WO2021079656A1 - 細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質 - Google Patents

細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質 Download PDF

Info

Publication number
WO2021079656A1
WO2021079656A1 PCT/JP2020/034965 JP2020034965W WO2021079656A1 WO 2021079656 A1 WO2021079656 A1 WO 2021079656A1 JP 2020034965 W JP2020034965 W JP 2020034965W WO 2021079656 A1 WO2021079656 A1 WO 2021079656A1
Authority
WO
WIPO (PCT)
Prior art keywords
dgkζ
acgfp
lipid
activity
cell
Prior art date
Application number
PCT/JP2020/034965
Other languages
English (en)
French (fr)
Inventor
郁夫 坂根
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2021554159A priority Critical patent/JPWO2021079656A1/ja
Publication of WO2021079656A1 publication Critical patent/WO2021079656A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase

Definitions

  • the present invention relates to a method for measuring intracellular lipid-metabolizing enzyme activity and a substance for measuring intracellular lipid-metabolizing enzyme activity.
  • Non-Patent Document 1 kinase is a general term for enzymes that transfer (phosphorylate) a phosphate group from a molecule having a high-energy phosphate bond such as ATP to a substrate or a target molecule in biochemistry, and is also called a phosphorylating enzyme. ..
  • Non-Patent Document 2 There are no known constantly activated mutants of the other 9 isozymes or potent methods of stimulating activity, and therefore it was not possible to measure the intracellular activity of the other 9 isozymes.
  • a method for measuring intracellular lipid-metabolizing enzyme activity a procedure for introducing a lipid-metabolizing enzyme having a myristylated sequence into a cell, and intracellular phosphatidic acid. It was assumed that there was a procedure for measuring the amount of.
  • the lipid-metabolizing enzyme having a myristoylated sequence has one of the following base sequences (1) to (3).
  • the substance for measuring lipid-metabolizing enzyme activity is defined as containing a lipid-metabolizing enzyme having a myristoylated sequence.
  • the lipid-metabolizing enzyme having a myristoylated sequence has one of the following base sequences (1) to (3).
  • This method makes it possible to specifically measure the intracellular activity of 9 isozymes other than DGK ⁇ , which was not possible in the past.
  • diseases associated with the nine DGK isozymes eg, various cancers, epilepsy, compulsive disorders, bipolar disorders, autoimmune diseases, cancer immunity, cardiac hypertrophy, hypertension, diabetes, Parkinson's disease, Alzheimer's disease, etc.
  • DGK isozyme activity regulators When developing these therapeutic agents (DGK isozyme activity regulators), it is possible to evaluate the effect in cells, overcome the rate-determining stage of development, and greatly promote the progress of development.
  • DGK isozyme activity regulators is underway on a global scale and may be of interest to many pharmaceutical companies.
  • DGK isozymes are localized in the cytoplasm, but their substrate (diacylglycerol (DG)) is present in the cell membrane. Furthermore, the constantly activated mutants of DGK ⁇ , the wild-type, are localized in the cytoplasm.
  • a method for measuring lipid-metabolizing enzyme activity includes a procedure for introducing a lipid-metabolizing enzyme having a myristoylated sequence into a cell and a procedure for measuring the amount of phosphatidic acid in the cell. I made it.
  • the lipid-metabolizing enzyme having a myristoylated sequence has one of the following base sequences (1) to (3).
  • the substance for measuring lipid-metabolizing enzyme activity is assumed to contain a lipid-metabolizing enzyme having a myristoylated sequence.
  • the lipid-metabolizing enzyme having a myristoylated sequence has one of the following base sequences (1) to (3).
  • DGK Diacylglycerol kinase
  • Detection of the intracellular activity of the target enzyme is essential for drug screening in addition to the in vitro assay, but it is difficult to detect the intracellular activity of DGK ⁇ .
  • AcGFP-DGK ⁇ cDNA Myr-AcGFP-DGK ⁇ having an N-myristoylation sequence at the 5'end was generated, and the target DGK ⁇ was brought closer to the membrane.
  • DGK Diacylglycerol kinase
  • PA phosphatidic acid
  • DG is an activator of protein kinases Cs (PKCs), Unc-13, chimerin, and Ras guanyl nucleotide-releasing proteins.
  • PKCs protein kinases Cs
  • PA Ras guanyl nucleotide-releasing proteins
  • PA is a variety of mammalian targets such as rapamycin, atypical PKC, C-Raf, Ras GTPase activating protein, sevenless son (guanine nucleotide exchange factor), phosphatidin inositol-4-phosphate kinase. Regulates physiologically important enzymes. Therefore, DGK is known to balance the two lipid second messengers, DG and PA, and to be involved in a variety of physiological and pathological events.
  • Mammalian DGK is composed of 10 isozymes ( ⁇ - ⁇ ) and is divided into 5 groups according to their structural characteristics (types I ( ⁇ , ⁇ and ⁇ ), II ( ⁇ , ⁇ and ⁇ )). , III ( ⁇ ) IV ( ⁇ , ⁇ ), V ( ⁇ )) [1-4].
  • type IV DGK isozymes ( ⁇ , ⁇ ) have two C1 domains at the N-terminus, a MARCKS (myristoylated alanine-rich C-kinase substrate) domain at the C-terminus, four ankyrine repeats, and a PDZ domain. have.
  • DGK ⁇ is a multifunctional protein.
  • DGK ⁇ acts as an attenuator for T cell receptor (TCR) signaling and T cell activation. Therefore, DGK ⁇ -deficient T cells have an enhanced response to TCR stimulation in ex vivo and in vivo.
  • TCR T cell receptor
  • DGK ⁇ -specific inhibitors can be promising anti-cancer agents by activating TCR signaling and, as a result, activating cancer immunity.
  • DGK ⁇ deficiency has been reported to lead to diminished protection against obesity and insulin resistance.
  • DGK ⁇ is associated with insulin receptor substrate-1 and regulates GLUT-4 translocation in adipocytes.
  • DGK ⁇ regulates the leptin signaling pathway in the hypothalamus.
  • this isozyme promotes neurite outgrowth in NIE-115 neuroblastic cells.
  • DGK ⁇ produces 16: 0/16: 0-PA molecular species and promotes retinoic acid / serum starvation-induced neurite outgrowth in Neuro-2a neuroblastoma cells. Therefore, it is suggested that DGK ⁇ plays a role in the growth of neurites in the early and early stages of neural differentiation.
  • the DGK ⁇ -dependent conversion of DG to PA plays an important role in the maintenance of dendrites.
  • this isozyme suppresses cardiac hypertrophy induced by Gq protein-binding receptor agonists and regulates fiber size during skeletal muscle remodeling.
  • DGK ⁇ is recognized as an attractive drug target due to its physiological and pathological importance. Detection of intracellular activity of target enzymes is essential for drug screening in addition to in vitro assays. However, it is difficult to detect the intracellular activity of DGK ⁇ . DGK ⁇ is widely distributed in the nucleus and cytoplasm. In order to generate PA, it is necessary to transfer DGK ⁇ to the membrane. However, DGK ⁇ stimulation causes its exclusive membrane localization, the mechanism of which has not been elucidated. Since an active mutant of DGK ⁇ that lacks a negative regulatory domain and translocates to a substrate-bearing membrane can be generated, the inventors have already established its activity assay in cells. On the other hand, an active mutant of DGK ⁇ has not yet been established.
  • Myristoylation is thought to promote migration to the membrane. Therefore, in this study, in order to transfer the target DGK ⁇ to the membrane, AcGFP-DGK ⁇ cDNA (myristoylation (Myr-) AcGFP-DGK ⁇ ) having an N-myristoylation sequence of c-Src at the 5'end was generated.
  • Myr-AcGFP-DGK ⁇ and our recently established liquid chromatography (LC) -tandem mass spectrometry (MS / MS) DGK assay the inventor attempted to detect the activity of DGK ⁇ in the cell.
  • N-myristoylation sequence (5'-atggggagtagcaagagcaagcctaaggaccccagccagcgc- 3') (SEQ ID NO: 1) was inserted.
  • pMyr-AcGFP-DGK ⁇ which is a PCR fragment encoding DGK ⁇ cDNA (UniProt accession ID: DGK ⁇ Q13574-2)
  • p3 ⁇ FLAG-CMV-human DGK ⁇ [38] was converted into EcoR I- of the pMyr-AcGFP vector.
  • the inactive variant of DGK ⁇ (DGK ⁇ -KD) was generated by PCR-based site-directed mutagenesis (Gly-355 to Asp (G355D)).
  • COS-7 cells are subjected to 10% fetal bovine serum addition (Biological Industries, Beit-Haemek, Eagle), 100 units / ml penicillin, 100 ⁇ g / in air at 37 ° C containing 5% CO 2. It was maintained in Dulbecco's Modified Eagle Medium (Wako Pure Chemical Industries) containing ml streptomycin (Wako Pure Chemical Industries). Cells were transfected with PolyFect reagent (Qiagen) as described by the manufacturer.
  • fetal bovine serum addition Biological Industries, Beit-Haemek, Eagle
  • penicillin 100 ⁇ g / in air at 37 ° C containing 5% CO 2. It was maintained in Dulbecco's Modified Eagle Medium (Wako Pure Chemical Industries) containing ml streptomycin (Wako Pure Chemical Industries).
  • Cells were transfected with PolyFect reagent (Qiagen) as described by the manufacturer.
  • Cell fractionation COS-7 cells (60 mm dish) expressing AcGFP alone, AcGFP-DGK ⁇ , Myr-AcGFP-DGK ⁇ , and Myr-AcGFP-DGK ⁇ -KD are 500 ⁇ l ice-cold lysis buffer (50 mM HEPES, PH 7.2). , 150 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol, Complete TM EDTA suspended protease inhibitor (Roche Diagnostics (Rotnch), 1 tablet / 50 ml) and 1 mM phenylmethylsulfonyl fluoride. To remove cell debris.
  • the cell lysate was centrifuged at 350 g for 5 minutes at 4 ° C.
  • the obtained supernatant was centrifuged at 100,000 g for 1 hour at 4 ° C.
  • the supernatant and pellets were centrifuged by SDS-PAGE and western blotting. analyzed.
  • the sample was vortexed for 30 seconds. After incubating at room temperature for 30 minutes, 1 ml of water was added and vortexed for 30 seconds, then 1 ml of chloroform was added and vortexed for 30 seconds. To separate the phases, the sample was centrifuged at 1000 xg for 10 minutes. The lower phase containing the extracted lipid was transferred to a new vial. The lipid-containing solvent was dried under nitrogen gas and the extracted lipid was reconstituted with 100 ⁇ l chloroform / methanol (2: 1, v / v).
  • the extracted lipid (10 ⁇ l) was separated as described above by an LC system (Shimadzu Corporation) using a Unison UK-Silica column (3 ⁇ l, 150 ⁇ 2.0 mm 1.d., Imtakt). This LC system is controlled by Analyst software (AB SCIEX). Two gradients are used: Solvent A (chloroform / methanol (89:10) containing 0.28% ammonia) and Solvent B (chloroform / methanol / water (55:39: 5) containing 0.28% ammonia). is there. Gradient elution programs are 20% B for 5 minutes, 20% to 30% B for 10 minutes, 30% to 60% B for 25 minutes, 60% B for 5 minutes, 60% to 20% B for 1 minute, and so on. It was set to 20% B in 14 minutes. The outflow rate was 0.3 ml / min and chromatography was performed at 25 ° C.
  • the LC system is connected online with the Triple Quad TM 4500 (AB SCIEX, Framingham), a triple quadrupole tandem mass spectrometer with a turbospray ion source.
  • the experimental conditions are as follows. Ion spray voltage -4500 V, curtain gas -30 psi, collision gas 6 psi, temperature 300 ° C, decluster voltage -10 V, inlet potential -10 V, collision energy 42 V, collision cell outlet potential -11 V, ion source gas I 70 psi, ions Source gas II 30 psi.
  • PA molecular species were detected by multiple reaction monitoring (MRM). The ionized PA species ([MH] ⁇ ) were separated at the first quadrupole (Q1).
  • Each phospholipid species is represented in the form X: Y. Where X is the total number of carbon atoms and Y is the total number of double bonds of both acyl chains of the phospholipid.
  • the inactive mutant of DGK ⁇ (Mry-AcGFP-DGK ⁇ -KD) was also distributed in the cell membrane and the peripheral region of the nucleus (Fig. 6). Therefore, it was suggested that the induction of membrane localization is independent of the activity of DGK.
  • FIG. 3 shows the amount of PA molecular species in COS-7 cells overexpressing AcGFP alone, AcGFP-DGK ⁇ , and Myr-AcGFP-DGK ⁇ quantified by LC-MS / MS.
  • LC-MS / MS analysis revealed that Myr-AcGFP-DGK ⁇ significantly increased the production of PA molecular species (Fig. 3). Values are expressed as the mean ⁇ SD of four independent experiments. * p ⁇ 0.05, ** p ⁇ 0.01.
  • the leftmost bar is the amount of PA molecular species of AcGFP alone (vector)
  • the second bar from the left is the amount of PA molecular species of AcGFP-DGK ⁇
  • the third bar from the left is the amount of PA molecular species.
  • Myr-AcGFP-DGK ⁇ shows the amount of PA molecular species.
  • COS-7 cells were transfected with any of pAcGFP alone (vector), pAcGFP-DGK ⁇ , and pMyr-AcGFP-DGK ⁇ . Twenty-four hours after transfection, the cells were SDS-PAGEed and then Western blotting using an anti-GFP antibody, which is shown in FIG.
  • LC-MS the amount of major PA molecular species (30: 1-PA, 30: 0-PA) in COS-7 cells overexpressing AcGFP alone, Myr-AcGFP-DGK ⁇ , Myr-AcGFP-DGK ⁇ -KD
  • Figure 5 shows what was quantified by / MS. Values are expressed as the mean ⁇ SD of four independent experiments. * p ⁇ 0.05, ** p ⁇ 0.01.
  • the leftmost bar is the amount of PA molecular species of AcGFP alone (vector), the second bar from the left is the Myr-AcGFP-DGK ⁇ bar, and the third bar from the left is Myr-AcGFP-DGK ⁇ .
  • the results of LC-MS / MS of 30: 1-PA and 30: 0-PA with greatly increased expression in Myr-AcGFP-DGK ⁇ are shown (Fig. 5, Table 1).
  • the production of 30: 1-PA and 30: 0-PA molecular species increased significantly in Myr-AcGFP-DGK ⁇ , but the production of these PA molecular species did not increase in Myr-AcGFP-DGK ⁇ -KD. (Fig.
  • DGK ⁇ predominantly Neuro-2a
  • Myr-AcGFP-DGK ⁇ Proteins translocate to the membrane upon myristoylation, but DGK ⁇ may have randomly translocated to the membrane.
  • Myr-AcGFP-DGK ⁇ was widely distributed in the plasma membrane and the peripheral region of the nucleus (Fig. 6).
  • DGK ⁇ is partially localized to the plasma membrane during retinoic acid-induced cell differentiation.
  • insulin receptor and TCR stimulation induce plasma membrane localization of DGK ⁇ . Therefore, the random localization of Myr-AcGFP-DGK ⁇ to the membrane may cause the production of a wide range of PA molecular species.
  • This newly developed method has made it possible to analyze the activity of DGK ⁇ under more biological conditions (on the cell membrane) compared to the in vitro mixed micelle model. Therefore, this method helps in the selection of candidate compounds to be screened first in vitro for the development of drugs targeting DGK ⁇ . This is because it is necessary to detect the cellular activity of the target enzyme in addition to the in vitro assay in order to develop a good drug.
  • This new method is also applicable to other DGK isozymes.
  • Many isozymes are soluble (non-membrane bound) and are distributed in the cytosol and nucleus. Therefore, the DGK isozyme needs to be transferred from the cytosol to a substrate-rich membrane in order to make its activity easier to see.
  • DGK ⁇ Fig. 3
  • simply overexpressing other DGK isozymes would not show an increase in PA production. Therefore, membrane localization of DGK isozymes is applicable for the detection of their intracellular activity.
  • the experimental methods provided in this study are likely to be applicable to other lipid-metabolizing enzymes that are soluble or distributed in the cytosol.
  • the inventor has developed a new method for detecting intracellular DGK ⁇ activity. This new method will be useful for compound selection after early in vitro screening for the development of drugs targeting DGK ⁇ . In addition, this method would be applicable to a variety of soluble (non-membrane-bound) lipid-metabolizing enzymes, including other DGK isozymes.
  • the present invention can be industrially used as a method for measuring intracellular lipid-metabolizing enzyme activity and a substance for measuring intracellular lipid-metabolizing enzyme activity.

Abstract

DGKアイソザイムの種類によっては、細胞内の活性を測定することが困難であった。 ジアシルグリセロールキナーゼ活性測定法を、ミリストイル化配列を有するジアシルグリセロールキナーゼを細胞に導入する手順と、当該細胞内のホスファチジン酸の量を測定する手順を有するものとした。さらに、ミリストイル化配列を有するジアシルグリセロールキナーゼを、下記(1)~(3)のいずれか1つの塩基配列を有するものとした。 (1)配列番号1で表される塩基配列; (2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列; (3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。

Description

細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質
 本発明は、細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質に関するものである。
 薬を開発するには、in vitro(試験管内)での化合物の評価に加え、細胞内での対象酵素特異的な効果の検証が必須である。従来の、細胞内ジアシルグリセロールキナーゼ(脂質代謝酵素の一つ。以下「DGK」ということがある。)活性測定法は、液体クロマトグラフィー質量分析装置を用いた発明者らによるものが唯一である(非特許文献1)。ここで、キナーゼとは、生化学において、ATPなどの高エネルギーリン酸結合を有する分子からリン酸基を基質あるいはターゲット分子に転移する(リン酸化する)酵素の総称であり、リン酸化酵素とも呼ばれる。しかし、阻害化合物添加時のDGKアイソザイム特異的な活性の変動の測定に成功しているのは、DGKのαアイソザイムの常時活性化型変異体(N末側の活性制御(抑制)領域の欠損変異体)のみである(非特許文献2)。他の9種のアイソザイムの常時活性化型変異体や強力な活性刺激方法は知られておらず、従って、他の9種のアイソザイムの細胞内での活性測定は不可能であった。
Mizuno, S. et al. FEBS Open Bio, 2, 267-272 (2012) Liu, K. et al. Journal of Lipid Reserch., 57, 368-379 (2016)
 DGKアイソザイム特異的な活性を測定するには、DGKアイソザイムを過剰発現させた細胞での活性上昇がなければならない。そして、その上昇を化合物が阻害することで化合物の効果を測定する。しかし、これまで、過剰発現させた細胞での活性上昇があったのは、DGKαの常時活性化型変異体のみで、他のアイソザイムでは検出できていない。これは、他のアイソザイムでは、常時活性化することが出来ていなかったためである。
 上記課題を解決するために、本発明の一つの観点によれば、細胞内脂質代謝酵素活性測定法を、ミリストイル化配列を有する脂質代謝酵素を細胞に導入する手順と、当該細胞内のホスファチジン酸の量を測定する手順を有するものとした。
 上記測定法において、ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有すると望ましい。
(1)配列番号1で表される塩基配列;
(2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
(3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
 また、本発明の他の観点によれば、脂質代謝酵素活性測定用物質を、ミリストイル化配列を有する脂質代謝酵素を含有するものとした。
 上記脂質代謝酵素活性測定用物質において、ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有するものとすると望ましい。
(1)配列番号1で表される塩基配列;
(2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
(3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
 本法は、従来不可能であった、DGKα以外の9種のアイソザイムの細胞内での活性を特異的に測定することを可能にする。9種のDGKアイソザイムが関与する疾患は多々あり(例えば、種々の癌、癲癇、強迫性障害、双極性障害、自己免疫疾患、癌免疫、心臓肥大、高血圧、糖尿病、パーキンソン病、アルツハイマー病等)、これらの治療薬(DGKアイソザイムの活性制御剤)を開発する際に、細胞内での効果の評価が可能になり、開発の律速段階を克服し、開発の進行を大きく促進する。既に、複数の製薬企業が興味を示している。DGKアイソザイムの活性制御剤の開発は、世界規模で進んでおり、多くの製薬企業が興味を示す可能性がある。
本発明のジアシルグリセロールキナーゼ測定法の原理を示す図である。 COS-7細胞におけるAcGFP-DGKζとMyr-AcGFP-DGKζの発現量を示す図である。 COS-7細胞におけるAcGFP-DGKζとMyr-AcGFP-DGKζのPA分子種量への影響を示す図である。 COS-7細胞におけるMyr-AcGFP-DGKζとMyr-AcGFP-DGKζ-KDの発現量を示す図である。 COS-7細胞におけるMyr-AcGFP-DGKζとMyr-AcGFP-DGKζ-KDのPA分子種量への影響を示す図である。 COS-7細胞中のVector、DGKζ、Myr-DGKζ、Myr-DGKζ-KDの分布を示す図である。 超遠心分離を使用して細胞分画を行った結果を示す図である。
 以下、本発明の実施形態の例を説明するが、本発明の実施形態は以下に説明する実施形態の例に限定されるものではない。
 ミリストイル化(タンパク質へのミリスチン酸(疎水性のアンカー)付加)(図1)は、タンパク質を膜(疎水性)に移行させる。また、DGKアイソザイムは細胞質に局在しているが、それらの基質(ジアシルグリセロール(DG))は細胞の膜中に存在する。更に、DGKαの常時活性化型変異体は、野生型は、細胞質に局在する。そこで、DGKアイソザイムをミリストイル化することで、膜に移行させて常時活性化のような状態にして、DGKアイソザイムの活性を強制的に高め、そして、液体クロマトグラフィー質量分析装置を用いて活性を検出できると考えた(図1)。そして、実際に活性の増加を確かめ、従来の問題点を解決した。
 すなわち、本発明の一つの観点によれば、脂質代謝酵素活性測定法を、ミリストイル化配列を有する脂質代謝酵素を細胞に導入する手順と、当該細胞内のホスファチジン酸の量を測定する手順を有するものとした。
 上記測定法において、ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有すると望ましい。
(1)配列番号1で表される塩基配列;
(2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
(3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
 また、本発明の他の観点によれば、脂質代謝酵素活性測定用物質を、ミリストイル化配列を有する脂質代謝酵素を含有するものとした。
 上記脂質代謝酵素活性測定用物質において、ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有するものとすると望ましい。
(1)配列番号1で表される塩基配列;
(2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
(3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
1.要約
 ジアシルグリセロールキナーゼ(DGK)ζに特異的な阻害剤は、がん免疫を活性化させる有望な抗がん剤になり得る。標的酵素の細胞内活性の検出はin vitroアッセイに加えて薬物スクリーニングにとっても不可欠であるが、細胞内のDGKζの活性を検出することは困難である。本研究では、5’末端にN-ミリストイル化配列を持つAcGFP-DGKζ cDNA(Myr-AcGFP-DGKζ)を生成し、標的のDGKζを膜に近づけた。我々は、LC-MS/MSを使用して、ミリストイル化配列のないAcGFP-DGKζではなく、Myr-AcGFP-DGKζが、いくつかのホスファチジン酸(PA)分子種の産生量を増加させることを示した。Myr-AcGFP-DGKζとは対照的に、その不活性変異体はPA産生量の増加は示さなかった。このことは、PA産生量の増加はDGKの活性に依存することを示唆している。この方法は、DGKζを標的とした薬剤の開発のための化学物質の選択に役に立ち、また、他のDGKアイソザイムを含む様々な可溶性(非膜結合)脂質代謝酵素にも適用できる。
2.緒言
 ジアシルグリセロールキナーゼ(DGK)はジアシルグリセロール(DG)をリン酸化し、ホスファチジン酸(PA)に変換する。DGは、タンパク質キナーゼCs(PKCs)、Unc-13、キメリン、Rasグアニルヌクレオチド放出タンパク質の活性化因子である。一方で、PAは、哺乳類の標的であるラパマイシン、非定型PKC、C-Raf、Ras GTPase活性化タンパク質、セブンレスの息子(グアニンヌクレオチド交換因子)、ホスファチジンイノシトール-4-リン酸キナーゼのような様々な病態生理学的に重要な酵素を調整する。したがってDGKは、2つの脂質セカンドメッセンジャーであるDGとPAのバランスを調整し、様々な生理学的および病理学的な事象に関わっていることが知られている。
 哺乳類のDGKは10個のアイソザイム(α―κ)で構成され、それらの構造的特徴に応じて5つのグループに分けられる(タイプI(α、βおよびγ)、II(δ、ηおよびκ)、III(ε)IV(ζ、ι)、V(θ))[1-4]。触媒ドメインに加えて、タイプIVのDGKアイソザイム(ζ、ι)は、N末端に2つのC1ドメイン、C末端にMARCKS(ミリストイル化アラニンリッチC-キナーゼ基質)ドメイン、4つのアンキリンリピート、そしてPDZドメインを有している。
 中でもDGKζは多機能なタンパク質である。DGKα(タイプI)に加えてDGKζは、T細胞受容体(TCR)シグナル伝達およびT細胞活性化の減衰剤として作用する。したがって、DGKζ欠損T細胞はex vivoおよびin vivoにおいてTCR刺激の応答が亢進する。これらの結果は、DGKζ特異的な阻害剤はTCRシグナル伝達を活性化し、結果としてがん免疫を活性化することで有望な抗がん剤になり得ることを示唆している。DGKζの欠損は、肥満とインスリン抵抗性に対する保護能の減少につながることが報告されている。加えて、DGKζはインスリン受容体基質-1と関連し、脂肪細胞においてGLUT-4転位を調節する。さらに、DGKζの作用により、DG量が減少し、細胞増殖が減衰することが報告されている。DGKζは、視床下部においてレプチンシグナル伝達経路を調整する。さらに、このアイソザイムはNIE-115神経芽種細胞の神経突起伸長を促進する。近年、我々はDGKζが16:0/16:0-PA分子種を生成し、そして、Neuro-2a神経芽腫細胞においてレチノイン酸/血清飢餓誘発神経突起伸長を促進することを実証した。したがってDGKζは、神経分化の初期および初期段階での神経突起の成長において役割を果たすことが示唆されている。DGKζに依存したDGからPAへの変換は、樹状突起の維持に重要な役割を果たす。さらにこのアイソザイムは、Gqタンパク質結合受容体アゴニストによって誘発される心肥大を抑制し、骨格筋リモデリング中の繊維サイズを調整する。
 DGKζは生理学的および病理学的に重要であるため、魅力的な薬物ターゲットとして認識されている。標的酵素の細胞内活性の検出は、in vitroアッセイに加えて薬物スクリーニングにも不可欠である。しかし、DGKζの細胞内活性の検出は困難である。DGKζは核および細胞質に広く分布している。PAを生成するためには、DGKζを膜に移行させる必要がある。しかし、DGKζ刺激は、その排他的な膜局在を引き起こすが、そのメカニズムは解明されていない。負の調整ドメインを欠き、基質のある膜に移行するDGKαの活性変異体は生成することができるため、発明者らはすでに細胞でその活性アッセイを確立している。一方で、DGKζの活性変異体は未だ確立されていない。
 ミリストイル化は、膜への移行を促進すると考えられる。そこで本検討では、標的のDGKζを膜に移行させるために、5’末端にc-SrcのN-ミリストイル化配列を持つAcGFP-DGKζ cDNA(ミリストイル化(Myr-)AcGFP-DGKζ)を生成した。Myr-AcGFP-DGKζと我々が近年確立した液体クロマトグラフィー(LC)-タンデム質量分析(MS/MS)DGKアッセイを用いて、発明者は細胞内でのDGKζの活性の検出を試みた。
3.材料および手法
(1)Myr-AcGFP-DGKζのcDNAコンストラクト
 pMyr-AcGFPベクターを生成するために、pAcGFP-C1ベクター(タカラクロンテック)中のAcGFP翻訳開始部位にN-ミリストイル化シーケンス(5'-atggggagtagcaagagcaagcctaaggaccccagccagcgc-3')(配列番号1)を挿入した。DGKζ cDNA(UniProt accession ID:DGKζ Q13574-2)をコードするPCRフラグメントであるpMyr-AcGFP-DGKζを構成するために、p3×FLAG-CMV-human DGKζ[38]をpMyr-AcGFPベクターのEcoR I-Sal Iサイトに連結させた。DGKζの不活性型変異体(DGKζ-KD)はPCRに基づいた部位特異的変異誘発により生成した(Gly-355からAsp(G355D))。
4.細胞培養とトランスフェクション
 COS-7細胞は、5%CO2を含む37℃の大気中で、10%ウシ胎児血清添加(Biological Industries、Beit-Haemek、Israel)、100 units/ml ペニシリン、100 μg/ml ストレプトマイシン(和光純薬工業)を含むDulbecco’s Modified Eagle Medium(和光純薬工業)で維持した。細胞は、PolyFect 試薬(Qiagen)で製造元の説明通りにトランスフェクトした。
(1)ウエスタンブロッティング
 COS-7細胞溶解物(20μg)をSDS-ポリアクリルアミドゲルで電気泳動し分離した。ウエスタンブロッティングには、抗GFP(Santa Cruz Biotechnology)および抗マウスIgG抗体(Jackson ImmunoResearch Laboratories)を用いた。
(2)共焦点顕微鏡
 pAcGFP、pAcGFP-DGKζ、pMyr-AcGFP-DGKζ、pMyr-AcGFP-DGKζ-KDのトランスフェクションの24時間後、COS-7細胞を4%パラホルムアルデヒドで固定した。カバーガラスは、Vectashield(Vector Laboratories)で固定した。蛍光画像は、室温、60×1.35 NAオイルのUPLSAPOを搭載したOlympus FV1000-D(IX81)共焦点レーザー走査顕微鏡(オリンパス)を使用して取得した。AcGFP蛍光は488nmで励起された。画像はFV-10 ASWソフトウェア(オリンパス)を使用して取得した。
(3)細胞分画
 AcGFP alone、AcGFP-DGKζ、Myr-AcGFP-DGKζ、Myr-AcGFP-DGKζ-KDが発現したCOS-7細胞(60mmディッシュ)は、500μl氷冷溶解バッファー(50mM HEPES, PH 7.2, 150mM NaCl, 5mM MgCl2, 1mM ジチオスレイトール、 CompleteTMEDTA浮遊プロテアーゼ阻害剤(Roche Diagnostics(Rotkreuz),1錠/50 ml)と1mMフェニルメチルスルホニルフルオリドに溶解した。細胞片を除去するために、細胞溶解液を350gで5分間、4℃で遠心分離した。得られた上清は100,000 gで1時間、4℃の条件で遠心分離した。上清とペレットをSDS-PAGE、ウエスタンブロッティングで分析した。
(4)LC-MS/MS
 pMry-AcGFP、pMry-AcGFP-DGKζ、pMry-AcGFP-DGKζ-KDをトランスフェクションして24時間後、細胞をリン酸緩衝生理食塩水で回収した。Bligh and Dyer法により、細胞から全ての脂質を抽出した。簡単に言うと、サンプル700μlにメタノール2 ml、クルルホルム700 mlを加えた。100 ngの28:0-PA(Avanti Polar Lipids)を内部標準として加えた。酸性リン脂質の回収率を上げるために3M HCl 100μlをサンプルに加えた。HCl添加後、サンプルを30秒ボルテックスした。室温で30分間インキュベートした後、1 mlの水を加え30秒ボルテックス後、1 mlのクロロホルムを加え30秒間ボルテックスした。相を分離するために、サンプルを1000×gで10分間遠心分離した。抽出された脂質を含む下相を新しいバイアルに移した。脂質を含む溶媒を窒素ガス下で乾燥させ、抽出した脂質を、100 μlのクロロホルム/メタノール(2:1, v/v)で再構成した。抽出した脂質(10 μl)を、Unison UK-Silicaカラム(3μl, 150×2.0mm 1.d., Imtakt)を使用して、LCシステム(島津製作所)で、前述の通りに分離した。このLCシステムは、Analystソフトウェア(AB SCIEX)で制御している。用いる勾配は、溶媒A(0.28%のアンモニアを含む、クロロホルム/メタノール(89:10))、溶媒B(0.28%のアンモニアを含むクロロホルム/メタノール/水(55:39:5))の2つである。勾配溶出のプログラムは、5分間20%B、10分間で20%から30%B、25分間で30%から60%B、5分間で60%B、1分間で60%から20%B、続いて14分間で20%Bとした。流出割合は0.3 ml/minであり、クロマトグラフィーは25℃で行った。
 LCシステムは、ターボスプレーイオン化源を備えたトリプル四重極タンデム質量分析計、Triple QuadTM4500(AB SCIEX、Framingham)とオンラインで繋がれている。実験条件は次の通りである。イオンスプレー電圧―4500V、カーテンガスー30 psi、衝突ガス6psi、温度300℃、脱クラスター電圧―160 V、入口電位―10 V、衝突エネルギー42V、衝突セル出口電位―11V、イオン源ガスI 70psi、イオン源ガスII 30psi。PA分子種は複数反応モニタリング(MRM)で検出した。イオン化されたPA種([M-H])は、最初の四重極(Q1)で分離された。その後、産生したイオン(負のイオンモード中でm/z 153)は、衝突により誘発された解離によりQ2で断片化後、Q3で再選択された。各リン脂質種はX:Yの形で表される。ここで、Xは炭素原子の総数、Yはリン脂質の両方のアシル鎖の二重結合の総数である。
(5)統計分析
 データは平均±SDとして表し、one-way ANOVAで分析した。その後、多重比較のためPrism 8(GraphPad Software、カリフォルニア州サンディエゴ、米国)を用いてTurkey post hoc testで分析した。
(6)結果
(a)Myr-AcGFP-DGKζの細胞内局在
 発明者は初めに、COS-7細胞中に発現したMyr-AcGFP-DGKζの細胞内局在を、共焦点顕微鏡により確認した。ミリストイル化されていないAcGFP-DGKζは、細胞質、細胞核および核周囲領域に広く分布していた。しかし、Myr-AcGFP-DGKζは主に細胞膜と核周辺領域に局在していた(図6)。これらの結果は、DGKζミリストイル化が膜局在化を誘導することを示唆する。DGKζの不活性変異体(Mry-AcGFP-DGKζ-KD)も細胞膜と核周辺領域に分布していた(図6)。したがって、膜局在化の誘導は、DGKの活性に非依存的であることが示唆された。
 膜局在がミリストイル化に依存するか検証するために、発明者は次に、超遠心分離を使用して細胞分画を行った。AcGFP-DGKζは100,000g ppt(膜)画分で一部のみ(約60%)回収された(図7)。一方、Myr-AcGFP-DGKζとMyr-AcGFP-DGKζ-KDは100,000g ppt(膜)画分で完全に(100%)回収された(図7)。このことは、ミリストイル化がAcGFP-DGKζの膜局在化を独占的に誘発することを示唆する。
(b)細胞内のMyr-AcGFP-DGKζによるPA産生物の検出
 Myr-AcGFP-DGKζと、近年開発されたLC-MSに基づいたDGKアッセイを使用して、細胞内のDGKζ活性を測定した。pAcGFP alone(ベクター)、pAcGFP-DGKζ、pMyr-AcGFP-DGKζのいずれかをCOS-7細胞にトランスフェクションした。トランスフェクションした24時間後、その細胞をSDS-PAGEした後、抗GFP抗体を用いてウエスタンブロッティングしたものを図2に示す。発明者は、AcGFP-DGKζとMyr-AcGFP-DGKζの発現レベルがほぼ同じであることを確かめた(図2)。
 AcGFP alone、AcGFP-DGKζ、Myr-AcGFP-DGKζを過剰発現させたCOS-7細胞におけるPA分子種の量をLC-MS/MSで定量したものが図3である。LC-MS/MS分析により、Myr-AcGFP-DGKζがPA分子種の産生量を大幅に増加させることが分かった(図3)。値は4つの独立した実験の平均±SDで表す。*p<0.05、**p<0.01。図3において、一番左の棒は、AcGFP alone(ベクター)のPA分子種の量を、左から二番目の棒は、AcGFP-DGKζのPA分子種の量を、左から三番目の棒は、Myr-AcGFP-DGKζのPA分子種の量を示す。
 特に、30:1-PA(48%増加)、30:0-PA(50%増加)、32:3-PA(43%増加)、32:2-PA(45%増加)、32:1-PA(42%増加)、32:0-PA(33%増加)、38:6-PA(39%増加)、38:5-PA(39%増加)の産生量が、Myr-AcGFP-DGKζを発現させたCOS-7細胞において、ベクターのみを発現させた細胞と比較して有意に増加した(図3、表1)。しかしながら、ミリストイル化されていないAcGFP-DGKζはPA分子種の産生量に影響を及ぼさなかった(図3)。ここでは、DGKζの実験データを示しているが、DGKζ以外のDGKアイソザイムでもミリストイル化によりPAの産生量が増加する。ベクターのみを発現させた細胞のPA分子種は、de novo合成、ホスホリパーゼDによるホスファチジルコリンの加水分解、内在性DGKアイソザイムによるDGのリン酸化のような複数の経路から生成されると考えられる。
Figure JPOXMLDOC01-appb-T000001
 PA分子種の産生量の増加がDGKζの活性によるものかどうか確かめるために、発明者は続いてMyr-AcGFP-DGKζ-KD(不活性型。KDは、Kinase-deadの略。)の影響を確認した。pAcGFP alone(ベクター)、pAcGFP-DGKζ、pMyr-AcGFP-DGKζのいずれかをCOS-7細胞にトランスフェクションした。トランスフェクションした24時間後、その細胞をSDS-PAGEした後、抗GFP抗体を用いてウエスタンブロッティングしたものを図4に示す。Myr-AcGFP-DGKζ-KDの発現レベルはMyr-AcGFP-DGKζの発現レベルとほぼ同じであった(図4)。
 AcGFP alone、Myr-AcGFP-DGKζ、Myr-AcGFP-DGKζ-KDを過剰発現させたCOS-7細胞における主要なPA分子種(30:1-PA、30:0-PA)の量をLC-MS/MSで定量したものを図5に示す。値は4つの独立した実験の平均±SDで表す。*p<0.05、**p<0.01。一番左の棒は、AcGFP alone(ベクター)のPA分子種の量を、左から二番目の棒は、Myr-AcGFP-DGKζの棒を、左から三番目の棒は、Myr-AcGFP-DGKζ-KDのPA分子種の量を示す。Myr-AcGFP-DGKζでの発現が大きく増加した30:1-PA、30:0-PAのLC-MS/MSの結果を示した(図5、表1)。Myr-AcGFP-DGKζにおいて30:1-PA、30:0-PA分子種の産生量は大きく増加したが、これらのPA分子種の産生量はMyr-AcGFP-DGKζ-KDにおいては増加しなかった(図5)ため、PAの産生量の増加はDGKζ活性に依存していることが示唆される。これらの結果から、Myr-AcGFP-DGKζ発現COS-7細胞により引き起こされる、30:1-PA、30:0-PAなど個々のPA分子種の産生量の増加は、容易に検出できると言える。
(7)考察
 本検討で発明者は、細胞内のDGKζ活性を検出する新たな方法を提供した。これまで細胞内のDGK活性を検出することは困難であった。実際、ミリストイル化されていないDGKζは、個々のPA分子種の産生量の大きな増加は示さなかった(図3)。この難しさを克服するために我々は、ミリストイル化AcGFP-DGKζを生成した。ミリストイル化は、AcGFP-DGKζを、その基質が存在する細胞膜(図6)に移行させる。予測通り発明者は、30:1-PA、30:0-PAなどMyr-AcGFP-DGKζ活性由来のPA分子種の産生の検出に成功した(図3、表1)。以上より、Mry-AcGFP-DGKζは活性変異体として作用する可能性がある。
 ミリストイル化されていないAcGFP-DGKζは約60%が100,000g ppt(膜)画分で検出された(図7)のに対し、Myr-AcGFP-DGKζはほぼ100%が100,000g ppt画分で検出された。さらに共焦点顕微鏡により、ミリストイル化はDGKζの膜局在を強くすることを示した(図6)。以上より、ミリストイル化は確かに膜局在を強めると言える。AcGFP-DGKζの約半分は膜画分にあったが、PA分子種の有意な増加を誘発しなかった(図3)。したがって、AcGFP-DGKζは膜との相互作用が弱いため、そこにあるDGを効率的に利用することはできないと考えられる。
 以前発明者らは、DGKζが主にNeuro-2aで、レチノイン酸および血清飢餓に誘発された神経芽腫細胞分化中に、16:0/16:0-PAを生成することを報告した。本検討では、Myr-AcGFP-DGKζが発現した細胞で、幅広いPA分子種が増加することを示した(図3)。ミリストイル化するとタンパク質は膜に移行するが、DGKζはランダムに膜に移行した可能性がある。実際、Myr-AcGFP-DGKζは原形質膜および核周辺領域に広く分布していた(図6)。神経芽腫細胞においては、DGKζは、レチノイン酸誘導細胞分化中に部分的に原形質膜に局在する。さらに、インスリン受容体およびTCR刺激はDGKζの原形質膜局在を誘導する。したがって、Myr-AcGFP-DGKζのランダムな膜への局在は、幅広いPA分子種の産生を引き起こす可能性が考えられる。
 この新しく開発された方法により、in vitroの混合ミセルのモデルと比較して、より生物学的条件(細胞膜上で)でDGKζの活性を分析することが可能となった。したがってこの方法は、DGKζを標的とする薬物の開発のためのin vitroで最初にスクリーニングする候補化合物の選択に役立つ。なぜなら、優れた薬剤を開発するためには、in vitroアッセイに加えて標的酵素の細胞活性の検出が必要だからだ。
 現在、有用なDGKζ選択的阻害剤はない。また、市販されているDGK阻害剤、R59022およびR59949はDGKζを効果的に阻害できなかった。そのため発明者は、ツール化合物を使用した阻害剤アッセイに適したアッセイシステムを検証することができなかった。しかし発明者は、化学物質によって阻害される酵素と同等のMyr-AcGFP-DGKζ-KDの30:1-PA,30:0-PA分子種の産生量レベルが、Mry-AcGFP-DGKζのそれよりも優位に低いことを実証した(図5)。したがってこのシステムは化合物の選択に適切に適用できる可能性が高い。
 この新しいメソッドは、他のDGKアイソザイムにも適用可能である。多くのアイソザイムが可溶性(非膜結合)であり、サイトゾルおよび核に分布している。したがってDGKアイソザイムは、その活性を見やすくするためにサイトゾルから基質が多く存在する膜に移行する必要がある。DGKζがそうであったように(図3)、他のDGKアイソザイムも単に過剰発現させただけでは、PAの産生量の増加を示さないであろう。したがって、DGKアイソザイムの膜局在化は、それらの細胞内活性の検出に適用可能である。さらに本検討で提供した実験方法は、可溶性またはサイトゾルに分布する他の脂質代謝酵素にも適用できる可能性が高い。
 結論として、発明者は細胞内のDGKζ活性を検出する新たな方法を開発した。この新たな方法は、DGKζを標的とする薬剤の開発のための初期のin vitroスクリーニング後の化合物の選択に有用であろう。さらにこの方法は、他のDGKアイソザイムを含む、様々な可溶性(非膜結合)脂質代謝酵素に適用可能であろう。
 本発明は、細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質として産業上利用できる。

Claims (4)

  1.  ミリストイル化配列を有する脂質代謝酵素を細胞に導入する手順と、当該細胞内のホスファチジン酸の量を測定する手順と、を有する脂質代謝酵素活性測定法。
  2.  前記ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有することを特徴とする請求項1記載の脂質代謝酵素活性測定法;
    (1)配列番号1で表される塩基配列;
    (2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
    (3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
  3.  ミリストイル化配列を有する脂質代謝酵素を含有する可溶性脂質代謝酵素活性測定用物質。
  4.  前記ミリストイル化配列を有する脂質代謝酵素が、下記(1)~(3)のいずれか1つの塩基配列を有することを特徴とする請求項1記載の脂質代謝酵素活性測定用物質;
    (1)配列番号1で表される塩基配列;
    (2)配列番号1で表される塩基配列と90%以上の相同性を有する塩基配列;
    (3)配列番号1で表される塩基配列で表される塩基配列の5個以内の塩基が、欠失、置換及び/又は付加された塩基配列。
PCT/JP2020/034965 2019-10-24 2020-09-15 細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質 WO2021079656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554159A JPWO2021079656A1 (ja) 2019-10-24 2020-09-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-193837 2019-10-24
JP2019193837 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079656A1 true WO2021079656A1 (ja) 2021-04-29

Family

ID=75619782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034965 WO2021079656A1 (ja) 2019-10-24 2020-09-15 細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質

Country Status (2)

Country Link
JP (1) JPWO2021079656A1 (ja)
WO (1) WO2021079656A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503645A (ja) * 1993-07-16 1997-04-15 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リランド・スタンフォード・ジュニアー・ユニバーシティ 制御されたアポトーシス
JP2002512362A (ja) * 1998-04-17 2002-04-23 ライジェル・ファーマシューティカルズ・インコーポレイテッド 細胞パラメーターにおける変化を検出し、小分子ライブラリィをスクリーンするための複数パラメーターfacs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503645A (ja) * 1993-07-16 1997-04-15 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リランド・スタンフォード・ジュニアー・ユニバーシティ 制御されたアポトーシス
JP2002512362A (ja) * 1998-04-17 2002-04-23 ライジェル・ファーマシューティカルズ・インコーポレイテッド 細胞パラメーターにおける変化を検出し、小分子ライブラリィをスクリーンするための複数パラメーターfacs

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONDA, S. ET AL.: "Analytical Method for Diacylglycerol Kinase Activity in Cells Using Protein Myristoylation and Liquid Chromatography-Tandem Mass Spectrometry", LIPIDS, vol. 54, no. 11-12, 17 November 2019 (2019-11-17), pages 763 - 771, XP055819498 *
LIU, K. ET AL.: "A novel diacylglycerol kinase a-selective inhibitor, CU -3, induces cancer cell apoptosis and enhances immune response", J. LIPID RES., vol. 57, 2016, pages 368 - 379, XP055611402, DOI: 10.1194/jlr.M062794 *
MIZUNO, S. ET AL.: "Diacylglycerol kinase-dependent formation of phosphatidic acid molecular species during interleukin-2 activation in CTLL-2 T-lymphocytes", FEBS OPEN BIO, vol. 2, no. 1, 1 January 2012 (2012-01-01), pages 267 - 272, XP055819499 *
YAMADA, YOMU, SAKANE, FUMIO: "Application of ot-synuclein N-terminalregion to intracellular phosphatidic acid sensor", ABSTRACT OF ANNUAL MEETING OF THE 92ND JAPANESE BIOCHEMICAL SOCIETY, 4 September 2019 (2019-09-04), pages 260 *

Also Published As

Publication number Publication date
JPWO2021079656A1 (ja) 2021-04-29

Similar Documents

Publication Publication Date Title
Li et al. Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase
Gautier et al. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2
Li et al. IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner
Even-Faitelson et al. PAK1 and aPKCζ regulate myosin II-B phosphorylation: a novel signaling pathway regulating filament assembly
Graeser et al. Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells
Rosenberg et al. Protein kinase Cγ regulates myosin IIB phosphorylation, cellular localization, and filament assembly
JP2002543831A (ja) スフィンゴシンキナーゼ
Sridevi et al. Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing
Hamaguchi et al. In vivo screening for substrates of protein kinase A using a combination of proteomic approaches and pharmacological modulation of kinase activity
Blazejczyk et al. Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling
Orth-Alampour et al. Prevention of vascular calcification by the endogenous chromogranin A-derived mediator that inhibits osteogenic transdifferentiation
US20070148150A1 (en) MKK7 activation inhibitor
WO2021079656A1 (ja) 細胞内脂質代謝酵素活性測定法及び細胞内脂質代謝酵素活性測定用物質
Aschrafi et al. Ceramide induces translocation of protein kinase C-α to the Golgi compartment of human embryonic kidney cells by interacting with the C2 domain
Maeda et al. Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling
Borowski et al. A synthetic peptide derived from the non-structural protein 3 of hepatitis C virus serves as a specific substrate for PKC
JP2002539780A (ja) 酵 素
US6830916B2 (en) Sphingosine kinase, cloning, expression and methods of use
Klein et al. Mechanism of nuclear calcium signaling by inositol 1, 4, 5-trisphosphate produced in the nucleus, nuclear located protein kinase C and cyclic AMP-dependent protein kinase
KR20170057857A (ko) FCHo1 조절제를 포함하는 세포 분열 조절용 조성물 및 이를 이용한 세포 분열 조절 방법
Paranavitane et al. Structural determinants of LL5β subcellular localisation and association with filamin C
Keprova et al. Various AKIP1 Expression Levels Affect Its Subcellular Localization but Have no Effect on NF-κB Activation
US7252944B2 (en) Methods and compositions for modulating cell proliferation
Suresh et al. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease
Luhn et al. Identification of FAKTS as a novel 14‐3‐3‐associated nuclear protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880251

Country of ref document: EP

Kind code of ref document: A1