WO2021079758A1 - Light-emitting device and light source device - Google Patents

Light-emitting device and light source device Download PDF

Info

Publication number
WO2021079758A1
WO2021079758A1 PCT/JP2020/038250 JP2020038250W WO2021079758A1 WO 2021079758 A1 WO2021079758 A1 WO 2021079758A1 JP 2020038250 W JP2020038250 W JP 2020038250W WO 2021079758 A1 WO2021079758 A1 WO 2021079758A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
excitation light
intensity
phase
source
Prior art date
Application number
PCT/JP2020/038250
Other languages
French (fr)
Japanese (ja)
Inventor
透 菅野
豪 鎌田
裕一 一ノ瀬
英臣 由井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2021079758A1 publication Critical patent/WO2021079758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant

Definitions

  • the following disclosure relates to a light emitting device and a light source device.
  • an image display device such as a projector that modulates the light from a light source to display an image
  • a device having a solid-state light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a fluorescent film that receives the excitation light emitted by the solid-state light source and emits fluorescence
  • a technique capable of measuring each emitted light emitted by the device by controlling the light sampling interval by the sensor unit see, for example, Patent Document 1).
  • the fluorescence film receives the excitation light and emits fluorescence
  • heat is generally generated in the fluorescence film according to the power of the excitation light.
  • the emission characteristics of the fluorescent film usually have temperature dependence. Therefore, the emission characteristics of the fluorescent film vary depending on the temperature of the fluorescent film. Therefore, it is difficult to use the above light source under the condition that the maximum luminous efficiency is always obtained.
  • a method of measuring the temperature of the fluorescent film and feeding it back to the control of the power of the excitation light can be considered, but the following problems can be considered in this method.
  • it is necessary to perform prior processing such as preparing a table of driving conditions of a solid light source with respect to the temperature of the fluorescent film according to the accurate temperature characteristics and film thickness of the fluorescent film.
  • the temperature of the fluorescence film generally increases non-linearly with respect to the increase in the intensity of excitation light per unit area in the fluorescence film, and the temperature of the fluorescence film affects the fluorescence intensity.
  • the emission characteristics of the fluorescent film include individual differences of the fluorescent film. Therefore, it is difficult to analyze the peak emission intensity of fluorescence from the temperature of the fluorescent film.
  • One aspect of the present invention is an object of a light emitting device that receives excitation light from an excitation light source by a fluorescence source and emits fluorescence, and generates light emission at a desired emission intensity without depending on prior treatment.
  • the light emitting device includes an excitation light source for irradiating excitation light, a fluorescence source that receives the excitation light from the excitation light source and emits fluorescence, and the above.
  • a light receiving element that receives a part of the fluorescence emitted by the fluorescence source and a phase of the fluorescence intensity received by the light receiving element are detected, and the excitation in the fluorescence source is performed according to the detected phase of the fluorescence intensity.
  • It has an adjusting device for adjusting the intensity per unit area of light, and the adjusting device has the excitation in the fluorescence source when the phase of the intensity of the fluorescence is the same as the phase of the intensity of the excitation light.
  • the intensity per unit area of light is increased, and when the phase of the intensity of the fluorescence is opposite to the phase of the intensity of the excitation light, the intensity of the excitation light in the fluorescence source per unit area is decreased.
  • the light source device includes the above light emitting device and an optical system for controlling one or both optical paths of the excitation light and the fluorescence. Have.
  • fluorescence in a light emitting device that receives excitation light from an excitation light source with a fluorescence source and emits fluorescence, fluorescence can be generated with a desired intensity without prior treatment.
  • FIG. 1 It is a figure which shows another example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the region where the emission intensity is reduced in the light emitting device of FIG. It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 2 of this invention. It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 3 of this invention. It is a perspective view which shows typically the structure of the main part in the light emitting device which concerns on Embodiment 3 of this invention. It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 4 of this invention. It is a figure for introducing the structure of the light source apparatus which concerns on Embodiment 5 of this invention. It is a figure which shows typically the structure of the light source apparatus which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to a first embodiment of the present invention.
  • the light emitting device 10 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, and an adjusting device 14.
  • the excitation light source 11 is a light source for irradiating the excitation light.
  • the excitation light is light that excites a phosphor in the fluorescent layer to generate fluorescence from the fluorescent layer when it is irradiated to the fluorescent layer described later.
  • the excitation light is not limited as long as it is such light.
  • the excitation light source 11 is, for example, a blue laser or a blue LED.
  • the fluorescence generator 12 is a device that receives excitation light from the excitation light source 11 and emits fluorescence.
  • the fluorescence generator 12 has a reflection substrate 121 and a fluorescence layer 122.
  • the reflective substrate 121 has a property of supporting the fluorescent layer 122 on its surface and reflecting light.
  • the reflective substrate 121 preferably has a high reflectance to light. Further, the reflective substrate 121 preferably has a high thermal conductivity from the viewpoint of removing heat from the fluorescent layer 122 that generates heat by irradiation with excitation light and suppressing the temperature rise of the fluorescent layer 122.
  • Examples of the reflective substrate 121 include an aluminum substrate, an alumina substrate having high reflectivity, and a metal substrate having a highly reflective coating.
  • the fluorescent layer 122 is an aspect of a fluorescence source that receives excitation light and emits fluorescence.
  • the fluorescence source may be one containing a phosphor capable of generating fluorescence.
  • the fluorescence source may be composed of the fluorescent substance itself that emits fluorescence, or may contain other components such as a binder.
  • the shape of the fluorescence source is not limited, and may have, for example, the shape of a predetermined object itself. Further, the form of the fluorescence source may be a film or a layer arranged on the surface of the object.
  • the fluorescent layer 122 is composed of a fluorescent substance and a binder that binds the fluorescent substance.
  • the thickness of the fluorescent layer 122 can be appropriately determined according to the application of the light emitting device 10 and the desired capacity.
  • the color of the fluorescence emitted by the phosphor can be appropriately determined according to the type of excitation light and the application of the light emitting device, and the color of the fluorescence is, for example, a color other than white light such as blue, green, and red. May be good.
  • the phosphor may be one kind or more.
  • the fluorescence source may include two or more types of phosphors that emit different colors.
  • the fluorescence source may include two types of phosphors that convert the excitation light of near-ultraviolet light into yellow light and blue light. Such a fluorescence source can generate pseudo-white fluorescence in which the fluorescence of yellow light and blue light is mixed.
  • the phosphor may be an organic compound or an inorganic compound as long as it is a component that generates fluorescence.
  • the phosphor is preferably an inorganic phosphor from the viewpoint of having high heat resistance. Examples of inorganic phosphors include oxynitride-based phosphors and nitride-based phosphors.
  • the phosphor can be appropriately selected according to the type of excitation light and the desired color of the emitted fluorescence.
  • examples of the fluorescent substance that converts the excitation light into red light include CaAlSiN 3 : Eu 2+ .
  • examples of the fluorescent substance that converts the excitation light into yellow light include Ca- ⁇ -SiAlON: Eu 2+ and Y 3 Al 5 O 12 : Ce 3+ (YAG: Ce).
  • Examples of the fluorescent substance that converts the excitation light into green light include ⁇ -SiAlON: Eu 2+ and Lu 3 Al 5 O 12 : Ce 3+ (LuAG: Ce).
  • the form of the phosphor in the fluorescence source is not limited.
  • the phosphor may be formed into particles, may be fine particles dispersed in a binder, or may be a liquid.
  • Binder is a material that binds fluorescent substances to form a phosphor. If the fluorescence source can be composed only of the phosphor, no binder is required.
  • the binder can be appropriately determined according to the binding property to the phosphor, and may be an organic compound or an inorganic compound.
  • the binder preferably has a high thermal conductivity from the viewpoint of enhancing the heat dissipation of the fluorescent layer 122. Further, the binder preferably has sufficiently high heat resistance from the viewpoint of enhancing the thermal stability of the fluorescent layer 122. From this point of view, the binder is preferably an inorganic binder. Examples of inorganic binders include aluminum compounds, examples of such aluminum compounds include alumina and boehmite.
  • the binder is not limited in its form in the fluorescent source.
  • the binder may be in a continuous phase or in a state of particles bound to the particles of the phosphor in the fluorescence source. Further, the binder may further contain a component other than the aluminum compound as a sub-component within a range in which the desired effect such as high thermal conductivity as described above can be obtained.
  • the fluorescence source may further contain components other than the binder as long as the desired effect can be obtained.
  • the fluorescence source may further contain a little dopant added to adjust the color of the resulting fluorescence.
  • the fluorescent layer 122 is composed of particles of an inorganic phosphor and particles of an inorganic binder that binds the particles of the inorganic phosphor.
  • Preferred examples of the fluorescent layer 122 YAG: Ce (particles of the fluorescent-doped cerium as a dopant yttrium aluminum garnet material, for example, Y 3 Al 5 O 12: Ce 3+) and alumina particles as binder particle A layer composed of and is included.
  • the volume-based median diameter (D50) of YAG: Ce is, for example, 25 ⁇ m.
  • the mixing ratio of YAG: Ce and binder particles is 6: 4 by volume.
  • the fluorescent layer 122 may be composed of an inorganic binder and an inorganic phosphor bound to the binder.
  • the inorganic phosphor in the fluorescent layer 122 may be a mixture of YAG: Ce having a D50 of 25 ⁇ m and YAG: Ce having a D50 of 5 ⁇ m.
  • the mixing ratios of YAG: Ce having a D50 of 25 ⁇ m, YAG: Ce having a D50 of 5 ⁇ m, and binder particles are in this order and in a volume ratio of 5: 3. : 2.
  • the fluorescent layer 122 can be produced by a known method. For example, a composition of a phosphor and a binder is applied to the surface of a reflective substrate 121 by a printing method, and the coating film of the composition is dried. Further, it can be produced by firing if necessary.
  • the light receiving element 13 is an element that receives a part of the fluorescence emitted by the fluorescent layer 122.
  • the light receiving element 13 receives light so that at least the phase of the received light can be detected.
  • Examples of the light receiving element 13 include an optical phase detector such as an interferometer.
  • the adjusting device 14 includes a processor, and includes a phase detection unit 141 and a control unit 142 as a functional configuration.
  • the phase detection unit 141 detects the phase of the fluorescence intensity received by the light receiving element 13.
  • the phase of fluorescence intensity is the phase of fluorescence intensity that fluctuates periodically.
  • the waveform drawn by the periodic fluctuation of the fluorescence intensity is not limited, and may be, for example, a sinusoidal curve or a shape obtained by repeating other shapes. Further, the waveform may have a shape obtained by regularly repeating a predetermined shape, or may have an irregular shape.
  • Fluorescence intensity represents the intensity of fluorescence. Fluorescence intensity can be expressed in any unit, and examples of fluorescence intensity units include light energy per unit area, brightness, and any unit represented by these relative values. Is done. Hereinafter, the "intensity" of fluorescence is also referred to as "emission intensity”.
  • the control unit 142 adjusts the intensity of the excitation light in the fluorescence layer 122 per unit area according to the phase of the detected fluorescence intensity. More specifically, when the phase of the fluorescence intensity is the same as the phase of the excitation light intensity, the control unit 142 increases the intensity of the excitation light in the fluorescence layer 122 per unit area. When the phase of the fluorescence intensity is opposite to the phase of the excitation light intensity, the intensity of the excitation light in the fluorescence layer 122 per unit area is lowered.
  • the phase of the intensity of the excitation light is the phase in the periodic fluctuation of the intensity of the excitation light.
  • the periodic change in the intensity of the excitation light is due to, for example, the output of the excitation light source 11 fluctuating periodically and finely.
  • the period in the periodic fluctuation of the output of the excitation light source 11 is 60 Hz to 60 kHz.
  • the period can be appropriately determined from the above range, for example, depending on the use of the light source device having the light emitting device 10.
  • the amplitude of the periodic fluctuation of the output of the excitation light source 11 is ⁇ 5 to 10% of the average value. If the amplitude is too small, the change in fluorescence is too small, and the phase of the intensity of the excitation light may not appear sufficiently.
  • the amplitude is too large, it means that the fluorescence layer 122 is irradiated with excitation light having an intensity excessive with respect to the emission intensity of the fluorescence in the fluorescence layer 122. Therefore, if the amplitude is too large, the deterioration of the fluorescent layer 122 may be accelerated, and the reliability of the light emitting device 10 may be lowered.
  • the intensity of the excitation light is not limited in the range representing the intensity of the excitation light, and examples thereof include the energy of the excitation light per unit area and the brightness. In the following embodiments, the "intensity" of the excitation light is also referred to as "laser power".
  • the adjusting device 14 increases or decreases the representative value of the output of the excitation light source 11 according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity.
  • the representative value of the output is the output value of the excitation light source 11 in which the excitation light emitted from the excitation light source 11 is set to have the desired intensity.
  • the representative value may be the median value in the periodic and minute fluctuations in the output of the excitation light source 11 described above, or may be the average value of the output values of the excitation light source 11.
  • the light emitting device 10 may further have a configuration other than the above-described configuration as long as the effect of the present embodiment can be obtained.
  • the light emitting device 10 may further have a cooling unit (heat sink) (not shown) arranged so as to be in contact with the fluorescence generator 12.
  • the heat sink is in contact with the reflective substrate 121 and cools the reflective substrate 121 and the fluorescent layer 122 as needed. It is preferable that the light emitting device 10 further has the cooling unit from the viewpoint of suppressing thermal deterioration of the fluorescent layer 122.
  • the light emitting device 10 may further have a temperature sensor (not shown).
  • the temperature sensor detects the temperature of the portion of the fluorescent layer 122 that is irradiated with the excitation light.
  • the temperature sensor is a device that detects the temperature in a non-contact manner, and is, for example, an infrared temperature sensor.
  • FIG. 2 is a diagram showing an example of the relationship between the laser power density of the laser beam and the emission intensity of the fluorescence in the light emitting device 10.
  • FIG. 3 is a diagram showing an example of the relationship between the laser power density of the laser beam in the light emitting device 10 and the temperature of the fluorescent layer 122.
  • the laser power density is, for example, an aspect of the intensity per unit area of excitation light on the surface of the fluorescent layer 122.
  • the unit of the emission intensity of fluorescence is "au" (arbitrary unit).
  • the emission intensity of fluorescence As for the emission intensity of fluorescence, the emission intensity (for example, brightness) of fluorescence when not irradiated with excitation light is set to "0", and the phase of fluorescence intensity is twice the phase of excitation light intensity even when excited light is irradiated. It is represented by a relative value when the emission intensity (for example, brightness) of the fluorescence at that time is "1".
  • Excitation light such as a blue laser is emitted from the excitation light source 11.
  • the excitation light is incident on the fluorescence layer 122, as shown in FIG. 2, as the laser power density of the excitation light increases, the emission intensity of fluorescence in the fluorescence layer 122 increases.
  • the region in which the emission intensity of fluorescence exhibits such behavior (the region represented by "A" in FIGS. 2 and 3) is also referred to as an "emission intensity increasing region".
  • the temperature of the fluorescent layer 122 also increases as the laser power density increases.
  • the emission intensity of fluorescence increases to the maximum value as shown in FIG. 2, and starts to decrease after the maximum value.
  • the emission intensity of fluorescence reaches a maximum value at a certain point with respect to an increase in laser power density, and then decreases.
  • a region in which the emission intensity of fluorescence behaves in this way with a maximum value in between for example, a range in which the emission intensity of fluorescence is 90% or more of the above maximum value (luminance saturation point), etc.
  • the region represented by "" is also referred to as a "peak intensity region". Even in the peak intensity region, as shown in FIG. 3, the temperature of the fluorescent layer 122 increases as the laser power density increases.
  • the emission intensity of fluorescence decreases as shown in FIG. In this way, after the brightness is saturated, the emission intensity of fluorescence decreases.
  • the region in which the emission intensity of fluorescence behaves in this way (the region represented by "C” in FIGS. 2 and 3) is also referred to as a "emission intensity reduction region". Even in the emission intensity decreasing region, as shown in FIG. 3, the temperature of the fluorescent layer 122 further increases as the laser power density increases.
  • the excitation light is a laser
  • the intensity of the excitation light fluctuates periodically.
  • the frequency of the excitation light is high. From this point of view, the frequency of the excitation light may be, for example, 60 Hz or higher.
  • FIG. 4 is a diagram showing an example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the emission intensity increasing region (A in FIGS. 2 and 3) in the light emitting device 10.
  • the output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example.
  • the following " ⁇ ” is represented by the product of "2 ⁇ ", “f” (frequency [Hz]), and "t" (time [second]).
  • Laser power of excitation light 3.5W on average Shape of periodic fluctuation of laser power of excitation light: sinusoidal curve (sin ⁇ ) Amplitude in periodic fluctuation of laser power of excitation light: 0.5W Fluorescence emission intensity: Average 0.927 (au) Shape of periodic fluctuation of fluorescence emission intensity: sinusoidal curve (sin ⁇ )
  • the shape of the periodic fluctuation in the intensity of the excitation light and the intensity of fluorescence are both represented by sin ⁇ .
  • the control unit 142 compares the phase of the fluorescence intensity detected by the phase detection unit 141 with the phase of the excitation light output from the excitation light source 11. When the intensity of fluorescence and the intensity of excitation light are in phase, it can be determined that the fluorescence emitted from the fluorescence layer 122 has not reached luminance saturation. In the above case, the control unit 142 increases the output of the excitation light source 11.
  • FIG. 5 is a diagram showing an example of the behavior of the power of excitation light and the emission intensity of fluorescence in the peak intensity region (B in FIGS. 2 and 3) in the light emitting device 10.
  • the output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example.
  • Laser power of excitation light 4.1 W on average
  • Shape of periodic fluctuation of excitation light intensity sinusoidal curve (sin ⁇ )
  • Shape of periodic variation in fluorescence intensity sinusoidal curve (cos2 ⁇ )
  • the frequency in the periodic fluctuation of the fluorescence intensity is twice the frequency in the periodic fluctuation of the excitation light intensity. Therefore, when the periodic fluctuation of the intensity of the excitation light is represented by sin ⁇ , the periodic fluctuation of the fluorescence intensity in the peak intensity region is represented by cos2 ⁇ . At this time, it can be determined that the fluorescence emitted from the fluorescence layer 122 has substantially reached the luminance saturation. In the above case, the control unit 142 does not change the output of the excitation light source 11.
  • FIG. 6 is a diagram showing an example of the behavior of the power of the excitation light and the emission intensity of fluorescence in the emission intensity reduction region (C in FIGS. 2 and 3) in the light emitting device 10.
  • the output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example.
  • Laser power of excitation light 4.6W on average
  • Shape of periodic fluctuation of excitation light intensity sinusoidal curve (sin ⁇ )
  • Shape of periodic fluctuation of fluorescence intensity sinusoidal curve (sin ( ⁇ + ⁇ ))
  • the excitation light and the fluorescence both have the same period, but the increase / decrease in the periodic fluctuation of the fluorescence intensity is the opposite of the increase / decrease in the periodic fluctuation of the exciton intensity.
  • the phase in the periodic fluctuation of the fluorescence intensity is the opposite of the phase of the periodic fluctuation in the intensity of the excitation light. Therefore, when the periodic fluctuation of the intensity of the excitation light is represented by sin ⁇ , the periodic fluctuation of the fluorescence intensity in the emission intensity decreasing region is represented by sin ( ⁇ + ⁇ ). In this case, it can be determined that the fluorescence emitted from the fluorescence layer 122 has excessive luminance saturation. In the above case, the control unit 142 makes the output of the excitation light source 11 smaller.
  • the amplitude of the fluorescence emission intensity on the increasing side of the periodic fluctuation includes a portion smaller than the amplitude on the decreasing side of the periodic fluctuation. This is because the emission intensity of fluorescence has peaked at a predetermined value due to luminance saturation.
  • FIG. 7 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the emission intensity increasing region in the light emitting device 10.
  • the output conditions of the excitation light in the emission intensity increasing region are as follows, for example. Amplitude in periodic fluctuation of laser power of excitation light: 0.5W Laser power of excitation light: 3.5W on average
  • the control unit 142 further increases the output of the excitation light source 11 in the above case.
  • FIG. 8 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the peak intensity region in the light emitting device 10.
  • the laser power of the excitation light in the peak intensity region is 4.1 W on average. Even if the waveform in the periodic fluctuation of the laser power of the excitation light is a triangular wave, in the peak intensity region, the frequency in the periodic fluctuation of the fluorescence intensity is the intensity of the excitation light, as in the case where the waveform is a sinusoidal curve. It is twice the frequency in periodic fluctuations. Therefore, also in this case, the control unit 142 does not fluctuate the output of the excitation light source 11.
  • FIG. 9 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the emission intensity reduction region in the light emitting device 10.
  • the laser power of the excitation light in the emission intensity reduction region is 4.6 W on average.
  • the phase in the periodic fluctuation of the fluorescence intensity is the intensity of the excitation light in the emission intensity reduction region, as in the case where the waveform is a sinusoidal curve. It is the opposite of the phase in the periodic fluctuation of.
  • the control unit 142 makes the output of the excitation light source 11 smaller.
  • the waveform of the periodic fluctuation of the laser power of the excitation light is a triangular wave
  • the waveform of the periodic fluctuation of the fluorescence intensity becomes a more complicated shape than when the waveform of the excitation light is a sine curve.
  • the state of fluorescence is substantially the same as when the waveform of the periodic fluctuation of the excitation light is a sinusoidal curve.
  • the waveform in the periodic fluctuation of the intensity of the excitation light is preferably a sinusoidal curve as compared with the triangular wave.
  • the control unit 142 outputs the excitation light from the excitation light source 11 at a predetermined output.
  • the intensity of the output excitation light fluctuates periodically.
  • the excitation light reaches the fluorescence layer 122, excites the phosphor, and generates fluorescence. Since the intensity of the excitation light irradiated to the phosphor fluctuates periodically, the phosphor excited by the excitation light also generates fluorescence whose emission intensity fluctuates periodically.
  • the generated fluorescence is generated in all directions, but the fluorescence toward the reflective substrate 121 is reflected by the reflective substrate 121. Therefore, the fluorescence is emitted upward (on the excitation light source 11 side in the drawing) from the surface of the reflection substrate 121.
  • the light receiving element 13 receives the fluorescence emitted obliquely upward among the fluorescence emitted upward from the fluorescent layer 122.
  • the phase detection unit 141 detects the phase in the periodic fluctuation of the emission intensity of the fluorescence detected by the light receiving element 13.
  • the phase detection by the phase detection unit 141 may be performed continuously, or may be performed intermittently, for example, at predetermined intervals.
  • the control unit 142 refers to the phase in the periodic fluctuation of the emission intensity of fluorescence detected by the phase detection unit 141, and compares it with the phase in the periodic fluctuation of the laser power of the excitation light output from the excitation light source 11.
  • the phase of fluorescence is the same as the phase of the excitation light with respect to the periodic fluctuation in the emission intensity or the laser power, it can be determined that the emission intensity of fluorescence is located in the emission intensity increase region.
  • the output of the excitation light source 11 is further increased.
  • the laser power density of the excitation light in the fluorescence layer 122 becomes higher, and the emission intensity of the fluorescence generated in the fluorescence layer 122 further increases.
  • the control unit 142 Further reduces the output of the excitation light source 11. As a result, the laser power density of the excitation light in the fluorescent layer 122 becomes smaller. Since the phosphor in the fluorescent layer 122 is an inorganic phosphor, it has excellent heat resistance, and therefore the emission intensity of fluorescence changes reversibly. That is, in the emission intensity decrease region, when the output of the excitation light source 11 is reduced, the emission intensity of the fluorescence generated in the fluorescence layer 122 increases toward the maximum value of the emission intensity and then decreases. Therefore, the emission intensity of fluorescence is removed from the emission intensity reduction region.
  • the fluorescence frequency is twice the frequency of the excitation light, it can be determined that the emission intensity of the fluorescence is located in the peak intensity region. , Maintain the output of the excitation light source 11. As a result, the laser power density of the excitation light in the fluorescence layer 122 is also maintained, and fluorescence is generated from the fluorescence layer 122 at a substantially maximum emission intensity.
  • the fluorescence is in a state of excessive brightness saturation, and the laser power density of the excitation light in the fluorescence layer 122 is lowered. Thereby, it is possible to eliminate the state of excessive brightness saturation in fluorescence, and it is possible to increase the emission intensity of fluorescence toward its maximum value.
  • the fluorescence is just before brightness saturation and has a substantially maximum emission intensity, so that the laser power density of the excitation light in the fluorescence layer 122 is maintained. By doing so, fluorescence can be continued to be generated at substantially the maximum emission intensity.
  • the present embodiment it is possible to realize the generation of fluorescence at the optimum emission intensity (for example, the maximum value in the emission intensity) without acquiring the configuration of the fluorescence layer 122 and its environmental information in advance. This effect is exhibited regardless of the presence or absence of individual differences due to the fluorescent layer 122 such as the structure or thickness of the fluorescent layer 122.
  • the above effect of realizing the optimum emission intensity according to the environment can be obtained. ..
  • the fluorescence generator 12 is composed of an inorganic material (inorganic reflective base material, inorganic binder and inorganic fluorescent substance). Therefore, in the present embodiment, the possibility that the portion of the fluorescent layer 122 irradiated with the excitation light is burnt out is sufficiently low, and the heat resistance and reliability can be sufficiently improved.
  • FIG. 10 is a diagram schematically showing a configuration of a light emitting device according to a second embodiment of the present invention.
  • the light emitting device 20 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 24, and a varifocal lens 25.
  • the excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10.
  • the varifocal lens 25 is an aspect of a varifocal device for changing the focal length of the excitation light applied to the fluorescent layer 122.
  • the adjusting device 24 includes a phase detection unit 141 and a control unit 242.
  • Phase detector 141 Is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 242 refers to and compares the phase of the emission intensity of fluorescence detected by the phase detection unit 141 and the phase of the laser power of the excitation light output by the excitation light source 11, respectively. Has a function. Further, the control unit 242 further has a function of controlling the varifocal lens 25 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
  • the variable focus lens 25 is a lens that changes the focal length of passing light.
  • the varifocal lens 25 is arranged in the optical path of the excitation light between the excitation light source 11 and the fluorescence generator 12 so that the excitation light passes through the optical system.
