WO2021078118A1 - 自移动机器人 - Google Patents

自移动机器人 Download PDF

Info

Publication number
WO2021078118A1
WO2021078118A1 PCT/CN2020/122184 CN2020122184W WO2021078118A1 WO 2021078118 A1 WO2021078118 A1 WO 2021078118A1 CN 2020122184 W CN2020122184 W CN 2020122184W WO 2021078118 A1 WO2021078118 A1 WO 2021078118A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
self
sensor
moving robot
base
Prior art date
Application number
PCT/CN2020/122184
Other languages
English (en)
French (fr)
Inventor
杨克厅
刘亚
陈庆涛
唐泽恒
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Priority to EP20879096.4A priority Critical patent/EP4049575A4/en
Priority to US17/769,711 priority patent/US20220369887A1/en
Publication of WO2021078118A1 publication Critical patent/WO2021078118A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • A47L11/4008Arrangements of switches, indicators or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4077Skirts or splash guards
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • This application relates to the field of robotics, in particular to a self-moving robot.
  • This floating impact plate structure is located at the front end of the machine's forward direction, and the front end of the machine generally needs to be equipped with high precision optical components. That is, it is set on a floating striker, due to the movable characteristics of the floating striker, it will inevitably reduce the positioning accuracy of the optical components, thereby affecting the reliability of the self-moving robot during the traveling process.
  • an embodiment of the present invention provides a self-moving robot, which includes an upper cover, a base, and a pressure sensor assembly;
  • the upper cover includes a top plate and a side plate that are integrally arranged, a connecting portion is formed between the top plate and the side plate, and the connecting portion is at least partially higher than the top plate;
  • the base is arranged below the top plate
  • the pressure sensor assembly is arranged toward the side plate.
  • the connecting portion has an inverted V-shaped structure.
  • the side plate is made of rigid plastic.
  • the base is provided with a groove, the lower end of the side plate is inserted into the groove, and there is a second gap between the inner wall of the groove and the lower end of the side plate.
  • the thickness of the connecting portion is 1 to 2 mm.
  • the thickness of the side plate is 1 to 2 mm.
  • the pressure sensor assembly includes a sensor support layer and a sensor body layer that are attached to each other.
  • the sensor support layer is made of rigid material.
  • the self-moving robot further includes a first fixing frame, the first fixing frame being erected on the top plate, the pressure sensor assembly being arranged between the side plate and the first fixing frame, the The end of the first fixing frame close to the side plate abuts against the sensor support layer, and the end of the first fixing frame away from the side plate has a first preset distance from the side plate.
  • the minimum value of the first preset distance is 5 mm.
  • the first preset distance is 14-17 mm.
  • the pressure sensor assembly includes at least one strain-type pressure sensor
  • Each of the strain gauge pressure sensors includes a sensor seat and a sensor body, the sensor seat is arranged on the side of the top plate facing the base, the sensor body is arranged on the sensor seat, and the sensing surface of the sensor body Towards the side panel.
  • the number of the strain-type pressure sensors is not less than two, wherein the angle between two adjacent strain-type pressure sensors is not more than 45 degrees.
  • each of the strain gauge pressure sensors further includes a sensor cover, the sensor cover is connected to the sensor base and moves relative to the sensor base, and the sensor cover faces away from the sensor base toward the side
  • the sensor cover is provided with a first sensing protrusion opposite to the sensor body on one side of the sensor cover facing the sensor seat.
  • a side of the side plate facing the sensing surface of the sensor body is provided with a second sensing protrusion opposite to the sensor body.
  • the self-moving robot further includes a second fixing frame, the second fixing frame is arranged on a side of the top plate facing the base, and the sensor seat is arranged on the second fixing frame facing the side plate. Side; there is a second preset distance between the sensor body and the side plate.
  • the second preset distance is 15.5-17.5 mm.
  • the sensor cover on both sides of the first sensing protrusion is provided with a connecting rod facing the sensor seat, and an end of the connecting rod is provided with a hook, and the sensor seat is connected to the connecting rod.
  • the relative position is provided with a connecting groove for the connecting rod to pass through.
  • the embodiment of the present invention also provides a self-moving robot, which includes an upper cover, a base, and a pressure sensor assembly;
  • the upper cover includes a top plate and a side plate that are integrally arranged, a connecting portion is formed between the top plate and the side plate, and the connecting portion is at least partially higher than the top plate;
  • the base is arranged below the top plate
  • the pressure sensor assembly is arranged toward the side plate, and the preset distance between the fixing frame of the pressure sensor assembly and the side plate is greater than 5 mm.
  • the embodiment of the present invention also provides a self-moving robot, which includes a housing and a pressure sensor assembly;
  • the housing includes a base plate and a side plate integrally provided, a connecting portion is formed between the base plate and the side plate, and an angle formed by the connecting portion is an acute angle;
  • the sensing surface of the pressure sensor assembly faces the side plate.
  • the angle of the acute angle is less than 30 degrees.
  • the self-moving robot provided by the embodiment of the present invention includes an upper cover, a base, and a pressure sensor assembly.
  • a connecting part is formed between the top plate and the side plate of the upper cover.
  • the connecting part is at least partially higher than the top plate, and the sensing surface of the pressure sensor assembly faces the side
  • the board prevents the traditional self-moving robot from using the floating impact plate to affect the positioning accuracy of the optical components, and improves the reliability of the self-moving robot during the traveling process.
  • FIG. 1 is a schematic cross-sectional view of a partial structure of a self-moving robot according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of another partial structure of a self-moving robot provided by the first embodiment of the present invention
  • FIG. 3 is an exploded schematic diagram of a three-dimensional structure of a self-moving robot provided by the first embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional structure diagram of a capacitive pressure sensor of a self-moving robot and its support provided by the first embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view of another partial structure of a self-moving robot provided by the first embodiment of the present invention.
  • FIG. 6 is an exploded schematic diagram of another three-dimensional structure of a self-moving robot provided by the first embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of another partial structure of a self-moving robot provided by the first embodiment of the present invention.
  • FIG. 8 is an exploded schematic diagram of a three-dimensional structure of a strain-type pressure sensor of a self-moving robot provided by the first embodiment of the present invention.
  • first device is coupled to a second device
  • first device can be directly electrically coupled to the second device, or indirectly electrically coupled through other devices or coupling means. Connected to the second device.
  • the following description of the specification is a preferred embodiment for implementing the present invention, but the description is for the purpose of explaining the general principles of the present invention, and is not intended to limit the scope of the present invention.
  • the protection scope of the present invention shall be subject to those defined by the appended claims.
  • a floating or mobile striker is set at the front end of the machine's travel direction, and a sensor is set between the striker and the fuselage.
  • the striker can move relative to the body.
  • the sensor transmits this electrical signal to the machine MCU (Micro Control Unit), and the machine MCU controls the traveling device to move and adjust according to the electrical signal to complete obstacle avoidance.
  • the existing self-moving robots also use gyroscopes/acceleration sensors to achieve a fixed impact plate, but when the acceleration of the fuselage changes, the impact signal will be misjudged to hit the obstacle and avoid The reliability of the barrier is poor.
  • FIG. 1 is a schematic cross-sectional view of a partial structure of the self-moving robot provided by the first embodiment of the present invention.
  • the self-moving robot includes an upper cover 10 and a base. 20 and pressure sensor assembly 30.
  • the upper cover 10 includes a top plate 110 and a side plate 120 that are integrally arranged, and the side plate 120 is connected to the top plate 110 facing the base 20 and is located between the top plate 110 and the side plate 120
  • a connecting portion 130 is formed, that is, the connecting portion of the top plate 110 and the side plate 120 constitutes the connecting portion 130, wherein the connecting portion 130 is at least partially higher than the top plate 110, and it should be pointed out here that the The connecting portion 130 is not an ordinary corner, because an ordinary corner is generally flush with or within both sides of the corner, and is not partly higher than one side of the corner.
  • the connecting portion 130 may have various shapes such as a broken line, a zigzag, or a wave shape.
  • the integral arrangement here means that the top plate 110 and the side plate 120 are an integral structure, that is, the top plate 110 and the side plate 120 are connected to each other to form the upper cover 10, where the upper cover 10 may be
  • the top plate 110 is the top shell of the machine, and the side plate 120 is connected to the edge of the top plate 110 to the base 20.
  • the side extending in the direction, the side plate 120 here can be set around the top plate 110, or set along a part of the top plate 110, such as along the front end of the machine travel direction.
  • One end of the side plate 120 is connected to the top plate 110, and the other end extends in the direction of the base 20, but is not connected and fixed with the base 20, but a free end, which can move relative to the base 20,
  • the upper cover 10 Strictly undergo CAE (Computer Aided Engineering) analysis, especially the connection part 130 between the side plate 120 and the top plate 110 needs to undergo a rigorous CAE analysis, in order to improve the strength of the upper cover 10
  • the upper cover 10 is further provided with reinforcing ribs, for example, the reinforcing ribs are provided on the side of the top plate 110 facing the base 20, and the side plates 120 are provided on the side facing the inside of the fuselage. ⁇ Stiffeners.
  • the base 20 is arranged under the top plate 110 and connected to the top plate 110.
  • the base 20 may be fixedly connected to the top plate 110 inside the fuselage by screws, or the The top plate 110 and the base 20 are connected and fixed by a buckle.
  • the base 20, the top plate 110, and the side plate 120 constitute the shell structure of the self-moving robot, and the side plate 120 is located in the housing of the self-moving robot. The front end of the structure's direction of travel.
  • the pressure sensor assembly 30 is arranged in the fuselage, such as inside or inside the connecting structure formed by the side plate 120 and the top plate 110. What needs to be emphasized here is the sensing of the pressure sensor assembly 30 The surface faces the side plate 120. Specifically, in an implementation of the embodiment of the present invention, the pressure sensor assembly 30 is fixedly connected to the top plate 110, and the sensing surface of the pressure sensor assembly 30 is located below the connecting portion 130 and is connected to The side plates 120 are opposite to each other.
  • the connection manner of the pressure sensor assembly 30 in the upper cover 10 includes, but is not limited to, bonding, welding, screw connection, and the like.
  • the self-moving robot by arranging the part of the connecting portion 130 above the top plate 110, that is, the angle in which the connecting portion 130 faces the inner direction of the fuselage is noted here.
  • the internal angle ⁇ is less than 90 degrees to ensure that when the height of the obstacle is relatively high, such as direct contact with the upper side of the side plate 120, that is, direct contact with the connecting portion 130, the side plate can be made 120 has an amount of movement to the inside of the fuselage.
  • the inner angle a is set at an acute angle, which is more conducive to the movement of the side plate 120 toward the inside of the fuselage.
  • the angle of the acute angle is less than 30 degrees.
  • the side plate 120 or the connecting portion 130 will first contact the obstacle, and directly squeeze the side plate 120 toward the obstacle.
  • the inside of the fuselage is deformed, or the connecting portion 130 is squeezed. Due to the specific structure of the connecting portion 130, the side plate 120 has an amount of movement toward the inside of the fuselage, that is, indirectly causes the side plate 120 to move toward the fuselage.
  • the inside is deformed, and the deformed side plate 120 contacts the sensing surface of the pressure sensor assembly 30, and squeezes the pressure sensor assembly 30, causing the pressure sensor assembly 30 to generate an impact signal, and
  • the impact signal is transmitted to the host MCU of the self-mobile robot, and the host MCU generates a corresponding obstacle avoidance operation instruction according to the impact signal to control the traveling device of the self-mobile robot to execute the obstacle avoidance operation instruction to move to complete Avoidance.
  • the side plate 120 moves on the machine.
  • the horizontal direction has the amount of movement toward the inside of the fuselage, that is, the side panel 120 deforms toward the inside of the fuselage. It is necessary to design the connection between the side panel 120 and the top panel 110, that is, the connecting portion 130 is inverted. ⁇ Shape structure.
  • the internal angle ⁇ is less than 90 degrees, it can be ensured that when a higher obstacle collides with the top position of the side plate 120, the side plate 120 has a horizontal direction toward the inside of the fuselage.
  • the amount of exercise needs to be based on the molding method of the upper cover 10.
  • the smaller the angle of the inner angle ⁇ the greater the amount of horizontal movement allocated by the pressure sensor assembly 30 inside, that is, the The detection sensitivity of the pressure sensor assembly 30 is higher.
  • the angle of the inner angle ⁇ can be less than 10 degrees, and if the upper cover 10 is formed by injection molding the inner angle
  • the angle of ⁇ is generally greater than 15 degrees.
  • the side plate 120 is made of rigid plastic, where the rigid plastic includes but is not limited to ABS (Acrylonitrile Butadiene Styrene plastic, acrylonitrile (A), butadiene (B), styrene (S) Three monomer terpolymers) and other rigid plastics, such as PVC (Polyvinyl Chloride, polyvinyl chloride) plastic.
  • the side plate 120 can be made of the rigid plastic to make the side plate 120 and When an obstacle is in contact, the impact force is quickly transmitted to the pressure sensor assembly 30, which in turn makes it sensitive to obstacles, thereby improving the obstacle avoidance sensitivity of the self-moving robot.
  • the The thickness of the side plate 120 and the connecting portion 130 should not be too thick.
  • the thickness of the connecting portion 130 and/or the side plate 120 is controlled between 1 and 2 mm.
  • the connecting portion 130 The thickness of the portion 130 and/or the side plate 120 is 1.5 mm.
  • the side plate 120 is close to the end of the base 20. There is a first gap D1 between the base 20 and the outer edge of the base 20.
  • the end of the side plate 120 close to the base 20, that is, its free end, should be able to move when the side plate 120 collides with an obstacle, so that the side plate 120 has a direction toward the inside of the fuselage.
  • the amount of movement triggers the pressure sensor assembly 30 to perform obstacle avoidance detection.
  • the specific method of this embodiment is to design the free end and the outer edge of the base 20 to be separated by the first gap D1, preferably
  • the outer edge of the base 20 is further provided with a baffle extending toward the top plate 110, and the side plate 120 is close to the end of the base 20, that is, its free end is separated from the baffle.
  • the specific size of the first gap D1 is not specifically limited here, and can be set according to the sensitivity of the pressure sensor assembly 30 and the deformation coefficient of the upper cover 10.
  • a groove 210 is provided in the base 20 , The lower end of the side plate 120 is inserted into the groove 210, and there is a second gap D2 between the inner wall of the groove 210 and the lower end of the side plate 120.
  • the groove 210 is composed of two baffles arranged on the side of the base 20 facing the top plate 110, and the side plate 120 is close to the end of the base 20, that is, the free end is located in two places. Between the baffles, the free end and the baffle close to the inside of the fuselage are separated by the second gap D2.
  • a see-through window 140 is provided on the side of the side plate 120 away from the inside of the fuselage.
  • the see-through window 140 is generally set at the foremost end of the traveling direction of the self-mobile robot, that is, on the outside of the side plate 120.
  • the interior of the see-through window 140 can include but is not limited to a positioning module, infrared Devices such as transmitters and distance measuring devices, which are used to accurately position the self-moving robot; the see-through window 140 has light-transmitting characteristics so that the optical devices inside it can emit visible light rays to the outside.
  • connection between the see-through window 140 and the side plate 120 includes but is not limited to bonding, bolt connection, etc.; in a preferred embodiment, the see-through window 140 faces the side plate 120
  • One side is provided with a buckle
  • the side plate 120 is provided with a card slot
  • the see-through window 140 and the side plate 120 are movably clipped through the card slot and the buckle to facilitate the Optical components are quickly installed and repaired.
  • one of the implementation forms of the present invention is that the size of the see-through window 140 is smaller than the size of the side plate 120, and the see-through window 140 Set in the middle position area of the side plate 120, at this time the end of the side plate 120 close to the base 20, that is, the free end and the outer edge of the base 20 are separated by the first gap D1, Or the lower end of the side plate 120 is inserted into the groove 210, and there is a second gap D2 between the inner wall of the groove 210 and the lower end of the side plate 120. Normally, the first gap D1 is equal to the second gap.
  • the lower end of the see-through window 140 is located below the lower end of the side plate 120, as shown in FIG. 2, when the see-through window 140 is close to the end of the base 20 and The outer edges of the base 20 are separated by a third gap D3.
  • the end of the see-through window 140 close to the base 20 is a free end, and the free end is designed to be separated from the base 20 by a third gap.
  • the gap D3 can ensure that the side plate 120 and/the see-through window 140 have an amount of movement toward the inside of the fuselage when colliding with an obstacle, so as to trigger the pressure sensor assembly 30 to perform corresponding obstacle avoidance detection.
  • the pressure sensor assembly 30 includes a sensor support layer 310 and a sensor body layer 320, and the sensor support layer 310 and the sensor body layer 320 are mutually
  • the sensor support layer 310 is provided on the side of the top plate 110 facing the base 20, the sensor body layer 320 is provided on the sensor support layer 310, and the sensing surface of the sensor body layer 320 faces The side plate 120.
  • the sensor in the pressure sensor assembly 30 is the sensor body layer 320, which includes, but is not limited to, a capacitive pressure sensor.
  • the sensor body layer 320 is a layer of elastomer sandwiched between two electrode plates. When the sensor body layer 320 is stressed, the distance between the two electrode sheets changes, and the capacitance value of the sensor body layer 320 changes accordingly. The sensor body layer 320 converts the changed capacitance value into ADC through an algorithm.
  • the signal is sent to the host MCU of the self-moving robot; the sensor body layer 320 is provided on the sensor support layer 310, and the sensor support layer 310 is made of a rigid material, and the sensor made of this rigid material supports
  • the layer 310 has a relatively high hardness and is not easily deformed by force, which can avoid reducing the deformation of the sensor body layer 320 due to the pressure buffering of the sensor body layer 320, thereby improving the detection sensitivity of the sensor body layer 320.
  • the sensor body layer 320 When the side plate 120 has an amount of movement toward the inside of the body, the sensor body layer 320 is squeezed, and then the elastic body between the two electrode sheets in the sensor body layer 320 is squeezed, so that The distance between the two electrode plates changes, thereby changing the capacitance value, so that the sensor body layer 320 converts the changed capacitance value into an ADC (Analog-to-Digital Converter) signal through an algorithm.
  • ADC Analog-to-Digital Converter
  • the self-moving robot further includes a first fixing frame 1101, the first fixing frame 1101 is arranged on the top plate 110, and the pressure sensor assembly 30 is arranged on the side plate 120 and the first fixing frame 1101. Between the frames 1101, the end of the first fixing frame 1101 close to the side plate 120 abuts the sensor support layer 310, and the end of the first fixing frame 1101 away from the side plate 120 and the side There is a first preset distance between the plates 120.
  • the top plate 110 is provided with the first fixing frame 1101 on the side facing the base 20, and the pressure sensor assembly 30 is sandwiched between the side plate 120 and the first fixing frame 1101, so that The end of the first fixing frame 1101 close to the side plate 120 abuts on the sensor support layer 310, and the sensor body layer 320 is located between the sensor support layer 310 and the side plate 120, forming The first fixing frame 1101, the sensor support layer 310, and the sensor body layer 320 are stacked so that the sensing surface of the sensor body layer 320 faces the side plate 120 to ensure that the sensor body
  • the layer 320 can well receive the pressure of the side plate 120 deforming into the fuselage, so as to complete the sensing of the sensor body layer 320 to the obstacle in front of the side plate 120; wherein, the first preset distance Refers to the distance between the end of the first fixing frame 1101 away from the side plate 120 and the side plate 120, that is, the first preset distance here is that the first fixing frame 1101 is in the The sum of the dimension of the side plate
  • the size of the first preset distance in order to prevent the first preset distance from being too small, that is, the size of the first fixing frame 1101 in the direction of deformation of the side plate 120 toward the inside of the fuselage is too small, and The first fixing frame 1101 follows the pressure sensor assembly 30 and deforms toward the inside of the fuselage when the force is applied, so that the pressure sensor assembly 30 cannot be squeezed and deformed, thereby making the obstacle avoidance detection invalid, which is generally restricted
  • the minimum value of the first preset distance is 5 mm.
  • the size of the first preset distance should not be too large. Taking into account the internal space of the fuselage and the requirements of product miniaturization, in other preferred embodiments of the present invention, the first preset distance is 14 ⁇ 17mm.
  • the number of the sensor support layer 310 and the sensor body layer 320 in the pressure sensor assembly 30 can be determined according to the length of the side plate 120 and the size of the sensor.
  • the sensor support layer 310 and the sensor body layer 320 are one, the sensor support layer 310 is arranged in sequence along the length of the side plate 120, and the sensor body layer 320 is correspondingly disposed on each of the sensor support layers. On layer 310.
  • the pressure sensor assembly 30 includes at least one strain gauge pressure sensor 330; each of the strain gauge pressure sensors 330 includes a sensor base 3301 and a sensor body 3302
  • the sensor base 3301 is disposed on the side of the top plate 110 facing the base 20, the sensor body 3302 is disposed on the sensor base 3301, and the sensing surface of the sensor body 3302 faces the side plate 120.
  • the strain-type pressure sensor 330 is arranged on the top plate 110 of the upper cover 10, and its sensing surface faces the side plate 120 of the upper cover 10.
  • the sensor seat 3301 is fixed Connected to the top plate 110 and used to provide a mounting base for the sensor body 3302.
  • the sensor body 3302 is structured by printing a layer of strain material on a PCB (Printed Circuit Board) substrate. After the sensor body 3302 is stressed, the strained material on the PCB substrate is deformed, and then the output voltage value of the sensor body 3302 changes.
  • the sensor body 3302 uses an algorithm to convert the changed voltage value into an ADC signal to the self The host MCU of the mobile robot; the sensor body 3302 is fixedly connected to the sensor base 3301 so that its sensing surface faces the side plate 120.
  • the sensor body 3302 When the side plate 120 has a movement to the inside of the fuselage, the sensor body 3302 is fixed to the sensor base 3301. The sensor body 3302 is squeezed to drive the strained material on the PCB substrate to deform, and the output voltage value changes outward, and then the changed voltage value is converted into an ADC signal through an algorithm and sent to the host MCU of the self-moving robot.
  • each of the strain gauge pressure sensors 330 further includes a sensor cover 3303 which is connected to the sensor base 3301 and moves relative to the sensor base 3301, and the sensor cover 3303 faces away from the sensor base
  • One side of 3301 faces the side plate 120, and the side of the sensor cover 3303 facing the sensor base 3301 is provided with a first sensing protrusion 3304 opposite to the sensor body 3302.
  • the sensor cover 3303 is connected to the sensor base 3301, the sensor body 3302 is located between the two, the sensor cover 3303 protects the sensor body, and the sensor cover 3303 can be opposed to each other.
  • the first sensing protrusion 3304 is provided on the side of the sensor cover facing the sensor body 3302.
  • the sensor cover 3303 moves toward the sensor body 3302 the first sensing The protrusion 3304 quickly contacts the sensor body 3302 and squeezes the sensor body 3302 to trigger the sensor body 3302 to complete the sensing detection. Since the cross-sectional area of the first sensing protrusion 3304 is small, the Sensitivity of the sensor body 3302.
  • the side plate 120 is provided with a second sensing protrusion (not shown in the figure) opposite to the sensor body 3302 on the side facing the sensing surface of the sensor body 3302.
  • the implementation given in the above embodiment is the case where the sensor cover 3303 is provided between the strain gauge pressure sensor 330 and the side plate.
  • This embodiment is the case where the sensor cover 3303 is not provided, but in the case of The side plate 120 is provided with the second sensing protrusions facing the sensing surface side of the sensor body 3302, wherein the second sensing protrusions can play the same role as the first sensing protrusions 3304, that is, The sensing sensitivity of the sensor body 3302 is improved.
  • the sensor cover 3303 on both sides of the first sensing protrusion 3304 is provided with a connecting rod 3305 facing the sensor seat 3301, and an end of the connecting rod 3305 is provided with a hook 3306, and the sensor A connecting groove 3307 for the connecting rod 3305 to pass through is provided at the position of the seat 3301 relative to the connecting rod 3306.
  • the connecting grooves 3307 are provided on both sides of the sensor base 3301, and the connecting rods 3305 are provided on both sides of the sensor cover 3303.
  • the connecting rod 3305 is inserted into the connecting groove 3307, the two are movably clamped through the hook 3306, and the connecting rod 3305 can move in the connecting groove 3307 toward the sensor body 3302 .
  • the first sensing protrusion 3304 contacts the sensor body 3302 to trigger the sensor body 3302 to complete the sensing detection.
  • the self-moving robot further includes a second fixing frame 1102, the second fixing frame 1102 is arranged on the side of the top plate 110 facing the base 20, and the sensor base 3301 is arranged on the second fixing frame 1102. Facing the side plate 120; there is a second preset distance between the sensor body 3302 and the side plate 120.
  • the second fixing frame 1102 provides an installation platform for the strain gauge pressure sensor 330.
  • the sensor base 3301 is arranged with the second fixing frame 1102 facing the side plate 120, specifically
  • the connection methods include but are not limited to welding, snap connection, bonding, screw connection, etc.; for example, the second fixing frame 1102 and the sensor base 3301 are integrally arranged.
  • the second preset distance here refers to the distance between the sensor body 3302 and the side plate 120.
  • the second preset distance is 15.5 to 17.5 mm. In a preferred embodiment, the second preset distance is 16.5 mm.
  • the second preset distance can be avoided by setting the above-mentioned value of the second preset distance.
  • the number of the strain-type pressure sensors 330 is not less than two, and the angle between two adjacent strain-type pressure sensors 330 is not more than 45 degrees.
  • the side plate 120 is generally arranged along the front half of the forward direction of the self-mobile robot, in order to increase the range of obstacle avoidance detection, two or more strain-type pressure sensors 330 are generally arranged along the The side plates 120 are arranged in the length direction, and at the same time, in order to avoid a detection vacuum zone between the two strain-type pressure sensors 330, which leads to a decrease in the reliability of the obstacle avoidance detection of the self-mobile robot, it is generally arranged adjacent to each other.
  • the angle between the two strain-type pressure sensors 330 is not greater than 45 degrees, so as to ensure that any position where an obstacle touches the side plate 120 can be detected by the strain-type pressure sensor 330.
  • the angle between two adjacent strain pressure sensors 330 can be understood as: auxiliary lines extending from the center of the mobile robot to the two strain pressure sensors 330 respectively, and the two auxiliary lines respectively pass through the two strain pressure sensors.
  • the angle between the two auxiliary lines is the angle between two adjacent strain pressure sensors 330.
  • each strain pressure sensor has an axis, and the included angle between two adjacent strain sensors is the included angle between the working axes of each strain sensor.
  • the axis of the strain sensor can be understood as a straight line extending along the direction that enables the strain sensor to be triggered. More specifically, referring to FIG. 8, the axis may be the axis of the first sensing protrusion 3304.
  • the pressure sensor assembly 30 includes a plurality of the strain-type pressure sensors 330
  • the plurality of the strain-type pressure sensors 330 are arranged along the peripheral direction of the side plate 120.
  • the side plate 120 generally surrounds the outer contour of the self-moving robot for half a circle, that is, the length of the side plate 120 is generally longer, and the sensing range of a single strain pressure sensor 330 is limited. Therefore, in a preferred embodiment, a plurality of strain-type pressure sensors 330 are generally arranged in the upper cover 10 to ensure that the pressure sensor assembly 30 obstructs the self-moving robot in various directions. Object detection improves the obstacle avoidance integrity of the self-moving robot.
  • the specific method is to arrange the multiple strain pressure sensors 330 along the peripheral direction of the side plate 120, which can be arranged equidistantly along the length direction of the side plate 120; or according to the The travel characteristics of the self-mobile robot, for example, the front end of its travel direction will often encounter obstacles, while the probability of encountering obstacles on both sides of its travel direction is relatively small. Here, it can be set at all the front end of the travel direction of the self-mobile robot.
  • a plurality of the strain-type pressure sensors 330 are provided on the side plate 120, and the number of the strain-type pressure sensors 330 is appropriately reduced on the side plates 120 on both sides of the traveling direction of the self-mobile robot. In an embodiment of the present invention, the number of the strain-type pressure sensors 330 is not less than five.
  • the present invention also provides a self-moving robot.
  • the self-moving robot includes an upper cover, a base, and a pressure sensor assembly;
  • the upper cover includes a top plate and a side plate that are integrally arranged, and a connection is formed between the top plate and the side plate. Part, and the connecting part is at least partially higher than the top plate;
  • the base is arranged below the top plate;
  • the pressure sensor assembly is arranged toward the side plate, and the fixing frame of the pressure sensor assembly is connected to the side plate.
  • the preset distance between the plates is greater than 5mm.
  • the fixing frame of the pressure sensor assembly follows the deformation of the pressure sensor assembly when encountering obstacles.
  • the pressure sensor components are deformed in the direction of the fuselage together, so that the pressure sensor components cannot be squeezed and deformed, thereby making obstacle avoidance detection invalid, which in turn can improve the reliability of obstacle avoidance detection of the self-mobile robot.
  • the present invention also provides a self-moving robot, which includes a housing and a pressure sensor assembly; the housing includes an integrated base plate and a side plate, and a connecting portion is formed between the base plate and the side plate, and the connecting portion The formed angle is an acute angle; the sensing surface of the pressure sensor assembly faces the side plate.
  • a self-moving robot encounters a hanging obstacle with a high height (for example, the bottom of a sofa) or a low obstacle with a low height (for example, a balcony sliding door navigation) and the When the connecting part comes into contact, the connecting part is pressed toward the inside of the fuselage.
  • the side The plate has an amount of movement toward the inside of the fuselage in the horizontal direction of the machine, that is, the side plate will deform inside the fuselage, and then contact with the pressure sensor assembly, and make it deform, so that the pressure sensor The component generates a squeeze deformation signal, thereby completing the obstacle avoidance detection of the self-moving robot.
  • the substrate may be a top plate or a base.
  • the connecting portion provided with an acute angle is also more conducive to the movement of the side plate in the inner direction of the fuselage.
  • the angle of the acute angle is less than 30 degrees.
  • the robot sweeping robot must clean the owner’s living room. According to the preset cleaning route, the robot will be blocked by the owner’s child’s building blocks.
  • This building block is an obstacle with a small thickness, and its top height is lower than that of the owner. The height of the top of the section.
  • the front side plate of the small section collides with the building block, and the side plate deforms in the direction of the small section's fuselage.
  • the pressure sensor assembly located on the top plate of the fuselage and opposite to the side plate will be moved toward The deformed side plate inside the fuselage is squeezed and then deformed, so that the pressure sensor generates a corresponding impact signal, and transmits the impact signal to the host MCU of Xiaoke.
  • the host MCU generates corresponding obstacle avoidance operation instructions according to the impact signal.
  • the traveling device that controls Xiaoke executes obstacle avoidance operation instructions to move to complete the obstacle avoidance; Xiaoke continues to clean the owner’s living room according to the cleaning route after the last obstacle avoidance, and encounters the owner’s sofa during the cleaning process.
  • the connecting part is partly higher than the top plate of the small section, and the relative inner angle of the connecting part is set at an acute angle.
  • the connecting part will deform in the opposite direction. Due to the acute angle between the side plate and the top plate, the side plate will have a component of the amount of movement in the direction of the fuselage, that is, the side plate at this time will be
  • the pressure sensor component will be squeezed by the deformed side plate inside the fuselage, and then deformed, so that the pressure sensor generates a corresponding impact signal and transmits the impact signal to the host MCU of Xiaoke.
  • the host MCU generates corresponding obstacle avoidance operation instructions according to the impact signal, and controls Xiaoke’s traveling device to execute obstacle avoidance operation instructions to move to complete obstacle avoidance.
  • Xiaoke may continue to encounter obstacles during the cleaning process. Pass the above
  • the structure and method can smoothly complete the obstacle avoidance, and re-plan the cleaning route, so that the small section can complete the cleaning of the owner's living room according to the new cleaning route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种自移动机器人,包括上盖(10)、底座(20)以及压力传感器组件(30);上盖(10)包括一体设置的顶板(110)和侧板(120),顶板(110)和侧板(120)之间形成有连接部(130),且连接部(130)至少部分高于顶板(110);底座(20)设在顶板(110)下方;压力传感器组件(30)朝向侧板(120)设置。可避免传统自移动机器人使用浮动式撞板对光学元器件的定位精度产生影响,提升自移动机器人在行进过程中的可靠性。

Description

自移动机器人
交叉引用
本申请引用于2019年10月25日递交的名称为“自移动机器人”的第201911026299.7号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及机器人技术领域,尤其涉及一种自移动机器人。
背景技术
随着科学技术的进步和人们生活品质的提升,扫地自移动机器人已经走进越来越多人的生活。
目前市面上的扫地自移动机器人的避障装置多以浮动式撞板为主,这种浮动式撞板结构位于机器前进方向的前端,而机器前端一般需要设置精度要求较高的光学元器件,即设置在浮动式撞板上,由于浮动式撞板的活动特性势必会降低对光学元器件的定位精度,进而影响自移动机器人在行进过程中的可靠性。
发明内容
有鉴于此,本发明实施例提供了一种自移动机器人,其包括上盖、底座以及压力传感器组件;
所述上盖包括一体设置的顶板和侧板,所述顶板和侧板之间形成有连接部,且所述连接部至少部分高于所述顶板;
所述底座设在所述顶板下方;
所述压力传感器组件朝向所述侧板设置。
进一步地,所述连接部呈倒V形结构。
进一步地,所述侧板使用刚性塑料制成。
进一步地,所述侧板靠近所述底座的端部与所述底座的外边缘之间相隔第一间隙。
进一步地,所述底座设有凹槽,所述侧板的下端插入所述凹槽,且所述凹槽的内壁与所述侧板的下端之间具有第二间隙。
进一步地,所述连接部的厚度为1~2mm。
进一步地,所述侧板的厚度为1~2mm。
进一步地,所述压力传感器组件包括相贴合的传感器支撑层和传感器本体层。
进一步地,所述传感器支撑层采用刚性材料制成。
进一步地,所述自移动机器人还包括第一固定架,所述第一固定架设在所述顶板上,所述压力传感器组件设置在所述侧板和所述第一固定架之间,所述第一固定架靠近所述侧板的端部抵接所述传感器支撑层,所述第一固定架远离所述侧板的端部与所述侧板之间具有第一预设距离。
进一步地,所述第一预设距离的最小值为5mm。
进一步地,所述第一预设距离为14~17mm。
进一步地,所述压力传感器组件包括至少一个应变式压力传感器;
各所述应变式压力传感器包括传感器座以及传感器本体,所述传感器座设在所述顶板朝向所述底座一侧,所述传感器本体设在所述传感器座上,且所述传感器本体的感应面朝向所述侧板。
进一步地,所述应变式压力传感器的个数不小于两个,其中,两个相邻 的所述应变式压力传感器之间的夹角不大于45度。
进一步地,各所述应变式压力传感器还包括传感器盖,所述传感器盖连接在所述传感器座上并相对于所述传感器座移动,所述传感器盖背离所述传感器座一侧朝向所述侧板,所述传感器盖朝向所述传感器座一侧设有与所述传感器本体相对的第一感应凸起。
进一步地,所述侧板朝向所述传感器本体的感应面一侧设有与所述传感器本体相对的第二感应凸起。
进一步地,所述自移动机器人还包括第二固定架,所述第二固定架设在所述顶板朝向所述底座一侧,所述传感器座设在所述第二固定架朝向所述侧板一侧;所述传感器本体与所述侧板之间具有第二预设距离。
进一步地,所述第二预设距离为15.5~17.5mm。
进一步地,所述第一感应凸起两侧的所述传感器盖上设有朝向所述传感器座的连接杆,所述连接杆的端部设有卡钩,所述传感器座与所述连接杆相对位置设有用于所述连接杆穿过的连接槽。
本发明实施例还提供了一种自移动机器人,其包括上盖、底座以及压力传感器组件;
所述上盖包括一体设置的顶板和侧板,所述顶板和侧板之间形成有连接部,且所述连接部至少部分高于所述顶板;
所述底座设在所述顶板下方;
所述压力传感器组件朝向所述侧板设置,且所述压力传感器组件的固定架与所述侧板之间的预设距离大于5mm。
本发明实施例还提供了一种自移动机器人,其包括壳体以及压力传感器组件;
所述壳体包括一体设置的基板和侧板,所述基板和侧板之间形成有连接 部,所述连接部构成的角为锐角;
所述压力传感器组件的感应面朝向所述侧板。
进一步地,所述锐角的角度小于30度。
本发明实施例提供的自移动机器人,包括上盖、底座以及压力传感器组件,上盖的顶板和侧板之间形成有连接部,连接部至少部分高于顶板,压力传感器组件的感应面朝向侧板,避免传统自移动机器人使用浮动式撞板对光学元器件的定位精度产生影响,提升自移动机器人在行进过程中的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明第一实施例提供的一种自移动机器人的一局部结构截面示意图;
图2为本发明第一实施例提供的一种自移动机器人的又一局部结构截面示意图;
图3为本发明第一实施例提供的一种自移动机器人的一立体结构爆炸示意图;
图4为本发明第一实施例提供的一种自移动机器人的电容式压力传感器及其支撑体的一截面结构示意图;
图5为本发明第一实施例提供的一种自移动机器人的又一局部结构截面示意图;
图6为本发明第一实施例提供的一种自移动机器人的又一立体结构爆炸示意图;
图7为本发明第一实施例提供的一种自移动机器人的又一局部结构截面示意图;
图8为本发明第一实施例提供的一种自移动机器人的应变式压力传感器的一立体结构爆炸示意图。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”或“电性连接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其它装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者系统不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包 括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者系统中还存在另外的相同要素。
具体实施例
目前,市场上的自移动机器人都具有避障结构,以扫地自移动机器人为例,一般是在机器行进方向的前端设置浮动式或移动式撞板,且在撞板和机身之间设置传感器,例如行程开关,撞板可以相对于机身移动,当撞板遇到障碍物时被碰撞而向机器行进方向的反方向移动,进而与其内部的传感器接触,从而触发传感器使其产生电信号,传感器将此电信号传递至机器MCU(Micro Control Unit,微控制单元),机器MCU根据电信号控制行进装置进行移动调整,以完成避障。但是,随着科学技术的进步大多数自移动机器人都增加AI(人工智能)功能和/或TOF(Time-of-flight,飞行时间测距法)功能,此时需要在机身正前方固定精度要求较高的光学元器件,而这种浮动式撞板无法给这些光学元器件提供较高的定位基准,进而影响自移动机器人在行进过程中的可靠性;另,由于浮动式撞板碰到障碍物后相对机身产生一段位移,导致整机体积较大;再者,这种浮动式撞板的自移动机器人,整机外观造型受浮动式撞板结构影响,产品造型单一受限,线条不够精致,产品质感有待提升;另外,现有的自移动机器人也有采用陀螺仪/加速度传感器来实现固定式撞板,但是由于机身加速度发生变化时会产生撞击信号误判撞到障碍物,避障的可靠性较差。
第一实施例
针对以上技术问题,本发明提供了一种自移动机器人,请参考图1,为本发明第一实施例提供的自移动机器人的一局部结构截面示意图,所述自移动机器人包括上盖10、底座20以及压力传感器组件30。
其中,所述上盖10包括一体设置的顶板110和侧板120,所述侧板120连接于所述顶板110朝向所述底座20一面,且在所述顶板110和所述侧板120之间形成有连接部130,即所述顶板110和所述侧板120的连接处构成所述连接部130,其中,所述连接部130至少部分高于所述顶板110,这里需要指出的是所述连接部130并非普通的拐角,这是因为普通的拐角一般都会与拐角两边平齐或者在拐角两边之内,并没有部分高于拐角一边的情况。具体的,所述连接部130可以呈折线型、锯齿形或波浪形等各种形状。这里的一体设置指的是所述顶板110和所述侧板120为一体结构,即所述顶板110和所述侧板120相互连接构成所述上盖10,在这里所述上盖10可以是一体成型而成,如注塑等工艺制成,也可以是通过焊接等工艺制成,所述顶板110为机器的顶部外壳,所述侧板120为连接在所述顶板110边缘向所述底座20方向延展的侧边,这里的所述侧板120可以是围绕所述顶板110一周设置,或者是沿所述顶板110的部分设置,如沿着机器行进方向的前端设置,这里需要指出的是所述侧板120一端与所述顶板110连接,另一端伸向所述底座20方向,但是并不与所述底座20连接固定,而是一自由端,与所述底座20之间可以相对移动,如在自移动机器人运动时,行进途中的障碍物与所述侧板120接触,并挤压所述侧板120,进而使得所述侧板120向所述机身内部形变;所述上盖10严格经过CAE(Computer Aided Engineering,计算机辅助工程)分析,尤其是所述侧板120和所述顶板110之间的所述连接部130需经过严格的CAE分析,为了提升所述上盖10的强度,在所述上盖10的内部还设置有加强筋,如在所述顶板110朝向所述底座20的一面设置所述加强筋,以及在所述侧板120朝向所述机身内部一面设置所述加强筋。
所述底座20设在所述顶板110下方,并与所述顶板110连接,在这里,所述底座20可以是通过螺钉在所述机身的内部与所述顶板110进行固定连接,或者所述顶板110与底座20通过卡扣方式连接固定,所述底座20、所述顶板110以及所述侧板120构成所述自移动机器人的外壳结构,所述侧板120 位于所述自移动机器人的外壳结构的行进方向的前端。
所述压力传感器组件30设在所述机身内,如设在所述侧板120和所述顶板110所构成的连接结构的内部或内侧,这里需要强调的是所述压力传感器组件30的感应面朝向所述侧板120。具体地,在本发明实施例的一种实施方式中,所述压力传感器组件30固定连接在所述顶板110,且所述压力传感器组件30的感应面位于所述连接部130的下方,并与所述侧板120相对。在这里,所述压力传感器组件30在所述上盖10内的连接方式包括但不限定于是粘接、焊接以及螺钉连接等。
在本发明实施例提供的自移动机器人中,通过将所述连接部130的部分设置在所述顶板110以上,即使得所述连接部130朝向所述机身内部方向上的夹角,这里记做内角α,所述内角α小于90度可以保证当障碍物高度比较高时,如直接跟所述侧板120的上侧接触,即直接跟所述连接部130接触,可以使得所述侧板120具有向机身内部的运动量,如靠近所述顶板110的高度处的障碍物与所述侧板120发生碰撞时可以使得所述侧板120向机身内部方向移动。也即,该内角a呈锐角设置,更有利于所述侧板120向机身内部方向移动。具体的,所述锐角的角度小于30度。
在使用时,所述自移动机器人在行进过程中若遇到障碍物,所述侧板120或者所述连接部130会先与所述障碍物接触,并直接挤压所述侧板120向所述机身内部发生形变,或者挤压所述连接部130由于所述连接部130的特定结构使得所述侧板120具有向机身内部的运动量,即间接地使得所述侧板120向机身内部发生形变,形变后的所述侧板120与所述压力传感器组件30的感应面接触,并挤压所述压力传感器组件30,并使得所述压力传感器组件30产生撞击信号,并将所述撞击信号传递至所述自移动机器人的主机MCU,主机MCU根据所述撞击信号生成相应的避障操作指令,以控制所述自移动机器人的行进装置执行所述避障操作指令进行移动,以完成避障。
进一步地,在本发明其他较佳的实施例中,为了保证较高的障碍物与所 述侧板120的顶部位置,即所述连接部130,发生撞击时,所述侧板120在机器行进的水平方向具有向机身内部的运动量,即所述侧板120向所述机身内部发生形变,需要设计所述侧板120和所述顶板110的连接处即所述连接部130呈倒V形结构。
另外,对于所述内角α的角度大小只要保证其小于90度就可以保证较高的障碍物与所述侧板120的顶部位置发生撞击时,所述侧板120在水平方向具有向机身内部的运动量。但是,对于其具体的大小需要根据所述上盖10的成型方式,原则上所述内角α的角度越小,其内部的所述压力传感器组件30所分配的水平运动量就越大,即所述压力传感器组件30的检测灵敏度就越高,一般地,若所述上盖10是通过机械加工而成所述内角α的角度可以小于10度,若所述上盖10是通过注塑成型所述内角α的角度一般大于15度。
根据本发明的一个实施例,采用刚性塑料制成所述侧板120,这里的刚性塑料包括但不限定于是ABS(Acrylonitrile Butadiene Styrene plastic,丙烯腈(A)、丁二烯(B)、苯乙烯(S)三种单体的三元共聚物)等刚性塑料,例如,PVC(Polyvinyl Chloride,聚氯乙烯)塑料,通过所述刚性塑料制成所述侧板120可以使所述侧板120与障碍物发生接触时迅速将撞击力传递至所述压力传感器组件30,进而使其产生遇障感应,从而提升所述自移动机器人的避障灵敏度。
另外,为了保证所述侧板120以及所述连接部130在受到障碍物撞击时,所述侧板120具有向机身内部的形变,以触发所述压力传感器组件30进行避障检测,所述侧板120以及所述连接部130的厚度不宜过厚,一般地所述连接部130和/或所述侧板120的厚度控制在1~2mm之间,较佳的实施例中,所述连接部130和/或所述侧板120的厚度为1.5mm。
再者,为了保证所述侧板120在与障碍物碰撞时具有向机身内部的运动量,以触发所述压力传感器组件30做出避障检测,所述侧板120靠近所述底座20的端部与所述底座20的外边缘之间相隔第一间隙D1。
具体地,所述侧板120靠近所述底座20的端部即其自由端,要在所述侧板120与障碍物进行碰撞时能够移动,以使得所述侧板120具有向机身内部的运动量,进而触发所述压力传感器组件30做出避障检测,本实施例的具体做法为:设计所述自由端和所述底座20的外边缘之间相隔所述第一间隙D1,较佳的实施例中,在所述底座20的外边缘还设有伸向所述顶板110的挡板,所述侧板120靠近所述底座20的端部即其自由端与所述挡板之间相隔所述第一间隙D1,对于所述第一间隙D1的具体尺寸在这里并不做具体的限定,可以根据所述压力传感器组件30的灵敏度以及所述上盖10的形变系数进行设定。
更进一步地,请结合图2,为了对所述自由端的运动量大小进行限制,避免撞击力过大时所述自由端运动量过大对机身内部造成损害,在所述底座20设有凹槽210,所述侧板120的下端插入所述凹槽210,且所述凹槽210的内壁与所述侧板120的下端之间具有第二间隙D2。
具体地,所述凹槽210由在所述底座20朝向所述顶板110一面设置的两个挡板组成,所述侧板120靠近所述底座20的端部即所述自由端位于两个所述挡板之间,所述自由端和靠近所述机身内部的所述挡板之间相隔所述第二间隙D2。
另外,在本发明其他较佳的实施例中,所述侧板120背离机身内部一侧设有透视窗140。
具体地,所述透视窗140一般设在所述自移动机器人行进方向的最前端,即设置在所述侧板120的外侧,所述透视窗140内部可以设置包括但不限定于是定位模块、红外发射器以及测距装置等器件,这些器件用于对所述自移动机器人进行精确定位;所述透视窗140具有透光特性以便于其内部的光学器件向外发射可见光射线。
在这里,对于所述透视窗140与所述侧板120之间的连接方式包括但不 限定是粘接、螺栓连接等;较佳的实施例中,所述透视窗140朝向所述侧板120一面设有卡扣,所述侧板120设有卡槽,所述透视窗140与所述侧板120之间通过所述卡槽和所述卡扣进行活动式卡接,以方便对所述光学器件进行快速的安装、维修操作。
另外,对于所述透视窗140在所述侧板120上的设置位置,本发明的其中一种实现形式为,所述透视窗140的尺寸小于所述侧板120的尺寸,所述透视窗140设置在所述侧板120的中间位置区域,此时所述侧板120靠近所述底座20的端部即所述自由端与所述底座20的外边缘之间相隔所述第一间隙D1,或者是所述侧板120的下端插入所述凹槽210,所述凹槽210的内壁与所述侧板120的下端之间具有第二间隙D2,通常情况下第一间隙D1等于第二间隙D2;另一种实现形式为,所述透视窗140的下端位于所述侧板120的下端之下,如图2中所示,此时所述透视窗140靠近所述底座20的端部与所述底座20的外边缘之间相隔第三间隙D3,这里的所述透视窗140靠近所述底座20的端部为自由端,通过设计所述自由端与所述底座20之间相隔第三间隙D3,可以保证所述侧板120和/所述透视窗140在与障碍物碰撞时具有向机身内部的运动量,以触发所述压力传感器组件30做出相应的避障检测。
请结合图3-图5,在本发明的其中一种实施例中,所述压力传感器组件30包括传感器支撑层310和传感器本体层320,所述传感器支撑层310和所述传感器本体层320相互贴合;所述传感器支撑层310设在所述顶板110朝向所述底座20一侧,所述传感器本体层320设在所述传感器支撑层310上,且所述传感器本体层320的感应面朝向所述侧板120。
具体地,所述压力传感器组件30中的传感器为所述传感器本体层320,其包括但不限定于是电容式压力传感器,如所述传感器本体层320为两个电极片之间夹一层弹性体,当所述传感器本体层320受力后导致两个电极片的距离发生变化,随之所述传感器本体层320的电容值改变,所述传感器本体层320通过算法将变化的电容值转化为ADC信号给所述自移动机器人的主机 MCU;所述传感器本体层320设在所述传感器支撑层310上,所述传感器支撑层310采用刚性材料制成,这种刚性材料制成的所述传感器支撑层310的硬度较大,不易受力变形,可以避免因所述传感器本体层320对其受压缓冲而减小所述传感器本体层320的形变,进而提升所述传感器本体层320的检测灵敏度。当所述侧板120具有向机身内部的运动量时,对所述传感器本体层320产生挤压,进而对所述传感器本体层320中的两个电极片之间的弹性体进行挤压,使得两个电极片之间的距离发生变化,进而使其电容值改变,以使所述传感器本体层320通过算法将变化的电容值转化为ADC(Analog-to-Digital Converter,模数转换器)信号给所述自移动机器人的主机MCU。
进一步地,所述自移动机器人还包括第一固定架1101,所述第一固定架1101设在所述顶板110上,所述压力传感器组件30设置在所述侧板120和所述第一固定架1101之间,所述第一固定架1101靠近所述侧板120的端部抵接所述传感器支撑层310,所述第一固定架1101远离所述侧板120的端部与所述侧板120之间具有第一预设距离。
具体地,所述顶板110朝向所述底座20一侧设有所述第一固定架1101,所述压力传感器组件30夹设在所述侧板120和所述第一固定架1101之间,使得所述第一固定架1101靠近所述侧板120的端部抵接在所述传感器支撑层310上,所述传感器本体层320位于所述传感器支撑层310和所述侧板120之间,形成所述第一固定架1101、所述传感器支撑层310以及所述传感器本体层320三者层叠之势,以使得所述传感器本体层320的感应面朝向所述侧板120,保证所述传感器本体层320可以很好的接收所述侧板120向机身内部变形的压力,以完成所述传感器本体层320对所述侧板120前方的障碍物的感应;其中,所述第一预设距离是指所述第一固定架1101远离所述侧板120的端部与所述侧板120之间的距离,即这里的所述第一预设距离为所述第一固定架1101在所述侧板120向机身内部形变方向上的尺寸和所述压力传感器组 件30的厚度总和。
对于所述第一预设距离的大小,为了避免所述第一预设距离过小,即所述第一固定架1101在所述侧板120向机身内部形变方向上的尺寸过小,而使得所述第一固定架1101在受力时跟随所述压力传感器组件30一起向机身内部方向形变,从而使得所述压力传感器组件30不能被挤压变形,进而使避障检测失效,一般限制所述第一预设距离的最小值为5mm。
进一步地,对于所述第一预设距离的大小也不宜过大,考虑到机身内部空间以及产品小型化的需求,本发明其他较佳的实施例中,所述第一预设距离为14~17mm。
在这里,还需要指出的是,所述压力传感器组件30中所述传感器支撑层310和所述传感器本体层320的个数可以根据所述侧板120的长度以及传感器的尺寸确定,当具有大于一个的所述传感器支撑层310和所述传感器本体层320时,所述传感器支撑层310沿所述侧板120的长度方面依次排开,所述传感器本体层320对应设置于各个所述传感器支撑层310上。
请结合图6-图8,在本发明的另一种实施例中,所述压力传感器组件30包括至少一个应变式压力传感器330;各所述应变式压力传感器330包括传感器座3301以及传感器本体3302,所述传感器座3301设在所述顶板110朝向所述底座20一侧,所述传感器本体3302设在所述传感器座3301上,且所述传感器本体3302的感应面朝向所述侧板120。
在这里,所述应变式压力传感器330设在所述上盖10的所述顶板110上,且其感应面朝向所述上盖10的所述侧板120,具体地,所述传感器座3301固定连接在所述顶板110上,用于为所述传感器本体3302提供一个安装基座,所述传感器本体3302的结构为在PCB(Printed Circuit Board,印刷电路板)基板上印刷一层应变材料,当所述传感器本体3302受力后带动PCB基板上的应变材料发生变形,随之所述传感器本体3302输出电压值改变,所述传感器 本体3302通过算法将变化的电压值转化为ADC信号给所述自移动机器人的主机MCU;所述传感器本体3302固定连接在所述传感器座3301上,使其感应面朝向所述侧板120,当所述侧板120具有向机身内部的运动量时,对所述传感器本体3302产生挤压,带动其PCB基板上的应变材料发生变形,并向外输出电压值改变,进而通过算法将变化的电压值转化为ADC信号传送给所述自移动机器人的主机MCU。
进一步地,各所述应变式压力传感器330还包括传感器盖3303,所述传感器盖3303连接在所述传感器座3301上并相对于所述传感器座3301移动,所述传感器盖3303背离所述传感器座3301一侧朝向所述侧板120,所述传感器盖3303朝向所述传感器座3301一侧设有与所述传感器本体3302相对的第一感应凸起3304。
具体地,所述传感器盖3303连接于所述传感器座3301上,所述传感器本体3302位于两者之间,所述传感器盖3303对所述传感器本体起到保护作用,所述传感器盖3303可以相对于所述传感器座3301移动,在所述传感器盖朝向所述传感器本体3302一面设置所述第一感应凸起3304,当所述传感器盖3303向所述传感器本体3302移动时,所述第一感应凸起3304快速与所述传感器本体3302接触,并挤压所述传感器本体3302,触发所述传感器本体3302完成感应检测,由于所述第一感应凸起3304的截面面积较小,可以提升所述传感器本体3302的感应灵敏度。
或者,所述侧板120朝向所述传感器本体3302的感应面一侧设有与所述传感器本体3302相对的第二感应凸起(图中未示出)。以上实施例给出的实施方式是所述应变式压力传感器330与所述侧板之间设置所述传感器盖3303的情况,本实施例是未设置所述传感器盖3303的情况,但是在所述侧板120朝向所述传感器本体3302的感应面一侧设置所述第二感应凸起,其中,所述第二感应凸起可以起到与所述第一感应凸起3304同样的作用,即可以提升所述传感器本体3302的感应灵敏度。
进一步地,所述第一感应凸起3304两侧的所述传感器盖3303上设有朝向所述传感器座3301的连接杆3305,所述连接杆3305的端部设有卡钩3306,所述传感器座3301与所述连接杆3306相对位置设有用于所述连接杆3305穿过的连接槽3307。
在这里,提供了一种所述应变式压力传感器330的具体结构形式,所述传感器座3301的两侧设置有所述连接槽3307,所述传感器盖3303的两侧设置有所述连接杆3305,所述连接杆3305插入所述连接槽3307内,两者通过所述卡钩3306实现活动式卡接,且所述连接杆3305可以在所述连接槽3307内朝所述传感器本体3302方向移动,以保证所述传感器盖3303在受到挤压外力时,所述第一感应凸起3304与所述传感器本体3302接触,以触发所述传感器本体3302完成感应检测。
另外,所述自移动机器人还包括第二固定架1102,所述第二固定架1102设在所述顶板110朝向所述底座20一侧,所述传感器座3301设在所述第二固定架1102朝向所述侧板120一侧;所述传感器本体3302与所述侧板120之间具有第二预设距离。在这里,所述第二固定架1102为所述应变式压力传感器330提供一安装平台,具体地,所述传感器座3301设置与所述第二固定架1102朝向所述侧板120一侧,具体的连接方式包括但不限定于是焊接、卡扣连接、粘接以及螺钉连接等;例如,所述第二固定架1102与所述传感器座3301一体设置。这里的所述第二预设距离指的是所述传感器本体3302和所述侧板120之间的距离。
进一步地,所述第二预设距离为15.5~17.5mm,较佳的实施例中所述第二预设距离为16.5mm,这里通过设置上述数值的所述第二预设距离可以避免所述侧板120向内挤压所述传感器本体3302时,所述传感器座3301以及所述传感器本体3302跟随所述侧板120一起向机身内部形变,进而不能使所述传感器本体3302受压形变,导致避障检测失效,从而提升所述自移动机器人避障检测的可靠性。
另外,所述应变式压力传感器330的个数不小于两个,其中,两个相邻的所述应变式压力传感器330之间的夹角不大于45度。具体地,由于所述侧板120一般沿所述自移动机器人前进方向的前半部设置,为了加大避障检测的范围一般会设置两个及以上个数的所述应变式压力传感器330沿着所述侧板120的长度方向排布,同时又为了避免两个所述应变式压力传感器330之间出现检测真空地带,导致所述自移动机器人避障检测的可靠性降低,一般会设置相邻的两个所述应变式压力传感器330之间的夹角不大于45度,以保证障碍物接触到所述侧板120的任何位置均可以被所述应变式压力传感器330检测到。这里两相邻应变压力传感器330间夹角可理解为:自自移动机器人中心作分别朝向两个应变压力传感器330延伸的辅助线,这两条辅助线分别过所述两个应变压力传感器,这两条辅助线的夹角即两相邻应变压力传感器330之间的夹角。或者,各应变压力传感器具有轴线,两相邻应变传感器之间的夹角即各应变传感器的工作轴线间的夹角。其中,应变传感器的轴线可理解为:沿能使应变传感器被触发的方向延伸的直线。更具体的,参见图8所示,所述轴线可以是所述第一感应凸起3304的轴线。
更进一步地,所述压力传感器组件30包括多个所述应变式压力传感器330时,多个所述应变式压力传感器330沿所述侧板120的周边方向排布。
具体地,由于在所述侧板120一般情况下会围绕所述自移动机器人的外轮廓半周,即所述侧板120的长度一般较长,而单个所述应变式压力传感器330的感应范围有限,因此在较佳的实施例中,在所述上盖10内一般会设置多个所述应变式压力传感器330,以保证所述压力传感器组件30对所述自移动机器人的各个方向上进行障碍物检测,提升所述自移动机器人的避障完整性。具体的做法是,将多个所述应变式压力传感器330沿所述侧板120的周边方向排布,可以是沿着所述侧板120的长度方向进行等距离排布;也可以根据所述自移动机器人的行进特点,比如其行进方向的前端会经常遇到障碍物,而其行进方向的两侧遇到障碍物的概率则较小,这里可以在所述自移动 机器人行进方向前端的所述侧板120上设置较多个所述应变式压力传感器330,而在所述自移动机器人行进方向两侧的所述侧板120上,适当的减少所述应变式压力传感器330的设置数量。在本发明的一个实施例中,所述应变式压力传感器330的设置数量不小于5个。
第二实施例
本发明另提供了一种自移动机器人,所述自移动机器人包括上盖、底座以及压力传感器组件;所述上盖包括一体设置的顶板和侧板,所述顶板和侧板之间形成有连接部,且所述连接部至少部分高于所述顶板;所述底座设在所述顶板下方;所述压力传感器组件朝向所述侧板设置,且所述压力传感器组件的固定架与所述侧板之间的预设距离大于5mm。本实施例中,通过设置所述压力传感器组件的固定架与所述侧板之间的预设距离大于5mm,可以避免遇到障碍物时所述压力传感器组件的固定架跟随被挤压形变的所述压力传感器组件一起向机身内部方向发生形变,从而使得所述压力传感器组件不能被挤压变形,进而使避障检测失效,依次可以提升所述自移动机器人避障检测的可靠性。
第三实施例
本发明还提供了一种自移动机器人,其包括壳体以及压力传感器组件;所述壳体包括一体设置的基板和侧板,所述基板和侧板之间形成有连接部,所述连接部构成的角为锐角;所述压力传感器组件的感应面朝向所述侧板。本实施例中,当所述自移动机器人在行进过程中遇到高度较高的悬挂障碍物(例如,沙发底部)或高度较低的低矮障碍物(例如,阳台移门导航)与所述连接部发生接触时,并向机身内部方向挤压所述连接部,在挤压过程中,由于所述基板和所述侧板之间的所述连接部的锐角结构,可以保证所述侧板 在机器行进的水平方向具有向机身内部的运动量,即所述侧板会向所述机身内部发生形变,进而与所述压力传感器组件接触,并使其发生形变,使得所述压力传感器组件产生挤压形变信号,从而完成所述自移动机器人的避障检测。具体实施时,所述基板可以是顶板或底座等。
在这里,通过锐角设置的所述连接部,还更有利于所述侧板向机身内部方向移动,在本发明其他较佳的实施例中,所述锐角的角度小于30度。
应用场景
扫地机器人小科要对主人的客厅进行清扫,按照预设清扫路线小科在行进过程中被主人家小孩子的积木块挡住,此积木块作为障碍物其厚度较小,其顶部高度低于小科的顶部高度,此时小科的前部侧板与积木块发生撞击,进而侧板向小科机身内部方向发生形变,设在机身顶板且与侧板相对的压力传感器组件会被向机身内部发生形变的侧板所挤压,进而变形,使得压力传感器产生相应的撞击信号,并将撞击信号传递至小科的主机MCU,主机MCU根据撞击信号生成相应的避障操作指令,以控制小科的行进装置执行避障操作指令进行移动,以完成避障;小科根据上次避障之后的清扫路线继续对主人的客厅进行清扫,在清扫过程中遇到主人的沙发,由于沙发下面具有一定的空间,但是这个空间还不足以让小科自由通过,而小科前方的侧板在沙发下面的空间里不会发生撞击,但是小科的顶部会被沙发的下缘发生碰撞,即小科行进方向前部的侧板和顶板之间的连接部会与沙发的下缘发生碰撞,这是因为这个连接部有部分高于小科的顶板,且这个连接部相对的内角为锐角设置,当发生碰撞时,这个连接部会向着反方向形变,由于侧板和顶板之间锐角的角度关系,侧板会具有向机身内部方向上运动量的分量,即此时的侧板会向小科机身内部方向发生形变,压力传感器组件会被向机身内部发生形变的侧板所挤压,进而产生变形,使得压力传感器产生相应的撞击信号,并将撞击信号传递至小科的主机MCU,主机MCU根据撞击信号生成相应的避 障操作指令,以控制小科的行进装置执行避障操作指令进行移动,以完成避障,小科在清扫过程中可能不断的会遇到障碍物,通过以上结构及方法可以顺利的完成避障,并重新规划出清扫路线,以使得小科按照新的清扫路线完成对主人客厅的清扫工作。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种自移动机器人,其特征在于,包括上盖、底座以及压力传感器组件;
    所述上盖包括一体设置的顶板和侧板,所述顶板和侧板之间形成有连接部,且所述连接部至少部分高于所述顶板;
    所述底座设在所述顶板下方;
    所述压力传感器组件朝向所述侧板设置。
  2. 根据权利要求1所述的自移动机器人,其特征在于,所述连接部呈倒V形结构。
  3. 根据权利要求1所述的自移动机器人,其特征在于,所述侧板使用刚性塑料制成。
  4. 根据权利要求1所述的自移动机器人,其特征在于,所述侧板靠近所述底座的端部与所述底座的外边缘之间相隔第一间隙。
  5. 根据权利要求1所述的自移动机器人,其特征在于,所述底座设有凹槽,所述侧板的下端插入所述凹槽,且所述凹槽的内壁与所述侧板的下端之间具有第二间隙。
  6. 根据权利要求1所述的自移动机器人,其特征在于,所述连接部的厚度为1~2mm。
  7. 根据权利要求1所述的自移动机器人,其特征在于,所述侧板的厚度为1~2mm。
  8. 根据权利要求1-7任一项所述的自移动机器人,其特征在于,所述压力传感器组件包括相贴合的传感器支撑层和传感器本体层。
  9. 根据权利要求8所述的自移动机器人,其特征在于,所述传感器支撑层采用刚性材料制成。
  10. 根据权利要求8所述的自移动机器人,其特征在于,还包括第一固定架,所述第一固定架设在所述顶板上,所述压力传感器组件设置在所述侧板和所述第一固定架之间,所述第一固定架靠近所述侧板的端部抵接所述传感器支撑层,所述第一固定架远离所述侧板的端部与所述侧板之间具有第一预设距离。
  11. 根据权利要求10所述的自移动机器人,其特征在于,所述第一预设距离的最小值为5mm。
  12. 根据权利要求11所述的自移动机器人,其特征在于,所述第一预设距离为14~17mm。
  13. 根据权利要求1-7任一项所述的自移动机器人,其特征在于,所述压力传感器组件包括至少一个应变式压力传感器;
    各所述应变式压力传感器包括传感器座以及传感器本体,所述传感器座设在所述顶板朝向所述底座一侧,所述传感器本体设在所述传感器座上,且所述传感器本体的感应面朝向所述侧板。
  14. 根据权利要求13所述的自移动机器人,其特征在于,所述应变式压力传感器的个数不小于两个,其中,两个相邻的所述应变式压力传感器之间的夹角不大于45度。
  15. 根据权利要求13所述的自移动机器人,其特征在于,各所述应变式压力传感器还包括传感器盖,所述传感器盖连接在所述传感器座上并相对于所述传感器座移动,所述传感器盖背离所述传感器座一侧朝向所述侧板,所述传感器盖朝向所述传感器座一侧设有与所述传感器本体相对的第一感应凸起。
  16. 根据权利要求13所述的自移动机器人,其特征在于,所述侧板朝向所述传感器本体的感应面一侧设有与所述传感器本体相对的第二感应凸起。
  17. 根据权利要求12所述的自移动机器人,其特征在于,还包括第二固 定架,所述第二固定架设在所述顶板朝向所述底座一侧,所述传感器座设在所述第二固定架朝向所述侧板一侧;所述传感器本体与所述侧板之间具有第二预设距离。
  18. 根据权利要求17所述的自移动机器人,其特征在于,所述第二预设距离为15.5~17.5mm。
  19. 根据权利要求15所述的自移动机器人,其特征在于,所述第一感应凸起两侧的所述传感器盖上设有朝向所述传感器座的连接杆,所述连接杆的端部设有卡钩,所述传感器座与所述连接杆相对位置设有用于所述连接杆穿过的连接槽。
  20. 一种自移动机器人,其特征在于,包括上盖、底座以及压力传感器组件;
    所述上盖包括一体设置的顶板和侧板,所述顶板和侧板之间形成有连接部,且所述连接部至少部分高于所述顶板;
    所述底座设在所述顶板下方;
    所述压力传感器组件朝向所述侧板设置,且所述压力传感器组件的固定架与所述侧板之间的预设距离大于5mm。
  21. 一种自移动机器人,其特征在于,包括壳体以及压力传感器组件;
    所述壳体包括一体设置的基板和侧板,所述基板和侧板之间形成有连接部,所述连接部构成的角为锐角;
    所述压力传感器组件的感应面朝向所述侧板。
  22. 根据权利要求21所述的自移动机器人,其特征在于,所述锐角的角度小于30度。
PCT/CN2020/122184 2019-10-25 2020-10-20 自移动机器人 WO2021078118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20879096.4A EP4049575A4 (en) 2019-10-25 2020-10-20 SELF-MOVING ROBOT
US17/769,711 US20220369887A1 (en) 2019-10-25 2020-10-20 Autonomous mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911026299.7A CN112704435A (zh) 2019-10-25 2019-10-25 自移动机器人
CN201911026299.7 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021078118A1 true WO2021078118A1 (zh) 2021-04-29

Family

ID=75540928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122184 WO2021078118A1 (zh) 2019-10-25 2020-10-20 自移动机器人

Country Status (4)

Country Link
US (1) US20220369887A1 (zh)
EP (1) EP4049575A4 (zh)
CN (1) CN112704435A (zh)
WO (1) WO2021078118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115227148B (zh) * 2022-06-30 2023-11-14 佛山市银星智能制造有限公司 前撞装置及清洁机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180251A1 (en) * 2011-01-19 2012-07-19 Jaewon Jang Automatic cleaner
US9622635B2 (en) * 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
CN107336267A (zh) * 2017-08-24 2017-11-10 深圳市银星智能科技股份有限公司 移动机器人
CN206967493U (zh) * 2017-06-17 2018-02-06 广东宝乐机器人股份有限公司 一种自移动机器人
CN208942016U (zh) * 2018-08-17 2019-06-07 江苏美的清洁电器股份有限公司 扫地机器人
CN209186582U (zh) * 2018-11-09 2019-08-02 北京奇虎科技有限公司 扫地机器人及其多向碰撞结构
CN110123207A (zh) * 2019-04-04 2019-08-16 尚科宁家(中国)科技有限公司 一种扫地机
CN211381116U (zh) * 2019-10-25 2020-09-01 科沃斯机器人股份有限公司 自移动机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518482C2 (sv) * 2001-02-28 2002-10-15 Electrolux Ab Hinderavkänningssystem för en självgående städapparat
CN107024933B (zh) * 2012-03-15 2021-07-06 艾罗伯特公司 包括传感器阵列的用于机器人的缓冲器
AU2017101247A6 (en) * 2016-09-16 2017-11-02 Bissell Inc. Autonomous vacuum cleaner
CN108784520A (zh) * 2018-06-27 2018-11-13 杨扬 带内嵌尘盒的吸尘机器人以及建立栅格地图的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622635B2 (en) * 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US20120180251A1 (en) * 2011-01-19 2012-07-19 Jaewon Jang Automatic cleaner
CN206967493U (zh) * 2017-06-17 2018-02-06 广东宝乐机器人股份有限公司 一种自移动机器人
CN107336267A (zh) * 2017-08-24 2017-11-10 深圳市银星智能科技股份有限公司 移动机器人
CN208942016U (zh) * 2018-08-17 2019-06-07 江苏美的清洁电器股份有限公司 扫地机器人
CN209186582U (zh) * 2018-11-09 2019-08-02 北京奇虎科技有限公司 扫地机器人及其多向碰撞结构
CN110123207A (zh) * 2019-04-04 2019-08-16 尚科宁家(中国)科技有限公司 一种扫地机
CN211381116U (zh) * 2019-10-25 2020-09-01 科沃斯机器人股份有限公司 自移动机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4049575A4 *

Also Published As

Publication number Publication date
CN112704435A (zh) 2021-04-27
EP4049575A4 (en) 2023-05-10
EP4049575A1 (en) 2022-08-31
US20220369887A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
CN107024933B (zh) 包括传感器阵列的用于机器人的缓冲器
WO2012031564A1 (en) Displacement sensing touch panel and touch screen using the same
TWI436237B (zh) 力影像觸控板及顯示器
WO2018049972A1 (zh) 一种触碰传感装置和机器人
WO2021078118A1 (zh) 自移动机器人
JP4682357B2 (ja) 力覚式タッチパネルを具備したインターフェイス装置
TWI512571B (zh) 觸控系統
TWI498932B (zh) One shot out of the production of the key cap flat plate module
CN206967493U (zh) 一种自移动机器人
TWI486828B (zh) 具有連接於框架之攝影機之物體定位系統
CN211381116U (zh) 自移动机器人
CA2456710C (en) Dual safety-edge for an overhead door
CN208910068U (zh) 扫地机器人的碰撞避障机构
CN210295034U (zh) 触摸面板的振动反馈装置
CN218738726U (zh) 清洁机器人
US11566951B2 (en) Deformable body for force/torque sensor and sensor
KR20080077851A (ko) 접촉센싱기능을 구비한 로봇청소기
TWI573043B (zh) The virtual two - dimensional positioning module of the input device
CN109204866B (zh) 登机桥及其触机停止装置
JPH07244559A (ja) 座標入力装置およびキーボード入力装置
CN218978811U (zh) 一种识别模组及清洁机器人
CN208999922U (zh) 一种主板和显卡的连接结构
CN216876268U (zh) 防撞条和清洁机器人
CN212112441U (zh) 压力触控模组、压力触控装置及其安装结构
CN110221702B (zh) 一种触摸面板的振动反馈装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020879096

Country of ref document: EP

Effective date: 20220525