WO2021079403A1 - Buried optical waveguide structure and method for producing same - Google Patents

Buried optical waveguide structure and method for producing same Download PDF

Info

Publication number
WO2021079403A1
WO2021079403A1 PCT/JP2019/041297 JP2019041297W WO2021079403A1 WO 2021079403 A1 WO2021079403 A1 WO 2021079403A1 JP 2019041297 W JP2019041297 W JP 2019041297W WO 2021079403 A1 WO2021079403 A1 WO 2021079403A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
layer
wafer
embedded optical
Prior art date
Application number
PCT/JP2019/041297
Other languages
French (fr)
Japanese (ja)
Inventor
信建 小勝負
藤原 裕士
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/041297 priority Critical patent/WO2021079403A1/en
Publication of WO2021079403A1 publication Critical patent/WO2021079403A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the present invention relates to an optical waveguide structure, particularly a structure of an embedded optical waveguide that can be used in the visible light band at low cost and a method for producing the same. It relates to an optical waveguide for a planar optical circuit that can be used not only in the entire visible light band but also in the near-ultraviolet to near-infrared region. It can be used for ultra-broadband optical communication from light and visible light to the near-infrared light region.
  • PLC board for optical communication In conventional PLCs for optical communication, a silicon wafer (Si wafer) with an oxide film having an oxide film formed on the surface has been widely used as a substrate for production.
  • Si wafers used in semiconductors are made of silicon with a purity of 99.999999999% (11N) or higher, and are used in CMOS (Complementary metal-oxide-semiconductor) processes, etc. Many are relatively inexpensive. It is also because there are few impurities and dust, the area is relatively large, the surface is smooth, and a silicon dioxide (SiO 2 ) film can be formed by surface oxidation.
  • CMOS Complementary metal-oxide-semiconductor
  • Si wafer is naturally oxidized in the atmosphere and its surface is covered with a very thin SiO 2 film.
  • the adhesion between the Si of the substrate and the SiO 2 film formed on the substrate is strong.
  • a thick, dense and stable thermal oxide Si film SiO 2 film
  • the melting point of Si is 1412 ° C., but the melting point of SiO 2 is 1732 ° C., and the thermally oxidized Si coating has very high heat resistance.
  • the thermally oxidized Si film is used. It has the characteristic of forming a very excellent insulating film, and can be said to be a very excellent material.
  • FIG. 1 (Conventional method for manufacturing PLC for optical communication)
  • the manufacturing method as shown in FIG. 1 has been performed.
  • thermal oxide Si layers 2a and 2b are formed on both surfaces of the substrate 1 of the Si wafer, and one of them is used as the lower clad layer 2a.
  • Ge-doped SiO 2 is laminated on the lower clad layer 2a to form the optical waveguide core layer 3.
  • the upper clad layer 4 is sequentially formed, the optical waveguide core layer 3 is embedded, and the PLC of the embedded optical waveguide structure is formed.
  • each layer is formed in sequence, the film formation temperature of each lower clad layer 2a, core layer 3, and upper clad layer 4 is very important.
  • the film formation temperature of the upper clad layer 4 to be finally formed is higher than the melting point of the core layer 3, the structure of the core layer 3 produced at the time of film formation of the upper clad layer 4 is in the upper clad layer 4.
  • the embedded optical waveguide structure disappears.
  • the thermal oxide Si film 2a has a lower refractive index than the Ge-doped SiO 2 which is the core layer 3, and therefore becomes a lower clad layer.
  • a flame deposition method FHD: Flame Hydrolysis Deposition
  • CVD Chemical Vapor Deiposition
  • thermal CVD Thermal CVD
  • plasma CVD Plasma CVD
  • a Ge-doped SiO 2 core layer 3 in which the refractive index of the optical waveguide is adjusted is formed, and a ridge-shaped optical waveguide core 3 is formed by photolithography and plasma dry etching using a fluorine-based plasma such as CF 4.
  • a fluorine-based plasma such as CF 4.
  • pure fused silica glass As shown in [Non-Patent Document 5], pure fused silica glass (Fused Silica glass) has very excellent light transmittance from about 200 nm to about 2500 nm, excluding the light absorption factor due to defects. There is.
  • the present invention has been made in view of this situation, and an object of the present invention is to maintain compatibility with a CMOS process, that is, while using a Si wafer, from near-ultraviolet light to visible light, and further to near-infrared light.
  • the purpose is to produce an optical waveguide having excellent light transmission in the entire range up to the light band (for example, 300 nm to 1700 nm).
  • CMOS device on the surface of the Si wafer, which not only enables mass production at low cost, but also allows it to be used in the ultraviolet to near-infrared light region. It has a feature that an integrated device with a light receiving element such as a Si photodiode can also be manufactured.
  • a Si wafer as a substrate, a thermally oxidized Si core, It has an upper clad layer and a lower clad layer that directly sandwich and support the thermally oxidized Si core vertically.
  • An embedded optical waveguide structure characterized in that the thermally oxidized Si core is located at a distance from the Si wafer serving as a substrate.
  • (Structure 3) A two-layer structure characterized in that the two embedded optical waveguide structures according to the configuration 1 have a two-layer structure in which two embedded optical waveguide structures are arranged back to back on the side of the upper clad layer with a spacer interposed therebetween and are aligned and joined. Embedded optical waveguide structure.
  • the support substrate has a light-receiving element that photocouples to the optical waveguide, and has a composite type embedded optical waveguide structure that also has a light-receiving function as well as structural reinforcement.
  • a step of forming a thermal oxide Si layer on the upper surface of a Si wafer to be a substrate The step of etching the thermal oxide Si layer to form the thermal oxide Si core layer of the optical waveguide, A step of forming an upper clad layer having a refractive index lower than that of the thermally oxidized Si core layer on the thermally oxidized Si core layer, A step of partially etching and removing the Si wafer in a portion corresponding to the lower side of the thermal oxide Si core layer until the thermal oxide Si core layer is separated from the remaining portion of the Si wafer serving as a substrate. A step of forming a lower clad layer having a low refractive index under the thermally oxidized Si core layer is provided.
  • An embedded optical waveguide structure characterized in that the thermally oxidized Si core is directly sandwiched and supported vertically by the upper clad layer and the lower clad layer to produce a structure located at a distance from the Si wafer as a substrate. Manufacturing method.
  • a method for producing an embedded optical waveguide structure according to the present invention wherein the method for producing an embedded optical waveguide structure further includes a step of joining a support substrate on the upper clad layer.
  • (Structure 8) A method for manufacturing a composite embedded optical waveguide structure, which further comprises a step of manufacturing a light receiving element that photocouples to the optical waveguide on the support substrate in the method for manufacturing the embedded optical waveguide structure of the configuration 6.
  • an optical waveguide element that combines and demultiplexes light over a wide band wavelength can be produced, and is used in various industrial fields such as medical treatment, bioanalysis, and display devices such as image projection. Is possible.
  • Si wafer First, a method for producing a Si wafer, which is a prerequisite, will be described. Quartz sand (main component is SiO 2 ) is ubiquitous on the earth, but in order to efficiently obtain high-purity Si, high-quality silica sand with few impurities is used as the raw material. When silica sand is mixed with coke (C) in an electric furnace at 1800 ° C., oxygen is combined with carbon and degassed to obtain metallic silicon (Si) having a purity of about 98% in a molten state.
  • the main impurities at this stage are Al (aluminum) and Fe (iron).
  • Trichlorosilicon is a liquid at room temperature and has a boiling point of 31.8 ° C, but it is continuously sent to a distillation column for purification.
  • liquid trichlorosilicon is vaporized and sent to a high-temperature reactor together with hydrogen gas, where it is decomposed to produce electronic-grade polysilicon (EGS) with a purity of about 99.99999999% (10N). obtain.
  • silicon single crystal ingots with a purity of 99.999999999% (11N) or more are produced by two methods, the zone melting method (FZ: floating zone) and the Czochralski method (CZ: Czochralski). To do.
  • the large swell over the entire surface of the wafer is ⁇ 20 to 25 ⁇ m or less, and locally at the atomic level.
  • a Si wafer that maintains smoothness can be obtained.
  • thermal oxide Si film is formed on the surface of the Si wafer obtained above.
  • thermal oxidation of Si dry oxidation, wet oxidation, and steam oxidation, depending on the type of gas used for oxidation, and the thermal oxidation temperature is in the temperature range of about 800 to 1100 ° C.
  • Oxygen gas is used for dry oxidation
  • deionized steam is added to oxygen gas for wet oxidation
  • only deionized steam is used for steam oxidation.
  • steam (H 2 O) generated by natural combustion by flowing oxygen gas and hydrogen gas into the furnace is used.
  • the purity of the silicon itself to be oxidized can be controlled to be extremely high at 99.999999999% (11N) or more, and dopants such as phosphorus (P) and boron (B) are introduced to control the electrical resistance and semiconductor characteristics. If a high resistance silicon wafer is used, the influence of the dopant contained in the silicon substrate can be reduced. Furthermore, if the thermal oxidation environment is controlled in a clean room or the like, it is possible to limit the mixing of impurities into the thermal oxide film itself, so that the silicon oxide layer is caused by impurities, if not as much as pure fused silica glass. It is possible to reduce the light absorption derived from defects.
  • the Si wafer is a high-quality wafer substrate that is used in a very large amount in a CMOS process or the like, it is relatively inexpensive in terms of price. Therefore, in order to fabricate a wide-band optical waveguide from the ultraviolet band to the near-infrared light region at low cost, it is superior to using a thermally oxidized Si film as a core layer rather than pure fused silica glass.
  • the amorphous SiO 2 film can be produced not only by thermal oxidation but also by CVD (chemical vapor deposition) method, sputtering method, FHD (flame deposition) method, etc., but reduction and control of contamination of impurities
  • CVD chemical vapor deposition
  • sputtering method sputtering method
  • FHD flame deposition
  • the thermally oxidized Si film is produced by surface oxidation of a high-purity Si single crystal, although slight point defects (bonding defects) and oxygen deficiency defects occur, it is controlled with high accuracy in a low impurity environment. Since it undergoes an oxidation process at about 800 to 1100 ° C, the defect density is close to that of fused silica glass, and it has excellent transparency from the near-ultraviolet light region of about 200 nm to the near-infrared light band of about 2500 nm. A glass film is obtained.
  • thermally oxidized Si is used as a core, and by selecting the structure and manufacturing procedure of the embedded optical waveguide and the clad material shown below, it is inexpensive and has a wide band from the ultraviolet light band to the near infrared light band. We have found a usable optical waveguide.
  • FIG. 2 is a cross-sectional view showing the structure of the thermal oxide Si core embedded optical waveguide according to the first embodiment of the present invention. In the following cross-sectional view, unless otherwise specified, the cross-sectional view of the substrate perpendicular to the optical propagation direction of the optical waveguide is shown, including other embodiments.
  • the optical waveguide has an embedded optical waveguide structure of a thermally oxidized Si core.
  • a part of the Si wafer 21 to be a substrate is hollowed out, and the thermal oxide Si core 23 to be the core of the optical waveguide is directly sandwiched and supported by the upper clad 24 and the lower clad 22, and is positioned at a distance from the Si wafer 21.
  • the structure is such that the thermally oxidized Si core 23 is surrounded by a clad and floats.
  • the upper clad layer 24 and the lower clad layer 22 that directly sandwich and support the thermally oxidized Si core 23 and the thermally oxidized Si core 23 vertically. It has an embedded optical waveguide structure in which the thermally oxidized Si core 23 is located at a distance from the Si wafer 21 as a substrate.
  • the thermally oxidized Si layer 20 initially formed on the back surface of the Si wafer 21 may remain between the Si wafer 21 and the lower clad 22, and the Si wafer 21 is separated from the thermally oxidized Si core 23. At this position, it may be sandwiched between the upper clad 24 and the lower clad 22.
  • Such an embedded optical waveguide structure cannot be produced by the conventional method for producing an optical waveguide for optical communication as shown in FIG.
  • the method for producing the first embodiment of the present invention will be described in detail with reference to FIG.
  • thermal oxide Si layers 30a and 30b are prepared on both the front and back surfaces of the Si wafer 31 to prepare a Si wafer.
  • the thermal oxide Si layer 30a on the upper surface side (front surface side) of the Si wafer 31 is formed with a sufficient film thickness required as a core of an optical waveguide.
  • Alignment markers 37 required for the process process are formed on the thermal oxide Si layers 30a and 30b on both the front and back surfaces. This is done by a photolithography process using a photoresist, covering areas other than the alignment marker position with a resist film, and by a reactive dry etching method using a fluorine-based plasma such as CF 4, thermal oxide Si layers 30a, b and Si wafers. It can be produced by digging into 31.
  • a photoresist 38 is formed on the surface-side thermal oxide Si layer 30a by a photolithography step in a pattern of an optical waveguide core. Then, the thermally oxidized Si layer 30a is removed by etching by a reactive dry etching method using a fluorine-based gas such as CF 4, and as shown in FIG. 3C, the thermally oxidized Si core layer 33 of the ridge-shaped optical waveguide Is produced on the surface of the Si wafer 31.
  • a fluorine-based gas such as CF 4
  • the film thickness of the thermally oxidized Si core layer 33 which is the optical waveguide core
  • the film thickness of the thermally oxidized Si core layer 33 is several tens of ⁇ m at the thickest. Further, assuming that the propagating signal light of the optical waveguide is taken out by an optical fiber or the like, the film thickness is preferably 10 ⁇ m or less.
  • the upper clad layer 34 is laminated on the surface of the thermal oxide Si core layer 33.
  • the material of the clad layer is an optical waveguide having an embedded structure, it is necessary to have a lower refractive index than the thermally oxidized Si core layer 33 in the ultraviolet light band to the near infrared light band. Further, in the present invention, it is also necessary to structurally support the thermal oxide Si core layer 33, so that it is desirable that the mechanical strength is high.
  • polymer compound examples include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), and polyvinylidene fluoride (PVDF).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP perfluoroethylene-propene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • EFEP and other fluororesins, amorphous fluoropolymers, (partially) fluorinated epoxy resins, (partially) fluorinated acrylate resins, (partially) fluorinated silicone resins, and mixtures of the above resins are also used. You can also.
  • quartz glass in which these fluorine compounds are made into fine particles and dispersed, an organic compound, a mixture or a melt of a fluorine compound or a low refractive index oxide and amorphous quartz (SiO 2) can also be used.
  • the upper clad layer 34 in FIG. 3D may have a multilayer structure of two or more layers instead of a one-layer structure.
  • a material having a low refractive index such that the propagating light is sufficiently confined in the thermally oxidized Si core 33 is first laminated so as to cover the surface of the core layer 33 with a thickness that does not allow light to seep out, and then laminated on the material.
  • a material having an excellent mechanical strength even if the refractive index is close to that of the thermally oxidized SiO 2 may be laminated as the second layer.
  • a photoresist 38 is formed on the back surface side (lower surface side in the drawing) of the Si wafer 31, and a pattern wider than that of the core 33 is formed at a position corresponding to the back surface of the optical waveguide core 33.
  • the thermally oxidized Si layer 30b at the position corresponding to the back surface of the optical waveguide core 33 is etched and removed by a reactive dry etching method using a fluorine-based gas such as CF 4.
  • EDP ethylenediamine / pyrocater
  • fluorine-based gas such as CF 4
  • Bosch process using SF 6 and C 4 F 8 gas etc.
  • the lower layer of the wafer 31 is also further etched and removed.
  • the Si wafer layer 31 in the lower portion of the optical waveguide core layer 33 is partially etched and removed until the thermally oxidized Si core layer 33 is separated from the remaining portion of the Si wafer 31 as a substrate. At this time, since it is necessary to etch the Si layer to such an extent that the propagating light in the waveguide core 33 does not seep into the remaining Si wafer layer 31, at least the distance between the core 33 and the remaining portion of the Si layer 31 is set. It should be 10 ⁇ m or more.
  • the lower clad layer 32 is laminated under the optical waveguide core layer 33 from the back surface side as in the upper clad 34, and the embedded optical waveguide structure by the thermal oxide Si core of the first embodiment is formed. Can be produced.
  • FIG. 4 is a cross-sectional view showing the structure of the thermal oxide Si core optical waveguide according to the second embodiment of the present invention.
  • the SiO 2 thermal oxide film on the surface of the Si wafer has excellent adhesion, it does not peel off much even if it is processed into a ridge shape on the surface of the Si wafer as shown in FIG. 3C.
  • the coefficients of thermal expansion of Si and SiO 2 are about 3.6 ⁇ 10 -6 (1 / K) and about 0.65 ⁇ 10 -6 (1 / K), respectively, which are quite different, so that they are thermally oxidized at 800 to 1100 ° C. Residual stress is generated at the interface between Si and SiO 2 due to the temperature difference between the temperature and room temperature.
  • the mechanical strength of the clad material is large enough to overcome this residual stress, the optical waveguide core will not be displaced or the optical waveguide structure will not be destroyed by the residual stress.
  • the mechanical strength of the clad material is low and there is a risk of stress failure. Increases sex. The structure of the second embodiment of the present invention has been found to solve such a problem.
  • the portion corresponding to that of the second embodiment has the same structure, and the description thereof will be omitted.
  • the support substrate 49 is bonded to the upper surface of the upper clad layer 44, and the support substrate 49 prevents the positional deviation of the thermal oxide film SiO 2 core and the structural destruction of the light confinement structure.
  • FIGS. 5 (a) to 5 (c) are the same as the steps of the method of manufacturing the first embodiment of FIGS. 3 (a) to 3 (c).
  • the upper clad layer 44 is laminated on the thermally oxidized Si core 43, and then the support substrate 49 is bonded on the upper clad layer 44.
  • a method of joining the support substrate 49 when the upper clad layer 44 is a thermoplastic clad material, a method of softening by heating and directly joining can also be used, but an adhesive / adhesive material is applied to the upper surface of the upper clad layer 44. It is also possible to join by.
  • the support substrate 49 in FIG. 5D is preferably made of a material having mechanical strength, and further, stress generated due to a difference in thermal expansion coefficient from that of a Si wafer due to a temperature change during the manufacturing process. It is desirable that the material has a coefficient of thermal expansion similar to that of a Si wafer. Further, the support substrate 49 is made of a low-refractive material or the film thickness of the upper clad layer 44 is sufficient so that the light propagating through the thermal oxide Si core 43 does not photobond with others. It needs to be thick, and if possible, the film thickness of the upper clad layer 44 is preferably 10 ⁇ m or more.
  • FIGS. 5 (e) to 5 (g) following the second embodiment are the same as those of FIGS. 3 (e) to 3 (h) of the first embodiment.
  • FIG. 6 is a cross-sectional view showing the structure of a two-layer optical waveguide using a thermally oxidized Si core according to a third embodiment of the present invention.
  • the thermal oxide Si layer that is the core also has the same smoothness. Therefore, in the third embodiment, by introducing a spacer that maintains the distance between the two core layers, it is possible to realize an embedded optical waveguide structure having two layers of optical waveguide cores relatively easily.
  • two embedded optical waveguides of the thermal oxide Si core of the first embodiment of FIG. A two-layered embedded optical waveguide structure is formed by laminating and joining back to back on the layer side.
  • the two thermal oxide Si cores 63a and 63b are included in the clad layer 64 formed by joining the upper clad layers of the original two optical waveguides with the spacer 69 interposed therebetween.
  • the clad layer 64 is sandwiched between the Si wafers 61a and 61b of the original two optical waveguides, and further sandwiched between the clad layers 62a and 62b which are the lower clad layers of the two original optical waveguides.
  • the spacer 69 may also be configured by joining two portions formed in the upper clad layer of the original two optical waveguides.
  • the thermal oxide Si layers 60a and 60b are derived from the thermal oxide Si layers on the back surfaces of the original two optical waveguide Si wafers 61a and 61b.
  • the manufacturing method of the third embodiment of FIG. 7 is roughly a method for manufacturing a two-layer optical waveguide in which two thermally oxidized Si-core optical waveguides are vertically bonded to each other.
  • FIGS. 7 (a) and 7 (b) correspond to the steps of the production method of the first embodiment, FIGS. 3 (a) and 3 (b).
  • a plurality (for example, two) spacers 69b designed to have a desired two-layer core spacing are produced.
  • a method for producing the spacer another structure of thermally oxidized Si processed into a ridge shape can be used, but as shown in FIG. 7C, after the spacer material is deposited, patterning by a photolithography step or It can also be processed by a dry etching method using plasma in vacuum. It can also be produced by spin-coating a pre-curing solution of a UV-curable resin that is cured by a UV reaction with ultraviolet light and directly exposing it to UV light.
  • FIG. 7 (d) the two structures of FIG. 7 (c) were inverted with each other on the core side (the surface on the upper clad layer side in which the spacer was created) back to back, and the clad layer 64 was formed.
  • a two-layer optical waveguide structure of a thermally oxidized Si core having a desired interval can be formed by sandwiching the materials and joining them while aligning them with markers.
  • thermoplastic clad material that becomes a solution such as perfluoroalkanes
  • the upper and lower Sis in FIG. 7 (d) can be obtained without preparing the spacer 69 in FIG. 7 (c).
  • thermoplastic clad material By aligning and fixing the wafers and pouring the thermoplastic clad material, it is possible to form a two-layer optical waveguide structure of a thermally oxidized Si core having a desired interval as shown in FIG. 7 (d).
  • the alignment markers 67 on the front and back surfaces produced in FIG. 7A make it possible to align the relative positions of the two wafers with high accuracy.
  • FIGS. 7 (e) to 7 (g) can be produced by basically repeating the same method as the steps of FIGS. 3 (e) to 3 (h) of the first embodiment on both the front and back surfaces.
  • the fourth embodiment of the present invention is roughly a composite type thermal oxide Si core embedding in which a Si light receiving element (PD) is manufactured on the upper support substrate of the second embodiment and has a light receiving element function as well as structural reinforcement.
  • PD Si light receiving element
  • FIG. 8A is a cross-sectional view of the substrate perpendicular to the light propagation direction of the optical waveguide similar to the others, but FIGS. 8B and 8C are cross sections including the propagating light along the light propagation direction of the optical waveguide. It is a cross-sectional view of the substrate of.
  • the upper support substrate 49 in the second embodiment is replaced with the N-type Si substrate 101, and the implant region of the P-type Si is contained in the N-type Si substrate 101.
  • 102 is formed to form a Si photodiode (PD). Propagation light can be received by the compositely integrated PD, and an electric signal can be detected from the PD electrode 105.
  • the insulating layer 104 may be appropriately formed for electrical separation from the PD.
  • the PD receives the propagating light indicated by the thick dotted arrow from the PD optical waveguide 103 that photocouples to the thermal oxidation core 93, and in the structure of FIG. 8C, the thermal oxidation core is received.
  • a mirror structure 106 that bounces the propagating light is provided at the end of the 93, and the implant region 102 of the P-type Si directly receives the propagating light.
  • the upper and lower Si wafers (101, 91) can be joined while being aligned by the alignment marker, and the optical wave guide and the light receiving element are compositely integrated. It is an embodiment.
  • planar optical waveguide circuit of an ultraviolet light band to a near infrared light band can be realized, but also the planar optical waveguide circuit is structurally reinforced as in the second embodiment.
  • Si light receiving elements with a sensitivity of about 190 to about 1100 nm can also be integrated.
  • the Si photodiode (PD) may be any of a pn junction type photodiode, a pin structure photodiode, and an avalanche amplification photodiode (avalanche photodiode), and an InP / InGaAs-based crystal is separately formed on the Si wafer surface.
  • the compound semiconductor of the above may be sliced and joined to prepare a PD.
  • 8 (a) and 8 (b) are schematic cross-sectional views perpendicular to and parallel to the propagating light of the optical waveguide core in the form in which the optical waveguide 103 for light reception is formed on the surface of the light receiving element. It is sectional drawing parallel to the propagating light of an optical waveguide core when the mirror structure 106 which bounces the propagating light is made on the optical waveguide core part. The dotted arrow in the optical waveguide core shows the propagation path image of the propagating light.
  • FIGS. 9 (a) to 9 (c) of the manufacturing method of the fourth embodiment can be manufactured by the same steps as those of FIGS. 3 (a) to 3 (c) of the first embodiment.
  • the insulating layer 104 and the electrode wiring are separately formed on the front and back surfaces of the PN junction photodiode formed by forming the P-type layer 102 on the surface of the N-type Si wafer 101 by ion implantation.
  • a wafer 101 on which the 105 is formed is prepared.
  • the optical waveguide core layer 103 for PD is prepared on the surface of the P-type layer 102 with, for example, a UV curable resin.
  • a mirror structure 106 that bounces propagating light is provided at the end of the thermal oxidation core 93.
  • the Si wafers are joined to each other using the material of the clad layer 94 while aligning the upper and lower Si wafers (101, 91).
  • FIGS. 9 (e) to 9 (g) can be produced by basically repeating the same steps as those of FIGS. 3 (e) to 3 (h) of the first embodiment.
  • the upper clad layer was prepared by a flame deposition method (FHD: Flame Hydrolysis Deposition).
  • FHD Flame Hydrolysis Deposition
  • a glass raw material having a composition of SiO 2- B 2 O 3 is deposited on a substrate by burning a weight ratio of SiCl 4 to BCl 4 of 1: 1 in hydrogen and oxygen, and heated to 1100 ° C. or higher to thermally oxidize SiO2.
  • An upper clad layer of SiO 2- B 2 O 3 having a lower refractive index than the film, being transparent, and having a thickness of about 50 ⁇ m was prepared.
  • optical waveguide structure similar to that of the first embodiment was manufactured by the manufacturing process process as described above.
  • the chip was cut with a dicing saw, and the SC (Supercontinuum) light source and the light receiving element were provided to evaluate the propagation loss of the obtained optical waveguide chip.
  • the light propagation loss at each light wavelength of 450 nm (blue), 520 nm (green), and 630 nm (red) was 0.3 dB / cm or less.
  • the chip was cut with a dicing saw in the same manner as in Production Example 1, and the SC (SuperContinuum) light source and the light receiving element were provided to evaluate the propagation loss of the obtained optical waveguide chip.
  • the light propagation loss at each light wavelength of 450 nm (blue), 520 nm (green), and 630 nm (red) was 0.3 dB / cm or less.
  • the present invention realizes an embedded optical waveguide having excellent light transmission from the near infrared to the visible light band and the ultraviolet light band at low cost by a relatively simple method.
  • an optical waveguide element that combines and demultiplexes light over a wide band wavelength can be manufactured, and can be used in various industrial fields such as medical treatment, bioanalysis, and display devices such as image projection. Its industrial utility value is extremely high.

Abstract

A buried optical waveguide structure which has an Si wafer which functions as a substrate, a thermally oxidized Si core, and an upper cladding layer and a lower cladding layer which support the thermally oxidized Si core by directly sandwiching said core in the vertical direction, the buried optical waveguide structure being characterized in that the thermally oxidized Si core is separated from the Si wafer which functions as the substrate. Also, a method for producing the same.

Description

埋め込み光導波路構造およびその作製方法Embedded optical waveguide structure and its manufacturing method
 本発明は光導波路構造、特に低コストで可視光帯域で使用可能な埋め込み型の光導波路の構造およびその作製方法に関するものである。可視光帯全域のみならず近紫外から近赤外域でも使用可能な平面光回路用の光導波路に関するものであり、例えば、投影型ディスプレイなどの表示装置や、蛍光顕微鏡などの光分析装置、近紫外光、可視光から近赤外光域までの超広帯域光通信などに利用できる。 The present invention relates to an optical waveguide structure, particularly a structure of an embedded optical waveguide that can be used in the visible light band at low cost and a method for producing the same. It relates to an optical waveguide for a planar optical circuit that can be used not only in the entire visible light band but also in the near-ultraviolet to near-infrared region. It can be used for ultra-broadband optical communication from light and visible light to the near-infrared light region.
(現状技術の説明)
(平面光回路PLCの説明)
 これまで光通信用石英系平面光回路(PLC:Planer Lighwave Circuit)は、近赤外光帯での光通信用途に多用され、光ファイバーによって伝送された光信号を合波・分波したり、波長毎に信号の出し入れを行うものとして、光合分岐素子(光スプリッタ)や、AWG(Arrayed waveguide Grating)素子などや、熱光学効果を利用しマッハツェンダ干渉計型等を組合せた光スイッチなどが利用されてきた。
(Explanation of current technology)
(Explanation of planar optical circuit PLC)
Until now, quartz-based planar optical circuits (PLCs) for optical communications have been widely used for optical communications in the near-infrared optical band, and they combine and demultiplex optical signals transmitted by optical fibers and have wavelengths. Optical switches that combine optical branching elements (optical splitters), AWG (Arrayed waveguide Grating) elements, and Machzenda interferometers that utilize the thermo-optical effect have been used to input and output signals each time. It was.
(光通信用PLCの基板)
 従来の光通信用PLCでは、作製用基板として表面に酸化膜を形成した、酸化膜付きシリコンウエハ(Siウエハ)が多用されてきた。
(PLC board for optical communication)
In conventional PLCs for optical communication, a silicon wafer (Si wafer) with an oxide film having an oxide film formed on the surface has been widely used as a substrate for production.
 その理由としては、半導体で使用されるSiウエハは純度99.999999999%(11N)以上のシリコンでできており、CMOS (Complementary metal-oxide-semiconductor) プロセスなどに用いられているため、製造・流通量が多く、比較的安価であることがあげられる。また、不純物やダストが少なく、比較的大面積で、かつ表面が平滑であり、また、表面酸化により二酸化シリコン(SiO)膜を形成できるためでもある。 The reason is that Si wafers used in semiconductors are made of silicon with a purity of 99.999999999% (11N) or higher, and are used in CMOS (Complementary metal-oxide-semiconductor) processes, etc. Many are relatively inexpensive. It is also because there are few impurities and dust, the area is relatively large, the surface is smooth, and a silicon dioxide (SiO 2 ) film can be formed by surface oxidation.
(SiウエハとSiO酸化膜の特徴)
 Siウエハは大気中で自然酸化して、表面が非常に薄いSiOの膜で被覆されている。基板のSiと、その上に生じたSiO膜の間の密着性は強力である。特に酸化を高温で行なうと、厚く緻密で安定な熱酸化Si膜(SiO膜)を形成できる。Siの融点は1412℃であるが、SiOの融点は1732℃であり熱酸化Si被膜は非常に高い耐熱性を有する。
(Characteristics of Si wafer and SiO 2 oxide film)
The Si wafer is naturally oxidized in the atmosphere and its surface is covered with a very thin SiO 2 film. The adhesion between the Si of the substrate and the SiO 2 film formed on the substrate is strong. In particular, when oxidation is performed at a high temperature, a thick, dense and stable thermal oxide Si film (SiO 2 film) can be formed. The melting point of Si is 1412 ° C., but the melting point of SiO 2 is 1732 ° C., and the thermally oxidized Si coating has very high heat resistance.
 全ての金属や半導体が、密着性の高い緻密な酸化膜を容易に形成して被覆される特性を持つ訳ではないため、CMOS工程を代表とするSi利用した半導体素子において、熱酸化Si膜は非常に優れた絶縁膜を形成する特徴を有しており、非常に優れた材料と言える。 Not all metals and semiconductors have the property of easily forming and covering a dense oxide film with high adhesion. Therefore, in semiconductor devices using Si represented by the CMOS process, the thermally oxidized Si film is used. It has the characteristic of forming a very excellent insulating film, and can be said to be a very excellent material.
(従来の光通信用PLCの作製方法)
 従来の光通信用PLCにおいては、図1に示すような作製方法が行われていた。まず、図1(a)のように、Siウエハの基板1の両面に熱酸化Si層2a、2bを形成し、一方を下部クラッド層2aとする。次に、図1(b)のように、下部クラッド層2aの上にGeドープしたSiOを積層し、光導波路コア層3を形成する。最後に、図1(c)のように、上部クラッド層4を順次形成して、光導波路コア層3を埋め込み、埋め込み光導波路構造のPLCを形成する。
(Conventional method for manufacturing PLC for optical communication)
In the conventional PLC for optical communication, the manufacturing method as shown in FIG. 1 has been performed. First, as shown in FIG. 1A, thermal oxide Si layers 2a and 2b are formed on both surfaces of the substrate 1 of the Si wafer, and one of them is used as the lower clad layer 2a. Next, as shown in FIG. 1B, Ge-doped SiO 2 is laminated on the lower clad layer 2a to form the optical waveguide core layer 3. Finally, as shown in FIG. 1C, the upper clad layer 4 is sequentially formed, the optical waveguide core layer 3 is embedded, and the PLC of the embedded optical waveguide structure is formed.
 このとき、各層を順次形成するため、各下部クラッド層2a、コア層3、上部クラッド層4の成膜温度が非常に重要となる。例えば、最後に成膜する上部クラッド層4がコア層3の融点よりも成膜温度が高い場合には、上部クラッド層4の成膜時に、作製したコア層3の構造が上部クラッド層4中に溶け出し、埋め込み光導波路構造が消失してしまう。 At this time, since each layer is formed in sequence, the film formation temperature of each lower clad layer 2a, core layer 3, and upper clad layer 4 is very important. For example, when the film formation temperature of the upper clad layer 4 to be finally formed is higher than the melting point of the core layer 3, the structure of the core layer 3 produced at the time of film formation of the upper clad layer 4 is in the upper clad layer 4. The embedded optical waveguide structure disappears.
(光通信用PLCの具体的な作製方法)
 図1の従来の作製方法では、熱酸化Si膜2aは、コア層3となるGeドープしたSiOよりも低屈折率であるため、下部クラッド層となる。この熱酸化Si膜2aの表面に、火炎堆積法(FHD:Flame Hydrolysis Deposition)や、熱CVD(Thermal CVD)やプラズマCVD(Plasma-enhanced CVD)などの化学蒸着法(CVD:Chemical Vapor Deiposition)などを用いて、光導波路の屈折率を調整したGeドープしたSiOコア層3を形成し、フォトリソグラフィとCFなどのフッ素系プラズマを利用したプラズマドライエッチングによって、リッジ形状の光導波路コア3を作製する。その表面にFHD法やCVD法などを用いて、コア層3よりも低融点・低屈折率のホウ素やリンのドーパントをに加えたボロンリンケイ酸ガラス膜(BPSG:Boron-phospho-silicate-glass)などを上部クラッド層4として成膜し、埋め込み光導波路を作成していた。
(Specific manufacturing method of PLC for optical communication)
In the conventional manufacturing method of FIG. 1, the thermal oxide Si film 2a has a lower refractive index than the Ge-doped SiO 2 which is the core layer 3, and therefore becomes a lower clad layer. On the surface of this thermal oxide Si film 2a, a flame deposition method (FHD: Flame Hydrolysis Deposition), a chemical vapor deposition method (CVD: Chemical Vapor Deiposition) such as thermal CVD (Thermal CVD) or plasma CVD (Plasma-enhanced CVD), etc. A Ge-doped SiO 2 core layer 3 in which the refractive index of the optical waveguide is adjusted is formed, and a ridge-shaped optical waveguide core 3 is formed by photolithography and plasma dry etching using a fluorine-based plasma such as CF 4. To make. Boron-phospho-silicate-glass (BPSG) or the like, to which boron or phosphorus dopant having a lower melting point and lower refractive index than the core layer 3 is added to the surface by using an FHD method or a CVD method or the like. Was formed as the upper clad layer 4 to prepare an embedded optical waveguide.
 このとき、各下部クラッド層の成膜温度>コア層の成膜温度>上部クラッド層の成膜温度の関係とすることにより、各コア、クラッド層を成膜時に他の層を破壊、消失させないようなプロセス工程となっている。 At this time, by setting the relationship of the film forming temperature of each lower clad layer> the film forming temperature of the core layer> the film forming temperature of the upper clad layer, the other layers are not destroyed or disappeared when the core and the clad layer are formed. It is a process process like this.
(他分野でのPLC応用の可能性)
 一方、近年、PLCの新たな応用分野として、光分析分野、医療分野、ディスプレイ分野での注目が高まってきている。
(Possibility of PLC application in other fields)
On the other hand, in recent years, attention has been increasing in the fields of optical analysis, medical treatment, and display as new application fields of PLC.
 従来、蛍光顕微鏡、干渉顕微鏡、分光などの生体分析の光回路や、ディスプレイ分野での光源として、空間光学系を用いた比較的大きな分析装置が用いられてきた。しかし、昨今の分析装置の汎用化、小型軽量化、光学アライメントフリーなどの要望に従い、PLCを用いた高集積デバイスへの期待が高まってきている。例えば、網膜走査型ディスプレイ用RGB(Red Green Blue)合波器[非特許文献1]や小型分光センサ用AWG[非特許文献2]、2光束干渉によるデジタルホログラフィック顕微鏡[非特許文献3]などの検討が進められている。 Conventionally, a relatively large analyzer using a spatial optical system has been used as an optical circuit for biological analysis such as a fluorescence microscope, an interference microscope, and a spectroscope, and as a light source in the display field. However, in response to recent demands for general-purpose analyzers, smaller size and lighter weight, and free optical alignment, expectations for highly integrated devices using PLCs are increasing. For example, RGB (Red Green Blue) combiner for retinal scanning display [Non-Patent Document 1], AWG for small spectroscopic sensor [Non-Patent Document 2], digital holographic microscope by two light beam interference [Non-Patent Document 3], etc. Is under consideration.
(Geドープコアの可視光、UV光による光損傷)
 しかし、従来のPLCデバイスでは、光導波路コア層に用いられてきたGeドープSiOにおいて、ドープされたGe(ゲルマニウム)原子がUV光(紫外光)や短波長の可視光を光吸収することによって、Geの色中心と言われる結合欠陥が発生し、コア層における光損失が増加することが知られている。[非特許文献4]
このため、光波長がUV光に近く高エネルギーであればある程、また、光強度が高強度であればある程、光劣化が発生しやすく、PLCの光損失が増加する要因となっていた。
(Visible light of Ge-doped core, light damage by UV light)
However, in the conventional PLC device, in the Ge-doped SiO 2 used for the optical waveguide core layer, the doped Ge (germanium) atom absorbs UV light (ultraviolet light) and short-wavelength visible light. , It is known that a bond defect called the color center of Ge occurs and the light loss in the core layer increases. [Non-Patent Document 4]
Therefore, the closer the light wavelength is to UV light and the higher the energy, and the higher the light intensity, the more likely it is that photodegradation will occur, which has been a factor in increasing the light loss of the PLC. ..
(純粋石英コアでの光導波路の有用性)
 そこで、高光強度のUV光や可視光に対する耐性をPLCに持たせるためには、アモルファス構造のSiOガラスにおいて、出来るだけ結合欠陥が少なくし、欠陥を発生させる要因となり得る不純物も出来るだけ少なくすることが望ましい。
(Usefulness of optical waveguide in pure quartz core)
Therefore, in order to make the PLC resistant to high-intensity UV light and visible light, in the amorphous structure SiO 2 glass, the number of bond defects is reduced as much as possible, and the impurities that can cause defects are also reduced as much as possible. Is desirable.
 [非特許文献5]に示すように、純粋な溶融石英ガラス(Fused Silica glass)は、欠陥による光吸収要因を除けば、約200nm~約2500nm付近まで非常に優れた光透過性を有している。 As shown in [Non-Patent Document 5], pure fused silica glass (Fused Silica glass) has very excellent light transmittance from about 200 nm to about 2500 nm, excluding the light absorption factor due to defects. There is.
 そのため、出来るだけ高純度の原料を基板上に堆積し、欠陥が無くなる温度まで溶融させた後冷却し、高純度のSiOガラス膜をコア層として成膜する必要がある。 Therefore, it is necessary to deposit as high-purity raw material as possible on the substrate, melt it to a temperature at which defects disappear, and then cool it to form a high-purity SiO 2 glass film as a core layer.
(可視光PLC作製時の基板の問題)
 前述のように、SiOの融点は1732℃であるため、十分溶融させるには、PLCを作製するための基板も、溶融時の加熱温度で変形しないことが必要となる。一方Siの融点は1412℃であるため、Siウエハを基板に使用する場合には、Si融点以上の温度プロセスは避けた方が良いことになる。
(Problems with the substrate when manufacturing visible light PLC)
As described above, since the melting point of SiO 2 is 1732 ° C., in order to sufficiently melt the substrate, it is necessary that the substrate for producing the PLC is not deformed by the heating temperature at the time of melting. On the other hand, since the melting point of Si is 1412 ° C., when a Si wafer is used for a substrate, it is better to avoid a temperature process above the Si melting point.
(溶融石英コア作製の困難さ)
 そのため、溶融石英ガラス(Fused silica glass)のコア層をSiウエハ表面に作製することは非常に難しい。
(Difficulty in producing fused quartz core)
Therefore, it is very difficult to form a core layer of fused silica glass on the surface of a Si wafer.
 さらに、前述の光通信用PLCのように基板(ウエハ)表面から順次作成しようとする場合には、コア層より融点等の耐熱性が高い材料を下部クラッドに使用する必要があり、その点でも、溶融石英ガラス(Fused silica glass)のコア層を用いることは困難となる。 Further, in the case of sequentially producing from the substrate (wafer) surface like the above-mentioned PLC for optical communication, it is necessary to use a material having higher heat resistance such as melting point than the core layer for the lower clad, which is also the point. , It becomes difficult to use the core layer of fused silica glass.
 一方、別に作製した溶融石英ガラスをSiウエハ等の基板上に貼り合せた後、全体を研磨し、コア層となる溶融石英ガラスを薄膜化する方法も考えられる。しかし、安定した光導波路のコアとして使用するためには、サブミクロン程度の精度で、膜厚を均一にする必要があり、現状の技術をもってしても、高歩留りで、基板全体でうねりのない研削・研磨する方法は、非常に困難である。 On the other hand, it is also conceivable to attach a separately produced fused silica glass on a substrate such as a Si wafer and then polish the entire surface to thin the fused silica glass as the core layer. However, in order to use it as a stable optical waveguide core, it is necessary to make the film thickness uniform with an accuracy of about submicron, and even with the current technology, the yield is high and there is no swell in the entire substrate. The method of grinding and polishing is very difficult.
(発明の目的)
 本発明はこのような現状に鑑みてなされたものであり、その目的は、CMOSプロセスとの適応性を維持しつつ、つまりSiウエハを利用しつつ、近紫外光から可視光、さらに近赤外光帯(例えば、300nm~1700nm)までの全域で、光透過性に優れた光導波路を作製することである。
(Purpose of Invention)
The present invention has been made in view of this situation, and an object of the present invention is to maintain compatibility with a CMOS process, that is, while using a Si wafer, from near-ultraviolet light to visible light, and further to near-infrared light. The purpose is to produce an optical waveguide having excellent light transmission in the entire range up to the light band (for example, 300 nm to 1700 nm).