  • the excitation light output from the excitation light source 11 reaches the fluorescence layer 122 through the varifocal lens 25.
  • the light emitting device 20 is configured so that a signal from the control unit 242 is input to the variable focus lens 25.
  • the adjusting device 24 changes the focal length of the excitation light by the variable focus lens 25 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
  • the focal length of the excitation light When the focal length of the excitation light is changed, the position of the center of the portion (laser spot) irradiated with the excitation light in the fluorescent layer 122 does not move, and the size of the laser spot changes.
  • the focal length is equal to the distance from the varifocal lens 25 to the fluorescence layer 122 in the optical path of the excitation light, the size of the laser spot is minimized.
  • the larger the difference between the focal length and the distance from the variable focal length lens 25 to the fluorescent layer 122 in the optical path of the excitation light the larger the size of the laser spot.
  • the control unit 242 when the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are the same, the control unit 242 focuses the focal length so that the size of the laser spot becomes smaller. Change to the variable lens 25.
  • the control unit 242 causes the focal length to be changed to the varifocal lens 25 so that the size of the laser spot becomes larger.
  • the control unit 242 causes the varifocal lens 25 to maintain the focal length so as to maintain the size of the laser spot.
  • the output of the excitation light source 11 can be fixed to adjust the laser power density of the excitation light in the fluorescence layer 122. Therefore, the laser power density can be adjusted without changing the amplitude of the excitation light itself.
  • the fluorescent layer 122 tends to get hot in summer, which is a hotter environment. Therefore, the laser spot can be further expanded, and the fluorescence layer 122 can be irradiated with the excitation light so that the laser spot has the maximum emission intensity of fluorescence, for example.
  • the fluorescent layer 122 tends to become cold. The laser spot can be narrowed and the fluorescence layer 122 can be irradiated with the excitation light.
  • FIG. 11 is a diagram schematically showing a configuration of a light emitting device according to a third embodiment of the present invention.
  • FIG. 12 is a perspective view schematically showing the configuration of a main part in the light emitting device according to the third embodiment of the present invention.
  • the light emitting device 30 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 34, and a rotating device 35.
  • the excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10.
  • the rotating device 35 is an aspect of an incident angle changing device for changing the incident angle of the excitation light on the fluorescent layer 122.
  • the adjusting device 34 includes a phase detection unit 141 and a control unit 342.
  • the phase detection unit 141 is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 342 compares the phase of the fluorescence emission intensity detected by the phase detection unit 141 with the phase of the laser power of the excitation light output from the excitation light source 11, respectively. Has a function. Further, the control unit 342 further has a function of controlling the rotating device 35 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
  • the rotating device 35 has a container 351 having a wall portion rising from the bottom portion and its peripheral edge, a shaft 352 protruding from the wall portion, and a motor 353.
  • the bottom of the container 351 is rectangular when viewed in a plan view.
  • the walls stand up from each side of the bottom.
  • the shaft 352 extends from the outer surface of each of the pair of wall portions facing each other in a direction orthogonal to the outer surface.
  • the motor 353 is appropriately connected to the shaft 352 by a pulley, a belt, or the like (not shown) so as to serve as a drive source for rotating the shaft 352.
  • the fluorescence generator 12 is housed in the container 351.
  • the rotating device 35 is arranged so that the axis 352 is orthogonal to the excitation light source 11 and the light receiving element 13 with respect to the plane including both the optical axis of the excitation light source 11 and the optical axis of the light receiving element 13. .
  • the fluorescence generator 12 is housed in the container 351 at a position where the intersection of the optical axis of the excitation light source 11 and the fluorescence layer 122 overlaps the center of the shaft 352 when viewed along the shaft 352.
  • the light emitting device 30 is configured so that a signal from the control unit 342 is input to the motor 353.
  • the normal line of the fluorescent layer 122 on the plane including both the optical axis of the excitation light source 11 and the optical axis of the light receiving element 13 is shown by a dashed line.
  • the angle formed by the normal and the optical axis of the excitation light source 11 is the angle of incidence of the excitation light on the fluorescent layer 122, and in FIG. 11, the angle is represented by ⁇ .
  • the adjusting device 34 increases or decreases the angle of incidence of the excitation light on the fluorescence layer 122 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light. More specifically, the adjusting device 34 increases or decreases the angle of incidence of the excitation light on the fluorescent layer 122 by rotating the fluorescent layer 122 by the rotating device 35 according to the above relationship.
  • the laser power density in the fluorescence layer 122 increases as the size of the laser spot of the excitation light in the fluorescence layer 122 decreases, and decreases as the size increases. ..
  • the size of the laser spot of the excitation light in the fluorescent layer 122 is the smallest when the incident angle ⁇ is 0, and becomes larger as the absolute value of the incident angle ⁇ becomes larger.
  • the control unit 342 sets the incident angle ⁇ in order to reduce the size of the laser spot.
  • the rotating device 35 is operated so as to be smaller.
  • the control unit 342 rotates the device so that the incident angle ⁇ becomes larger in order to increase the size of the laser spot. Operate 35.
  • the control unit 342 causes the rotating device 35 to maintain the incident angle ⁇ in this case so as to maintain the size of the laser spot.
  • the light emitting device 30 has the same effect as the light emitting device 20. In addition, the light emitting device 30 can change the incident angle of the excitation light with an inexpensive and simple configuration.
  • FIG. 13 is a diagram schematically showing a configuration of a light emitting device according to a fourth embodiment of the present invention.
  • the light emitting device 40 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 44, and a Peltier element 45.
  • the excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10.
  • the Peltier element 45 is an aspect of an environment changing device capable of changing the environment surrounding the fluorescent layer 122.
  • the adjusting device 44 includes a phase detection unit 141 and a control unit 442.
  • the phase detection unit 141 is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 442 has a function of referring to and comparing the phase of the fluorescence detected by the phase detection unit 141 and the phase of the excitation light output by the excitation light source 11, respectively. Further, the control unit 442 further has a function of changing the temperature environment of the fluorescent layer 122.
  • the Peltier element 45 supports the fluorescence generator 12. More specifically, the reflective substrate 121 is in contact with the Peltier element 45 and is arranged on the Peltier element 45, and the fluorescent layer 122 is arranged on the reflective substrate 121.
  • the Peltier element 45 is an element whose temperature can be adjusted at a portion in contact with the reflective substrate 121.
  • the temperature adjustable range of the Peltier element 45 is, for example, ⁇ 20 to 120 ° C.
  • the light emitting device 40 is configured so that a signal from the control unit 442 is input to the Peltier element 45.
  • the adjusting device 44 sets the desired temperature environment of the fluorescent layer 122 by operating the Peltier element 45.
  • the output of the excitation light source is fluctuated by referring to the phase of fluorescence and the phase of excitation light at the set temperature. Then, the output of the excitation light source when the phase of fluorescence becomes twice the phase of the excitation light is obtained.
  • the temperature environment of the fluorescence layer 122 is changed to another temperature by the Peltier element 45, and the output of the excitation light source when the phase of fluorescence becomes twice the phase of the excitation light is obtained as described above.
  • the laser power of the excitation light source corresponding to the fluorescence of the emission intensity which becomes the maximum value is obtained for each temperature when the temperature environment of the fluorescent layer 122 is changed.
  • FIG. 14 is a diagram for introducing the configuration of the light source device according to the fifth embodiment of the present invention.
  • the light source device is a reflective laser headlight.
  • the headlight is, for example, a vehicle headlight.
  • FIG. 14 schematically shows a state in which the light source device is divided by a dividing surface along the optical axis direction thereof.
  • the light source device 100 includes a light emitting device and a reflector 120.
  • the light emitting device has the same configuration as the configuration described above in the first embodiment.
  • Reference numeral 110 in FIG. 14 is a line representing the divided surface.
  • the reflector 120 is, for example, a cover having an open end.
  • the shape of the reflector 120 is such that its cross-sectional shape gradually expands in a parabolic shape toward the open end.
  • the inner surface of the reflector 120 is a mirror.
  • a hole penetrating the wall portion of the reflector 120 is formed in the central portion opposite to the open end of the reflector 120.
  • the excitation light source 11 is arranged outside the reflector 120.
  • the excitation light source 11 is drawn so as to irradiate the excitation light B1 obliquely with respect to the central axis of the reflector 120, but the optical axis of the excitation light source 11 is on the same line as the central axis of the reflector 120. It is arranged at the position where.
  • the excitation light source 11 outputs blue excitation light such as a blue laser as excitation light.
  • the fluorescence generator 52 is arranged on the axis of the reflector 120 with the fluorescence layer 122 facing the open end of the reflector 120.
  • the fluorescence generator 52 has the same configuration as the fluorescence generator 12 in the light emitting device 10.
  • the fluorescent layer 122 emits yellow fluorescence when irradiated with excitation light.
  • the light receiving element 13 is located outside the open end of the reflector 120 and at a position where it receives a part of the fluorescence emitted from the reflector 120 and a part of the excitation light.
  • the adjusting device 54 includes a phase detection unit 541 and a control unit 542.
  • the phase detection unit 541 is configured to detect both the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light from the light received by the light receiving element 13.
  • the control unit 542 is configured to control the output of the excitation light source 11 by referring to both the phase of the emission intensity of fluorescence detected by the phase detection unit 541 and the phase of the laser power of the excitation light.
  • the adjusting device 54 may be arranged in the light receiving element 13, the excitation light source 11, or may be arranged independently of these.
  • the reflector 120 constitutes an optical system that controls the optical paths of excitation light and fluorescence.
  • the excitation light source 11 outputs the excitation light B1.
  • the excitation light B1 reaches the fluorescence generator 52 through the holes of the reflector 120.
  • the excitation light B2 and the fluorescence B3 are emitted from the fluorescence generator 52.
  • the excitation light B2 is, for example, the excitation light surface-reflected by the fluorescent layer 122 and the excitation light diffused inside the fluorescent film and reflected by the reflector 120.
  • Fluorescence B3 is, for example, fluorescence emitted by exciting a fluorescent substance by excitation light that has reached the fluorescence layer 122.
  • the excitation light B2 and the fluorescence B3 emitted from the fluorescence generator 52 are reflected by the reflector 120 to become white light mainly in a desired direction, for example, the axial direction of the reflector 120 as an optical axis, and are emitted from the reflector 120. ..
  • the light receiving element 13 receives the light emitted from the reflector 120.
  • the emitted light is divided into an excitation light component and a fluorescence component by passing through an appropriate optical filter in the light receiving element 13, for example.
  • the phase detection unit 541 detects the phase of the laser power of the excitation light from the light received by the light receiving element 13, and also detects the phase of the emission intensity of fluorescence.
  • the control unit 542 controls the output of the excitation light source 11 with reference to the phase information detected by the phase detection unit 541.
  • the control unit 542 increases the output of the excitation light source 11.
  • the laser power density of the excitation light B1 in the fluorescence layer 122 is increased, and the emission intensity of fluorescence is increased.
  • the control unit 542 reduces the output of the excitation light source 11.
  • the laser power density of the excitation light B1 in the fluorescence layer 122 decreases, and the emission intensity of fluorescence increases toward the maximum value of the emission intensity and then decreases.
  • the control unit 542 maintains the output of the excitation light source 11 unchanged.
  • the laser power density of the excitation light B1 in the fluorescence layer 122 is also maintained, and fluorescence with an intensity that substantially maximizes the emission intensity continues to be generated.
  • the light source device 100 of the present embodiment can always generate the emitted light including the fluorescence of the intensity which becomes the maximum value of the emission intensity based on the phase of the intensity of the emitted light. Therefore, it is possible to easily realize light emission with a desired light emission intensity without depending on prior processing.
  • FIG. 15 is a diagram schematically showing a configuration of a light source device according to a sixth embodiment of the present invention.
  • the light source device has a fluorescent wheel and is, for example, a light source device for a projector.
  • the light source device 200 includes a light emitting device, a wheel 210, a fluorescent layer 215, a motor 220, a dichroic mirror 230, and lenses 240, 250, 260.
  • the light emitting device has the same configuration as the light emitting device described above in the first embodiment.
  • the wheel 210 is, for example, a disk.
  • a metal layer serving as a reflective substrate is formed on at least the peripheral portion of the wheel 210.
  • the fluorescent layer 215 is formed on the above-mentioned metal layer at the peripheral edge of the wheel.
  • the configuration of the fluorescent layer 215 is the same as that of the above-described embodiment.
  • the motor 220 pivotally supports the center of the wheel 210 when viewed in a plan view, and is a drive device for rotationally driving the wheel 210.
  • the dichroic mirror 230 is a member that reflects excitation light incident at an incident angle of 45 ° and transmits excitation light incident at other incident angles and light of other wavelengths.
  • the excitation light source 11 is arranged at a position where the excitation light is emitted at an incident angle of 45 ° with respect to the dichroic mirror 230.
  • the wheel 210 is arranged at a position where the excitation light reflected by the dichroic mirror 230 is applied to the fluorescent layer 215 from a direction perpendicular to the surface of the metal layer.
  • the lens 240 is arranged in the optical path of the excitation light between the excitation light source 11 and the dichroic mirror 230.
  • the lenses 250 and 260 are all arranged in the optical path of the excitation light between the dichroic mirror 230 and the wheel 210.
  • the light receiving element 13 is arranged at a position on the fluorescent layer 215 side away from the wheel 210 and at a position outside the optical path of the excitation light to the wheel 210 in an oblique direction with respect to the optical path.
  • the adjusting device 14 is configured in the same manner as the adjusting device 14 in the light emitting device 10 of the above-described embodiment.
  • the dichroic mirror 230 and the lenses 240, 250, 260 constitute an optical system that controls the optical path of excitation light and fluorescence.
  • the wheel 210 is rotated at high speed by the motor 220.
  • the fluorescent layer 215 also moves at high speed on a circular orbit together with the wheel 210.
  • Excitation light B1 is output from the excitation light source 11.
  • the excitation light B1 passes through the lens 240, reaches the dichroic mirror 230, and is reflected toward the wheel 210.
  • the reflected excitation light B1 reaches the fluorescence layer 215 through the lenses 250 and 260.
  • the fluorescent substance in the fluorescent layer 215 is excited by the excitation light B1 and emits fluorescence. Part of the fluorescence is reflected on the surface of the metal layer on the back side of the fluorescence layer 215. Fluorescence is mainly emitted in a direction perpendicular to the surface of the metal layer.
  • the fluorescent B3 emitted from the fluorescent layer 215 mainly passes through the lenses 260 and 250 and reaches the dichroic mirror 230. Since the dichroic mirror 230 is a member that reflects only the excitation light incident at 45 °, the fluorescence B3 passes through the dichroic mirror 230 and is used as a part of the light generated by the light source device 200.
  • the fluorescence emitted from the fluorescent layer 215 is also emitted in a direction oblique to the above-mentioned main emission direction.
  • the light receiving element 13 receives the fluorescence emitted in such an oblique direction.
  • the phase detection unit 141 detects the phase of the fluorescence emission intensity received by the light receiving element 13, and the control unit 142 detects the phase of the fluorescence emission intensity detected by the phase detection unit 141 and the excitation output from the excitation light source 11.
  • the output of the excitation light source 11 is controlled with reference to the phase of the laser power of the light B1.
  • the control unit 142 increases the output of the excitation light source 11.
  • the laser power density of the excitation light B1 in the fluorescence layer 215 is increased, and the emission intensity of fluorescence is increased.
  • the control unit 142 reduces the output of the excitation light source 11. As a result, the laser power density of the excitation light B1 in the fluorescence layer 215 decreases, and the emission intensity of fluorescence increases toward the maximum value of the emission intensity and then decreases.
  • the control unit 142 maintains the output of the excitation light source 11 unchanged. As a result, the laser power density of the excitation light B1 in the fluorescence layer 215 is also maintained, and fluorescence with an intensity that substantially maximizes the emission intensity continues to be generated.
  • the fluorescence generator may further have a highly reflective film between the reflective substrate and the fluorescent layer from the viewpoint of increasing the emission intensity of fluorescence.
  • materials for the highly reflective film include silver and titanium oxide.
  • high-reflection films include anti-reflective multilayer films and dielectric mirrors.
  • the fluorescence generator may further have a scattering layer that scatters incident light between the reflective substrate and the fluorescence layer.
  • the fluorescent layer may have other structures as long as the effects of the above embodiments can be obtained.
  • the fluorescent layer may be formed by attaching a fluorescent film made of an inorganic material to a reflective substrate with an organic binder, grease, or a highly heat-resistant inorganic adhesive.
  • the adjusting device is such that the intensity of the excitation light in the phosphor per unit area is a value of a predetermined ratio with respect to the intensity of the excitation light that maximizes the emission intensity of fluorescence.
  • the intensity of the excitation light in the phosphor per unit area may be adjusted.
  • the fact that the phase of the fluorescence intensity is the same as the phase of the excitation light intensity may be further added as a condition to be satisfied.
  • Such adjustment of the intensity per unit area of the excitation light can be carried out by adopting an appropriately set threshold value.
  • the regulator may further control the intensity of excitation light per unit area in the fluorescence layer based on a threshold value corresponding to the desired emission intensity of fluorescence.
  • the threshold value may be the value of the emission intensity of fluorescence itself, the value of the intensity per unit area of the excitation light in the fluorescence layer, or the output value of the excitation light source corresponding to the emission intensity. You may.
  • the adjusting device may further include an emission intensity detection unit that detects the emission intensity of fluorescence received by the light receiving element.
  • the adjusting device further refers to the emission intensity detected by the emission intensity detection unit in controlling the output of the excitation light source. Thereby, the intensity of the excitation light in the fluorescent layer per unit area can be controlled based on the above threshold value.
  • the adjusting device estimates the output value of the excitation light source with reference to the detection result acquired by the adjusting device. You may. In this case, the adjusting device may control the intensity of the excitation light in the fluorescent layer per unit area based on the above threshold value by further referring to the obtained estimated value in the control of the output of the excitation light source. it can.
  • the threshold value can be set as appropriate.
  • the threshold value may be a value corresponding to an emission intensity less than the maximum value of the emission intensity of fluorescence, for example, an emission intensity of 80% of the maximum value.
  • the fluorescence in the emission intensity decrease region is further set. Can be prevented from occurring. Therefore, deterioration of the phosphor due to heat can be prevented, and as a result, fluorescence having a stable emission intensity for a long period of time can be generated.
  • the thermal deterioration of the phosphor is, for example, a structural change or cracking of the phosphor, a decrease in the fluorescence output due to oxidation of the phosphor, or an increase in the fluorescence output due to the volatilization of impurities.
  • setting the above conditions is advantageous from the viewpoint of stable use of a fluorescence source made of an organic material, which has relatively low heat resistance, for a long period of time.
  • the above-mentioned threshold value can be set based on the maximum value of the emission intensity of fluorescence or the value corresponding to the maximum value.
  • the acquired value may be a measured value actually measured or an estimated value estimated based on the measurement result.
  • the threshold value can be set (for example, 80% of the measured value) based on the measured value obtained by actually measuring the maximum value of the fluorescence emission intensity.
  • the threshold is the value of the intensity of the excitation light in the fluorescence layer per unit time when the frequency of the intensity of the fluorescence is twice the frequency of the intensity of the excitation light, or the output value of the excitation light source. May be good.
  • the threshold value can be set, for example, by recording the measured value when the frequency of the fluorescence intensity is twice the frequency of the excitation light intensity.
  • the threshold value can be set by measuring the emission intensity of fluorescence at a plurality of points from the emission intensity increase region to immediately before the maximum value in the peak intensity region. For example, the measurement is performed at the above-mentioned multiple points, the increment of the emission intensity between the measurement points is calculated, and the maximum value of the emission intensity is estimated on condition that the calculated value of the increment is positive but sufficiently small. To do.
  • the threshold value can be set based on such an estimated value.
  • the threshold value can be set without actually measuring the maximum value of the emission intensity of fluorescence, which is preferable from the viewpoint of preventing the phosphor from being deteriorated by heat by setting the threshold value. ..
  • the fluorescence source when the fluorescence source is constructed by using an organic compound relatively weak to heat, the deterioration due to heat of the fluorescence source and the resulting deterioration of the light emitting device It is preferable from the viewpoint of suppressing the decrease in reliability.
  • the adjusting device may be further provided with a functional configuration for setting the threshold value and, after setting the threshold value, a functional configuration for prioritizing the control based on the threshold value in the control of the output of the excitation light source. ..
  • a functional configuration for setting the threshold value and, after setting the threshold value, a functional configuration for prioritizing the control based on the threshold value in the control of the output of the excitation light source. ..
  • the emission intensity of fluorescence is set on the condition that it is equal to or more than a predetermined ratio to the maximum value (for example, 80% or more of the maximum value), fluorescence in the peak intensity region can be constantly generated. It becomes. Control based on such a threshold value becomes even more effective from the viewpoint of generating fluorescence with higher luminous efficiency.
  • a predetermined ratio to the maximum value for example, 80% or more of the maximum value
  • the adjusting device may further include a light emitting intensity detecting unit that detects the light emitting intensity of the fluorescence received by the light receiving element.
  • a light emitting intensity detecting unit that detects the light emitting intensity of the fluorescence received by the light receiving element.
  • the intensity of the excitation light in the fluorescent layer in one embodiment is adjusted per unit area, and the excitation in the fluorescent layer in the other embodiment is obtained within the range in which the effect of the embodiment can be obtained. Both may be performed with another adjustment of the intensity per unit area of light.
  • the output of the excitation light source in the first, fifth, and sixth embodiments may be further controlled. In this case, the controls to be executed a plurality of times may be executed simultaneously, alternately, or irregularly.
  • Performing both control of the adjustment of the intensity per unit area of the excitation light in the fluorescent layer in the second to fourth embodiments and the adjustment in the first, fifth, and sixth embodiments is the emission intensity of the fluorescence emitted by the fluorescent layer. It is even more effective from the viewpoint of precisely controlling.
  • the configuration for changing the incident angle of the excitation light with respect to the fluorescent layer 122 is not limited to the rotating device 35.
  • the incident angle ⁇ is changed by adopting a device that rotates the excitation light source 11 with the intersection of the optical axis of the excitation light source 11 and the fluorescence layer 122 as the center point of rotation. You may.
  • the adjusting device may adjust the temperature of the fluorescent layer to generate fluorescence according to the temperature environment. According to this configuration, even when the light emitting device is used in a hot environment in summer, for example, it is possible to generate fluorescence in a low temperature environment corresponding to the environment in winter.
  • the light synthesized from the excitation light and the fluorescence may be adopted as the light emitted from the light source device.
  • the adjusting device may further control the output of the excitation light source, for example, from the viewpoint of adjusting the color of the emitted light.
  • the control unit controls the output of the excitation light source. It can be carried out by determining the output of the excitation light source.
  • control blocks of the adjusting devices 14, 24, 34, 44, 54 are logic circuits formed in an integrated circuit (IC chip) or the like. It may be realized by (hardware) or by software.
  • the adjusting devices 14, 24, 34, 44, 54 include a computer that executes a program instruction, which is software that realizes each function.
  • This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) or the like for expanding the above program may be further provided.
  • ROM Read Only Memory
  • RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • an arbitrary transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the light emitting device 10 includes an excitation light source 11 for irradiating excitation light, a fluorescence source (fluorescence layer 122) that emits fluorescence in response to excitation light from the excitation light source, and fluorescence emitted by the fluorescence source.
  • the light receiving element 13 that receives a part of the light receiving element and the phase of the fluorescence intensity received by the light receiving element are detected, and the intensity of the excitation light in the fluorescence source per unit area is adjusted according to the detected fluorescence intensity phase. It has an adjusting device 14.
  • the adjusting device increases the intensity of the excitation light per unit area in the fluorescence source, and the fluorescence intensity phase is the excitation light intensity.
  • the phase is opposite to that of, the intensity of the excitation light in the fluorescence source per unit area is lowered.
  • fluorescence in a light emitting device that receives excitation light from an excitation light source by a fluorescence source and emits fluorescence, fluorescence can be emitted with a desired intensity without prior treatment.
  • the adjusting device may increase or decrease the representative value of the output of the excitation light source according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. ..
  • the intensity per unit area of the excitation light in the fluorescence source also increases or decreases due to the substantial increase or decrease in the output of the excitation light source, which is even more effective from the viewpoint of easily adjusting the emission intensity of fluorescence.
  • the light emitting device may further include a varifocal device (varifocal lens 25) capable of changing the focal length of the excitation light applied to the fluorescence source in the above aspect 1 or 2.
  • the adjusting device may change the focal length of the excitation light by the focus variable device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity.
  • the light emitting device may further include an incident angle changing device capable of changing the incident angle of the excitation light to the fluorescence source in the above aspects 1 to 3, and the adjusting device may include the fluorescence intensity.
  • the angle of incidence of the excitation light on the fluorescence source by the incident angle changing device may be increased or decreased depending on the relationship between the phase of the excitation light and the phase of the intensity of the excitation light.
  • the light emitting device is a rotating device that rotates the fluorescence source around a rotation axis parallel to the direction in which the incident angle changing device intersects the optical axis of the excitation light in the above aspect 4.
  • the regulator increases or decreases the angle of incidence of the excitation light on the fluorescence source by rotating the fluorescence source with a rotating device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. You may.

Abstract

The present invention provides a light-emitting device for emitting fluorescence upon receipt of excitation light from an excitation light source at a fluorescent source, such that the light-emitting device emits fluorescence at a desired intensity irrespective of pretreatment. The light-emitting device has an excitation light source, a fluorescent layer, a light-receiving element, and an adjustment device. The adjustment device increases the intensity of the excitation light per unit area on the fluorescent layer if the phase of the intensity of the received fluorescence and the phase of the intensity of the excitation light are the same, or decreases the intensity if otherwise.

Description

発光装置および光源装置Light emitting device and light source device
 以下の開示は、発光装置および光源装置に関する。 The following disclosure relates to a light emitting device and a light source device.
 本出願は、2019年10月23日に日本に出願された特願2019-192807号に優先権を主張し、その内容をここに援用する。 This application claims priority to Japanese Patent Application No. 2019-192807 filed in Japan on October 23, 2019, the contents of which are incorporated herein by reference.
 従来、光源からの光を変調して画像を表示するプロジェクタなどの画像表示装置が広く用いられている。当該画像表示装置の光源には、LED(Light EmittingDiode)やLD(Laser Diode)などの固体光源と、当該固体光源が発する励起光を受光して蛍光を発する蛍光膜とを有する装置が用いられる。なお、当該装置については、センサ部による光のサンプリング間隔を制御することにより、当該装置が照射する各出射光を測定可能な技術が知られている(例えば、特許文献1参照)。 Conventionally, an image display device such as a projector that modulates the light from a light source to display an image has been widely used. As the light source of the image display device, a device having a solid-state light source such as an LED (Light Emitting Diode) or LD (Laser Diode) and a fluorescent film that receives the excitation light emitted by the solid-state light source and emits fluorescence is used. Regarding the device, there is known a technique capable of measuring each emitted light emitted by the device by controlling the light sampling interval by the sensor unit (see, for example, Patent Document 1).
特開2015-138045号公報Japanese Unexamined Patent Publication No. 2015-13845
 上記のような、励起光を蛍光膜が受光して蛍光を発する装置では、一般に、励起光のパワーに応じて蛍光膜に発熱が生じる。また、蛍光膜の発光特性は、通常、温度依存性を有している。このため、蛍光膜の発光特性は、蛍光膜の温度によって変動する。よって、常に最大の発光効率となる条件で上記の光源を使用することが困難である。 In the above-mentioned device in which the fluorescence film receives the excitation light and emits fluorescence, heat is generally generated in the fluorescence film according to the power of the excitation light. In addition, the emission characteristics of the fluorescent film usually have temperature dependence. Therefore, the emission characteristics of the fluorescent film vary depending on the temperature of the fluorescent film. Therefore, it is difficult to use the above light source under the condition that the maximum luminous efficiency is always obtained.
 蛍光膜を最大の発光効率で使用する方法として、蛍光膜の温度を測定して励起光のパワーの制御にフィードバックする方法が考えられるが、この方法では、以下のような問題が考えられる。たとえば、蛍光膜の正確な温度特性、膜厚に合わせて、蛍光膜の温度に対する固体光源の駆動条件のテーブルを用意するなどの事前の処理が必要である。しかしながら、蛍光膜の温度は、一般に、蛍光膜における励起光の単位面積当たりの強度の増加に対して非線形で増加し、また、蛍光膜の温度による蛍光の強度への影響が生じる。さらに、蛍光膜の発光特性は、蛍光膜の個体差も含む。このため、蛍光膜の温度から蛍光のピーク発光強度を解析することが難しい。 As a method of using the fluorescent film with the maximum luminous efficiency, a method of measuring the temperature of the fluorescent film and feeding it back to the control of the power of the excitation light can be considered, but the following problems can be considered in this method. For example, it is necessary to perform prior processing such as preparing a table of driving conditions of a solid light source with respect to the temperature of the fluorescent film according to the accurate temperature characteristics and film thickness of the fluorescent film. However, the temperature of the fluorescence film generally increases non-linearly with respect to the increase in the intensity of excitation light per unit area in the fluorescence film, and the temperature of the fluorescence film affects the fluorescence intensity. Further, the emission characteristics of the fluorescent film include individual differences of the fluorescent film. Therefore, it is difficult to analyze the peak emission intensity of fluorescence from the temperature of the fluorescent film.
 本発明の一態様は、励起光源からの励起光を蛍光源で受けて蛍光を発する発光装置において、事前の処理に依らずに所望の発光強度で発光を発生させることを目的とする。 One aspect of the present invention is an object of a light emitting device that receives excitation light from an excitation light source by a fluorescence source and emits fluorescence, and generates light emission at a desired emission intensity without depending on prior treatment.
 上記の課題を解決するために、本発明の一態様に係る発光装置は、励起光を照射するための励起光源と、前記励起光源からの前記励起光を受けて蛍光を発する蛍光源と、前記蛍光源が発する前記蛍光の一部を受光する受光素子と、前記受光素子が受光した前記蛍光の強度の位相を検出し、検出した前記蛍光の強度の位相に応じて、前記蛍光源における前記励起光の単位面積当たりの強度を調整する調整装置とを有し、前記調整装置は、前記蛍光の強度の位相が前記励起光の強度の位相と同じである場合には、前記蛍光源における前記励起光の単位面積当たりの強度を高くし、前記蛍光の強度の位相が前記励起光の強度の位相と逆である場合には、前記蛍光源における前記励起光の単位面積当たりの強度を低くする。 In order to solve the above problems, the light emitting device according to one aspect of the present invention includes an excitation light source for irradiating excitation light, a fluorescence source that receives the excitation light from the excitation light source and emits fluorescence, and the above. A light receiving element that receives a part of the fluorescence emitted by the fluorescence source and a phase of the fluorescence intensity received by the light receiving element are detected, and the excitation in the fluorescence source is performed according to the detected phase of the fluorescence intensity. It has an adjusting device for adjusting the intensity per unit area of light, and the adjusting device has the excitation in the fluorescence source when the phase of the intensity of the fluorescence is the same as the phase of the intensity of the excitation light. The intensity per unit area of light is increased, and when the phase of the intensity of the fluorescence is opposite to the phase of the intensity of the excitation light, the intensity of the excitation light in the fluorescence source per unit area is decreased.
 また、上記の課題を解決するために、本発明の一態様に係る光源装置は、上記の発光装置と、前記励起光および前記蛍光の一方または両方の光路を制御するための光学系と、を有する。 Further, in order to solve the above problems, the light source device according to one aspect of the present invention includes the above light emitting device and an optical system for controlling one or both optical paths of the excitation light and the fluorescence. Have.
 本発明の一態様によれば、励起光源から励起光を蛍光源で受けて蛍光を発する発光装置において、事前の処理に依らずに所望の強度で蛍光を発生させることができる。 According to one aspect of the present invention, in a light emitting device that receives excitation light from an excitation light source with a fluorescence source and emits fluorescence, fluorescence can be generated with a desired intensity without prior treatment.
本発明の実施形態1に係る発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 1 of this invention. 図1の発光装置における励起光のレーザパワー密度と蛍光の発光強度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the laser power density of the excitation light and the emission intensity of fluorescence in the light emitting device of FIG. 図1の発光装置における励起光のレーザパワー密度と蛍光層の温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between the laser power density of the excitation light in the light emitting device of FIG. 1 and the temperature of a fluorescent layer. 図1の発光装置における発光強度増加領域での励起光のレーザパワーと蛍光の発光強度の挙動の一例を示す図である。It is a figure which shows an example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the region where the emission intensity increases in the light emitting device of FIG. 図1の発光装置におけるピーク強度領域での励起光のレーザパワーと蛍光の発光強度の挙動の一例を示す図である。It is a figure which shows an example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the peak intensity region in the light emitting device of FIG. 図1の発光装置における発光強度減少領域での励起光のレーザパワーと蛍光の発光強度の挙動の一例を示す図である。It is a figure which shows an example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the region where the emission intensity decreases in the light emitting device of FIG. 図1の発光装置における発光強度増加領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。It is a figure which shows another example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the region where the emission intensity increases in the light emitting device of FIG. 図1の発光装置におけるピーク強度領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。It is a figure which shows another example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the peak intensity region in the light emitting device of FIG. 図1の発光装置における発光強度減少領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。It is a figure which shows another example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the region where the emission intensity is reduced in the light emitting device of FIG. 本発明の実施形態2に係る発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る発光装置における要部の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the main part in the light emitting device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る発光装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light emitting device which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る光源装置の構成を紹介するための図である。It is a figure for introducing the structure of the light source apparatus which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る光源装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the light source apparatus which concerns on Embodiment 6 of this invention.
〔実施形態1〕
(発光装置の構成)
 以下、本発明の一実施形態について、詳細に説明する。図1は、本発明の実施形態1に係る発光装置の構成を模式的に示す図である。図1に示されるように、発光装置10は、励起光源11、蛍光発生装置12、受光素子13および調整装置14を有する。
[Embodiment 1]
(Configuration of light emitting device)
Hereinafter, one embodiment of the present invention will be described in detail. FIG. 1 is a diagram schematically showing a configuration of a light emitting device according to a first embodiment of the present invention. As shown in FIG. 1, the light emitting device 10 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, and an adjusting device 14.
(励起光源)
 励起光源11は、励起光を照射するための光源である。励起光は、後述する蛍光層に照射されたときに蛍光層中の蛍光体を励起して蛍光層から蛍光を発生させる光である。励起光は、このような光であれば限定されない。励起光源11は、例えば、青色レーザまたは青色LEDである。
(Excitation light source)
The excitation light source 11 is a light source for irradiating the excitation light. The excitation light is light that excites a phosphor in the fluorescent layer to generate fluorescence from the fluorescent layer when it is irradiated to the fluorescent layer described later. The excitation light is not limited as long as it is such light. The excitation light source 11 is, for example, a blue laser or a blue LED.
(蛍光発生装置)
 蛍光発生装置12は、励起光源11からの励起光を受けて蛍光を発する装置である。蛍光発生装置12は、反射基板121および蛍光層122を有する。
(Fluorescence generator)
The fluorescence generator 12 is a device that receives excitation light from the excitation light source 11 and emits fluorescence. The fluorescence generator 12 has a reflection substrate 121 and a fluorescence layer 122.
 反射基板121は、その表面に蛍光層122を支持するとともに光を反射する性質を有する。反射基板121は、光に対する高い反射率を有することが好ましい。また、励起光の照射によって発熱する蛍光層122から除熱して蛍光層122の温度上昇を抑制する観点から、反射基板121は、高い熱伝導率を有することが好ましい。反射基板121の例には、アルミ基板および高反射性を有するアルミナ基板、および、高反射コーティングをした金属基板、が含まれる。 The reflective substrate 121 has a property of supporting the fluorescent layer 122 on its surface and reflecting light. The reflective substrate 121 preferably has a high reflectance to light. Further, the reflective substrate 121 preferably has a high thermal conductivity from the viewpoint of removing heat from the fluorescent layer 122 that generates heat by irradiation with excitation light and suppressing the temperature rise of the fluorescent layer 122. Examples of the reflective substrate 121 include an aluminum substrate, an alumina substrate having high reflectivity, and a metal substrate having a highly reflective coating.
 蛍光層122は、励起光を受けて蛍光を発する蛍光源の一態様である。蛍光源は、蛍光を発生可能に、蛍光体を含有する物であればよい。蛍光源は、蛍光を発する蛍光体そのもので構成されていてもよいし、バインダなどの他の成分を含有していてもよい。また、蛍光源の形状は限定されず、例えば、所定の物体そのものの形状を有していてもよい。また、蛍光源の形態は、物体の表面に配置される膜または層であってもよい。 The fluorescent layer 122 is an aspect of a fluorescence source that receives excitation light and emits fluorescence. The fluorescence source may be one containing a phosphor capable of generating fluorescence. The fluorescence source may be composed of the fluorescent substance itself that emits fluorescence, or may contain other components such as a binder. Further, the shape of the fluorescence source is not limited, and may have, for example, the shape of a predetermined object itself. Further, the form of the fluorescence source may be a film or a layer arranged on the surface of the object.
 蛍光層122は、蛍光体と当該蛍光体を結着するバインダとによって構成されている。蛍光層122の厚みは、発光装置10の用途や所期の能力などに応じて適宜に決めることができる。 The fluorescent layer 122 is composed of a fluorescent substance and a binder that binds the fluorescent substance. The thickness of the fluorescent layer 122 can be appropriately determined according to the application of the light emitting device 10 and the desired capacity.
 蛍光体が発する蛍光の色は、励起光の種類および発光装置の用途に応じて適宜に決めることができ、蛍光の色は、例えば、青色、緑色、赤色などの白色光以外の色であってもよい。 The color of the fluorescence emitted by the phosphor can be appropriately determined according to the type of excitation light and the application of the light emitting device, and the color of the fluorescence is, for example, a color other than white light such as blue, green, and red. May be good.
 蛍光体は、一種でもそれ以上でもよい。たとえば、蛍光源は、異なる色を発する二種以上の蛍光体を含んでいてもよい。たとえば、蛍光源は、近紫外光の励起光を黄色光および青色光に変換する二種類の蛍光体を含んでいてもよい。このような蛍光源は、黄色光および青色光の蛍光が混色した擬似白色光の蛍光を発生することができる。 The phosphor may be one kind or more. For example, the fluorescence source may include two or more types of phosphors that emit different colors. For example, the fluorescence source may include two types of phosphors that convert the excitation light of near-ultraviolet light into yellow light and blue light. Such a fluorescence source can generate pseudo-white fluorescence in which the fluorescence of yellow light and blue light is mixed.
 蛍光体は、蛍光を発生する成分であれば、有機化合物であってもよいし、無機化合物であってもよい。レーザ光を励起光とする場合では、一般にレーザ光のレーザパワー密度は十分に高いことから、蛍光源の温度が上昇しやすい。この場合、蛍光体は、高い耐熱性を有する観点から、無機蛍光体であることが好ましい。無機蛍光体の例には、酸窒化物系の蛍光体および窒化物系の蛍光体が含まれる。 The phosphor may be an organic compound or an inorganic compound as long as it is a component that generates fluorescence. When the laser light is used as the excitation light, the temperature of the fluorescence source tends to rise because the laser power density of the laser light is generally sufficiently high. In this case, the phosphor is preferably an inorganic phosphor from the viewpoint of having high heat resistance. Examples of inorganic phosphors include oxynitride-based phosphors and nitride-based phosphors.
 蛍光体は、励起光の種類および発する蛍光の所期の色に応じて適宜に選ぶことができる。たとえば、励起光が近紫外光である場合では、当該励起光を赤色光に変換する蛍光物質の例には、CaAlSiN:Eu2+が含まれる。上記励起光を黄色光に変換する蛍光物質の例には、Ca-α-SiAlON:Eu2+およびYAl12:Ce3+(YAG:Ce)が含まれる。上記励起光を緑色光に変換する蛍光物質の例には、β-SiAlON:Eu2+およびLuAl12:Ce3+(LuAG:Ce)が含まれる。上記励起光を青色光に変換する蛍光物質の例には、(Sr,Ca,Ba,Mg)10(PO12:Eu、BaMgAl1017:Eu2+、および、(Sr,Ba)MgSi:Eu2+、が含まれる。 The phosphor can be appropriately selected according to the type of excitation light and the desired color of the emitted fluorescence. For example, when the excitation light is near-ultraviolet light, examples of the fluorescent substance that converts the excitation light into red light include CaAlSiN 3 : Eu 2+ . Examples of the fluorescent substance that converts the excitation light into yellow light include Ca-α-SiAlON: Eu 2+ and Y 3 Al 5 O 12 : Ce 3+ (YAG: Ce). Examples of the fluorescent substance that converts the excitation light into green light include β-SiAlON: Eu 2+ and Lu 3 Al 5 O 12 : Ce 3+ (LuAG: Ce). Examples of fluorescent substances that convert the excitation light into blue light include (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu 2+ , and (Sr, Ba). ) 3 MgSi 2 O 8 : Eu 2+ , is included.
 蛍光源における蛍光体の形態は限定されない。蛍光源において、蛍光体は、粒子状に成形されていてもよいし、バインダ中に分散されている微細粒子であってもよいし、液体であってもよい。 The form of the phosphor in the fluorescence source is not limited. In the fluorescence source, the phosphor may be formed into particles, may be fine particles dispersed in a binder, or may be a liquid.
 バインダは、蛍光物質を結着して蛍光体を構成する材料である。蛍光体のみで蛍光源を構成することができる場合には、バインダは不要である。バインダは、蛍光体に対する結着性に応じて適宜に決めることができ、有機化合物であってもよいし、無機化合物であってもよい。 Binder is a material that binds fluorescent substances to form a phosphor. If the fluorescence source can be composed only of the phosphor, no binder is required. The binder can be appropriately determined according to the binding property to the phosphor, and may be an organic compound or an inorganic compound.
 バインダは、蛍光層122の放熱性を高める観点から、高い熱伝導率を有することが好ましい。また、バインダは、蛍光層122の熱安定性を高める観点から、十分に高い耐熱性を有することが好ましい。このような観点から、バインダは、無機のバインダであることが好ましい。無機のバインダの例には、アルミニウム化合物が含まれ、当該アルミニウム化合物の例には、アルミナおよびベーマイトが含まれる。 The binder preferably has a high thermal conductivity from the viewpoint of enhancing the heat dissipation of the fluorescent layer 122. Further, the binder preferably has sufficiently high heat resistance from the viewpoint of enhancing the thermal stability of the fluorescent layer 122. From this point of view, the binder is preferably an inorganic binder. Examples of inorganic binders include aluminum compounds, examples of such aluminum compounds include alumina and boehmite.
 バインダも、蛍光体と同様に、その蛍光源中における形態は限定されない。バインダは、蛍光源において、連続相であってもよいし、蛍光体の粒子に結着する粒子の状態であってもよい。さらに、バインダは、上記のような高い熱伝導率などの所期の効果が得られる範囲において、アルミニウム化合物以外の他の成分を副成分としてさらに含有していてもよい。 Like the phosphor, the binder is not limited in its form in the fluorescent source. The binder may be in a continuous phase or in a state of particles bound to the particles of the phosphor in the fluorescence source. Further, the binder may further contain a component other than the aluminum compound as a sub-component within a range in which the desired effect such as high thermal conductivity as described above can be obtained.
 また、蛍光源は、所期の効果が得られる範囲において、バインダ以外の他の成分をさらに含有していてもよい。たとえば、蛍光源は、発生する蛍光の色を調整するために微量添加されるドーパントをさらに含有していてもよい。 Further, the fluorescence source may further contain components other than the binder as long as the desired effect can be obtained. For example, the fluorescence source may further contain a little dopant added to adjust the color of the resulting fluorescence.
 本実施形態においては、蛍光層122は、無機蛍光体の粒子と当該無機蛍光体の粒子を結着する無機バインダの粒子とによって構成されている。蛍光層122の好ましい一例には、YAG:Ce(イットリウム・アルミニウム・ガーネットにドーパントとしてセリウムをドープした蛍光体の粒子、例えば、YAl12:Ce3+)と、バインダ粒子としてのアルミナ粒子とによって構成される層が含まれる。上記のYAG:Ceの体積基準のメジアン径(D50)は例えば25μmである。また、YAG:Ceおよびバインダ粒子の混合比は、体積比で6:4である。このように、蛍光層122は、無機のバインダと当該バインダに結着されている無機の蛍光体とによって構成されていてよい。 In the present embodiment, the fluorescent layer 122 is composed of particles of an inorganic phosphor and particles of an inorganic binder that binds the particles of the inorganic phosphor. Preferred examples of the fluorescent layer 122, YAG: Ce (particles of the fluorescent-doped cerium as a dopant yttrium aluminum garnet material, for example, Y 3 Al 5 O 12: Ce 3+) and alumina particles as binder particle A layer composed of and is included. The volume-based median diameter (D50) of YAG: Ce is, for example, 25 μm. The mixing ratio of YAG: Ce and binder particles is 6: 4 by volume. As described above, the fluorescent layer 122 may be composed of an inorganic binder and an inorganic phosphor bound to the binder.
 また、蛍光層122における無機蛍光体は、D50が25μmのYAG:CeとD50が5μmのYAG:Ceとの混合物であってもよい。このような無機蛍光体で構成される蛍光層122において、D50が25μmのYAG:Ce、D50が5μmのYAG:Ce、およびバインダ粒子の混合比は、この順で、また体積比で5:3:2である。 Further, the inorganic phosphor in the fluorescent layer 122 may be a mixture of YAG: Ce having a D50 of 25 μm and YAG: Ce having a D50 of 5 μm. In the fluorescent layer 122 composed of such an inorganic phosphor, the mixing ratios of YAG: Ce having a D50 of 25 μm, YAG: Ce having a D50 of 5 μm, and binder particles are in this order and in a volume ratio of 5: 3. : 2.
 蛍光層122は、公知の方法で作製することが可能であり、例えば、反射基板121の表面に蛍光体とバインダとの組成物を印刷法によって塗布し、当該組成物の塗膜を乾燥させ、さらに必要に応じて焼成することによって作製することが可能である。 The fluorescent layer 122 can be produced by a known method. For example, a composition of a phosphor and a binder is applied to the surface of a reflective substrate 121 by a printing method, and the coating film of the composition is dried. Further, it can be produced by firing if necessary.
(受光素子)
 受光素子13は、蛍光層122が発する蛍光の一部を受光する素子である。受光素子13は、少なくとも、受光した光の位相を検出できるように光を受光する。受光素子13の例には、干渉計などの光位相検出器が含まれる。
(Light receiving element)
The light receiving element 13 is an element that receives a part of the fluorescence emitted by the fluorescent layer 122. The light receiving element 13 receives light so that at least the phase of the received light can be detected. Examples of the light receiving element 13 include an optical phase detector such as an interferometer.
(調整装置)
 調整装置14は、プロセッサを含み、位相検出部141および制御部142を機能的な構成として備える。
(Adjuster)
The adjusting device 14 includes a processor, and includes a phase detection unit 141 and a control unit 142 as a functional configuration.
 位相検出部141は、受光素子13が受光した蛍光の強度の位相を検出する。蛍光の強度の位相とは、蛍光の周期的に変動する強度の位相である。蛍光の強度の周期的な変動が描く波形は、限定されず、例えば正弦曲線であってよく、他の形状の繰り返しによる形状であってもよい。さらには、当該波形は、所定の形状の規則的な繰り返しによる形状であってもよいし、不規則な形状であってもよい。 The phase detection unit 141 detects the phase of the fluorescence intensity received by the light receiving element 13. The phase of fluorescence intensity is the phase of fluorescence intensity that fluctuates periodically. The waveform drawn by the periodic fluctuation of the fluorescence intensity is not limited, and may be, for example, a sinusoidal curve or a shape obtained by repeating other shapes. Further, the waveform may have a shape obtained by regularly repeating a predetermined shape, or may have an irregular shape.
 蛍光の強度は、蛍光の強さを表す。蛍光の強度は、任意の単位によって表すことができ、蛍光の強度の単位の例には、単位面積当たりの光のエネルギー、輝度、および、これらの相対値で表される任意の単位、が含まれる。以下、蛍光の「強度」を「発光強度」とも言う。 Fluorescence intensity represents the intensity of fluorescence. Fluorescence intensity can be expressed in any unit, and examples of fluorescence intensity units include light energy per unit area, brightness, and any unit represented by these relative values. Is done. Hereinafter, the "intensity" of fluorescence is also referred to as "emission intensity".
 制御部142は、検出した蛍光の強度の位相に応じて、蛍光層122における励起光の単位面積当たりの強度を調整する。より具体的には、制御部142は、蛍光の強度の位相が励起光の強度の位相と同じである場合には、蛍光層122における励起光の単位面積当たりの強度を高くする。また、蛍光の強度の位相が励起光の強度の位相と逆である場合には、蛍光層122における励起光の単位面積当たりの強度を低くする。 The control unit 142 adjusts the intensity of the excitation light in the fluorescence layer 122 per unit area according to the phase of the detected fluorescence intensity. More specifically, when the phase of the fluorescence intensity is the same as the phase of the excitation light intensity, the control unit 142 increases the intensity of the excitation light in the fluorescence layer 122 per unit area. When the phase of the fluorescence intensity is opposite to the phase of the excitation light intensity, the intensity of the excitation light in the fluorescence layer 122 per unit area is lowered.
 ここで、励起光の強度の位相とは、励起光の強度の周期的な変動における位相である。励起光の強度の周期的な変化は、例えば、励起光源11の出力が周期的かつ微細に変動することによる。たとえば、励起光源11における出力の周期的な変動における周期は60Hz~60kHzである。当該周期は、例えば発光装置10を有する光源装置の用途に応じて、上記の範囲から適宜に決めることができる。また、励起光源11における出力の周期的な変動における振幅は平均値の±5~10%である。当該振幅が小さすぎると蛍光の変化も小さすぎ、励起光の強度の位相が十分に表れないことがある。当該振幅が大きすぎることは、蛍光層122における蛍光の発光強度に対して過剰の強度の励起光を蛍光層122に照射していることになる。このため、当該振幅が大きすぎると、蛍光層122の劣化が促進される恐れがあり、発光装置10の信頼性が低下する恐れがある。励起光の強度は、励起光の強度を表す範囲において限定されず、その例には、単位面積当たりの励起光のエネルギー、および、輝度が含まれる。以下の実施形態では、励起光の「強度」を「レーザパワー」とも言う。 Here, the phase of the intensity of the excitation light is the phase in the periodic fluctuation of the intensity of the excitation light. The periodic change in the intensity of the excitation light is due to, for example, the output of the excitation light source 11 fluctuating periodically and finely. For example, the period in the periodic fluctuation of the output of the excitation light source 11 is 60 Hz to 60 kHz. The period can be appropriately determined from the above range, for example, depending on the use of the light source device having the light emitting device 10. Further, the amplitude of the periodic fluctuation of the output of the excitation light source 11 is ± 5 to 10% of the average value. If the amplitude is too small, the change in fluorescence is too small, and the phase of the intensity of the excitation light may not appear sufficiently. If the amplitude is too large, it means that the fluorescence layer 122 is irradiated with excitation light having an intensity excessive with respect to the emission intensity of the fluorescence in the fluorescence layer 122. Therefore, if the amplitude is too large, the deterioration of the fluorescent layer 122 may be accelerated, and the reliability of the light emitting device 10 may be lowered. The intensity of the excitation light is not limited in the range representing the intensity of the excitation light, and examples thereof include the energy of the excitation light per unit area and the brightness. In the following embodiments, the "intensity" of the excitation light is also referred to as "laser power".
 蛍光層122における励起光の単位面積当たりの強度を調整する方法には、様々な方法がある。本実施形態では、調整装置14は、蛍光の強度の位相と励起光の強度の位相との関係に応じて、励起光源11の出力の代表値を増減する。なお、出力の代表値とは、励起光源11から照射される励起光が所期の強度を有するように設定される励起光源11の出力値である。当該代表値は、前述した励起光源11の出力における周期的かつ微細な変動における中央値であってもよいし、励起光源11の出力値の平均値であってもよい。 There are various methods for adjusting the intensity of the excitation light in the fluorescent layer 122 per unit area. In the present embodiment, the adjusting device 14 increases or decreases the representative value of the output of the excitation light source 11 according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. The representative value of the output is the output value of the excitation light source 11 in which the excitation light emitted from the excitation light source 11 is set to have the desired intensity. The representative value may be the median value in the periodic and minute fluctuations in the output of the excitation light source 11 described above, or may be the average value of the output values of the excitation light source 11.
(その他の構成)
 発光装置10は、本実施形態の効果が得られる範囲において、前述した構成以外の他の構成をさらに有していてよい。たとえば、発光装置10は、蛍光発生装置12に接触するように配置されている不図示の冷却部(ヒートシンク)をさらに有していてよい。当該ヒートシンクは、反射基板121に接触しており、反射基板121および蛍光層122を必要に応じて冷却する。当該冷却部を発光装置10がさらに有することは、蛍光層122の熱劣化を抑制する観点から好ましい。
(Other configurations)
The light emitting device 10 may further have a configuration other than the above-described configuration as long as the effect of the present embodiment can be obtained. For example, the light emitting device 10 may further have a cooling unit (heat sink) (not shown) arranged so as to be in contact with the fluorescence generator 12. The heat sink is in contact with the reflective substrate 121 and cools the reflective substrate 121 and the fluorescent layer 122 as needed. It is preferable that the light emitting device 10 further has the cooling unit from the viewpoint of suppressing thermal deterioration of the fluorescent layer 122.
 また、発光装置10は、不図示の温度センサをさらに有していてよい。当該温度センサは、蛍光層122において励起光が照射される部分の温度を検出する。温度センサは、非接触で温度を検出する装置であり、例えば赤外線温度センサである。 Further, the light emitting device 10 may further have a temperature sensor (not shown). The temperature sensor detects the temperature of the portion of the fluorescent layer 122 that is irradiated with the excitation light. The temperature sensor is a device that detects the temperature in a non-contact manner, and is, for example, an infrared temperature sensor.
(励起光の強度と蛍光の発光強度との関係)
 次に、励起光の強度と蛍光の発光強度との関係について説明する。図2は、発光装置10におけるレーザ光のレーザパワー密度と蛍光の発光強度との関係の一例を示す図である。図3は、発光装置10におけるレーザ光のレーザパワー密度と蛍光層122の温度との関係の一例を示す図である。レーザパワー密度は、例えば、蛍光層122の表面における励起光の単位面積当たりの強度の一態様である。また、本実施形態において、蛍光の発光強度の単位を「a.u.」(任意単位)としている。蛍光の発光強度は、励起光非照射時における蛍光の発光強度(例えば輝度)を「0」とし、励起光照射時であって蛍光の強度の位相が励起光の強度の位相の二倍となるときの蛍光の発光強度(例えば輝度)を「1」としたときの相対値で表されている。
(Relationship between excitation light intensity and fluorescence emission intensity)
Next, the relationship between the intensity of the excitation light and the emission intensity of fluorescence will be described. FIG. 2 is a diagram showing an example of the relationship between the laser power density of the laser beam and the emission intensity of the fluorescence in the light emitting device 10. FIG. 3 is a diagram showing an example of the relationship between the laser power density of the laser beam in the light emitting device 10 and the temperature of the fluorescent layer 122. The laser power density is, for example, an aspect of the intensity per unit area of excitation light on the surface of the fluorescent layer 122. Further, in the present embodiment, the unit of the emission intensity of fluorescence is "au" (arbitrary unit). As for the emission intensity of fluorescence, the emission intensity (for example, brightness) of fluorescence when not irradiated with excitation light is set to "0", and the phase of fluorescence intensity is twice the phase of excitation light intensity even when excited light is irradiated. It is represented by a relative value when the emission intensity (for example, brightness) of the fluorescence at that time is "1".
 励起光源11から青色レーザなどの励起光を出射する。励起光が蛍光層122に入射すると、図2に示されるように、励起光のレーザパワー密度が大きくなるにつれて、蛍光層122における蛍光の発光強度が増加する。励起光の照射当初では、レーザパワー密度の増加に対して、発光強度はほぼ直線的に増加する。蛍光の発光強度がこのような挙動を示す領域(図2、図3中の「A」で表される領域)を「発光強度増加領域」とも言う。発光強度増加領域では、図3に示されるように、蛍光層122の温度も、レーザパワー密度の増加に伴って増加する。 Excitation light such as a blue laser is emitted from the excitation light source 11. When the excitation light is incident on the fluorescence layer 122, as shown in FIG. 2, as the laser power density of the excitation light increases, the emission intensity of fluorescence in the fluorescence layer 122 increases. At the beginning of irradiation with the excitation light, the emission intensity increases almost linearly with the increase in the laser power density. The region in which the emission intensity of fluorescence exhibits such behavior (the region represented by "A" in FIGS. 2 and 3) is also referred to as an "emission intensity increasing region". In the emission intensity increasing region, as shown in FIG. 3, the temperature of the fluorescent layer 122 also increases as the laser power density increases.
 発光強度増加領域からさらにレーザパワー密度を増加させると、図2に示されるように、蛍光の発光強度は最大値まで増加し、当該最大値を過ぎると減少し始める。このように、蛍光の発光強度は、レーザパワー密度の増加に対して、ある点で極大値を示し、その後減少する。蛍光の発光強度が極大値を挟んでこのように挙動する領域(例えば、蛍光の発光強度が上記最大値(輝度飽和点)の90%以上となる範囲など。図2、図3中の「B」で表される領域)を「ピーク強度領域」とも言う。ピーク強度領域でも、図3に示されるように、蛍光層122の温度は、レーザパワー密度の増加に伴って増加する。 When the laser power density is further increased from the emission intensity increase region, the emission intensity of fluorescence increases to the maximum value as shown in FIG. 2, and starts to decrease after the maximum value. As described above, the emission intensity of fluorescence reaches a maximum value at a certain point with respect to an increase in laser power density, and then decreases. A region in which the emission intensity of fluorescence behaves in this way with a maximum value in between (for example, a range in which the emission intensity of fluorescence is 90% or more of the above maximum value (luminance saturation point), etc. The region represented by "" is also referred to as a "peak intensity region". Even in the peak intensity region, as shown in FIG. 3, the temperature of the fluorescent layer 122 increases as the laser power density increases.
 ピーク強度領域からさらにレーザパワー密度を増加させると、図2に示されるように、蛍光の発光強度は減少する。このように輝度飽和後では、蛍光の発光強度は減少する。蛍光の発光強度がこのように挙動する領域(図2、図3中の「C」で表される領域)を「発光強度減少領域」とも言う。発光強度減少領域においても、図3に示されるように、蛍光層122の温度は、レーザパワー密度の増加に伴ってさらに増加する。 When the laser power density is further increased from the peak intensity region, the emission intensity of fluorescence decreases as shown in FIG. In this way, after the brightness is saturated, the emission intensity of fluorescence decreases. The region in which the emission intensity of fluorescence behaves in this way (the region represented by "C" in FIGS. 2 and 3) is also referred to as a "emission intensity reduction region". Even in the emission intensity decreasing region, as shown in FIG. 3, the temperature of the fluorescent layer 122 further increases as the laser power density increases.
(励起光の強度の制御例)
 次に、励起光の強度の制御について説明する。励起光がレーザの場合では、励起光の強度は、周期的に変動する。ここで、励起光のちらつきを抑制する観点から、励起光の周波数は高いことが好ましい。このような観点から、励起光の周波数は、例えば60Hz以上であってよい。
(Example of controlling the intensity of excitation light)
Next, control of the intensity of the excitation light will be described. When the excitation light is a laser, the intensity of the excitation light fluctuates periodically. Here, from the viewpoint of suppressing the flicker of the excitation light, it is preferable that the frequency of the excitation light is high. From this point of view, the frequency of the excitation light may be, for example, 60 Hz or higher.
(励起光の強度の周期的な変動が正弦曲線の場合)
<発光強度増加領域>
 図4は、発光装置10における発光強度増加領域(図2、3中のA)での励起光のレーザパワーと蛍光の発光強度の挙動の一例を示す図である。励起光の出力条件および当該出力条件による蛍光の状態は、例えば以下の通りである。なお、下記の「θ」は、「2π」と「f」(周波数[Hz])と「t」(時間[秒])との積で表される。
  励起光のレーザパワー:平均3.5W
  励起光のレーザパワーの周期的変動の形状:正弦曲線(sinθ)
  励起光のレーザパワーの周期的変動における振幅:0.5W
  蛍光の発光強度:平均0.927(a.u)
  蛍光の発光強度の周期的変動の形状:正弦曲線(sinθ)
(When the periodic fluctuation of the excitation light intensity is a sinusoidal curve)
<Emission intensity increase region>
FIG. 4 is a diagram showing an example of the behavior of the laser power of the excitation light and the emission intensity of fluorescence in the emission intensity increasing region (A in FIGS. 2 and 3) in the light emitting device 10. The output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example. The following "θ" is represented by the product of "2π", "f" (frequency [Hz]), and "t" (time [second]).
Laser power of excitation light: 3.5W on average
Shape of periodic fluctuation of laser power of excitation light: sinusoidal curve (sinθ)
Amplitude in periodic fluctuation of laser power of excitation light: 0.5W
Fluorescence emission intensity: Average 0.927 (au)
Shape of periodic fluctuation of fluorescence emission intensity: sinusoidal curve (sinθ)
 発光強度増加領域では、励起光の強度および蛍光の強度における周期的変動の形状は、いずれもsinθで表される。制御部142は、位相検出部141が検出した蛍光の強度の位相と、励起光源11から出力される励起光の強度の位相とを比較する。蛍光の強度と励起光の強度とが同位相である場合には、蛍光層122から発する蛍光は、輝度飽和に至っていないと判断することができる。制御部142は、上記の場合、励起光源11の出力をより大きくする。 In the emission intensity increase region, the shape of the periodic fluctuation in the intensity of the excitation light and the intensity of fluorescence are both represented by sinθ. The control unit 142 compares the phase of the fluorescence intensity detected by the phase detection unit 141 with the phase of the excitation light output from the excitation light source 11. When the intensity of fluorescence and the intensity of excitation light are in phase, it can be determined that the fluorescence emitted from the fluorescence layer 122 has not reached luminance saturation. In the above case, the control unit 142 increases the output of the excitation light source 11.
<ピーク強度領域>
 図5は、発光装置10におけるピーク強度領域(図2、3中のB)での励起光のパワーと蛍光の発光強度の挙動の一例を示す図である。励起光の出力条件および当該出力条件による蛍光の状態は、例えば以下の通りである。
  励起光のレーザパワー:平均4.1W
  励起光の強度の周期的変動の形状:正弦曲線(sinθ)
  蛍光の発光強度:平均0.984(a.u)
  蛍光の発光強度の周期的変動の形状:正弦曲線(cos2θ)
<Peak intensity region>
FIG. 5 is a diagram showing an example of the behavior of the power of excitation light and the emission intensity of fluorescence in the peak intensity region (B in FIGS. 2 and 3) in the light emitting device 10. The output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example.
Laser power of excitation light: 4.1 W on average
Shape of periodic fluctuation of excitation light intensity: sinusoidal curve (sinθ)
Fluorescence emission intensity: Average 0.984 (au)
Shape of periodic variation in fluorescence intensity: sinusoidal curve (cos2θ)
 ピーク強度領域における発光強度の極大値(最大値)では、蛍光の強度の周期的変動における周波数は、励起光の強度の周期的変動における周波数の二倍になる。よって、励起光の強度の周期的変動をsinθで表す場合では、ピーク強度領域における蛍光の強度の周期的変動は、cos2θで表される。このとき、蛍光層122から発する蛍光は、実質的に輝度飽和に到達した、と判断することができる。制御部142は、上記の場合、励起光源11の出力を変動させない。 At the maximum value (maximum value) of the emission intensity in the peak intensity region, the frequency in the periodic fluctuation of the fluorescence intensity is twice the frequency in the periodic fluctuation of the excitation light intensity. Therefore, when the periodic fluctuation of the intensity of the excitation light is represented by sinθ, the periodic fluctuation of the fluorescence intensity in the peak intensity region is represented by cos2θ. At this time, it can be determined that the fluorescence emitted from the fluorescence layer 122 has substantially reached the luminance saturation. In the above case, the control unit 142 does not change the output of the excitation light source 11.
<発光強度減少領域>
 図6は、発光装置10における発光強度減少領域(図2、3中のC)での励起光のパワーと蛍光の発光強度の挙動の一例を示す図である。励起光の出力条件および当該出力条件による蛍光の状態は、例えば以下の通りである。
  励起光のレーザパワー:平均4.6W
  励起光の強度の周期的変動の形状:正弦曲線(sinθ)
  蛍光の発光強度:平均0.911(a.u)
  蛍光の発光強度の周期的変動の形状:正弦曲線(sin(θ+π))
<Emission intensity reduction region>
FIG. 6 is a diagram showing an example of the behavior of the power of the excitation light and the emission intensity of fluorescence in the emission intensity reduction region (C in FIGS. 2 and 3) in the light emitting device 10. The output conditions of the excitation light and the fluorescence state under the output conditions are as follows, for example.
Laser power of excitation light: 4.6W on average
Shape of periodic fluctuation of excitation light intensity: sinusoidal curve (sinθ)
Fluorescence emission intensity: 0.911 (au) on average
Shape of periodic fluctuation of fluorescence intensity: sinusoidal curve (sin (θ + π))
 発光強度減少領域では、励起光および蛍光がいずれも同じ周期であるが、蛍光の強度の周期的変動の増減は、励起子の強度の周期的変動の増減の逆となっている。このように、発光強度減少領域では、蛍光の強度の周期的変動における位相は、励起光の強度の周期的変動の位相の逆となっている。よって、励起光の強度の周期的変動をsinθで表す場合では、発光強度減少領域における蛍光の強度の周期的変動は、sin(θ+π)で表される。この場合、蛍光層122から発する蛍光は、過度の輝度飽和になっている、と判断することができる。制御部142は、上記の場合、励起光源11の出力をより小さくする。 In the emission intensity decrease region, the excitation light and the fluorescence both have the same period, but the increase / decrease in the periodic fluctuation of the fluorescence intensity is the opposite of the increase / decrease in the periodic fluctuation of the exciton intensity. As described above, in the emission intensity decreasing region, the phase in the periodic fluctuation of the fluorescence intensity is the opposite of the phase of the periodic fluctuation in the intensity of the excitation light. Therefore, when the periodic fluctuation of the intensity of the excitation light is represented by sin θ, the periodic fluctuation of the fluorescence intensity in the emission intensity decreasing region is represented by sin (θ + π). In this case, it can be determined that the fluorescence emitted from the fluorescence layer 122 has excessive luminance saturation. In the above case, the control unit 142 makes the output of the excitation light source 11 smaller.
 なお、蛍光の発光強度の周期的変動の増加側における振幅は、周期的変動の減少側における振幅よりも小さい部分を含む。これは、蛍光の発光強度が輝度飽和のために所定の値で頭打ちになっているためである。 The amplitude of the fluorescence emission intensity on the increasing side of the periodic fluctuation includes a portion smaller than the amplitude on the decreasing side of the periodic fluctuation. This is because the emission intensity of fluorescence has peaked at a predetermined value due to luminance saturation.
(励起光の強度の周期的な変動の波形が三角波の場合)
 次に、励起光の強度の周期的な変動における波形が三角波である場合を例に、励起光の強度と蛍光の強度の挙動について説明する。
(When the waveform of the periodic fluctuation of the intensity of the excitation light is a triangular wave)
Next, the behavior of the intensity of the excitation light and the intensity of the fluorescence will be described by taking as an example the case where the waveform in the periodic fluctuation of the intensity of the excitation light is a triangular wave.
 図7は、発光装置10における発光強度増加領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。発光強度増加領域での励起光の出力条件は、例えば以下の通りである。
  励起光のレーザパワーの周期的変動における振幅:0.5W
  励起光のレーザパワー:平均3.5W
FIG. 7 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the emission intensity increasing region in the light emitting device 10. The output conditions of the excitation light in the emission intensity increasing region are as follows, for example.
Amplitude in periodic fluctuation of laser power of excitation light: 0.5W
Laser power of excitation light: 3.5W on average
 励起光のレーザパワーの周期的変動における波形が三角波の場合でも、当該波形が正弦曲線である場合と同様に、発光強度増加領域では、蛍光の発光強度は、励起光と同じ位相で周期的に変動している。よって、この場合も、制御部142は、上記の場合、励起光源11の出力をより大きくする。 Even if the waveform in the periodic fluctuation of the laser power of the excitation light is a triangular wave, the emission intensity of fluorescence is periodically in the same phase as the excitation light in the emission intensity increase region, as in the case where the waveform is a sinusoidal curve. It is fluctuating. Therefore, also in this case, the control unit 142 further increases the output of the excitation light source 11 in the above case.
 図8は、発光装置10におけるピーク強度領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。ピーク強度領域での励起光のレーザパワーは、平均4.1Wである。励起光のレーザパワーの周期的変動における波形が三角波の場合でも、当該波形が正弦曲線である場合と同様に、ピーク強度領域では、蛍光の強度の周期的変動における周波数は、励起光の強度の周期的変動における周波数の二倍となっている。よって、この場合も、制御部142は、励起光源11の出力を変動させない。 FIG. 8 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the peak intensity region in the light emitting device 10. The laser power of the excitation light in the peak intensity region is 4.1 W on average. Even if the waveform in the periodic fluctuation of the laser power of the excitation light is a triangular wave, in the peak intensity region, the frequency in the periodic fluctuation of the fluorescence intensity is the intensity of the excitation light, as in the case where the waveform is a sinusoidal curve. It is twice the frequency in periodic fluctuations. Therefore, also in this case, the control unit 142 does not fluctuate the output of the excitation light source 11.
 図9は、発光装置10における発光強度減少領域での励起光のレーザパワーと蛍光の発光強度の挙動の他の例を示す図である。発光強度減少領域での励起光のレーザパワーは、平均4.6Wである。励起光のレーザパワーの周期的変動における波形が三角波の場合でも、当該波形が正弦曲線である場合と同様に、発光強度減少領域では、蛍光の強度の周期的変動における位相は、励起光の強度の周期的変動における位相の逆となっている。この場合も、制御部142は、励起光源11の出力をより小さくする。 FIG. 9 is a diagram showing another example of the behavior of the laser power of the excitation light and the emission intensity of the fluorescence in the emission intensity reduction region in the light emitting device 10. The laser power of the excitation light in the emission intensity reduction region is 4.6 W on average. Even if the waveform in the periodic fluctuation of the laser power of the excitation light is a triangular wave, the phase in the periodic fluctuation of the fluorescence intensity is the intensity of the excitation light in the emission intensity reduction region, as in the case where the waveform is a sinusoidal curve. It is the opposite of the phase in the periodic fluctuation of. In this case as well, the control unit 142 makes the output of the excitation light source 11 smaller.
 励起光のレーザパワーの周期的変動における波形が三角波である場合では、励起光の当該波形が正弦曲線である場合に比べて、蛍光の強度の周期的変動の波形がより複雑な形状となる。しかしながら、この場合でも、蛍光の状態は、励起光の周期的変動の波形が正弦曲線である場合と実質的に同じになる。蛍光の発光強度の周期的変動における最適な波形をより容易に解析する観点から、励起光の強度の周期的変動における波形は、三角波に比べて正弦曲線であることが好ましい。 When the waveform of the periodic fluctuation of the laser power of the excitation light is a triangular wave, the waveform of the periodic fluctuation of the fluorescence intensity becomes a more complicated shape than when the waveform of the excitation light is a sine curve. However, even in this case, the state of fluorescence is substantially the same as when the waveform of the periodic fluctuation of the excitation light is a sinusoidal curve. From the viewpoint of more easily analyzing the optimum waveform in the periodic fluctuation of the emission intensity of fluorescence, the waveform in the periodic fluctuation of the intensity of the excitation light is preferably a sinusoidal curve as compared with the triangular wave.
(本実施形態における具体的な動作例)
 制御部142は、所定の出力で励起光を励起光源11から出力させる。出力する励起光は、その強度が周期的に変動している。励起光は、蛍光層122に到達し、蛍光体を励起し、蛍光を発生させる。蛍光体に照射される励起光は、その強度が周期的に変動することから、当該励起光によって励起される蛍光体もまた、発光強度が周期的に変動する蛍光を発生する。発生した蛍光は、全方位に向けて発生するが、反射基板121に向かう蛍光は反射基板121で反射する。このため、蛍光は、反射基板121の表面から上方(図中の励起光源11側)に出射する。
(Specific operation example in this embodiment)
The control unit 142 outputs the excitation light from the excitation light source 11 at a predetermined output. The intensity of the output excitation light fluctuates periodically. The excitation light reaches the fluorescence layer 122, excites the phosphor, and generates fluorescence. Since the intensity of the excitation light irradiated to the phosphor fluctuates periodically, the phosphor excited by the excitation light also generates fluorescence whose emission intensity fluctuates periodically. The generated fluorescence is generated in all directions, but the fluorescence toward the reflective substrate 121 is reflected by the reflective substrate 121. Therefore, the fluorescence is emitted upward (on the excitation light source 11 side in the drawing) from the surface of the reflection substrate 121.
 受光素子13は、蛍光層122から上方に出射する蛍光のうち、斜め上方に出射した蛍光を受光する。 The light receiving element 13 receives the fluorescence emitted obliquely upward among the fluorescence emitted upward from the fluorescent layer 122.
 位相検出部141は、受光素子13が検出した蛍光の発光強度の周期的な変動における位相を検出する。なお、位相検出部141による位相の検出は、連続して行われてもよいし、例えば所定の間隔をおいて断続的に行われてもよい。 The phase detection unit 141 detects the phase in the periodic fluctuation of the emission intensity of the fluorescence detected by the light receiving element 13. The phase detection by the phase detection unit 141 may be performed continuously, or may be performed intermittently, for example, at predetermined intervals.
 制御部142は、位相検出部141が検出した蛍光の発光強度の周期的変動における位相を参照し、励起光源11から出力されている励起光のレーザパワーの周期的変動における位相と比較する。 The control unit 142 refers to the phase in the periodic fluctuation of the emission intensity of fluorescence detected by the phase detection unit 141, and compares it with the phase in the periodic fluctuation of the laser power of the excitation light output from the excitation light source 11.
 発光強度またはレーザパワーにおける周期的な変動について、蛍光の位相が励起光の位相と同じである場合には、蛍光の発光強度は、発光強度増加領域に位置すると判断できることから、制御部142は、励起光源11の出力をより増加させる。これにより、蛍光層122における励起光のレーザパワー密度がより高くなり、蛍光層122で発生する蛍光の発光強度がより増加する。 When the phase of fluorescence is the same as the phase of the excitation light with respect to the periodic fluctuation in the emission intensity or the laser power, it can be determined that the emission intensity of fluorescence is located in the emission intensity increase region. The output of the excitation light source 11 is further increased. As a result, the laser power density of the excitation light in the fluorescence layer 122 becomes higher, and the emission intensity of the fluorescence generated in the fluorescence layer 122 further increases.
 発光強度またはレーザパワーにおける周期的な変動について、蛍光の位相が励起光の位相の逆となっている場合には、蛍光の発光強度は、発光強度減少領域に位置すると判断できることから、制御部142は、励起光源11の出力をより減少させる。これにより、蛍光層122における励起光のレーザパワー密度がより小さくなる。蛍光層122における蛍光体は無機蛍光体であることから、耐熱性に優れ、よって、蛍光の発光強度は、可逆的に変化する。すなわち、発光強度減少領域では、励起光源11の出力を小さくすると、蛍光層122で発生する蛍光の発光強度は、発光強度の最大値に向けて増加し、その後は減少する。よって、蛍光の発光強度は、発光強度減少領域から脱する。 When the fluorescence phase is opposite to the excitation light phase with respect to the periodic fluctuation in the emission intensity or the laser power, it can be determined that the fluorescence emission intensity is located in the emission intensity reduction region. Therefore, the control unit 142 Further reduces the output of the excitation light source 11. As a result, the laser power density of the excitation light in the fluorescent layer 122 becomes smaller. Since the phosphor in the fluorescent layer 122 is an inorganic phosphor, it has excellent heat resistance, and therefore the emission intensity of fluorescence changes reversibly. That is, in the emission intensity decrease region, when the output of the excitation light source 11 is reduced, the emission intensity of the fluorescence generated in the fluorescence layer 122 increases toward the maximum value of the emission intensity and then decreases. Therefore, the emission intensity of fluorescence is removed from the emission intensity reduction region.
 発光強度またはレーザパワーにおける周期的な変動について、蛍光の周波数が励起光の周波数の二倍となっている場合には、蛍光の発光強度はピーク強度領域に位置すると判断できることから、制御部142は、励起光源11の出力を維持する。これにより、蛍光層122における励起光のレーザパワー密度も維持され、蛍光層122からは、実質的に最大値の発光強度で蛍光が発生する。 Regarding the periodic fluctuation in the emission intensity or the laser power, when the fluorescence frequency is twice the frequency of the excitation light, it can be determined that the emission intensity of the fluorescence is located in the peak intensity region. , Maintain the output of the excitation light source 11. As a result, the laser power density of the excitation light in the fluorescence layer 122 is also maintained, and fluorescence is generated from the fluorescence layer 122 at a substantially maximum emission intensity.
(作用効果)
 周期的に変動する励起光の強度(レーザパワー)と蛍光の強度(発光強度)の位相を比較することで、蛍光が輝度飽和前か否かが決定される。すなわち、励起光と蛍光の位相が同じであれば、蛍光が輝度飽和に至っていないので、蛍光層122における励起光のレーザパワー密度を高めることにより、蛍光の発光強度をその最大値に向けてさらに高めることが可能である。
(Action effect)
By comparing the phases of the cyclically fluctuating excitation light intensity (laser power) and the fluorescence intensity (emission intensity), it is determined whether or not the fluorescence is before luminance saturation. That is, if the phases of the excitation light and the fluorescence are the same, the fluorescence has not reached the brightness saturation. Therefore, by increasing the laser power density of the excitation light in the fluorescence layer 122, the emission intensity of the fluorescence is further increased toward the maximum value. It is possible to increase.
 一方、励起光のレーザパワーと蛍光の発光強度の位相が逆であれば、蛍光が過度の輝度飽和の状態にあるので、蛍光層122における励起光のレーザパワー密度を下げる。それにより、蛍光における過度の輝度飽和の状態を解消させることが可能であり、また蛍光の発光強度をその最大値に向けて高めることが可能である。 On the other hand, if the laser power of the excitation light and the emission intensity of the fluorescence are opposite in phase, the fluorescence is in a state of excessive brightness saturation, and the laser power density of the excitation light in the fluorescence layer 122 is lowered. Thereby, it is possible to eliminate the state of excessive brightness saturation in fluorescence, and it is possible to increase the emission intensity of fluorescence toward its maximum value.
 さらに、蛍光の位相が励起光の位相の二倍であれば、蛍光は輝度飽和直前であり、実質的に最大値となる発光強度を有するので、蛍光層122における励起光のレーザパワー密度を維持することにより、実質的に最大の発光強度で蛍光を発生させ続けられる。 Further, if the phase of fluorescence is twice the phase of the excitation light, the fluorescence is just before brightness saturation and has a substantially maximum emission intensity, so that the laser power density of the excitation light in the fluorescence layer 122 is maintained. By doing so, fluorescence can be continued to be generated at substantially the maximum emission intensity.
 したがって、本実施形態では、蛍光層122の構成およびその環境情報を事前に取得することなく、最適な発光強度(例えば発光強度における最大値)での蛍光の発生を実現することができる。この効果は、蛍光層122の構造あるいは厚さなどの蛍光層122に起因する固体差の有無に関わらず奏される。 Therefore, in the present embodiment, it is possible to realize the generation of fluorescence at the optimum emission intensity (for example, the maximum value in the emission intensity) without acquiring the configuration of the fluorescence layer 122 and its environmental information in advance. This effect is exhibited regardless of the presence or absence of individual differences due to the fluorescent layer 122 such as the structure or thickness of the fluorescent layer 122.
 また、本実施形態では、夏場や冬場など、季節に応じて蛍光層122の環境の温度が変化する場合においても、当該環境に応じた最適な発光強度を実現する上記の効果を得ることができる。 Further, in the present embodiment, even when the temperature of the environment of the fluorescent layer 122 changes depending on the season such as summer or winter, the above effect of realizing the optimum emission intensity according to the environment can be obtained. ..
 また、本実施形態では、発光強度の最大値での蛍光が発生するように、蛍光層122における励起光の単位面積当たりの強度を調整することから、蛍光層122における励起光が照射される部分の温度が高くなりやすい。一方で、本実施形態では、蛍光発生装置12を無機材料(無機の反射基材、無機バインダおよび無機蛍光物質)で構成している。よって、本実施形態では、蛍光層122における励起光が照射される部分が焼損する可能性が十分に低く、耐熱性および信頼性を十分に高めることが可能である。 Further, in the present embodiment, since the intensity of the excitation light in the fluorescent layer 122 per unit area is adjusted so that the fluorescence at the maximum value of the emission intensity is generated, the portion of the fluorescent layer 122 to be irradiated with the excitation light. The temperature tends to rise. On the other hand, in the present embodiment, the fluorescence generator 12 is composed of an inorganic material (inorganic reflective base material, inorganic binder and inorganic fluorescent substance). Therefore, in the present embodiment, the possibility that the portion of the fluorescent layer 122 irradiated with the excitation light is burnt out is sufficiently low, and the heat resistance and reliability can be sufficiently improved.
〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
(発光装置の構成)
 図10は、本発明の実施形態2に係る発光装置の構成を模式的に示す図である。図10に示されるように、発光装置20は、励起光源11、蛍光発生装置12、受光素子13、調整装置24および焦点可変レンズ25を有している。励起光源11、蛍光発生装置12および受光素子13は、発光装置10におけるこれらの構成と同様である。焦点可変レンズ25は、蛍光層122に照射される励起光の焦点距離を変化させるための焦点可変装置の一態様である。
(Configuration of light emitting device)
FIG. 10 is a diagram schematically showing a configuration of a light emitting device according to a second embodiment of the present invention. As shown in FIG. 10, the light emitting device 20 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 24, and a varifocal lens 25. The excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10. The varifocal lens 25 is an aspect of a varifocal device for changing the focal length of the excitation light applied to the fluorescent layer 122.
 調整装置24は、位相検出部141と制御部242とを備えている。位相検出部141
は、発光装置10における位相検出部141と同様に構成されている。制御部242は、制御部142と同様に、位相検出部141が検出した蛍光の発光強度の位相と、励起光源11が出力している励起光のレーザパワーの位相とをそれぞれ参照して比較する機能を有する。また、制御部242は、蛍光の発光強度の位相と励起光のレーザパワーの位相との関係に応じて焦点可変レンズ25を制御する機能をさらに有する。
The adjusting device 24 includes a phase detection unit 141 and a control unit 242. Phase detector 141
Is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 242 refers to and compares the phase of the emission intensity of fluorescence detected by the phase detection unit 141 and the phase of the laser power of the excitation light output by the excitation light source 11, respectively. Has a function. Further, the control unit 242 further has a function of controlling the varifocal lens 25 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
 焦点可変レンズ25は、通過する光の焦点距離を変化させるレンズである。焦点可変レンズ25は、励起光源11と蛍光発生装置12との間の励起光の光路中に、その光学系を励起光が通過するように配置されている。励起光源11から出力された励起光は、焦点可変レンズ25を通って蛍光層122へ到達する。なお、発光装置20は、制御部242からの信号が焦点可変レンズ25に入力されるように構成されている。 The variable focus lens 25 is a lens that changes the focal length of passing light. The varifocal lens 25 is arranged in the optical path of the excitation light between the excitation light source 11 and the fluorescence generator 12 so that the excitation light passes through the optical system. The excitation light output from the excitation light source 11 reaches the fluorescence layer 122 through the varifocal lens 25. The light emitting device 20 is configured so that a signal from the control unit 242 is input to the variable focus lens 25.
(本実施形態における具体的な動作例)
 本実施形態において、調整装置24は、蛍光の発光強度の位相と励起光のレーザパワーの位相との関係に応じて、焦点可変レンズ25による励起光の焦点距離を変更する。
(Specific operation example in this embodiment)
In the present embodiment, the adjusting device 24 changes the focal length of the excitation light by the variable focus lens 25 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
 励起光の焦点距離を変更すると、蛍光層122における励起光で照射されている部分(レーザスポット)について、その中心の位置は移動せず、レーザスポットのサイズが変化する。焦点距離が、励起光の光路における焦点可変レンズ25から蛍光層122までの距離に等しい場合には、レーザスポットのサイズは最小となる。焦点距離と励起光の光路における焦点可変レンズ25から蛍光層122までの距離との差が大きくなるほど、レーザスポットのサイズも大きくなる。 When the focal length of the excitation light is changed, the position of the center of the portion (laser spot) irradiated with the excitation light in the fluorescent layer 122 does not move, and the size of the laser spot changes. When the focal length is equal to the distance from the varifocal lens 25 to the fluorescence layer 122 in the optical path of the excitation light, the size of the laser spot is minimized. The larger the difference between the focal length and the distance from the variable focal length lens 25 to the fluorescent layer 122 in the optical path of the excitation light, the larger the size of the laser spot.
 励起光源11の出力が一定である場合では、レーザスポットのサイズ(例えば[mm2])が小さくなるほど、蛍光層122におけるレーザパワー密度(例えば[W/mm2])は大きくなる。レーザスポットのサイズが大きくなるほど、蛍光層122におけるレーザパワー密度は小さくなる。 When the output of the excitation light source 11 is constant, the smaller the size of the laser spot (for example, [mm2]), the larger the laser power density (for example, [W / mm2]) in the fluorescent layer 122. The larger the size of the laser spot, the smaller the laser power density in the fluorescent layer 122.
 したがって、本実施形態では、蛍光の発光強度の位相と励起光のレーザパワーの位相とが同じである場合には、制御部242は、レーザスポットのサイズがより小さくなるように、焦点距離を焦点可変レンズ25に変更させる。蛍光の発光強度の位相と励起光のレーザパワーの位相とが逆の場合には、制御部242は、レーザスポットのサイズがより大きくなるように、焦点距離を焦点可変レンズ25に変更させる。蛍光の発光強度の周波数が励起光のレーザパワーの周波数の二倍である場合には、制御部242は、レーザスポットのサイズを維持するように、焦点可変レンズ25にその焦点距離を保たせる。 Therefore, in the present embodiment, when the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are the same, the control unit 242 focuses the focal length so that the size of the laser spot becomes smaller. Change to the variable lens 25. When the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are opposite, the control unit 242 causes the focal length to be changed to the varifocal lens 25 so that the size of the laser spot becomes larger. When the frequency of the emission intensity of fluorescence is twice the frequency of the laser power of the excitation light, the control unit 242 causes the varifocal lens 25 to maintain the focal length so as to maintain the size of the laser spot.
(作用効果)
 発光装置20では、励起光源11の出力を固定して、蛍光層122における励起光のレーザパワー密度を調整することが可能である。よって、励起光自体の振幅を変えることなく当該レーザパワー密度を調整することができる。
(Action effect)
In the light emitting device 20, the output of the excitation light source 11 can be fixed to adjust the laser power density of the excitation light in the fluorescence layer 122. Therefore, the laser power density can be adjusted without changing the amplitude of the excitation light itself.
 また、蛍光層122の環境に応じて励起光のレーザパワー密度を調整することが可能である。たとえば、より高温の環境となる夏には、蛍光層122が熱くなりやすい。よって、レーザスポットをより広げ、例えば蛍光の発光強度が最大となるレーザスポットとなるように励起光を蛍光層122に照射することができる。一方で、より低温の環境となる冬では、蛍光層122が冷たくなりやすい。レーザスポットをより狭めて励起光を蛍光層122に照射することができる。 Further, it is possible to adjust the laser power density of the excitation light according to the environment of the fluorescent layer 122. For example, the fluorescent layer 122 tends to get hot in summer, which is a hotter environment. Therefore, the laser spot can be further expanded, and the fluorescence layer 122 can be irradiated with the excitation light so that the laser spot has the maximum emission intensity of fluorescence, for example. On the other hand, in winter, which is a lower temperature environment, the fluorescent layer 122 tends to become cold. The laser spot can be narrowed and the fluorescence layer 122 can be irradiated with the excitation light.
〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
(発光装置の構成)
 図11は、本発明の実施形態3に係る発光装置の構成を模式的に示す図である。図12は、本発明の実施形態3に係る発光装置における要部の構成を模式的に示す斜視図である。図11に示されるように、発光装置30は、励起光源11、蛍光発生装置12、受光素子13、調整装置34および回動装置35を有する。励起光源11、蛍光発生装置12および受光素子13は、発光装置10におけるこれらの構成と同様である。回動装置35は、励起光の蛍光層122への入射角度を変更するための入射角変更装置の一態様である。
(Configuration of light emitting device)
FIG. 11 is a diagram schematically showing a configuration of a light emitting device according to a third embodiment of the present invention. FIG. 12 is a perspective view schematically showing the configuration of a main part in the light emitting device according to the third embodiment of the present invention. As shown in FIG. 11, the light emitting device 30 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 34, and a rotating device 35. The excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10. The rotating device 35 is an aspect of an incident angle changing device for changing the incident angle of the excitation light on the fluorescent layer 122.
 調整装置34は、位相検出部141と制御部342とを備えている。位相検出部141は、発光装置10における位相検出部141と同様に構成されている。制御部342は、制御部142と同様に、位相検出部141が検出した蛍光の発光強度の位相と、励起光源11が出力している励起光のレーザパワーの位相とをそれぞれ参照して比較する機能を有する。また、制御部342は、蛍光の発光強度の位相と励起光のレーザパワーの位相との関係に応じて回動装置35を制御する機能をさらに有する。 The adjusting device 34 includes a phase detection unit 141 and a control unit 342. The phase detection unit 141 is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 342 compares the phase of the fluorescence emission intensity detected by the phase detection unit 141 with the phase of the laser power of the excitation light output from the excitation light source 11, respectively. Has a function. Further, the control unit 342 further has a function of controlling the rotating device 35 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light.
 図11、図12に示されるように、回動装置35は、底部およびその周縁から起立する壁部を有する容器351、当該壁部から突出する軸352およびモータ353を有する。容器351の底部は、平面視したときに矩形である。壁部は、底部の各辺から起立している。軸352は、対向する一対の壁部のそれぞれの外表面から、当該外表面に直交する向きに延在している。モータ353は、軸352を回動する駆動源となるように、不図示のプーリおよびベルトなどによって適宜に軸352に接続されている。 As shown in FIGS. 11 and 12, the rotating device 35 has a container 351 having a wall portion rising from the bottom portion and its peripheral edge, a shaft 352 protruding from the wall portion, and a motor 353. The bottom of the container 351 is rectangular when viewed in a plan view. The walls stand up from each side of the bottom. The shaft 352 extends from the outer surface of each of the pair of wall portions facing each other in a direction orthogonal to the outer surface. The motor 353 is appropriately connected to the shaft 352 by a pulley, a belt, or the like (not shown) so as to serve as a drive source for rotating the shaft 352.
 容器351には、蛍光発生装置12が収容されている。回動装置35は、励起光源11および受光素子13に対して、励起光源11の光軸と受光素子13の光軸との両方を含む平面に対して軸352が直交するように配置されている。蛍光発生装置12は、軸352に沿って見たときに、励起光源11の光軸と蛍光層122との交点が軸352の中心と重なる位置に、容器351に収容されている。また、発光装置30は、制御部342からの信号がモータ353に入力されるように構成されている。 The fluorescence generator 12 is housed in the container 351. The rotating device 35 is arranged so that the axis 352 is orthogonal to the excitation light source 11 and the light receiving element 13 with respect to the plane including both the optical axis of the excitation light source 11 and the optical axis of the light receiving element 13. .. The fluorescence generator 12 is housed in the container 351 at a position where the intersection of the optical axis of the excitation light source 11 and the fluorescence layer 122 overlaps the center of the shaft 352 when viewed along the shaft 352. Further, the light emitting device 30 is configured so that a signal from the control unit 342 is input to the motor 353.
 なお、図11では、励起光源11の光軸と受光素子13の光軸との両方を含む平面における蛍光層122の法線を一点鎖線で示している。当該法線と励起光源11の光軸とがなす角が、蛍光層122に対する励起光の入射角であり、図11では、その角度をθで表している。 Note that in FIG. 11, the normal line of the fluorescent layer 122 on the plane including both the optical axis of the excitation light source 11 and the optical axis of the light receiving element 13 is shown by a dashed line. The angle formed by the normal and the optical axis of the excitation light source 11 is the angle of incidence of the excitation light on the fluorescent layer 122, and in FIG. 11, the angle is represented by θ.
(本実施形態における具体的な動作例)
 本実施形態において、調整装置34は、蛍光の発光強度の位相と励起光のレーザパワーの位相との関係に応じて励起光の蛍光層122への入射角度を増減する。より具体的には、調整装置34は、上記の関係に応じて、回動装置35によって蛍光層122を回動させることにより、励起光の蛍光層122への入射角度を増減する。
(Specific operation example in this embodiment)
In the present embodiment, the adjusting device 34 increases or decreases the angle of incidence of the excitation light on the fluorescence layer 122 according to the relationship between the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light. More specifically, the adjusting device 34 increases or decreases the angle of incidence of the excitation light on the fluorescent layer 122 by rotating the fluorescent layer 122 by the rotating device 35 according to the above relationship.
 前述したように、励起光源11の出力が一定である場合では、蛍光層に122におけるレーザパワー密度は、蛍光層122における励起光のレーザスポットのサイズが小さい程大きく、当該サイズが大きい程小さくなる。蛍光層122における励起光のレーザスポットのサイズは、入射角度θが0のときに最も小さくなり、入射角度θの絶対値が大きくなるほど大きくなる。 As described above, when the output of the excitation light source 11 is constant, the laser power density in the fluorescence layer 122 increases as the size of the laser spot of the excitation light in the fluorescence layer 122 decreases, and decreases as the size increases. .. The size of the laser spot of the excitation light in the fluorescent layer 122 is the smallest when the incident angle θ is 0, and becomes larger as the absolute value of the incident angle θ becomes larger.
 したがって、本実施形態では、蛍光の発光強度の位相と励起光のレーザパワーの位相とが同じである場合には、制御部342は、レーザスポットのサイズをより小さくするために、入射角度θがより小さくなるように回動装置35を作動させる。蛍光の発光強度の位相と励起光のレーザパワーの位相とが逆の場合には、制御部342は、レーザスポットのサイズをより大きくするために、入射角度θがより大きくなるように回動装置35を作動させる。蛍光の位相が励起光の位相の二倍である場合には、制御部342は、レーザスポットのサイズを維持するように、回動装置35に、この場合における入射角度θを保たせる。 Therefore, in the present embodiment, when the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are the same, the control unit 342 sets the incident angle θ in order to reduce the size of the laser spot. The rotating device 35 is operated so as to be smaller. When the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are opposite, the control unit 342 rotates the device so that the incident angle θ becomes larger in order to increase the size of the laser spot. Operate 35. When the phase of fluorescence is twice the phase of the excitation light, the control unit 342 causes the rotating device 35 to maintain the incident angle θ in this case so as to maintain the size of the laser spot.
(作用効果)
 発光装置30は、発光装置20と同様の効果を奏する。加えて、発光装置30は、安価かつ簡易な構成で励起光の入射角度を変更することができる。
(Action effect)
The light emitting device 30 has the same effect as the light emitting device 20. In addition, the light emitting device 30 can change the incident angle of the excitation light with an inexpensive and simple configuration.
〔実施形態4〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
(発光装置の構成)
 図13は、本発明の実施形態4に係る発光装置の構成を模式的に示す図である。図13に示されるように、発光装置40は、励起光源11、蛍光発生装置12、受光素子13、調整装置44およびペルチェ素子45を有している。励起光源11、蛍光発生装置12および受光素子13は、発光装置10におけるこれらの構成と同様である。ペルチェ素子45は、蛍光層122を取り巻く環境を変更可能な環境変更装置の一態様である。
(Configuration of light emitting device)
FIG. 13 is a diagram schematically showing a configuration of a light emitting device according to a fourth embodiment of the present invention. As shown in FIG. 13, the light emitting device 40 includes an excitation light source 11, a fluorescence generator 12, a light receiving element 13, an adjusting device 44, and a Peltier element 45. The excitation light source 11, the fluorescence generator 12, and the light receiving element 13 have the same configurations as those in the light emitting device 10. The Peltier element 45 is an aspect of an environment changing device capable of changing the environment surrounding the fluorescent layer 122.
 調整装置44は、位相検出部141と制御部442とを備えている。位相検出部141は、発光装置10における位相検出部141と同様に構成されている。制御部442は、制御部142と同様に、位相検出部141が検出した蛍光の位相と、励起光源11が出力している励起光の位相とをそれぞれ参照して比較する機能を有する。また、制御部442は、蛍光層122の温度環境を変更させる機能をさらに有する。 The adjusting device 44 includes a phase detection unit 141 and a control unit 442. The phase detection unit 141 is configured in the same manner as the phase detection unit 141 in the light emitting device 10. Similar to the control unit 142, the control unit 442 has a function of referring to and comparing the phase of the fluorescence detected by the phase detection unit 141 and the phase of the excitation light output by the excitation light source 11, respectively. Further, the control unit 442 further has a function of changing the temperature environment of the fluorescent layer 122.
 ペルチェ素子45は、蛍光発生装置12を支持している。より具体的には、反射基板121がペルチェ素子45に接して、ペルチェ素子45上に配置されており、その反射基板121上に蛍光層122が配置されている。ペルチェ素子45は、反射基板121に接触する部分において温度を調整可能な素子である。ペルチェ素子45の温度調整可能範囲は、例えば-20~120℃である。また、発光装置40は、制御部442からの信号がペルチェ素子45に入力されるように構成されている。 The Peltier element 45 supports the fluorescence generator 12. More specifically, the reflective substrate 121 is in contact with the Peltier element 45 and is arranged on the Peltier element 45, and the fluorescent layer 122 is arranged on the reflective substrate 121. The Peltier element 45 is an element whose temperature can be adjusted at a portion in contact with the reflective substrate 121. The temperature adjustable range of the Peltier element 45 is, for example, −20 to 120 ° C. Further, the light emitting device 40 is configured so that a signal from the control unit 442 is input to the Peltier element 45.
(本実施形態における具体的な動作例)
 前述したように、蛍光の位相が励起光の位相の二倍となる場合に、蛍光の発光強度は最大となる。したがって、蛍光の位相が励起光の位相の二倍となるときの励起光源の出力を求めることにより、蛍光の最大の発光強度時における励起光源のレーザパワーを求めることが可能である。
(Specific operation example in this embodiment)
As described above, when the phase of fluorescence is twice the phase of the excitation light, the emission intensity of fluorescence is maximized. Therefore, it is possible to obtain the laser power of the excitation light source at the maximum emission intensity of fluorescence by obtaining the output of the excitation light source when the phase of fluorescence is twice the phase of the excitation light.
 本実施形態において、調整装置44は、ペルチェ素子45の作動によって、所望の蛍光層122の温度環境を設定する。設定した温度で蛍光の位相と励起光の位相とを参照し、励起光源の出力を変動させる。そして、蛍光の位相が励起光の位相の二倍になるときの励起光源の出力を求める。ペルチェ素子45によって別の温度に蛍光層122の温度環境を変更し、上記のようにして蛍光の位相が励起光の位相の二倍になるときの励起光源の出力を求める。それにより、発光装置40において、蛍光層122の温度環境を変化させたときの温度ごとに、最大値となる発光強度の蛍光に対応する励起光源のレーザパワーが求められる。 In the present embodiment, the adjusting device 44 sets the desired temperature environment of the fluorescent layer 122 by operating the Peltier element 45. The output of the excitation light source is fluctuated by referring to the phase of fluorescence and the phase of excitation light at the set temperature. Then, the output of the excitation light source when the phase of fluorescence becomes twice the phase of the excitation light is obtained. The temperature environment of the fluorescence layer 122 is changed to another temperature by the Peltier element 45, and the output of the excitation light source when the phase of fluorescence becomes twice the phase of the excitation light is obtained as described above. As a result, in the light emitting device 40, the laser power of the excitation light source corresponding to the fluorescence of the emission intensity which becomes the maximum value is obtained for each temperature when the temperature environment of the fluorescent layer 122 is changed.
(作用効果)
 発光装置40では、環境温度ごとの発光装置の特性を簡易に評価することができる。
(Action effect)
In the light emitting device 40, the characteristics of the light emitting device for each environmental temperature can be easily evaluated.
〔実施形態5〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 5]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
(光源装置の構成)
 図14は、本発明の実施形態5に係る光源装置の構成を紹介するための図である。当該光源装置は、反射型レーザヘッドライトである。当該ヘッドライトは、例えば車両用前照灯である。図14は、光源装置を、その光軸方向に沿う分割面で分割した状態を模式的に示している。図14に示されるように、光源装置100は、発光装置とリフレクタ120とを有する。当該発光装置は、実施形態1で前述した構成と同様の構成を有する。なお、図14中の符号110は、当該分割面を表す線である。
(Configuration of light source device)
FIG. 14 is a diagram for introducing the configuration of the light source device according to the fifth embodiment of the present invention. The light source device is a reflective laser headlight. The headlight is, for example, a vehicle headlight. FIG. 14 schematically shows a state in which the light source device is divided by a dividing surface along the optical axis direction thereof. As shown in FIG. 14, the light source device 100 includes a light emitting device and a reflector 120. The light emitting device has the same configuration as the configuration described above in the first embodiment. Reference numeral 110 in FIG. 14 is a line representing the divided surface.
 リフレクタ120は、例えば、開放端を有するカバーである。リフレクタ120の形状は、その断面形状が開放端に向けて放物線状に漸次拡大する形状である。リフレクタ120の内表面はミラーとなっている。リフレクタ120の開放端とは反対側の中央部には、リフレクタ120の壁部を貫通する孔が形成されている。 The reflector 120 is, for example, a cover having an open end. The shape of the reflector 120 is such that its cross-sectional shape gradually expands in a parabolic shape toward the open end. The inner surface of the reflector 120 is a mirror. A hole penetrating the wall portion of the reflector 120 is formed in the central portion opposite to the open end of the reflector 120.
 励起光源11は、リフレクタ120の外側に配置されている。図14では、励起光源11は、リフレクタ120の中心軸に対して斜めに励起光B1を照射するように描かれているが、励起光源11は、その光軸がリフレクタ120の中心軸と同一線上となる位置に配置されている。励起光源11は、励起光として青色レーザなどの青色の励起光を出力する。 The excitation light source 11 is arranged outside the reflector 120. In FIG. 14, the excitation light source 11 is drawn so as to irradiate the excitation light B1 obliquely with respect to the central axis of the reflector 120, but the optical axis of the excitation light source 11 is on the same line as the central axis of the reflector 120. It is arranged at the position where. The excitation light source 11 outputs blue excitation light such as a blue laser as excitation light.
 蛍光発生装置52は、リフレクタ120の軸線上に、リフレクタ120の開放端に蛍光層122を向けて配置されている。蛍光発生装置52は、発光装置10における蛍光発生装置12と同様の構成を有している。蛍光層122は、励起光の照射により黄色の蛍光を発する。 The fluorescence generator 52 is arranged on the axis of the reflector 120 with the fluorescence layer 122 facing the open end of the reflector 120. The fluorescence generator 52 has the same configuration as the fluorescence generator 12 in the light emitting device 10. The fluorescent layer 122 emits yellow fluorescence when irradiated with excitation light.
 受光素子13は、リフレクタ120の開放端よりも外側であって、リフレクタ120から出射される蛍光の一部および励起光の一部を受光する位置に配置されている。 The light receiving element 13 is located outside the open end of the reflector 120 and at a position where it receives a part of the fluorescence emitted from the reflector 120 and a part of the excitation light.
 調整装置54は、位相検出部541と制御部542とを備える。位相検出部541は、受光素子13が受光した光から蛍光の発光強度の位相と励起光のレーザパワーの位相との両方を検出するように構成されている。制御部542は、位相検出部541が検出した蛍光の発光強度の位相と励起光のレーザパワーの位相との両方を参照して励起光源11の出力を制御するように構成されている。調整装置54は、受光素子13に配置されていてもよいし、励起光源11に配置されていてもよいし、これらから独立して配置されていてもよい。 The adjusting device 54 includes a phase detection unit 541 and a control unit 542. The phase detection unit 541 is configured to detect both the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light from the light received by the light receiving element 13. The control unit 542 is configured to control the output of the excitation light source 11 by referring to both the phase of the emission intensity of fluorescence detected by the phase detection unit 541 and the phase of the laser power of the excitation light. The adjusting device 54 may be arranged in the light receiving element 13, the excitation light source 11, or may be arranged independently of these.
 上記の説明から明らかなように、本実施形態において、リフレクタ120は、励起光および蛍光の光路を制御する光学系を構成している。 As is clear from the above description, in the present embodiment, the reflector 120 constitutes an optical system that controls the optical paths of excitation light and fluorescence.
(本実施形態における具体的な動作例)
 励起光源11は、励起光B1を出力する。励起光B1は、リフレクタ120の孔を通じて蛍光発生装置52に到達する。蛍光発生装置52からは、励起光B2と蛍光B3が出射される。励起光B2は、例えば、蛍光層122で表面反射した励起光、および、蛍光膜内部で拡散してリフレクタ120で反射した励起光、である。蛍光B3は、例えば、蛍光層122に到達した励起光によって蛍光物質が励起されて発した蛍光である。
(Specific operation example in this embodiment)
The excitation light source 11 outputs the excitation light B1. The excitation light B1 reaches the fluorescence generator 52 through the holes of the reflector 120. The excitation light B2 and the fluorescence B3 are emitted from the fluorescence generator 52. The excitation light B2 is, for example, the excitation light surface-reflected by the fluorescent layer 122 and the excitation light diffused inside the fluorescent film and reflected by the reflector 120. Fluorescence B3 is, for example, fluorescence emitted by exciting a fluorescent substance by excitation light that has reached the fluorescence layer 122.
 蛍光発生装置52から出射された励起光B2および蛍光B3は、リフレクタ120で反射して主に所望の方向、例えばリフレクタ120の軸線方向を光軸とする白色光となってリフレクタ120から出射される。 The excitation light B2 and the fluorescence B3 emitted from the fluorescence generator 52 are reflected by the reflector 120 to become white light mainly in a desired direction, for example, the axial direction of the reflector 120 as an optical axis, and are emitted from the reflector 120. ..
 受光素子13は、リフレクタ120からの出射光を受光する。当該出射光は、例えば受光素子13において適当な光学フィルタを通すことにより、励起光成分と蛍光成分とに分けられる。 The light receiving element 13 receives the light emitted from the reflector 120. The emitted light is divided into an excitation light component and a fluorescence component by passing through an appropriate optical filter in the light receiving element 13, for example.
 位相検出部541は、受光素子13が受光した光から励起光のレーザパワーの位相を検出し、また蛍光の発光強度の位相を検出する。制御部542は、位相検出部541が検出した位相の情報を参照して、励起光源11の出力を制御する。 The phase detection unit 541 detects the phase of the laser power of the excitation light from the light received by the light receiving element 13, and also detects the phase of the emission intensity of fluorescence. The control unit 542 controls the output of the excitation light source 11 with reference to the phase information detected by the phase detection unit 541.
 たとえば、蛍光の発光強度の位相と励起光のレーザパワーの位相とが同じである場合には、制御部542は、励起光源11の出力を増加させる。これにより、蛍光層122における励起光B1のレーザパワー密度が高まり、蛍光の発光強度が増加する。 For example, when the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are the same, the control unit 542 increases the output of the excitation light source 11. As a result, the laser power density of the excitation light B1 in the fluorescence layer 122 is increased, and the emission intensity of fluorescence is increased.
 蛍光の発光強度の位相と励起光のレーザパワーの位相とが逆の場合には、制御部542は、励起光源11の出力を減少させる。これにより、蛍光層122における励起光B1のレーザパワー密度が下がり、蛍光の発光強度は、発光強度の最大値に向けて増加し、その後は減少する。 When the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are opposite, the control unit 542 reduces the output of the excitation light source 11. As a result, the laser power density of the excitation light B1 in the fluorescence layer 122 decreases, and the emission intensity of fluorescence increases toward the maximum value of the emission intensity and then decreases.
 蛍光の発光強度の周波数が励起光のレーザパワーの周波数の二倍である場合には、制御部542は、励起光源11の出力を変えずに維持する。これにより、蛍光層122における励起光B1のレーザパワー密度も維持され、実質的に発光強度の最大値となる強度の蛍光を発生し続ける。 When the frequency of the emission intensity of fluorescence is twice the frequency of the laser power of the excitation light, the control unit 542 maintains the output of the excitation light source 11 unchanged. As a result, the laser power density of the excitation light B1 in the fluorescence layer 122 is also maintained, and fluorescence with an intensity that substantially maximizes the emission intensity continues to be generated.
(作用効果)
 本実施形態の光源装置100は、出射光の強度の位相に基づいて、発光強度の最大値となる強度の蛍光を含む出射光を常に発生させることが可能である。よって、事前の処理に依らずに所望の発光強度での発光を簡易に実現することができる。
(Action effect)
The light source device 100 of the present embodiment can always generate the emitted light including the fluorescence of the intensity which becomes the maximum value of the emission intensity based on the phase of the intensity of the emitted light. Therefore, it is possible to easily realize light emission with a desired light emission intensity without depending on prior processing.
〔実施形態6〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 6]
Other embodiments of the present invention will be described below. For convenience of explanation, the same reference numerals will be added to the members having the same functions as the members described in the above embodiment, and the description will not be repeated.
(光源装置の構成)
 図15は、本発明の実施形態6に係る光源装置の構成を模式的に示す図である。当該光源装置は、蛍光ホイールを有し、例えばプロジェクタ用の光源装置である。図15に示されるように、光源装置200は、発光装置、ホイール210、蛍光層215、モータ220、ダイクロイックミラー230、および、レンズ240、250、260を有する。当該発光装置は、実施形態1で前述した発光装置と同様の構成を有する。
(Configuration of light source device)
FIG. 15 is a diagram schematically showing a configuration of a light source device according to a sixth embodiment of the present invention. The light source device has a fluorescent wheel and is, for example, a light source device for a projector. As shown in FIG. 15, the light source device 200 includes a light emitting device, a wheel 210, a fluorescent layer 215, a motor 220, a dichroic mirror 230, and lenses 240, 250, 260. The light emitting device has the same configuration as the light emitting device described above in the first embodiment.
 ホイール210は、例えば円板である。ホイール210の少なくとも周縁部は、反射基板となる金属層が形成されている。蛍光層215は、ホイールの周縁部における前述の金属層の上に形成されている。蛍光層215の構成は、前述の実施形態のものと同様である。モータ220は、平面視したときのホイール210の中心を軸支しており、ホイール210を回転駆動させるための駆動装置である。 The wheel 210 is, for example, a disk. A metal layer serving as a reflective substrate is formed on at least the peripheral portion of the wheel 210. The fluorescent layer 215 is formed on the above-mentioned metal layer at the peripheral edge of the wheel. The configuration of the fluorescent layer 215 is the same as that of the above-described embodiment. The motor 220 pivotally supports the center of the wheel 210 when viewed in a plan view, and is a drive device for rotationally driving the wheel 210.
 ダイクロイックミラー230は、45°の入射角度で入射する励起光を反射し、その他入射角度で入射する励起光および他の波長の光を透過する部材である。 The dichroic mirror 230 is a member that reflects excitation light incident at an incident angle of 45 ° and transmits excitation light incident at other incident angles and light of other wavelengths.
 励起光源11は、ダイクロイックミラー230に対して45°の入射角度で励起光を出射する位置に配置されている。ホイール210は、ダイクロイックミラー230で反射した励起光が、金属層の表面に対して垂直な方向から蛍光層215に照射される位置に配置されている。 The excitation light source 11 is arranged at a position where the excitation light is emitted at an incident angle of 45 ° with respect to the dichroic mirror 230. The wheel 210 is arranged at a position where the excitation light reflected by the dichroic mirror 230 is applied to the fluorescent layer 215 from a direction perpendicular to the surface of the metal layer.
 レンズ240は、励起光源11とダイクロイックミラー230との間における励起光の光路中に配置されている。レンズ250、260は、いずれも、ダイクロイックミラー230とホイール210との間における励起光の光路中に配置されている。 The lens 240 is arranged in the optical path of the excitation light between the excitation light source 11 and the dichroic mirror 230. The lenses 250 and 260 are all arranged in the optical path of the excitation light between the dichroic mirror 230 and the wheel 210.
 受光素子13は、蛍光層215側におけるホイール210から離れた位置であって、ホイール210への励起光の光路から外れた位置に、当該光路に対して斜めの向きで配置されている。また、調整装置14は、前述した実施形態の発光装置10における調整装置14と同様に構成されている。 The light receiving element 13 is arranged at a position on the fluorescent layer 215 side away from the wheel 210 and at a position outside the optical path of the excitation light to the wheel 210 in an oblique direction with respect to the optical path. Further, the adjusting device 14 is configured in the same manner as the adjusting device 14 in the light emitting device 10 of the above-described embodiment.
 本実施形態において、ダイクロイックミラー230およびレンズ240、250、260は、励起光および蛍光の光路を制御する光学系を構成している。 In the present embodiment, the dichroic mirror 230 and the lenses 240, 250, 260 constitute an optical system that controls the optical path of excitation light and fluorescence.
(本実施形態における具体的な動作例)
 ホイール210は、モータ220によって高速で回転している。蛍光層215も、ホイール210とともに、円形の軌道上を高速で移動している。
(Specific operation example in this embodiment)
The wheel 210 is rotated at high speed by the motor 220. The fluorescent layer 215 also moves at high speed on a circular orbit together with the wheel 210.
 励起光源11から励起光B1が出力される。励起光B1は、レンズ240を通ってダイクロイックミラー230に到達し、ホイール210に向けて反射する。反射した励起光B1は、レンズ250、260を通って蛍光層215に到達する。蛍光層215中の蛍光物質は励起光B1によって励起され、蛍光を発する。蛍光の一部は、蛍光層215の背面側の金属層の表面で反射する。蛍光は、主に、金属層の表面に対して垂直な方向へ出射する。 Excitation light B1 is output from the excitation light source 11. The excitation light B1 passes through the lens 240, reaches the dichroic mirror 230, and is reflected toward the wheel 210. The reflected excitation light B1 reaches the fluorescence layer 215 through the lenses 250 and 260. The fluorescent substance in the fluorescent layer 215 is excited by the excitation light B1 and emits fluorescence. Part of the fluorescence is reflected on the surface of the metal layer on the back side of the fluorescence layer 215. Fluorescence is mainly emitted in a direction perpendicular to the surface of the metal layer.
 蛍光層215から出射した蛍光B3は、主に、レンズ260、250を通過し、ダイクロイックミラー230に到達する。ダイクロイックミラー230は、45°で入射する励起光のみを反射する部材であるため、蛍光B3は、ダイクロイックミラー230を透過し、光源装置200が発生する光の一部として利用される。 The fluorescent B3 emitted from the fluorescent layer 215 mainly passes through the lenses 260 and 250 and reaches the dichroic mirror 230. Since the dichroic mirror 230 is a member that reflects only the excitation light incident at 45 °, the fluorescence B3 passes through the dichroic mirror 230 and is used as a part of the light generated by the light source device 200.
 蛍光層215から出射した蛍光は、前述の主な出射方向に対して斜めの方向にも出射する。受光素子13は、このような斜め方向に出射した蛍光を受光する。位相検出部141は、受光素子13が受光した蛍光の発光強度の位相を検出し、制御部142は、位相検出部141が検出した蛍光の発光強度の位相と、励起光源11から出力される励起光B1のレーザパワーの位相とを参照して、励起光源11の出力を制御する。 The fluorescence emitted from the fluorescent layer 215 is also emitted in a direction oblique to the above-mentioned main emission direction. The light receiving element 13 receives the fluorescence emitted in such an oblique direction. The phase detection unit 141 detects the phase of the fluorescence emission intensity received by the light receiving element 13, and the control unit 142 detects the phase of the fluorescence emission intensity detected by the phase detection unit 141 and the excitation output from the excitation light source 11. The output of the excitation light source 11 is controlled with reference to the phase of the laser power of the light B1.
 たとえば、蛍光の発光強度の位相と励起光のレーザパワーの位相とが同じである場合には、制御部142は、励起光源11の出力を増加させる。これにより、蛍光層215における励起光B1のレーザパワー密度が高まり、蛍光の発光強度が増加する。 For example, when the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are the same, the control unit 142 increases the output of the excitation light source 11. As a result, the laser power density of the excitation light B1 in the fluorescence layer 215 is increased, and the emission intensity of fluorescence is increased.
 蛍光の発光強度の位相と励起光のレーザパワーの位相とが逆の場合には、制御部142は、励起光源11の出力を減少させる。これにより、蛍光層215における励起光B1のレーザパワー密度が下がり、蛍光の発光強度は、発光強度の最大値に向けて増加し、その後は減少する。 When the phase of the emission intensity of fluorescence and the phase of the laser power of the excitation light are opposite, the control unit 142 reduces the output of the excitation light source 11. As a result, the laser power density of the excitation light B1 in the fluorescence layer 215 decreases, and the emission intensity of fluorescence increases toward the maximum value of the emission intensity and then decreases.
 蛍光の発光強度の周波数が励起光のレーザパワーの周波数の二倍である場合には、制御部142は、励起光源11の出力を変えずに維持する。これにより、蛍光層215における励起光B1のレーザパワー密度も維持され、実質的に発光強度の最大値となる強度の蛍光を発生し続ける。 When the frequency of the emission intensity of fluorescence is twice the frequency of the laser power of the excitation light, the control unit 142 maintains the output of the excitation light source 11 unchanged. As a result, the laser power density of the excitation light B1 in the fluorescence layer 215 is also maintained, and fluorescence with an intensity that substantially maximizes the emission intensity continues to be generated.
(作用効果)
 本実施形態の光源装置200においても、前述の光源装置100と同様に、出射光の強度の位相に基づいて、発光強度の最大値となる強度の蛍光を含む出射光を常に発生させることが可能である。よって、事前の処理に依らずに所望の発光強度での発光を簡易に実現することができる。
(Action effect)
In the light source device 200 of the present embodiment as well, similarly to the light source device 100 described above, it is possible to always generate the emitted light including the fluorescence of the intensity that becomes the maximum value of the emission intensity based on the phase of the intensity of the emitted light. Is. Therefore, it is possible to easily realize light emission with a desired light emission intensity without depending on prior processing.
〔変形例〕
(第一変形例)
 前述のいずれもの実施形態において、蛍光発生装置は、蛍光の発光強度を高める観点から、反射基板と蛍光層との間に高反射膜をさらに有していてもよい。当該高反射膜の材料の例には、銀および酸化チタンが含まれる。また、高反射膜の例には、増反射多層膜および誘電体ミラーが含まれる。あるいは、蛍光発生装置は、反射基板と蛍光層との間に、入射光を散乱させる散乱層をさらに有していてもよい。
[Modification example]
(First modification)
In any of the above embodiments, the fluorescence generator may further have a highly reflective film between the reflective substrate and the fluorescent layer from the viewpoint of increasing the emission intensity of fluorescence. Examples of materials for the highly reflective film include silver and titanium oxide. Examples of high-reflection films include anti-reflective multilayer films and dielectric mirrors. Alternatively, the fluorescence generator may further have a scattering layer that scatters incident light between the reflective substrate and the fluorescence layer.
(第二変形例)
 前述のいずれもの実施形態において、上記の実施形態における効果が得られる範囲において、蛍光層は他の構造を有していてもよい。たとえば、蛍光層は、無機材料で構成される蛍光膜を有機バインダ、グリスあるいは高耐熱の無機接着剤によって反射基板に貼り付けることによって構成されてもよい。
(Second modification)
In any of the above embodiments, the fluorescent layer may have other structures as long as the effects of the above embodiments can be obtained. For example, the fluorescent layer may be formed by attaching a fluorescent film made of an inorganic material to a reflective substrate with an organic binder, grease, or a highly heat-resistant inorganic adhesive.
(第三変形例)
 前述のいずれもの実施形態において、調整装置は、蛍光体における励起光の単位面積当たりの強度が、蛍光の発光強度を最大にする励起光の当該強度に対して所定の割合の値となるように、蛍光体における励起光の単位面積当たりの強度を調整してもよい。この場合、蛍光の強度の位相が励起光の強度の位相と同じであることが、満たすべき条件としてさらに追加されてもよい。このような励起光の単位面積当たりの強度の調整は、適切に設定された閾値の採用により実施可能である。
(Third modification example)
In any of the above embodiments, the adjusting device is such that the intensity of the excitation light in the phosphor per unit area is a value of a predetermined ratio with respect to the intensity of the excitation light that maximizes the emission intensity of fluorescence. , The intensity of the excitation light in the phosphor per unit area may be adjusted. In this case, the fact that the phase of the fluorescence intensity is the same as the phase of the excitation light intensity may be further added as a condition to be satisfied. Such adjustment of the intensity per unit area of the excitation light can be carried out by adopting an appropriately set threshold value.
 たとえば、調整装置は、蛍光の所望の発光強度に対応する閾値に基づいて、蛍光層における励起光の単位面積当たりの強度の制御をさらに実行してもよい。閾値は、蛍光の発光強度そのものの値であってもよいし、蛍光層における励起光の単位面積当たりの強度の値であってもよいし、当該発光強度に対応する励起光源の出力値であってもよい。 For example, the regulator may further control the intensity of excitation light per unit area in the fluorescence layer based on a threshold value corresponding to the desired emission intensity of fluorescence. The threshold value may be the value of the emission intensity of fluorescence itself, the value of the intensity per unit area of the excitation light in the fluorescence layer, or the output value of the excitation light source corresponding to the emission intensity. You may.
 閾値が蛍光の発光強度そのものである場合では、調整装置は、受光素子が受光した蛍光の発光強度を検出する発光強度検出部をさらに備えてもよい。この場合、調整装置は、励起光源の出力の制御において発光強度検出部が検出した発光強度をさらに参照する。それにより、蛍光層における励起光の単位面積当たりの強度の制御を、上記閾値に基づいて実行することができる。 When the threshold value is the emission intensity of fluorescence itself, the adjusting device may further include an emission intensity detection unit that detects the emission intensity of fluorescence received by the light receiving element. In this case, the adjusting device further refers to the emission intensity detected by the emission intensity detection unit in controlling the output of the excitation light source. Thereby, the intensity of the excitation light in the fluorescent layer per unit area can be controlled based on the above threshold value.
 閾値が蛍光の発光強度に対応する他の値、例えば励起光源の出力値、である場合には、調整装置は、調整装置が取得する検出結果を参照して当該励起光源の出力値を推定してもよい。この場合、調整装置は、得られた推定値を励起光源の出力の制御においてさらに参照することにより、蛍光層における励起光の単位面積当たりの強度の制御を、上記閾値に基づいて実行することができる。 When the threshold value is another value corresponding to the emission intensity of fluorescence, for example, the output value of the excitation light source, the adjusting device estimates the output value of the excitation light source with reference to the detection result acquired by the adjusting device. You may. In this case, the adjusting device may control the intensity of the excitation light in the fluorescent layer per unit area based on the above threshold value by further referring to the obtained estimated value in the control of the output of the excitation light source. it can.
 当該閾値は、適宜に設定することが可能である。たとえば、閾値は、蛍光の発光強度の最大値未満の発光強度、例えば当該最大値の80%の発光強度に対応する値であってもよい。この場合、例えば、蛍光の発光強度がその最大値の80%以下であることの条件に加えて、励起光と蛍光とが同位相であることの条件をさらに設定すると、発光強度減少領域における蛍光の発生を防止することが可能となる。このため、蛍光体の熱による劣化を防止することができ、その結果、長期間安定した発光強度の蛍光を発生させることができる。蛍光体の熱による劣化とは、例えば、蛍光体の構造変化、割れ、蛍光体の酸化による蛍光の出力低下、もしくは不純物の揮発による蛍光の出力上昇である。あるいは、上記のような条件の設定は、比較的耐熱性が低い、有機材料による蛍光源を長期間安定して利用する観点から有利である。 The threshold value can be set as appropriate. For example, the threshold value may be a value corresponding to an emission intensity less than the maximum value of the emission intensity of fluorescence, for example, an emission intensity of 80% of the maximum value. In this case, for example, if the condition that the emission intensity of fluorescence is 80% or less of the maximum value and the condition that the excitation light and the fluorescence are in phase are further set, the fluorescence in the emission intensity decrease region is further set. Can be prevented from occurring. Therefore, deterioration of the phosphor due to heat can be prevented, and as a result, fluorescence having a stable emission intensity for a long period of time can be generated. The thermal deterioration of the phosphor is, for example, a structural change or cracking of the phosphor, a decrease in the fluorescence output due to oxidation of the phosphor, or an increase in the fluorescence output due to the volatilization of impurities. Alternatively, setting the above conditions is advantageous from the viewpoint of stable use of a fluorescence source made of an organic material, which has relatively low heat resistance, for a long period of time.
 前述の閾値は、蛍光の発光強度の最大値または当該最大値に対応する値を取得し、その取得値に基づいて設定することが可能である。当該取得値は、実際に測定して得た測定値であってもよい、測定結果に基づいて推定した推定値であってもよい。 The above-mentioned threshold value can be set based on the maximum value of the emission intensity of fluorescence or the value corresponding to the maximum value. The acquired value may be a measured value actually measured or an estimated value estimated based on the measurement result.
 たとえば、閾値は、蛍光の発光強度の最大値を実際に測定し、得られた測定値に基づいて設定(例えば当該測定値の80%に)することができる。 For example, the threshold value can be set (for example, 80% of the measured value) based on the measured value obtained by actually measuring the maximum value of the fluorescence emission intensity.
 あるいは、閾値は、蛍光の強度の周波数が励起光の強度の周波数の二倍であるときの、蛍光層における励起光の単位時間当たりの強度の値、あるいは、励起光源の出力値、であってもよい。この場合、閾値は、例えば、蛍光の強度の周波数が励起光の強度の周波数の二倍であるときの実測値を記録することにより設定することができる。 Alternatively, the threshold is the value of the intensity of the excitation light in the fluorescence layer per unit time when the frequency of the intensity of the fluorescence is twice the frequency of the intensity of the excitation light, or the output value of the excitation light source. May be good. In this case, the threshold value can be set, for example, by recording the measured value when the frequency of the fluorescence intensity is twice the frequency of the excitation light intensity.
 あるいは、閾値は、蛍光の発光強度を、発光強度増加領域からピーク強度領域における最大値の直前まで複数点で測定することによって設定することも可能である。たとえば、上記の複数点での測定を行い、測定点間における発光強度の増分を算出し、当該増分の算出値が正であるが十分に小さくなることを条件として、発光強度の最大値を推定する。上記閾値は、このような推定値に基づいて設定することができる。 Alternatively, the threshold value can be set by measuring the emission intensity of fluorescence at a plurality of points from the emission intensity increase region to immediately before the maximum value in the peak intensity region. For example, the measurement is performed at the above-mentioned multiple points, the increment of the emission intensity between the measurement points is calculated, and the maximum value of the emission intensity is estimated on condition that the calculated value of the increment is positive but sufficiently small. To do. The threshold value can be set based on such an estimated value.
 さらに、上記の測定点において発光強度に対応する他の値(励起光源の出力値など)を取得しておけば、発光強度の最大値の推定値に対応する他の値を推定することが可能である。このような他の値も閾値として設定することができる。上記の方法によれば、蛍光の発光強度の最大値を実際に測定しなくても閾値を設定することができ、閾値を設定することによって蛍光体が熱によって劣化することを防止する観点から好ましい。 Furthermore, if other values corresponding to the emission intensity (such as the output value of the excitation light source) are acquired at the above measurement points, it is possible to estimate other values corresponding to the estimated value of the maximum emission intensity. Is. Such other values can also be set as thresholds. According to the above method, the threshold value can be set without actually measuring the maximum value of the emission intensity of fluorescence, which is preferable from the viewpoint of preventing the phosphor from being deteriorated by heat by setting the threshold value. ..
 また、蛍光の発光強度の最大値の推定値を用いる上記の方法は、蛍光源を、熱に比較的弱い有機化合物を用いて構成する場合に、蛍光源の熱による劣化およびそれによる発光装置の信頼性の低減を抑制する観点から好ましい。 Further, in the above method using the estimated value of the maximum value of the emission intensity of fluorescence, when the fluorescence source is constructed by using an organic compound relatively weak to heat, the deterioration due to heat of the fluorescence source and the resulting deterioration of the light emitting device It is preferable from the viewpoint of suppressing the decrease in reliability.
 さらには、調整装置に、閾値を設定する機能的構成と、当該閾値を設定した後では、励起光源の出力の制御において、閾値に基づく制御を優先させる機能的構成とをさらに付加してもよい。このように調整装置を構成することにより、上述の閾値に基づく蛍光層における励起光の単位面積当たりの強度を好適に制御することが可能である。 Further, the adjusting device may be further provided with a functional configuration for setting the threshold value and, after setting the threshold value, a functional configuration for prioritizing the control based on the threshold value in the control of the output of the excitation light source. .. By configuring the adjusting device in this way, it is possible to suitably control the intensity per unit area of the excitation light in the fluorescent layer based on the above-mentioned threshold value.
 なお、蛍光の発光強度が、その最大値に対する所定割合以上であること(例えば当該最大値の80%以上であること等)を条件として設定すると、ピーク強度領域の蛍光を常時発生させることが可能となる。このような閾値に基づく制御は、より高い発光効率で蛍光を発生させる観点でより一層効果的となる。 If the emission intensity of fluorescence is set on the condition that it is equal to or more than a predetermined ratio to the maximum value (for example, 80% or more of the maximum value), fluorescence in the peak intensity region can be constantly generated. It becomes. Control based on such a threshold value becomes even more effective from the viewpoint of generating fluorescence with higher luminous efficiency.
(第四変形例)
 前述のいずれもの実施形態において、調整装置は、受光素子が受光した蛍光の発光強度を検出する発光強度検出部をさらに備えていてもよい。この構成によれば、前述の閾値の設定において、あるいは、蛍光層における励起光の単位面積当たりの強度の制御部による制御において、蛍光の発光強度の検出値をさらに参照することが可能である。その結果、蛍光層における励起光の単位面積当たりの強度をより精密に調整することが可能となる。
(Fourth modification)
In any of the above-described embodiments, the adjusting device may further include a light emitting intensity detecting unit that detects the light emitting intensity of the fluorescence received by the light receiving element. According to this configuration, it is possible to further refer to the detected value of the emission intensity of fluorescence in the above-mentioned setting of the threshold value or in the control by the control unit of the intensity per unit area of the excitation light in the fluorescence layer. As a result, the intensity of the excitation light in the fluorescent layer per unit area can be adjusted more precisely.
(第五変形例)
 前述のいずれもの実施形態において、当該実施形態の効果が得られる範囲において、一の実施形態での蛍光層における励起光の単位面積当たりの強度の調整と、他の実施形態での蛍光層における励起光の単位面積当たりの強度の別方法での調整との両方を実行してもよい。たとえば、実施形態2~4のそれぞれにおいて、実施形態1、5、6における励起光源の出力の制御をさらに実施してもよい。この場合、複数実行する制御は、同時に実行してもよいし、交互に実行してもよいし、不規則に実行してもよい。実施形態2~4における蛍光層における励起光の単位面積当たりの強度の調整と、実施形態1、5、6における当該調整との両方の制御を実行することは、蛍光層が発する蛍光の発光強度を精密に制御する観点からより一層効果的である。
(Fifth variant)
In any of the above embodiments, the intensity of the excitation light in the fluorescent layer in one embodiment is adjusted per unit area, and the excitation in the fluorescent layer in the other embodiment is obtained within the range in which the effect of the embodiment can be obtained. Both may be performed with another adjustment of the intensity per unit area of light. For example, in each of the second to fourth embodiments, the output of the excitation light source in the first, fifth, and sixth embodiments may be further controlled. In this case, the controls to be executed a plurality of times may be executed simultaneously, alternately, or irregularly. Performing both control of the adjustment of the intensity per unit area of the excitation light in the fluorescent layer in the second to fourth embodiments and the adjustment in the first, fifth, and sixth embodiments is the emission intensity of the fluorescence emitted by the fluorescent layer. It is even more effective from the viewpoint of precisely controlling.
(第六変形例)
 実施形態3において、蛍光層122に対して励起光の入射角度を変更する構成は、回動装置35に限定されない。たとえば、回動装置35に代えて、励起光源11の光軸と蛍光層122との交点を回動の中心点として、励起光源11を回動させる装置を採用することによって入射角度θを変更してもよい。
(Sixth variant)
In the third embodiment, the configuration for changing the incident angle of the excitation light with respect to the fluorescent layer 122 is not limited to the rotating device 35. For example, instead of the rotating device 35, the incident angle θ is changed by adopting a device that rotates the excitation light source 11 with the intersection of the optical axis of the excitation light source 11 and the fluorescence layer 122 as the center point of rotation. You may.
(第七変形例)
 実施形態4において、調整装置は、蛍光層の温度を調整し、その温度環境に応じた蛍光を発生させてもよい。この構成によれば、例えば夏場の暑い環境で発光装置を使用する場合でも、冬場の環境に相当する低温度の環境で蛍光を発生させることが可能である。
(7th variant)
In the fourth embodiment, the adjusting device may adjust the temperature of the fluorescent layer to generate fluorescence according to the temperature environment. According to this configuration, even when the light emitting device is used in a hot environment in summer, for example, it is possible to generate fluorescence in a low temperature environment corresponding to the environment in winter.
(第八変形例)
 実施形態6において、実施形態5と同様に、光源装置からの出射光に、励起光と蛍光とから合成される光を採用してもよい。このような合成される光を出射光とする場合には、調整装置は、例えば出射光の色を調整する観点から、励起光源の出力をさらに制御してもよい。このようなさらなる制御は、例えば、制御部が励起光源の出力を制御する際に、合成される光に求められる、蛍光の発光強度に対する励起光の発光強度の割合の情報を格納したテーブルを参照して励起光源の出力を決定することにより実行することが可能である。
(Eighth variant)
In the sixth embodiment, as in the fifth embodiment, the light synthesized from the excitation light and the fluorescence may be adopted as the light emitted from the light source device. When such combined light is used as the emitted light, the adjusting device may further control the output of the excitation light source, for example, from the viewpoint of adjusting the color of the emitted light. For such further control, for example, refer to a table that stores information on the ratio of the emission intensity of excitation light to the emission intensity of fluorescence, which is required for the light to be synthesized when the control unit controls the output of the excitation light source. It can be carried out by determining the output of the excitation light source.
〔ソフトウェアによる実現例〕
 調整装置14、24、34、44、54の制御ブロック(特に位相検出部141、541および制御部142、242、342、442、542)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The control blocks of the adjusting devices 14, 24, 34, 44, 54 (particularly, the phase detection units 141, 541 and the control units 142, 242, 342, 442, 542) are logic circuits formed in an integrated circuit (IC chip) or the like. It may be realized by (hardware) or by software.
 後者の場合、調整装置14、24、34、44、54は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。 In the latter case, the adjusting devices 14, 24, 34, 44, 54 include a computer that executes a program instruction, which is software that realizes each function. This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
 上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。 As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) or the like for expanding the above program may be further provided.
 また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
〔まとめ〕
 本発明の態様1に係る発光装置10は、励起光を照射するための励起光源11と、励起光源からの励起光を受けて蛍光を発する蛍光源(蛍光層122)と、蛍光源が発する蛍光の一部を受光する受光素子13と、受光素子が受光した蛍光の強度の位相を検出し、検出した蛍光の強度の位相に応じて、蛍光源における励起光の単位面積当たりの強度を調整する調整装置14とを有する。そして、調整装置は、蛍光の強度の位相が励起光の強度の位相と同じである場合には蛍光源における励起光の単位面積当たりの強度を高くし、蛍光の強度の位相が励起光の強度の位相と逆である場合には、蛍光源における励起光の単位面積当たりの強度を低くする。
[Summary]
The light emitting device 10 according to the first aspect of the present invention includes an excitation light source 11 for irradiating excitation light, a fluorescence source (fluorescence layer 122) that emits fluorescence in response to excitation light from the excitation light source, and fluorescence emitted by the fluorescence source. The light receiving element 13 that receives a part of the light receiving element and the phase of the fluorescence intensity received by the light receiving element are detected, and the intensity of the excitation light in the fluorescence source per unit area is adjusted according to the detected fluorescence intensity phase. It has an adjusting device 14. Then, when the phase of the fluorescence intensity is the same as the phase of the excitation light intensity, the adjusting device increases the intensity of the excitation light per unit area in the fluorescence source, and the fluorescence intensity phase is the excitation light intensity. When the phase is opposite to that of, the intensity of the excitation light in the fluorescence source per unit area is lowered.
 上記の構成によれば、励起光源からの励起光を蛍光源で受けて蛍光を発する発光装置において、事前の処理に依らずに所望の強度で蛍光を発光させることができる。 According to the above configuration, in a light emitting device that receives excitation light from an excitation light source by a fluorescence source and emits fluorescence, fluorescence can be emitted with a desired intensity without prior treatment.
 本発明の態様2に係る発光装置は、上記態様1において、調整装置が蛍光の強度の位相と励起光の強度の位相との関係に応じて励起光源の出力の代表値を増減してもよい。 In the light emitting device according to the second aspect of the present invention, in the above aspect 1, the adjusting device may increase or decrease the representative value of the output of the excitation light source according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. ..
 上記の構成によれば、励起光源の実質的な出力の増減によって蛍光源における励起光の単位面積当たりの強度も増減し、蛍光の発光強度を簡易に調整する観点からより一層効果的である。 According to the above configuration, the intensity per unit area of the excitation light in the fluorescence source also increases or decreases due to the substantial increase or decrease in the output of the excitation light source, which is even more effective from the viewpoint of easily adjusting the emission intensity of fluorescence.
 本発明の態様3に係る発光装置は、上記態様1または2において、蛍光源に照射される励起光の焦点距離を変化可能な焦点可変装置(焦点可変レンズ25)をさらに有していてよく、調整装置は、蛍光の強度の位相と励起光の強度の位相との関係に応じて焦点可変装置による励起光の焦点距離を変更してもよい。 The light emitting device according to the third aspect of the present invention may further include a varifocal device (varifocal lens 25) capable of changing the focal length of the excitation light applied to the fluorescence source in the above aspect 1 or 2. The adjusting device may change the focal length of the excitation light by the focus variable device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity.
 上記の構成によれば、励起光源から励起光の出力を変更することなく蛍光源における励起光の単位面積当たりの強度を調整することが可能であるので、励起光の強度の振幅を変えることなく、蛍光源における励起光の単位面積当たりの強度を調整することが可能となる。 According to the above configuration, it is possible to adjust the intensity per unit area of the excitation light in the fluorescence source without changing the output of the excitation light from the excitation light source, so that the amplitude of the intensity of the excitation light is not changed. , It becomes possible to adjust the intensity of the excitation light in the fluorescence source per unit area.
 本発明の態様4に係る発光装置は、上記態様1から3において、励起光の蛍光源への入射角度を変更可能な入射角変更装置をさらに有していてよく、調整装置は、蛍光の強度の位相と励起光の強度の位相との関係に応じて、入射角変更装置による励起光の蛍光源への入射角度を増減してもよい。 The light emitting device according to the fourth aspect of the present invention may further include an incident angle changing device capable of changing the incident angle of the excitation light to the fluorescence source in the above aspects 1 to 3, and the adjusting device may include the fluorescence intensity. The angle of incidence of the excitation light on the fluorescence source by the incident angle changing device may be increased or decreased depending on the relationship between the phase of the excitation light and the phase of the intensity of the excitation light.
 上記の構成によれば、態様3と同様に、励起光の強度の振幅を変えることなく蛍光源における励起光の単位面積当たりの強度を調整することが可能である。 According to the above configuration, it is possible to adjust the intensity per unit area of the excitation light in the fluorescence source without changing the amplitude of the intensity of the excitation light, as in the third aspect.
 本発明の態様5に係る発光装置は、上記態様4において、入射角変更装置が励起光の光軸に交差する方向に平行な回転軸を中心として蛍光源を回動させる回動装置であってよく、調整装置は、蛍光の強度の位相と励起光の強度の位相との関係に応じて、回動装置によって蛍光源を回動させることにより、励起光の蛍光源への入射角度を増減してもよい。 The light emitting device according to the fifth aspect of the present invention is a rotating device that rotates the fluorescence source around a rotation axis parallel to the direction in which the incident angle changing device intersects the optical axis of the excitation light in the above aspect 4. Often, the regulator increases or decreases the angle of incidence of the excitation light on the fluorescence source by rotating the fluorescence source with a rotating device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. You may.

Claims (8)

  1.  励起光を照射するための励起光源と、
     前記励起光源からの前記励起光を受けて蛍光を発する蛍光源と、
     前記蛍光源が発する前記蛍光の一部を受光する受光素子と、
     前記受光素子が受光した前記蛍光の強度の位相を検出し、検出した前記蛍光の強度の位相に応じて、前記蛍光源における前記励起光の単位面積当たりの強度を調整する調整装置と、を有し、
     前記調整装置は、前記蛍光の強度の位相が前記励起光の強度の位相と同じである場合には、前記蛍光源における前記励起光の単位面積当たりの強度を高くし、前記蛍光の強度の位相が前記励起光の強度の位相と逆である場合には、前記蛍光源における前記励起光の単位面積当たりの強度を低くする、
    発光装置。
    An excitation light source for irradiating excitation light,
    A fluorescence source that receives the excitation light from the excitation light source and emits fluorescence,
    A light receiving element that receives a part of the fluorescence emitted by the fluorescence source, and
    It has an adjusting device that detects the phase of the fluorescence intensity received by the light receiving element and adjusts the intensity of the excitation light in the fluorescence source per unit area according to the detected phase of the fluorescence intensity. And
    When the phase of the intensity of the fluorescence is the same as the phase of the intensity of the excitation light, the adjusting device increases the intensity of the excitation light in the fluorescence source per unit area, and the phase of the intensity of the fluorescence. Is opposite to the phase of the intensity of the excitation light, the intensity of the excitation light in the fluorescence source per unit area is lowered.
    Light emitting device.
  2.  前記調整装置は、前記蛍光の強度の位相と前記励起光の強度の位相との関係に応じて、前記励起光源の出力の代表値を増減する、請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the adjusting device increases or decreases the representative value of the output of the excitation light source according to the relationship between the phase of the intensity of fluorescence and the phase of the intensity of the excitation light.
  3.  前記蛍光源に照射される前記励起光の焦点距離を変化可能な焦点可変装置をさらに有し、
     前記調整装置は、前記蛍光の強度の位相と前記励起光の強度の位相との関係に応じて、前記焦点可変装置による前記励起光の焦点距離を変更する、
    請求項1または2に記載の発光装置。
    Further having a focus variable device capable of changing the focal length of the excitation light applied to the fluorescence source,
    The adjusting device changes the focal length of the excitation light by the focus variable device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity.
    The light emitting device according to claim 1 or 2.
  4.  前記励起光の前記蛍光源への入射角度を変更可能な入射角変更装置をさらに有し、
     前記調整装置は、前記蛍光の強度の位相と前記励起光の強度の位相との関係に応じて、前記入射角変更装置による前記励起光の前記蛍光源への入射角度を増減する、請求項1~3のいずれか一項に記載の発光装置。
    It further has an incident angle changing device capable of changing the incident angle of the excitation light to the fluorescent source.
    The adjusting device increases or decreases the angle of incidence of the excitation light on the fluorescence source by the incident angle changing device according to the relationship between the phase of the fluorescence intensity and the phase of the excitation light intensity. The light emitting device according to any one of 3 to 3.
  5.  前記入射角変更装置は、前記励起光の光軸に交差する方向に平行な回転軸を中心として前記蛍光源を回動させる回動装置であり、
     前記調整装置は、前記蛍光の強度の位相と前記励起光の強度の位相との関係に応じて、前記回動装置によって前記蛍光源を回動させることにより、前記励起光の前記蛍光源への入射角度を増減する、請求項4に記載の発光装置。
    The incident angle changing device is a rotating device that rotates the fluorescence source around a rotation axis parallel to the direction intersecting the optical axis of the excitation light.
    The adjusting device rotates the fluorescence source by the rotating device according to the relationship between the phase of the intensity of the fluorescence and the phase of the intensity of the excitation light, whereby the excitation light is transferred to the fluorescence source. The light emitting device according to claim 4, wherein the incident angle is increased or decreased.
  6.  前記蛍光源は、無機のバインダと前記バインダに結着されている無機の蛍光体とによって構成されている、請求項1~5のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 5, wherein the fluorescence source is composed of an inorganic binder and an inorganic phosphor bound to the binder.
  7.  前記蛍光源を取り巻く環境を変更可能な環境変更装置をさらに有する、請求項1~6のいずれか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, further comprising an environment changing device capable of changing the environment surrounding the fluorescence source.
  8.  請求項1~7のいずれか一項に記載の発光装置と、前記励起光および前記蛍光の一方または両方の光路を制御するための光学系と、を有する光源装置。 A light source device comprising the light emitting device according to any one of claims 1 to 7 and an optical system for controlling one or both optical paths of the excitation light and the fluorescence.
PCT/JP2020/038250 2019-10-23 2020-10-09 Light-emitting device and light source device WO2021079758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192807A JP2023002847A (en) 2019-10-23 2019-10-23 Light-emitting device and light source device
JP2019-192807 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079758A1 true WO2021079758A1 (en) 2021-04-29

Family

ID=75620499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038250 WO2021079758A1 (en) 2019-10-23 2020-10-09 Light-emitting device and light source device

Country Status (2)

Country Link
JP (1) JP2023002847A (en)
WO (1) WO2021079758A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221820A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Method of adjusting light source device, light source device, and projector
JP2013025248A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Method for measuring temperature of phosphor layer, light source device, and projector
JP2013164555A (en) * 2012-02-13 2013-08-22 Seiko Epson Corp Projector
WO2017056468A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Light source device and projection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221820A (en) * 2011-04-12 2012-11-12 Seiko Epson Corp Method of adjusting light source device, light source device, and projector
JP2013025248A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Method for measuring temperature of phosphor layer, light source device, and projector
JP2013164555A (en) * 2012-02-13 2013-08-22 Seiko Epson Corp Projector
WO2017056468A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Light source device and projection device

Also Published As

Publication number Publication date
JP2023002847A (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP5788194B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6225338B2 (en) Light source and image projection device
US9823557B2 (en) Wavelength converting member and projector including the wavelength converting member
CN111213005B (en) Fluorescent light source device
CN106461182B (en) Luminescent concentrator with increased efficiency
US6653765B1 (en) Uniform angular light distribution from LEDs
JP5598974B2 (en) Lighting device
US8931922B2 (en) Ceramic wavelength-conversion plates and light sources including the same
US6635363B1 (en) Phosphor coating with self-adjusting distance from LED chip
US10139053B2 (en) Solid-state light source device
JP6251868B2 (en) Illumination optical system and electronic apparatus using the same
JP2012108486A (en) Light source device and image display
JP5675248B2 (en) Light source device and lighting device
WO2015112939A1 (en) Ceramic phosphor target
JP6087809B2 (en) Lighting device
JP6894893B2 (en) Light source device and electronic device using it
JP2005331468A (en) Lighting system equipped with ranging function
JP2021012875A (en) Light source with photoluminescence emitter
WO2021079758A1 (en) Light-emitting device and light source device
US20210210660A1 (en) Wavelength conversion element and light source device
US20220136679A1 (en) Wavelength conversion element, light source device, vehicle headlight, transmissive lighting device, display device, and lighting device
TWI412784B (en) A modulating method for cct and a led light module with variable cct
US10989385B2 (en) Lighting device, preferably with adjustable or adjusted color location, and use thereof, and method for adjusting the color location of a lighting device
WO2019230935A1 (en) Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device
JP5842041B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP