WO2021079612A1 - 偏光子、偏光子複合体、及び光学積層体 - Google Patents

偏光子、偏光子複合体、及び光学積層体 Download PDF

Info

Publication number
WO2021079612A1
WO2021079612A1 PCT/JP2020/032325 JP2020032325W WO2021079612A1 WO 2021079612 A1 WO2021079612 A1 WO 2021079612A1 JP 2020032325 W JP2020032325 W JP 2020032325W WO 2021079612 A1 WO2021079612 A1 WO 2021079612A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
region
curable resin
polarized
cured product
Prior art date
Application number
PCT/JP2020/032325
Other languages
English (en)
French (fr)
Inventor
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080074340.2A priority Critical patent/CN114616496A/zh
Priority to KR1020227013221A priority patent/KR20220086575A/ko
Publication of WO2021079612A1 publication Critical patent/WO2021079612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/1033Laminated safety glass or glazing containing temporary protective coatings or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation

Definitions

  • the present invention relates to a polarizer, a polarizer complex, and an optical laminate.
  • the polarizer is widely used as a polarization supply element in a display device such as a liquid crystal display device or an organic electroluminescence (EL) display device, and as a polarization detection element.
  • Display devices equipped with a polarizer have also been deployed in mobile devices such as notebook personal computers and mobile phones, and due to demands for diversification of display purposes, clarification of display categories, decoration, etc., the transmittance is high.
  • Polaritators with different regions are required.
  • a polarizer may be attached to the entire display surface in order to design the entire surface without boundaries from the viewpoint of decorativeness. In this case, since the polarizer may overlap the area of the camera lens and the area of the icon or logo printing at the bottom of the screen, there is a problem that the sensitivity of the camera is deteriorated or the design is inferior.
  • a low-concentration portion of a dichroic substance having a relatively low content of a dichroic substance is partially provided in a polarizer contained in a polarizing plate, and the low-concentration portion of the dichroic substance corresponds to the low-concentration portion of the dichroic substance. It is described that the camera is arranged so as not to adversely affect the camera performance.
  • Patent Document 1 the resin film is partially decolorized to form a low-concentration portion of the bicolor substance by subjecting the resin film containing the bicolor substance to a chemical treatment in which a basic solution is brought into contact with the resin film.
  • the basic solution used for decolorization requires labor and cost to be treated as a waste liquid.
  • Patent Document 1 describes that when iodine as a dichroic substance is used, the iodine content can be reduced and a low concentration portion of the dichroic substance can be formed by contacting with a basic solution. ing.
  • a specific method for forming a low-concentration portion of a dichroic substance when a dichroic substance other than iodine is used.
  • An object of the present invention is to provide a novel polarizer, a polarizer complex, and an optical laminate in place of a polarizer in which a region having a low content of a dichroic substance is formed by a chemical treatment such as decolorization.
  • the present invention provides the following polarizers, polarizer complexes, and optical laminates.
  • It has a polarized region and a non-polarized region surrounded by the polarized region in a plan view, and the thickness of the polarized region is 15 ⁇ m or less.
  • the non-polarized region is a region in which a cured product of an active energy ray-curable resin is provided in a through hole surrounded by the polarized region in a plan view.
  • the polarizer according to [1] wherein the thickness of the cured product is the same as the thickness of the polarizing region.
  • [3] The polarizer according to [1], wherein the thickness of the cured product is smaller than the thickness of the polarizing region.
  • a polarizer complex comprising the polarizer according to any one of [1] to [8] and a reinforcing material provided on at least one surface side of the polarizer.
  • the reinforcing material is a polarizer complex having a plurality of cells arranged so that each open end surface faces the surface of the polarizer.
  • the polarizer complex according to [9] wherein the shape of the opening of the cell is a polygonal shape, a circular shape, or an elliptical shape.
  • the polarizer complex according to [9] or [10] wherein a translucent filler is further provided in the internal space of the cell.
  • optical laminate having a protective layer on at least one side of the polarizer according to any one of [1] to [8] or the polarizer complex according to any one of [9] to [11]. .. [13]
  • the active energy ray-curable resin constituting the protective layer is the same active energy ray-curable resin as the active energy ray-curable resin constituting the cured product contained in the polarization region, [13].
  • (A) is a schematic plan view schematically showing an example of the polarizer of the present invention
  • (b) to (d) are zz'cross-sectional views of the polarizer shown in (a).
  • (A) and (b) are diagrams schematically showing an example of a cross section around a non-polarized region of a polarizer, and are for explaining a method of determining the thickness of a cured product provided in the non-polarized region. It is explanatory drawing.
  • (A) to (e) are schematic cross-sectional views schematically showing an example of the method for producing a polarizer of the present invention.
  • (A) is a schematic cross-sectional view schematically showing an example of the polarizer complex of the present invention
  • (b) is a schematic plan view of the polarizing element complex shown in (a) on the reinforcing material side.
  • (A) to (c) are schematic cross-sectional views schematically showing an example of the optical laminate of the present invention. It is the schematic sectional drawing which shows another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically. It is schematic cross-sectional view which shows still another example of the optical laminated body of this invention schematically.
  • ⁇ Polarizer> 1 (a) is a schematic plan view schematically showing an example of the polarizer of the present embodiment, and FIGS. 1 (b) to 1 (d) are z-z of the polarizer shown in FIG. 1 (a).
  • 'It is a cross-sectional view.
  • the polarizer 10 shown in FIGS. 1 (a) to 1 (d) has a polarized region 11 and a non-polarized region 12 surrounded by the polarized region 11 in a plan view.
  • the thickness of the polarized light region 11 is 15 ⁇ m or less.
  • curable resin (X) a cured product of an active energy ray-curable resin (hereinafter, may be referred to as “curable resin (X)”) is provided in a through hole 22 surrounded by the polarized region 11 in a plan view. Area.
  • the polarizer 10 has a non-polarized region 12 surrounded by a polarized region 11 in a plan view. Therefore, when the polarizer 10 is applied to a display device such as a liquid crystal display device or an organic EL display device developed in a smartphone, a tablet terminal, or the like, a camera lens, an icon, a logo, or the like is used in correspondence with the non-polarized region 12.
  • a display device such as a liquid crystal display device or an organic EL display device developed in a smartphone, a tablet terminal, or the like
  • a camera lens, an icon, a logo, or the like is used in correspondence with the non-polarized region 12.
  • the non-polarized region 12 can be solid. Since the polarizer 10 has a thin thickness of 15 ⁇ m or less, if a cured product of the curable resin (X) is not provided in the non-polarized region 12 and the through hole 22 is hollow, when it is applied to a display device, etc. There is a risk of problems such as cracks occurring around the through hole 22 due to shrinkage of the polarizer due to the temperature change exposed to the light. On the other hand, since the non-polarized region 12 can be made solid by providing the cured product of the curable resin (X) in the through hole 22 like the polarizer 10, the occurrence of the above-mentioned problems is suppressed. can do.
  • the arrangement of the polarized light region 11 and the non-polarized light region 12 in the polarizer 10 is not particularly limited as long as the polarized light region 11 is provided so as to surround the non-polarized light region 12.
  • the total area occupied by the polarized region 11 is preferably larger than the total area occupied by the non-polarized region 12.
  • the polarizer 10 may have one non-polarized region 12 and may have two or more non-polarized regions 12. When two or more non-polarized regions 12 are provided, the shapes of the non-polarized regions 12 may be the same or different from each other.
  • the polarizer 10 may be a single-wafered body, or may be a long body having a length that is wound into a roll shape during storage, transportation, or the like.
  • the planar shape and size of the polarizer 10 are not particularly limited, and are determined according to the size of the display device to which the polarizer 10 is applied.
  • the polarization region 11 of the polarizer 10 preferably exhibits absorption dichroism at wavelengths in the wavelength range of 380 nm to 780 nm.
  • the polarizer 10 has a property of absorbing linearly polarized light having a vibration plane parallel to its absorption axis and transmitting linearly polarized light having a vibration plane orthogonal to the absorption axis (parallel to the transmission axis). It can be obtained mainly by the polarization region 11.
  • the polarizing region 11 is a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, an ethylene / vinyl acetate copolymerization system partially saponified film, and two colors such as iodine and a dichroic dye.
  • Dichroic substances are adsorbed and oriented; dichroic substances are adsorbed and oriented on a polyene-based orientation film or liquid crystal compound oriented, such as a dehydrated product of polyvinyl alcohol or a dehydrogenated product of polyvinyl chloride. Things; etc. can be used.
  • Dyeing with iodine is performed, for example, by immersing a polyvinyl alcohol-based film in an aqueous iodine solution.
  • the draw ratio of uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment or while dyeing. Alternatively, it may be stretched and then dyed.
  • the polyvinyl alcohol-based film is subjected to swelling treatment, cross-linking treatment, cleaning treatment, drying treatment and the like, if necessary. For example, by immersing a polyvinyl alcohol-based film in water and washing it with water before dyeing, not only can the dirt on the surface of the polyvinyl alcohol-based film and the blocking inhibitor be washed, but also the polyvinyl alcohol-based film is swollen and dyed. It is possible to prevent unevenness and the like.
  • the stretching treatment, dyeing treatment, cross-linking treatment (boric acid treatment), washing treatment, and drying treatment of the polyvinyl alcohol-based resin film may be carried out according to, for example, the method described in Japanese Patent Application Laid-Open No. 2012-159778.
  • the polyvinyl alcohol-based resin layer to be the polarization region 11 is formed by coating the base film with the polyvinyl alcohol-based resin.
  • the base film used can also be used as the first support layer 25, which will be described later.
  • the polarization region 11 in which the dichroic dye is adsorbed and oriented on the oriented liquid crystal compound will be briefly described.
  • the polarization region 11 in this case is a liquid crystal compound as described in, for example, JP-A-2013-373353, JP-A-2013-33249, JP-A-2016-170368, JP-A-2017-83843, and the like.
  • the dichroic dye a dye having absorption in the wavelength range of 380 to 800 nm can be used, and it is preferable to use an organic dye. Examples of the dichroic dye include an azo compound.
  • the liquid crystal compound is a liquid crystal compound that can be polymerized while being oriented, and can have a polymerizable group in the molecule.
  • the cured film obtained by polymerizing such a liquid crystal compound may be formed on the base film, and in that case, the base film can also be used as the first support layer 25 described later.
  • the non-polarizing region 12 is formed by drilling to form the polarizer 10.
  • the polarizing film formed only in such a polarizing region 11 may be referred to as a raw material polarizer 20.
  • the luminous efficiency correction polarization degree (Py) of the polarized light region 11 is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
  • the simple substance transmittance (Ts) of the polarized light region 11 is usually less than 50% and may be 46% or less.
  • the simple substance transmittance (Ts) of the polarized light region 11 is preferably 39% or more, more preferably 39.5% or more, further preferably 40% or more, and particularly preferably 40.5% or more. ..
  • the simple substance transmittance (Ts) is a Y value measured in accordance with the JIS Z8701 2 degree field of view (C light source) and corrected for luminosity factor.
  • the thickness of the polarized light region 11 is 15 ⁇ m or less, 13 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, and usually 1 ⁇ m or more.
  • the thickness of the polarizing region 11 can be measured using, for example, a contact-type film thickness measuring device (MS-5C, manufactured by Nikon Corporation).
  • non-polarized light refers to light having no observable regularity in the electric field component. In other words, unpolarized light is random light in which no particular dominant specific polarization state is observed. Further, “partially polarized light” refers to light in an intermediate state between polarized light and unpolarized light, and means light in which at least one of linearly polarized light, circularly polarized light, and elliptically polarized light is mixed with non-polarized light.
  • the non-polarized region 12 in the polarizer 10 means that the light (transmitted light) transmitted through the non-polarized region 12 is unpolarized or partially polarized. In particular, a non-polarized region in which the transmitted light is non-polarized is preferable.
  • the non-polarized region 12 of the polarizer 10 is a region surrounded by the polarized region 11 in a plan view.
  • the non-polarized region 12 contains a cured product of the curable resin (X).
  • the non-polarizing region 12 is a curing of an active energy ray-curable resin composition containing a curable resin (X) described later in a through hole provided in a polarizer (raw material polarizer 20) formed only in the polarizing region 11. It is preferable that the object is provided.
  • the non-polarized region 12 has translucency.
  • the translucency refers to the property (transmittance) of transmitting 80% or more of visible light in the wavelength range of 400 nm to 700 nm, preferably 85% or more, and 90% or more. It is preferable, and more preferably 92% or more permeate.
  • the definition of "translucency” below and the preferable range of transmittance for visible light are the same as above.
  • the non-polarizing region 12 of the polarizer 10 Since the non-polarizing region 12 of the polarizer 10 has translucency, optical transparency can be ensured in the non-polarizing region 12. As a result, when the polarizer 10 is applied to the display device, by arranging a printing portion such as a camera lens, an icon, or a logo corresponding to the non-polarizing region 12, the sensitivity of the camera is lowered and the design is lowered. Can be suppressed.
  • the planar shape of the non-polarized region 12 is not particularly limited, but is circular; elliptical; oval; polygon such as triangle or quadrangle; rounded corners in which at least one corner of the polygon is rounded (shape having R). It can be a polygon or the like.
  • the diameter of the non-polarized region 12 is preferably 0.5 mm or more, and may be 1 mm or more, 2 mm or more, or 3 mm or more.
  • the diameter of the non-polarized region 12 is preferably 20 mm or less, may be 15 mm or less, may be 10 mm or less, or may be 7 mm or less.
  • the diameter of the non-polarized region 12 means the length of the longest straight line connecting arbitrary two points on the outer circumference of the non-polarized region 12.
  • the thickness of the cured product of the curable resin (X) provided in the non-polarized region 12 may be the same as the thickness of the polarized region 11 (FIG. 1 (b)), and is smaller than the thickness of the polarized region 11. It may be larger than the thickness of the polarized light region 11 (FIG. 1 (c)) (FIG. 1 (d)).
  • the cured product of the curable resin (X) provided in the non-polarized region 12 is preferably provided so as to fill the entire through hole 22.
  • the thickness of the cured product in the non-polarized region 12 is determined as follows. First, in the polarizer 10, it is assumed that the first plane including one surface of the polarization region 11 and the second plane including the other surface. Next, in the non-polarized region 12, the first position where the shortest distance between the surface of the cured product and the first plane on the one surface side is maximum, and the cured product on the other surface side. The second position, which is the position where the shortest distance between the surface and the second plane is maximized, is determined.
  • the total value (dm + dn + D) of the shortest distance (dm) at the first position, the shortest distance (dn) at the second position, and the distance (D) between the first plane and the second plane is set as the non-polarized region 12
  • FIG. 2 (a) and 2 (b) are diagrams schematically showing an example of a cross section around the non-polarized region of the polarizer, and explain a method of determining the thickness of the cured product provided in the non-polarized region. It is explanatory drawing for this.
  • a straight line indicated by a alternate long and short dash line in the non-polarized region 12 along one surface side of the polarized region 11 is a first plane 11 m.
  • the length of the straight line (FIG. 2). The position when "dm") in (a) is maximized is set as the first position.
  • the straight line indicated by the alternate long and short dash line in the non-polarized region 12 along the other surface side of the polarized region 11 is the second plane 11n.
  • the position when "dn") in (a) is maximized is defined as the second position.
  • the surface of the cured product provided in the non-polarizing region 12 is on the inner surface side of the first plane 11m and the second plane 11n in the thickness direction of the polarizer 10.
  • dm and dn When present on the polarizer 10 side), dm and dn shall be shown as negative values. Further, let D be the distance between the first plane 11m and the second plane 11n. Then, the thickness of the cured product provided in the non-polarized region 12 shown in FIG. 2A can be determined as D + dm + dn (where dm and dn are negative values).
  • the non-polarized region 12 is assumed by assuming the first plane 11m and the second plane 11n in the same manner as described above.
  • the thickness of the cured product provided in the above can be determined. Specifically, first, among the straight lines having the shortest distance, the straight line connecting an arbitrary point on the first plane 11 m and an arbitrary point on the surface of the cured product provided in the non-polarized region 12 is the straight line. The position when the length (“dm” in FIG. 2B) is maximized is set as the first position.
  • the length of the straight line ( The position when “dn”) in FIG. 2 (b) is maximized is defined as the second position.
  • the surface of the cured product provided in the non-polarizing region 12 is on the outer surface side (1st plane 11m) and the second plane 11n in the thickness direction of the polarizer 10.
  • dm and dn shall be shown as positive values.
  • the thickness of the cured product provided in the non-polarized region 12 shown in FIG. 2B can be determined as D + dm + dn (dm and dn are positive values).
  • the non-polarizing region 12 of the polarizer 10 is a region provided with a cured product of the active energy ray-curable resin (curable resin (X)), and preferably contains the curable resin (X). It is formed of an active energy ray-curable resin composition (hereinafter, may be referred to as "curable resin composition").
  • the curable resin (X) contained in the curable resin composition is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • the curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays.
  • the curable resin composition containing the curable resin (X) may be an active energy ray-curable adhesive, and in this case, an ultraviolet curable adhesive is more preferable.
  • the curable resin composition is preferably a solvent-free type.
  • the solvent-free type means that no solvent is positively added.
  • the solvent-free type curable resin composition is a curable resin contained in the curable resin composition.
  • the curable resin (X) preferably contains an epoxy compound.
  • the epoxy compound is a compound having one or more, preferably two or more epoxy groups in the molecule.
  • Examples of the epoxy compound include an alicyclic epoxy compound, an aliphatic epoxy compound, and a hydride epoxy compound (glycidyl ether of a polyol having an alicyclic ring).
  • the epoxy compound contained in the curable resin (X) may be one kind or two or more kinds.
  • the content of the epoxy compound is preferably 40% by weight or more, more preferably 50% by weight or more, and further preferably 60% by weight or more with respect to 100% by weight of the curable resin (X). preferable.
  • the content of the epoxy compound may be 100% by weight or less, 90% by weight or less, or even 80% by weight or less with respect to 100% by weight of the curable resin (X). However, it may be 75% by weight or less.
  • the epoxy equivalent of the epoxy compound is usually in the range of 40 to 3000 g / equivalent, preferably 50 to 1500 g / equivalent. If the epoxy equivalent exceeds 3000 g / equivalent, the compatibility with other components contained in the curable resin (X) may decrease.
  • the epoxy compound contained in the curable resin (X) preferably contains an alicyclic epoxy compound.
  • the alicyclic epoxy compound is an epoxy compound having one or more epoxy groups bonded to the alicyclic in the molecule.
  • the "epoxy group bonded to the alicyclic” means a bridging oxygen atom-O-in the structure represented by the following formula. In the following formula, m is an integer of 2 to 5.
  • a compound in which one or more hydrogen atoms in the (CH 2 ) m in the above formula are bonded to another chemical structure can be an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • alicyclic epoxy compounds that are preferably used will be specifically exemplified, but the present invention is not limited to these compounds.
  • R 8 and R 9 represent hydrogen atoms or linear alkyl groups having 1 to 5 carbon atoms independently of each other.
  • R 10 and R 11 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other, and n represents an integer of 2 to 20.
  • Epoxy cyclopentyl ethers represented by the following formula (XII): [In formula (XII), R 23 and R 24 represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms independently of each other. ]
  • Examples of the aliphatic epoxy compound include an aliphatic polyhydric alcohol or a polyglycidyl ether as an adduct thereof. More specifically, 1,4-butanediol diglycidyl ether; 1,6-hexanediol diglycidyl ether; glycerin triglycidyl ether; trimethylrol propane triglycidyl ether; polyethylene glycol diglycidyl ether; propylene Diglycidyl ether of glycol; Polyglycidyl of a polyether polyol obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to an aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol or glycerin. Examples include ether.
  • the hydrogenated epoxy compound is obtained by reacting epichlorohydrin with an alicyclic polyol obtained by hydrogenating the aromatic ring of an aromatic polyol.
  • aromatic polyol include bisphenol-type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolak-type resins such as phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, polyvinylphenol, and the like.
  • Polyfunctional compounds of Among the hydrogenated epoxy compounds, the diglycidyl ether of hydrogenated bisphenol A can be mentioned.
  • the curable resin (X) may contain a (meth) acrylic compound or the like together with an active energy ray-curable compound such as an epoxy compound.
  • an active energy ray-curable compound such as an epoxy compound.
  • the curable resin composition containing the curable resin (X) preferably contains a polymerization initiator.
  • the polymerization initiator include cationic polymerization agents such as photocationic polymerization agents and radical polymerization initiators.
  • the photocationic polymerization initiator generates a cationic species or Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy group.
  • the curable resin (X) is preferably an ultraviolet curable resin that is cured by irradiation with ultraviolet rays, and the curable resin (X) preferably contains an alicyclic epoxy compound.
  • the polymerization initiator is preferably one that generates a cationic species or a Lewis acid by irradiation with ultraviolet rays.
  • the curable resin composition further comprises a photosensitizer, a polymerization accelerator, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow conditioner, a plasticizer, and a defoamer. It can contain additives such as agents, antistatic agents, and leveling agents.
  • (Manufacturing method of polarizer) 3 (a) to 3 (e) are schematic cross-sectional views schematically showing an example of the method for manufacturing a polarizer according to the present embodiment.
  • 3 (a) to 3 (e) show the case where the polarizer 10 shown in FIG. 1 (b) is obtained, but the polarizer 10 shown in FIGS. 1 (c) and 1 (d) will also be described below. It can be manufactured by the method.
  • the polarizer 10 can be manufactured, for example, by using a raw material polarizer 20 having the same luminous efficiency correction degree of polarization (Py) as a whole and not having a non-polarizing region 12.
  • the thickness of the raw material polarizer 20 is preferably 15 ⁇ m or less, which is the same thickness as the polarizing region 11 of the polarizer 10.
  • the polarizer 10 can be manufactured, for example, in the following process.
  • a first laminated body 31 provided with a first support layer 25 detachable from the raw material polarizer 20 on one surface of the raw material polarizer 20 is prepared.
  • a through hole 32 penetrating in the stacking direction is formed in the prepared first laminated body 31 by punching, cutting, cutting, laser cutting, or the like (FIG. 3B).
  • a perforated polarizing element 21 in which a through hole 22 is formed in the raw material polarizing element 20 is obtained.
  • the second support layer 26 is detachably provided on the perforated polarizer 21 side of the first laminated body 31 in which the through hole 32 is formed (FIG. 3 (c)), and then the first support layer 25 is peeled off. (Fig. 3 (d)).
  • a second laminated body 33 in which the second support layer 26 and the perforated polarizing element 21 are laminated is obtained (FIG. 3 (d)).
  • the second support layer 26 is provided so as to close one side of the through hole 22 of the perforated polarizing element 21.
  • the through hole 22 of the perforated polarizing element 21 of the second laminated body 33 is filled with a curable resin composition containing a curable resin (X), and the through hole 22 is irradiated with an active energy ray.
  • the curable resin (X) is cured.
  • a cured product of the curable resin (X) is formed in the through hole 22 of the perforated polarizing element 21, and the polarizing element 10 laminated on the second support layer 26 is obtained (FIG. 3 (e)).
  • the second support layer 26 may be peeled off.
  • the region other than the through hole 22 of the perforated polarizer 21 is the polarized region 11, and the region of the through hole 22 provided with the cured product is the non-polarized region 12.
  • the method of filling the through hole 22 of the perforated polarizing element 21 with the curable resin composition is not particularly limited.
  • the curable resin composition may be injected into the through hole 22 of the perforated polarizing element 21 of the second laminated body 33 by using a dispenser or a dispenser, or the perforated polarizing element 21 of the second laminated body 33 may be injected.
  • the curable resin composition may be filled in the through hole 22 of the perforated polarizing element 21 while coating the curable resin composition on the surface of the.
  • the cured product layer of the curable resin composition coated on the surface of the perforated polarizing element 21 can be a protective layer described later.
  • a base film When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating.
  • the base film may be used as a protective layer described later, and in this case, the cured product layer of the curable resin (X) may be a bonding layer for bonding the protective layer described later.
  • the base film may be peeled off after the curable resin (X) contained in the curable resin composition is cured.
  • the first support layer 25 may be the support layer used in the production of the raw material polarizer 20, or the above-mentioned base film used for coating the curable resin composition may be used. Alternatively, it may be a peelable support layer attached to the raw material polarizer 20 by a volatile liquid such as water, or an adhesive sheet that can be peeled off from the raw material polarizer 20.
  • the second support layer 26 may be a peelable support layer bonded to the perforated polarizing element 21 by a volatile liquid such as water, and is an adhesive sheet that can be peeled off from the perforated polarizing element 21. You may.
  • the thickness of the raw material polarizer 20 is 15 ⁇ m or less
  • the depth of the through hole 22 provided in the perforated polarizer 21 can also be 15 ⁇ m or less.
  • the through hole 22 of the perforated polarizing element 21 is filled with the curable resin composition, and the curable resin (X) contained in the curable resin composition filled in the through hole 22 is cured in a short time. Since it can be performed with, it is possible to suppress a decrease in workability.
  • the raw material polarizer 20 is not significantly deteriorated by the active energy rays irradiated to cure the curable resin (X) in the curable resin composition filled in the through hole 22.
  • a raw material polarizer 20 is, for example, a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film, or a film in which the dichroic dye is oriented in a cured layer of a polymerizable liquid crystal compound. , These manufacturing methods are as described in the above-mentioned polarization region 11.
  • FIG. 4A is a schematic cross-sectional view schematically showing an example of the polarizer complex of the present embodiment
  • FIG. 4B is a schematic plan view of the polarizer complex on the reinforcing material side.
  • the non-polarized region 12 of the polarizer 10 is shown by a wavy line.
  • the polarizer complex 41 shown in FIG. 4A has a polarizer 10 and a reinforcing member 50 provided on one surface side of the polarizer 10.
  • the reinforcing material 50 may be provided on both sides of the polarizer 10.
  • the reinforcing member 50 has a plurality of cells 51 arranged so that each open end surface faces the surface of the polarizer 10.
  • the cell 51 has a hollow columnar (cylindrical) structure surrounded by a cell partition wall 53 for partitioning the cell 51, and has an open end surface in which both ends in the axial direction of the columnar structure are open.
  • the reinforcing member 50 is preferably provided so that the cell 51 exists in the non-polarized region 12 of the polarizer 10 and the region corresponding to the periphery thereof. It is more preferable to provide the cell 51 so as to be present on the entire surface of the polarizer 10.
  • the polarizer 10 Since the polarizer 10 has a non-polarized region 12, it is considered that cracks are likely to occur around the non-polarized region 12 due to the contraction of the polarizer 10 due to a temperature change received when applied to a display device or the like. Further, since the polarizing element 10 has a thin polarization region 11 of 15 ⁇ m or less, it is considered that cracks are likely to occur when it receives an impact. In the polarizer complex 41, since the reinforcing material 50 is provided on one side of the polarizer 10 as described above, cracks occur when a temperature change or impact is applied, and fine cracks progress to large cracks. It is thought that this can be suppressed.
  • the polarizer complex 41 shown in FIG. 4 (a) has the polarizer 10 and the reinforcing material 50 shown in FIG. 1 (b), respectively, but is not limited thereto.
  • the polarizer 10 included in the polarizer complex 41 may be the polarizer 10 shown in FIGS. 1 (c) or 1 (d).
  • the reinforcing material 50 is applied to a display device or the like together with the polarizer 10. If the internal space of the cell 51 of the reinforcing material 50 is hollow, the visibility of the display device may decrease due to a difference in the refractive index between the cell partition wall 53 and the internal space of the cell 51. Therefore, it is preferable that a translucent filler is provided in the internal space of the cell 51 of the reinforcing material 50 in the polarizer complex 41. In the reinforcing material 50 of the polarizer complex 41, when a gap is provided between the plurality of cells 51 as described later, it is preferable that a translucent filler is also provided in the gap.
  • the filler that may be provided in the reinforcing material 50 is not particularly limited as long as it has translucency and can fill the internal space of the cell 51 of the reinforcing material 50.
  • the filler is preferably a material different from the material constituting the cell partition wall 53 of the reinforcing material 50, and more preferably contains a resin material.
  • the resin material include one or more selected from the group consisting of curable resins such as thermoplastic resins, thermosetting resins and active energy ray-curable resins, and are adhesives or adhesives. May be good.
  • thermoplastic resin examples include polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.) and cyclic polyolefin resins (norbornene resins, etc.); cellulose ester resins such as triacetyl cellulose and diacetyl cellulose; polyethylene terephthalates, Polyester resins such as polyethylene naphthalate and polybutylene terephthalate; polycarbonate resins; (meth) acrylic resins; polystyrene resins; polyether resins; polyurethane resins; polyamide resins; polyimide resins; fluororesins, etc. Can be mentioned.
  • polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.) and cyclic polyolefin resins (norbornene resins, etc.)
  • cellulose ester resins such as triacetyl cellulose and diacetyl cellulose
  • curable resin examples include the above-mentioned curable resin (X).
  • the pressure-sensitive adhesive exhibits adhesiveness by sticking itself to an adherend, and is a so-called pressure-sensitive adhesive.
  • the pressure-sensitive adhesive include those containing a polymer such as a (meth) acrylic polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, a polyether polymer, or a rubber polymer as a main component.
  • the main component means a component containing 50% by mass or more of the total solid content of the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive may be an active energy ray-curable type or a thermosetting type, and the degree of cross-linking and adhesive strength may be adjusted by irradiation with active energy rays or heating.
  • the adhesive contains a curable resin component and is an adhesive other than a pressure-sensitive adhesive (adhesive).
  • the adhesive include an aqueous adhesive in which a curable resin component is dissolved or dispersed in water, an active energy ray-curable adhesive containing an active energy ray-curable compound, and a thermosetting adhesive.
  • an aqueous adhesive widely used in the technical field of polarizing plates can also be used.
  • the resin component contained in the water-based adhesive include polyvinyl alcohol-based resin and urethane-based resin.
  • the active energy ray-curable adhesive include compositions that are cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • a curable resin composition containing the above-mentioned curable resin (X) may be used.
  • the thermosetting adhesive include those containing an epoxy resin, a silicone resin, a phenol resin, a melamine resin, or the like as a main component.
  • the cell 51 included in the reinforcing member 50 has a hollow columnar (cylindrical) structure surrounded by the cell partition wall 53 that partitions the cell 51, and the open end surface of the columnar structure in which both ends in the axial direction are open. It is the one that has become.
  • the cell 51 has, as an opening end face, a first opening end face arranged on a side in which the distance between the polarizer complex 41 and the polarizer 10 is relatively short, and a second opening end face arranged on a relatively distant side. Has.
  • the reinforcing material 50 may be arranged so that at least one of the first open end face and the second open end face faces the polarizer 10, and both the first open end face and the second open end face are polarized. It is preferable that they are arranged so as to face the child 10.
  • the shape of the opening of the cell 51 of the reinforcing material 50 is not particularly limited, but it is preferably polygonal, circular, or elliptical.
  • the shape of the opening on the first opening end face and the shape of the opening on the second opening end face are preferably the same shape of the same size, but may be different shapes, and the same shape and size may be used. It may be different. Further, the shapes of the openings of the plurality of cells included in the reinforcing member 50 may be the same as each other or may be different from each other.
  • the plurality of cells 51 included in the reinforcing member 50 are arranged so that the openings of the cells 51 are adjacent to each other in the plan view of the opening end surface.
  • the plurality of cells 51 are arranged so that the cells 51 are arranged without gaps in the plan view of the opening end face, for example, when the shape of the opening of the cell 51 shown in FIG. 4B is a hexagon or the like. You may be doing it.
  • the plurality of cells 51 are in contact with a part of the cell partition wall 53 of the plurality of cells 51 as in the case where the shape of the opening of the cell 51 is circular or the like in the plan view of the opening end face, and the plurality of cells are present. It may be arranged so as to be arranged with a gap between 51.
  • the reinforcing member 50 has a hexagonal opening shape in both the first opening end face and the second opening end face, and the opening is formed in the plane direction of the polarizer complex 41. It is preferable to have a honeycomb structure in which a plurality of cells are arranged so as to be adjacent to each other and arranged without gaps.
  • the size of the opening of the cell 51 of the reinforcing material 50 is not particularly limited, but it is preferable to have a diameter smaller than the diameter of the non-polarized region 12.
  • the diameter of the cell is preferably 3 mm or less, may be 2 mm or less, may be 1 mm or less, and is usually 0.1 mm or more, and may be 0.5 mm or more.
  • the diameter of the opening of the cell 51 refers to the length of the longest straight line connecting arbitrary two points on the outer circumference of the opening.
  • the height of the cell 51 of the reinforcing material 50 (the length in the direction orthogonal to the opening end surface of the cell 51) is usually 0.1 ⁇ m or more, may be 0.5 ⁇ m or more, or may be 1 ⁇ m or more. It may be 3 ⁇ m or more, usually 15 ⁇ m or less, 13 ⁇ m or less, or 10 ⁇ m or less.
  • the cell partition wall 53 that partitions the cell 51 of the reinforcing material 50 preferably has translucency.
  • the line width of the cell partition wall 53 of the reinforcing material 50 is, for example, 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, 1 mm or more, and also. It is usually 5 mm or less, and may be 3 mm or less.
  • the cell partition wall 53 of the reinforcing material 50 can be formed of, for example, a resin material or an inorganic oxide, and is preferably formed of a resin material.
  • the resin material include a thermoplastic resin, a thermosetting resin, a curable resin such as an active energy ray-curable resin, and the like.
  • the resin material include the above-mentioned curable resin (X); the thermoplastic resin exemplified as the thermoplastic resin used for the above-mentioned filler.
  • the inorganic oxide include silicon oxide (SiO 2 ) and aluminum oxide.
  • the two reinforcing members 50 may be the same as each other (the shape and size of the cell 51 are the same) or may be different from each other.
  • the openings of the cells 51 of the two reinforcing members 50 provided on both sides of the polarizer 10 may be arranged so as to overlap each other in the plan view, but are preferably arranged so as to be offset from each other in the plan view. ..
  • the polarizer complex 41 shown in FIG. 4A can be manufactured by forming a reinforcing material 50 on the polarizer 10.
  • the reinforcing material 50 can be obtained, for example, by forming a cell partition wall 53 for partitioning the cell 51 on the surface of the polarizer 10 using a resin material or an inorganic oxide.
  • the method for forming the cell partition wall 53 using a resin material is not particularly limited, and examples thereof include printing methods such as inkjet printing, screen printing, and gravure printing; photolithography methods; coating methods using nozzles, dies, and the like. Be done.
  • a resin composition obtained by mixing a resin material with a solvent, an additive, or the like may be used.
  • the additive include a leveling agent, an antioxidant, a plasticizer, a tackifier, an organic or inorganic filler, a pigment, an antioxidant, an ultraviolet absorber, an antioxidant and the like.
  • the cell partition wall 53 may be formed by subjecting the printed or coated resin composition to a treatment for solidification or curing, if necessary.
  • the method for forming the cell partition wall 53 using an inorganic oxide is not particularly limited, but it can be formed, for example, by depositing an inorganic oxide.
  • the reinforcing material 50 of the polarizer complex 41 has a filler
  • the reinforcing material 50 formed in the polarizer 10 is filled with the material constituting the filler in the internal space of the cell 51 and the gap between the cells 51. do it.
  • the material constituting the filler may be filled, for example, by coating on the reinforcing material 50.
  • a pressure-sensitive adhesive is used as a material constituting the filler
  • a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer provided on the release film may be attached to fill the pressure-sensitive adhesive.
  • ⁇ Optical laminate> 5 to 8 are schematic cross-sectional views schematically showing an example of the optical laminate of the present embodiment.
  • the optical laminate has a protective layer on one side or both sides of the polarizer 10 shown in FIGS. 1 (b) to 1 (d) and the polarizer complex 41 shown in FIG. 4 (a).
  • the optical laminate 42 shown in FIGS. 5A to 5C includes a polarizing element 10 shown in any of FIGS. 1B to 1D and a protective layer 17 provided on one side of the polarizing element 10.
  • the protective layer 17 is a cured product layer of a curable resin (X) provided directly on the polarizing element 10.
  • the curable resin (X) constituting the protective layer 17 which is a cured product layer is not particularly limited as long as it is a resin that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays. Examples thereof include the curable resin (X) described above.
  • the protective layer 17 may be a cured product layer of a curable resin composition containing the same curable resin (X) as the curable resin (X) constituting the cured product contained in the non-polarized region 12 of the polarizer 10. preferable.
  • the protective layer 17 When the protective layer 17 is a cured product layer of the same curable resin (X) as the curable resin (X) constituting the cured product of the polarizer 10, the protective layer 17 covers at least the non-polarized region 12 of the polarizer 10. It is preferable to do so.
  • the protective layer 17 may cover at least a part of one side of the polarizer 10, but it is preferable to cover the entire surface of one side of the polarizer 10.
  • one side of the polarizer 10 is coated with a curable resin composition and irradiated with active energy rays to obtain a curable resin (X) contained in the curable resin composition. ) Is cured.
  • the protective layer 17 which is a cured product layer of the curable resin (X) may be formed on the polarizing element 10 to obtain the optical laminate 42.
  • the through hole 22 of the perforated polarizer 21 is curable.
  • the resin composition is filled, and a coating layer of the curable resin composition is also formed on the surface of the perforated polarizing element 21.
  • the curable resin (X) contained in the curable resin composition in the through hole 22 and on the surface of the perforated polarizer 21 is cured, and the cured product and the cured product layer are formed.
  • a certain protective layer 17 may be formed to obtain an optical laminate 42.
  • the cured product contained in the non-polarized region 12 and the cured product layer constituting the protective layer 17 can be integrated, and the curable resin (X) constituting the protective layer 17 is the non-polarized region 12. It can be the same curable resin (X) as the curable resin (X) constituting the cured product contained in.
  • the protective layer 17 which is a cured product layer in order to manufacture the optical laminate 42 shown in FIGS. 5 (b) and 5 (c)
  • the protective layer 17 may be provided so as to fill the thickness difference between the polarized region 11 and the non-polarized region 12 of the polarizer 10. Specifically, when the optical laminate 42 shown in FIG. 5 (b) is obtained, the thickness of the polarizing element 10 shown in FIG. 1 (c) is smaller than the thickness of the polarized region 11 in the non-polarized region 12.
  • a protective layer 17 is provided by coating a curable resin (X) on the side (the upper surface side of FIG.
  • the protective layer 17 is also provided on the surface of the non-polarized region 12, but the surface of the non-polarized region 12 is not covered, and only the surface of the polarized region 11 is covered.
  • the protective layer 17 may be provided as described above.
  • a base film When coating the curable resin composition, a base film may be provided so as to cover the surface of the coating layer formed by the coating.
  • the base film may be used as the protective layer 17, and the cured product layer of the curable resin (X) may be used as the bonding layer for bonding the protective layer 17 to the polarizer 10.
  • the base film may be peeled off after the curable resin (X) is cured.
  • FIG. 6 is a schematic cross-sectional view schematically showing another example of the optical laminate of the present embodiment.
  • the optical laminate 43 shown in FIG. 6 includes an optical laminate 42 (FIG. 5 (a)) having a protective layer 17 of a cured product layer of a curable resin (X) on one side of the polarizing element 10, and an optical laminate 42. It has a reinforcing material 50 provided on the side of the polarizer 10 of the above. The reinforcing material 50 may also be provided on the protective layer 17 side of the optical laminate 42 shown in FIG. 5 (a).
  • the reinforcing material 50 is as described in the above-mentioned polarizer complex 41.
  • the optical laminate 43 shown in FIG. 6 can be obtained, for example, by forming the reinforcing material 50 on the optical laminate 42 shown in FIG. 5 (a) by the above method.
  • the reinforcing member 50 may be formed on the polarizers 10 shown in FIGS. 1 (b) to 1 (d) by the above method, and then the protective layer 17 may be formed by the above method to obtain the optical laminate 43. ..
  • the optical laminate 44 shown in FIG. 7 has protective layers 17 and 18 on both side surfaces of the polarizing element 10 shown in FIG. 1 (b).
  • the optical laminate 44 may have a protective layer 17 (or 18) only on one side of the polarizer 10.
  • the polarizer 10 included in the optical laminate 44 may be the polarizer 10 shown in FIGS. 1 (c) or 1 (d).
  • the protective layers 17 and 18 can be provided on the polarizer 10 via a bonding layer such as an adhesive layer or an adhesive layer. In this case, for example, a film-like protective layer may be laminated on the polarizer 10 via a bonding layer.
  • the protective layers 17 and 18 may be provided so as to be in direct contact with the polarizer 10 without interposing a bonding layer.
  • a composition containing a resin material constituting the protective layers 17 and 18 may be applied onto the polarizer 10 and the coated layers may be solidified or cured to form the protective layers 17 and 18. it can.
  • One of the protective layers 17 and 18 may be a protective layer provided via a bonding layer, and the other may be a protective layer provided without a bonding layer.
  • the protective layers 17 and 18 included in the optical laminate 44 may be the same as each other or may be different from each other.
  • the optical laminate 44 When the optical laminate 44 is provided with protective layers 17 and 18 on the polarizing element 10 shown in FIG. 1 (c) or (d) via a bonding layer, it is not different from the polarizing region 11 of the polarizing element 10. It is preferable to provide the bonding layers 17 and 18 so as to fill the thickness difference with the polarized light region 12.
  • the optical laminate 44 is provided with the protective layers 17 and 18 so as to be in direct contact with the polarizer 10 shown in FIGS. 1 (c) or 1 (d), the polarized region 11 of the polarizer 10 and the unpolarized light are not polarized. It is preferable to form the protective layers 17 and 18 by providing a composition containing the resin material constituting the protective layers 17 and 18 so as to fill the thickness difference with the region 12.
  • the optical laminate 45 shown in FIG. 8 has protective layers 17 and 18 on both side surfaces of the polarizer complex 41 shown in FIG. 4 (a).
  • the optical laminate 45 may have a protective layer 17 (or 18) only on one side of the polarizer complex 41.
  • the protective layers 17 and 18 can be provided on the polarizer complex 41 via a bonding layer such as an adhesive layer or an adhesive layer. In this case, for example, a film-like protective layer may be laminated on the polarizer complex 41 via a bonding layer.
  • the protective layer 18 provided on the reinforcing material 50 side of the polarizer complex 41 is provided with, for example, a bonding layer so as to fill the internal space of the cell 51 of the reinforcing material 50, the gap between the plurality of cells 51, and the like.
  • the protective layer may be laminated.
  • FIG. 8 the case where the reinforcing material is provided on one surface of the polarizer 10 is shown, but the reinforcing member 50 may be provided on both surfaces of the polarizing element 10.
  • the protective layers 17 and 18 may be provided so as to be in direct contact with the polarizer complex 41 without passing through the bonding layer.
  • a composition containing a resin material constituting the protective layer 17 is applied onto the polarizer 10 of the polarizer complex 41, and this coating is applied. It can be formed by solidifying or hardening the layer.
  • the protective layer 18 provided on the reinforcing material 50 side of the polarizer complex 41 is a resin constituting the protective layer 18 so as to fill the internal space of the cells 51 of the reinforcing material 50, the gaps between the plurality of cells 51, and the like.
  • a composition containing the material may be provided and the protective layer 18 may be filled to form the composition.
  • One of the protective layers 17 and 18 may be a protective layer provided via a bonded layer, and the other may be a protective layer provided without a bonded layer.
  • the protective layers 17 and 18 included in the optical laminate 44 may be the same as each other or may be different from each other.
  • the protective layers 17 and 18 are preferably resin layers that can transmit light, and may be a resin film or a coating layer formed by applying a composition containing a resin material.
  • the resin used for the resin layer is preferably a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking property, isotropic property, stretchability and the like.
  • the thermoplastic resin include the thermoplastic resin constituting the base film that may be used in the production of the raw material polarizer 20 described above.
  • the resin compositions of the protective layers 17 and 18 may be the same or different from each other.
  • the thicknesses of the protective layers 17 and 18 are usually 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, 80 ⁇ m or less, and 60 ⁇ m or less. You may.
  • the thickness of the protective layers 17 and 18 is usually 5 ⁇ m or more, may be 10 ⁇ m or more, or may be 20 ⁇ m or more.
  • the protective layers 17 and 18 may or may not have a phase difference. When the optical laminates 42 to 45 have the protective layers 17 and 18 on both sides, the thicknesses of the protective layers 17 and 18 may be the same or different from each other.
  • the bonding layer is an adhesive layer or an adhesive layer.
  • Examples of the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer and the adhesive for forming the adhesive layer include the pressure-sensitive adhesive and the adhesive used for forming the above-mentioned filler.
  • the polarizer composite 41, and the optical laminates 42 to 45 there is a thickness difference between the polarized region 11 and the non-polarized region 12 as in the polarizer 10 shown in FIGS. 1 (c) or 1 (d).
  • a laminating layer for an optical display element it is preferable to provide a laminating layer for an optical display element so as to fill this thickness difference.
  • the bonding layer for the optical display element when the bonding layer for the optical display element is provided on the surface of the reinforcing material 50, the bonding layer for the optical display element is configured as the filler provided in the reinforcing material 50.
  • the filling material may be filled in the internal space of the cell 51 of the reinforcing material 50 and the bonding layer for the optical display element may be formed at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

偏光子は、偏光領域と、平面視において偏光領域に囲まれた非偏光領域とを有する。偏光領域の厚みは15μm以下である。非偏光領域は、平面視において偏光領域に囲まれた貫通穴に、活性エネルギー線硬化性樹脂の硬化物が設けられた領域である。

Description

偏光子、偏光子複合体、及び光学積層体
 本発明は、偏光子、偏光子複合体、及び光学積層体に関する。
 偏光子は、液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等の表示装置における偏光の供給素子として、また偏光の検出素子として広く用いられている。偏光子を備えた表示装置は、ノート型パーソナルコンピュータや携帯電話等のモバイル機器にも展開されており、表示目的の多様化、表示区分の明確化、装飾化等への要求から、透過率の異なる領域を有する偏光子が要求されている。特にスマートフォンやタブレット型端末に代表される中小型の携帯端末においては、装飾性の観点から全面にわたって境目のないデザインとするため、表示面全面に偏光子を貼り合わせることがある。この場合、カメラレンズの領域、画面下のアイコン又はロゴ印刷の領域にも偏光子が重なることがあるため、カメラの感度が悪くなったり、意匠性に劣ったりするという問題がある。
 例えば特許文献1には、偏光板に含まれる偏光子に二色性物質の含有量が相対的に低い二色性物質低濃度部を部分的に設け、この二色性物質低濃度部に対応させてカメラを配置することにより、カメラ性能に悪影響を与えないようにすることが記載されている。
特開2015-215609号公報
 特許文献1では、二色性物質を含む樹脂フィルムに塩基性溶液を接触させるという化学処理を施すことにより、樹脂フィルムを部分的に脱色して二色性物質低濃度部を形成している。脱色のために用いた塩基性溶液は、廃液として処理するために手間やコストを要する。また、特許文献1には、二色性物質としてのヨウ素を用いた場合に塩基性溶液を接触させることにより、ヨウ素の含有量を低減して二色性物質低濃度部を形成できることが記載されている。しかしながら、ヨウ素以外の二色性物質を用いた場合に二色性物質低濃度部を形成する具体的な方法については開示がない。
 本発明は、脱色等の化学処理によって二色性物質の含有量の少ない領域を形成した偏光子に代わる、新規な偏光子、偏光子複合体、及び光学積層体の提供を目的とする。
 本発明は、以下の偏光子、偏光子複合体、及び光学積層体を提供する。
 〔1〕 偏光領域と、平面視において前記偏光領域に囲まれた非偏光領域と、を有し、 前記偏光領域の厚みは、15μm以下であり、
 前記非偏光領域は、平面視において前記偏光領域に囲まれた貫通穴に、活性エネルギー線硬化性樹脂の硬化物が設けられた領域である、偏光子。
 〔2〕 前記硬化物の厚みは、前記偏光領域の厚みと同じである、〔1〕に記載の偏光子。
 〔3〕 前記硬化物の厚みは、前記偏光領域の厚みよりも小さい、〔1〕に記載の偏光子。
 〔4〕 前記硬化物の厚みは、前記偏光領域の厚みよりも大きい、〔1〕に記載の偏光子。
 〔5〕 前記非偏光領域は、透光性を有する、〔1〕~〔4〕のいずれかに記載の偏光子。
 〔6〕 前記非偏光領域の平面視における径は、0.5mm以上20mm以下である、〔1〕~〔5〕のいずれかに記載の偏光子。
 〔7〕 前記活性エネルギー線硬化性樹脂は、エポキシ化合物を含む、〔1〕~〔6〕のいずれかに記載の偏光子。
 〔8〕 前記エポキシ化合物は、脂環式エポキシ化合物を含む、〔7〕に記載の偏光子。
 〔9〕 〔1〕~〔8〕のいずれかに記載の偏光子と、前記偏光子の少なくとも一方の面側に設けられた補強材と、を有する偏光子複合体であって、
 前記補強材は、各開口端面が前記偏光子の面に対向するように配列した複数のセルを有する、偏光子複合体。
 〔10〕 前記セルの前記開口の形状は、多角形状、円形状、又は楕円形状である、〔9〕に記載の偏光子複合体。
 〔11〕 さらに、前記セルの内部空間に透光性の充填材が設けられている、〔9〕又は〔10〕に記載偏光子複合体。
 〔12〕 〔1〕~〔8〕のいずれかに記載の偏光子、又は〔9〕~〔11〕のいずれかに記載の偏光子複合体の少なくとも片面側に保護層を有する、光学積層体。
 〔13〕 前記保護層は、前記偏光子上に設けられた活性エネルギー線硬化性樹脂の硬化物層である、〔12〕に記載の光学積層体。
 〔14〕 前記保護層を構成する活性エネルギー線硬化性樹脂は、前記偏光領域に含まれる前記硬化物を構成する活性エネルギー線硬化性樹脂と同じ活性エネルギー線硬化性樹脂である、〔13〕に記載の光学積層体。
 本発明によれば、新規な偏光子、偏光子複合体、及び光学積層体を提供することができる。
(a)は、本発明の偏光子の一例を模式的に示す概略平面図であり、(b)~(d)は、(a)に示す偏光子のz-z’断面図である。 (a)及び(b)は、偏光子の非偏光領域周辺の断面の一例を模式的に示す図であって、非偏光領域に設けられた硬化物の厚みを決定する方法を説明するための説明図である。 (a)~(e)は、本発明の偏光子の製造方法の一例を模式的に示す概略断面図である。 (a)は、本発明の偏光子複合体の一例を模式的に示す概略断面図であり、(b)は、(a)に示す偏光子複合体の補強材側の概略平面図である。 (a)~(c)は、本発明の光学積層体の一例を模式的に示す概略断面図である。 本発明の光学積層体の他の一例を模式的に示す概略断面図である。 本発明の光学積層体のさらに他の一例を模式的に示す概略断面図である。 本発明の光学積層体のさらに他の一例を模式的に示す概略断面図である。
 以下、図面を参照して本発明の偏光子、偏光子複合体、及び光学積層体の好ましい実施形態について説明する。以下のすべての図面においては、各構成要素を理解しやすくするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。
 <偏光子>
 図1(a)は、本実施形態の偏光子の一例を模式的に示す概略平面図であり、図1(b)~(d)は、図1(a)に示す偏光子のz-z’断面図である。図1(a)~(d)に示す偏光子10は、偏光領域11と、平面視において偏光領域11に囲まれた非偏光領域12とを有する。偏光領域11の厚みは、15μm以下である。非偏光領域12は、平面視において、偏光領域11に囲まれた貫通穴22に、活性エネルギー線硬化性樹脂(以下、「硬化性樹脂(X)」ということがある。)の硬化物が設けられた領域である。
 偏光子10では、図1(a)に示すように、平面視において偏光領域11に囲まれた非偏光領域12を有する。そのため、偏光子10をスマートフォンやタブレット型端末等に展開される液晶表示装置や有機EL表示装置等の表示装置に適用する際に、非偏光領域12に対応させて、カメラレンズ、アイコン又はロゴ等の印刷部を配置することにより、カメラの感度の低下及び意匠性の低下を抑制することができる。
 偏光子10では、貫通穴22に硬化性樹脂(X)の硬化物が設けられているため、非偏光領域12を中実とすることができる。偏光子10は厚みが15μm以下と薄いため、非偏光領域12に硬化性樹脂(X)の硬化物が設けられておらず貫通穴22が中空の状態であると、表示装置に適用した際等に曝される温度変化に伴う偏光子の収縮によって貫通穴22の周辺にクラックが発生したりする等の不具合を生じる虞がある。これに対し、偏光子10のように、貫通穴22に硬化性樹脂(X)の硬化物が設けられることによって非偏光領域12を中実とすることができるため、上記の不具合の発生を抑制することができる。
 偏光子10における偏光領域11及び非偏光領域12の配置は、偏光領域11が非偏光領域12を取り囲むように設けられていれば特に限定されない。偏光子10の平面視において、偏光領域11が占有する総面積は、非偏光領域12が占有する総面積よりも大きいことが好ましい。偏光子10は、非偏光領域12を1つ有していればよく、非偏光領域12を2つ以上有していてもよい。非偏光領域12を2つ以上有する場合、それぞれの非偏光領域12の形状は互いに同じであってもよく、互いに異なっていてもよい。
 偏光子10は、枚葉体であってもよく、保管時や輸送時等に巻回されてロール形状とされる長さを有する長尺体であってもよい。偏光子10の平面形状及び大きさは、特に限定されず、偏光子10を適用する表示装置の大きさに応じて定められる。
 (偏光領域)
 偏光子10の偏光領域11は、好ましくは波長380nm~780nmの範囲の波長において吸収二色性を示す。偏光子10は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有するが、この性質は主に偏光領域11によって得ることができる。
 偏光領域11は、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質が吸着・配向されたもの;ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等、ポリエン系配向フィルムや液晶化合物を配向させたものに二色性物質が吸着・配向されたもの;等を用いることができる。その中でも、光学特性に優れたものとして、ポリビニルアルコール系フィルムをヨウ素で染色し、一軸延伸して得られたものを用いることが好ましい。
 まず、好ましい偏光領域11となる、ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸して得られたものについて、簡単にその製造方法を説明する。
 ヨウ素による染色は、例えば、ポリビニルアルコール系フィルムをヨウ素水溶液に浸漬することにより行われる。一軸延伸の延伸倍率は、3~7倍であることが好ましい。延伸は、染色処理後に行ってもよく、染色しながら行ってもよい。また、延伸してから染色してもよい。
 ポリビニルアルコール系フィルムには、必要に応じて、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗することで、ポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させて染色ムラ等を防止することができる。
 ポリビニルアルコール系樹脂フィルムの延伸処理、染色処理、架橋処理(ホウ酸処理)、水洗処理、乾燥処理は、例えば、特開2012-159778号公報に記載されている方法に準じて行ってもよい。この文献記載の方法では、基材フィルムへのポリビニルアルコール系樹脂のコーティングにより、偏光領域11となるポリビニルアルコール系樹脂層を形成する。この際、用いた基材フィルムは、後述する第1支持層25として用いることもできる。
 続いて、液晶化合物を配向させたものに二色性色素が吸着・配向してなる偏光領域11について簡単に説明する。この場合の偏光領域11としては、例えば特開2013-37353号公報、特開2013-33249号公報、特開2016-170368号公報特開2017-83843号公報等に記載されるように、液晶化合物が重合した硬化膜中に、二色性色素が配向したものを使用してもよい。二色性色素としては、波長380~800nmの範囲内に吸収を有するものを用いることができ、有機染料を用いることが好ましい。二色性色素として、例えば、アゾ化合物が挙げられる。液晶化合物は、配向したまま重合することができる液晶化合物であり、分子内に重合性基を有することができる。このような液晶化合物が重合した硬化膜は、基材フィルム上に形成されていてもよく、その場合は、上記基材フィルムは、後述する第1支持層25として用いることもできる。
 上記のようにして偏光領域11に用いられる偏光フィルムを作製した後に、穴あけ加工により非偏光領域12を形成して偏光子10を形成することも好ましい。本明細書では、このような偏光領域11のみで形成された偏光フィルムを原料偏光子20ということがある。
 偏光領域11の視感度補正偏光度(Py)は、好ましくは80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上であり、特に好ましくは99%以上である。偏光領域11の単体透過率(Ts)は、通常50%未満であり、46%以下であってもよい。偏光領域11の単体透過率(Ts)は、好ましくは39%以上であり、より好ましくは39.5%以上であり、さらに好ましくは40%以上であり、特に好ましくは40.5%以上である。
 単体透過率(Ts)は、JIS Z8701の2度視野(C光源)に準拠して測定して視感度補正を行ったY値である。視感度補正偏光度(Py)は、例えば、紫外可視分光光度計(日本分光株式会社製、製品名:V7100)を用いて測定することができ、視感度補正を行った平行透過率Tp及び直交透過率Tcに基づいて、下記式により求められる。
  Py[%]={(Tp-Tc)/(Tp+Tc)}1/2×100
 偏光領域11の厚みは、15μm以下であり、13μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、通常1μm以上である。偏光領域11の厚みが上記範囲を超えると、非偏光領域12に、後述する硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物を設けるための作業性が低下しやすい。また、偏光領域11が上記範囲未満である場合、所望の光学特性を得ることが難しくなる。偏光領域11の厚みは、例えば接触式膜厚測定装置(MS-5C、株式会社ニコン製)を用いて測定することができる。
 (非偏光領域)
 一般的に「非偏光」とは、電界成分に観測し得る規則性がない光を指す。換言すると、非偏光とは、優位な特定の偏光状態が観測されないランダムな光である。また、「部分偏光」とは、偏光と非偏光との中間の状態にある光を指し、直線偏光、円偏光及び楕円偏光の少なくとも1つと非偏光とが交じり合った光を意味する。偏光子10における非偏光領域12とは、当該非偏光領域12を透過する光(透過光)が、非偏光又は部分偏光となることを意味するものである。特に、透過光が非偏光である非偏光領域が好ましい。
 偏光子10の非偏光領域12は、平面視において偏光領域11に囲まれた領域である。
非偏光領域12は、硬化性樹脂(X)の硬化物を含む。非偏光領域12は、偏光領域11のみで形成された偏光子(原料偏光子20)に設けられた貫通穴に、後述する硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物の硬化物を設けたものであることが好ましい。非偏光領域12は透光性を有する。本明細書において、透光性とは波長400nm~700nmの範囲の可視光が80%以上透過する性質(透過率)をいい、85%以上透過するものが好ましく、90%以上透過するものがより好ましく、92%以上透過するものがさらに好ましい。以下における「透光性」の定義及び可視光に対する透過率の好ましい範囲も上記と同じである。
 偏光子10の非偏光領域12が透光性を有することにより、非偏光領域12において光学的な透明性を確保することができる。これにより、偏光子10を表示装置に適用する際に、非偏光領域12に対応させて、カメラレンズ、アイコン又はロゴ等の印刷部を配置することにより、カメラの感度の低下や意匠性の低下を抑制することができる。
 非偏光領域12の平面形状は特に限定されないが、円形;楕円形;小判形;三角形や四角形等の多角形;多角形の少なくとも1つの角が角丸(Rを有する形状)とされた角丸多角形等とすることができる。
 非偏光領域12の径は、0.5mm以上であることが好ましく、1mm以上であってもよく、2mm以上であってもよく、3mm以上であってもよい。非偏光領域12の径は、20mm以下であることが好ましく、15mm以下であってもよく、10mm以下であってもよく、7mm以下であってもよい。非偏光領域12の径とは、当該非偏光領域12の外周の任意の二点を結ぶ直線のうち最も長さが長い直線における長さをいう。
 非偏光領域12に設けられた硬化性樹脂(X)の硬化物の厚みは、偏光領域11の厚みと同じであってもよく(図1(b))、偏光領域11の厚みよりも小さくてもよく(図1(c))、偏光領域11の厚みよりも大きくてもよい(図1(d))。非偏光領域12に設けられた硬化性樹脂(X)の硬化物は、貫通穴22全体を埋めるように設けられていることが好ましい。
 非偏光領域12の硬化物の厚みは、次のようにして決定する。まず、偏光子10において、偏光領域11の一方の表面を含む第1平面と他方の表面を含む第2平面とを仮定する。次に、非偏光領域12において、上記一方の表面側における硬化物の表面と第1平面とがなす最短距離が最大となる位置である第1位置、及び、上記他方の表面側における硬化物の表面と第2平面とがなす最短距離が最大となる位置である第2位置を決定する。そして、第1位置における最短距離(dm)、第2位置における最短距離(dn)、及び、第1平面と第2平面との距離(D)を合計した値(dm+dn+D)を、非偏光領域12の硬化物の厚みとする。
 非偏光領域12に設けられた硬化物の厚みと偏光領域11の厚みとが異なる場合の厚みの決定方法について、図2に基づいて具体的に説明する。図2(a)及び(b)は、偏光子の非偏光領域周辺の断面の一例を模式的に示す図であって、非偏光領域に設けられた硬化物の厚みを決定する方法を説明するための説明図である。
 図2(a)に示すように非偏光領域12に硬化物が設けられている場合、偏光領域11の一方の表面側に沿って非偏光領域12にある一点鎖線で示す直線を第1平面11mと仮定する。この第1平面11m上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図2(a)中の「dm」)が最大となるときの位置を第1位置とする。次に、図2(a)に示すように、偏光領域11の他方の表面側に沿って非偏光領域12にある一点鎖線で示す直線を第2平面11nと仮定する。この第2平面11n上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図2(a)中の「dn」)が最大となるときの位置を第2位置とする。ここで、図2(a)に示すように、非偏光領域12に設けられている硬化物の表面が、偏光子10の厚み方向において、第1平面11m及び第2平面11nよりも内面側(偏光子10側)に存在する場合、dm及びdnは負の値として示すものとする。また、第1平面11mと第2平面11nとの間の距離をDとする。そうすると、図2(a)に示す非偏光領域12に設けられている硬化物の厚みは、D+dm+dn(dm及びdnは負の値)として決定することができる。
 また、図2(b)に示すように非偏光領域12に硬化物が設けられている場合についても上記と同様に、第1平面11m及び第2平面11nを仮定することにより、非偏光領域12に設けられている硬化物の厚みを決定することができる。具体的には、まず、第1平面11m上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図2(b)中の「dm」)が最大となるときの位置を第1位置とする。次に、第2平面11n上の任意の点と、非偏光領域12に設けられた硬化物の表面上の任意の点とを結ぶ直線が最短距離となる直線のうち、当該直線の長さ(図2(b)中の「dn」)が最大となるときの位置を第2位置とする。
ここで、図2(b)に示すように、非偏光領域12に設けられている硬化物の表面が、偏光子10の厚み方向において、第1平面11m及び第2平面11nよりも外面側(偏光子10とは反対側)に存在する場合、dm及びdnは正の値として示すものとする。そうすると、図2(b)に示す非偏光領域12に設けられている硬化物の厚みは、D+dm+dn(dm及びdnは正の値)として決定することができる。
 (活性エネルギー線硬化性樹脂組成物(硬化性樹脂組成物))
 偏光子10における非偏光領域12は上記のとおり、活性エネルギー線硬化性樹脂(硬化性樹脂(X))の硬化物が設けられた領域であり、好ましくは、当該硬化性樹脂(X)を含む活性エネルギー線硬化性樹脂組成物(以下、「硬化性樹脂組成物」ということがある。)により形成される。硬化性樹脂組成物に含まれる硬化性樹脂(X)は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化するものである。硬化性樹脂(X)は、紫外線の照射によって硬化する紫外線硬化性樹脂であることが好ましい。硬化性樹脂(X)を含む硬化性樹脂組成物は、活性エネルギー線硬化型の接着剤であってもよく、この場合、紫外線硬化型の接着剤であることがより好ましい。
 硬化性樹脂組成物は無溶剤型であることが好ましい。無溶剤型とは、積極的には溶剤を添加していないことをいい、具体的には、無溶剤型の硬化性樹脂組成物とは、当該硬化性樹脂組成物に含まれる硬化性樹脂(X)100重量%に対して溶剤の含有量が5重量%以下であることをいう。
 硬化性樹脂(X)は、エポキシ化合物を含むことが好ましい。エポキシ化合物とは、分子内に1個以上、好ましくは2個以上のエポキシ基を有する化合物である。エポキシ化合物としては、脂環式エポキシ化合物、脂肪族エポキシ化合物、水素化エポキシ化合物(脂環式環を有するポリオールのグリシジルエーテル)等を挙げることができる。硬化性樹脂(X)に含まれるエポキシ化合物は、1種であってもよく、2種以上であってもよい。
 エポキシ化合物の含有量は、硬化性樹脂(X)100重量%に対して、40重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上であることがさらに好ましい。エポキシ化合物の含有量は、硬化性樹脂(X)100重量%に対して、100重量%以下であればよく、90重量%以下であってもよく、さらには80重量%以下であってもよいし、75重量%以下であってもよい。
 エポキシ化合物のエポキシ当量は通常、40~3000g/当量、好ましくは50~1500g/当量の範囲内である。エポキシ当量が3000g/当量を超えると、硬化性樹脂(X)に含有される他の成分との相溶性が低下する可能性がある。
 硬化性樹脂(X)に含まれるエポキシ化合物は、脂環式エポキシ化合物を含有することが好ましい。脂環式エポキシ化合物は、脂環に結合したエポキシ基を分子内に1個以上有するエポキシ化合物である。「脂環に結合したエポキシ基」とは、下記式に示される構造における橋かけの酸素原子-O-を意味する。下記式中、mは2~5の整数である。
Figure JPOXMLDOC01-appb-C000001
 上記式における(CH中の1個又は複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となり得る。(CH中の1個又は複数個の水素原子は、メチル基やエチル基等の直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物の中でも、オキサビシクロヘキサン環(上記式においてm=3のもの)や、オキサビシクロヘプタン環(上記式においてm=4のもの)を有するエポキシ化合物は、偏光子10の偏光領域11と、非偏光領域12を形成する硬化性樹脂(X)の硬化物との間に優れた密着性を与えることから好ましく用いられる。以下に、好ましく用いられる脂環式エポキシ化合物を具体的に例示するが、これらの化合物に限定されるものではない。
 [a]下記式(IV)で示されるエポキシシクロヘキシルメチル エポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000002

[式(IV)中、R及びRは、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
 [b]下記式(V)で示されるアルカンジオールのエポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000003

[式(V)中、R10及びR11は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、nは2~20の整数を表す。]
 [c]下記式(VI)で示されるジカルボン酸のエポキシシクロヘキシルメチルエステル類:
Figure JPOXMLDOC01-appb-C000004

[式(VI)中、R12及びR13は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、pは2~20の整数を表す。]
 [d]下記式(VII)で示されるポリエチレングリコールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000005

[式(VII)中、R14及びR15は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、qは2~10の整数を表す。]
 [e]下記式(VIII)で示されるアルカンジオールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000006

[式(VIII)中、R16及びR17は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表し、rは2~20の整数を表す。]
 [f]下記式(IX)で示されるジエポキシトリスピロ化合物:
Figure JPOXMLDOC01-appb-C000007

[式(IX)中、R18及びR19は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
 [g]下記式(X)で示されるジエポキシモノスピロ化合物:
Figure JPOXMLDOC01-appb-C000008

[式(X)中、R20及びR21は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
 [h]下記式(XI)で示されるビニルシクロヘキセンジエポキシド類:
Figure JPOXMLDOC01-appb-C000009

[式(XI)中、R22は、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
 [i]下記式(XII)で示されるエポキシシクロペンチルエーテル類:
Figure JPOXMLDOC01-appb-C000010

[式(XII)中、R23及びR24は、互いに独立して、水素原子又は炭素数1~5の直鎖状アルキル基を表す。]
 [j]下記式(XIII)で示されるジエポキシトリシクロデカン類:
Figure JPOXMLDOC01-appb-C000011

[式(XIII)中、R25は、水素原子又は炭素数1~5の直鎖状アルキル基を表す。
 脂肪族エポキシ化合物としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルが挙げられる。より具体的には、1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;ポリエチレングリコールのジグリシジルエーテル;プロピレングリコールのジグリシジルエーテル;エチレングリコール、プロピレングリコール又はグリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル等が挙げられる。
 水素化エポキシ化合物は、芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより得られるものである。芳香族ポリオールとしては、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシベンズアルデヒドフェノールノボラック樹脂等のノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、ポリビニルフェノール等の多官能型の化合物が挙げられる。水素化エポキシ化合物の中でも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。
 硬化性樹脂(X)は、エポキシ化合物等の活性エネルギー線硬化性化合物とともに(メタ)アクリル系化合物等を含有してもよい。(メタ)アクリル系化合物を併用することにより、偏光子10の偏光領域11と非偏光領域12を形成する硬化性樹脂(X)の硬化物との間の密着性、硬化性樹脂(X)の硬化物の硬度及び機械的強度を高める効果が期待でき、さらには、硬化性樹脂(X)の粘度や硬化速度等の調整をより容易に行うことができるようになる。「(メタ)アクリル」は、アクリル及びメタクリルからなる群より選択される少なくとも一方を意味する。
 硬化性樹脂(X)を含む硬化性樹脂組成物は、重合開始剤を含むことが好ましい。重合開始剤としては、光カチオン系重合剤等のカチオン系重合剤やラジカル重合開始剤が挙げられる。光カチオン系重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によりカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるものである。上述のように硬化性樹脂(X)は、紫外線の照射によって硬化する紫外線硬化性樹脂であることが好ましく、硬化性樹脂(X)は脂環式エポキシ化合物を含むことが好ましいため、この場合の重合開始剤は、紫外線の照射によりカチオン種又はルイス酸を発生するものが好ましい。
 硬化性樹脂組成物は、さらに、光増感剤、重合促進剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤等の添加剤を含有することができる。
 (偏光子の製造方法)
 図3(a)~(e)は、本実施形態の偏光子の製造方法の一例を模式的に示す概略断面図である。図3(a)~(e)では、図1(b)に示す偏光子10を得る場合を示しているが、図1(c)及び(d)に示す偏光子10も、下記に説明する方法によって製造することができる。偏光子10は、例えば、全体が同じ視感度補正偏光度(Py)を有し、非偏光領域12を有していない原料偏光子20を用いて製造することができる。原料偏光子20は上記した偏光子10の偏光領域11のみで形成されているため、原料偏光子20の厚みは、偏光子10の偏光領域11と同じ厚みである15μm以下であることが好ましい。
 偏光子10は、例えば次の工程で製造することができる。まず、図3(a)に示すように、原料偏光子20の一方の面に、原料偏光子20に対して剥離可能に第1支持層25が設けられた第1積層体31を準備する。準備した第1積層体31に対して、打抜き、切抜き、切削、又はレーザーカット等により積層方向に貫通する貫通穴32を形成する(図3(b))。これにより、原料偏光子20に貫通穴22が形成された穴あき偏光子21が得られる。続いて、貫通穴32が形成された第1積層体31の穴あき偏光子21側に第2支持層26を剥離可能に設けた後(図3(c))、第1支持層25を剥離する(図3(d))。これにより、第2支持層26と穴あき偏光子21とが積層された第2積層体33を得る(図3(d))。第2支持層26は、穴あき偏光子21の貫通穴22の一方側を塞ぐように設ける。
 次に、第2積層体33の穴あき偏光子21の貫通穴22に硬化性樹脂(X)を含む硬化性樹脂組成物を充填し、活性エネルギー線を照射することにより、貫通穴22内の硬化性樹脂(X)を硬化させる。これにより、穴あき偏光子21の貫通穴22に硬化性樹脂(X)の硬化物を形成し、第2支持層26上に積層された偏光子10を得る(図3(e))。
硬化物を形成した後に、第2支持層26は剥離してもよい。得られた偏光子10は、穴あき偏光子21の貫通穴22以外の領域が偏光領域11となり、硬化物が設けられた貫通穴22の領域が非偏光領域12となっている。
 穴あき偏光子21の貫通穴22に硬化性樹脂組成物を充填する方法としては、特に限定されない。例えば、分注器又はディスペンサー等を用いて第2積層体33の穴あき偏光子21の貫通穴22に硬化性樹脂組成物を注入してもよく、第2積層体33の穴あき偏光子21の表面上に硬化性樹脂組成物をコーティングしながら、穴あき偏光子21の貫通穴22に硬化性樹脂組成物を充填してもよい。穴あき偏光子21の表面上にコーティングされた硬化性樹脂組成物の硬化物層は、後述する保護層とすることができる。硬化性樹脂組成物をコーティングする場合は、コーティングにより形成された塗布層表面を覆うように基材フィルムを設けてもよい。基材フィルムは、後述する保護層として用いてもよく、この場合、硬化性樹脂(X)の硬化物層は、後述する保護層を貼合するための貼合層としてもよい。基材フィルムは、硬化性樹脂組成物に含まれる硬化性樹脂(X)の硬化後に剥離してもよい。
 第1支持層25は、原料偏光子20の製造時に用いられる支持層であってもよく、硬化性樹脂組成物をコーティングする際に用いた上記基材フィルムを用いてもよい。あるいは、原料偏光子20に、水等の揮発性液体によって貼合された剥離可能な支持層であってもよく、原料偏光子20に対して剥離可能な粘着シートであってもよい。第2支持層26は、穴あき偏光子21に水等の揮発性液体によって貼合された剥離可能な支持層であってもよく、穴あき偏光子21に対して剥離可能な粘着シートであってもよい。
 上記のように、原料偏光子20の厚みが15μm以下であることにより、穴あき偏光子21に設けられる貫通穴22の深さも15μm以下とすることができる。これにより、穴あき偏光子21の貫通穴22への硬化性樹脂組成物の充填や、貫通穴22に充填された硬化性樹脂組成物に含まれる硬化性樹脂(X)の硬化処理を短時間で行うことができるため、作業性の低下を抑制できる。
 (原料偏光子)
 原料偏光子20は、貫通穴22に充填された硬化性樹脂組成物中の硬化性樹脂(X)を硬化させるために照射する活性エネルギー線によって著しく変質しにくいものであることが好ましい。このような原料偏光子20は、例えば、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたフィルムや、重合性液晶化合物の硬化層中で二色性色素が配向しているものであり、これらの製造方法は、上述の偏光領域11において説明したとおりである。
 <偏光子複合体>
 図4(a)は、本実施形態の偏光子複合体の一例を模式的に示す概略断面図であり、図4(b)は、偏光子複合体の補強材側の概略平面図である。図4(b)中、偏光子10の非偏光領域12を波線で示している。図4(a)に示す偏光子複合体41は、偏光子10と、偏光子10の一方の面側に設けられた補強材50とを有する。補強材50は、偏光子10の両面に設けられていてもよい。
 偏光子複合体41において、補強材50は、各開口端面が偏光子10の面に対向するように配列した複数のセル51を有する。セル51は、セル51を区画するセル隔壁53に囲まれた中空柱状(筒状)の構造を有し、柱状の構造の軸方向両端が開口した開口端面となっているものである。
 偏光子複合体41において、補強材50は、図4(a)に示すように、偏光子10の非偏光領域12及びその周辺に対応する領域にセル51が存在するように設けることが好ましく、偏光子10の全面にセル51が存在するように設けることがより好ましい。
 偏光子10は非偏光領域12を有するため、表示装置に適用した場合等に受ける温度変化に伴う偏光子10の収縮によって非偏光領域12の周辺にクラックが発生しやすいと考えられる。また、偏光子10は、偏光領域11の厚みが15μm以下と薄いため、衝撃を受けた場合にクラックが発生しやすいと考えられる。偏光子複合体41では、上記のように偏光子10の片面に補強材50が設けられているため、温度変化や衝撃を受けた場合のクラックの発生や、微細なクラックが大きなクラックに進行することを抑制できると考えられる。
 図4(a)に示す偏光子複合体41は、それぞれ図1(b)に示す偏光子10と補強材50とを有するものであるが、これに限定されない。例えば、偏光子複合体41に含まれる偏光子10は、図1(c)又は(d)に示す偏光子10であってもよい。
 補強材50は、偏光子10とともに表示装置等に適用される。補強材50のセル51の内部空間が空洞であると、セル隔壁53とセル51の内部空間との屈折率の違い等により表示装置の視認性が低下する虞がある。そのため、偏光子複合体41における補強材50のセル51の内部空間には、透光性の充填材が設けられることが好ましい。偏光子複合体41の補強材50において、後述するように複数のセル51の間に隙間が設けられている場合には、この隙間にも透光性の充填材が設けられることが好ましい。
 補強材50に設けてもよい充填材は透光性を有し、補強材50のセル51の内部空間を埋めることができるものであれば特に限定されない。充填材は、補強材50のセル隔壁53を構成する材料とは異なる材料であることが好ましく、樹脂材料を含むことがより好ましい。当該樹脂材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂や活性エネルギー線硬化性樹脂等の硬化性樹脂等からなる群より選ばれる1種以上が挙げられ、粘着剤又は接着剤であってもよい。
 熱可塑性樹脂としては、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリエーテル系樹脂;ポリウレタン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;フッ素系樹脂等が挙げられる。
 硬化性樹脂としては、例えば上記した硬化性樹脂(X)が挙げられる。
 粘着剤は、それ自体を被着体に貼り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル系ポリマー、ポリウレタン系ポリマー、ポリエーテル系ポリマー、又はゴム系ポリマー等のポリマーを主成分として含むものが挙げられる。
本明細書において、主成分とは、粘着剤の全固形分のうち50質量%以上を含む成分をいう。粘着剤は、活性エネルギー線硬化型、熱硬化型であってもよく、活性エネルギー線照射や加熱により、架橋度や接着力を調整してもよい。
 接着剤は、硬化性の樹脂成分を含むものであって、感圧型接着剤(粘着剤)以外の接着剤である。接着剤としては、硬化性の樹脂成分を水に溶解又は分散させた水系接着剤、活性エネルギー線硬化性化合物を含有する活性エネルギー線硬化性接着剤、熱硬化性接着剤等が挙げられる。
 接着剤として、偏光板の技術分野で汎用されている水系接着剤を用いることもできる。
水系接着剤に含有される樹脂成分としては、ポリビニルアルコール系樹脂やウレタン系樹脂等が挙げられる。活性エネルギー線硬化性接着剤としては、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する組成物が挙げられる。活性エネルギー線硬化性接着剤としては、上記した硬化性樹脂(X)を含む硬化性樹脂組成物を用いてもよい。熱硬化性接着剤としては、エポキシ系樹脂、シリコーン系樹脂、フェノール系樹脂、メラミン系樹脂等を主成分として含むものが挙げられる。
 (補強材)
 補強材50が有するセル51は、上記したように、セル51を区画するセル隔壁53に囲まれた中空柱状(筒状)の構造を有し、柱状の構造の軸方向両端が開口した開口端面となっているものである。セル51は、開口端面として、偏光子複合体41の偏光子10との距離が相対的に近い側に配置される第1開口端面と、相対的に遠い側に配置される第2開口端面とを有する。補強材50は、第1開口端面及び第2開口端面のうちの少なくとも一方が、偏光子10に対向するように配列していればよく、第1開口端面及び第2開口端面の両方が、偏光子10に対向するように配列していることが好ましい。
 補強材50が有するセル51の開口の形状は特に限定されないが、多角形状、円形状、又は楕円形状であることが好ましい。第1開口端面の開口の形状と、第2開口端面の開口の形状とは、同じ大きさの同じ形状であることが好ましいが、異なる形状であってもよく、同じ形状であって大きさが異なっていてもよい。また、補強材50が有する複数のセルの開口の形状は、互いに同じであってもよく、互いに異なっていてもよい。
 補強材50が有する複数のセル51は、開口端面の平面視において、各セル51の開口が互いに隣接するように配列していることが好ましい。複数のセル51は、開口端面の平面視において、例えば図4(b)に示すセル51の開口の形状が六角形等である場合のように、セル51が互いに隙間なく配置されるように配列していてもよい。あるいは、複数のセル51は、開口端面の平面視において、セル51の開口の形状が円形等である場合のように、複数のセル51のセル隔壁53の一部が接しており、複数のセル51の間に隙間を有して配置されるように配列されていてもよい。
 補強材50は、例えば図4(b)に示すように、第1開口端面及び第2開口端面のいずれにおいても開口の形状が六角形状であり、偏光子複合体41の面方向において、開口が互いに隣り合い隙間なく配置されるように複数のセルが配列したハニカム構造を有することが好ましい。
 補強材50のセル51の開口の大きさは特に限定されないが、非偏光領域12の径よりも小さい径を有することが好ましい。セルの径は、3mm以下であることが好ましく、2mm以下であってもよく、1mm以下であってもよく、通常、0.1mm以上であり、0.5mm以上であってもよい。このセル51の開口の径は、開口の外周の任意の二点を結ぶ直線のうち最も長さが長い直線における長さをいう。
 補強材50のセル51の高さ(セル51の開口端面に直交する方向の長さ)は、通常0.1μm以上であり、0.5μm以上であってもよく、1μm以上であってもよく、3μm以上であってもよく、また、通常15μm以下であり、13μm以下であってもよく、10μm以下であってもよい。
 補強材50のセル51を区画するセル隔壁53は、透光性を有することが好ましい。
 補強材50のセル隔壁53の線幅は、例えば0.05mm以上であり、0.1mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、また、通常5mm以下であり、3mm以下であってもよい。
 補強材50のセル隔壁53は、例えば樹脂材料又は無機酸化物によって形成することができ、樹脂材料によって形成されることが好ましい。樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂や活性エネルギー線硬化性樹脂等の硬化性樹脂等が挙げられる。樹脂材料としては、例えば、上記した硬化性樹脂(X);上記充填材に用いる熱可塑性樹脂として例示した熱可塑性樹脂等が挙げられる。無機酸化物としては、酸化珪素(SiO)、酸化アルミニウム等が挙げられる。
 偏光子10の両面側に補強材50が設けられる場合、2つの補強材50は互いに同じもの(セル51の形状及び大きさが同じもの)であってもよく、互いに異なっていてもよい。偏光子10の両面側に設けられる2つの補強材50のセル51の開口は、平面視において互いに重なるように配置されていてもよいが、平面視において互いにずれるように配置されていることが好ましい。
 (偏光子複合体の製造方法)
 図4(a)に示す偏光子複合体41は、偏光子10に、補強材50を形成することによって製造することができる。補強材50は、例えば、樹脂材料又は無機酸化物を用いて、偏光子10の表面にセル51を区画するセル隔壁53を形成することによって得ることができる。
 樹脂材料を用いてセル隔壁53を形成する方法としては特に限定されないが、例えば、インクジェット印刷、スクリーン印刷、グラビア印刷等の印刷法;フォトリソグラフィ法;ノズルやダイ等を用いた塗布法等が挙げられる。上記方法では、樹脂材料を、溶媒、添加剤等と混合した樹脂組成物を用いてもよい。添加剤としては、レベリング剤、酸化防止剤、可塑剤、粘着付与剤、有機又は無機の充填剤、顔料、老化防止剤、紫外線吸収剤、酸化防止剤等が挙げられる。セル隔壁53は、印刷又は塗布された樹脂組成物に、必要に応じて固化又は硬化のための処理を行って形成してもよい。
 無機酸化物を用いてセル隔壁53を形成する方法としては特に限定されないが、例えば、無機酸化物を蒸着することによって形成することができる。
 偏光子複合体41の補強材50が充填材を有する場合、偏光子10に形成した補強材50に対し、セル51の内部空間やセル51の間の隙間に、充填材を構成する材料を充填すればよい。充填材を構成する材料は、例えば、補強材50上にコーティングすることによって充填してもよい。あるいは、充填材を構成する材料として粘着剤を用いる場合は、離型フィルム上に粘着剤層を設けた粘着シートを貼合して、粘着剤を充填してもよい。
 <光学積層体>
 図5~図8は、本実施形態の光学積層体の一例を模式的に示す概略断面図である。光学積層体は、図1(b)~(d)に示す偏光子10、図4(a)に示す偏光子複合体41の片面側又は両面側に保護層を有するものである。
 (光学積層体(1))
 図5(a)~(c)に示す光学積層体42は、図1(b)~(d)のいずれかに示す偏光子10と、偏光子10の片面側に設けられた保護層17とを有する。保護層17は、偏光子10上に直接設けられた硬化性樹脂(X)の硬化物層である。硬化物層である保護層17を構成する硬化性樹脂(X)としては、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する樹脂であれば特に限定されず、例えば上記で説明した硬化性樹脂(X)が挙げられる。保護層17は、偏光子10の非偏光領域12に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)を含む硬化性樹脂組成物の硬化物層であることが好ましい。
 保護層17が偏光子10の硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)の硬化物層である場合、保護層17は少なくとも偏光子10の非偏光領域12を被覆することが好ましい。保護層17は、偏光子10の片面の少なくとも一部を被覆していればよいが、偏光子10の片面の全面を被覆することが好ましい。
 光学積層体42を製造するためには、例えば、偏光子10の片面に硬化性樹脂組成物をコーティングし、活性エネルギー線を照射することによって当該硬化性樹脂組成物に含まれる硬化性樹脂(X)を硬化させる。これにより、偏光子10上に、硬化性樹脂(X)の硬化物層である保護層17を形成して光学積層体42を得てもよい。
 あるいは、まず上記した第2積層体33(図3(d))の穴あき偏光子21の表面上に硬化性樹脂組成物をコーティングすることにより、穴あき偏光子21の貫通穴22に硬化性樹脂組成物を充填し、穴あき偏光子21の表面にも硬化性樹脂組成物の塗布層を形成する。その後、活性エネルギー線の照射により、穴あき偏光子21の貫通穴22内及び表面上の、硬化性樹脂組成物に含まれる硬化性樹脂(X)を硬化させて、硬化物及び硬化物層である保護層17を形成して光学積層体42を得てもよい。この場合、非偏光領域12に含まれる硬化物と、保護層17を構成する硬化物層とを一体化することができ、保護層17を構成する硬化性樹脂(X)は、非偏光領域12に含まれる硬化物を構成する硬化性樹脂(X)と同じ硬化性樹脂(X)とすることができる。
 図5(b)及び(c)に示す光学積層体42を製造するために、図1(c)及び(d)に示す偏光子10に、硬化物層である保護層17を設ける場合は、偏光子10の偏光領域11と非偏光領域12との厚み差を埋めるように保護層17を設けてもよい。具体的には、図5(b)に示す光学積層体42を得る場合には、図1(c)に示す偏光子10の、非偏光領域12において偏光領域11の厚みよりも小さくなっている側(図1(c)の上側の表面側)において、その厚み差を埋め、かつ、偏光領域11の表面を被覆するように、硬化性樹脂(X)をコーティングして保護層17を設ければよい。図5(c)に示す光学積層体42を得る場合には、図1(d)に示す偏光子10の、偏光領域11の表面よりも非偏光領域12が突出している側(図1(d)の上側の表面側)において、その厚み差を埋め、偏光領域11及び非偏光領域12の両方の表面を被覆するように、硬化性樹脂組成物をコーティングして保護層17を設けてもよい。図5(c)に示す光学積層体42では、非偏光領域12の表面にも保護層17を設けているが、非偏光領域12の表面は被覆せず、偏光領域11の表面のみを被覆するように保護層17を設けてもよい。
 硬化性樹脂組成物をコーティングする場合は、コーティングにより形成された塗布層表面を覆うように基材フィルムを設けてもよい。この場合、基材フィルムを保護層17とし、硬化性樹脂(X)の硬化物層を、保護層17を偏光子10に貼合するための貼合層としてもよい。基材フィルムは、硬化性樹脂(X)の硬化後に剥離してもよい。
 (光学積層体(2))
 図6は、本実施形態の光学積層体の他の一例を模式的に示す概略断面図である。図6に示す光学積層体43は、偏光子10の片面に、硬化性樹脂(X)の硬化物層の保護層17を有する光学積層体42(図5(a))と、光学積層体42の偏光子10側に設けられた補強材50とを有する。補強材50は、図5(a)に示す光学積層体42の保護層17側にも設けられてもよい。
 補強材50については、上記した偏光子複合体41において説明したとおりである。図6に示す光学積層体43は、例えば、図5(a)に示す光学積層体42に、上記した方法により補強材50を形成することによって得ることができる。あるいは、図1(b)~(d)に示す偏光子10に、上記した方法により補強材50を形成した後、上記した方法で保護層17を形成して光学積層体43を得てもよい。
 (光学積層体(3))
 図7に示す光学積層体44は、図1(b)に示す偏光子10の両面側に保護層17,18を有する。光学積層体44は、偏光子10の片面側にのみ保護層17(又は18)を有するものであってもよい。光学積層体44に含まれる偏光子10は、図1(c)又は(d)に示す偏光子10であってもよい。保護層17,18は、粘着剤層又は接着剤層等の貼合層を介して偏光子10上に設けることができる。この場合、例えば、貼合層を介して、偏光子10にフィルム状の保護層を積層すればよい。保護層17,18は、貼合層を介さずに偏光子10に直接接するように設けてもよい。この場合、例えば、保護層17,18を構成する樹脂材料を含む組成物を、偏光子10上に塗布し、この塗布層を固化又は硬化すること等によって保護層17,18を形成することができる。保護層17,18は、一方を貼合層を介して設けた保護層とし、他方を貼合層を介さずに設けた保護層としてもよい。光学積層体44に含まれる保護層17,18は、互いに同じであってもよく、互いに異なっていてもよい。
 光学積層体44が、図1(c)又は(d)に示す偏光子10に貼合層を介して保護層17,18を設けたものである場合は、偏光子10の偏光領域11と非偏光領域12との厚み差を埋めるように貼合層を設けて、保護層17,18を設けることが好ましい。光学積層体44が、図1(c)又は(d)に示す偏光子10に直接接するように保護層17,18を設けたものである場合には、偏光子10の偏光領域11と非偏光領域12との厚み差を埋めるように保護層17,18を構成する樹脂材料を含む組成物を設けて、保護層17,18を形成することが好ましい。
 (光学積層体(4))
 図8に示す光学積層体45は、図4(a)に示す偏光子複合体41の両面側に保護層17,18を有する。光学積層体45は、偏光子複合体41の片面側にのみ保護層17(又は18)を有するものであってもよい。保護層17,18は、粘着剤層又は接着剤層等の貼合層を介して偏光子複合体41上に設けることができる。この場合、例えば、貼合層を介して、偏光子複合体41にフィルム状の保護層を積層すればよい。偏光子複合体41の補強材50側に設けられる保護層18は、例えば、補強材50のセル51の内部空間、及び複数のセル51の間の隙間等を埋めるように貼合層を設けて、保護層を積層すればよい。あるいは、フィルム状の保護層の片面に貼合層となる材料の塗布層が形成された積層シートを、補強材50上に積層することによって、補強材50のセル51の内部空間、及び複数のセル51の間の隙間等に貼合層となる材料を充填して保護層を形成してもよい。また、図8においては、偏光子10の一方側の面に補強材を設けた場合について示したが、偏光子10の両面に補強材50を設けてもよい。
 保護層17,18は、貼合層を介さずに偏光子複合体41に直接接するように設けてもよい。偏光子複合体41の偏光子10側に設けられる保護層17は、例えば、保護層17を構成する樹脂材料を含む組成物を、偏光子複合体41の偏光子10上に塗布し、この塗布層を固化又は硬化すること等によって形成することができる。偏光子複合体41の補強材50側に設けられる保護層18は、補強材50のセル51の内部空間、及び複数のセル51の間の隙間等を埋めるように、保護層18を構成する樹脂材料を含む組成物を設けて、保護層18を充填して形成してもよい。
 保護層17,18は、一方を貼合層を介して設けた保護層とし、他方を貼合層を介さずに設けた保護層としてもよい。光学積層体44に含まれる保護層17,18は、互いに同じであってもよく、互いに異なっていてもよい。
 (保護層)
 保護層17,18は、光を透過可能な樹脂層であることが好ましく、樹脂フィルムであってもよく、樹脂材料を含む組成物を塗布して形成した塗布層であってもよい。樹脂層に用いられる樹脂としては、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、上記した原料偏光子20の製造に用いてもよい基材フィルムを構成する熱可塑性樹脂が挙げられる。光学積層体42~45が両面に保護層17,18を有する場合、保護層17,18の樹脂組成は、互いに同一であってもよく、互いに異なっていてもよい。
 保護層17,18の厚みは、薄型化の観点から、通常200μm以下であり、150μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であってもよく、60μm以下であってもよい。保護層17,18の厚みは、通常5μm以上であり、10μm以上であってもよく、20μm以上であってもよい。保護層17,18は位相差を有していても、有していなくてもよい。光学積層体42~45が両面に保護層17,18を有する場合、保護層17,18の厚みは、互いに同一であってもよく、互いに異なっていてもよい。
 (貼合層)
 貼合層は、粘着剤層又は接着剤層である。粘着剤層を形成するための粘着剤及び接着剤層を形成するための接着剤としては、例えば、上記した充填材を構成するために用いる粘着剤及び接着剤が挙げられる。
 <光学表示素子用貼合層を有する積層体>
 図1(b)~(d)に示す偏光子10、図4(a)に示す偏光子複合体41、図5~図8に示す光学積層体42~45は、さらに、液晶表示装置や有機EL表示装置等の表示装置の光学表示素子(液晶パネル、有機EL素子)に貼合するための光学表示素子用貼合層を有していてもよい。
 偏光子10、偏光子複合体41、光学積層体42~45において、図1(c)又は(d)に示す偏光子10のように偏光領域11と非偏光領域12との間に厚み差が生じている表面に光学表示素子用貼合層を設ける場合は、この厚み差を埋めるように光学表示素子用貼合層を設けることが好ましい。
 偏光子複合体41及び光学積層体43,45において、補強材50の表面に光学表示素子用貼合層を設ける場合は、補強材50に設けられる充填材として光学表示素子用貼合層を構成する材料を用い、補強材50のセル51の内部空間等への充填材の充填と、光学表示素子用貼合層の形成とを同時に行ってもよい。
 10 偏光子、11 偏光領域、11m 第1平面、11n 第2平面、12 非偏光領域、17,18 保護層、20 原料偏光子、21 穴あき偏光子、22 貫通穴、25 第1支持層、26 第2支持層、31 第1積層体、32 貫通穴、33 第2積層体、41 偏光子複合体、42~45 光学積層体、50 補強材、51 セル、53 セル隔壁。

Claims (14)

  1.  偏光領域と、平面視において前記偏光領域に囲まれた非偏光領域と、を有し、
     前記偏光領域の厚みは、15μm以下であり、
     前記非偏光領域は、平面視において前記偏光領域に囲まれた貫通穴に、活性エネルギー線硬化性樹脂の硬化物が設けられた領域である、偏光子。
  2.  前記硬化物の厚みは、前記偏光領域の厚みと同じである、請求項1に記載の偏光子。
  3.  前記硬化物の厚みは、前記偏光領域の厚みよりも小さい、請求項1に記載の偏光子。
  4.  前記硬化物の厚みは、前記偏光領域の厚みよりも大きい、請求項1に記載の偏光子。
  5.  前記非偏光領域は、透光性を有する、請求項1~4のいずれか1項に記載の偏光子。
  6.  前記非偏光領域の平面視における径は、0.5mm以上20mm以下である、請求項1~5のいずれか1項に記載の偏光子。
  7.  前記活性エネルギー線硬化性樹脂は、エポキシ化合物を含む、請求項1~6のいずれか1項に記載の偏光子。
  8.  前記エポキシ化合物は、脂環式エポキシ化合物を含む、請求項7に記載の偏光子。
  9.  請求項1~8のいずれか1項に記載の偏光子と、前記偏光子の少なくとも一方の面側に設けられた補強材と、を有する偏光子複合体であって、
     前記補強材は、各開口端面が前記偏光子の面に対向するように配列した複数のセルを有する、偏光子複合体。
  10.  前記セルの前記開口の形状は、多角形状、円形状、又は楕円形状である、請求項9に記載の偏光子複合体。
  11.  さらに、前記セルの内部空間に透光性の充填材が設けられている、請求項9又は10に記載の偏光子複合体。
  12.  請求項1~8のいずれか1項に記載の偏光子、又は請求項9~11のいずれか1項に記載の偏光子複合体の少なくとも片面側に保護層を有する、光学積層体。
  13.  前記保護層は、前記偏光子上に設けられた活性エネルギー線硬化性樹脂の硬化物層である、請求項12に記載の光学積層体。
  14.  前記保護層を構成する活性エネルギー線硬化性樹脂は、前記偏光領域に含まれる前記硬化物を構成する活性エネルギー線硬化性樹脂と同じ活性エネルギー線硬化性樹脂である、請求項13に記載の光学積層体。
PCT/JP2020/032325 2019-10-25 2020-08-27 偏光子、偏光子複合体、及び光学積層体 WO2021079612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080074340.2A CN114616496A (zh) 2019-10-25 2020-08-27 偏振片、偏振片复合体和光学层叠体
KR1020227013221A KR20220086575A (ko) 2019-10-25 2020-08-27 편광자, 편광자 복합체 및 광학 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019194275A JP7456747B2 (ja) 2019-10-25 2019-10-25 光学積層体
JP2019-194275 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021079612A1 true WO2021079612A1 (ja) 2021-04-29

Family

ID=75620463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032325 WO2021079612A1 (ja) 2019-10-25 2020-08-27 偏光子、偏光子複合体、及び光学積層体

Country Status (5)

Country Link
JP (2) JP7456747B2 (ja)
KR (1) KR20220086575A (ja)
CN (1) CN114616496A (ja)
TW (1) TW202116545A (ja)
WO (1) WO2021079612A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170176657A1 (en) * 2013-11-08 2017-06-22 Apple Inc. Electronic Device Display With Polarizer Windows
JP2018128664A (ja) * 2017-02-10 2018-08-16 日東電工株式会社 偏光フィルム、画像表示装置、および偏光フィルムの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6214594B2 (ja) 2014-04-25 2017-10-18 日東電工株式会社 偏光子、偏光板および画像表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170176657A1 (en) * 2013-11-08 2017-06-22 Apple Inc. Electronic Device Display With Polarizer Windows
JP2018128664A (ja) * 2017-02-10 2018-08-16 日東電工株式会社 偏光フィルム、画像表示装置、および偏光フィルムの製造方法

Also Published As

Publication number Publication date
CN114616496A (zh) 2022-06-10
TW202116545A (zh) 2021-05-01
JP2024036510A (ja) 2024-03-15
JP2021067866A (ja) 2021-04-30
JP7456747B2 (ja) 2024-03-27
KR20220086575A (ko) 2022-06-23

Similar Documents

Publication Publication Date Title
TW201525538A (zh) 偏光器及其製造方法、包括其的偏光板以及光學顯示器
JPWO2017026403A1 (ja) 偏光板、画像表示装置、及び偏光板の製造方法
JP5949123B2 (ja) 偏光板
WO2021079623A1 (ja) 偏光子複合体及び光学積層体
TWI701469B (zh) 偏光板及影像顯示裝置
WO2021079612A1 (ja) 偏光子、偏光子複合体、及び光学積層体
WO2021079614A1 (ja) 偏光子複合体及び光学積層体
WO2021079613A1 (ja) 偏光子複合体及び光学積層体
WO2021079622A1 (ja) 偏光子複合体及び光学積層体
KR101781308B1 (ko) 편광판 세트 및 액정 패널
WO2021079621A1 (ja) 位相差層付き偏光子、偏光子複合体、及び光学積層体
KR101748531B1 (ko) 편광판 세트 및 액정 패널
TW201732326A (zh) 偏光板及液晶面板
KR20190054285A (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878359

Country of ref document: EP

Kind code of ref document: A1