(熱酸化Siをコア層に用いる可視光WG(光導波路)とその作製法)
 本発明者らは、前記課題に鑑み鋭意検討した結果、Siウエハの熱酸化膜をコア層に用いた光導波路構造が可能であることを見出し、光導波路の作製手順、および光導波路構造を見直し、さらにクラッド材料を検討することにより、本発明を完成するに至った。
(Visible light WG (optical waveguide) using thermally oxidized Si for the core layer and its manufacturing method)
As a result of diligent studies in view of the above problems, the present inventors have found that an optical waveguide structure using a thermal oxide film of a Si wafer as a core layer is possible, and reviewed the procedure for producing the optical waveguide and the optical waveguide structure. Further, by examining the clad material, the present invention has been completed.
 さらに、後述の通り、2つのPLCの熱酸化コア層を上下で隣接させた状態でPLCを作製することが可能となるため、2つの熱酸化コア層間で光結合する素子も作製可能であるという特徴も有している。さらに、Siウエハを用いることで、Siウエハ表面にCMOSデバイスを作製することも可能であることから、低コストで大量生産が可能となるだけでなく、紫外光~近赤外光域で使用可能なSiフォトダイオードなどの受光素子との集積デバイスも作製できる特徴を有している。 Further, as described later, since it is possible to fabricate a PLC with the thermal oxide core layers of two PLCs adjacent to each other on the upper and lower sides, it is possible to fabricate an element that photobonds between the layers of the two thermal oxide cores. It also has features. Furthermore, by using a Si wafer, it is possible to fabricate a CMOS device on the surface of the Si wafer, which not only enables mass production at low cost, but also allows it to be used in the ultraviolet to near-infrared light region. It has a feature that an integrated device with a light receiving element such as a Si photodiode can also be manufactured.
 前記課題を解決するための手段の構成例は、以下の通りである。 An example of the configuration of the means for solving the above problem is as follows.
(構成1)
 光導波路の光伝搬方向に垂直な断面の基板断面視において、
 基板となるSiウエハと、熱酸化Siコアと、
 前記熱酸化Siコアを上下に直接挟んで支持する上部クラッド層および下部クラッド層とを有し、
 前記熱酸化Siコアが基板となる前記Siウエハから離隔して位置する
ことを特徴とする埋め込み光導波路構造。
(Structure 1)
In the cross-sectional view of the substrate perpendicular to the light propagation direction of the optical waveguide,
A Si wafer as a substrate, a thermally oxidized Si core,
It has an upper clad layer and a lower clad layer that directly sandwich and support the thermally oxidized Si core vertically.
An embedded optical waveguide structure characterized in that the thermally oxidized Si core is located at a distance from the Si wafer serving as a substrate.
(構成2)
 構成1に記載の埋め込み光導波路構造におぃて、
 前記上部クラッド層の上面に接合された支持基板をさらに有する
ことを特徴とする埋め込み光導波路構造。
(Structure 2)
In the embedded optical waveguide structure described in Configuration 1,
An embedded optical waveguide structure further comprising a support substrate bonded to the upper surface of the upper clad layer.
(構成3)
 構成1に記載の埋め込み光導波路構造が2つ、スペーサを挟んで前記上部クラッド層の側で背中合わせに配置され、位置合わせして接合された2層構造を有する
ことを特徴とする2層構造の埋め込み光導波路構造。
(Structure 3)
A two-layer structure characterized in that the two embedded optical waveguide structures according to the configuration 1 have a two-layer structure in which two embedded optical waveguide structures are arranged back to back on the side of the upper clad layer with a spacer interposed therebetween and are aligned and joined. Embedded optical waveguide structure.
(構成4)
 構成2に記載の埋め込み光導波路構造において、
 前記支持基板は光導波路に光結合する受光素子を有し、構造補強と共に受光機能をも有する
ことを特徴とする複合型の埋め込み光導波路構造。
(Structure 4)
In the embedded optical waveguide structure according to the configuration 2,
The support substrate has a light-receiving element that photocouples to the optical waveguide, and has a composite type embedded optical waveguide structure that also has a light-receiving function as well as structural reinforcement.
(構成5)
 基板となるSiウエハの上面に熱酸化Si層を形成するステップと、
 前記熱酸化Si層をエッチングして光導波路の熱酸化Siコア層を形成するステップと、
 前記熱酸化Siコア層の上に前記熱酸化Siコア層より低屈折率の上部クラッド層を形成するステップと、
 前記熱酸化Siコア層の下側にあたる部分の前記Siウエハを、前記熱酸化Siコア層が基板となる前記Siウエハの残りの部分から離隔するまで部分的にエッチング除去するステップと、
 前記熱酸化Siコア層の下に低屈折率を有する下部クラッド層を形成するステップとを備え、
 前記熱酸化Siコアが前記上部クラッド層および前記下部クラッド層により上下に直接挟んで支持され、基板となる前記Siウエハから離隔して位置する構造を作製する
ことを特徴とする埋め込み光導波路構造の作製方法。
(Structure 5)
A step of forming a thermal oxide Si layer on the upper surface of a Si wafer to be a substrate,
The step of etching the thermal oxide Si layer to form the thermal oxide Si core layer of the optical waveguide,
A step of forming an upper clad layer having a refractive index lower than that of the thermally oxidized Si core layer on the thermally oxidized Si core layer,
A step of partially etching and removing the Si wafer in a portion corresponding to the lower side of the thermal oxide Si core layer until the thermal oxide Si core layer is separated from the remaining portion of the Si wafer serving as a substrate.
A step of forming a lower clad layer having a low refractive index under the thermally oxidized Si core layer is provided.
An embedded optical waveguide structure characterized in that the thermally oxidized Si core is directly sandwiched and supported vertically by the upper clad layer and the lower clad layer to produce a structure located at a distance from the Si wafer as a substrate. Manufacturing method.
(構成6)
 構成5の埋め込み光導波路構造の作製方法において、前記上部クラッド層の上に支持基板を接合するステップをさらに備える
ことを特徴とする埋め込み光導波路構造の作製方法。
(Structure 6)
A method for producing an embedded optical waveguide structure according to the present invention, wherein the method for producing an embedded optical waveguide structure further includes a step of joining a support substrate on the upper clad layer.
(構成7)
 構成5の埋め込み光導波路構造の作製方法により埋め込み光導波路構造を2つ作製し、
 作製された2つの前記埋め込み光導波路構造をスペーサを挟んで上部クラッド層側で背中合わせに配置するステップと、
 マーカによって位置合わせしながら接合するステップをさらに備える
ことを特徴とする2層構造の埋め込み光導波路構造の作製方法。
(Structure 7)
Two embedded optical waveguide structures were produced by the method for producing the embedded optical waveguide structure of the configuration 5.
A step of arranging the two produced embedded optical waveguide structures back to back on the upper clad layer side with a spacer in between.
A method for producing an embedded optical waveguide structure having a two-layer structure, which further comprises a step of joining while aligning with a marker.
(構成8)
 構成6の埋め込み光導波路構造の作製方法において、前記支持基板に光導波路に光結合する受光素子を作製するステップをさらに備える
ことを特徴とする複合型の埋め込み光導波路構造の作製方法。
(Structure 8)
A method for manufacturing a composite embedded optical waveguide structure, which further comprises a step of manufacturing a light receiving element that photocouples to the optical waveguide on the support substrate in the method for manufacturing the embedded optical waveguide structure of the configuration 6.
 以上記載した本発明の光導波路構造とその作製方法によれば、比較的簡便な方法により低コストで、近赤外から可視光帯、紫外光帯までの光透過性に優れた埋め込み光導波路構造の実現が可能となる。本発明の光導波路の作製方法によって、広帯域の波長にわたる光を合分波する光導波路素子が作製可能であり、医療や生体分析をはじめ、画像投影等の表示装置など様々な産業分野での利用が可能となる。 According to the optical waveguide structure of the present invention described above and the method for producing the same, an embedded optical waveguide structure having excellent light transmission from the near infrared to the visible light band and the ultraviolet light band at low cost by a relatively simple method. Can be realized. By the method for producing an optical waveguide of the present invention, an optical waveguide element that combines and demultiplexes light over a wide band wavelength can be produced, and is used in various industrial fields such as medical treatment, bioanalysis, and display devices such as image projection. Is possible.
従来の光通信用PLCの作製方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the conventional PLC for optical communication. 実施形態1の熱酸化Siコア埋め込み光導波路の構造を示す断面図である。It is sectional drawing which shows the structure of the thermal oxide Si core embedded optical waveguide of Embodiment 1. FIG. 実施形態1の熱酸化Siコア埋め込み光導波路の作製工程を説明する図である。It is a figure explaining the manufacturing process of the thermal oxide Si core embedded optical waveguide of Embodiment 1. 実施形態2の熱酸化Siコア埋め込み光導波路の構造を示す断面図である。It is sectional drawing which shows the structure of the thermal oxide Si core embedded optical waveguide of Embodiment 2. 実施形態2の熱酸化Siコア埋め込み光導波路の作製工程を説明する図である。It is a figure explaining the manufacturing process of the thermal oxide Si core embedded optical waveguide of Embodiment 2. 実施形態3の熱酸化Siコア埋め込み光導波路の構造を示す断面図である。It is sectional drawing which shows the structure of the thermal oxide Si core embedded optical waveguide of Embodiment 3. 実施形態3の熱酸化Siコア埋め込み光導波路の作製工程を説明する図である。It is a figure explaining the manufacturing process of the thermal oxide Si core embedded optical waveguide of Embodiment 3. 実施形態4の熱酸化Siコア埋め込み光導波路の構造を示す断面図である。It is sectional drawing which shows the structure of the thermal oxide Si core embedded optical waveguide of Embodiment 4. 実施形態4の熱酸化Siコア埋め込み光導波路の作製工程を説明する図である。It is a figure explaining the manufacturing process of the thermal oxide Si core embedded optical waveguide of Embodiment 4.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Siウエハ)
 まず、前提となるSiウエハの作製方法について説明する。地球上には珪砂(主成分はSiO)は到るところにあるが、高純度のSiを効率よく得るために原料も不純物の少ない良質の珪砂を使う。1800℃の電気炉の中で珪砂をコークス(C)と混合すると、酸素は炭素と結合して脱ガスして、溶融した状態の純度約98%の金属シリコン(Si)が得られる。この段階におけるおもな不純物は、Al(アルミニウム)とFe(鉄)である。
(Si wafer)
First, a method for producing a Si wafer, which is a prerequisite, will be described. Quartz sand (main component is SiO 2 ) is ubiquitous on the earth, but in order to efficiently obtain high-purity Si, high-quality silica sand with few impurities is used as the raw material. When silica sand is mixed with coke (C) in an electric furnace at 1800 ° C., oxygen is combined with carbon and degassed to obtain metallic silicon (Si) having a purity of about 98% in a molten state. The main impurities at this stage are Al (aluminum) and Fe (iron).
 次に、粉末状態の金属シリコンを熱塩酸(HCl)に溶かすと、トリクロルシリコン(HSiCl)が得られる。トリクロルシリコンは常温では液体で沸点は31.8℃であるが、そのまま続けて蒸留塔に送り精製する。次に液体トリクロルシリコンを気化して水素ガスと共に高温反応炉に送り込み、その中で分解して、純度99.99999999%(10N)程度の電子水準高純度多結晶シリコン(EGS:electronic-grade polycrystalline silicon)を得る。 Next, when powdered metallic silicon is dissolved in hot hydrochloric acid (HCl), trichlorosilicon (HSICl 3 ) is obtained. Trichlorosilicon is a liquid at room temperature and has a boiling point of 31.8 ° C, but it is continuously sent to a distillation column for purification. Next, liquid trichlorosilicon is vaporized and sent to a high-temperature reactor together with hydrogen gas, where it is decomposed to produce electronic-grade polysilicon (EGS) with a purity of about 99.99999999% (10N). obtain.
 続いて、多結晶シリコンを電気炉中で高温溶解して徐冷し、結晶を析出するとともに高純度化を行う。主に、単結晶インゴット作成法にはゾーンメルト法(FZ:floating zone)とチョクラルスキー法(CZ:Czochralski)の2種類の方法により、純度99.999999999%(11N)以上のシリコン単結晶インゴットを作製する。 Subsequently, polycrystalline silicon is melted at a high temperature in an electric furnace and slowly cooled to precipitate crystals and to purify them. Mainly, silicon single crystal ingots with a purity of 99.999999999% (11N) or more are produced by two methods, the zone melting method (FZ: floating zone) and the Czochralski method (CZ: Czochralski). To do.
 このとき、単結晶インゴットを成形、切断、CMP(chemical-mechanical polishing:化学機械研磨 )、クリーニング等を施すことにより、ウェーハ全面に渡り大きなうねりは±20~25μm以下、局部的には原子レベルの平滑度を維持したSiウエハが得られる。 At this time, by forming, cutting, CMP (chemical-mechanical polishing), cleaning, etc., the single crystal ingot, the large swell over the entire surface of the wafer is ± 20 to 25 μm or less, and locally at the atomic level. A Si wafer that maintains smoothness can be obtained.
(熱酸化Si膜の作製方法)
 さらに、上記で得られたSiウエハ表面に熱酸化Si膜を作製する。Siの熱酸化には酸化に用いるガスの種類によりドライ酸化、ウェット酸化、スチーム酸化の3方式があり、熱酸化温度は約800~1100℃の温度範囲にて行なわれる。ドライ酸化は酸素ガスを使い、ウェット酸化は酸素ガスに脱イオン水蒸気を加えて使い、スチーム酸化は脱イオン水蒸気のみ使う。水素燃焼スチーム酸化方式では炉内に酸素ガスと水素ガスを流して自然燃焼して発生する水蒸気(HO)を使う。
(Method for producing a thermal oxide Si film)
Further, a thermally oxidized Si film is formed on the surface of the Si wafer obtained above. There are three types of thermal oxidation of Si, dry oxidation, wet oxidation, and steam oxidation, depending on the type of gas used for oxidation, and the thermal oxidation temperature is in the temperature range of about 800 to 1100 ° C. Oxygen gas is used for dry oxidation, deionized steam is added to oxygen gas for wet oxidation, and only deionized steam is used for steam oxidation. In the hydrogen combustion steam oxidation method, steam (H 2 O) generated by natural combustion by flowing oxygen gas and hydrogen gas into the furnace is used.
 一般に、SiO層へのHOの溶解度は大きく、かつHO分子が小さいため拡散速度も大きいため、ウェット酸化の方がドライ酸化よりも早く進行するが、形成されるSiO層の緻密性はドライ酸化の方が高い。従ってドライ酸化は通常100nm(0.1μm)以下の厚さ層形成に利用し、それより厚い酸化層形成にはウエット酸化を使用する。本発明では、光導波路のコア層として利用するため、約10μm以下程度までの膜厚が必要であり、ウエット酸化による製法が望ましい。 In general, since the solubility of H 2 O in the SiO 2 layer is high and the diffusion rate is high because the H 2 O molecules are small, wet oxidation proceeds faster than dry oxidation, but the formed SiO 2 layer Denseness is higher in dry oxidation. Therefore, dry oxidation is usually used for forming a thick layer of 100 nm (0.1 μm) or less, and wet oxidation is used for forming a thicker oxide layer. In the present invention, since it is used as the core layer of the optical waveguide, a film thickness of about 10 μm or less is required, and a manufacturing method by wet oxidation is desirable.
 このとき、酸化するシリコン自体の純度が、99.999999999%(11N)以上と非常に高く制御可能であり、電気抵抗や半導体特性をコントロールするためにリン(P)やホウ素(B)などのドーパントの導入を制限した高抵抗シリコンウエハを使用すれば、シリコン基板に含まれるドーパントの影響も低減化できる。さらに、クリーンルーム等で熱酸化の環境を制御すれば、熱酸化膜自体への不純物の混入も制限できるため、熱酸化シリコン層は、純粋な溶融石英ガラスほどではないとしても、不純物等に起因する欠陥由来の光吸収を低減化することが可能である。 At this time, the purity of the silicon itself to be oxidized can be controlled to be extremely high at 99.999999999% (11N) or more, and dopants such as phosphorus (P) and boron (B) are introduced to control the electrical resistance and semiconductor characteristics. If a high resistance silicon wafer is used, the influence of the dopant contained in the silicon substrate can be reduced. Furthermore, if the thermal oxidation environment is controlled in a clean room or the like, it is possible to limit the mixing of impurities into the thermal oxide film itself, so that the silicon oxide layer is caused by impurities, if not as much as pure fused silica glass. It is possible to reduce the light absorption derived from defects.
 また、前記Siウエハは、CMOSプロセス等において、非常に大量に使用されている高品質のウエハ基板であるため、価格的にも比較的安価である。そのため、低コストに紫外光帯から近赤外光域までの広帯域な光導波路を作製するためには、純粋な溶融石英ガラスよりも、熱酸化Si膜をコア層として用いることが優れている。 Further, since the Si wafer is a high-quality wafer substrate that is used in a very large amount in a CMOS process or the like, it is relatively inexpensive in terms of price. Therefore, in order to fabricate a wide-band optical waveguide from the ultraviolet band to the near-infrared light region at low cost, it is superior to using a thermally oxidized Si film as a core layer rather than pure fused silica glass.
 一方、アモルファスSiO膜は熱酸化による以外にも、CVD(化学的気相堆積)法やスパッタリング法、FHD(火炎堆積)法などによっても作製可能であるが、不純物の混入の低減化や制御が困難であり、不純物に起因する光吸収が発生するため、紫外光帯から近赤外光域までの広帯域な光導波路コアの材料としては、熱酸化Si膜より不向きである。 On the other hand, the amorphous SiO 2 film can be produced not only by thermal oxidation but also by CVD (chemical vapor deposition) method, sputtering method, FHD (flame deposition) method, etc., but reduction and control of contamination of impurities As a material for a wide-band optical waveguide core from the ultraviolet band to the near-infrared light region, it is more unsuitable than the thermally oxidized Si film because it is difficult to absorb light due to impurities.
 さらに、熱酸化Si膜は、高純度Si単結晶の表面酸化により作製されるため、点欠陥(結合欠陥)や酸素欠乏欠陥がわずかに発生するものの、低不純物環境下で、高精度に制御された約800~1100℃の酸化プロセスを経るため、欠陥密度は溶融石英ガラス(Fused Silica glass)に近く、約200nmの近紫外光域から2500nm付近の近赤外光帯まで非常に透過性の優れた膜が得られる。 Furthermore, since the thermally oxidized Si film is produced by surface oxidation of a high-purity Si single crystal, although slight point defects (bonding defects) and oxygen deficiency defects occur, it is controlled with high accuracy in a low impurity environment. Since it undergoes an oxidation process at about 800 to 1100 ° C, the defect density is close to that of fused silica glass, and it has excellent transparency from the near-ultraviolet light region of about 200 nm to the near-infrared light band of about 2500 nm. A glass film is obtained.
 本発明では、このような熱酸化Siをコアに利用し、以下に示す埋め込み光導波路の構造と作製手順、クラッド材料の選択により、安価で、紫外光帯から近赤外光帯までの広帯域で使用可能な光導波路を見出すに至った。 In the present invention, such thermally oxidized Si is used as a core, and by selecting the structure and manufacturing procedure of the embedded optical waveguide and the clad material shown below, it is inexpensive and has a wide band from the ultraviolet light band to the near infrared light band. We have found a usable optical waveguide.
(第1の実施形態)
(基本的な熱酸化Siコア光導波路の構造)
 図2は、本発明の第1の実施形態の熱酸化Siコア埋め込み光導波路の構造を示す断面図である。以下の断面図では、他の実施例を含め特に断りのない限り、光導波路の光伝搬方向に垂直な基板断面図を示す。
(First Embodiment)
(Basic structure of thermal oxide Si core optical waveguide)
FIG. 2 is a cross-sectional view showing the structure of the thermal oxide Si core embedded optical waveguide according to the first embodiment of the present invention. In the following cross-sectional view, unless otherwise specified, the cross-sectional view of the substrate perpendicular to the optical propagation direction of the optical waveguide is shown, including other embodiments.
 図2の実施形態1では、光導波路は、熱酸化Siコアの埋め込み光導波路構造となっている。基板となるSiウエハ21の一部をくり抜き、光導波路のコアとなる熱酸化Siコア23が、上部クラッド24および下部クラッド22によって上下に直接挟まれて支持され、Siウエハ21から離隔して位置しており、あたかも熱酸化Siコア23がクラッドで取り囲まれて浮いているような構造となっている。 In the first embodiment of FIG. 2, the optical waveguide has an embedded optical waveguide structure of a thermally oxidized Si core. A part of the Si wafer 21 to be a substrate is hollowed out, and the thermal oxide Si core 23 to be the core of the optical waveguide is directly sandwiched and supported by the upper clad 24 and the lower clad 22, and is positioned at a distance from the Si wafer 21. The structure is such that the thermally oxidized Si core 23 is surrounded by a clad and floats.
 すなわち、図2の光導波路の光伝搬方向に垂直な断面の基板断面視において、熱酸化Siコア23と、熱酸化Siコア23を上下に直接挟んで支持する上部クラッド層24および下部クラッド層22を有し、熱酸化Siコア23が基板となるSiウエハ21から離隔して位置する埋め込み光導波路構造となっている。Siウエハ21と下部クラッド22との間には、最初にSiウエハ21の裏面に形成されていた熱酸化Si層20が残留していてもよく、Siウエハ21は、熱酸化Siコア23から離隔した位置において、上部クラッド24および下部クラッド22に挟まれていてもよい。 That is, in the cross-sectional view of the substrate in the cross section perpendicular to the optical waveguide in FIG. 2, the upper clad layer 24 and the lower clad layer 22 that directly sandwich and support the thermally oxidized Si core 23 and the thermally oxidized Si core 23 vertically. It has an embedded optical waveguide structure in which the thermally oxidized Si core 23 is located at a distance from the Si wafer 21 as a substrate. The thermally oxidized Si layer 20 initially formed on the back surface of the Si wafer 21 may remain between the Si wafer 21 and the lower clad 22, and the Si wafer 21 is separated from the thermally oxidized Si core 23. At this position, it may be sandwiched between the upper clad 24 and the lower clad 22.
 このような埋め込み光導波路構造は、図1で示すような従来の通常の光通信用の光導波路の作製方法では作製することができない。以下、本発明の実施形態1の作製方法について、図3を参照して詳細に説明する。 Such an embedded optical waveguide structure cannot be produced by the conventional method for producing an optical waveguide for optical communication as shown in FIG. Hereinafter, the method for producing the first embodiment of the present invention will be described in detail with reference to FIG.
(基本的な熱酸化Siコア光導波路の作製方法)
 まず、図3(a)に示すように、熱酸化Si層30a,30bをSiウエハ31の表裏両面に作製して、Siウエハを準備する。Siウエハ31の上面側(表面側)の熱酸化Si層30aは、光導波路のコアとして必要となる十分な膜厚で形成する。
(Basic method for manufacturing a thermal oxide Si core optical waveguide)
First, as shown in FIG. 3A, thermal oxide Si layers 30a and 30b are prepared on both the front and back surfaces of the Si wafer 31 to prepare a Si wafer. The thermal oxide Si layer 30a on the upper surface side (front surface side) of the Si wafer 31 is formed with a sufficient film thickness required as a core of an optical waveguide.
 その表裏両面の熱酸化Si層30a,30bには、プロセス工程に必要となる位置合わせマーカ37を作製する。これは、フォトレジストを用いたフォトリソグラフィ工程により、位置合わせマーカ位置以外をレジスト膜で覆い、CFなどフッ素系プラズマを用いた反応性ドライエッチング法によって、熱酸化Si層30a,bやSiウエハ31に掘り込みを入れるなどして作製することができる。 Alignment markers 37 required for the process process are formed on the thermal oxide Si layers 30a and 30b on both the front and back surfaces. This is done by a photolithography process using a photoresist, covering areas other than the alignment marker position with a resist film, and by a reactive dry etching method using a fluorine-based plasma such as CF 4, thermal oxide Si layers 30a, b and Si wafers. It can be produced by digging into 31.
 次に、図3(b)に示すように、表面側の熱酸化Si層30aの上に、フォトリソグラフィ工程によりフォトレジスト38を光導波路コアのパターンで形成する。その後、CFなどのフッ素系ガスを用いた反応性ドライエッチング法によって熱酸化Si層30aをエッチング除去して、図3(c)のように、リッジ形状の光導波路の熱酸化Siコア層33を、Siウエハ31の表面に作製する。 Next, as shown in FIG. 3B, a photoresist 38 is formed on the surface-side thermal oxide Si layer 30a by a photolithography step in a pattern of an optical waveguide core. Then, the thermally oxidized Si layer 30a is removed by etching by a reactive dry etching method using a fluorine-based gas such as CF 4, and as shown in FIG. 3C, the thermally oxidized Si core layer 33 of the ridge-shaped optical waveguide Is produced on the surface of the Si wafer 31.
 光導波路コアとなる熱酸化Siコア層33の膜厚は、100μmオーダーであると、スチーム酸化でも非常に長い時間が必要となるため、現実的なプロセス工程ではない。そのため熱酸化Siコア層33の膜厚は厚くても数10μmである。また、光ファイバーなどにより光導波路の伝搬信号光を取りだすことを想定すると、膜厚は10μm以下であることが望ましい。 If the film thickness of the thermally oxidized Si core layer 33, which is the optical waveguide core, is on the order of 100 μm, a very long time is required even for steam oxidation, which is not a realistic process process. Therefore, the film thickness of the thermally oxidized Si core layer 33 is several tens of μm at the thickest. Further, assuming that the propagating signal light of the optical waveguide is taken out by an optical fiber or the like, the film thickness is preferably 10 μm or less.
 次に、図3(d)に示すように熱酸化Siコア層33の表面に、上部クラッド層34を積層する。 Next, as shown in FIG. 3D, the upper clad layer 34 is laminated on the surface of the thermal oxide Si core layer 33.
(クラッド材料の説明)
 クラッド層の材料としては、埋め込み構造の光導波路であるため、紫外光帯~近赤外光帯において熱酸化Siコア層33より低屈折率となる必要がある。また、本発明では、熱酸化Siコア層33を構造的に支えることも必要であるため、機械的強度が大きいことも望ましい。
(Description of clad material)
Since the material of the clad layer is an optical waveguide having an embedded structure, it is necessary to have a lower refractive index than the thermally oxidized Si core layer 33 in the ultraviolet light band to the near infrared light band. Further, in the present invention, it is also necessary to structurally support the thermal oxide Si core layer 33, so that it is desirable that the mechanical strength is high.
 具体的には、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ハフニウム(HfF)、フッ化アルミニウム(AlF)、フッ化ランタン(LaF)、フッ化イットリウム(YF)、フッ化ジルコニウム(ZrF)などのフッ素化合物や、ホウ素ドープSiOガラスやフッ素ドープSiOガラスなどの低屈折率アモルファスSiOなどが利用できる。 Specifically, magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), hafnium fluoride (HfF 4 ), aluminum fluoride (AlF 3 ), lanthanum fluoride (LaF 3 ), yttrium fluoride (YF). 3 ), Fluorine compounds such as zirconium fluoride (ZrF 4 ), low refractive index amorphous SiO 2 such as boron-doped SiO 2 glass and fluorine-doped SiO 2 glass can be used.
 また、高分子化合物としては、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレン-プロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、ポリフッ化ビニリデン(PVDF)、EFEPなどのフッ素樹脂や、非晶性フッ素ポリマーや、(部分)フッ素化エポキシ樹脂、(部分)フッ素化アクリレート樹脂、(部分)フッ素化シリコーン樹脂などや、上記各樹脂の混合物なども用いることもできる。 Examples of the polymer compound include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), and polyvinylidene fluoride (PVDF). , EFEP and other fluororesins, amorphous fluoropolymers, (partially) fluorinated epoxy resins, (partially) fluorinated acrylate resins, (partially) fluorinated silicone resins, and mixtures of the above resins are also used. You can also.
 また、それらフッ素化合物を微粒子化し分散させた石英ガラス、有機化合物、フッ素化合物や低屈折率酸化物とアモルファス石英(SiO)との混合物や溶融物なども利用できる。 Further, quartz glass in which these fluorine compounds are made into fine particles and dispersed, an organic compound, a mixture or a melt of a fluorine compound or a low refractive index oxide and amorphous quartz (SiO 2) can also be used.
 また、図3(d)の上部クラッド層34としては、1層構造ではなく、2層以上の多層構造でも構わない。例えば、熱酸化Siコア33に伝搬光が十分閉じ込められるような低屈折率の材料を、光が浸み出さない程度の膜厚で、コア層33表面を覆うようにまず積層し、その上に、屈折率としては熱酸化SiOに近くとも機械的強度に優れた材料を、2層目として積層してもよい。 Further, the upper clad layer 34 in FIG. 3D may have a multilayer structure of two or more layers instead of a one-layer structure. For example, a material having a low refractive index such that the propagating light is sufficiently confined in the thermally oxidized Si core 33 is first laminated so as to cover the surface of the core layer 33 with a thickness that does not allow light to seep out, and then laminated on the material. A material having an excellent mechanical strength even if the refractive index is close to that of the thermally oxidized SiO 2 may be laminated as the second layer.
 次に、図3(e)に示すように、Siウエハ31の裏面側(図中下面側)にフォトレジスト38を形成し、光導波路コア33の裏面にあたる位置にコア33よりも幅広いパターンを作製し、図3(f)に示すように、CFなどフッ素系ガスを用いた反応性ドライエッチング法によって、光導波路コア33の裏面にあたる位置の熱酸化Si層30bをエッチング除去する。 Next, as shown in FIG. 3 (e), a photoresist 38 is formed on the back surface side (lower surface side in the drawing) of the Si wafer 31, and a pattern wider than that of the core 33 is formed at a position corresponding to the back surface of the optical waveguide core 33. Then, as shown in FIG. 3 (f), the thermally oxidized Si layer 30b at the position corresponding to the back surface of the optical waveguide core 33 is etched and removed by a reactive dry etching method using a fluorine-based gas such as CF 4.
 その後、図3(g)に示すように、等方エッチング性を示すフッ酸・硝酸・酢酸の賛成混合液や、異方性エッチングを示す水酸化カリウム(KOH)、水酸化テトラメチルアンモニウム(TMAH)、エチレンジアミン・ピロカテール(EDP)などのアルカリ水溶液によるウエットエッチング法や、CFなどフッ素系ガスを用いた反応性ドライエッチング法やSFとCガスを用いたボッシュプロセスなどによって、Siウエハ31の下層をもさらにエッチング除去する。 After that, as shown in FIG. 3 (g), a mixed solution of hydrofluoric acid, nitrate, and acetic acid showing isotropic etching properties, potassium hydroxide (KOH) showing anisotropic etching, and tetramethylammonium hydroxide (TMAH). ), Wet etching method using alkaline aqueous solution such as ethylenediamine / pyrocater (EDP), reactive dry etching method using fluorine-based gas such as CF 4, and Bosch process using SF 6 and C 4 F 8 gas, etc. The lower layer of the wafer 31 is also further etched and removed.
 光導波路コア層33の下側にあたる部分のSiウエハ層31を、熱酸化Siコア層33が基板となるSiウエハ31の残りの部分から離隔するまで、部分的にエッチング除去する。このとき、導波路コア33中の伝搬光が、残りのSiウエハ層31に浸み出さない程度にSi層をエッチングする必要があるため、少なくともコア33とSi層31の残りの部分の間隔を10μm以上にする必要がある。 The Si wafer layer 31 in the lower portion of the optical waveguide core layer 33 is partially etched and removed until the thermally oxidized Si core layer 33 is separated from the remaining portion of the Si wafer 31 as a substrate. At this time, since it is necessary to etch the Si layer to such an extent that the propagating light in the waveguide core 33 does not seep into the remaining Si wafer layer 31, at least the distance between the core 33 and the remaining portion of the Si layer 31 is set. It should be 10 μm or more.
 最後に、図3(h)のように、上部クラッド34と同様に裏面側より光導波路コア層33の下に下部クラッド層32を積層し、実施形態1の熱酸化Siコアによる埋め込み光導波路構造が作製できる。 Finally, as shown in FIG. 3H, the lower clad layer 32 is laminated under the optical waveguide core layer 33 from the back surface side as in the upper clad 34, and the embedded optical waveguide structure by the thermal oxide Si core of the first embodiment is formed. Can be produced.
(第2の実施形態)
(支持基板を接合した熱酸化Siコア光導波路)
 図4は、本発明の第2の実施形態の熱酸化Siコア光導波路の構造を示す断面図である。
(Second Embodiment)
(Thermal Oxide Si Core Optical Waveguide with Support Substrate Joined)
FIG. 4 is a cross-sectional view showing the structure of the thermal oxide Si core optical waveguide according to the second embodiment of the present invention.
 Siウエハ表面のSiO熱酸化膜は、密着性に優れているため、図3(c)のようにSiウエハ表面においてリッジ形状に加工しても剥離することはあまり無い。一方で、SiとSiOの熱膨張係数はそれぞれ、約3.6×10-6(1/K)と約0.65×10-6(1/K)で、かなり異なるため、800~1100℃の熱酸化温度と室温の温度差によってSiとSiOの界面に残留応力が発生する。 Since the SiO 2 thermal oxide film on the surface of the Si wafer has excellent adhesion, it does not peel off much even if it is processed into a ridge shape on the surface of the Si wafer as shown in FIG. 3C. On the other hand, the coefficients of thermal expansion of Si and SiO 2 are about 3.6 × 10 -6 (1 / K) and about 0.65 × 10 -6 (1 / K), respectively, which are quite different, so that they are thermally oxidized at 800 to 1100 ° C. Residual stress is generated at the interface between Si and SiO 2 due to the temperature difference between the temperature and room temperature.
 もしクラッド材料の機械的強度がこの残留応力に打ち勝つだけ十分大きければ、光導波路コアの位置ズレや、光閉じ込め構造の残留応力による破壊は起こらない。しかし、クラッド材料の低屈折率特性が、組成元素の原子屈折ではなく、ただ単に材料の低密度に起因しているような場合には、クラッド材料の機械的強度が低いため、応力破壊の危険性が増大する。このような問題を解決するために見出されたのが、本発明の第2の実施形態の構造である。 If the mechanical strength of the clad material is large enough to overcome this residual stress, the optical waveguide core will not be displaced or the optical waveguide structure will not be destroyed by the residual stress. However, if the low refractive index characteristics of the clad material are not due to the atomic refraction of the constituent elements but simply due to the low density of the material, the mechanical strength of the clad material is low and there is a risk of stress failure. Increases sex. The structure of the second embodiment of the present invention has been found to solve such a problem.
 図4に示す実施形態2の熱酸化Siコア埋め込み光導波路構造では、実施形態1の図2と対応する部分は同様な構造を有しており、説明は省略する。実施形態2では上部クラッド層44の上面に支持基板49が接合されおり、この支持基板49が熱酸化膜SiOコアの位置ずれや、光閉じ込め構造の構造破壊を防いでいる。 In the thermal-oxidized Si core-embedded optical waveguide structure of the second embodiment shown in FIG. 4, the portion corresponding to that of the second embodiment has the same structure, and the description thereof will be omitted. In the second embodiment, the support substrate 49 is bonded to the upper surface of the upper clad layer 44, and the support substrate 49 prevents the positional deviation of the thermal oxide film SiO 2 core and the structural destruction of the light confinement structure.
 以下、実施形態2の光導波路の作製方法について、図5を参照して詳細に説明する。 Hereinafter, the method for manufacturing the optical waveguide of the second embodiment will be described in detail with reference to FIG.
(支持基板を接合した熱酸化Siコア光導波路の作製方法)
 実施形態2の光導波路の作製方法では、図5(a)~(c)のステップは、実施形態1の作製方法の図3(a)~(c)のステップと同様である。
(Method of manufacturing a thermal oxide Si core optical waveguide with a support substrate bonded)
In the method of manufacturing the optical waveguide of the second embodiment, the steps of FIGS. 5 (a) to 5 (c) are the same as the steps of the method of manufacturing the first embodiment of FIGS. 3 (a) to 3 (c).
 実施形態2の作製方法では、図5(d)に示すように、熱酸化Siコア43の上に上部クラッド層44を積層した後に、上部クラッド層44の上に支持基板49を接合する。支持基板49を接合する方法としては、上部クラッド層44が熱可塑性を有するクラッド材料の場合は、加熱により軟化させ直接接合する方法も利用できるが、上部クラッド層44の上面に接着・粘着性材料により接合することも可能である。 In the manufacturing method of the second embodiment, as shown in FIG. 5D, the upper clad layer 44 is laminated on the thermally oxidized Si core 43, and then the support substrate 49 is bonded on the upper clad layer 44. As a method of joining the support substrate 49, when the upper clad layer 44 is a thermoplastic clad material, a method of softening by heating and directly joining can also be used, but an adhesive / adhesive material is applied to the upper surface of the upper clad layer 44. It is also possible to join by.
 図5(d)の支持基板49としては、機械的強度を有する材料であることが望ましく、さらには、作製プロセスの工程中での温度変化によりSiウエハとの熱膨張係数の差で発生する応力を低減化させるために、Siウエハと同程度の熱膨張係数を有する材料であることが望ましい。また、熱酸化Siコア43を伝搬中の伝搬光が他と光結合しないように、支持基板49は低屈折性材料からできているか、上部クラッド層44の膜厚が光結合しない程度まで十分に厚くなっていることが必要であり、できれば、上部クラッド層44の膜厚は10μm以上あることが望ましい。 The support substrate 49 in FIG. 5D is preferably made of a material having mechanical strength, and further, stress generated due to a difference in thermal expansion coefficient from that of a Si wafer due to a temperature change during the manufacturing process. It is desirable that the material has a coefficient of thermal expansion similar to that of a Si wafer. Further, the support substrate 49 is made of a low-refractive material or the film thickness of the upper clad layer 44 is sufficient so that the light propagating through the thermal oxide Si core 43 does not photobond with others. It needs to be thick, and if possible, the film thickness of the upper clad layer 44 is preferably 10 μm or more.
 実施形態2の続く図5(e)~(g)の作製工程は、実施形態1の図3(e)~(h)と同様である。 The manufacturing steps of FIGS. 5 (e) to 5 (g) following the second embodiment are the same as those of FIGS. 3 (e) to 3 (h) of the first embodiment.
(第3の実施形態)
(熱酸化Siコアによる2層光導波路)
 図6は、本発明の第3の実施形態の熱酸化Siコアによる2層光導波路の構造を示す断面図である。
(Third Embodiment)
(Two-layer optical waveguide with thermal oxide Si core)
FIG. 6 is a cross-sectional view showing the structure of a two-layer optical waveguide using a thermally oxidized Si core according to a third embodiment of the present invention.
 本発明では、平滑で全面でうねりの小さいSiウエハを基板材料として用いるので、コアとなる熱酸化Si層も、同様の平滑性を有している。そのため、第3の実施形態では、2つのコア層の間隔を保持するスペーサを導入することにより、比較的簡便に光導波路コアを2層有する埋め込み光導波路構造を実現することが可能となる。 In the present invention, since a Si wafer that is smooth and has small waviness on the entire surface is used as the substrate material, the thermal oxide Si layer that is the core also has the same smoothness. Therefore, in the third embodiment, by introducing a spacer that maintains the distance between the two core layers, it is possible to realize an embedded optical waveguide structure having two layers of optical waveguide cores relatively easily.
 図6に示すように、実施形態3の熱酸化Siコアによる2層の埋め込み光導波路構造では、図2の実施形態1の熱酸化Siコアの埋め込み光導波路を2つ、スペーサを挟んで上部クラッド層側で背中合わせに張り合わせて接合して、2層構造の埋め込み光導波路構造を構成している。 As shown in FIG. 6, in the two-layer embedded optical waveguide structure by the thermal oxide Si core of the third embodiment, two embedded optical waveguides of the thermal oxide Si core of the first embodiment of FIG. A two-layered embedded optical waveguide structure is formed by laminating and joining back to back on the layer side.
 図6の2層光導波路では、元々の2つの光導波路の上部クラッド層がスペーサ69を挟んで接合されて形成されたクラッド層64に、2つの熱酸化Siコア63a、63bを含んでいる。このクラッド層64は、元々の2つの光導波路のSiウエハ61a、61bに挟まれ、さらに元々の2つの光導波路の下部クラッド層にあたるクラッド層62a、62bで挟まれている。 In the two-layer optical waveguide of FIG. 6, the two thermal oxide Si cores 63a and 63b are included in the clad layer 64 formed by joining the upper clad layers of the original two optical waveguides with the spacer 69 interposed therebetween. The clad layer 64 is sandwiched between the Si wafers 61a and 61b of the original two optical waveguides, and further sandwiched between the clad layers 62a and 62b which are the lower clad layers of the two original optical waveguides.
 スペーサ69も、元々の2つの光導波路の上部クラッド層に形成された2つの部分が接合されて構成されてもよい。熱酸化Si層60a、60bは、元々の2つの光導波路のSiウエハ61a、61bの裏面の熱酸化Si層に由来する。 The spacer 69 may also be configured by joining two portions formed in the upper clad layer of the original two optical waveguides. The thermal oxide Si layers 60a and 60b are derived from the thermal oxide Si layers on the back surfaces of the original two optical waveguide Si wafers 61a and 61b.
(実施形態3の作製方法)
 以下、本発明の実施形態3の作製方法について、図7を参照して詳細に説明する。
図7の実施形態3の作製方法は概略、2つの熱酸化Siコア光導波路を上下貼り合せて作製する2層光導波路の作製方法である。
(Production method of Embodiment 3)
Hereinafter, the method for producing the third embodiment of the present invention will be described in detail with reference to FIG. 7.
The manufacturing method of the third embodiment of FIG. 7 is roughly a method for manufacturing a two-layer optical waveguide in which two thermally oxidized Si-core optical waveguides are vertically bonded to each other.
 実施形態3の作製方法ではまず、図7(a)、(b)の工程は、実施形態1の作製方法の図3(a)、(b)の工程に対応する。 In the production method of the third embodiment, first, the steps of FIGS. 7 (a) and 7 (b) correspond to the steps of the production method of the first embodiment, FIGS. 3 (a) and 3 (b).
 次に、図7(c)の工程において、リッジ形状の熱酸化Siコア層63bを作製後に、所望の2層コア間隔となるように設計されたスペーサ69bを複数(例えば2つ)作製する。スペーサの作製方法としては、リッジ形状に加工した別の熱酸化Siの構造を用いることも可能であるが、図7(c)のように、スペーサ材料を堆積した後に、フォトリソグラフィ工程によるパターニングや真空中プラズマによるドライエッチング法によって加工することもできる。また、紫外光によりUV反応で硬化するUV硬化樹脂の硬化前溶液をスピンコートし、直接UV光を露光することによっても作製可能である。 Next, in the step of FIG. 7C, after the ridge-shaped thermally oxidized Si core layer 63b is produced, a plurality (for example, two) spacers 69b designed to have a desired two-layer core spacing are produced. As a method for producing the spacer, another structure of thermally oxidized Si processed into a ridge shape can be used, but as shown in FIG. 7C, after the spacer material is deposited, patterning by a photolithography step or It can also be processed by a dry etching method using plasma in vacuum. It can also be produced by spin-coating a pre-curing solution of a UV-curable resin that is cured by a UV reaction with ultraviolet light and directly exposing it to UV light.
 その後、図7(d)の工程において、図7(c)の構造を2つ、互いにコア側(スペーサを作成した上部クラッド層側の面)を背中合わせに反転させた状態で、クラッド層64の材料を挟み込み、マーカによって位置合わせしながら接合することにより、所望の間隔を有する熱酸化Siコアの2層光導波路構造が形成できる。 Then, in the step of FIG. 7 (d), the two structures of FIG. 7 (c) were inverted with each other on the core side (the surface on the upper clad layer side in which the spacer was created) back to back, and the clad layer 64 was formed. A two-layer optical waveguide structure of a thermally oxidized Si core having a desired interval can be formed by sandwiching the materials and joining them while aligning them with markers.
 この時、パーフルオロアルカン類などのような溶液状になる熱可塑性クラッド材料を持いることができれば、図7(c)でスペーサ69を作製しなくても、図7(d)の上下のSiウエハの位置を合わせて固定し、熱可塑性クラッド材料を流し込むことにより、図7(d)のような所望の間隔を有する熱酸化Siコアの2層光導波路構造が形成可能である。 At this time, if it is possible to have a thermoplastic clad material that becomes a solution such as perfluoroalkanes, the upper and lower Sis in FIG. 7 (d) can be obtained without preparing the spacer 69 in FIG. 7 (c). By aligning and fixing the wafers and pouring the thermoplastic clad material, it is possible to form a two-layer optical waveguide structure of a thermally oxidized Si core having a desired interval as shown in FIG. 7 (d).
 このとき、図7(a)で作製した、表裏面の位置合わせマーカ67によって、2枚のウエハの相対位置も高精度に位置合わせすることが可能となる。 At this time, the alignment markers 67 on the front and back surfaces produced in FIG. 7A make it possible to align the relative positions of the two wafers with high accuracy.
 続く図7(e)~(g)の工程は、基本的に実施形態1の図3(e)~(h)の工程と同様の方法を表裏の両面に同様に繰り返すことにより、作製できる。 The following steps of FIGS. 7 (e) to 7 (g) can be produced by basically repeating the same method as the steps of FIGS. 3 (e) to 3 (h) of the first embodiment on both the front and back surfaces.
(第4の実施形態)
 本発明の第4の実施形態は概略、実施形態2の上側の支持基板にSi受光素子(PD)を作製し、構造補強と共に受光素子機能をも保有させた、複合型の熱酸化Siコア埋め込み光導波路の構造と作製方法を開示するものである。
(Fourth Embodiment)
The fourth embodiment of the present invention is roughly a composite type thermal oxide Si core embedding in which a Si light receiving element (PD) is manufactured on the upper support substrate of the second embodiment and has a light receiving element function as well as structural reinforcement. The structure and manufacturing method of an optical waveguide are disclosed.
 図8(a)~(c)は、本発明の第4実施形態の熱酸化Siコア光導波路の構造を説明する断面図である。図8(a)は他と同様な光導波路の光伝搬方向に垂直な基板断面図であるが、図8(b)、(c)は光導波路の光伝搬方向に沿った伝搬光を含む断面の基板断面図である。 8 (a) to 8 (c) are cross-sectional views illustrating the structure of the thermal oxide Si core optical waveguide according to the fourth embodiment of the present invention. FIG. 8A is a cross-sectional view of the substrate perpendicular to the light propagation direction of the optical waveguide similar to the others, but FIGS. 8B and 8C are cross sections including the propagating light along the light propagation direction of the optical waveguide. It is a cross-sectional view of the substrate of.
 図8(a)の本実施形態4では、実施形態2(図4)にあった上部の支持基板49をN型Si基板101に置き換え、このN型Si基板101内にP型Siのインプラント領域102を形成してSiフォトダイオード(PD)を構成している。複合集積されたこのPDにより伝搬光を受光し、PD電極105から電気信号を検出することができる。PDとの電気的分離のために、適宜に絶縁層104を形成してもよい。 In the fourth embodiment of FIG. 8A, the upper support substrate 49 in the second embodiment (FIG. 4) is replaced with the N-type Si substrate 101, and the implant region of the P-type Si is contained in the N-type Si substrate 101. 102 is formed to form a Si photodiode (PD). Propagation light can be received by the compositely integrated PD, and an electric signal can be detected from the PD electrode 105. The insulating layer 104 may be appropriately formed for electrical separation from the PD.
 図8(b)では、このPDは熱酸化コア93に光結合するPD用光導波路103から太い点線の矢印で示す伝搬光を受光しており、図8(c)の構造では、熱酸化コア93の末端部に伝搬光を跳ね上げるミラー構造106を設けて、P型Siのインプラント領域102が直接、伝搬光を受光している。 In FIG. 8B, the PD receives the propagating light indicated by the thick dotted arrow from the PD optical waveguide 103 that photocouples to the thermal oxidation core 93, and in the structure of FIG. 8C, the thermal oxidation core is received. A mirror structure 106 that bounces the propagating light is provided at the end of the 93, and the implant region 102 of the P-type Si directly receives the propagating light.
 実施形態3(図6,7)のように、位置合わせマーカによって上下のSiウエハ(101,91)を位置合わせしながら接合することができ、光導波路と光受光素子が複合集積された構造の実施形態である。 As in the third embodiment (FIGS. 6 and 7), the upper and lower Si wafers (101, 91) can be joined while being aligned by the alignment marker, and the optical wave guide and the light receiving element are compositely integrated. It is an embodiment.
 この実施形態4により、紫外光帯~近赤外光帯の広帯域な平面光導波回路が実現できるだけでなく、前記第2の実施形態のように、平面光導波回路を構造的に補強しながら、約190~約1100nmに感度のあるSi受光素子も一体集積が可能となる。 According to the fourth embodiment, not only a wide band planar optical waveguide circuit of an ultraviolet light band to a near infrared light band can be realized, but also the planar optical waveguide circuit is structurally reinforced as in the second embodiment. Si light receiving elements with a sensitivity of about 190 to about 1100 nm can also be integrated.
 このとき、Siフォトダイオード(PD)としては、pn接合型フォトダイオード、pin構造フォトダイオード、アバランシェ増幅フォトダイオード(avalanche photodiode)のいずれであっても構わないし、Siウエハ表面に別途InP/InGaAs系結晶の化合物半導体を薄片化して接合してPDを作製しても構わない。 At this time, the Si photodiode (PD) may be any of a pn junction type photodiode, a pin structure photodiode, and an avalanche amplification photodiode (avalanche photodiode), and an InP / InGaAs-based crystal is separately formed on the Si wafer surface. The compound semiconductor of the above may be sliced and joined to prepare a PD.
 図8(a)、(b)は、受光素子表面に受光用光導波路103を形成した形態の光導波路コアの伝搬光にそれぞれ垂直、平行な概略断面図であり、図8(c)は、光導波路コア部に伝搬光を跳ね上げるミラー構造106を作製した場合の光導波路コアの伝搬光に平行な断面概略図である。光導波路コア中の点線矢印は、伝搬光の伝搬経路イメージを示している。このように光導波路コアの伝搬光を受光素子に導く方法としては、光導波路、反射ミラーの他に、グレーティングによる回折光や、単なる光導波路端からの放射など、様々な方法がある。 8 (a) and 8 (b) are schematic cross-sectional views perpendicular to and parallel to the propagating light of the optical waveguide core in the form in which the optical waveguide 103 for light reception is formed on the surface of the light receiving element. It is sectional drawing parallel to the propagating light of an optical waveguide core when the mirror structure 106 which bounces the propagating light is made on the optical waveguide core part. The dotted arrow in the optical waveguide core shows the propagation path image of the propagating light. In addition to the optical waveguide and the reflection mirror, there are various methods for guiding the propagating light of the optical waveguide core to the light receiving element, such as diffracted light by grating and radiation from the end of the optical waveguide.
(実施形態4の作製方法)
 以下、図9を参照して本発明の実施形態4の作製方法について詳細に説明する。
(Production method of embodiment 4)
Hereinafter, the method for producing the fourth embodiment of the present invention will be described in detail with reference to FIG.
 まず、実施形態4の作製方法の図9(a)~(c)の工程は、実施形態1の図3(a)~(c)と同様の工程で作製できる。 First, the steps of FIGS. 9 (a) to 9 (c) of the manufacturing method of the fourth embodiment can be manufactured by the same steps as those of FIGS. 3 (a) to 3 (c) of the first embodiment.
 次に図9(d)の工程においては、別途N型Siウエハ101の表面にイオン打ち込みによってP型層102を形成して構成したPN接合型フォトダイオードの表裏面に、絶縁層104と電極配線105を形成したウエハ101を用意しておく。図8(b)の構造の場合には、P型層102の表面に、例えばUV硬化樹脂などでPD用光導波路コア層103を作製しておく。図8(c)の構造の場合には、熱酸化コア93の末端部に伝搬光を跳ね上げるミラー構造106を設けておく。 Next, in the step of FIG. 9D, the insulating layer 104 and the electrode wiring are separately formed on the front and back surfaces of the PN junction photodiode formed by forming the P-type layer 102 on the surface of the N-type Si wafer 101 by ion implantation. A wafer 101 on which the 105 is formed is prepared. In the case of the structure of FIG. 8B, the optical waveguide core layer 103 for PD is prepared on the surface of the P-type layer 102 with, for example, a UV curable resin. In the case of the structure of FIG. 8C, a mirror structure 106 that bounces propagating light is provided at the end of the thermal oxidation core 93.
 そののち、実施形態3の図7(d)と同様に、上下のSiウエハ(101,91)の位置合わせをしながら、クラッド層94の材料を用いて、Siウエハどうしを接合する。 After that, as in FIG. 7D of the third embodiment, the Si wafers are joined to each other using the material of the clad layer 94 while aligning the upper and lower Si wafers (101, 91).
 最後に、図9(e)~(g)の工程は、基本的に実施形態1の図3(e)~(h)と同様の工程を繰り返すことにより作製できる。 Finally, the steps of FIGS. 9 (e) to 9 (g) can be produced by basically repeating the same steps as those of FIGS. 3 (e) to 3 (h) of the first embodiment.
(実施形態の作製例と特性評価)
 以下に、本発明の実施形態の作製例とその特性評価を具体的に説明するが、本発明はこれらの作製例に限定されるものではない。
(Production example and characteristic evaluation of the embodiment)
Hereinafter, production examples of the embodiments of the present invention and evaluation of their characteristics will be specifically described, but the present invention is not limited to these production examples.
(実施形態1,3の作製例1)
(Siウエハ作製)
 まず、電気抵抗値1kΩ以上を有する基板厚500μm、面方位(100)の高純度4inchベアSiウエハの表面に、水素燃焼スチーム酸化方式の縦型熱酸化炉を用いて、厚さ3μmの熱酸化Si膜(SiO膜)を作製した。
(Production Example 1 of Embodiments 1 and 3)
(Si wafer production)
First, thermal oxidation of a thickness of 3 μm on the surface of a high-purity 4 inch bare Si wafer with a substrate thickness of 500 μm and a plane orientation (100) having an electrical resistance value of 1 kΩ or more, using a vertical thermal oxidation furnace of a hydrogen combustion steam oxidation method. A Si film (SiO 2 film) was produced.
(位置合わせマーカ作製)
 次に、フォトリソグラフィ工程と、CFプラズマを用いた平行平板型反応性イオンエッチング装置により、Siウエハ表面に位置合わせマーカを複数作製し、両面マスクアライナを使用したフォトリソグラフィ工程により裏面にも同じ位置に位置合わせマーカをドライエッチング加工し作製した。
(Making alignment marker)
Next, a photolithography step, a parallel plate type reactive ion etching apparatus using a CF 4 plasma, the alignment marker on the Si wafer surface was more prepared, the same on the back surface by photolithography process using a double-sided mask aligner The alignment marker was dry-etched to prepare the marker.
(熱酸化Siコア層作製)
 次に、Siウエハ表面の位置合わせマーカを基準として、リッジ形状のコア幅3μmの熱酸化Siコアを、同様のフォトリソグラフィ工程とCFプラズマを用いた平行平板型反応性イオンエッチング装置を用いて作製した。
(Preparation of thermal oxide Si core layer)
Next, with reference to the alignment marker of the Si wafer surface, a thermally oxidized Si core the core width 3μm ridged, using a parallel plate reactive ion etching apparatus using the same photolithographic and CF 4 plasma Made.
(上部クラッド層作製)
 次に、上部クラッド層を火炎堆積法(FHD:Flame Hydrolysis Deposition)にて作製した。SiClとBClの重量比1:1を水素と酸素中で燃焼させ、SiO-B組成のガラス原料を基板上に堆積し、1100℃以上に加熱することによって、熱酸化SiO2膜よりも低屈折率で透明で約50μm厚のSiO-Bの上部クラッド層を作製した。
(Preparation of upper clad layer)
Next, the upper clad layer was prepared by a flame deposition method (FHD: Flame Hydrolysis Deposition). A glass raw material having a composition of SiO 2- B 2 O 3 is deposited on a substrate by burning a weight ratio of SiCl 4 to BCl 4 of 1: 1 in hydrogen and oxygen, and heated to 1100 ° C. or higher to thermally oxidize SiO2. An upper clad layer of SiO 2- B 2 O 3 having a lower refractive index than the film, being transparent, and having a thickness of about 50 μm was prepared.
(裏面加工)
 次に、裏面の位置合わせマーカを基準として、裏面に約100μm幅の光導波路と同じパターンをフォトリソグラフィ工程により作製した。まず、CFプラズマを用いた平行平板型反応性イオンエッチング装置により、裏面の熱酸化Si層をドライエッチオングし、裏面のSi表面を剥き出しにした。つづいて、エッチングステップ(SFプラズマ)とパッシベーションステップ(Cプラズマ)を交互に行うボッシュプロセスによるドライエッチング装置を用いて、約450μm弱までSiウエハを深堀りにし、残りの約50μmを水酸化カリウム(KOH)水溶液を用いてウェットエッチングし、光導波路コア下部のSiを完全に除去した。
(Back side processing)
Next, using the alignment marker on the back surface as a reference, the same pattern as the optical waveguide having a width of about 100 μm was produced on the back surface by a photolithography process. First, the thermal oxide Si layer on the back surface was dry-etched by a parallel plate type reactive ion etching apparatus using CF 4 plasma to expose the Si surface on the back surface. Next, using a dry etching device by the Bosch process that alternately performs the etching step (SF 6 plasma) and the passion step (C 4 F 8 plasma), the Si wafer is deeply dug to about 450 μm, and the remaining about 50 μm is used. Wet etching was performed using an aqueous solution of potassium hydroxide (KOH) to completely remove Si at the bottom of the optical waveguide core.
(下部クラッド層の作製)
 続いて、火炎堆積法による上部クラッド層への下部クラッド層成膜時の流入を防ぐために、ArとOの混合プラズマによるマグネトロンスパッタ装置を用いて、裏面の開口部に膜厚約500nmのSiO-B2Oのガラス膜を覆い、その後、前記上部クラッドの同じ条件の火炎堆積法の下部クラッド膜を堆積し、上部クラッドより低温の約1000℃の加熱により、下部クラッド層を作製した。
(Preparation of lower clad layer)
Subsequently, in order to prevent the inflow of the lower clad layer into the upper clad layer by the flame deposition method at the time of film formation, a magnetron sputtering apparatus using a mixed plasma of Ar and O 2 was used to open the opening on the back surface with a SiO of about 500 nm. A glass film of 2- B2O 3 was covered, and then a lower clad film of the same condition of the upper clad was deposited, and a lower clad layer was prepared by heating at a temperature lower than that of the upper clad at about 1000 ° C.
 以上のような作製プロセス工程によって、実施形態1と同様な光導波路構造を作製した。 The optical waveguide structure similar to that of the first embodiment was manufactured by the manufacturing process process as described above.
(チップ加工と光学特性評価)
 その後、ダイシングソーによってチップ切断し、SC(Supercontinuum)光源とを受光素子を持ちいて、得られた光導波路チップの伝搬損失を評価した。その結果、各光波長が450nm(青色)、520nm(緑色)、630nm(赤色)での光伝搬損失は、全て0.3dB/cm以下であった。
(Chip processing and optical characterization)
Then, the chip was cut with a dicing saw, and the SC (Supercontinuum) light source and the light receiving element were provided to evaluate the propagation loss of the obtained optical waveguide chip. As a result, the light propagation loss at each light wavelength of 450 nm (blue), 520 nm (green), and 630 nm (red) was 0.3 dB / cm or less.
 以上により、実施形態1、3の実現性を確認した。 From the above, the feasibility of Embodiments 1 and 3 was confirmed.
(実施形態2,4の作製例2)
(Siウエハ作製)
 まず、作製例1との同様な方法によって、厚さ3μmの熱酸化Si膜(SiO膜)と表裏面に位置合わせマーカを有する基板厚500μm、面方位(100)の高純度4inchSiウエハ2枚を作製した。次に、一方のSiウエハにおいて作製例1と同様にリッジ形状のコア幅3μmの光導波路コアを作製した。
(Production Example 2 of Embodiments 2 and 4)
(Si wafer production)
First, by the same method as in Production Example 1, two high-purity 4 inch Si wafers having a thickness of 3 μm, a thermally oxidized Si film (SiO 2 film), a substrate thickness of 500 μm having alignment markers on the front and back surfaces, and a plane orientation (100). Was produced. Next, on one Si wafer, an optical waveguide core having a ridge shape and a core width of 3 μm was produced in the same manner as in Production Example 1.
(上部クラッド層作製)
 次に、信越シリコーン社製フロロシリコーン樹脂FER-7061のAB剤を混合し、前記コア表面にスピンコート法により塗布し、コア加工されていないもう1枚のSiウエハでサンドイッチ構造にし、150℃×3時間で加熱硬化させた。
(Preparation of upper clad layer)
Next, the AB agent of fluorosilicone resin FER-7061 manufactured by Shin-Etsu Silicone Co., Ltd. was mixed, applied to the core surface by a spin coating method, and sandwiched with another uncore-processed Si wafer to form a sandwich structure at 150 ° C. × It was heat-cured in 3 hours.
(裏面加工)
 次に、作製例1と同様に、コアを有するSiウエハの裏面の位置合わせマーカを基準として、裏面に約100μm幅の光導波路と同じパターンをフォトリソグラフィ工程により作製した。まず、CFプラズマを用いた平行平板型反応性イオンエッチング装置により、裏面の熱酸化Si層をドライエッチオングし、裏面のSi表面を剥き出しにした。つづいて、エッチングステップ(SFプラズマ)とパッシベーションステップ(Cプラズマ)を交互に行うボッシュプロセスによるドライエッチング装置を用いて、約450μm弱までSiウエハを深堀りにし、残りの約50μmを水酸化カリウム(KOH)水溶液を用いてウェットエッチングし、光導波路コア下部のSiを完全に除去した。
(Back side processing)
Next, as in Production Example 1, the same pattern as the optical waveguide having a width of about 100 μm was produced on the back surface by a photolithography step with reference to the alignment marker on the back surface of the Si wafer having a core. First, the thermal oxide Si layer on the back surface was dry-etched by a parallel plate type reactive ion etching apparatus using CF 4 plasma to expose the Si surface on the back surface. Next, using a dry etching device by the Bosch process that alternately performs the etching step (SF 6 plasma) and the passion step (C 4 F 8 plasma), the Si wafer is deeply dug to about 450 μm, and the remaining about 50 μm is used. Wet etching was performed using an aqueous solution of potassium hydroxide (KOH) to completely remove Si at the bottom of the optical waveguide core.
(下部クラッド層作製)
続いて、剥き出しになったコア下面の開口部に、信越シリコーン社製フロロシリコーン樹脂FER-7061のAB剤を混合して充填し、今度は室温環境下のまま硬化させた。
(Preparation of lower clad layer)
Subsequently, the exposed opening on the lower surface of the core was filled with an AB agent of fluorosilicone resin FER-7061 manufactured by Shin-Etsu Silicone Co., Ltd., and this time, it was cured in a room temperature environment.
(チップ加工と光学特性評価)
 その後、作製例1と同様にダイシングソーによってチップ切断し、SC(SuperContinuum)光源とを受光素子を持ちいて、得られた光導波路チップの伝搬損失を評価した。その結果、各光波長が450nm(青色)、520nm(緑色)、630nm(赤色)での光伝搬損失は、全て0.3dB/cm以下であった。
(Chip processing and optical characterization)
Then, the chip was cut with a dicing saw in the same manner as in Production Example 1, and the SC (SuperContinuum) light source and the light receiving element were provided to evaluate the propagation loss of the obtained optical waveguide chip. As a result, the light propagation loss at each light wavelength of 450 nm (blue), 520 nm (green), and 630 nm (red) was 0.3 dB / cm or less.
 以上により、実施形態2、4の実現性を確認した。 From the above, the feasibility of Embodiments 2 and 4 was confirmed.
 以上説明したように、本発明は、比較的簡便な方法により低コストで、近赤外から可視光帯、紫外光帯までの光透過性に優れた埋め込み光導波路を実現するものである。本発明の作製方法によって、広帯域の波長にわたる光を合分波する光導波路素子が作製可能であり、医療や生体分析をはじめ、画像投影等の表示装置など様々な産業分野で利用可能であり、その産業上の利用価値は極めて大である。 As described above, the present invention realizes an embedded optical waveguide having excellent light transmission from the near infrared to the visible light band and the ultraviolet light band at low cost by a relatively simple method. According to the manufacturing method of the present invention, an optical waveguide element that combines and demultiplexes light over a wide band wavelength can be manufactured, and can be used in various industrial fields such as medical treatment, bioanalysis, and display devices such as image projection. Its industrial utility value is extremely high.

Claims (8)

  1.  光導波路の光伝搬方向に垂直な断面の基板断面視において、
     基板となるSiウエハと、熱酸化Siコアと、
     前記熱酸化Siコアを上下に直接挟んで支持する上部クラッド層および下部クラッド層とを有し、
     前記熱酸化Siコアが基板となる前記Siウエハから離隔して位置する
    ことを特徴とする埋め込み光導波路構造。
    In the cross-sectional view of the substrate perpendicular to the light propagation direction of the optical waveguide,
    A Si wafer as a substrate, a thermally oxidized Si core,
    It has an upper clad layer and a lower clad layer that directly sandwich and support the thermally oxidized Si core vertically.
    An embedded optical waveguide structure characterized in that the thermally oxidized Si core is located at a distance from the Si wafer serving as a substrate.
  2.  請求項1に記載の埋め込み光導波路構造におぃて、
     前記上部クラッド層の上面に接合された支持基板をさらに有する
    ことを特徴とする埋め込み光導波路構造。
    In the embedded optical waveguide structure according to claim 1,
    An embedded optical waveguide structure further comprising a support substrate bonded to the upper surface of the upper clad layer.
  3.  請求項1に記載の埋め込み光導波路構造が2つ、スペーサを挟んで前記上部クラッド層の側で背中合わせに配置され、位置合わせして接合された2層構造を有する
    ことを特徴とする2層構造の埋め込み光導波路構造。
    The two-layer structure according to claim 1, wherein the two embedded optical waveguide structures are arranged back to back on the side of the upper clad layer with a spacer interposed therebetween and are aligned and joined. Embedded optical waveguide structure.
  4.  請求項2に記載の埋め込み光導波路構造において、
     前記支持基板は光導波路に光結合する受光素子を有し、構造補強と共に受光機能をも有する
    ことを特徴とする複合型の埋め込み光導波路構造。
    In the embedded optical waveguide structure according to claim 2.
    The support substrate has a light-receiving element that photocouples to the optical waveguide, and has a composite type embedded optical waveguide structure that also has a light-receiving function as well as structural reinforcement.
  5.  基板となるSiウエハの上面に熱酸化Si層を形成するステップと、
     前記熱酸化Si層をエッチングして光導波路の熱酸化Siコア層を形成するステップと、
     前記熱酸化Siコア層の上に前記熱酸化Siコア層より低屈折率の上部クラッド層を形成するステップと、
     前記熱酸化Siコア層の下側にあたる部分の前記Siウエハを、前記熱酸化Siコア層が基板となる前記Siウエハの残りの部分から離隔するまで部分的にエッチング除去するステップと、
     前記熱酸化Siコア層の下に低屈折率を有する下部クラッド層を形成するステップとを備え、
     前記熱酸化Siコアが前記上部クラッド層および前記下部クラッド層により上下に直接挟んで支持され、基板となる前記Siウエハから離隔して位置する構造を作製する
    ことを特徴とする埋め込み光導波路構造の作製方法。
    A step of forming a thermal oxide Si layer on the upper surface of a Si wafer to be a substrate,
    The step of etching the thermal oxide Si layer to form the thermal oxide Si core layer of the optical waveguide,
    A step of forming an upper clad layer having a refractive index lower than that of the thermally oxidized Si core layer on the thermally oxidized Si core layer,
    A step of partially etching and removing the Si wafer in a portion corresponding to the lower side of the thermal oxide Si core layer until the thermal oxide Si core layer is separated from the remaining portion of the Si wafer serving as a substrate.
    A step of forming a lower clad layer having a low refractive index under the thermally oxidized Si core layer is provided.
    An embedded optical waveguide structure characterized in that the thermally oxidized Si core is directly sandwiched and supported vertically by the upper clad layer and the lower clad layer to produce a structure located at a distance from the Si wafer as a substrate. Manufacturing method.
  6.  請求項5の埋め込み光導波路構造の作製方法において、前記上部クラッド層の上に支持基板を接合するステップをさらに備える
    ことを特徴とする埋め込み光導波路構造の作製方法。
    The method for producing an embedded optical waveguide structure according to claim 5, further comprising a step of joining a support substrate on the upper clad layer.
  7.  請求項5の埋め込み光導波路構造の作製方法により埋め込み光導波路構造を2つ作製し、
     作製された2つの前記埋め込み光導波路構造をスペーサを挟んで上部クラッド層側で背中合わせに配置するステップと、
     マーカによって位置合わせしながら接合するステップをさらに備える
    ことを特徴とする2層構造の埋め込み光導波路構造の作製方法。
    Two embedded optical waveguide structures were produced by the method for producing an embedded optical waveguide structure according to claim 5.
    A step of arranging the two produced embedded optical waveguide structures back to back on the upper clad layer side with a spacer in between.
    A method for producing an embedded optical waveguide structure having a two-layer structure, which further comprises a step of joining while aligning with a marker.
  8.   請求項6の埋め込み光導波路構造の作製方法において、前記支持基板に光導波路に光結合する受光素子を作製するステップをさらに備える
    ことを特徴とする複合型の埋め込み光導波路構造の作製方法。
    The method for manufacturing an embedded optical waveguide structure according to claim 6, further comprising a step of manufacturing a light receiving element that photocouples to the optical waveguide on the support substrate.
PCT/JP2019/041297 2019-10-21 2019-10-21 Buried optical waveguide structure and method for producing same WO2021079403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041297 WO2021079403A1 (en) 2019-10-21 2019-10-21 Buried optical waveguide structure and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041297 WO2021079403A1 (en) 2019-10-21 2019-10-21 Buried optical waveguide structure and method for producing same

Publications (1)

Publication Number Publication Date
WO2021079403A1 true WO2021079403A1 (en) 2021-04-29

Family

ID=75619442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041297 WO2021079403A1 (en) 2019-10-21 2019-10-21 Buried optical waveguide structure and method for producing same

Country Status (1)

Country Link
WO (1) WO2021079403A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210021A (en) * 1992-01-30 1993-08-20 Sumitomo Electric Ind Ltd Manufacture of waveguide
JPH07318765A (en) * 1994-05-26 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> Connecting structure of optical waveguide and semiconductor photodetector
JP2003021737A (en) * 2001-07-09 2003-01-24 Fujitsu Ltd Optical coupling structure of optical waveguide and light receiving element
JP2004085868A (en) * 2002-08-27 2004-03-18 Matsushita Electric Ind Co Ltd Optical waveguide device and its manufacturing method
JP2007033776A (en) * 2005-07-26 2007-02-08 Kyoto Institute Of Technology Manufacturing method of stacked type optical waveguide
WO2012011370A1 (en) * 2010-07-23 2012-01-26 日本電気株式会社 Optical connection structure
US20130092980A1 (en) * 2011-10-14 2013-04-18 Samsung Electronics Co., Ltd. Photodetector structures including cross-sectional waveguide boundaries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210021A (en) * 1992-01-30 1993-08-20 Sumitomo Electric Ind Ltd Manufacture of waveguide
JPH07318765A (en) * 1994-05-26 1995-12-08 Nippon Telegr & Teleph Corp <Ntt> Connecting structure of optical waveguide and semiconductor photodetector
JP2003021737A (en) * 2001-07-09 2003-01-24 Fujitsu Ltd Optical coupling structure of optical waveguide and light receiving element
JP2004085868A (en) * 2002-08-27 2004-03-18 Matsushita Electric Ind Co Ltd Optical waveguide device and its manufacturing method
JP2007033776A (en) * 2005-07-26 2007-02-08 Kyoto Institute Of Technology Manufacturing method of stacked type optical waveguide
WO2012011370A1 (en) * 2010-07-23 2012-01-26 日本電気株式会社 Optical connection structure
US20130092980A1 (en) * 2011-10-14 2013-04-18 Samsung Electronics Co., Ltd. Photodetector structures including cross-sectional waveguide boundaries

Similar Documents

Publication Publication Date Title
Janz et al. Planar waveguide echelle gratings in silica-on-silicon
Muneeb et al. Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm
US7773840B2 (en) Interface for a-Si waveguides and III/V waveguides
JP2002014242A (en) Optical waveguide device
JP3203178B2 (en) Optical waveguide, optical module and optical system
Masanovic et al. Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides
JP2008040482A (en) Wafer scale method of manufacturing optical waveguide device and the waveguide device made thereby
Ghosh et al. Aluminum nitride grating couplers
JP2009086613A (en) Relief type diffraction optical device and manufacturing method thereof
JP2007047326A (en) Thermo-optic optical modulator and optical circuit
Sun et al. Vertical chip-to-chip coupling between silicon photonic integrated circuits using cantilever couplers
US6859603B2 (en) Method for fabrication of vertically coupled integrated optical structures
Shoji et al. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications
US6366730B1 (en) Tunable optical waveguides
US20070147761A1 (en) Amorphous silicon waveguides on lll/V substrates with barrier layer
WO2021079403A1 (en) Buried optical waveguide structure and method for producing same
US6795631B2 (en) Optical waveguide apparatus and method of producing the same
Cheben et al. A 100-channel near-infrared SOI waveguide microspectrometer: Design and fabrication challenges
JPS602906A (en) Manufacture of filter-attached optical waveguide
Wilmart et al. Advanced Si photonics platform for high-speed and energy-efficient optical transceivers for datacom
Shi et al. Fabrication of high precision self-aligned V-grooves integrated on silica-on-silicon chips
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
Mottier Integrated optics and micro-optics at LETI
EP1074864A2 (en) Method of fabricating planar optical waveguide devices
JP3317301B2 (en) Optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP