素子とグランド面がそれぞれ逆に配置された場合(図17C)の結果である。 FIG. 18A shows the case where the inductively coupled elements are arranged on the same surface, and FIG. 18B shows the result when the inductively coupled elements and the ground surface are arranged oppositely in the first path and the second path (FIG. 17C). ..
 同じ面に配置された図18Aの結果に対し、図17Cの配置の場合のクロストークは約2dB改善された。 Compared to the result of FIG. 18A arranged on the same surface, the crosstalk in the case of the arrangement of FIG. 17C was improved by about 2 dB.
 このように本実施形態の構造は誘導結合素子と容量結合素子がそれぞれ主面と側面に配置されているため、誘導結合素子の配置を独立に制御できる利点がある。 As described above, since the inductive coupling element and the capacitive coupling element are arranged on the main surface and the side surface of the structure of the present embodiment, there is an advantage that the arrangement of the inductive coupling element can be controlled independently.
 なお、本実施形態に係る複数経路の絶縁伝送装置において、容量結合23(Cret)は各経路に独立に形成してもよいし、一つであってもよい。 In the multi-path insulated transmission device according to the present embodiment, the capacitive coupling 23 (Cret) may be formed independently in each path or may be one.
 図11Dに3経路からなる電磁界共鳴結合部の等価回路を示す。このように容量結合23(Cret)は1つであっても回路上は機能するため、小型化を実現することができる。 Fig. 11D shows the equivalent circuit of the electromagnetic field resonance coupling part consisting of three paths. As described above, even if there is only one capacitive coupling 23 (Cret), it functions on the circuit, so that miniaturization can be realized.
 ただし、クロストークを低減するには、各経路のグランド層は分離されている方がよい場合がある。 However, in order to reduce crosstalk, it may be better to separate the ground layer of each route.
 以上説明してきたように、第2実施形態に係る絶縁伝送装置は、複数の第1の共鳴器101と、複数の第2の共鳴器102と、を備える。 As described above, the insulated transmission device according to the second embodiment includes a plurality of first resonators 101 and a plurality of second resonators 102.
 これによれば、さらに、複数の伝送経路を有しながらも小型化を実現することができる。 According to this, further miniaturization can be realized while having a plurality of transmission paths.
 ここで、複数の第1の共鳴器は、異なる形状の第1の誘導結合素子10を含み、複数の第2の共鳴器は、異なる形状の第2の誘導結合素子11を含んでいてもよい。 Here, the plurality of first resonators may include a first inductive coupling element 10 having a different shape, and the plurality of second resonators may include a second inductive coupling element 11 having a different shape. ..
 これによれば、さらに、伝送すべき信号の特性に適した複数の伝送経路を設けることができる。 According to this, it is possible to further provide a plurality of transmission paths suitable for the characteristics of the signal to be transmitted.
 (第3実施形態)
 図3A、図3B、図13A、図13Bおよび図14では本開示にかかる電磁界共鳴器を用いたパッケージ構造2000、2000a、2000bの例を示したが、第3実施形態ではその他のパッケージ構造2000cの例について説明する。
(Third Embodiment)
3A, 3B, 13A, 13B and 14 show examples of package structures 2000, 2000a and 2000b using the electromagnetic field resonator according to the present disclosure, but in the third embodiment, other package structures 2000c are shown. An example of is described.
 図19は、第3実施形態の絶縁伝送装置1000のパッケージ構造例を示す図である。同図の(a)、(b)、(c)、(d)は、鳥観図、上面図、側面図、下面図をそれぞれ示し、何れも透視図である。図14のパッケージ構造では、送信回路201のチップと第1共鳴器101aとがリードフレームの同じ面上に実装され、受信回路202のチップと第2共鳴器102aとがリードフレームの同じ面上に実装されているのに対し、図19では各チップと各共鳴器がそれぞれリードフレームの反対の面に実装されている。 FIG. 19 is a diagram showing an example of a package structure of the insulated transmission device 1000 according to the third embodiment. (A), (b), (c), and (d) of the figure show a bird's-eye view, a top view, a side view, and a bottom view, respectively, and all of them are perspective views. In the package structure of FIG. 14, the chip of the transmitting circuit 201 and the first resonator 101a are mounted on the same surface of the lead frame, and the chip of the receiving circuit 202 and the second resonator 102a are mounted on the same surface of the lead frame. Whereas in FIG. 19, each chip and each resonator are mounted on opposite surfaces of the lead frame.
 図19の送信回路201および受信回路202のワイヤは第1及び第2の共鳴器101a、102aの裏面に接続されている。 The wires of the transmission circuit 201 and the reception circuit 202 of FIG. 19 are connected to the back surfaces of the first and second resonators 101a and 102a.
 この場合の各共鳴器の裏面に形成された入力端子やグランド端子は、図2A~図2Dの入力端子40、出力端子41およびグランド端子50、51と共鳴器内の配線(ビアや金属配線)を用いて容易に設計することができる。 In this case, the input terminals and ground terminals formed on the back surface of each resonator are the input terminals 40, output terminals 41 and ground terminals 50, 51 of FIGS. 2A to 2D, and the wiring (via or metal wiring) in the resonator. Can be easily designed using.
 このような形状のパッケージ構造を用いることで更なる小型化を実現できる。 Further miniaturization can be realized by using a package structure having such a shape.
 また、リードフレームの下面に送信回路201が実装されるため、リードフレームの金属面や、共鳴器のグランド面が送信機に対してシールドの役割を果たすので、外部からのノイズに対する耐性や、共鳴器からのノイズの放射(EMI)を抑制する効果が期待できる。 Further, since the transmission circuit 201 is mounted on the lower surface of the lead frame, the metal surface of the lead frame and the ground surface of the resonator act as a shield for the transmitter, so that resistance to external noise and resonance The effect of suppressing noise emission (EMI) from the vessel can be expected.
 共鳴器の容量結合素子や誘導結合素子のEMIの影響が懸念される場合は、共鳴器側を下面とし、チップ側を上面とすることもできる。この場合、リードを逆側に曲げるように設計変更すれば容易に対処できる。 If there is concern about the influence of the EMI of the capacitive coupling element or inductive coupling element of the resonator, the resonator side may be the lower surface and the chip side may be the upper surface. In this case, it can be easily dealt with by changing the design so that the lead is bent to the opposite side.
 図19のパッケージ構造では、容量結合23(Cret)を図14の中間電位を有する金属シールド板4a、4bで形成している。この場合、金属板を複数用いて、容量結合23(Cret)の容量値を設計している。 In the package structure of FIG. 19, the capacitive coupling 23 (Cret) is formed of the metal shield plates 4a and 4b having the intermediate potential of FIG. In this case, a plurality of metal plates are used to design the capacitance value of the capacitive coupling 23 (Cret).
 もちろん、容量結合23(Cret)の形状については図14や図19の例に限らず、先に示した図3A、図3B、図12A、図12B、図13Aおよび図13Bの構造でもよい。 Of course, the shape of the capacitive coupling 23 (Cret) is not limited to the examples of FIGS. 14 and 19, and the structures of FIGS. 3A, 3B, 12A, 12B, 13A and 13B shown above may be used.
 なお、図19において用いる第1および第2の共鳴器は図2Aに示す101および102の共鳴器であってもよい。 The first and second resonators used in FIG. 19 may be the resonators 101 and 102 shown in FIG. 2A.
 図19の(c)に示すように、本実施形態においては第1のリードフレームと第2のリードフレーム間距離は、第1および第2の共鳴器間距離よりもあえて大きくしている。つまり、各共鳴器の全体はリードフレームに実装されているわけではなく、その一部がリードフレーム面に接している構造を取っている。このような構造を用いることで、図7の誘電体層70aが不要となり、より簡便な構造を用いることができる。 As shown in FIG. 19 (c), in the present embodiment, the distance between the first lead frame and the second lead frame is intentionally made larger than the distance between the first and second resonators. That is, the entire resonator is not mounted on the lead frame, but a part of the resonator is in contact with the lead frame surface. By using such a structure, the dielectric layer 70a of FIG. 7 becomes unnecessary, and a simpler structure can be used.
 なお、本開示の横方向に結合した電磁界共鳴結合の一つの課題は、実装時の位置ずれである。第1共鳴器と第2共鳴器が完全に分離しているため、側面の容量結合素子が完全に対向せず、位置ずれが発生すると、効率が悪化する。 It should be noted that one problem of the electromagnetic field resonance coupling coupled in the lateral direction of the present disclosure is the misalignment at the time of mounting. Since the first resonator and the second resonator are completely separated, the capacitance coupling elements on the side surfaces do not completely face each other, and if the displacement occurs, the efficiency deteriorates.
 この問題を回避するために、片方の共鳴器における容量結合素子の面積を他方のそれより大きくしてもよい。 In order to avoid this problem, the area of the capacitive coupling element in one resonator may be larger than that of the other.
 つまり、パッケージ組立工程における共鳴器の実装位置ずれを想定し、共鳴器における容量成分の面積を大きくすることで、位置ずれをカバーすることができる。 That is, it is possible to cover the misalignment by enlarging the area of the capacitive component in the resonator, assuming the misalignment of the resonator in the package assembly process.
 よって、本開示における共鳴器の構造は完全に対称である必要はなく、例えば実装位置ずれに対処するために、容量結合素子の片側の電極面積を大きくしてもよい。 Therefore, the structure of the resonator in the present disclosure does not have to be completely symmetrical, and the electrode area on one side of the capacitive coupling element may be increased, for example, in order to cope with the mounting misalignment.
 なお、本開示は、完全に分離した2つの共鳴器からなり、その共鳴器の主面と側面にそれぞれ誘導結合素子と容量結合素子の電極が形成されていることを特徴とする。 The present disclosure is characterized in that it consists of two completely separated resonators, and electrodes of an inductively coupled element and a capacitively coupled element are formed on the main surface and the side surface of the resonator, respectively.
 よって、この主面の誘導結合素子と側面の容量結合素子を用いた電磁界共鳴結合を用いて、比較的大きい絶縁距離においても高い効率を維持することができる。 Therefore, high efficiency can be maintained even at a relatively large insulation distance by using the electromagnetic field resonance coupling using the inductive coupling element on the main surface and the capacitive coupling element on the side surface.
 前記実施形態においては、小型化を訴求することを主な目的としていたため、高周波信号(GHz)を用いることを主眼においていたが、一般的な誘導結合方式や容量結合方式で用いられるMHzオーダーの信号においても、二つの素子を共鳴器の異なる面に形成することで小型化・絶縁距離増大・高効率化の効果が得られる。 In the above embodiment, since the main purpose is to promote miniaturization, the main purpose is to use a high frequency signal (GHz), but it is on the order of MHz used in a general inductive coupling method or capacitive coupling method. Also in the signal, by forming the two elements on different surfaces of the resonator, the effects of miniaturization, increase in insulation distance, and improvement in efficiency can be obtained.
 また、主面と誘導結合素子と、側面の容量結合素子の共鳴現象を用いて、比較的大きい絶縁距離(0.4mm以上)においても高効率絶縁伝送を実現できることを示したが、用途に応じて絶縁距離は当然変更可能であり、0.4mm以下であってもよい。この場合、結合容量成分(Cio)が変化するだけであるので設計は容易である。 We also showed that high-efficiency insulation transmission can be achieved even at a relatively large insulation distance (0.4 mm or more) by using the resonance phenomenon of the main surface, inductive coupling element, and capacitance coupling element on the side surface. Of course, the insulation distance can be changed and may be 0.4 mm or less. In this case, the design is easy because only the binding capacitance component (Cio) changes.
 以上説明してきたように、第3実施形態に係る絶縁伝送装置は、第1の電極および第2の電極の互いに対向する面の一方は、他方より大きい。 As described above, in the insulated transmission device according to the third embodiment, one of the surfaces of the first electrode and the second electrode facing each other is larger than the other.
 これによれば、第1の電極としての容量結合素子20および第2の電極としての容量結合素子21の一方は、他方より大きいので、実装位置にずれが生じた場合に、容量値の低下などの特性劣化を抑制することができる。 According to this, since one of the capacitively coupled element 20 as the first electrode and the capacitively coupled element 21 as the second electrode is larger than the other, the capacitance value is lowered when the mounting position is deviated. It is possible to suppress the deterioration of the characteristics of.
 (第4実施形態)
 本実施形態に係る共鳴器は、前記第1~第3実施形態に示した共鳴器とは異なり、一体型共鳴器構造とし、更に小型化した構造である。
(Fourth Embodiment)
The resonator according to the present embodiment has an integrated resonator structure and is further miniaturized, unlike the resonators shown in the first to third embodiments.
 この場合、前述したように絶縁の信頼性には懸念があるが、本開示の共鳴結合を促進し、更にコンパクトなパッケージ構造を有することができるという利点がある。 In this case, as described above, there is a concern about the reliability of the insulation, but there is an advantage that the resonance coupling of the present disclosure can be promoted and a more compact package structure can be obtained.
 図20Aは、本実施形態における電磁界共鳴結合部100bの構造例を示す斜視図である。図20Bは、図20Aの電磁界共鳴結合部の構造例を示す断面図である。本電磁界共鳴結合部100bの構造は第1および第2の共鳴器が一体化されている。 FIG. 20A is a perspective view showing a structural example of the electromagnetic field resonance coupling portion 100b in the present embodiment. FIG. 20B is a cross-sectional view showing a structural example of the electromagnetic field resonance coupling portion of FIG. 20A. In the structure of the electromagnetic field resonance coupling portion 100b, the first and second resonators are integrated.
 本構造における金属配線により形成される誘導結合素子および容量結合素子は、図2A~図2Dに示す構造と同等である。 The inductively coupled element and the capacitive coupling element formed by the metal wiring in this structure are equivalent to the structures shown in FIGS. 2A to 2D.
 本構造は材料が異なる多層膜により形成されている。前述した実施形態との違いは、共鳴器内の誘電体層に1次側と2次側の共鳴器構造が共存している点である。 This structure is formed by multilayer films made of different materials. The difference from the above-described embodiment is that the resonator structures on the primary side and the secondary side coexist in the dielectric layer in the resonator.
 つまり、図2Bに示すように、第1実施形態では、第1の共鳴器101と第2の共鳴器102の誘電体層60、70、61、71はそれぞれ独立しているが、二つの共鳴器は、パッケージ封止樹脂110により物理的に接触している。 That is, as shown in FIG. 2B, in the first embodiment, the dielectric layers 60, 70, 61, and 71 of the first resonator 101 and the second resonator 102 are independent of each other, but the two resonances. The vessels are in physical contact with the package encapsulating resin 110.
 第1実施形態の場合、誘電体層60、70(61、71も同様)が分離しているのは、貫通ビア80、配線層90を形成するのが主目的であり、誘電体層60と70の比誘電率は設計上等しくてもよい。 In the case of the first embodiment, the dielectric layers 60 and 70 (same for 61 and 71) are separated mainly for the purpose of forming the through via 80 and the wiring layer 90, and the dielectric layers 60 and 70 are separated from each other. The relative permittivity of 70 may be equal in design.
 つまり、第1実施形態の場合は、図9Dのパラメータを参考にすると、各共鳴器の誘電体の比誘電率を3.1とし、パッケージ封止材の比誘電率を4.4とすると、図2Bに示す断面平面領域において、比誘電率4.4のパッケージ封止材料において電磁界共鳴結合を実現している。電気共鳴結合の様子は、例えば図10A、図10Bに示した通りである。 That is, in the case of the first embodiment, referring to the parameters of FIG. 9D, assuming that the relative permittivity of the dielectric of each resonator is 3.1 and the relative permittivity of the package encapsulant is 4.4. In the cross-sectional plane region shown in FIG. 2B, electromagnetic field resonance coupling is realized in the package encapsulating material having a relative permittivity of 4.4. The state of the electrical resonance coupling is as shown in FIGS. 10A and 10B, for example.
 一方、図20Aおよび図20Bの電磁界共鳴結合部100bでは、1次側および2次側共鳴器が各誘電体層内に作製されている。図20Aおよび図20Bの場合、誘電体層72、73、74を設け、それぞれの誘電率を設定することができる。 On the other hand, in the electromagnetic field resonance coupling portion 100b of FIGS. 20A and 20B, primary side and secondary side resonators are manufactured in each dielectric layer. In the case of FIGS. 20A and 20B, the dielectric layers 72, 73, and 74 can be provided and the respective dielectric constants can be set.
 この場合、例えば、誘電体層73、74は誘導結合素子が下部のグランド層と容量結合するのを抑制するため、低誘電材料を用いてもよい。 In this case, for example, the dielectric layers 73 and 74 may use a low dielectric material in order to prevent the inductively coupled element from capacitively coupling with the lower ground layer.
 または、誘電体層74は横方向で容量結合が主に起こる領域を有しているため、容量を増加させるため、誘電率が高い層例えば比誘電率11以上の材料を用いることもできる。 Alternatively, since the dielectric layer 74 has a region in which capacitive coupling mainly occurs in the lateral direction, a layer having a high dielectric constant, for example, a material having a relative permittivity of 11 or more can be used in order to increase the capacitance.
 あるいは、第4実施形態の各誘電体層は、磁気結合を制御するために、その一部、もしくは全部に磁性体材料を含んでもよい。 Alternatively, each dielectric layer of the fourth embodiment may contain a magnetic material in part or all of it in order to control the magnetic coupling.
 以上のように第4実施形態の構成では、誘電体層ごとに誘電率が異なる層を用いることができ、層状(横方向)に1次元的な結合が実現でき、パッケージ封止材領域を使った“2次元的”な結合を示す第1~第3実施形態とは異なる電磁界共鳴結合が実現される。 As described above, in the configuration of the fourth embodiment, layers having different dielectric constants can be used for each dielectric layer, one-dimensional bonding can be realized in a layered manner (horizontal direction), and the package encapsulant region is used. An electromagnetic field resonance coupling different from that of the first to third embodiments showing a "two-dimensional" coupling is realized.
 “2次元的”というのは図2Bに示したように同じ比誘電率をもつ材料の分布に基づいた表現であり、第1~第3実施形態の電磁界共鳴結合部は、結合容量成分22(Cio)を決める誘電体材料をパッケージの封止材料により決定するので、層状に比誘電率が固定されているわけではない。 “Two-dimensional” is an expression based on the distribution of materials having the same relative permittivity as shown in FIG. 2B, and the electromagnetic field resonance coupling portion of the first to third embodiments has a coupling capacitance component 22. Since the dielectric material that determines (Cio) is determined by the sealing material of the package, the relative permittivity is not fixed in layers.
 つまり、第4実施形態の構成とは誘電率の構成がまったく異なるといえる。 That is, it can be said that the structure of the dielectric constant is completely different from the structure of the fourth embodiment.
 第4実施形態の構成は、図20Bのように層状に比誘電率を変化させることができるが、図11Aおよび図11Bに示した等価回路のCgに影響を及ぼす誘導結合素子とグランド面間の誘電体層74の比誘電率と、結合容量成分22(Cio)を決める容量結合素子の電極間の誘電体層74の比誘電率は同じ値となってしまう。 In the configuration of the fourth embodiment, the relative permittivity can be changed in layers as shown in FIG. 20B, but between the inductive coupling element and the ground surface which affects the Cg of the equivalent circuit shown in FIGS. 11A and 11B. The relative permittivity of the dielectric layer 74 and the relative permittivity of the dielectric layer 74 between the electrodes of the capacitive coupling elements that determine the coupling capacitance component 22 (Cio) are the same value.
 電磁界共鳴結合部を設計する上で、浮遊容量であるCgを小さくし(低誘電材料)、結合容量成分22(Cio)は大きくしたい(高誘電材料)という場合がある。 In designing the electromagnetic field resonance coupling portion, there are cases where it is desired to reduce the stray capacitance Cg (low dielectric material) and increase the coupling capacitance component 22 (Cio) (high dielectric material).
 このような比誘電率の構成を実現するには、第4実施形態の構成は適当ではない。 In order to realize such a configuration with a relative permittivity, the configuration of the fourth embodiment is not appropriate.
 一方で、第1~第3実施形態の構造は、結合容量成分22(Cio)を決める比誘電率を結合素子の誘電体とは独立に制御できる点は本開示の特長であり、第4実施形態との明確な差といえる。 On the other hand, the structure of the first to third embodiments is a feature of the present disclosure in that the relative permittivity that determines the coupling capacitance component 22 (Cio) can be controlled independently of the dielectric of the coupling element. It can be said that it is a clear difference from the form.
 なお、本実施形態における共鳴器構造は一体型構造であるため、その特徴を用いれば前記実施形態で説明したパッケージ構造よりも更にコンパクトな小型化が実現可能である。 Since the resonator structure in this embodiment is an integrated structure, it is possible to realize a more compact miniaturization than the package structure described in the above embodiment by using the feature.
 例えば図20Aおよび図20Bに示したように、ビア構造を用いれば、入出力端子を誘電体層72の表面上に形成することができる。 For example, as shown in FIGS. 20A and 20B, the input / output terminals can be formed on the surface of the dielectric layer 72 by using the via structure.
 このように形成した誘電体層72の表面に、送信回路201や受信回路202も実装できるように、電磁界共鳴結合部100bの面積を調整すれば、一般的にはコンプレッションモールドと呼ばれるパッケージ構造も容易に形成できる。 If the area of the electromagnetic field resonance coupling portion 100b is adjusted so that the transmission circuit 201 and the reception circuit 202 can also be mounted on the surface of the dielectric layer 72 formed in this way, a package structure generally called a compression mold can also be obtained. It can be easily formed.
 つまり、図20Aおよび図20Bの表面に送信回路、受信回路を実装し、電磁界共鳴結合部100bの表面を送信回路と受信回路と共に封止樹脂によりモールドしたパッケージ構造である。 That is, it is a package structure in which a transmission circuit and a reception circuit are mounted on the surfaces of FIGS. 20A and 20B, and the surface of the electromagnetic field resonance coupling portion 100b is molded together with the transmission circuit and the reception circuit with a sealing resin.
 このようなパッケージ構造では、リードフレームが不要であり、低コストのパッケージ組立が実現できる。 With such a package structure, a lead frame is not required, and low-cost package assembly can be realized.
 また、リードフレームやリードがないため、パッケージサイズを比較的小さくできる特徴を有する。 Also, since there are no lead frames or leads, it has the feature that the package size can be made relatively small.
 この場合、パッケージ底面に電極を形成し、その底面の電極を実装基板に半田付けする。 In this case, an electrode is formed on the bottom surface of the package, and the electrode on the bottom surface is soldered to the mounting substrate.
 リードがないため、振動に対する耐性の懸念や、目視で半田実装状態を確認できないというデメリットはあるが、小型且つ低コストの実装が実現できるメリットがある。 Since there are no leads, there are disadvantages such as resistance to vibration and the inability to visually check the solder mounting state, but there is the merit of being able to realize compact and low-cost mounting.
 以上説明してきたように、第4実施形態に係る絶縁伝送装置は、第1の誘電体多層膜65および第2の誘電体多層膜66を内部に形成した誘電体基板を備える。 As described above, the insulated transmission device according to the fourth embodiment includes a dielectric substrate having a first dielectric multilayer film 65 and a second dielectric multilayer film 66 formed therein.
 これによれば、リードフレームがなくてもよいので、低コストのパッケージ組立が実現でき、パッケージサイズを比較的小さくできる。 According to this, since there is no need for a lead frame, low-cost package assembly can be realized and the package size can be made relatively small.
 本開示は、信号と電力とを絶縁して伝送する絶縁伝送装置に利用される。例えば、パワーデバイス駆動用の絶縁ゲートドライバや半導体リレー、PhotoMOSリレーに用いられるフォトカプラの代替技術として利用される。 This disclosure is used for an isolated transmission device that insulates and transmits signals and electric power. For example, it is used as an alternative technology for photocouplers used in insulated gate drivers for driving power devices, semiconductor relays, and photoMOS relays.
4 金属シールド板
10、11 誘導素子
20、21 容量性結合素子(電極)
23a 復路電極
30、31 グランド層
65、66 誘電体多層膜
101、102 共鳴器
120、130 リードフレーム
120b、120c、130b、130c リードフレーム端面
Cret 容量結合
4 Metal shield plate 10, 11 Induction element 20, 21 Capacitive coupling element (electrode)
23a Return electrode 30, 31 Ground layer 65, 66 Dielectric multilayer film 101, 102 Resonator 120, 130 Lead frame 120b, 120c, 130b, 130c Lead frame end face Cret Capacitive coupling

Claims (21)

  1.  複数の誘電体層からなる第1の誘電体多層膜と、
     複数の誘電体層からなる第2の誘電体多層膜と、
     前記第1の誘電体多層膜に設けられた、第1の共鳴器と、
     前記第2の誘電体多層膜に設けられた、第2の共鳴器とを有し、
     前記第1の共鳴器と前記第2の共鳴器との間は直流電流に対しては電気的に絶縁されており、
     前記第1の共鳴器と前記第2の共鳴器との間で、所定の周波数帯域内の電磁波を伝送させるものであり、
     前記第1の共鳴器は、第1の誘導素子と、容量素子を構成する第1の電極とを有し、
     前記第2の共鳴器は、第2の誘導素子と、前記容量素子を構成する第2の電極とを有する
    絶縁伝送装置。
    A first dielectric multilayer film composed of a plurality of dielectric layers,
    A second dielectric multilayer film composed of a plurality of dielectric layers,
    The first resonator provided on the first dielectric multilayer film and
    It has a second resonator provided on the second dielectric multilayer film, and has a second resonator.
    The first resonator and the second resonator are electrically isolated from each other with respect to direct current.
    An electromagnetic wave within a predetermined frequency band is transmitted between the first resonator and the second resonator.
    The first resonator has a first inductive element and a first electrode constituting a capacitive element.
    The second resonator is an insulated transmission device having a second inductive element and a second electrode constituting the capacitive element.
  2.  請求項1に記載の絶縁伝送装置において、
     前記第1の誘導素子は、前記第1の誘電体多層膜のうち一の誘電体層の表面に設けられ、
     前記第1の電極は、前記第1の誘電体多層膜の側面に設けられ、
     前記第2の誘導素子は、前記第2の誘電体多層膜のうち一の誘電体層の表面に設けられ、
     前記第2の電極は、前記第2の誘電体多層膜の側面に設けられている
    絶縁伝送装置。
    In the insulated transmission device according to claim 1,
    The first inductive element is provided on the surface of one of the dielectric layers of the first dielectric multilayer film.
    The first electrode is provided on the side surface of the first dielectric multilayer film.
    The second inductive element is provided on the surface of one of the dielectric layers of the second dielectric multilayer film.
    The second electrode is an insulated transmission device provided on the side surface of the second dielectric multilayer film.
  3.  請求項1または2に記載の絶縁伝送装置において、
     前記第1の電極と、前記第2の電極は互いに対向して設けられている
    絶縁伝送装置。
    In the insulated transmission device according to claim 1 or 2.
    An insulated transmission device in which the first electrode and the second electrode are provided so as to face each other.
  4.  請求項1~3の何れか1項に記載の絶縁伝送装置において、
     前記第1の電極と、前記第2の電極の間の距離は0.4mm以上である
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 3.
    An insulated transmission device in which the distance between the first electrode and the second electrode is 0.4 mm or more.
  5.  請求項1~4の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘電体多層膜に設けられた、第1のグランド層と、
     前記第2の誘電体多層膜に設けられた、第2のグランド層とを有し、
     前記第1のグランド層は、前記第1の誘電体多層膜のうち一の誘電体層の表面に設けられ、
     前記第2のグランド層は、前記第2の誘電体多層膜のうち一の誘電体層の表面に設けられている
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 4.
    The first ground layer provided on the first dielectric multilayer film and
    It has a second ground layer provided on the second dielectric multilayer film, and has a second ground layer.
    The first ground layer is provided on the surface of one of the first dielectric multilayer films.
    The second ground layer is an insulated transmission device provided on the surface of one of the dielectric layers of the second dielectric multilayer film.
  6.  請求項5に記載の絶縁伝送装置において、
     前記第1のグランド層および前記第2のグランド層は一の誘電体層と他の一の誘電体層の間に設けられている
    絶縁伝送装置。
    In the insulated transmission device according to claim 5,
    An insulated transmission device in which the first ground layer and the second ground layer are provided between one dielectric layer and another dielectric layer.
  7.  請求項1~6の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘導素子および前記第2の誘導素子は一の誘電体層と他の一の誘電体層の間に設けられている
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 6.
    The first induction element and the second induction element are insulated transmission devices provided between one dielectric layer and another dielectric layer.
  8.  請求項1~7の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘導素子および前記第2の誘導素子は、平面コイル形状の導体パターンである
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 7.
    The first induction element and the second induction element are insulated transmission devices having a flat coil-shaped conductor pattern.
  9.  請求項1~7の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘導素子および前記第2の誘導素子は、メアンダパターン形状の導体パターンである
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 7.
    The first induction element and the second induction element are insulated transmission devices having a conductor pattern having a meander pattern shape.
  10.  請求項1~9の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘電体多層膜と前記第2の誘電体多層膜とを容量結合し、前記電磁波の復路を構成する容量性回路要素を備える
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 9.
    An insulated transmission device including a capacitive circuit element that capacitively couples the first dielectric multilayer film and the second dielectric multilayer film to form a return path of the electromagnetic wave.
  11.  請求項10に記載の絶縁伝送装置において、
     前記容量性回路要素は、
     前記第1の誘電体多層膜の側面に形成された面状の第1の復路電極と、
     前記第2の誘電体多層膜の側面に形成された面状の第2の復路電極と、を備え、
     前記第1の復路電極と前記第2の復路電極とは、互いに対向して設けられる
    絶縁伝送装置。
    In the insulated transmission device according to claim 10,
    The capacitive circuit element
    A planar first return electrode formed on the side surface of the first dielectric multilayer film, and
    A planar second return electrode formed on the side surface of the second dielectric multilayer film is provided.
    An insulated transmission device in which the first return electrode and the second return electrode are provided so as to face each other.
  12.  請求項10に記載の絶縁伝送装置において、
     前記第1の誘電体多層膜を載置する第1のリードフレームと、
     前記第2の誘電体多層膜を載置する第2のリードフレームと、を備え、
     前記容量性回路要素は、前記第1のリードフレームの端面と、前記第2のリードフレームの端面と、により構成され、
     前記第1のリードフレームの前記端面と、前記第2のリードフレームの端面とは、互いに対向して設けられる
    絶縁伝送装置。
    In the insulated transmission device according to claim 10,
    A first lead frame on which the first dielectric multilayer film is placed, and
    A second lead frame on which the second dielectric multilayer film is placed is provided.
    The capacitive circuit element is composed of an end face of the first lead frame and an end face of the second lead frame.
    An insulated transmission device in which the end face of the first lead frame and the end face of the second lead frame are provided so as to face each other.
  13.  請求項12に記載の絶縁伝送装置において、
     前記第1のリードフレームの前記端面の面積は、前記第1のリードフレームにおける前記端面と平行な一断面の面積よりも大きく、
     前記第2のリードフレームの前記端面の面積は、前記第2のリードフレームにおける前記端面と平行な一断面の面積よりも大きい
    絶縁伝送装置。
    In the insulated transmission device according to claim 12,
    The area of the end face of the first lead frame is larger than the area of one cross section parallel to the end face of the first lead frame.
    An insulated transmission device in which the area of the end face of the second lead frame is larger than the area of one cross section parallel to the end face of the second lead frame.
  14.  請求項10に記載の絶縁伝送装置において、
     前記容量性回路要素は、
     前記第1の誘電体多層膜および前記第2の誘電体多層膜の表面と平行な金属シールド板であって、平面視において、前記第1の誘電体多層膜の一部または全部と重なり、かつ、前記第2の誘電体多層膜の一部または全部と重なる金属シールド板を含む
    絶縁伝送装置。
    In the insulated transmission device according to claim 10,
    The capacitive circuit element
    A metal shield plate parallel to the surfaces of the first dielectric multilayer film and the second dielectric multilayer film, which overlaps a part or all of the first dielectric multilayer film in a plan view and , An insulated transmission device including a metal shield plate that overlaps a part or all of the second dielectric multilayer film.
  15.  請求項1~14の何れか1項に記載の絶縁伝送装置において、
     複数の前記第1の共鳴器と、
     複数の前記第2の共鳴器と、を備える
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 14.
    With the plurality of the first resonators,
    An insulated transmission device comprising the plurality of the second resonators.
  16.  請求項15に記載の絶縁伝送装置において、
     前記複数の前記第1の共鳴器は、異なる形状の前記第1の誘導素子を含み、
     前記複数の前記第2の共鳴器は、異なる形状の前記第2の誘導素子を含む
    絶縁伝送装置。
    In the insulated transmission device according to claim 15,
    The plurality of the first resonators include the first inducing element having a different shape.
    The plurality of the second resonators are insulated transmission devices including the second induction elements having different shapes.
  17.  請求項1~16の何れか1項に記載の絶縁伝送装置において、
     前記第1の誘電体多層膜および前記第2の誘電体多層膜を内部に形成した誘電体基板を備える
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 16.
    An insulated transmission device including a dielectric substrate having the first dielectric multilayer film and the second dielectric multilayer film formed therein.
  18.  請求項1~16の何れか1項に記載の絶縁伝送装置において、
     互いに対向して設けられた前記第1の電極と前記第2の電極との間の誘電率は、前記第1の誘電体多層膜の誘電率および前記第2の誘電体多層膜の誘電率の少なくとも一方と異なる
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 16.
    The permittivity between the first electrode and the second electrode provided so as to face each other is the dielectric constant of the first dielectric multilayer film and the dielectric constant of the second dielectric multilayer film. Insulated transmission equipment that is different from at least one.
  19.  請求項5または6に記載の絶縁伝送装置において、
     平面視において、前記第1のグランド層と前記第2のグランド層との距離は、前記第1の電極と前記第2の電極との距離よりも大きい
    絶縁伝送装置。
    In the insulated transmission device according to claim 5 or 6.
    An insulated transmission device in which the distance between the first ground layer and the second ground layer is larger than the distance between the first electrode and the second electrode in a plan view.
  20.  請求項1~19の何れか1項に記載の絶縁伝送装置において、
     前記第1の電極および前記第2の電極の互いに対向する面の一方は、他方より大きい
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 19.
    One of the surfaces of the first electrode and the second electrode facing each other is a larger insulated transmission device than the other.
  21.  請求項1~20の何れか1項に記載の絶縁伝送装置において、
     前記容量素子の容量値は、1pF以下である
    絶縁伝送装置。
    In the insulated transmission device according to any one of claims 1 to 20,
    An insulated transmission device in which the capacitance value of the capacitance element is 1 pF or less.
PCT/JP2020/038557 2019-10-24 2020-10-13 Insulated transmission device WO2021079782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193642 2019-10-24
JP2019193642 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079782A1 true WO2021079782A1 (en) 2021-04-29

Family

ID=75620680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038557 WO2021079782A1 (en) 2019-10-24 2020-10-13 Insulated transmission device

Country Status (1)

Country Link
WO (1) WO2021079782A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145019A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 Insulated transmission medium and insulated transmission apparatus
JP2015213304A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Electromagnetic resonance coupler and transmission apparatus
JP2017220927A (en) * 2016-06-02 2017-12-14 パナソニック株式会社 Electromagnetic resonance coupler and transmission equipment
JP2017220922A (en) * 2016-03-02 2017-12-14 パナソニックIpマネジメント株式会社 Signal transmission device and manufacturing method thereof
JP2018170610A (en) * 2017-03-29 2018-11-01 パナソニック株式会社 Electromagnetic resonance coupler, and gate drive circuit and signaling device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145019A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 Insulated transmission medium and insulated transmission apparatus
JP2015213304A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Electromagnetic resonance coupler and transmission apparatus
JP2017220922A (en) * 2016-03-02 2017-12-14 パナソニックIpマネジメント株式会社 Signal transmission device and manufacturing method thereof
JP2017220927A (en) * 2016-06-02 2017-12-14 パナソニック株式会社 Electromagnetic resonance coupler and transmission equipment
JP2018170610A (en) * 2017-03-29 2018-11-01 パナソニック株式会社 Electromagnetic resonance coupler, and gate drive circuit and signaling device using the same

Similar Documents

Publication Publication Date Title
US9735456B2 (en) Electromagnetic resonant coupler and high-frequency transmission device
US8400307B2 (en) Radio frequency IC device and electronic apparatus
EP2315364B1 (en) Signal transmission through LC resonant circuits
CN210137012U (en) Wireless communication device
US20140043130A1 (en) Planar electronic device
US8773232B2 (en) High-frequency transformer, high-frequency component, and communication terminal device
JP5868490B2 (en) Insulated transmission medium and insulated transmission device
US8405472B2 (en) Elastic wave filter device
US9698831B2 (en) Transformer and communication terminal device
US8283990B2 (en) Signal transmission communication unit and coupler
US11646495B2 (en) Antenna coupling element, antenna device, and electronic device
US20110109417A1 (en) Power transformer for radiofrequency signals
US20150295599A1 (en) Electromagnetic resonance coupler and transmission apparatus
US8203396B2 (en) Thin film balun
TW506089B (en) Wiring board and semiconductor device using the same
US8648667B2 (en) Thin film balun
JP2017011876A (en) Switching power source and isolator
US20150222003A1 (en) Microwave circuit
WO2021079782A1 (en) Insulated transmission device
CN105957691A (en) Three-dimensional winding inductor, transformer, equalizer and LC filter
CN112544015B (en) Waveguide slot antenna
CN215732211U (en) Antenna device and electronic apparatus
CN212344134U (en) Circuit board, inductor and wireless device
WO2024080331A1 (en) Rfid module
KR101686582B1 (en) Stacked electronic device having inductive coupling communication unit between stacked chips

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP