WO2021079477A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2021079477A1
WO2021079477A1 PCT/JP2019/041776 JP2019041776W WO2021079477A1 WO 2021079477 A1 WO2021079477 A1 WO 2021079477A1 JP 2019041776 W JP2019041776 W JP 2019041776W WO 2021079477 A1 WO2021079477 A1 WO 2021079477A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
cylinder
recess
rotation angle
drive shaft
Prior art date
Application number
PCT/JP2019/041776
Other languages
French (fr)
Japanese (ja)
Inventor
香曽我部 弘勝
小山 昌喜
直洋 土屋
向井 有吾
謙治 竹澤
宏介 鈴木
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2020509128A priority Critical patent/JP6704555B1/en
Priority to CN201980101163.XA priority patent/CN114555948B/en
Priority to PCT/JP2019/041776 priority patent/WO2021079477A1/en
Publication of WO2021079477A1 publication Critical patent/WO2021079477A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor or the like.
  • Patent Document 1 describes three sections: a section in which at least one inner surface of the bearing plate communicates with the cylinder inner space, a section in which the end face of the piston closes, and a section in which the piston rotates and communicates with the inside of the piston.
  • a rotary compressor in which an oil reservoir recess is provided at a position where the oil is stored is described.
  • Patent Document 1 describes that the above-mentioned oil reservoir recess is provided, the specific arrangement and configuration of the oil reservoir recess are not disclosed. Depending on the position of the oil reservoir recess, the amount of oil supplied to the space inside the cylinder may be too small or too large, which may lead to deterioration in the performance and reliability of the rotary compressor.
  • an object of the present invention is to provide a compressor or the like having high performance and reliability.
  • At least one of the first bearing and the second bearing of the compressor is provided with a recess on the surface facing the cylinder chamber, and the roller is positioned at the top dead point in the cylinder.
  • the rotation angle of the roller is 0 °
  • the recess is located inside the roller in the radial direction when the rotation angle of the roller is 0 °, and the rotation angle of the roller is set to 0 °.
  • the state of 180 ° it was determined that the recess was located between the roller and the cylinder.
  • At least one of the bearing and the partition plate of the compressor is provided with a recess on the surface facing the cylinder chamber, and the rotation angle of the roller when the roller is located at the top dead point in the cylinder.
  • the recess is located inside the roller in the radial direction when the rotation angle of the roller is 0 °, and the roller and the roller and the roller are in a state where the rotation angle of the roller is 180 °. It was decided that the recess was located between the cylinder and the cylinder.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 in the compressor according to the first embodiment of the present invention. It is a partially enlarged view of the vertical cross section of the compression mechanism part provided in the compressor which concerns on 1st Embodiment of this invention. It is explanatory drawing which shows the arrangement of the oil pocket in the compression mechanism part of the compressor which concerns on 1st Embodiment of this invention. It is explanatory drawing of the process of moving a roller in the cylinder of the compressor which concerns on 1st Embodiment of this invention.
  • FIG. 8 is a cross-sectional view taken along the line III-III of FIG. 8 in the compressor according to the second embodiment of the present invention. It is a top view and IV-IV line sectional view of the partition plate provided in the compressor which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a vertical cross-sectional view of the compressor 100 according to the first embodiment.
  • the compressor 100 is a rotary type compressor that compresses a gaseous refrigerant.
  • the compressor 100 includes a closed container 1, an electric motor 2, balance weights 31 and 32, a crankshaft 4 (drive shaft), a compression mechanism portion 5, and a sound deadening cover 6. ing.
  • the closed container 1 is a shell-shaped container that houses the electric motor 2, the crankshaft 4, the compression mechanism portion 5, and the like, and is substantially sealed.
  • the closed container 1 includes a cylindrical tubular chamber 1a, a lid chamber 1b welded to the upper end of the tubular chamber 1a, and a bottom chamber 1c welded to the lower end of the tubular chamber 1a. ..
  • Lubricating oil for improving the lubricity and sealing property of the compressor 100 is sealed in the closed container 1, and is stored as an oil sump U at the bottom of the closed container 1.
  • a suction pipe Pi is inserted and fixed in the cylinder chamber 1a of the closed container 1.
  • the suction pipe Pi is a pipe that guides the refrigerant to the cylinder chamber Cy (see FIG. 2) of the compression mechanism unit 5.
  • a discharge pipe Po is inserted and fixed in the lid chamber 1b of the closed container 1.
  • the discharge pipe Po is a pipe that guides the refrigerant compressed by the compression mechanism unit 5 to the outside of the compressor 100.
  • the electric motor 2 is a drive source for rotating the crankshaft 4, and is installed inside the closed container 1.
  • the electric motor 2 includes a stator 2a, a rotor 2b, and a winding 2c.
  • the stator 2a is a cylindrical member formed by laminating electromagnetic steel sheets, and is fixed to the inner peripheral wall of the tubular chamber 1a.
  • the rotor 2b is a cylindrical member formed by laminating electromagnetic steel sheets, and is arranged inside the stator 2a in the radial direction.
  • the crankshaft 4 is fixed to the rotor 2b by press fitting or the like.
  • the winding 2c is a wiring through which an electric current flows, is wound in a predetermined manner, and is installed in the stator 2a.
  • the crankshaft 4 is a shaft that rotates integrally with the rotor 2b as the electric motor 2 is driven.
  • the crankshaft 4 extends in the vertical direction and is rotatably supported by the upper bearing 5c and the lower bearing 5d.
  • the crankshaft 4 includes a main shaft 4a and an eccentric portion 4b.
  • the spindle 4a is coaxially fixed to the rotor 2b of the electric motor 2.
  • the eccentric portion 4b is a shaft that rotates while being eccentric with respect to the main shaft 4a, and is integrally formed with the main shaft 4a.
  • the eccentric portion 4b is arranged in the lower part of the crankshaft 4 in the radial direction of the cylinder 5a.
  • a predetermined oil supply passage 4c is provided in the axial direction in the lower part of the crankshaft 4.
  • the oil supply passage 4c is a flow path that guides the lubricating oil stored as the oil sump U in the closed container 1 to the compression mechanism portion 5 or the like, and is opened at the lower end of the crankshaft 4.
  • a thin plate-shaped metal piece (not shown) twisted and bent at a predetermined value is provided as an oil pump near the upstream end of the oil supply passage 4c (that is, near the lower end of the crankshaft 4). Then, the metal piece is rotated integrally with the crankshaft 4, so that the lubricating oil is pumped up through the oil supply passage 4c.
  • a plurality of lateral holes h1, h2, h3 communicating with the refueling passage 4c are provided.
  • the sliding surface of the upper bearing 5c is lubricated by the lubricating oil supplied through the lateral hole h1.
  • the sliding surface of the lower bearing 5d is lubricated by the lubricating oil supplied through the lateral hole h2.
  • the lubricating oil is supplied to the inside of the roller 5b in the radial direction through the vertically elongated horizontal hole h3 provided in the eccentric portion 4b. In this way, the space G (see FIG. 3) inside the roller 5b in the radial direction communicates with the oil supply passage 4c of the crankshaft 4.
  • the compression mechanism unit 5 is a mechanism that compresses the refrigerant as the crankshaft 4 rotates. That is, the compression mechanism unit 5 is a mechanism that compresses the refrigerant sucked through the suction pipe Pi in the compression chamber Com and discharges the compressed refrigerant, and is arranged below the electric motor 2. As shown in FIG. 1, the compression mechanism portion 5 includes a cylinder 5a, a roller 5b, an upper bearing 5c (first bearing), a lower bearing 5d (second bearing), a vane 5e, a discharge valve 5f, and the like. It is equipped with 5 g of a vane spring.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the cylinder 5a shown in FIG. 2 is a member that forms a cylinder chamber Cy together with a roller 5b, an upper bearing 5c, and a lower bearing 5d, and has an annular shape (cylindrical shape).
  • the cylinder chamber Cy is a space between the cylinder 5a and the roller 5b.
  • the cylinder chamber Cy includes a compression chamber Com and a suction chamber In (see also FIG. 5), but in FIG. 2, the tip of the vane 5e is retracted to the inner peripheral surface of the cylinder 5a by the roller 5b.
  • the entire cylinder chamber Cy is a compression chamber Com.
  • the roller 5b is a member that revolves in the cylinder 5a when the electric motor 2 (see FIG. 1) is driven, and has an annular shape (cylindrical shape). Then, the roller 5b revolves inside the cylinder 5a while sliding in contact with the inner peripheral surface of the cylinder 5a. The inner peripheral surface of the roller 5b is in sliding contact with the outer peripheral surface of the eccentric portion 4b described above.
  • the tip of the vane 5e comes into contact with the outer peripheral surface of the roller 5b (that is, the tip of the vane 5e on the roller 5b side), and the cylinder chamber Cy between the cylinder 5a and the roller 5b is brought into the suction chamber In and the compression chamber Com (FIG. It is a plate-shaped member that divides into 5).
  • an arcuate base end portion 5k is installed substantially integrally with the cylinder 5a in a predetermined range on the outer peripheral surface of the cylinder 5a.
  • the suction pipe Pi is inserted and fixed in the suction passage h4 that penetrates the base end portion 5k and the cylinder 5a in the radial direction. Then, the gaseous refrigerant is guided to the cylinder chamber Cy through the suction pipe Pi and the suction passage h4 in sequence.
  • a vane spring mounting hole h5 is provided in the radial direction up to the vicinity of the outer peripheral surface of the cylinder 5a.
  • the vane spring mounting hole h5 is a hole into which the vane spring 5g (see FIG. 1) described later is mounted.
  • a radial slit (not shown by a reference numeral in FIG. 2) is provided in the cylinder 5a so as to communicate the vane spring mounting hole h5 and the space inside the cylinder 5a in the radial direction. This slit is a space for reciprocating the vane 5e in the radial direction, and is provided slightly wider than the wall thickness of the vane 5e.
  • FIG. 3 is a partially enlarged view of a vertical cross section of the compression mechanism portion 5 included in the compressor.
  • the vane spring 5g shown in FIG. 3 is a spring that urges the vane 5e inward in the radial direction, and is installed in the vane spring mounting hole h5.
  • the tip of the vane 5e is pressed against the outer peripheral surface of the roller 5b by the pressure difference between the inside and outside of the compression mechanism portion 5 and the urging force of the vane spring 5g (see also FIG. 2).
  • the cylinder chamber Cy which is the space between the cylinder 5a and the roller 5b, is partitioned into the suction chamber In and the compression chamber Com (see also FIG. 5).
  • a discharge notch h6 is provided at a predetermined position on the inner peripheral edge of the upper surface of the cylinder 5a.
  • This discharge notch h6 is a notch that guides the compressed refrigerant to the discharge valve 5f, and as shown in FIG. 2, its edge has an arc shape. Further, the discharge notch h6 and the opening of the suction passage h4 are both close to the vane 5e in the circumferential direction. Specifically, the discharge notch h6 is provided on one side of the vane 5e in the circumferential direction. Further, the suction passage h4 is open on the other side of the vane 5e in the circumferential direction.
  • the upper bearing 5c (first bearing) shown in FIG. 3 is a slide bearing that pivotally supports the crankshaft 4, and is provided on the upper side (one side in the axial direction) of the cylinder 5a.
  • the upper bearing 5c is fastened together with the cylinder 5a and the lower bearing 5d with a plurality of bolts T (see FIG. 2), and is further fixed to the inner peripheral wall of the cylinder chamber 1a (see FIG. 1).
  • a predetermined annular groove h7 is provided on the end surface of the upper bearing 5c on the cylinder 5a side in order to alleviate the local one-sided contact between the crankshaft 4 and the upper bearing 5c.
  • a predetermined hole is provided as a discharge port h8 at a position corresponding to the discharge notch h6 of the cylinder 5a.
  • the "discharge flow path" communicating with the compression chamber Com includes a discharge notch h6 and a discharge port h8.
  • the discharge valve 5f shown in FIG. 3 is a valve for discharging the compressed refrigerant into the space inside the closed container 1 (see FIG. 1), and is provided in the above-mentioned “discharge flow path”.
  • the discharge valve 5f is installed in the upper bearing 5c so as to close the discharge port h8. Then, when the discharge pressure of the compressed refrigerant overcomes the elastic force of the discharge valve 5f, which is a leaf spring, the discharge valve 5f opens.
  • the lower bearing 5d (second bearing) is a slide bearing that pivotally supports the crankshaft 4, and is provided on the lower side (the other side in the axial direction) of the cylinder 5a.
  • a predetermined annular groove h9 is provided on the end surface of the lower bearing 5d on the cylinder 5a side in order to alleviate the local one-sided contact between the crankshaft 4 and the lower bearing 5d.
  • the lower bearing 5d is provided with a concave oil pocket h10 (recess) on the surface facing the cylinder chamber Cy (see also FIG. 5).
  • the lubricating oil is taken into the oil pocket h10 in the space G inside the radial direction of the roller 5b, and further, this lubricating oil is supplied to the cylinder chamber Cy.
  • the cycle of lubrication is periodically repeated.
  • the arrangement of the oil pocket h10 and the like is one of the main features of the present embodiment.
  • the muffling cover 6 (see also FIG. 1) is a cover for suppressing noise caused by compression of the refrigerant, and is fixed to the upper bearing 5c with the upper surface of the upper bearing 5c covered.
  • the sound deadening cover 6 is provided with a plurality of holes (not shown in FIG. 1) for discharging the compressed refrigerant into the space inside the closed container 1.
  • FIG. 4 is an explanatory view showing the arrangement of the oil pocket h10 in the compression mechanism unit 5.
  • the Y-axis shown in FIG. 4 is perpendicular to the central axis Z (see also FIG. 1), is parallel to the side surface of the vane 5e, and passes through the cylinder 5a, the roller 5b, and the vane 5e.
  • the axis perpendicular to both the central axis Z and the Y axis is defined as the X axis.
  • the oil pocket h10 is provided in the vicinity of the vane 5e as a circular hole having a relatively shallow bottom. More specifically, it is separated from the vane 5e in the X-axis direction by a distance L1 to the discharge notch h6 side so as not to overlap the vane 5e reciprocating in the radial direction (so that the oil pocket h10 is not blocked by the vane 5e).
  • An oil pocket h10 is provided at a vertical position.
  • the distance L1 described above is preferably, for example, in the range of 0.5 mm to 2.0 mm, but is not limited thereto.
  • the lubricating oil discharged from the oil pocket h10 into the cylinder chamber Cy easily adheres to the side surface or the vicinity of the tip of the vane 5e. Therefore, the sliding surfaces of the vane 5e, the cylinder 5a, and the roller 5b can be sufficiently lubricated.
  • the oil pocket h10 is provided at a position where the oil intake section ⁇ in (see FIG. 6) and the oil release section ⁇ out (see FIG. 6) are substantially equal to each other.
  • the oil intake section ⁇ in described above is the range of the rotation angle of the roller 5b when the lubricating oil is taken into the oil pocket h10. More specifically, the range of the rotation angle of the roller 5b when the oil pocket h10 (recess) is located inside the roller 5b in the radial direction is the oil intake section ⁇ in .
  • the oil discharge section ⁇ out is the range of the rotation angle of the roller 5b when the lubricating oil is discharged from the oil pocket h10. More specifically, the range of the rotation angle of the roller 5b when the oil pocket h10 (recess) is located between the roller 5b and the cylinder 5a is the oil discharge section ⁇ out .
  • the oil intake section ⁇ in and the oil release section ⁇ out substantially equal, the amount of lubricating oil taken into the oil pocket h10 and the amount of lubricating oil released from the oil pocket h10 per unit time can be obtained. , Are approximately equal. Therefore, it is possible to increase the volumetric efficiency when the lubricating oil is intermittently supplied to the compression chamber Com by using the oil pocket h10.
  • the diameter of the oil pocket h10 is smaller than the radial thickness of the roller 5b. More specifically, the diameter of the oil pocket h10 is shorter than the radial length of the sealing surface (annular lower surface) of the roller 5b. As a result, the blockage section ⁇ occ (see FIG. 6) between the oil intake section ⁇ in and the oil release section ⁇ out and the oil pocket h10 are temporarily blocked by the sealing surface of the roller 5b. There is.
  • FIG. 5 is an explanatory diagram of a process in which the roller 5b moves in the cylinder 5a.
  • the rotation angle ⁇ shown in FIG. 5 is the rotation angle of the roller 5b that moves (revolves) in the cylinder 5a.
  • the rotation angle of the roller 5b when the roller 5b is located at the "top dead center” (TDC: Top Dead Center) in the cylinder 5a is set to 0 °.
  • TDC Top Dead Center
  • the above-mentioned "top dead center” means the position of the roller 5b when the compression of the refrigerant is started in the compression chamber Com.
  • the "top dead center” is when the center of the roller 5b is closest to the tip of the vane 5e in the direction in which the vane 5e extends in a plan view (Y-axis direction in FIG. 4) (the vane 5e is the closest). It means the position of the roller 5b (when retracted).
  • the oil pocket h10 (recess) is located between the roller 5b and the cylinder 5a.
  • the lubricating oil in the oil pocket h10 is released into the compression chamber Com.
  • the gaseous refrigerant enters the oil pocket h10 so as to replace the lubricating oil described above.
  • the oil pocket h10 (recess) is provided on the "discharge flow path" side of the vane 5e in the circumferential direction.
  • the “discharge flow path” is a flow path including the discharge notch h6 (see FIG. 4) and the discharge port h8 (see FIG. 4).
  • the lubricating oil easily adheres to the side surface of the vane 5e on the compression chamber Com side.
  • the tip and side surfaces of the vane 5e are particularly prone to sliding friction in the compression mechanism portion 5.
  • the lubricating oil diffused in the compressor Com sufficiently lubricates the sliding surfaces of the cylinder 5 and the roller 5b in addition to the vane 5e.
  • the rear end of the vane 5e on the vane spring 5g side faces the space inside the closed container 1 (see FIG. 1). Therefore, the mist-like lubricating oil in the closed container 1 also adheres to the rear end portion of the vane 5e.
  • the side surface of the vane 5e on the suction chamber In side is also lubricated, and the sliding surfaces of the cylinder 5a and the vane 5e are lubricated.
  • FIG. 6 is an explanatory diagram of an oil intake section ⁇ in , a blockage section ⁇ occ , and an oil release section ⁇ out in the oil pocket (see FIG. 5 as appropriate).
  • the release section ⁇ out ) and the blockage of the oil pocket h10 (blockage section ⁇ occ ) are sequentially repeated.
  • the oil intake section ⁇ in and the oil release section ⁇ out are substantially equal to each other. More specifically, it is preferable that the oil intake section ⁇ in and the oil release section ⁇ out are 140 ° or more and 165 ° or less, respectively. As a result, the lubricating oil taken into the oil pocket h10 in the oil intake section ⁇ in is discharged to the compression chamber Com without waste in the oil release section ⁇ out. Therefore, it is possible to increase the volumetric efficiency when the lubricating oil is intermittently supplied from the oil pocket h10 to the compression chamber Com.
  • the magnitude relationship between the oil intake section ⁇ in and the oil release section ⁇ out is not particularly limited.
  • FIG. 7 is a diagram showing the experimental results of APF in the oil pocket volume ratio (see FIG. 2 as appropriate).
  • the horizontal axis of FIG. 7 is the oil pocket volume ratio (hereinafter referred to as oil pocket volume ratio Vpr), and the vertical axis is the APF (Annual) of the air conditioner using the compressor 100 (see FIG. 1) of the present embodiment. Performance Factor).
  • the oil pocket volume ratio Vpr is the ratio of the volume Vp of the oil pocket h10 (recess) to the stroke volume of the cylinder 5a, and is calculated based on the following formula (1).
  • Vpr Vp / Vth x 100 ... (1)
  • the white circles indicated by the reference numerals J are the experimental results when the oil pockets (not shown) are provided at the same positions as those shown in FIG. 2 of the above-mentioned prior art document.
  • the vicinity of the vane 5e is well lubricated and the sealing property of the compression chamber Com is maintained, so that the APF is significantly higher than before. be able to.
  • the stroke volume Vth 9.5 [ml / rev]
  • the diameter of the oil pocket h10 3 [mm]
  • the depth of the oil pocket h10 0.13 [mm].
  • the oil pocket volume ratio Vpr is about 0.01%.
  • the sealing property of the compression chamber Com can be improved.
  • each sliding surface of the vane 5e and the cylinder 5a can be sufficiently lubricated.
  • the lubricating oil is likely to adhere to the tip and side surfaces of the vane 5e. Therefore, in particular, the lubricity and sealing property of the compression mechanism portion 5 (see FIG. 4) can be improved even during low-speed rotation in which an oil film is difficult to form. Further, even when the refrigerant R32, which tends to have high temperature and high pressure, is used, the compressor 100 having high performance and reliability can be provided.
  • the oil intake section ⁇ in and the oil release section ⁇ out substantially equal (see FIG. 6)
  • almost all of the lubricating oil that has entered the oil pocket h10 is released into the compression chamber Com.
  • the lubricity and sealing property of the compression mechanism portion 5 can be sufficiently ensured.
  • the volume of the oil pocket h10 is too large, the amount of the refrigerant entering the oil pocket h10 (the amount of the relatively low-pressure refrigerant in the process of compression) increases in the oil discharge section ⁇ out, and this refrigerant is substantially reduced to the discharge pressure. It is discharged into the same closed container 1. Therefore, it is desirable that the volume of the oil pocket h10 is small in consideration of high efficiency in the compression of the refrigerant.
  • the second embodiment is different from the first embodiment (see FIG. 1) in that the compressor 100A (see FIG. 8) includes two compression mechanism units 51 and 52 (see FIG. 8).
  • the second embodiment is different from the first embodiment in that oil pockets h11 and h12 (see FIG. 8) are provided on the partition plate 50 (see FIG. 8) that partitions the compression mechanism portions 51 and 52. ing.
  • the other points are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 8 is a vertical cross-sectional view of the compressor 100A according to the second embodiment.
  • the compressor 100A includes a closed container 1, an electric motor 2, a crankshaft 4A (drive shaft), two compression mechanism portions 51 and 52, a partition plate 50, and sound deadening covers 61 and 62. And have.
  • the closed container 1 contains two compression mechanism portions 51 and 52, a partition plate 50, and the like, and is also filled with lubricating oil.
  • the crankshaft 4A is a shaft that rotates integrally with the rotor 2b, and includes a main shaft 4a and eccentric portions 41b and 42b.
  • One eccentric portion 41b is eccentric to the opposite side in a plan view with respect to the other eccentric portion 42b.
  • the inner peripheral surface of the upper roller 51b is in sliding contact with one eccentric portion 41b, and the inner peripheral surface of the lower roller 52b is in sliding contact with the other eccentric portion 42b.
  • the two compression mechanism units 51 and 52 shown in FIG. 8 are mechanisms that compress the refrigerant as the crankshaft 4 rotates, respectively. These compression mechanism portions 51 and 52 are fastened with a plurality of bolts T (see FIG. 9) together with the partition plate 50 described later.
  • the upper compression mechanism section 51 compresses the gaseous refrigerant guided through the suction pipe P1i. The refrigerant compressed by the compression mechanism section 51 in this way is sequentially discharged into the space inside the closed container 1 through the holes (not shown) of the discharge valve 51f and the sound deadening cover 61.
  • the lower compression mechanism 52 compresses the gaseous refrigerant guided through the suction pipe P2i.
  • the refrigerant compressed by the compression mechanism portion 52 in this way is sequentially discharged into the space inside the closed container 1 through the holes (not shown) of the discharge valve 52f and the sound deadening cover 62.
  • the muffling cover 62 is fixed to the lower bearing 5d while covering the lower surface of the lower bearing 5d.
  • the upper compression mechanism portion 51 includes a cylinder 51a, a roller 51b, an upper bearing 5c (bearing), a vane 51e, a discharge valve 51f, and a vane spring 51g. Since each configuration of the compression mechanism unit 51 is the same as that of the compression mechanism unit 5 (see FIG. 1) of the first embodiment, the description thereof will be omitted.
  • the lower compression mechanism 52 includes a cylinder 52a, a roller 52b, a lower bearing 5d (bearing), a vane 52e, a discharge valve 52f, and a vane spring 52g. Since each configuration of the compression mechanism unit 52 is the same as that of the compression mechanism unit 5 (see FIG. 1) of the first embodiment, the description thereof will be omitted.
  • the partition plate 50 shown in FIG. 8 is a plate that partitions the two compression mechanism portions 51 and 52 in the axial direction of the rotor 2b, and has an annular shape (see also FIG. 10). Assuming that the upper bearing 5c (or the lower bearing 5d) is provided on the "one side in the axial direction" of the cylinder 51a, the partition plate 50 is provided on the "other side in the axial direction" of the cylinder 51a.
  • An oil pocket h11 (recess) is provided on the surface (upper surface) of the partition plate 50 facing the cylinder chamber (not shown) of the upper compression mechanism portion 51. Further, in the partition plate 50, another oil pocket h12 (recess) is provided on the surface (lower surface) of the lower compression mechanism portion 52 facing the cylinder chamber (see FIG. 9).
  • the partition plate 50 is provided with the oil pockets h11 and h12.
  • the oil pocket h12 is provided on the lower surface of the partition plate 50, and the lubricating oil also adheres to the oil pocket h12. Therefore, as the rotor 52b moves, the lubricating oil is intermittently supplied from the oil pocket h12 to the compression chamber Com2.
  • FIG. 9 is a cross-sectional view taken along the line III-III of FIG.
  • the oil pocket h12 (recess) is provided on the discharge notch h26 side (discharge flow path side) of the vane 52e in the circumferential direction.
  • the lubricating oil is distributed to the sliding surfaces of the vane 52e, the cylinder 52a, and the roller 52b.
  • the other oil pocket h11 (recessed portion: see FIG. 8) is also provided on the discharge notch side (discharge flow path side: reference numeral not shown) with respect to the vane 51e (see FIG. 8) in the circumferential direction.
  • the roller 52b when the rotation angle of the roller 52b is 0 ° when the roller 52b is located at the top dead center in the cylinder 52a, the roller 52b is in a state where the rotation angle of the roller 52b is 0 °.
  • the oil pocket h12 (recess) is located inside in the radial direction of the oil pocket h12. Further, when the rotation angle of the roller 52b is 180 °, the oil pocket h12 (recess) is located between the roller 52b and the cylinder 52a.
  • the sliding surfaces of the vane 52e, the cylinder 52a, and the roller 52b can be appropriately lubricated.
  • FIG. 10 is a plan view and a sectional view taken along line IV-IV of the partition plate 50.
  • the partition plate 50 is provided with a hole h15 for passing through the crankshaft 4A (see FIG. 8).
  • the partition plate 50 is provided with three holes h14 for sound deadening, four holes h16 for passing the bolt T (see FIG. 9), and the like.
  • the partition plate 50 is provided with a pair of oil pockets h11 and h12 at substantially the same position in a plan view.
  • the positions of the oil pockets h11 and h12 in the plan view in the radial and circumferential directions may be substantially the same as shown in FIG. 10, or may be different.
  • the oil pockets h11 and h12 described above may be formed by a sintering step of the partition plate 50 using a predetermined metal material.
  • the oil pockets h11 and h12 may be formed by cutting using an end mill (not shown). Thereby, the processing cost when forming the oil pockets h11 and h12 can be reduced.
  • FIG. 11A is a partially enlarged view of a vertical cross section of the oil pocket h11 of the partition plate 50.
  • the diameter of the oil pocket h11 (see also FIG. 10) having a circular shape in a plan view is the length L2, and the depth from the upper surface of the partition plate 50 to the bottom surface of the oil pocket h11 is long. It is L3.
  • the ratio of the volume of the oil pocket h11 (recess) to the stroke volume of the cylinder 51a is 0.001% or more and 0.019% or less. It is preferable to have.
  • the APF of the air conditioner equipped with the compressor 100A (see FIG. 8) can be increased as compared with the case where the oil pocket h11 is not provided. The same can be said for the other oil pocket h12 (see FIG. 10) of the partition plate 50.
  • FIG. 11B is a partially enlarged view of a vertical cross section of the oil pocket h11s of the partition plate 50B according to the modified example of the second embodiment.
  • cutting may be performed using a drill (not shown) so that the oil pocket h11s has a predetermined volume. That is, the oil pocket h12s whose surface has a V-shape in cross-sectional view may be provided so that the diameter is the length L4 and the depth is the length L5. Even with such a configuration, the same effect as in the case of FIG. 11A is obtained.
  • the compressor 100C (see FIG. 12) is provided with a predetermined recess h17 in the vane 5Ce in addition to the oil pocket h10 provided in the lower bearing 5d. Is different.
  • the other configurations are the same as those in the first embodiment (see FIG. 1). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
  • FIG. 12 is a vertical cross-sectional view of the compressor 100C according to the third embodiment.
  • the compression mechanism portion 5C includes a vane 5Ce provided with a recessed portion h17 on the side surface thereof.
  • the recessed portion h17 takes in the lubricating oil when the vane 5Ce retracts, and supplies the lubricating oil to the compression chamber Com (or the cylinder chamber including the compression chamber Com) when the vane 5Ce advances to the central axis Z side. It is a depression for.
  • the lubricating oil is intermittently supplied to the compression chamber Com and the like. Therefore, coupled with the supply of the lubricating oil through the oil pocket h10, the lubricating oil can be sufficiently supplied to each sliding surface of the cylinder 5a and the vane 5Ce.
  • the recessed portion h17 may be provided only on one side surface of the vane 5Ce having a thin plate shape, or may be provided on both side surfaces.
  • the lubricating oil can be sufficiently supplied to each sliding surface of the cylinder 5a and the vane 5Ce.
  • FIG. 13 is a configuration diagram of the air conditioner W according to the fourth embodiment.
  • the solid line arrow in FIG. 13 indicates the flow of the refrigerant during the heating operation. Further, the broken line arrow in FIG. 13 indicates the flow of the refrigerant during the cooling operation.
  • the air conditioner W (refrigeration cycle device) is a device that performs air conditioning such as cooling and heating. As shown in FIG. 13, the air conditioner W includes a compressor 100, a condenser E1, an expansion valve V, an evaporator E2, an accumulator M, a first fan F1, and a second fan F2. I have.
  • the compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1).
  • the refrigerant for example, the refrigerant R32 is used, but the present invention is not limited to this.
  • the condenser E1 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the air sent from the first fan F1.
  • the first fan F1 is a fan that sends air to the condenser E1 and is installed in the vicinity of the condenser E1.
  • the evaporator E2 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the air sent from the second fan F2.
  • the second fan F2 is a fan that sends air to the evaporator E2, and is installed in the vicinity of the evaporator E2.
  • the expansion valve V has a function of reducing the pressure of the refrigerant condensed by the condenser E1.
  • the refrigerant decompressed by the expansion valve V is guided to the evaporator E2.
  • the refrigerant circulates in sequence through the compressor 100, the condenser E1, the expansion valve V, and the evaporator E2.
  • the refrigerant evaporated in the evaporator E2 is gas-liquid separated by the accumulator M, and the gaseous refrigerant is further guided to the compressor 100.
  • a four-way valve (not shown) for switching the flow path of the refrigerant may be appropriately provided.
  • the compressor 100 and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
  • the present invention is not limited to this. That is, an oil pocket may be provided on the lower surface of the upper bearing 5c, or an oil pocket may be provided on both the upper bearing 5c and the lower bearing 5d.
  • the compressor 100 may be configured such that at least one of the upper bearing 5c (first bearing) and the lower bearing 5d (second bearing) is provided with an oil pocket (recess) on the surface facing the cylinder chamber Cy. ..
  • the present invention is not limited to this. That is, in the compression mechanism portion 51, at least one of the upper bearing 5c (bearing) and the partition plate 50 may be provided with an oil pocket (recess) on the surface facing the cylinder chamber. Further, in the compression mechanism portion 52, at least one of the lower bearing 5d (bearing) and the partition plate 50 may be provided with an oil pocket (recess) on the surface facing the cylinder chamber.
  • the compressor 100A includes two compression mechanism units 51 and 52
  • the present invention is not limited to this. That is, the compressor may be configured to include three or more compression mechanism units (not shown).
  • the uppermost compression mechanism portion (not shown) is provided with an oil pocket on the surface of the upper bearing and the partition plate facing at least one cylinder chamber
  • the lowermost compression mechanism portion (Not shown) is provided with an oil pocket on the surface of the lower bearing and the partition plate facing at least one cylinder chamber.
  • the remaining compression mechanism portions (not shown) other than the uppermost stage and the lowermost stage are provided with oil pockets on the surface facing at least one cylinder chamber of the pair of partition plates sandwiching the rotor and the cylinder. Even with such a configuration, the same effect as that of each embodiment is obtained.
  • An oil pocket may be provided in at least one of the plurality of compression mechanism portions described above, and no oil pocket may be provided in the rest.
  • each embodiment can be combined as appropriate.
  • the air conditioner W (see FIG. 13) may be configured so that the partition plate 50 (see FIG. 8) is provided with the compressor 100A provided with the oil pockets h11 and h12. Further, the oil pocket h10 of the lower bearing 5d may be omitted from the compressor 100C (see FIG. 12) of the third embodiment, and the recessed portion h17 of the vane 5e may be left. Even with such a configuration, the sealing property and lubricity of the compression mechanism portion 5C are kept good.
  • each embodiment can be applied even when the compressor 100 is arranged horizontally or diagonally.
  • the air conditioner W (see FIG. 13) described in the fourth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings.
  • the "refrigeration cycle device” including the compressor 100 is an air conditioner W (see FIG. 13)
  • the present invention is not limited to this. That is, the "refrigerating cycle device” including the compressor 100 may be a refrigerator, a water heater, an air-conditioned hot water supply system, or a refrigerator.
  • the refrigerant used in the air conditioner W is not limited to the refrigerant R32, and various types of refrigerants such as the refrigerant R410A and the refrigerant R600a and the refrigerant containing propane as a main component may be used. it can.
  • each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.

Abstract

Provided is a compressor, for example, having high performance and reliability. A compressor (100) comprises an upper bearing (5c) and a lower bearing (5d) of which at least one is provided with an oil pocket (h10) in a surface facing a cylinder chamber. When the rotational angle of a roller (5b) positioned at the top dead center in a cylinder (5a) is 0°, in a state in which the rotational angle of the roller (5b) is 0°, the oil pocket (h10) is positioned on the radially inner side of the roller (5b). In a state in which the rotational angle of the roller (5b) is 180°, the oil pocket (h10) is positioned between the roller (5b) and the cylinder (5a).

Description

圧縮機及び冷凍サイクル装置Compressor and refrigeration cycle equipment
 本発明は、圧縮機等に関する。 The present invention relates to a compressor or the like.
 ロータリ圧縮機の潤滑性やシール性を向上させる技術として、例えば、特許文献1に記載の技術が知られている。すなわち、特許文献1には、ピストンの回転によって、軸受板の少なくとも一方の内面でシリンダ内空間と連通する区間、ピストンの端面で閉塞される区間、及び、ピストンの内側と連通する区間の3区間となる位置に油溜め凹部が設けられたロータリ圧縮機について記載されている。 As a technique for improving the lubricity and sealing property of a rotary compressor, for example, the technique described in Patent Document 1 is known. That is, Patent Document 1 describes three sections: a section in which at least one inner surface of the bearing plate communicates with the cylinder inner space, a section in which the end face of the piston closes, and a section in which the piston rotates and communicates with the inside of the piston. A rotary compressor in which an oil reservoir recess is provided at a position where the oil is stored is described.
特開平6-74170号公報Japanese Unexamined Patent Publication No. 6-74170
 特許文献1には、前記した油溜め凹部を設けることは記載されているものの、この油溜め凹部の具体的な配置や構成については開示されていない。なお、油溜め凹部の位置によっては、シリンダ内空間への油の供給量が過少又は過多になり、ロータリ圧縮機の性能や信頼性の低下を招く可能性がある。 Although Patent Document 1 describes that the above-mentioned oil reservoir recess is provided, the specific arrangement and configuration of the oil reservoir recess are not disclosed. Depending on the position of the oil reservoir recess, the amount of oil supplied to the space inside the cylinder may be too small or too large, which may lead to deterioration in the performance and reliability of the rotary compressor.
 そこで、本発明は、性能や信頼性の高い圧縮機等を提供することを課題とする。 Therefore, an object of the present invention is to provide a compressor or the like having high performance and reliability.
 前記した課題を解決するために、本発明は、圧縮機の第1軸受及び第2軸受の少なくとも一方には、シリンダ室に臨む面に凹部が設けられ、シリンダ内でローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置していることとした。 In order to solve the above-mentioned problems, in the present invention, at least one of the first bearing and the second bearing of the compressor is provided with a recess on the surface facing the cylinder chamber, and the roller is positioned at the top dead point in the cylinder. When the rotation angle of the roller is 0 °, the recess is located inside the roller in the radial direction when the rotation angle of the roller is 0 °, and the rotation angle of the roller is set to 0 °. In the state of 180 °, it was determined that the recess was located between the roller and the cylinder.
 また、本発明は、圧縮機の軸受及び仕切板の少なくとも一方には、シリンダ室に臨む面に凹部が設けられ、シリンダ内でローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置していることとした。 Further, in the present invention, at least one of the bearing and the partition plate of the compressor is provided with a recess on the surface facing the cylinder chamber, and the rotation angle of the roller when the roller is located at the top dead point in the cylinder. When is 0 °, the recess is located inside the roller in the radial direction when the rotation angle of the roller is 0 °, and the roller and the roller and the roller are in a state where the rotation angle of the roller is 180 °. It was decided that the recess was located between the cylinder and the cylinder.
 本発明によれば、性能や信頼性の高い圧縮機等を提供できる。 According to the present invention, it is possible to provide a compressor or the like having high performance and reliability.
本発明の第1実施形態に係る圧縮機の縦断面図である。It is a vertical sectional view of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機における、図1のII-II線矢視断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 in the compressor according to the first embodiment of the present invention. 本発明の第1実施形態に係る圧縮機が備える圧縮機構部の縦断面の部分拡大図である。It is a partially enlarged view of the vertical cross section of the compression mechanism part provided in the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機の圧縮機構部における油ポケットの配置を示す説明図である。It is explanatory drawing which shows the arrangement of the oil pocket in the compression mechanism part of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機のシリンダ内をローラが移動する過程の説明図である。It is explanatory drawing of the process of moving a roller in the cylinder of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機の油ポケットにおける油取込区間、閉塞区間、及び油放出区間の説明図である。It is explanatory drawing of the oil intake section, the blockage section, and the oil release section in the oil pocket of the compressor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る圧縮機において、油ポケット容積比におけるAPFの実験結果を示す図である。It is a figure which shows the experimental result of APF in the oil pocket volume ratio in the compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る圧縮機の縦断面図である。It is a vertical sectional view of the compressor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る圧縮機における、図8のIII-III線矢視断面図である。FIG. 8 is a cross-sectional view taken along the line III-III of FIG. 8 in the compressor according to the second embodiment of the present invention. 本発明の第2実施形態に係る圧縮機が備える仕切板の平面図及びIV-IV線断面図である。It is a top view and IV-IV line sectional view of the partition plate provided in the compressor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る圧縮機が備える仕切板の油ポケットの縦断面の部分拡大図である。It is a partially enlarged view of the vertical cross section of the oil pocket of the partition plate provided in the compressor which concerns on 2nd Embodiment of this invention. 本発明第2実施形態の変形例に係る圧縮機が備える仕切板の油ポケットの縦断面の部分拡大図である。It is a partially enlarged view of the vertical cross section of the oil pocket of the partition plate provided in the compressor which concerns on the modification of 2nd Embodiment of this invention. 本発明の第3実施形態に係る圧縮機の縦断面図である。It is a vertical sectional view of the compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on 4th Embodiment of this invention.
≪第1実施形態≫
<圧縮機の構成>
 図1は、第1実施形態に係る圧縮機100の縦断面図である。
 圧縮機100は、ガス状の冷媒を圧縮するロータリ式の圧縮機である。図1に示すように、圧縮機100は、密閉容器1と、電動機2と、バランスウェイト31,32と、クランク軸4(駆動軸)と、圧縮機構部5と、消音カバー6と、を備えている。
<< First Embodiment >>
<Compressor configuration>
FIG. 1 is a vertical cross-sectional view of the compressor 100 according to the first embodiment.
The compressor 100 is a rotary type compressor that compresses a gaseous refrigerant. As shown in FIG. 1, the compressor 100 includes a closed container 1, an electric motor 2, balance weights 31 and 32, a crankshaft 4 (drive shaft), a compression mechanism portion 5, and a sound deadening cover 6. ing.
 密閉容器1は、電動機2やクランク軸4、圧縮機構部5等を収容する殻状の容器であり、略密閉されている。密閉容器1は、円筒状の筒チャンバ1aと、この筒チャンバ1aの上端部に溶接されている蓋チャンバ1bと、筒チャンバ1aの下端部に溶接されている底チャンバ1cと、を備えている。密閉容器1には、圧縮機100の潤滑性やシール性を高めるための潤滑油が封入され、密閉容器1の底部に油溜まりUとして貯留されている。 The closed container 1 is a shell-shaped container that houses the electric motor 2, the crankshaft 4, the compression mechanism portion 5, and the like, and is substantially sealed. The closed container 1 includes a cylindrical tubular chamber 1a, a lid chamber 1b welded to the upper end of the tubular chamber 1a, and a bottom chamber 1c welded to the lower end of the tubular chamber 1a. .. Lubricating oil for improving the lubricity and sealing property of the compressor 100 is sealed in the closed container 1, and is stored as an oil sump U at the bottom of the closed container 1.
 図1に示すように、密閉容器1の筒チャンバ1aには、吸入パイプPiが差し込まれて固定されている。吸入パイプPiは、圧縮機構部5のシリンダ室Cy(図2参照)に冷媒を導く管である。また、密閉容器1の蓋チャンバ1bには、吐出パイプPoが差し込まれて固定されている。吐出パイプPoは、圧縮機構部5で圧縮された冷媒を圧縮機100の外部に導く管である。 As shown in FIG. 1, a suction pipe Pi is inserted and fixed in the cylinder chamber 1a of the closed container 1. The suction pipe Pi is a pipe that guides the refrigerant to the cylinder chamber Cy (see FIG. 2) of the compression mechanism unit 5. Further, a discharge pipe Po is inserted and fixed in the lid chamber 1b of the closed container 1. The discharge pipe Po is a pipe that guides the refrigerant compressed by the compression mechanism unit 5 to the outside of the compressor 100.
 電動機2は、クランク軸4を回転させる駆動源であり、密閉容器1の内部に設置されている。図1に示すように、電動機2は、固定子2aと、回転子2bと、巻線2cと、を備えている。固定子2aは、電磁鋼板が積層されてなる円筒状の部材であり、筒チャンバ1aの内周壁に固定されている。回転子2bは、電磁鋼板が積層されてなる円筒状の部材であり、固定子2aの径方向内側に配置されている。なお、回転子2bには、クランク軸4が圧入等で固定されている。巻線2cは、電流が流れる配線であり、所定に巻回されて固定子2aに設置されている。 The electric motor 2 is a drive source for rotating the crankshaft 4, and is installed inside the closed container 1. As shown in FIG. 1, the electric motor 2 includes a stator 2a, a rotor 2b, and a winding 2c. The stator 2a is a cylindrical member formed by laminating electromagnetic steel sheets, and is fixed to the inner peripheral wall of the tubular chamber 1a. The rotor 2b is a cylindrical member formed by laminating electromagnetic steel sheets, and is arranged inside the stator 2a in the radial direction. The crankshaft 4 is fixed to the rotor 2b by press fitting or the like. The winding 2c is a wiring through which an electric current flows, is wound in a predetermined manner, and is installed in the stator 2a.
 クランク軸4は、電動機2の駆動に伴って回転子2bと一体で回転する軸である。クランク軸4は、上下方向に延びており、上軸受5c及び下軸受5dによって回転自在に軸支されている。図1に示すように、クランク軸4は、主軸4aと、偏心部4bと、を備えている。 The crankshaft 4 is a shaft that rotates integrally with the rotor 2b as the electric motor 2 is driven. The crankshaft 4 extends in the vertical direction and is rotatably supported by the upper bearing 5c and the lower bearing 5d. As shown in FIG. 1, the crankshaft 4 includes a main shaft 4a and an eccentric portion 4b.
 主軸4aは、電動機2の回転子2bに同軸で固定されている。偏心部4bは、主軸4aに対して偏心しながら回転する軸であり、主軸4aと一体形成されている。偏心部4bは、クランク軸4の下部において、シリンダ5aの径方向内側に配置されている。 The spindle 4a is coaxially fixed to the rotor 2b of the electric motor 2. The eccentric portion 4b is a shaft that rotates while being eccentric with respect to the main shaft 4a, and is integrally formed with the main shaft 4a. The eccentric portion 4b is arranged in the lower part of the crankshaft 4 in the radial direction of the cylinder 5a.
 また、クランク軸4内の下部には、所定の給油路4cが軸方向に設けられている。給油路4cは、密閉容器1に油溜まりUとして貯留されている潤滑油を圧縮機構部5等に導く流路であり、クランク軸4の下端で開口している。なお、給油路4cの上流端付近(つまり、クランク軸4の下端付近)には、所定に捻じ曲げられた薄板状の金属片(図示せず)が、オイルポンプとして設けられている。そして、前記した金属片がクランク軸4と一体で回転することによって、潤滑油が給油路4cを介して汲み上げられるようになっている。 Further, a predetermined oil supply passage 4c is provided in the axial direction in the lower part of the crankshaft 4. The oil supply passage 4c is a flow path that guides the lubricating oil stored as the oil sump U in the closed container 1 to the compression mechanism portion 5 or the like, and is opened at the lower end of the crankshaft 4. A thin plate-shaped metal piece (not shown) twisted and bent at a predetermined value is provided as an oil pump near the upstream end of the oil supply passage 4c (that is, near the lower end of the crankshaft 4). Then, the metal piece is rotated integrally with the crankshaft 4, so that the lubricating oil is pumped up through the oil supply passage 4c.
 また、給油路4cに連通する複数の横孔h1,h2,h3が設けられている。横孔h1を介して供給される潤滑油によって、上軸受5cの摺動面が潤滑される。また、横孔h2を介して供給される潤滑油によって、下軸受5dの摺動面が潤滑される。また、偏心部4bに設けられた縦方向に細長い横孔h3を介して、ローラ5bの径方向内側に潤滑油が供給されるようになっている。このように、ローラ5bの径方向内側の空間G(図3参照)は、クランク軸4の給油路4cに連通している。 Further, a plurality of lateral holes h1, h2, h3 communicating with the refueling passage 4c are provided. The sliding surface of the upper bearing 5c is lubricated by the lubricating oil supplied through the lateral hole h1. Further, the sliding surface of the lower bearing 5d is lubricated by the lubricating oil supplied through the lateral hole h2. Further, the lubricating oil is supplied to the inside of the roller 5b in the radial direction through the vertically elongated horizontal hole h3 provided in the eccentric portion 4b. In this way, the space G (see FIG. 3) inside the roller 5b in the radial direction communicates with the oil supply passage 4c of the crankshaft 4.
 圧縮機構部5は、クランク軸4の回転に伴って冷媒を圧縮する機構である。すなわち、圧縮機構部5は、吸入パイプPiを介して吸い込まれる冷媒を圧縮室Comで圧縮し、圧縮した冷媒を吐出する機構であり、電動機2の下側に配置されている。図1に示すように、圧縮機構部5は、シリンダ5aと、ローラ5bと、上軸受5c(第1軸受)と、下軸受5d(第2軸受)と、ベーン5eと、吐出弁5fと、ベーンばね5gと、を備えている。 The compression mechanism unit 5 is a mechanism that compresses the refrigerant as the crankshaft 4 rotates. That is, the compression mechanism unit 5 is a mechanism that compresses the refrigerant sucked through the suction pipe Pi in the compression chamber Com and discharges the compressed refrigerant, and is arranged below the electric motor 2. As shown in FIG. 1, the compression mechanism portion 5 includes a cylinder 5a, a roller 5b, an upper bearing 5c (first bearing), a lower bearing 5d (second bearing), a vane 5e, a discharge valve 5f, and the like. It is equipped with 5 g of a vane spring.
 図2は、図1のII-II線矢視断面図である。
 図2に示すシリンダ5aは、ローラ5bや上軸受5c、下軸受5dとともにシリンダ室Cyを形成する部材であり、環状(円筒状)を呈している。なお、シリンダ室Cyとは、シリンダ5aとローラ5bとの間の空間である。なお、シリンダ室Cyには、圧縮室Com及び吸入室Inが含まれるが(図5も参照)、図2では、ローラ5bによってベーン5eの先端がシリンダ5aの内周面まで退いた状態になっており、シリンダ室Cyの全体が圧縮室Comになっている。
FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
The cylinder 5a shown in FIG. 2 is a member that forms a cylinder chamber Cy together with a roller 5b, an upper bearing 5c, and a lower bearing 5d, and has an annular shape (cylindrical shape). The cylinder chamber Cy is a space between the cylinder 5a and the roller 5b. The cylinder chamber Cy includes a compression chamber Com and a suction chamber In (see also FIG. 5), but in FIG. 2, the tip of the vane 5e is retracted to the inner peripheral surface of the cylinder 5a by the roller 5b. The entire cylinder chamber Cy is a compression chamber Com.
 ローラ5bは、電動機2(図1参照)の駆動に伴ってシリンダ5a内で公転する部材であり、環状(円筒状)を呈している。そして、ローラ5bが、シリンダ5aの内周面に摺接しつつ、シリンダ5aの内側を公転するようになっている。なお、ローラ5bの内周面は、前記した偏心部4bの外周面に摺接している。 The roller 5b is a member that revolves in the cylinder 5a when the electric motor 2 (see FIG. 1) is driven, and has an annular shape (cylindrical shape). Then, the roller 5b revolves inside the cylinder 5a while sliding in contact with the inner peripheral surface of the cylinder 5a. The inner peripheral surface of the roller 5b is in sliding contact with the outer peripheral surface of the eccentric portion 4b described above.
 ベーン5eは、ローラ5bの外周面に先端が(つまり、ベーン5eのローラ5b側の先端が)接触し、シリンダ5aとローラ5bとの間のシリンダ室Cyを吸入室In及び圧縮室Com(図5も参照)に仕切る板状部材である。 The tip of the vane 5e comes into contact with the outer peripheral surface of the roller 5b (that is, the tip of the vane 5e on the roller 5b side), and the cylinder chamber Cy between the cylinder 5a and the roller 5b is brought into the suction chamber In and the compression chamber Com (FIG. It is a plate-shaped member that divides into 5).
 図2に示すように、シリンダ5aの外周面の所定範囲には、円弧状の基端部5kが、シリンダ5aと略一体に設置されている。この基端部5k及びシリンダ5aを径方向に貫通している吸入通路h4に、吸入パイプPiが差し込まれて固定されている。そして、吸入パイプPi及び吸入通路h4を順次に介して、シリンダ室Cyにガス状の冷媒が導かれるようになっている。 As shown in FIG. 2, an arcuate base end portion 5k is installed substantially integrally with the cylinder 5a in a predetermined range on the outer peripheral surface of the cylinder 5a. The suction pipe Pi is inserted and fixed in the suction passage h4 that penetrates the base end portion 5k and the cylinder 5a in the radial direction. Then, the gaseous refrigerant is guided to the cylinder chamber Cy through the suction pipe Pi and the suction passage h4 in sequence.
 また、基端部5kの所定箇所には、ベーンばね装着穴h5が、シリンダ5aの外周面付近まで径方向に設けられている。このベーンばね装着穴h5は、後記するベーンばね5g(図1参照)が装着される穴である。
 また、ベーンばね装着穴h5と、シリンダ5aの径方向内側の空間と、を連通させるように、径方向のスリット(図2では符号を図示せず)がシリンダ5aに設けられている。このスリットは、ベーン5eを径方向で往復移動させるためのスペースであり、ベーン5eの肉厚よりも若干幅広に設けられている。
Further, at a predetermined position of the base end portion 5k, a vane spring mounting hole h5 is provided in the radial direction up to the vicinity of the outer peripheral surface of the cylinder 5a. The vane spring mounting hole h5 is a hole into which the vane spring 5g (see FIG. 1) described later is mounted.
Further, a radial slit (not shown by a reference numeral in FIG. 2) is provided in the cylinder 5a so as to communicate the vane spring mounting hole h5 and the space inside the cylinder 5a in the radial direction. This slit is a space for reciprocating the vane 5e in the radial direction, and is provided slightly wider than the wall thickness of the vane 5e.
 図3は、圧縮機が備える圧縮機構部5の縦断面の部分拡大図である。
 図3に示すベーンばね5gは、ベーン5eを径方向内向きに付勢するばねであり、ベーンばね装着穴h5に設置されている。そして、圧縮機構部5の内・外の圧力差、及び、ベーンばね5gの付勢力によって、ベーン5eの先端がローラ5bの外周面に押し当てられるようになっている(図2も参照)。これによって、シリンダ5aとローラ5bとの間の空間であるシリンダ室Cyが、吸入室In及び圧縮室Comに仕切られる(図5も参照)。また、シリンダ5aの上面の内周縁部の所定箇所には、吐出切欠きh6が設けられている。
FIG. 3 is a partially enlarged view of a vertical cross section of the compression mechanism portion 5 included in the compressor.
The vane spring 5g shown in FIG. 3 is a spring that urges the vane 5e inward in the radial direction, and is installed in the vane spring mounting hole h5. The tip of the vane 5e is pressed against the outer peripheral surface of the roller 5b by the pressure difference between the inside and outside of the compression mechanism portion 5 and the urging force of the vane spring 5g (see also FIG. 2). As a result, the cylinder chamber Cy, which is the space between the cylinder 5a and the roller 5b, is partitioned into the suction chamber In and the compression chamber Com (see also FIG. 5). Further, a discharge notch h6 is provided at a predetermined position on the inner peripheral edge of the upper surface of the cylinder 5a.
 この吐出切欠きh6は、圧縮された冷媒を吐出弁5fに導く切欠きであり、図2に示すように、その縁は円弧状を呈している。また、吐出切欠きh6、及び、吸入通路h4の開口部は、いずれも周方向においてベーン5eに近接している。具体的には、吐出切欠きh6は、周方向においてベーン5eの一方側に設けられている。また、吸入通路h4は、周方向においてベーン5eの他方側で開口している。 This discharge notch h6 is a notch that guides the compressed refrigerant to the discharge valve 5f, and as shown in FIG. 2, its edge has an arc shape. Further, the discharge notch h6 and the opening of the suction passage h4 are both close to the vane 5e in the circumferential direction. Specifically, the discharge notch h6 is provided on one side of the vane 5e in the circumferential direction. Further, the suction passage h4 is open on the other side of the vane 5e in the circumferential direction.
 図3に示す上軸受5c(第1軸受)は、クランク軸4を軸支する滑り軸受であり、シリンダ5aの上側(軸方向の一方側)に設けられている。この上軸受5cは、シリンダ5a及び下軸受5dとともに複数のボルトT(図2参照)で締結され、さらに、筒チャンバ1a(図1参照)の内周壁に固定されている。図3の例では、クランク軸4と上軸受5cとの局所的な片当りを緩和するために、上軸受5cのシリンダ5a側の端面に所定の環状溝h7が設けられている。 The upper bearing 5c (first bearing) shown in FIG. 3 is a slide bearing that pivotally supports the crankshaft 4, and is provided on the upper side (one side in the axial direction) of the cylinder 5a. The upper bearing 5c is fastened together with the cylinder 5a and the lower bearing 5d with a plurality of bolts T (see FIG. 2), and is further fixed to the inner peripheral wall of the cylinder chamber 1a (see FIG. 1). In the example of FIG. 3, a predetermined annular groove h7 is provided on the end surface of the upper bearing 5c on the cylinder 5a side in order to alleviate the local one-sided contact between the crankshaft 4 and the upper bearing 5c.
 上軸受5cにおいて、シリンダ5aの吐出切欠きh6に対応する位置には、所定の孔が吐出ポートh8として設けられている。なお、圧縮室Comに連通する「吐出流路」は、吐出切欠きh6及び吐出ポートh8を含んで構成される。 In the upper bearing 5c, a predetermined hole is provided as a discharge port h8 at a position corresponding to the discharge notch h6 of the cylinder 5a. The "discharge flow path" communicating with the compression chamber Com includes a discharge notch h6 and a discharge port h8.
 図3に示す吐出弁5fは、圧縮された冷媒を密閉容器1(図1参照)内の空間に吐出するための弁であり、前記した「吐出流路」に設けられている。図3の例では、吐出弁5fが、吐出ポートh8を塞ぐように上軸受5cに設置されている。そして、圧縮された冷媒の吐出圧が、板ばねである吐出弁5fの弾性力に打ち勝ったとき、吐出弁5fが開くようになっている。 The discharge valve 5f shown in FIG. 3 is a valve for discharging the compressed refrigerant into the space inside the closed container 1 (see FIG. 1), and is provided in the above-mentioned “discharge flow path”. In the example of FIG. 3, the discharge valve 5f is installed in the upper bearing 5c so as to close the discharge port h8. Then, when the discharge pressure of the compressed refrigerant overcomes the elastic force of the discharge valve 5f, which is a leaf spring, the discharge valve 5f opens.
 下軸受5d(第2軸受)は、クランク軸4を軸支する滑り軸受であり、シリンダ5aの下側(軸方向の他方側)に設けられている。図3の例では、クランク軸4と下軸受5dとの局所的な片当りを緩和するために、下軸受5dのシリンダ5a側の端面に所定の環状溝h9が設けられている。
 また、下軸受5dには、シリンダ室Cy(図5も参照)に臨む面に凹状の油ポケットh10(凹部)が設けられている。詳細については後記するが、シリンダ5a内でのローラ5bの公転中、ローラ5bの径方向内側の空間Gで油ポケットh10に潤滑油が取り込まれ、さらに、この潤滑油がシリンダ室Cyに供給される、というサイクルが周期的に繰り返されるようになっている。この油ポケットh10の配置等が、本実施形態の主な特徴の一つである。
The lower bearing 5d (second bearing) is a slide bearing that pivotally supports the crankshaft 4, and is provided on the lower side (the other side in the axial direction) of the cylinder 5a. In the example of FIG. 3, a predetermined annular groove h9 is provided on the end surface of the lower bearing 5d on the cylinder 5a side in order to alleviate the local one-sided contact between the crankshaft 4 and the lower bearing 5d.
Further, the lower bearing 5d is provided with a concave oil pocket h10 (recess) on the surface facing the cylinder chamber Cy (see also FIG. 5). The details will be described later, but during the revolution of the roller 5b in the cylinder 5a, the lubricating oil is taken into the oil pocket h10 in the space G inside the radial direction of the roller 5b, and further, this lubricating oil is supplied to the cylinder chamber Cy. The cycle of lubrication is periodically repeated. The arrangement of the oil pocket h10 and the like is one of the main features of the present embodiment.
 消音カバー6(図1も参照)は、冷媒の圧縮に伴う騒音を抑制するためのカバーであり、上軸受5cの上面を覆った状態で、上軸受5cに固定されている。なお、消音カバー6には、圧縮された冷媒を密閉容器1内の空間に放出するための複数の孔(図1には図示せず)が設けられている。 The muffling cover 6 (see also FIG. 1) is a cover for suppressing noise caused by compression of the refrigerant, and is fixed to the upper bearing 5c with the upper surface of the upper bearing 5c covered. The sound deadening cover 6 is provided with a plurality of holes (not shown in FIG. 1) for discharging the compressed refrigerant into the space inside the closed container 1.
 図4は、圧縮機構部5における油ポケットh10の配置を示す説明図である。
 図4に示すY軸は、中心軸線Z(図1も参照)に対して垂直であり、さらに、ベーン5eの側面と平行であって、シリンダ5aやローラ5bの他、ベーン5eを通る所定の軸線である。また、中心軸線Z及びY軸の両方に垂直な軸線をX軸とする。
FIG. 4 is an explanatory view showing the arrangement of the oil pocket h10 in the compression mechanism unit 5.
The Y-axis shown in FIG. 4 is perpendicular to the central axis Z (see also FIG. 1), is parallel to the side surface of the vane 5e, and passes through the cylinder 5a, the roller 5b, and the vane 5e. The axis. Further, the axis perpendicular to both the central axis Z and the Y axis is defined as the X axis.
 図4の例では、油ポケットh10は、底が比較的浅い円形の穴として、ベーン5eの近傍に設けられている。より詳しく説明すると、径方向に往復するベーン5eに重ならないように(油ポケットh10がベーン5eで塞がれないように)、X軸方向でベーン5eから吐出切欠きh6側に距離L1だけ離れた位置に油ポケットh10が設けられている。前記した距離L1は、例えば、0.5mm~2.0mmの範囲内であることが望ましいが、これに限定されるものではない。このようにベーン5eの近傍に油ポケットh10が設けられることで、油ポケットh10からシリンダ室Cyに放出された潤滑油が、ベーン5eの側面や先端付近に付着しやすくなる。したがって、ベーン5eとシリンダ5a、ローラ5bの摺動面を十分に潤滑できる。 In the example of FIG. 4, the oil pocket h10 is provided in the vicinity of the vane 5e as a circular hole having a relatively shallow bottom. More specifically, it is separated from the vane 5e in the X-axis direction by a distance L1 to the discharge notch h6 side so as not to overlap the vane 5e reciprocating in the radial direction (so that the oil pocket h10 is not blocked by the vane 5e). An oil pocket h10 is provided at a vertical position. The distance L1 described above is preferably, for example, in the range of 0.5 mm to 2.0 mm, but is not limited thereto. By providing the oil pocket h10 in the vicinity of the vane 5e in this way, the lubricating oil discharged from the oil pocket h10 into the cylinder chamber Cy easily adheres to the side surface or the vicinity of the tip of the vane 5e. Therefore, the sliding surfaces of the vane 5e, the cylinder 5a, and the roller 5b can be sufficiently lubricated.
 また、油ポケットh10のY軸方向の位置に関しては、油取込区間Δθin(図6参照)と油放出区間Δθout(図6参照)とが概ね等しくなる位置に油ポケットh10が設けられている。前記した油取込区間Δθinとは、油ポケットh10に潤滑油が取り込まれているときのローラ5bの回転角の範囲である。より具体的には、ローラ5bの径方向内側に油ポケットh10(凹部)が位置している状態でのローラ5bの回転角の範囲が、油取込区間Δθinである。 Regarding the position of the oil pocket h10 in the Y-axis direction, the oil pocket h10 is provided at a position where the oil intake section Δθ in (see FIG. 6) and the oil release section Δθ out (see FIG. 6) are substantially equal to each other. There is. The oil intake section Δθ in described above is the range of the rotation angle of the roller 5b when the lubricating oil is taken into the oil pocket h10. More specifically, the range of the rotation angle of the roller 5b when the oil pocket h10 (recess) is located inside the roller 5b in the radial direction is the oil intake section Δθ in .
 一方、油放出区間Δθoutとは、油ポケットh10から潤滑油が放出されているときのローラ5bの回転角の範囲である。より具体的には、ローラ5bとシリンダ5aとの間に油ポケットh10(凹部)が位置している状態でのローラ5bの回転角の範囲が、油放出区間Δθoutである。前記した油取込区間Δθinと油放出区間Δθoutとを概ね等しくすることで、単位時間当たりに油ポケットh10に取り込まれる潤滑油の量と、油ポケットh10から放出される潤滑油の量と、が略等しくなる。したがって、油ポケットh10を用いて圧縮室Comに潤滑油が間欠的に給油される際の体積効率を高めることができる。 On the other hand, the oil discharge section Δθ out is the range of the rotation angle of the roller 5b when the lubricating oil is discharged from the oil pocket h10. More specifically, the range of the rotation angle of the roller 5b when the oil pocket h10 (recess) is located between the roller 5b and the cylinder 5a is the oil discharge section Δθ out . By making the oil intake section Δθ in and the oil release section Δθ out substantially equal, the amount of lubricating oil taken into the oil pocket h10 and the amount of lubricating oil released from the oil pocket h10 per unit time can be obtained. , Are approximately equal. Therefore, it is possible to increase the volumetric efficiency when the lubricating oil is intermittently supplied to the compression chamber Com by using the oil pocket h10.
 また、油ポケットh10の径は、ローラ5bの径方向の厚さよりも小さくなっている。より詳しく説明すると、油ポケットh10の径は、ローラ5bのシール面(環状の下面)の径方向の長さよりも短くなっている。これによって、前記した油取込区間Δθinと油放出区間Δθoutとの間の閉塞区間Δθocc(図6参照)、油ポケットh10がローラ5bのシール面で一時的に閉塞されるようにしている。 Further, the diameter of the oil pocket h10 is smaller than the radial thickness of the roller 5b. More specifically, the diameter of the oil pocket h10 is shorter than the radial length of the sealing surface (annular lower surface) of the roller 5b. As a result, the blockage section Δθ occ (see FIG. 6) between the oil intake section Δθ in and the oil release section Δθ out and the oil pocket h10 are temporarily blocked by the sealing surface of the roller 5b. There is.
 図5は、シリンダ5a内をローラ5bが移動する過程の説明図である。
 なお、図5に示す回転角θは、シリンダ5a内で移動(公転)するローラ5bの回転角である。また、シリンダ5a内でローラ5bが「上死点」(TDC:Top Dead Center)に位置しているときのローラ5bの回転角を0°とする。前記した「上死点」とは、圧縮室Comで冷媒の圧縮が開始されるときのローラ5bの位置を意味している。言い換えると、「上死点」とは、平面視でベーン5eが延びている方向(図4のY軸方向)において、ローラ5bの中心がベーン5eの先端に最も近づいたとき(ベーン5eが最も後退したとき)のローラ5bの位置を意味している。
FIG. 5 is an explanatory diagram of a process in which the roller 5b moves in the cylinder 5a.
The rotation angle θ shown in FIG. 5 is the rotation angle of the roller 5b that moves (revolves) in the cylinder 5a. Further, the rotation angle of the roller 5b when the roller 5b is located at the "top dead center" (TDC: Top Dead Center) in the cylinder 5a is set to 0 °. The above-mentioned "top dead center" means the position of the roller 5b when the compression of the refrigerant is started in the compression chamber Com. In other words, the "top dead center" is when the center of the roller 5b is closest to the tip of the vane 5e in the direction in which the vane 5e extends in a plan view (Y-axis direction in FIG. 4) (the vane 5e is the closest). It means the position of the roller 5b (when retracted).
 図4に示すように、ローラ5bの回転角が0°の状態では、ローラ5bの径方向内側に油ポケットh10(凹部)が位置している。したがって、給油路4c(図3参照)及び横孔h3(図3参照)を順次に介して、ローラ5bの径方向内側の空間Gに供給された潤滑油が、油ポケットh10に取り込まれる。 As shown in FIG. 4, when the rotation angle of the roller 5b is 0 °, the oil pocket h10 (recess) is located inside the roller 5b in the radial direction. Therefore, the lubricating oil supplied to the radial inner space G of the roller 5b is taken into the oil pocket h10 through the oil supply passage 4c (see FIG. 3) and the lateral hole h3 (see FIG. 3) in order.
 また、ローラ5bの回転角が90°の状態では、油ポケットh10(凹部)がローラ5bで閉塞されている。これによって、ローラ5bの径方向内側・外側の空間が油ポケットh10を介して連通することを防止できる。したがって、油ポケットh10を設けても、圧縮機構部5で冷媒を圧縮する際の効率が低下するおそれはほとんどない。 Further, when the rotation angle of the roller 5b is 90 °, the oil pocket h10 (recess) is closed by the roller 5b. As a result, it is possible to prevent the radial inner and outer spaces of the roller 5b from communicating with each other via the oil pocket h10. Therefore, even if the oil pocket h10 is provided, there is almost no possibility that the efficiency when the refrigerant is compressed by the compression mechanism portion 5 is lowered.
 また、ローラ5bの回転角が180°の状態では、ローラ5bとシリンダ5aとの間に油ポケットh10(凹部)が位置している。その結果、油ポケットh10の潤滑油が圧縮室Comに放出される。一方、油ポケットh10には、前記した潤滑油を置換するようにガス状の冷媒が入り込む。 Further, when the rotation angle of the roller 5b is 180 °, the oil pocket h10 (recess) is located between the roller 5b and the cylinder 5a. As a result, the lubricating oil in the oil pocket h10 is released into the compression chamber Com. On the other hand, the gaseous refrigerant enters the oil pocket h10 so as to replace the lubricating oil described above.
 なお、ローラ5bの径方向内側の空間Gは、横孔h3(図3参照)及び給油路4c(図3参照)を順次に介して、密閉容器1内(ただし、圧縮機構部5の外側:図1参照)の空間に連通している。したがって、油ポケットh10がローラ5bに閉塞されているθ=90°の状態において油ポケットh10の潤滑油の圧力は、密閉容器1内での冷媒の圧力(吐出圧9に略等しくなっている。一方、θ=180°の圧縮室Comでの冷媒の圧力は、圧縮の途中であるため、所定の吐出圧よりも低い。したがって、θ=180°では、油ポケットh10の潤滑油が、相対的に低圧である圧縮室Comに拡散される。 The space G inside the roller 5b in the radial direction is sequentially passed through the lateral hole h3 (see FIG. 3) and the oil supply passage 4c (see FIG. 3) in the closed container 1 (however, the outside of the compression mechanism portion 5: It communicates with the space shown in Fig. 1). Therefore, in a state where the oil pocket h10 is closed by the roller 5b at θ = 90 °, the pressure of the lubricating oil in the oil pocket h10 is substantially equal to the pressure of the refrigerant in the closed container 1 (discharge pressure 9). On the other hand, the pressure of the refrigerant in the compression chamber Com at θ = 180 ° is lower than the predetermined discharge pressure because it is in the middle of compression. Therefore, at θ = 180 °, the lubricating oil in the oil pocket h10 is relatively It is diffused into the compression chamber Com which is low pressure.
 また、ローラ5bの回転角が270°の状態では、油ポケットh10(凹部)がローラ5bで閉塞されている。これによって、ローラ5bの径方向内側・外側の空間が油ポケットh10を介して連通することを防止できる。 Further, when the rotation angle of the roller 5b is 270 °, the oil pocket h10 (recess) is closed by the roller 5b. As a result, it is possible to prevent the radial inner and outer spaces of the roller 5b from communicating with each other via the oil pocket h10.
 そして、ローラ5bの回転角が0°の状態(つまり、上死点)に戻ると、ローラ5bの径方向内側に存在する高圧の潤滑油が油ポケットh10に再び入り込む。このようにして、圧縮室Comへの潤滑油の供給が間欠的に行われるようになっている。 Then, when the rotation angle of the roller 5b returns to the state of 0 ° (that is, the top dead center), the high-pressure lubricating oil existing inside the roller 5b in the radial direction reenters the oil pocket h10. In this way, the lubricating oil is intermittently supplied to the compression chamber Com.
 また、油ポケットh10(凹部)は、周方向においてベーン5eよりも「吐出流路」側に設けられている。前記したように、「吐出流路」とは、吐出切欠きh6(図4参照)及び吐出ポートh8(図4参照)を含む流路である。これによって、圧縮室Comに拡散された冷媒が(例えば、図5の「θ=180°」)、ローラ5bの移動に伴う圧縮室Comの縮小に伴い(例えば、図5の「θ=270°」)、自ずからベーン5eの先端付近に集められる。 Further, the oil pocket h10 (recess) is provided on the "discharge flow path" side of the vane 5e in the circumferential direction. As described above, the “discharge flow path” is a flow path including the discharge notch h6 (see FIG. 4) and the discharge port h8 (see FIG. 4). As a result, the refrigerant diffused into the compression chamber Com (for example, “θ = 180 °” in FIG. 5) is reduced due to the movement of the roller 5b (for example, “θ = 270 °” in FIG. 5). ”), It is naturally collected near the tip of the vane 5e.
 これによって、図4に示すベーン5eの先端の他、ベーン5eの圧縮室Com側の側面に潤滑油が付着しやすくなる。なお、ベーン5eの先端や側面は、圧縮機構部5の中でも特に摺動摩擦が生じやすい箇所である。また、圧縮機Comに拡散された潤滑油によって、ベーン5eの他、シリンダ5やローラ5bの各摺動面も十分に潤滑される。 As a result, in addition to the tip of the vane 5e shown in FIG. 4, the lubricating oil easily adheres to the side surface of the vane 5e on the compression chamber Com side. The tip and side surfaces of the vane 5e are particularly prone to sliding friction in the compression mechanism portion 5. Further, the lubricating oil diffused in the compressor Com sufficiently lubricates the sliding surfaces of the cylinder 5 and the roller 5b in addition to the vane 5e.
 また、吸入室In(図5参照)と圧縮室Com(図5参照)との圧力差によって、ベーン5eを吸入パイプPi側(つまり、吸入通路h4側:図3参照)に押圧する力が作用する。その結果、ベーン5eの吐出切欠きh6側の側面と、シリンダ5aの壁面と、の間の微小な隙間に潤滑油が入り込むことで、油ポケットh10からの潤滑油によってシリンダ5a及びベーン5eの各摺動面が十分に潤滑される。 Further, due to the pressure difference between the suction chamber In (see FIG. 5) and the compression chamber Com (see FIG. 5), a force that presses the vane 5e toward the suction pipe Pi side (that is, the suction passage h4 side: see FIG. 3) acts. To do. As a result, the lubricating oil enters the minute gap between the side surface of the vane 5e on the discharge notch h6 side and the wall surface of the cylinder 5a, so that the lubricating oil from the oil pocket h10 causes each of the cylinder 5a and the vane 5e to enter. The sliding surface is sufficiently lubricated.
 ちなみに、ベーン5eにおけるベーンばね5g側の後端部は、密閉容器1内(図1参照)の空間に臨んでいる。したがって、密閉容器1内のミスト状の潤滑油がベーン5eの後端部にも付着する。その結果、ベーン5eの往復移動に伴い、ベーン5eの吸入室In側の側面にも潤滑油し、シリンダ5aやベーン5eの各摺動面が潤滑される。 By the way, the rear end of the vane 5e on the vane spring 5g side faces the space inside the closed container 1 (see FIG. 1). Therefore, the mist-like lubricating oil in the closed container 1 also adheres to the rear end portion of the vane 5e. As a result, as the vane 5e reciprocates, the side surface of the vane 5e on the suction chamber In side is also lubricated, and the sliding surfaces of the cylinder 5a and the vane 5e are lubricated.
 図6は、油ポケットにおける油取込区間Δθin、閉塞区間Δθocc、及び油放出区間Δθoutの説明図である(適宜、図5を参照)。
 図6に示す回転角θは、前記したように、シリンダ5a内で移動(公転)するローラ5bの回転角であり、上死点での回転角をθ=0°としている。そして、ローラ5bの移動に伴い、油ポケットh10への潤滑油の取込み(油取込区間Δθin)、油ポケットh10の閉塞(閉塞区間Δθocc)、圧縮室Comへの潤滑油の放出(油放出区間Δθout)、及び油ポケットh10の閉塞(閉塞区間Δθocc)が順次に繰り返されるようになっている。
FIG. 6 is an explanatory diagram of an oil intake section Δθ in , a blockage section Δθ occ , and an oil release section Δθ out in the oil pocket (see FIG. 5 as appropriate).
As described above, the rotation angle θ shown in FIG. 6 is the rotation angle of the roller 5b that moves (revolves) in the cylinder 5a, and the rotation angle at the top dead center is θ = 0 °. Then, as the roller 5b moves, the lubricating oil is taken into the oil pocket h10 (oil uptake section Δθ in ), the oil pocket h10 is closed (closed section Δθ occ ), and the lubricating oil is released into the compression chamber Com (oil). The release section Δθ out ) and the blockage of the oil pocket h10 (blockage section Δθ occ ) are sequentially repeated.
 また、図6に示すように、油取込区間Δθinと油放出区間Δθoutとが概ね等しいことが好ましい。より具体的には、油取込区間Δθin及び油放出区間Δθoutが、それぞれ、140°以上かつ165°以下であることが好ましい。これによって、油取込区間Δθinにおいて油ポケットh10に取り込まれた潤滑油が、油放出区間Δθoutにおいて圧縮室Comに無駄なく放出される。したがって、油ポケットh10から圧縮室Comに潤滑油が間欠的に給油される際の体積効率を高めることができる。 Further, as shown in FIG. 6, it is preferable that the oil intake section Δθ in and the oil release section Δθ out are substantially equal to each other. More specifically, it is preferable that the oil intake section Δθ in and the oil release section Δθ out are 140 ° or more and 165 ° or less, respectively. As a result, the lubricating oil taken into the oil pocket h10 in the oil intake section Δθ in is discharged to the compression chamber Com without waste in the oil release section Δθ out. Therefore, it is possible to increase the volumetric efficiency when the lubricating oil is intermittently supplied from the oil pocket h10 to the compression chamber Com.
 なお、油取込区間Δθinと油放出区間Δθoutとの大小関係は、特に限定されるものではない。例えば、油取込区間Δθin=150°である一方、油放出区間Δθout=160°であってもよい。また、例えば、油取込区間Δθin=165°である一方、油放出区間Δθout=140°であってもよい。 The magnitude relationship between the oil intake section Δθ in and the oil release section Δθ out is not particularly limited. For example, the oil intake section Δθ in = 150 ° may be set, while the oil release section Δθ out = 160 ° may be set. Further, for example, the oil intake section Δθ in = 165 ° may be set, while the oil release section Δθ out = 140 ° may be set.
 図7は、油ポケット容積比におけるAPFの実験結果を示す図である(適宜、図2を参照)。
 図7の横軸は、油ポケット容積比(以下、油ポケット容積比Vprという)であり、縦軸は、本実施形態の圧縮機100(図1参照)を用いた空気調和機のAPF(Annual Performance Factor)である。なお、油ポケット容積比Vprは、シリンダ5aの行程容積に対して、油ポケットh10(凹部)の容積Vpが占める比率であり、以下の式(1)に基づいて算出される。前記した「行程容積」とは、ローラの回転角θ=0°の状態であるときのシリンダ室Cy(図2参照)の容積である。
FIG. 7 is a diagram showing the experimental results of APF in the oil pocket volume ratio (see FIG. 2 as appropriate).
The horizontal axis of FIG. 7 is the oil pocket volume ratio (hereinafter referred to as oil pocket volume ratio Vpr), and the vertical axis is the APF (Annual) of the air conditioner using the compressor 100 (see FIG. 1) of the present embodiment. Performance Factor). The oil pocket volume ratio Vpr is the ratio of the volume Vp of the oil pocket h10 (recess) to the stroke volume of the cylinder 5a, and is calculated based on the following formula (1). The above-mentioned "stroke volume" is the volume of the cylinder chamber Cy (see FIG. 2) when the rotation angle of the roller is θ = 0 °.
 Vpr=Vp/Vth×100 ・・・(1) Vpr = Vp / Vth x 100 ... (1)
 そして、油ポケットh10の径を所定の一定値とする一方、油ポケットh10の深さ寸法を適宜に変化させ、油ポケット容積比が異なる複数の場合のそれぞれについてAPFを算出し、図7の黒丸で示す点としてプロットした。この実験結果によると、行程容積に対して、油ポケットh10の容積が占める比率である油ポケット容積比Vprは、0.001%以上かつ0.019%以下であることが好ましい。油ポケット容積比Vprが前記した範囲内であれば、油ポケットh10を設けない場合(油ポケット容積比Vpr=0の場合)に比べて、APFが高くなるからである。 Then, while setting the diameter of the oil pocket h10 to a predetermined constant value, the depth dimension of the oil pocket h10 is appropriately changed, and APF is calculated for each of a plurality of cases where the oil pocket volume ratios are different, and the black circles in FIG. 7 are obtained. It was plotted as a point indicated by. According to this experimental result, the oil pocket volume ratio Vpr, which is the ratio of the volume of the oil pocket h10 to the stroke volume, is preferably 0.001% or more and 0.019% or less. This is because if the oil pocket volume ratio Vpr is within the above range, the APF is higher than when the oil pocket h10 is not provided (when the oil pocket volume ratio Vpr = 0).
 特に、油ポケット容積比Vprが0.01%であるとき、油ポケットh10を設けない場合(Vpr=0の場合)を基準とするAPFの上昇幅が0.36%となり、APFが最も高くなった。 In particular, when the oil pocket volume ratio Vpr is 0.01%, the amount of increase in APF based on the case where the oil pocket h10 is not provided (when Vpr = 0) is 0.36%, and the APF is the highest. It was.
 なお、符号Jで示す白抜きの丸印は、前記した先行技術文献の図2に記載のものと同様の位置に油ポケット(図示せず)を設けた場合の実験結果である。この場合、ベーン5eから油ポケットが離れているため、摺動摩擦が大きいベーン5e付近が十分に潤滑されず、油ポケットを設けない場合(油ポケット容積比Vpr=0)よりもAPFが低くなっている。これに対して第1実施形態によれば、前記したように、ベーン5e付近が良好に潤滑され、また、圧縮室Comのシール性が保たれるため、これまでよりもAPFを大幅に高くすることができる。 The white circles indicated by the reference numerals J are the experimental results when the oil pockets (not shown) are provided at the same positions as those shown in FIG. 2 of the above-mentioned prior art document. In this case, since the oil pocket is separated from the vane 5e, the vicinity of the vane 5e, which has a large sliding friction, is not sufficiently lubricated, and the APF is lower than when the oil pocket is not provided (oil pocket volume ratio Vpr = 0). There is. On the other hand, according to the first embodiment, as described above, the vicinity of the vane 5e is well lubricated and the sealing property of the compression chamber Com is maintained, so that the APF is significantly higher than before. be able to.
 また、例えば、行程容積Vth=9.5[ml/rev]の場合において、油ポケットh10の直径を3[mm]としたとき、油ポケットh10の深さを0.13[mm]にすれば、油ポケット容積比Vprが約0.01%になる。このように、非常に小さな油ポケットh10を下軸受5dの上面に設けることで、圧縮機100の性能や信頼性を高めることができる。 Further, for example, in the case of the stroke volume Vth = 9.5 [ml / rev], when the diameter of the oil pocket h10 is 3 [mm], the depth of the oil pocket h10 is 0.13 [mm]. , The oil pocket volume ratio Vpr is about 0.01%. As described above, by providing the very small oil pocket h10 on the upper surface of the lower bearing 5d, the performance and reliability of the compressor 100 can be improved.
<効果>
 第1実施形態によれば、下軸受5dの油ポケットh10から圧縮室Comに潤滑油が間欠的に供給されるため、圧縮室Comのシール性を高めことができる。また、ベーン5eの近傍に油ポケットh10を設けることで、ベーン5eやシリンダ5aの各摺動面を十分に潤滑できる。特に、ベーン5eよりも吐出切欠きh6側(図4参照)に油ポケットh10を設けることで、ベーン5eの先端や側面に潤滑油が付着しやすくなる。したがって、特に、油膜が形成されにくい低速回転中であっても、圧縮機構部5(図4参照)の潤滑性・シール性を高めることができる。また、高温高圧になりやすい冷媒R32を用いる場合でも、性能や信頼性の高い圧縮機100を提供できる。
<Effect>
According to the first embodiment, since the lubricating oil is intermittently supplied from the oil pocket h10 of the lower bearing 5d to the compression chamber Com, the sealing property of the compression chamber Com can be improved. Further, by providing the oil pocket h10 in the vicinity of the vane 5e, each sliding surface of the vane 5e and the cylinder 5a can be sufficiently lubricated. In particular, by providing the oil pocket h10 on the discharge notch h6 side (see FIG. 4) of the vane 5e, the lubricating oil is likely to adhere to the tip and side surfaces of the vane 5e. Therefore, in particular, the lubricity and sealing property of the compression mechanism portion 5 (see FIG. 4) can be improved even during low-speed rotation in which an oil film is difficult to form. Further, even when the refrigerant R32, which tends to have high temperature and high pressure, is used, the compressor 100 having high performance and reliability can be provided.
 また、油取込区間Δθinと油放出区間Δθoutとを略等しくすることで(図6参照)、油ポケットh10に入り込んだ潤滑油のほぼすべてが圧縮室Comに放出される。これによって、油ポケットh10の容積が比較的小さくても、圧縮機構部5の潤滑性・シール性を十分に確保できる。なお、油ポケットh10の容積が大きすぎると、油放出区間Δθoutで油ポケットh10に入り込む冷媒量(圧縮途中である比較的低圧の冷媒の量)が多くなり、この冷媒が、吐出圧に略等しい密閉容器1内に放出される。したがって、冷媒の圧縮における高効率化を考慮すると、油ポケットh10の容積は小さいほうが望ましい。 Further, by making the oil intake section Δθ in and the oil release section Δθ out substantially equal (see FIG. 6), almost all of the lubricating oil that has entered the oil pocket h10 is released into the compression chamber Com. As a result, even if the volume of the oil pocket h10 is relatively small, the lubricity and sealing property of the compression mechanism portion 5 can be sufficiently ensured. If the volume of the oil pocket h10 is too large, the amount of the refrigerant entering the oil pocket h10 (the amount of the relatively low-pressure refrigerant in the process of compression) increases in the oil discharge section Δθ out, and this refrigerant is substantially reduced to the discharge pressure. It is discharged into the same closed container 1. Therefore, it is desirable that the volume of the oil pocket h10 is small in consideration of high efficiency in the compression of the refrigerant.
≪第2実施形態≫
 第2実施形態は、圧縮機100A(図8参照)が2つの圧縮機構部51,52(図8参照)を備えている点が、第1実施形態(図1参照)とは異なっている。また、第2実施形態は、圧縮機構部51,52を仕切る仕切板50(図8参照)に油ポケットh11,h12(図8参照)が設けられている点が、第1実施形態とは異なっている。なお、それ以外の点は、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Second Embodiment >>
The second embodiment is different from the first embodiment (see FIG. 1) in that the compressor 100A (see FIG. 8) includes two compression mechanism units 51 and 52 (see FIG. 8). The second embodiment is different from the first embodiment in that oil pockets h11 and h12 (see FIG. 8) are provided on the partition plate 50 (see FIG. 8) that partitions the compression mechanism portions 51 and 52. ing. The other points are the same as those in the first embodiment. Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図8は、第2実施形態に係る圧縮機100Aの縦断面図である。
 図8に示すように、圧縮機100Aは、密閉容器1と、電動機2と、クランク軸4A(駆動軸)と、2つの圧縮機構部51,52と、仕切板50と、消音カバー61,62と、を備えている。
FIG. 8 is a vertical cross-sectional view of the compressor 100A according to the second embodiment.
As shown in FIG. 8, the compressor 100A includes a closed container 1, an electric motor 2, a crankshaft 4A (drive shaft), two compression mechanism portions 51 and 52, a partition plate 50, and sound deadening covers 61 and 62. And have.
 密閉容器1には、電動機2やクランク軸4Aの他、2つの圧縮機構部51,52、仕切板50等が収容され、また、潤滑油が封入されている。
 クランク軸4Aは、回転子2bと一体で回転する軸であり、主軸4aと、偏心部41b,42bと、を備えている。一方の偏心部41bは、他方の偏心部42bに対して、平面視で逆側に偏心している。これによって、一方の偏心部41bの移動に伴う回転のアンバランスが、他方の偏心部42bで打ち消され、圧縮機100Aの振動が抑制される。なお、一方の偏心部41bには、上側のローラ51bの内周面が摺接し、他方の偏心部42bには、下側のローラ52bの内周面が摺接している。
In addition to the electric motor 2 and the crankshaft 4A, the closed container 1 contains two compression mechanism portions 51 and 52, a partition plate 50, and the like, and is also filled with lubricating oil.
The crankshaft 4A is a shaft that rotates integrally with the rotor 2b, and includes a main shaft 4a and eccentric portions 41b and 42b. One eccentric portion 41b is eccentric to the opposite side in a plan view with respect to the other eccentric portion 42b. As a result, the rotational imbalance caused by the movement of one eccentric portion 41b is canceled by the other eccentric portion 42b, and the vibration of the compressor 100A is suppressed. The inner peripheral surface of the upper roller 51b is in sliding contact with one eccentric portion 41b, and the inner peripheral surface of the lower roller 52b is in sliding contact with the other eccentric portion 42b.
 図8に示す2つの圧縮機構部51,52は、それぞれ、クランク軸4の回転に伴って冷媒を圧縮する機構である。これらの圧縮機構部51,52は、後記する仕切板50とともに、複数のボルトT(図9参照)で締結されている。上側の圧縮機構部51は、吸入パイプP1iを介して導かれるガス状の冷媒を圧縮する。このように圧縮機構部51で圧縮された冷媒は、吐出弁51f及び消音カバー61の孔(図示せず)を順次に介して、密閉容器1内の空間に放出される。 The two compression mechanism units 51 and 52 shown in FIG. 8 are mechanisms that compress the refrigerant as the crankshaft 4 rotates, respectively. These compression mechanism portions 51 and 52 are fastened with a plurality of bolts T (see FIG. 9) together with the partition plate 50 described later. The upper compression mechanism section 51 compresses the gaseous refrigerant guided through the suction pipe P1i. The refrigerant compressed by the compression mechanism section 51 in this way is sequentially discharged into the space inside the closed container 1 through the holes (not shown) of the discharge valve 51f and the sound deadening cover 61.
 一方、下側の圧縮機構部52は、吸入パイプP2iを介して導かれるガス状の冷媒を圧縮する。このように圧縮機構部52で圧縮された冷媒は、吐出弁52f及び消音カバー62の孔(図示せず)を順次に介して、密閉容器1内の空間に放出される。なお、消音カバー62は、下軸受5dの下面を覆った状態で、下軸受5dに固定されている。 On the other hand, the lower compression mechanism 52 compresses the gaseous refrigerant guided through the suction pipe P2i. The refrigerant compressed by the compression mechanism portion 52 in this way is sequentially discharged into the space inside the closed container 1 through the holes (not shown) of the discharge valve 52f and the sound deadening cover 62. The muffling cover 62 is fixed to the lower bearing 5d while covering the lower surface of the lower bearing 5d.
 図8に示すように、上側の圧縮機構部51は、シリンダ51aと、ローラ51bと、上軸受5c(軸受)と、ベーン51eと、吐出弁51fと、ベーンばね51gと、を備えている。なお、圧縮機構部51の各構成は、第1実施形態の圧縮機構部5(図1参照)と同様であるから、説明を省略する。 As shown in FIG. 8, the upper compression mechanism portion 51 includes a cylinder 51a, a roller 51b, an upper bearing 5c (bearing), a vane 51e, a discharge valve 51f, and a vane spring 51g. Since each configuration of the compression mechanism unit 51 is the same as that of the compression mechanism unit 5 (see FIG. 1) of the first embodiment, the description thereof will be omitted.
 下側の圧縮機構部52は、シリンダ52aと、ローラ52bと、下軸受5d(軸受)と、ベーン52eと、吐出弁52fと、ベーンばね52gと、を備えている。なお、圧縮機構部52の各構成も、第1実施形態の圧縮機構部5(図1参照)と同様であるから、説明を省略する。 The lower compression mechanism 52 includes a cylinder 52a, a roller 52b, a lower bearing 5d (bearing), a vane 52e, a discharge valve 52f, and a vane spring 52g. Since each configuration of the compression mechanism unit 52 is the same as that of the compression mechanism unit 5 (see FIG. 1) of the first embodiment, the description thereof will be omitted.
 図8に示す仕切板50は、2つの圧縮機構部51,52を回転子2bの軸方向で仕切る板であり、円環状を呈している(図10も参照)。上軸受5c(又は下軸受5d)がシリンダ51aの「軸方向の一方側」に設けられているとすると、仕切板50はシリンダ51aの「軸方向の他方側」に設けられている。 The partition plate 50 shown in FIG. 8 is a plate that partitions the two compression mechanism portions 51 and 52 in the axial direction of the rotor 2b, and has an annular shape (see also FIG. 10). Assuming that the upper bearing 5c (or the lower bearing 5d) is provided on the "one side in the axial direction" of the cylinder 51a, the partition plate 50 is provided on the "other side in the axial direction" of the cylinder 51a.
 仕切板50において、上側の圧縮機構部51のシリンダ室(図示せず)に臨む面(上面)には、油ポケットh11(凹部)が設けられている。また、仕切板50において、下側の圧縮機構部52のシリンダ室(図9参照)に臨む面(下面)には、別の油ポケットh12(凹部)が設けられている。このように、第2実施形態では、仕切板50に油ポケットh11,h12を設けるようにしている。
 なお、油ポケットh12は、仕切板50の下面に設けられているが、この油ポケットh12にも潤滑油が付着する。したがって、ロータ52bの移動に伴って、油ポケットh12から圧縮室Com2に潤滑油が間欠的に供給される。
An oil pocket h11 (recess) is provided on the surface (upper surface) of the partition plate 50 facing the cylinder chamber (not shown) of the upper compression mechanism portion 51. Further, in the partition plate 50, another oil pocket h12 (recess) is provided on the surface (lower surface) of the lower compression mechanism portion 52 facing the cylinder chamber (see FIG. 9). As described above, in the second embodiment, the partition plate 50 is provided with the oil pockets h11 and h12.
The oil pocket h12 is provided on the lower surface of the partition plate 50, and the lubricating oil also adheres to the oil pocket h12. Therefore, as the rotor 52b moves, the lubricating oil is intermittently supplied from the oil pocket h12 to the compression chamber Com2.
 図9は、図8のIII-III線矢視断面図である。
 図9に示すように、油ポケットh12(凹部)は、周方向においてベーン52eよりも吐出切欠きh26側(吐出流路側)に設けられている。これによって、ベーン52eやシリンダ52a、ローラ52bの各摺動面に潤滑油が行きわたる。同様に、他方の油ポケットh11(凹部:図8参照)も、周方向においてベーン51e(図8参照)よりも吐出切欠き側(吐出流路側:符号は図示せず)に設けられている。
FIG. 9 is a cross-sectional view taken along the line III-III of FIG.
As shown in FIG. 9, the oil pocket h12 (recess) is provided on the discharge notch h26 side (discharge flow path side) of the vane 52e in the circumferential direction. As a result, the lubricating oil is distributed to the sliding surfaces of the vane 52e, the cylinder 52a, and the roller 52b. Similarly, the other oil pocket h11 (recessed portion: see FIG. 8) is also provided on the discharge notch side (discharge flow path side: reference numeral not shown) with respect to the vane 51e (see FIG. 8) in the circumferential direction.
 また、図示はしないが、シリンダ52a内でローラ52bが上死点に位置しているときのローラ52bの回転角を0°とした場合、ローラ52bの回転角が0°の状態では、ローラ52bの径方向内側に油ポケットh12(凹部)が位置している。
 また、ローラ52bの回転角が180°の状態では、ローラ52bとシリンダ52aとの間に油ポケットh12(凹部)が位置している。これによって、ベーン52eやシリンダ52a、ローラ52bの各摺動面を適切に潤滑できる。
 また、ローラ52bの回転角が90°の状態、及び、ローラ52bの回転角が270°の状態では、油ポケットh12(凹部)がローラ52bで閉塞されている。これによって、ローラ52bの径方向内側・外側の空間が油ポケットh12を介して連通することを防止できる。
 なお、上側の圧縮機構部51(図8参照)のおけるローラ51bの回転角ついても同様のことがいえる。
Although not shown, when the rotation angle of the roller 52b is 0 ° when the roller 52b is located at the top dead center in the cylinder 52a, the roller 52b is in a state where the rotation angle of the roller 52b is 0 °. The oil pocket h12 (recess) is located inside in the radial direction of the oil pocket h12.
Further, when the rotation angle of the roller 52b is 180 °, the oil pocket h12 (recess) is located between the roller 52b and the cylinder 52a. As a result, the sliding surfaces of the vane 52e, the cylinder 52a, and the roller 52b can be appropriately lubricated.
Further, when the rotation angle of the roller 52b is 90 ° and the rotation angle of the roller 52b is 270 °, the oil pocket h12 (recess) is closed by the roller 52b. As a result, it is possible to prevent the radial inner and outer spaces of the roller 52b from communicating with each other via the oil pocket h12.
The same can be said for the rotation angle of the roller 51b in the upper compression mechanism portion 51 (see FIG. 8).
 また、ローラ52bの径方向内側に油ポケットh12(凹部)が位置している状態でのローラ52bの回転角の範囲、及び、ローラ52bとシリンダ52aとの間に油ポケットh12が位置している状態でのローラ52bの回転角の範囲が、それぞれ、140°以上かつ165°以下であることが好ましい。これによって、油ポケットh12に入り込んだ潤滑油のほぼすべてが圧縮室Comに放出されるため、圧縮機構部52の潤滑性・シール性を十分に確保できる。なお、上側の圧縮機構部51(図8参照)についても同様のことがいえる。 Further, the range of the rotation angle of the roller 52b in a state where the oil pocket h12 (recess) is located inside the roller 52b in the radial direction, and the oil pocket h12 is located between the roller 52b and the cylinder 52a. It is preferable that the range of the rotation angle of the roller 52b in the state is 140 ° or more and 165 ° or less, respectively. As a result, almost all of the lubricating oil that has entered the oil pocket h12 is released into the compression chamber Com, so that the lubricity and sealing properties of the compression mechanism portion 52 can be sufficiently ensured. The same can be said for the upper compression mechanism section 51 (see FIG. 8).
 図10は、仕切板50の平面図及びIV-IV線断面図である。
 図10に示すように、仕切板50には、クランク軸4A(図8参照)を貫通させるための孔h15が設けられている。その他、仕切板50には、消音用の3つの孔h14の他、ボルトT(図9参照)を貫通させるための4つの孔h16等が設けられている。
FIG. 10 is a plan view and a sectional view taken along line IV-IV of the partition plate 50.
As shown in FIG. 10, the partition plate 50 is provided with a hole h15 for passing through the crankshaft 4A (see FIG. 8). In addition, the partition plate 50 is provided with three holes h14 for sound deadening, four holes h16 for passing the bolt T (see FIG. 9), and the like.
 仕切板50には、平面視で略同一の位置に一対の油ポケットh11,h12が設けられている。なお、平面視における油ポケットh11,h12の径方向・周方向の位置は、図10のように略同一であってもよいし、また、異なっていてもよい。 The partition plate 50 is provided with a pair of oil pockets h11 and h12 at substantially the same position in a plan view. The positions of the oil pockets h11 and h12 in the plan view in the radial and circumferential directions may be substantially the same as shown in FIG. 10, or may be different.
 前記した油ポケットh11,h12は、所定の金属材料を用いた仕切板50の焼結工程で形成されてもよい。その他にも、エンドミル(図示せず)を用いた切削加工によって、油ポケットh11,h12を形成するようにしてもよい。これによって、油ポケットh11,h12を形成する際の加工コストを削減できる。 The oil pockets h11 and h12 described above may be formed by a sintering step of the partition plate 50 using a predetermined metal material. In addition, the oil pockets h11 and h12 may be formed by cutting using an end mill (not shown). Thereby, the processing cost when forming the oil pockets h11 and h12 can be reduced.
 図11Aは、仕切板50の油ポケットh11の縦断面の部分拡大図である。
 図11Aに示す例では、平面視で円形を呈する油ポケットh11(図10も参照)の径が長さL2であり、また、仕切板50の上面から油ポケットh11の底面までの深さが長さL3になっている。このような油ポケットh11を設計する際、シリンダ51a(図8参照)の行程容積に対して、油ポケットh11(凹部)の容積が占める比率は、0.001%以上かつ0.019%以下であることが好ましい。これによって、油ポケットh11を設けない場合よりも、圧縮機100A(図8参照)を備える空気調和機のAPFを高めることができる。なお、仕切板50の他方の油ポケットh12(図10参照)についても同様のことがいえる。
FIG. 11A is a partially enlarged view of a vertical cross section of the oil pocket h11 of the partition plate 50.
In the example shown in FIG. 11A, the diameter of the oil pocket h11 (see also FIG. 10) having a circular shape in a plan view is the length L2, and the depth from the upper surface of the partition plate 50 to the bottom surface of the oil pocket h11 is long. It is L3. When designing such an oil pocket h11, the ratio of the volume of the oil pocket h11 (recess) to the stroke volume of the cylinder 51a (see FIG. 8) is 0.001% or more and 0.019% or less. It is preferable to have. As a result, the APF of the air conditioner equipped with the compressor 100A (see FIG. 8) can be increased as compared with the case where the oil pocket h11 is not provided. The same can be said for the other oil pocket h12 (see FIG. 10) of the partition plate 50.
 図11Bは、第2実施形態の変形例に係る仕切板50Bの油ポケットh11sの縦断面の部分拡大図である。
 図11Bに示すように、例えば、油ポケットh11sが所定容積となるように、ドリル(図示せず)を用いて切削加工してもよい。つまり、径が長さL4、深さが長さL5となるように、その表面が断面視でV字状を呈する油ポケットh12sを設けてもよい。このような構成でも、図11Aの場合と同様の効果が奏される。
FIG. 11B is a partially enlarged view of a vertical cross section of the oil pocket h11s of the partition plate 50B according to the modified example of the second embodiment.
As shown in FIG. 11B, for example, cutting may be performed using a drill (not shown) so that the oil pocket h11s has a predetermined volume. That is, the oil pocket h12s whose surface has a V-shape in cross-sectional view may be provided so that the diameter is the length L4 and the depth is the length L5. Even with such a configuration, the same effect as in the case of FIG. 11A is obtained.
≪第3実施形態≫
 第3実施形態は、圧縮機100C(図12参照)が、下軸受5dに設けられた油ポケットh10の他に、ベーン5Ceに所定の窪み部h17が設けられている点が、第1実施形態とは異なっている。なお、その他の各構成については、第1実施形態(図1参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<< Third Embodiment >>
In the third embodiment, the compressor 100C (see FIG. 12) is provided with a predetermined recess h17 in the vane 5Ce in addition to the oil pocket h10 provided in the lower bearing 5d. Is different. The other configurations are the same as those in the first embodiment (see FIG. 1). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
 図12は、第3実施形態に係る圧縮機100Cの縦断面図である。
 図12に示すように、圧縮機構部5Cは、その側面に窪み部h17が設けられたベーン5Ceを備えている。この窪み部h17は、ベーン5Ceが後退したときに潤滑油を取り込み、ベーン5Ceが中心軸線Z側に進んだときに圧縮室Com(又は、圧縮室Comを含むシリンダ室)に潤滑油を供給するための窪みである。
FIG. 12 is a vertical cross-sectional view of the compressor 100C according to the third embodiment.
As shown in FIG. 12, the compression mechanism portion 5C includes a vane 5Ce provided with a recessed portion h17 on the side surface thereof. The recessed portion h17 takes in the lubricating oil when the vane 5Ce retracts, and supplies the lubricating oil to the compression chamber Com (or the cylinder chamber including the compression chamber Com) when the vane 5Ce advances to the central axis Z side. It is a depression for.
 例えば、ローラ5bの回転角が0°の状態では、シリンダ5aの径方向外側に窪み部h17の少なくとも一部が存在し、ローラ5bの回転角が180°の状態では、ローラ5bとシリンダ5aとの間に窪み部h17の少なくとも一部が存在している。これによって、圧縮室Com等に潤滑油が間欠的に供給される。したがって、油ポケットh10を介した潤滑油の供給と相まって、シリンダ5aやベーン5Ceの各摺動面に潤滑油を十分に供給できる。なお、窪み部h17は、薄板状を呈するベーン5Ceの一方側の側面のみに設けられてもよいし、また、両側の側面に設けられてもよい。 For example, when the rotation angle of the roller 5b is 0 °, at least a part of the recessed portion h17 exists on the radial outer side of the cylinder 5a, and when the rotation angle of the roller 5b is 180 °, the roller 5b and the cylinder 5a At least a part of the recessed portion h17 is present between the two. As a result, the lubricating oil is intermittently supplied to the compression chamber Com and the like. Therefore, coupled with the supply of the lubricating oil through the oil pocket h10, the lubricating oil can be sufficiently supplied to each sliding surface of the cylinder 5a and the vane 5Ce. The recessed portion h17 may be provided only on one side surface of the vane 5Ce having a thin plate shape, or may be provided on both side surfaces.
<効果>
 第3実施形態によれば、ベーン5Ceの側面に窪み部h17を設けることで、シリンダ5aやベーン5Ceの各摺動面に潤滑油を十分に供給できる。
<Effect>
According to the third embodiment, by providing the recessed portion h17 on the side surface of the vane 5Ce, the lubricating oil can be sufficiently supplied to each sliding surface of the cylinder 5a and the vane 5Ce.
≪第4実施形態≫
 第4実施形態では、第1実施形態で説明した圧縮機100(図1参照)を備える空気調和機W(図13参照)の構成について説明する。なお、圧縮機100の構成については、第1実施形態(図1参照)で説明したものと同様であるから説明を省略する。
<< Fourth Embodiment >>
In the fourth embodiment, the configuration of the air conditioner W (see FIG. 13) including the compressor 100 (see FIG. 1) described in the first embodiment will be described. Since the configuration of the compressor 100 is the same as that described in the first embodiment (see FIG. 1), the description thereof will be omitted.
 図13は、第4実施形態に係る空気調和機Wの構成図である。
 なお、図13の実線矢印は、暖房運転時における冷媒の流れを示している。
 また、図13の破線矢印は、冷房運転時における冷媒の流れを示している。
 空気調和機W(冷凍サイクル装置)は、冷房や暖房等の空調を行う機器である。図13に示すように、空気調和機Wは、圧縮機100と、凝縮器E1と、膨張弁Vと、蒸発器E2と、アキュムレータMと、第1ファンF1と、第2ファンF2と、を備えている。
FIG. 13 is a configuration diagram of the air conditioner W according to the fourth embodiment.
The solid line arrow in FIG. 13 indicates the flow of the refrigerant during the heating operation.
Further, the broken line arrow in FIG. 13 indicates the flow of the refrigerant during the cooling operation.
The air conditioner W (refrigeration cycle device) is a device that performs air conditioning such as cooling and heating. As shown in FIG. 13, the air conditioner W includes a compressor 100, a condenser E1, an expansion valve V, an evaporator E2, an accumulator M, a first fan F1, and a second fan F2. I have.
 圧縮機100は、ガス状の冷媒を圧縮する機器であり、第1実施形態(図1参照)と同様の構成を備えている。なお、冷媒として、例えば、冷媒R32が用いられるが、これに限定されるものではない。
 凝縮器E1は、その伝熱管(図示せず)を通流する冷媒と、第1ファンF1から送り込まれる空気と、の間で熱交換が行われる熱交換器である。
 第1ファンF1は、凝縮器E1に空気を送り込むファンであり、凝縮器E1の付近に設置されている。
The compressor 100 is a device that compresses a gaseous refrigerant, and has the same configuration as that of the first embodiment (see FIG. 1). As the refrigerant, for example, the refrigerant R32 is used, but the present invention is not limited to this.
The condenser E1 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the air sent from the first fan F1.
The first fan F1 is a fan that sends air to the condenser E1 and is installed in the vicinity of the condenser E1.
 蒸発器E2は、その伝熱管(図示せず)を通流する冷媒と、第2ファンF2から送り込まれる空気と、の間で熱交換が行われる熱交換器である。
 第2ファンF2は、蒸発器E2に空気を送り込むファンであり、蒸発器E2の付近に設置されている。
The evaporator E2 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the air sent from the second fan F2.
The second fan F2 is a fan that sends air to the evaporator E2, and is installed in the vicinity of the evaporator E2.
 膨張弁Vは、凝縮器E1で凝縮した冷媒を減圧する機能を有している。なお、膨張弁Vで減圧された冷媒は、蒸発器E2に導かれる。このようにして、図13に示す冷媒回路Qにおいて、圧縮機100、凝縮器E1、膨張弁V、及び蒸発器E2を順次に介して冷媒が循環するようになっている。蒸発器E2で蒸発した冷媒は、アキュムレータMで気液分離され、さらに、ガス状の冷媒が圧縮機100に導かれる。 The expansion valve V has a function of reducing the pressure of the refrigerant condensed by the condenser E1. The refrigerant decompressed by the expansion valve V is guided to the evaporator E2. In this way, in the refrigerant circuit Q shown in FIG. 13, the refrigerant circulates in sequence through the compressor 100, the condenser E1, the expansion valve V, and the evaporator E2. The refrigerant evaporated in the evaporator E2 is gas-liquid separated by the accumulator M, and the gaseous refrigerant is further guided to the compressor 100.
 なお、空調運転の運転モードが、冷房運転及び暖房運転の一方から他方に切替らえられた場合、冷媒の流路を切り替える四方弁(図示せず)が適宜に設けられてもよい。 When the operation mode of the air conditioning operation is switched from one of the cooling operation and the heating operation to the other, a four-way valve (not shown) for switching the flow path of the refrigerant may be appropriately provided.
<効果>
 第4実施形態によれば、圧縮機100が備える圧縮機構部5(図1参照)の圧縮室Com(図1参照)に十分な潤滑油が供給されるため、圧縮室Comのシール性が良好に保たれ、また、ベーン5e(図1参照)やシリンダ5a(図1参照)、ローラ5b(図1参照)の各摺動面の潤滑性も保たれる。したがって、第4実施形態によれば、性能や信頼性が高い空気調和機Wを提供できる。
<Effect>
According to the fourth embodiment, since sufficient lubricating oil is supplied to the compression chamber Com (see FIG. 1) of the compression mechanism unit 5 (see FIG. 1) included in the compressor 100, the sealing property of the compression chamber Com is good. In addition, the lubricity of each sliding surface of the vane 5e (see FIG. 1), the cylinder 5a (see FIG. 1), and the roller 5b (see FIG. 1) is also maintained. Therefore, according to the fourth embodiment, it is possible to provide the air conditioner W having high performance and reliability.
≪変形例≫
 以上、本発明に係る圧縮機100等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、第1実施形態(図1参照)では、下軸受5dの上面に油ポケットh10が設けられる構成について説明したが、これに限らない。すなわち、上軸受5cの下面に油ポケットを設けてもよいし、また、上軸受5c及び下軸受5dの両方に油ポケットを設けてもよい。言い換えると、圧縮機100において、上軸受5c(第1軸受)及び下軸受5d(第2軸受)の少なくとも一方に、シリンダ室Cyに臨む面に油ポケット(凹部)が設けられる構成にしてもよい。
≪Modification example≫
Although the compressor 100 and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
For example, in the first embodiment (see FIG. 1), the configuration in which the oil pocket h10 is provided on the upper surface of the lower bearing 5d has been described, but the present invention is not limited to this. That is, an oil pocket may be provided on the lower surface of the upper bearing 5c, or an oil pocket may be provided on both the upper bearing 5c and the lower bearing 5d. In other words, the compressor 100 may be configured such that at least one of the upper bearing 5c (first bearing) and the lower bearing 5d (second bearing) is provided with an oil pocket (recess) on the surface facing the cylinder chamber Cy. ..
 また、第2実施形態(図8参照)では、仕切板50に油ポケットh11,h12が設けられる構成について説明したが、これに限らない。すなわち、圧縮機構部51において、上軸受5c(軸受)及び仕切板50の少なくとも一方には、シリンダ室に臨む面に油ポケット(凹部)が設けられるようにしてもよい。また、圧縮機構部52において、下軸受5d(軸受)及び仕切板50の少なくとも一方には、シリンダ室に臨む面に油ポケット(凹部)が設けられるようにしてもよい。 Further, in the second embodiment (see FIG. 8), the configuration in which the oil pockets h11 and h12 are provided on the partition plate 50 has been described, but the present invention is not limited to this. That is, in the compression mechanism portion 51, at least one of the upper bearing 5c (bearing) and the partition plate 50 may be provided with an oil pocket (recess) on the surface facing the cylinder chamber. Further, in the compression mechanism portion 52, at least one of the lower bearing 5d (bearing) and the partition plate 50 may be provided with an oil pocket (recess) on the surface facing the cylinder chamber.
 また、第2実施形態(図8参照)では、圧縮機100Aが2つの圧縮機構部51,52を備える構成について説明したが、これに限らない。すなわち、圧縮機が3つ以上の圧縮機構部(図示せず)を備える構成であってもよい。このような構成において、最上段の圧縮機構部(図示せず)には、上軸受及び仕切板の少なくとも一方のシリンダ室に臨む面に油ポケットが設けられ、また、最下段の圧縮機構部(図示せず)には、下軸受及び仕切板の少なくとも一方のシリンダ室に臨む面に油ポケットが設けられる。また、最上段・最下段以外の残りのそれぞれの圧縮機構部(図示せず)には、ロータ及びシリンダを挟む一対の仕切板のうち少なくとも一方のシリンダ室に臨む面に油ポケットが設けられる。このような構成でも、各実施形態と同様の効果が奏される。なお、前記した複数の圧縮機構部のうち、少なくとも一つに油ポケットを設け、残りには油ポケットを設けないようにしてもよい。 Further, in the second embodiment (see FIG. 8), the configuration in which the compressor 100A includes two compression mechanism units 51 and 52 has been described, but the present invention is not limited to this. That is, the compressor may be configured to include three or more compression mechanism units (not shown). In such a configuration, the uppermost compression mechanism portion (not shown) is provided with an oil pocket on the surface of the upper bearing and the partition plate facing at least one cylinder chamber, and the lowermost compression mechanism portion (not shown). (Not shown) is provided with an oil pocket on the surface of the lower bearing and the partition plate facing at least one cylinder chamber. Further, the remaining compression mechanism portions (not shown) other than the uppermost stage and the lowermost stage are provided with oil pockets on the surface facing at least one cylinder chamber of the pair of partition plates sandwiching the rotor and the cylinder. Even with such a configuration, the same effect as that of each embodiment is obtained. An oil pocket may be provided in at least one of the plurality of compression mechanism portions described above, and no oil pocket may be provided in the rest.
 また、各実施形態は、適宜に組み合わせることが可能である。例えば、第2実施形態と第4実施形態とを組み合わせてもよい。すなわち、仕切板50(図8参照)に油ポケットh11,h12が設けられた圧縮機100Aを備えるように空気調和機W(図13参照)を構成してもよい。
 また、第3実施形態の圧縮機100C(図12参照)から下軸受5dの油ポケットh10を省略し、ベーン5eの窪み部h17を残すようにしてもよい。このような構成でも、圧縮機構部5Cのシール性・潤滑性が良好に保たれる。
In addition, each embodiment can be combined as appropriate. For example, the second embodiment and the fourth embodiment may be combined. That is, the air conditioner W (see FIG. 13) may be configured so that the partition plate 50 (see FIG. 8) is provided with the compressor 100A provided with the oil pockets h11 and h12.
Further, the oil pocket h10 of the lower bearing 5d may be omitted from the compressor 100C (see FIG. 12) of the third embodiment, and the recessed portion h17 of the vane 5e may be left. Even with such a configuration, the sealing property and lubricity of the compression mechanism portion 5C are kept good.
 また、各実施形態では、圧縮機100が縦置きである場合について説明したが、これに限らない。すなわち、圧縮機100が横置きや斜め置きで配置される場合にも各実施形態を適用できる。
 また、第4実施形態で説明した空気調和機W(図13参照)は、ルームエアコンやパッケージエアコンの他、ビル用マルチエアコンといったさまざまな種類の空気調和機に適用できる。
Further, in each embodiment, the case where the compressor 100 is installed vertically has been described, but the present invention is not limited to this. That is, each embodiment can be applied even when the compressor 100 is arranged horizontally or diagonally.
Further, the air conditioner W (see FIG. 13) described in the fourth embodiment can be applied to various types of air conditioners such as room air conditioners, package air conditioners, and multi air conditioners for buildings.
 また、第4実施形態では、圧縮機100を備える「冷凍サイクル装置」が空気調和機W(図13参照)である場合について説明したが、これに限らない。すなわち、圧縮機100を備える「冷凍サイクル装置」は、冷凍機や給湯機、空調給湯システムの他、冷蔵庫等であってもよい。
 また、空気調和機Wに用いられる冷媒は、冷媒R32に限定されるものではなく、例えば、冷媒R410Aや冷媒R600aの他、プロパンを主成分とする冷媒等、さまざまな種類の冷媒を用いることができる。
Further, in the fourth embodiment, the case where the "refrigeration cycle device" including the compressor 100 is an air conditioner W (see FIG. 13) has been described, but the present invention is not limited to this. That is, the "refrigerating cycle device" including the compressor 100 may be a refrigerator, a water heater, an air-conditioned hot water supply system, or a refrigerator.
Further, the refrigerant used in the air conditioner W is not limited to the refrigerant R32, and various types of refrigerants such as the refrigerant R410A and the refrigerant R600a and the refrigerant containing propane as a main component may be used. it can.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
In addition, each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
In addition, the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
 100,100A,100C 圧縮機
 1 密閉容器
 2 電動機
 2a 固定子
 2b 回転子
 4,4A クランク軸(駆動軸)
 4c 給油路
 5,51,52,5C 圧縮機構部
 5c 上軸受(第1軸受、軸受)
 5d 下軸受(第2軸受、軸受)
 5a,51a,52a シリンダ
 5b,51b,52b ローラ     
 5e,51e,52e,5Ce ベーン
 5f,51f,52f 吐出弁
 50,50B 仕切板      
 Com,Com2 圧縮室
 Cy,Cy2 シリンダ室
 E1 凝縮器
 E2 蒸発器
 G 空間
 h6,h26 吐出切欠き(吐出流路)
 h8 吐出ポート(吐出流路)
 h10,h11,h11s,h12,h12s 油ポケット(凹部)
 h17 窪み部     
 In 吸入室
 Q 冷媒回路
 V 膨張弁
 W 空気調和機(冷凍サイクル装置)
 Z 中心軸線
100, 100A, 100C Compressor 1 Sealed container 2 Electric motor 2a Stator 2b Rotor 4,4A Crankshaft (drive shaft)
4c Refueling passage 5,51,52,5C Compression mechanism 5c Upper bearing (first bearing, bearing)
5d lower bearing (second bearing, bearing)
5a, 51a, 52a Cylinder 5b, 51b, 52b Roller
5e, 51e, 52e, 5Ce vane 5f, 51f, 52f Discharge valve 50, 50B Partition plate
Com, Com2 Compression chamber Cy, Cy2 Cylinder chamber E1 Condenser E2 Evaporator G space h6, h26 Discharge notch (discharge flow path)
h8 Discharge port (discharge flow path)
h10, h11, h11s, h12, h12s Oil pocket (recess)
h17 recess
In suction chamber Q Refrigerant circuit V Expansion valve W Air conditioner (refrigeration cycle device)
Z center axis

Claims (10)

  1.  固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って冷媒を圧縮する圧縮機構部と、
     前記電動機、前記駆動軸、及び前記圧縮機構部を少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     前記圧縮機構部は、
     環状のシリンダと、
     前記電動機の駆動に伴って前記シリンダ内で公転する環状のローラと、
     前記シリンダの軸方向の一方側に設けられ、前記駆動軸を軸支する第1軸受と、
     前記シリンダの軸方向の他方側に設けられ、前記駆動軸を軸支する第2軸受と、を有するとともに、
     前記ローラの外周面に先端が接触し、前記シリンダと前記ローラとの間のシリンダ室を吸入室及び圧縮室に仕切る板状のベーンと、
     前記圧縮室に連通する吐出流路に設けられる吐出弁と、を有し、
     前記ローラの径方向内側の空間は、前記駆動軸の給油路に連通しており、
     前記第1軸受及び前記第2軸受の少なくとも一方には、前記シリンダ室に臨む面に凹部が設けられ、
     前記シリンダ内で前記ローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置している圧縮機。
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    A compression mechanism that compresses the refrigerant as the drive shaft rotates,
    A closed container that houses at least the electric motor, the drive shaft, and the compression mechanism and is filled with lubricating oil.
    The compression mechanism unit
    An annular cylinder and
    An annular roller that revolves in the cylinder as the electric motor is driven,
    A first bearing provided on one side of the cylinder in the axial direction and supporting the drive shaft,
    It has a second bearing which is provided on the other side of the cylinder in the axial direction and supports the drive shaft.
    A plate-shaped vane whose tip comes into contact with the outer peripheral surface of the roller and partitions the cylinder chamber between the cylinder and the roller into a suction chamber and a compression chamber.
    It has a discharge valve provided in a discharge flow path communicating with the compression chamber.
    The space inside the roller in the radial direction communicates with the oil supply passage of the drive shaft.
    At least one of the first bearing and the second bearing is provided with a recess on the surface facing the cylinder chamber.
    When the rotation angle of the roller is 0 ° when the roller is located at the top dead point in the cylinder, when the rotation angle of the roller is 0 °, the roller is inside in the radial direction. A compressor in which the recess is located and the recess is located between the roller and the cylinder when the rotation angle of the roller is 180 °.
  2.  固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って冷媒を圧縮する2つの圧縮機構部と、
     2つの前記圧縮機構部を軸方向で仕切る仕切板と、
     前記電動機、前記駆動軸、2つの前記圧縮機構部、及び前記仕切板を少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     それぞれの前記圧縮機構部は、
     環状のシリンダと、
     前記電動機の駆動に伴って前記シリンダ内で公転する環状のローラと、
     前記駆動軸を軸支する軸受と、を有するとともに、
     前記ローラの外周面に先端が接触し、前記シリンダと前記ローラとの間のシリンダ室を吸入室及び圧縮室に仕切る板状のベーンと、
     前記圧縮室に連通する吐出流路に設けられる吐出弁と、を有し、
     前記軸受は、前記シリンダの軸方向の一方側に設けられ、
     前記仕切板は、前記シリンダの軸方向の他方側に設けられ、
     前記ローラの径方向内側の空間は、前記駆動軸の給油路に連通しており、
     それぞれの前記圧縮機構部において、前記軸受及び前記仕切板の少なくとも一方には、前記シリンダ室に臨む面に凹部が設けられ、
     前記シリンダ内で前記ローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置している圧縮機。
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    Two compression mechanism units that compress the refrigerant as the drive shaft rotates,
    A partition plate that partitions the two compression mechanisms in the axial direction,
    The electric motor, the drive shaft, the two compression mechanism portions, and a closed container containing at least the partition plate and containing lubricating oil are provided.
    Each of the compression mechanism units
    An annular cylinder and
    An annular roller that revolves in the cylinder as the electric motor is driven,
    It has a bearing that supports the drive shaft and
    A plate-shaped vane whose tip comes into contact with the outer peripheral surface of the roller and partitions the cylinder chamber between the cylinder and the roller into a suction chamber and a compression chamber.
    It has a discharge valve provided in a discharge flow path communicating with the compression chamber.
    The bearing is provided on one side of the cylinder in the axial direction.
    The partition plate is provided on the other side of the cylinder in the axial direction.
    The space inside the roller in the radial direction communicates with the oil supply passage of the drive shaft.
    In each of the compression mechanism portions, at least one of the bearing and the partition plate is provided with a recess on the surface facing the cylinder chamber.
    When the rotation angle of the roller is 0 ° when the roller is located at the top dead point in the cylinder, when the rotation angle of the roller is 0 °, the roller is inside in the radial direction. A compressor in which the recess is located and the recess is located between the roller and the cylinder when the rotation angle of the roller is 180 °.
  3.  前記ローラの前記回転角が90°の状態、及び、前記ローラの前記回転角が270°の状態では、前記凹部が前記ローラで閉塞されていること
     を特徴とする請求項1又は請求項2に記載の圧縮機。
    According to claim 1 or 2, the recess is closed by the roller when the rotation angle of the roller is 90 ° and the rotation angle of the roller is 270 °. The compressor described.
  4.  前記ローラの径方向内側に前記凹部が位置している状態での前記ローラの前記回転角の範囲、及び、前記ローラと前記シリンダとの間に前記凹部が位置している状態での前記ローラの前記回転角の範囲は、それぞれ、140°以上かつ165°以下であること
     を特徴とする請求項1又は請求項2に記載の圧縮機。
    The range of the rotation angle of the roller when the recess is located inside the roller in the radial direction, and the roller of the roller when the recess is located between the roller and the cylinder. The compressor according to claim 1 or 2, wherein the range of the rotation angle is 140 ° or more and 165 ° or less, respectively.
  5.  前記凹部は、周方向において前記ベーンよりも前記吐出流路側に設けられること
     を特徴とする請求項1又は請求項2に記載の圧縮機。
    The compressor according to claim 1 or 2, wherein the recess is provided on the discharge flow path side of the vane in the circumferential direction.
  6.  前記ローラの前記回転角が0°の状態であるときの前記シリンダ室の容積である行程容積に対して、前記凹部の容積が占める比率は、0.001%以上かつ0.019%以下であること
     を特徴とする請求項1又は請求項2に記載の圧縮機。
    The ratio of the volume of the recess to the stroke volume, which is the volume of the cylinder chamber when the rotation angle of the roller is 0 °, is 0.001% or more and 0.019% or less. The compressor according to claim 1 or 2, wherein the compressor is characterized in that.
  7.  前記ベーンの側面には、窪み部が設けられ、
     前記ローラの前記回転角が0°の状態では、前記シリンダの径方向外側に前記窪み部の少なくとも一部が存在し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記窪み部の少なくとも一部が存在していること
     を特徴とする請求項1又は請求項2に記載の圧縮機。
    A recess is provided on the side surface of the vane.
    When the rotation angle of the roller is 0 °, at least a part of the recess is present on the radial outer side of the cylinder, and when the rotation angle of the roller is 180 °, the roller and the cylinder The compressor according to claim 1 or 2, wherein at least a part of the recessed portion is present between the two.
  8.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を含み、
     前記圧縮機は、
     固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って冷媒を圧縮する圧縮機構部と、
     前記電動機、前記駆動軸、及び前記圧縮機構部を少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     前記圧縮機構部は、
     環状のシリンダと、
     前記電動機の駆動に伴って前記シリンダ内で公転する環状のローラと、
     前記シリンダの軸方向の一方側に設けられ、前記駆動軸を軸支する第1軸受と、
     前記シリンダの軸方向の他方側に設けられ、前記駆動軸を軸支する第2軸受と、を有するとともに、
     前記ローラの外周面に先端が接触し、前記シリンダと前記ローラとの間のシリンダ室を吸入室及び圧縮室に仕切る板状のベーンと、
     前記圧縮室に連通する吐出流路に設けられる吐出弁と、を有し、
     前記ローラの径方向内側の空間は、前記駆動軸の給油路に連通しており、
     前記第1軸受及び前記第2軸受の少なくとも一方には、前記シリンダ室に臨む面に凹部が設けられ、
     前記シリンダ内で前記ローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置している冷凍サイクル装置。
    Includes a refrigerant circuit in which the refrigerant circulates sequentially through the compressor, condenser, expansion valve, and evaporator.
    The compressor
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    A compression mechanism that compresses the refrigerant as the drive shaft rotates,
    A closed container that houses at least the electric motor, the drive shaft, and the compression mechanism and is filled with lubricating oil.
    The compression mechanism unit
    An annular cylinder and
    An annular roller that revolves in the cylinder as the electric motor is driven,
    A first bearing provided on one side of the cylinder in the axial direction and supporting the drive shaft,
    It has a second bearing which is provided on the other side of the cylinder in the axial direction and supports the drive shaft.
    A plate-shaped vane whose tip comes into contact with the outer peripheral surface of the roller and partitions the cylinder chamber between the cylinder and the roller into a suction chamber and a compression chamber.
    It has a discharge valve provided in a discharge flow path communicating with the compression chamber.
    The space inside the roller in the radial direction communicates with the oil supply passage of the drive shaft.
    At least one of the first bearing and the second bearing is provided with a recess on the surface facing the cylinder chamber.
    When the rotation angle of the roller is 0 ° when the roller is located at the top dead point in the cylinder, when the rotation angle of the roller is 0 °, the roller is inside in the radial direction. A refrigeration cycle device in which the recess is located and the recess is located between the roller and the cylinder when the rotation angle of the roller is 180 °.
  9.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を含み、
     前記圧縮機は、
     固定子及び回転子を有する電動機と、
     前記回転子と一体で回転する駆動軸と、
     前記駆動軸の回転に伴って冷媒を圧縮する2つの圧縮機構部と、
     2つの前記圧縮機構部を軸方向で仕切る仕切板と、
     前記電動機、前記駆動軸、2つの前記圧縮機構部、及び前記仕切板を少なくとも収容し、潤滑油が封入されている密閉容器と、を備え、
     それぞれの前記圧縮機構部は、
     環状のシリンダと、
     前記電動機の駆動に伴って前記シリンダ内で公転する環状のローラと、
     前記駆動軸を軸支する軸受と、を有するとともに、
     前記ローラの外周面に先端が接触し、前記シリンダと前記ローラとの間のシリンダ室を吸入室及び圧縮室に仕切る板状のベーンと、
     前記圧縮室に連通する吐出流路に設けられる吐出弁と、を有し、
     前記軸受は、前記シリンダの軸方向の一方側に設けられ、
     前記仕切板は、前記シリンダの軸方向の他方側に設けられ、
     前記ローラの径方向内側の空間は、前記駆動軸の給油路に連通しており、
     それぞれの前記圧縮機構部において、前記軸受及び前記仕切板の少なくとも一方には、前記シリンダ室に臨む面に凹部が設けられ、
     前記シリンダ内で前記ローラが上死点に位置しているときの前記ローラの回転角を0°とした場合、前記ローラの前記回転角が0°の状態では、前記ローラの径方向内側に前記凹部が位置し、前記ローラの前記回転角が180°の状態では、前記ローラと前記シリンダとの間に前記凹部が位置している冷凍サイクル装置。
    Includes a refrigerant circuit in which the refrigerant circulates sequentially through the compressor, condenser, expansion valve, and evaporator.
    The compressor
    An electric motor with a stator and a rotor,
    A drive shaft that rotates integrally with the rotor,
    Two compression mechanism units that compress the refrigerant as the drive shaft rotates,
    A partition plate that partitions the two compression mechanisms in the axial direction,
    The electric motor, the drive shaft, the two compression mechanism portions, and a closed container containing at least the partition plate and containing lubricating oil are provided.
    Each of the compression mechanism units
    An annular cylinder and
    An annular roller that revolves in the cylinder as the electric motor is driven,
    It has a bearing that supports the drive shaft and
    A plate-shaped vane whose tip comes into contact with the outer peripheral surface of the roller and partitions the cylinder chamber between the cylinder and the roller into a suction chamber and a compression chamber.
    It has a discharge valve provided in a discharge flow path communicating with the compression chamber.
    The bearing is provided on one side of the cylinder in the axial direction.
    The partition plate is provided on the other side of the cylinder in the axial direction.
    The space inside the roller in the radial direction communicates with the oil supply passage of the drive shaft.
    In each of the compression mechanism portions, at least one of the bearing and the partition plate is provided with a recess on the surface facing the cylinder chamber.
    When the rotation angle of the roller is 0 ° when the roller is located at the top dead point in the cylinder, when the rotation angle of the roller is 0 °, the roller is inside in the radial direction. A refrigeration cycle device in which the recess is located and the recess is located between the roller and the cylinder when the rotation angle of the roller is 180 °.
  10.  前記冷媒として、冷媒R32が用いられること
     を特徴とする請求項8又は請求項9に記載の冷凍サイクル装置。
    The refrigerating cycle apparatus according to claim 8 or 9, wherein the refrigerant R32 is used as the refrigerant.
PCT/JP2019/041776 2019-10-24 2019-10-24 Compressor and refrigeration cycle device WO2021079477A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509128A JP6704555B1 (en) 2019-10-24 2019-10-24 Compressor and refrigeration cycle device
CN201980101163.XA CN114555948B (en) 2019-10-24 2019-10-24 Compressor and refrigeration cycle device
PCT/JP2019/041776 WO2021079477A1 (en) 2019-10-24 2019-10-24 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041776 WO2021079477A1 (en) 2019-10-24 2019-10-24 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021079477A1 true WO2021079477A1 (en) 2021-04-29

Family

ID=70858182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041776 WO2021079477A1 (en) 2019-10-24 2019-10-24 Compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6704555B1 (en)
CN (1) CN114555948B (en)
WO (1) WO2021079477A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113494456B (en) * 2020-04-07 2023-10-24 广东美芝制冷设备有限公司 Bearing for compressor and compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157187U (en) * 1984-09-20 1986-04-17
JPS6338689U (en) * 1986-08-30 1988-03-12
JPH02286892A (en) * 1989-04-26 1990-11-27 Mitsubishi Electric Corp Compressor with rolling piston
JPH07301190A (en) * 1994-05-06 1995-11-14 Hitachi Ltd Rotary compressor
JPH08159070A (en) * 1994-12-07 1996-06-18 Daikin Ind Ltd Rotary compressor
JP2018105243A (en) * 2016-12-27 2018-07-05 日立ジョンソンコントロールズ空調株式会社 Hermetic rotary compressor and refrigeration air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141956A1 (en) * 2008-05-23 2009-11-26 パナソニック株式会社 Fluid machine and refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157187U (en) * 1984-09-20 1986-04-17
JPS6338689U (en) * 1986-08-30 1988-03-12
JPH02286892A (en) * 1989-04-26 1990-11-27 Mitsubishi Electric Corp Compressor with rolling piston
JPH07301190A (en) * 1994-05-06 1995-11-14 Hitachi Ltd Rotary compressor
JPH08159070A (en) * 1994-12-07 1996-06-18 Daikin Ind Ltd Rotary compressor
JP2018105243A (en) * 2016-12-27 2018-07-05 日立ジョンソンコントロールズ空調株式会社 Hermetic rotary compressor and refrigeration air conditioner

Also Published As

Publication number Publication date
CN114555948A (en) 2022-05-27
JPWO2021079477A1 (en) 2021-11-18
CN114555948B (en) 2023-01-10
JP6704555B1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5810221B2 (en) Rotary compressor and refrigeration cycle equipment
EP1820970A1 (en) Compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
KR101681585B1 (en) Twin type rotary compressor
KR20100112486A (en) 2-stage rotary compressor
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
US20140096561A1 (en) Sealed compressor and refrigeration cycle device
WO2021079477A1 (en) Compressor and refrigeration cycle device
JP5481298B2 (en) Multi-cylinder rotary compressor and refrigeration cycle equipment
CN111954761B (en) Rotary compressor and refrigeration cycle device
JP2021067263A (en) Compressor and refrigeration cycle device
CN109154296B (en) Hermetic rotary compressor and refrigerating and air-conditioning apparatus
JPH06264881A (en) Rotary compressor
KR101528646B1 (en) 2-stage rotary compressor
JP2017172346A (en) Scroll compressor and air conditioner
JP2010223088A (en) Rotary compressor and air conditioner
KR101328229B1 (en) Rotary compressor
CN219911067U (en) Compressor and refrigeration cycle device
KR101337079B1 (en) Two stage rotary compressor
US20230407877A1 (en) Rotary compressor and home appliance including the same
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2020039489A1 (en) Compressor and refrigeration cycle device equipped with same
JP2023180875A (en) Rotary compressor and air conditioner
CN116357546A (en) Compressor and refrigeration cycle device
JP2023136791A (en) Hermetic rotary compressor and refrigerator with the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509128

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950022

Country of ref document: EP

Kind code of ref document: A1