WO2021077964A1 - 一种自动线屑分离装置及衣物处理装置 - Google Patents

一种自动线屑分离装置及衣物处理装置 Download PDF

Info

Publication number
WO2021077964A1
WO2021077964A1 PCT/CN2020/116516 CN2020116516W WO2021077964A1 WO 2021077964 A1 WO2021077964 A1 WO 2021077964A1 CN 2020116516 W CN2020116516 W CN 2020116516W WO 2021077964 A1 WO2021077964 A1 WO 2021077964A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
separation
side wall
gas
wall
Prior art date
Application number
PCT/CN2020/116516
Other languages
English (en)
French (fr)
Inventor
方相九
李涛
杨龙
楚振嘉
宿日升
Original Assignee
青岛海尔滚筒洗衣机有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔滚筒洗衣机有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔滚筒洗衣机有限公司
Publication of WO2021077964A1 publication Critical patent/WO2021077964A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/10Filtering arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/22Lint collecting arrangements

Definitions

  • the invention belongs to the field of washing and drying, and specifically relates to an automatic thread scrap separating device and a clothes processing device.
  • Airflow is often present in the drying process of the washer-dryer or clothes dryer.
  • the lint on the clothes will enter the drying module with the airflow.
  • the lint may be attached to the fan, evaporator, etc. during the flow of the airflow. Condenser, heating pipe and other parts of the surface. If the thread scraps are not cleaned in time, the air duct may be blocked, the flow area is reduced, the air volume is reduced, and the drying effect of the clothes is affected. In addition, if the thread scraps accumulate too much on the heating tube, it may cause an open flame, which may pose a safety hazard. Therefore, during the clothes drying process, equipment should be set to remove the clothes floss in the airflow.
  • the Chinese invention patent with the patent number 201210575631.7, the patent name is a lint filter device of a clothes dryer and a clothes dryer.
  • the invention discloses a lint filter device of a clothes dryer and a clothes dryer.
  • the lint filter device is arranged in the air path of the clothes dryer and includes a first lint filter layer, a second lint filter layer and a third lint filter layer. Filter layer.
  • the filter layer is set in the internal air path of the dryer, at the front end of the evaporator installed on the dryer, which can filter the lint in layers, prevent the evaporator and condenser from clogging the lint and affect the drying effect, and save the air path space .
  • a lint filter device in the air path of the dryer, a lint filter device is installed before the evaporator and condenser, which can prevent part of the lint from entering the evaporator and condenser.
  • the device for filtering thread scraps uses a filter screen, which results in the need to replace the filter screen at a certain interval, and the automatic removal of the thread scraps cannot be realized.
  • the Chinese invention patent with the patent number 201810138287.9, the patent name is drying air duct, washing and drying integrated machine.
  • the invention provides a drying air duct, washing and drying integrated machine.
  • the drying air duct includes a filter component and a rotating interface, and the rotating interface is connected to the air outlet of the drying air duct to introduce the air from the drying air duct into the laundry receiving area of the washing and drying machine.
  • the component is arranged in the ventilation channel of the transfer port, and/or the filter component is located at the air inlet of the drying air duct.
  • the drying air duct, washing and drying integrated machine according to the present invention can effectively prevent debris generated during the washing and drying process from entering the air duct, keeping the drying air duct unobstructed and clean, and improving the drying efficiency and drying effect.
  • the invention adopts a filter device to filter the debris in the air duct, which will also cause the filter screen to be replaced at a certain interval, and the automatic removal of thread chips cannot be realized.
  • the present invention is proposed in view of the above technical problems.
  • the technical problem to be solved by the present invention is to provide a device that can continuously and automatically separate the thread scraps, which can realize the separation of the thread scraps without other human operations.
  • the device for automatically separating thread scraps can be installed in a clothes processing device with a drying module to realize the separation of thread scraps in the drying module. Avoid lint remaining in the air duct of the drying module, obstructing the air flow in the air duct, and affecting the drying effect; and avoiding the accumulation of lint on the drying equipment such as fans, evaporators, condensers, and affecting the normal operation of the drying equipment.
  • there may be safety hazards such as igniting inventions.
  • the present invention provides an automatic lint separating device, which includes a three-layered annular channel for gas circulation. From the outside to the inside, there are an inhalation channel for gas to flow in, and a rotating air flow to flow in and out. Separate the separation channel for throwing wire chips in the rotating airflow, and the exhaust channel for the gas to be discharged; the gas is folded back and circulated between the adjacent two layers of channels.
  • the suction channel, the separation channel, and the exhaust channel are composed of a space separated by three-layered ring-shaped side walls;
  • the three-layered ring-shaped side wall includes a first side wall and a separation wall from the outside to the inside.
  • the second side wall a suction channel is formed between the first side wall and the separation wall, a separation channel is formed between the separation wall and the second side wall, and the second side wall encloses an exhaust channel.
  • the gas realizes a fold-back flow between the channels, so that the automatic thread chip separation device has a relatively compact structure.
  • the three-layered channel is composed of three-layered ring-shaped walls, and the two outermost walls are both the inner wall of one channel and the outer wall of another channel, saving materials and space.
  • the automatic thread scrap separation device also includes a guide structure for guiding the gas to form a rotating air flow; the guide structure is arranged at the top of the separation channel, straddles the suction channel and the separation channel, and is separated from the suction channel and the separation channel respectively.
  • the channels are connected; the gas flows into the guide structure from the suction channel, and the rotating airflow formed after the gas passes through the guide structure flows into the separation channel.
  • the invention uses the structure of the guide channel to form a rotating airflow, and the relatively heavy paper scraps are thrown to the edge under the action of the rotating airflow to realize separation, and the paper scraps are discharged through the separation channel, and the gas is discharged through the exhaust channel.
  • the guide channel is arranged at the top of the separation channel, which can save materials for blocking the top of the separation channel.
  • the guide structure includes a guide channel surrounded by a side wall extending a certain length.
  • One end of the side wall is provided with an air inlet for introducing gas, and the other end is provided with an air outlet for exporting gas; the air inlet communicates with the suction
  • the channel and the air outlet are connected to the separation channel.
  • the guide structure includes a plurality of guide channels distributed along any circumference or spiral; the direction of all the guide channels from the air inlet to the air outlet is clockwise or the direction of all the guide channels from the air inlet to the air outlet is reversed Hour-hand arrangement; preferably, the axis of the guide channel is gradually away from the center of the circle or spiral from the air inlet to the air outlet; preferably, the axis of the guide channel is inclined or inclined along the horizontal plane.
  • the structure design of the guide channel of the present invention facilitates the flow of the gas in the suction channel into the guide channel, and facilitates the ejection of the gas in the guide channel to form a rotating airflow.
  • the top end of the suction channel is provided with a first closure to block the radial separation surface between the top end of the first side wall and the top end of the separation wall; the radial distance between the bottom end of the first side wall and the bottom end of the separation wall is The partition surface forms a first opening through which the gas can flow into the suction channel; the length of the first side wall extending to the bottom is less than the length of the separating wall extending to the bottom.
  • the suction channel of the present invention is closed except for the first opening for gas to flow in, and the air inlet of the guide channel is arranged in the suction channel, so the gas will flow into the guide channel from the suction channel.
  • the length of the suction channel extending to the bottom is less than the length of the separation channel extending to the bottom.
  • the separating wall constituting the separation channel is a trumpet shape with a gradually reduced radial cross-section; a second closure is provided at the top of the separation channel to block the part between the separation wall and the second side wall except for the part overlapping with the guide structure
  • the radial separation surface; the radial separation surface between the bottom end of the separation wall and the bottom end of the second side wall forms a separation channel for the discharge of wire chips; the length of the separation wall extending to the bottom is greater than that of the second side wall extending to the bottom The length; the rotating airflow rises into the exhaust channel at the bottom of the horn-shaped separating wall.
  • the shape of the separating wall of the present invention is suitable for sliding down of the wire chips hitting the separating wall, and the shape is conducive to the swirling airflow forming a rising airflow at the bottom and finally being discharged from the exhaust channel.
  • the separation channel of the present invention is closed to prevent gas from leaking out, and it is difficult to form a rotating airflow.
  • the second side wall enclosing the exhaust channel is in a trumpet shape with a gradually reduced radial cross-section; the bottom end of the second side wall encloses the fourth opening for the gas to flow into the exhaust channel, and the second side wall The top end encloses a third opening for gas discharge.
  • the structural design of the exhaust channel in the present invention facilitates the introduction of the ascending airflow formed at the bottom of the rotating airflow into the exhaust channel and finally discharges it.
  • the present invention also provides a drying module, the drying module has an air flow, and the drying module is provided with the aforementioned automatic thread scrap separation device for separating the threads in the air flow.
  • the drying module provided by the present invention can be arranged in the laundry treatment device to separate thread scraps in the airflow of the laundry treatment device.
  • the present invention also provides a layout of the automatic thread scrap separation device in the drying module: the drying module has a drying device, and the airflow in the drying module flows from the automatic thread scrap separation device into the drying device;
  • the drying device includes a fan, an evaporator, and a condenser.
  • the gas flows from the automatic thread scrap separation device into the drying device, which can prevent the airflow with thread scraps from flowing into the drying device and avoid affecting the normal operation of the drying device.
  • the present invention has the following beneficial effects compared with the prior art:
  • the automatic thread scrap separation device of the present invention uses its own structure to control the flow of airflow in the automatic thread scrap separation device to form a rotating airflow, and use the centrifugal effect of the rotating airflow to automatically separate the thread scraps. That is, the automatic thread scrap separation device provided by the present invention does not require any human operation, and can automatically separate the thread scraps in the airflow.
  • the automatic thread chip separation device of the present invention only includes 3 air flow channels and multiple guide channels, and the structure is simple and relatively simple, and the automatic thread chip separation device can be integrally cast, and the overall structure does not require a separate installation structure.
  • the automatic thread scrap separation device of the present invention uses the airflow in the drying module itself to separate the thread scraps, and does not need to use other energy sources to provide power and save energy.
  • the guide channel is arranged at the top of the automatic thread scrap separating device, and at the same time it plays a role of sealing a part of the separation channel, so as to save the material used to seal the top of the separation channel.
  • the suction channel, the separation channel and the exhaust channel are sleeved in the automatic thread chip separation device of the present invention, so that the suction channel, the separation channel, and the exhaust channel have a compact structure and save materials.
  • the airflow of the drying module first flows through the automatic wire chip separation device, and then flows from the automatic wire chip separation device to other drying devices to ensure that the airflow flowing into the drying device does not Contains thread shavings, to avoid the accumulation of thread shavings in the drying device to affect the normal operation of the drying device.
  • the drying module with automatic thread scrap separation device provided by the present invention, compared to the previous use of a filter to separate the thread scraps, can facilitate the direct discharge of the thread scraps to the outside of the drying module, and prevent the thread scraps from obstructing the drying in the drying module Gas flow in the module.
  • Fig. 1 is a schematic cross-sectional view of an automatic thread chip separating device in embodiment 1 of the present invention
  • Figure 2 is a schematic diagram of the automatic thread chip separating device in embodiment 1 of the present invention.
  • FIG. 3 is a schematic top view of the guide channel in the automatic thread chip separation device in Embodiment 1 of the present invention.
  • Fig. 4 is a schematic diagram of the position of the automatic thread scrap separating device in the drying system in the second embodiment of the present invention.
  • this embodiment provides an automatic thread scrap separating device 1 which can automatically separate the thread scraps in the airflow and play a role in filtering the thread scraps in the airflow.
  • three-layered annular passages are provided in the automatic thread scrap separation device 1. From the outside to the inside, there are suction passages 3 for gas to flow in, and separation passages for the swirling airflow to flow in and separate the thread scraps from the swirling airflow. 4. Exhaust channel 5 for the gas to be discharged, the gas is folded back and circulated between two adjacent channels.
  • the suction channel 3, the separation channel 4, and the exhaust channel 5 are formed by the interval separated by three-layered annular walls.
  • the three layers of annular walls are respectively the first side wall 12, the separating wall 15 and the second side wall 18 from the outside to the inside.
  • the space between the first side wall 12 and the separation wall 15 forms a suction channel 3
  • the separation wall 15 and the second side wall 18 form a separation channel 4
  • the second side wall 18 encloses the exhaust channel 5.
  • the three-layer nesting structure can be realized only by providing three-layer nesting walls.
  • Each channel is separated by two outer and inner side walls, and the two outermost walls can be used.
  • the separation wall 15 is both the inner side wall of the suction channel 3 and the outer side wall of the separation channel 5 at the same time.
  • the three-layered channel has a relatively compact structure, reduces the volume of the automatic wire chip separation device 1, and reduces materials.
  • a guiding structure 2 for guiding the gas to form a rotating air flow is provided inside the automatic thread scrap separating device 1.
  • the guide structure is arranged at the top of the separation channel 4 and spans the suction channel 3 and the separation channel 4, and the guide structure 2 is connected to the suction channel 3 and the separation channel 4, respectively.
  • the gas flows into the guiding structure 2 from the suction channel 3, and the gas flows in the guiding structure 2 according to the guiding action of the guiding structure 2, and is finally discharged from the guiding structure 2 to form a rotating airflow.
  • the rotating airflow flows into the separation channel 4 through the guiding structure 2.
  • the rotating airflow flows downwards in the separation channel.
  • the guide structure 2 includes a guide channel 6 surrounded by a side wall 9 extending a certain length.
  • the side wall 9 can enclose a rectangular guide channel 6 or a cylindrical guide channel. 6. It can be enclosed in any shape for gas to flow inside.
  • the side wall 9 of the guide channel 6 is closed, but openings are provided at both ends of the guide channel 6, one end is provided with an air inlet 8 for gas to flow in, and the other end is provided with an air outlet 7 for gas to flow out, so that the gas will be in the guide channel 6 From the air inlet 8 to flow along the axis of the guide channel 6 to the outlet 7 to discharge, since the gas will flow along the axis of the guide channel 6, the guide channel 6 realizes the guiding effect of the gas.
  • the air inlet 8 of the guide channel 6 is connected with the suction channel 3, so that the gas flows into the guide channel 6 from the suction channel 3, and the air outlet 7 of the guide channel 6 is connected with the separation channel 4, so that the gas in the guide channel 6 is discharged to Separation channel 4.
  • the guide structure 2 includes a plurality of guide channels 6 with a certain extension length distributed along any circumference or spiral. And the direction of all the guide passages 6 from the air inlet 8 to the air outlet 7 is clockwise or the direction of all the guide passages 6 from the air outlet 7 to the air inlet 8 is counterclockwise.
  • the guide channels 6 are arranged along a circumference or a spiral line, so that the gas passing through the guide channels 6 can easily form a rotating airflow. All the guide channels 6 point from the air inlet 8 to the air outlet 7, so that the rotating airflow can flow clockwise or counterclockwise, preventing the airflow from being chaotic when part of the airflow flows clockwise and part of the airflow flows counterclockwise. , It is difficult to form a rotating airflow.
  • the guide channels 6 located on the same radial circumference are equally spaced along the circumference.
  • the directions of the suction channel 3 and the guide channel 6 are not parallel, but close to the vertical direction, when the direction of the guide channel 6 and the suction channel 3 are perpendicular, the flow in the suction channel 3 It is difficult for gas to flow into the guide channel 6.
  • the axial direction of the guide channel 6 needs to be set to have a certain angle with the horizontal direction.
  • the angle between the axial direction of the guide channel 6 and the horizontal direction is large, the gas will easily flow out of the guide channel 6 vertically, and it is difficult to form a rotating airflow. Therefore, preferably, the angle between the guide channel 6 and the horizontal direction is 0-15°.
  • the horizontal direction referred to here is relative to the horizontal direction of the wire chip separating device itself.
  • the automatic thread chip separation device is placed in the vertical direction as shown in the figure, there is a certain angle between the guide channel 6 and the horizontal direction.
  • the guide channel 6 and the vertical direction are at a certain angle .
  • the design of the guide channel facilitates the inflow of gas.
  • the design of the structure of the guide channel 6 should be easy to generate a centrifugal swirling airflow.
  • the axis of the guide passage 6 gradually moves away from the center of the circumference from the air inlet 8 to the air outlet 7. That is, the guide channel 6 is projected in the horizontal direction, and it can be seen that the extension direction of the guide channel is a diagonal line, and the shape is gradually away from the center of the circumference. This facilitates the ejection of the gas flowing into the guide channel 6 and facilitates the generation of centrifugal rotating airflow.
  • the guide channel 6 is set to a shape gradually away from the center of the circle. It is also more conducive to the air flow.
  • a separation channel 4 is provided to collect the rotating gas generated by the guide structure 2.
  • the separation channel 4 has a trumpet-shaped separation wall 15 with a gradually reduced radial cross-sectional radius.
  • the separation wall 15 separates.
  • the trumpet-shaped separating wall 15 of the separating channel 4 is inclined to a certain angle, which facilitates the wire chips thrown on the separating wall 15 to slide down along the separating wall 15.
  • the radial separation surface between the bottom end of the separation wall 15 and the bottom end of the second side wall 18 forms a sewage outlet 13 for the separation channel 4 to discharge wire chips.
  • the separation wall 15 is arranged as a horn-shaped separation wall 15 with a gradually reduced radial cross-sectional radius, it is advantageous for the swirling airflow to form an ascending airflow at the bottom of the gradually reduced cross-sectional radius, and the ascending airflow enters the exhaust channel 5 and is discharged.
  • the structural design of the separating wall in this embodiment facilitates the discharge of wire chips and facilitates the airflow without wire chips to be discharged from the exhaust channel 5.
  • the airflow rotates in the separation channel 4 for a period of time, and finally an ascending airflow is formed at the bottom, and the ascending airflow enters the exhaust channel 5 and is discharged.
  • the length of the separation wall 15 extending to the bottom is greater than the length of the second side wall 18 extending to the bottom; that is, the length of the separation channel 4 extending to the bottom is greater than the length of the exhaust channel 5 extending to the bottom.
  • a closure needs to be provided at the upper end of the separation channel 4 to ensure that all other positions of the separation channel 4 except for the sewage outlet 13 are closed, and to prevent the airflow from flowing out of other positions in the separation channel 4 to form a rotating airflow.
  • the guide structure 2 spans the suction channel 3 and the separation channel 4, and the guide structure is arranged at the top of the separation channel 4, so a part of the structure of the guide channel 4 will function as a sealing part of the separation channel 4. Therefore, a second closure 14 is provided at the top of the separation channel 4 to block the radial separation surface between the separation wall 15 and the second side wall 18 except for the portion overlapping the guide structure 2.
  • the guide structure 2 of this embodiment can save the area of the second closure 14 and save material.
  • the top end of the suction channel 3 is provided with a first closure 11 to block the radial separation surface between the top end of the first side wall 12 and the top end of the separation wall 15;
  • the radial separation surface between the bottom end of 12 and the bottom end of the separation wall 15 forms the first opening 10 of the suction channel 3 for gas to flow in.
  • the first side wall 12 and the first closure 11 are the outer walls of the housing 1 at the same time, and a round chamfer is provided on the outer wall of the first closure 11 to prevent sharp corners from cutting people during installation.
  • the suction channel 3 is closed except for the first opening 10, and the first opening 10 can be connected to a device for supplying gas, so that gas flows into the suction channel 3 from the first opening 10 continuously.
  • the air first forms a vertical upward air flow from the air suction channel 3 into the air suction channel 3. Since the top of the suction channel 3 is provided with a first closure 11, the vertically upward gas cannot be discharged from the suction channel 3, and the air inlet 8 of the guide channel 6 is arranged in the suction channel 3, which continuously flows in and cannot be discharged. The gas will flow into the guide channel 6 through the air inlet 8 and then pass through the aforementioned guide channel 6 to form a rotating airflow.
  • the length of the first side wall 12 extending to the bottom is less than that of the separation wall 15 The length extended to the bottom.
  • the structure of the suction channel 3 and the guide structure 2 is designed so that the gas entering the suction channel 3 can flow through the guide structure 2 and finally be folded back into the separation channel 4. This structural design can make the suction channel 3 and The separation channel 4 has a more compact structure, saving space and materials.
  • the second side wall 18 enclosing the exhaust channel 5 has a trumpet shape with a gradually reduced radial cross section, and the horn shape facilitates the continuous upward discharge of gas.
  • the bottom end of the second side wall 18 encloses a fourth opening 17 for gas to flow into the exhaust passage 5, and the top end of the second side wall 18 encloses a third opening 16 for gas to be discharged.
  • the rotating gas forms an ascending airflow at the bottom, and the airflow enters the exhaust channel 5 through the fourth opening 17 and flows out through the third opening 16.
  • the side wall 9 of the guide channel 6 is connected to the outer wall of the exhaust channel 5, and is distributed along any circular radial cross section of the exhaust channel 5.
  • the side wall 9 is connected with the outer wall of the exhaust channel 5, which can strengthen the exhaust channel 5.
  • the automatic thread chip separation device 1 provided in this embodiment has a relatively simple structure, mainly composed of a guiding structure 2, a suction channel 3, a separation channel 4, and an exhaust channel 5. Install other parts, easy to install.
  • the automatic thread scrap separation device 1 of this embodiment only relies on the structural design and utilizes the airflow generally present in the drying module to automatically realize the separation of the thread scraps, save energy, and does not require any human operation.
  • this embodiment provides a laundry treatment device, which includes a drying module that uses a circulating air flow for drying, and the drying module is equipped with the automatic thread scrap separation for separating thread scraps in the air flow as described in Embodiment 1.
  • Device 1. The drying module can be used in a variety of equipment, especially in clothes processing equipment, and can remove thread scraps on clothes from the airflow.
  • the clothes processing equipment may be a washer-dryer, a clothes dryer, or the like.
  • an optimal layout of the automatic thread scrap separation device 1 in the drying module is provided.
  • the drying module has a drying device 19 so that the airflow in the drying module first enters the automatic thread scrap separation device 1 Then enter the drying device 19, and the other drying devices 19 include a fan 20, an evaporator 21, a condenser 22, and the like. This design can prevent the airflow with thread scraps from flowing into the drying device 19 to affect the normal operation of the drying device 19.
  • an installation method of the automatic thread scrap separating device 1 in the drying module is provided. Since the drying module in this embodiment has an air intake passage 23 for introducing airflow, the outer wall of the air intake passage 23 is in sealed connection with the first side wall 12 of the automatic lint separating device 1, and the airflow of the air intake passage 23 enters the suction passage 3. That is, the first side wall 12 of the automatic wire chip separating device 1 and the air intake passage 23 are used to form a structure in which only the sewage outlet 13 and the exhaust passage 4 communicate with the outside.
  • the separation channel 4 of the automatic thread chip separating device 1 passes through the air inlet channel 23, so that the separated thread particles can be prevented from entering the air inlet channel 23 again, and the thread particles are discharged out of the drying system through the sewage outlet 13.
  • the air without thread debris flows out from the third opening 16 in the exhaust channel 5, and the third opening 16 can also be connected to other drying devices 19 to provide air without thread debris to the drying module.
  • the provided drying equipment is installed in the laundry treatment device, which can effectively remove the thread scraps in the airflow, and can prevent the thread scraps in the airflow from adhering to the drying device, preventing the normal operation of the drying equipment from being affected .
  • the automatic thread scrap separation device 1 is installed at the front end of all the drying devices 19 in the gas passage, especially after the fan 20 is installed after the automatic thread scrap separation device 1, the fan 20 can be used to provide The power causes the airflow to continuously flow into the automatic thread chip separation device 1 and provides power to the automatic thread chip separation device 1.
  • the drying module with the automatic wire scrap separating device 1 provided by the present invention can directly discharge the wire scraps from the drying module, so as to prevent the wire scraps from obstructing the air flow in the drying module in the drying module.

Abstract

本发明提供了一种自动线屑分离装置,包括三层套设的用以气体流通的环形通道,由外到内依次为供气体流入的吸气通道、供旋转气流流入并分离旋转气流中甩出线屑的分离通道、供气体排出的排气通道;气体在相邻的两层通道之间折回流通。本发明还提供了一种衣物处理装置,包括如前所述的自动线屑分离装置。本发明提供的自动线屑分离装置不需要任何人为操作,便可自动的分离气流中的线屑。并且本发明提供的自动线屑分离装置由三层套设的通道组成,结构紧凑,节省材料。本发明提供的烘干模块中,气流先通过自动线屑分离装置再流入烘干装置,保证流入烘干装置中的气流中不含有线屑,避免线屑在烘干装置中堆积以影响烘干装置的正常工作。

Description

一种自动线屑分离装置及衣物处理装置 技术领域
本发明属于洗衣烘干领域,具体地说,涉及一种自动线屑分离装置及衣物处理装置。
背景技术
洗干一体机或干衣机的烘干过程中往往存在气流,衣物上的线屑会随着气流进入烘干模块中,线屑在随气流的流动过程中可能会附着在风扇、蒸发器、冷凝器、加热管等部件的表面。若没有及时清理所述线屑,可能会堵塞风道,减小过流面积,导致风量下降,影响衣物的烘干效果。且若线屑在加热管上过多堆积,还有可能引起明火,存在安全隐患。故在衣物烘干过程中,应设置设备去除气流中的衣物线屑。
专利号为201210575631.7的中国发明专利,专利名称是一种干衣机的线屑过滤装置及干衣机。该发明公开了一种干衣机的线屑过滤装置及干衣机,线屑过滤装置设置在干衣机的风路中,包括第一线屑过滤层、第二线屑过滤层和第三线屑过滤层。过滤层设置在干衣机的内部风路中,位于干衣机上设置的蒸发器前端,能够分层将线屑过滤,防止蒸发器和冷凝器因线屑堵塞影响烘干效果,节省风路空间。该专利在干衣机的风路中,蒸发器和泠凝器前设置线屑过滤装置,可以防止部分线屑进入蒸发器和冷凝器中。但过滤线屑的装置采用过滤网,导致必须间隔一端时间更换过滤网,未能实现线屑的自动化清除。
专利号为201810138287.9的中国发明专利,专利名称是烘干风道、洗干一体机。该发明提供一种烘干风道、洗干一体机。该烘干风道,包括过滤部件、转接口,所述转接口连接于所述烘干风道的出风口处,以将烘干风道的出风引入洗干机衣物容纳区域,所述过滤部件设置于所述转接口具有的通风通道中,和/或所述过滤部件处于所述烘干风道的进风口处。根据本发明的一种烘干风道、洗干一体机,能够有效防止洗干过程中产生的杂物进入风道,保持烘干风道畅通、清洁,提高烘干效率及烘干效果。但该发明采用过滤装置过滤风道中的杂物,同样会导致必须间隔一端时间更换过滤网,未能实现线屑的自动化清除。
故由上述可知,目前需要一种可以实现完全自动化分离线屑的装置,不需要人为更换过滤网等;其次该分离线屑装置在具有烘干模块的衣物处理装置中的设置,可以有效地避免线屑在风扇、冷凝器、蒸发器、冷热交换器等设备上堆积。
有鉴于上述技术问题特提出本发明。
发明内容
本发明要解决的技术问题是提供一种可以不断自动分离线屑的装置,不需要其他人为操作便可实现线屑的分离。并且将该自动分离线屑的装置设置于具有烘干模块的衣物处理装置中便可实现烘干模块中的线屑分离。避免线屑保留在烘干模块的风道中阻碍风道中气流的流动,影响烘干效果;且避免线屑在风扇、蒸发器、冷凝器等烘干设备上堆积,影响烘干设备的正常工作,严重的可能存在引发明火等安全隐患。
为解决上述技术问题,本发明提供了一种自动线屑分离装置,包括三层套设的用以气体流通的环形通道,由外到内依次为供气体流入的吸气通道、供旋转气流流入并分离旋转气流中甩出线屑的分离通道、供气体排出的排气通道;气体在相邻的两层通道之间折回流通。
进一步地,所述吸气通道、分离通道、排气通道由三层套设的环形侧壁分隔的空间构成;所述三层套设的环形侧壁由外向内包括第一侧壁、分离壁、第二侧壁;第一侧壁与分离壁之间形成吸气通道,分离壁与第二侧壁之间形成分离通道,第二侧壁围成排气通道。
本发明的自动线屑分离装置由于具有三层套设的通道,气体在所述通道之间实现折回流动,使得该自动线屑分离装置结构比较紧凑。且三层套设的通道由三层套设的环形壁构成,最外层的两层壁均即是某一通道的内壁又是另一通道的外壁,节省材料、空间。
进一步地,该自动线屑分离装置还包括对气体进行导向以形成旋转气流的导向结构;所述导向结构设置在分离通道的顶端,横跨吸气通道和分离通道,并分别与吸气通道和分离通道相连通;气体由吸气通道流入导向结构,气体经过导向结构后形成的旋转气流流入分离通道。
本发明利用导向通道的结构形成旋转气流,重量相对较重的纸屑在旋转气流的作用下被甩到边缘实现分离,并将纸屑通过分离通道排出,气体通过排气通道排出。且导向通道设置在分离通道的顶端,可以节省封堵分离通道顶端的材料。
进一步地,导向结构包括导向通道,导向通道由延伸一定长度的侧壁围成,侧壁的一端开设导入气体的进气口,另一端开设导出气体的出气口;所述进气口连通吸气通道,出气口连通分离通道。
进一步地,导向结构包括多个沿任一圆周或螺旋线分布的导向通道;所有导向通道由进气口指向出气口的方向按顺时针或所有导向通道由进气口指向出气口的方向按逆时针排列;优选地,导向通道的轴线由进气口到出气口逐渐远离所述圆周或螺旋的中心;优选地,导向通道的轴线沿水平面上倾或下倾。
本发明导向通道的结构设计,利于将吸气通道内的气体流入导向通道,且利于将导向通道内的气体甩出以形成旋转气流。
进一步地,所述吸气通道的顶端设置第一封闭,封堵第一侧壁顶端与分离壁顶端之间的径向间隔面;第一侧壁底端与分离壁底端之间的径向间隔面形成吸气通道供气体流入的第一开口;第一侧壁向底部延伸的长度小于分离壁向底部延伸的长度。
本发明的吸气通道除供气体流入的第一开口外其它位置均封闭,并且导向通道的进气口设置在吸气通道内,故气体将会由吸气通道流入导向通道。为了防止气体直接流入分离通道而不经过导向通道,故吸气通道向底部延伸的长度小于分离通道向底部延伸的长度。
进一步地,构成所述分离通道分离壁为径向截面逐渐缩小的喇叭形;所述分离通道的顶端设置第二封闭,封堵分离壁与第二侧壁之间的除与导向结构重合部分外的径向间隔面;分离壁底端与第二侧壁底端之间的径向间隔面形成分离通道供线屑排出的排污口;分离壁向底部延伸的长度大于第二侧壁向底部延伸的长度;所述旋转气流在喇叭形分离壁的底部上升进入排气通道。
本发明分离壁的形状适合碰到分离壁的线屑下滑,并且该形状利于旋转气流在底部形成上升的气流并最终从排气通道排出。本发明的分离通道封闭,防止气体漏出,难以形成旋转气流。
进一步地,围成所述排气通道的第二侧壁为径向截面逐渐缩小的喇叭形;第二侧壁的底端围成供气体流入排气通道的第四开口、第二侧壁的顶端围成供气体排出的第三开口。
本发明中排气通道的结构设计,便于将所述旋转气流在底部形成的上升气流引入排气通道中并最终排出。
作为一种实施例,本发明还提供了一种烘干模块,所述烘干模块具有气流,烘干模块中设有如前所述的分离气流中线屑的自动线屑分离装置。
本发明提供的烘干模块可以设置在衣物处理装置中,以分离衣物处理装置的气流中的线屑。
进一步地,本发明还提供了一种自动分离线屑装置在烘干模块中的布局:所述烘干模块中具有烘干装置,烘干模块中的气流从自动线屑分离装置流入烘干装置;优选地,烘干装置包括风扇、蒸发器、冷凝器。
本发明的烘干模块中,气体从自动分离线屑装置中流入烘干装置中,可以防止带有线屑的气流流入烘干装置中,避免影响烘干装置的正常工作。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
1)本发明的自动线屑分离装置,利用自身结构控制气流在自动线屑分离装置中的流动,形成旋转气流,利用旋转气流的离心作用,使线屑自动分离。即本发明提供的自动线屑分离装置不需要任何人为操作,便可自动的分离气流中的线屑。
2)本发明的自动线屑分离装置,只包含3个气流通道和多个导向通道,结构简单相对比较简单,且该自动线屑分离装置可以一体铸造,整体结构没有需要单独安装的结构。
3)本发明的自动线屑分离装置,利用烘干模块中往往本身具有的气流以分离线屑,不需要利用其它能源提供动力,节约能源。
4)本发明的自动线屑分离装置,将导向通道设置在自动线屑分离装置的顶端,同时起到封闭部分分离通道的作用,以节省用以密封分离通道顶端的材料。且本发明的自动线屑分离装置中吸气通道、分离通道、排气通道套设,使吸气通道、分离通道、排气通道结构紧凑、节省材料。
5)本发明提供的烘干模块的布局,在烘干模块的气流首先流经自动线屑分离装置,而后由自动线屑分离装置流至其他烘干装置,以保证流入烘干装置中的气流中不含有线屑,避免线屑在烘干装置中堆积以影响烘干装置的正常工作。
6)本发明提供的具有自动线屑分离装置的烘干模块,相对于以往使用过滤网分离线屑,可以方便直接将线屑排出至烘干模块外,防止线屑在烘干模块中阻碍烘干模块中的气体流动。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明实施例1中的自动线屑分离装置截面示意图;
图2是本发明实施例1中自动线屑分离装置示意图;
图3是本发明实施例1中的自动线屑分离装置中导向通道俯视示意图;
图4是本发明实施例2中的自动线屑分离装置在烘干系统中的位置示意图。
附图中标号说明:1、自动线屑分离装置;2、导向结构;3、吸气通道;4、分离通道;5、排气通道;6、导向通道;7出气口、;8、进气口;9、侧壁;10、第一开口;11、第一封闭; 12、第一侧壁;13、排污口;14、第二封闭;15、分离壁;16、第三开口;17、第四开口;18、第二侧壁;19、烘干装置;20、风扇;21、蒸发器;22、冷凝器;23、进气通道。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
如图1、2所示,本实施例提供一种自动线屑分离装置1,该自动线屑分离装置1可自动分离气流中的线屑,起到过滤气流中线屑的作用。
本实施例中,在自动线屑分离装置1内设置三层套设的环形通道,由外向内分别为供气体流入的吸气通道3,供旋转气流流入并分离旋转气流中甩出线屑的分离通道4,供气体排出的排气通道5,气体在相邻的两个通道之间折回流通。且吸气通道3、分离通道4、排气通道5又由三层套设的环形壁之间分隔的间隔构成。该三层环形壁由外向内分别为第一侧壁12、分离壁15、第二侧壁18。第一侧壁12与分离壁15之间的间隔形成吸气通道3,分离壁15与第二侧壁18之间形成分离通道4,第二侧壁18围成排气通道5。
本实施例中,三层套设的结构只需要设置三层套设的壁即可实现,每个通道由外侧、内侧两个侧壁分隔出,其中位于最外层的两层壁,即可以当某一通道的内侧壁又作为另一层壁的外侧壁,比较节省材料、空间。例如,分离壁15即是吸气通道3的内侧壁同时又是分离通道5的外侧壁。本实施中三层套设的通道,结构比较紧凑、减少自动线屑分离装置1的体积,且减少材料。
本实施例中,在自动线屑分离装置1的内部设置对气体进行导向以形成旋转气流的导向结构2。所述导向结构设置在分离通道4的顶端,横跨吸气通道3和分离通道4,导向结构2分别与吸气通道3和分离通道4相连。气体由吸气通道3流入导向结构2,气体在导向结构2 内按照导向结构2的导向作用流动,并最终由导向结构2排出形成旋转气流,旋转的气流再通过导向结构2流入分离通道4。旋转的气流在分离通道内向下流动,在旋转气流的离心力作用下,重量比气体大的线屑将会被甩到外缘,碰触到分离通道4的分离壁15,并顺着径向半径逐渐减小的喇叭形分离壁15流下而实现线屑与气体的分离。
本实施例中,导向结构2包括导向通道6,所述导向通道6由延伸一定长度的侧壁9围成,侧壁9可以围成长方形的导向通道6也可围成圆筒形的导向通道6,可围成供气体在内部流动的任意形状。导向通道6的侧壁9封闭,但在导向通道6的两端设置开口,一端设置供气体流入的进气口8,另一端设置供气体流出的出气口7,这样气体将在导向通道6内从进气口8沿着导向通道6轴线的方向流到出气口7排出,由于气体将会沿着导向通道6的轴线方向流动,故导向通道6对气体实现导向的作用。且导向通道6的进气口8与吸气通道3相连,使气体由吸气通道3流入导向通道6,导向通道6的出气口7与分离通道4相连,使导向通道6中的气体排出至分离通道4。
本实施例中,如图3所示,所述导向结构2包括多个沿任一圆周或螺旋线分布的具有一定延伸长度的导向通道6。并且所有导向通道6由进气口8指向出气口7的方向为顺时针方向或者所有导向通道6由出气口7指向进气口8的方向为逆时针方向。导向通道6沿圆周或者螺旋线排布,使经过导向通道6的气体容易形成旋转气流。而所有导向通道6由进气口8指向出气口7的方向,可使旋转气流沿顺时针流动或者沿逆时针流动,防止当部分气流顺时针流动部分气流逆时针流动时,将可能导致气流混乱,难于形成旋转气流。且优选地,位于同一径向圆周上的导向通道6,沿所述圆周等距分布。
本实施例中,由于设置的吸气通道3和导向通道6的方向不是平行的,而是接近垂直的方向,当导向通道6与吸气通道3的方向垂直时,吸气通道3内流入的气体很难流入导向通道6内,当吸气通道3沿竖直方向延伸,需要将导向通道6的轴线方向设置为与水平方向具有一定的夹角。当导向通道6的轴线方向与水平方向的夹角较大时,气体又容易从导向通道6内竖直流出,较难形成旋转气流。所以优选地,导向通道6与水平方向夹角为0—15°。此处所说的水平方向相对于线屑分离装置本身的水平方向。自动线屑分离装置按照图中所示竖直方向放置时,导向通道6与水平方向之间呈一定夹角,当自动线屑分离装置水平放置时,导向通道6与竖直方向之间呈一定夹角。本实施例中,导向通道的设计便于气体流入。
本实施例中,由之前所述可知,产生离心的旋转气流是可以使纸屑分离的关键,故导向通道6的结构的设计应容易产生离心的旋转气流。如图3所示,导向通道6的轴线从进气口 8到排气口7逐渐远离所述圆周中心。即将导向通道6沿水平方向投影,可见导向通道的延伸方向为斜线,形状为逐渐远离圆周中心的形状,这样方便流入导向通道6内的气体甩出,利于产生离心的旋转气流。气流从导向通道6流出后,重量较重的线屑被甩出的较远,线屑在直接撞击到分离通道4的分离壁15后而落下,故将导向通道6设置为逐渐远离圆心的形状也比较利于气流的甩出。
本实施例中,设置分离通道4用以收集导向结构2产生的旋转气体,所述分离通道4具有径向截面半径逐渐缩小的喇叭形的分离壁15,旋转气流中甩出的线屑沿所述分离壁15分离。分离通道4喇叭形的分离壁15,由于分离壁15倾斜一定角度,利于甩到分离壁15上的线屑沿分离壁15滑下。在分离壁15底端与第二侧壁18底端之间的径向间隔面形成分离通道4供线屑排出的排污口13。所述滑下的线屑经此排污口13流出。由于分离壁15并且设置为径向截面半径逐渐缩小的喇叭形的分离壁15,有利于旋转气流在截面半径逐渐缩小的底部形成上升的气流,而使上升的气流进入排气通道5排出。本实施例中分离壁的结构设计便于排出线屑并且便于使不含线屑的气流由排气通道5排出。气流在分离通道4内旋转一段,最终在底部形成上升的气流,该上升气流进入排气通道5排出。由此可知,分离壁15向底部延伸的长度大于第二侧壁18向底部延伸的长度;即分离通道4向底部延伸的长度大于排气通道5向底部延伸的长度。
本实施例中,在分离通道4的上端需要设置封闭,以保证分离通道4除排污口13为的其它位置均封闭,防止气流在分离通道4内其它位置流出难于形成旋转气流。由前述可知,导向结构2横跨吸气通道3和分离通道4,且导向结构设置在分离通道4的顶端,故导向通道4的部分结构将会起到密封部分分离通道4的作。故在所述分离通道4的顶端设置第二封闭14,封堵分离壁15与第二侧壁18之间的除与导向结构2重合部分外的径向间隔面。本实施例的导向结构2可以省去第二封闭14的面积,节省材料。
本实施例中,如图1所示,所述吸气通道3的顶端设置第一封闭11,封堵第一侧壁12顶端与分离壁15顶端之间的径向间隔面;第一侧壁12底端与分离壁15底端之间的径向间隔面形成吸气通道3供气体流入的第一开口10。第一侧壁12和第一封闭11同时为所述壳体1的外壁,且在第一封闭11的外壁上设置圆形倒角,防止尖角在安装过程中割伤人。由图1中可知,吸气通道3除设置有第一开口10外其它部分均封闭,第一开口10可以连接提供气体的装置,使气体不断由第一开口10流入吸气通道3。且气流的流动如图1中箭头所示,气体首先由吸气通道3形成竖直向上的气流进入吸气通道3。由于吸气通道3的顶端设置第一封闭11竖直向上的气体无法从吸气通道3排出,且所述导向通道6的进气口8设置在吸气通道 3内,不断流入且无法排出的气体,将会通过进气口8流入导向通道6,而后经过之前所述在导向通道6的作用下形成旋转气流。由此可知,吸气通道3中必须设定第一封闭11的原因。并且为了防止进入吸气通道3的气体直接由排污口13流入分离通道4内,而没有经过导向结构2的导向作用以形成训传气流,故第一侧壁12向底部延伸的长度小于分离壁15向底部延伸的长度。本实施例中,吸气通道3和导向结构2的结构设计,使进入吸气通道3的气体,可以流经导向结构2最终折回流入分离通道4,这样的结构设计可使吸气通道3和分离通道4结构更加紧凑,节省空间、材料。
本实施例中,由所述气体的流动可知,排气通道5应设置在分离通道4的内部中心位置。围成所述排气通道5的第二侧壁18为径向截面逐渐缩小的喇叭形,喇叭形的形状便于气体不断向上排出。第二侧壁18的底端围成供气体流入排气通道5的第四开口17、第二侧壁18的顶端围成供气体排出的第三开口16。由前所述,旋转的气体在底部形成上升的气流,气流由第四开口17进入排气通道5并由第三开口16流出。
本实施例中,优选地,如图3所示,将导向通道6的侧壁9与排气通道5的外壁相连,沿排气通道5的任一圆形的径向截面分布,导向通道6的侧壁9与排气通道5的外壁相连,可以对排气通道5起到加强强度的作用。
本实施例提供的自动线屑分离装置1,结构比较简单,主要由导向结构2、吸气通道3、分离通道4、排气通道5组成,只需要铸造便可成形,加工方便,且内部不需安装其他部件,安装简单。本实施例的自动线屑分离装置1只依靠结构的设计,利用烘干模块中普遍存在的气流,便可自动地实现线屑的分离,节省能源,且不需要任何的人为操作。
实施例2
如图4所示,本实施例提供了一种衣物处理装置,包括利用循环气流进行烘干的烘干模块,且烘干模块中设有如实施例1所述的分离气流中线屑的自动线屑分离装置1。该烘干模块可以使用在多种设备上,尤其使用在衣物处理设备上,可以从气流中去除衣物上所带的线屑。所述衣物处理设备可以为洗干一体机、干衣机等。
本实施例中,提供了一种自动线屑分离装置1在烘干模块中较优的布局,所述烘干模块中具有烘干装置19,使烘干模块中的气流首先进入自动线屑分离装置1而后进入烘干装置19,所述其他烘干装置19包括风扇20、蒸发器21、冷凝器22等。这样设计可以防止带有线屑的气流,流入烘干装置19中以影响烘干装置19的正常工作。
本实施例中,提供了一种自动线屑分离装置1在烘干模块中的安装方式。由于本实施例 中所述烘干模块具有引入气流的进气通道23,进气通道23的外壁与自动线屑分离装置1的第一侧壁12密封连接,进气通道23的气流进入吸气通道3。即利用自动线屑分离装置1的第一侧壁12与进气通道23围成只有排污口13和排气通道4与外界连通的结构。自动线屑分离装置1的分离通道4穿出进气通道23,这样可以防止分离的线屑再次进入进气通道23,将线屑由排污口13排出烘干系统。不含线屑的气体由排气通道5中的第三开口16流出,第三开口16还可与其他烘干装置19相连,对烘干模块提供不含线屑的气体。
本实施例中,提供的烘干设备安装在衣物处理装置中,可以有效地去除气流中的线屑,并且可以防止气流中的线屑附着在烘干装置中,防止影响烘干设备的正常工作。并且本发明提供的烘干模块中的布局,在气体通路中将自动线屑分离装置1安装在所有烘干装置19的前端,尤其是风扇20设置在自动线屑分离装置1之后,可以利用风扇20提供动力,使气流不断流入自动线屑分离装置1中,给自动线屑分离装置1提供了动力。且本发明提供的具有自动线屑分离装置1的烘干模块,可以直接将线屑排出烘干模块,避免线屑在烘干模块中阻碍烘干模块中的气体流动。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (10)

  1. 一种自动线屑分离装置,其特征在于:包括三层套设的用以气体流通的环形通道,由外到内依次为供气体流入的吸气通道(3)、供旋转气流流入并分离旋转气流中甩出线屑的分离通道(4)、供气体排出的排气通道(5);
    气体在相邻的两层通道之间折回流通。
  2. 根据权利要求1所述的自动线屑分离装置,其特征在于,所述吸气通道(3)、分离通道(4)、排气通道(5)由三层套设的环形侧壁分隔的空间构成;
    所述三层套设的环形侧壁由外向内包括第一侧壁(12)、分离壁(15)、第二侧壁(18);
    第一侧壁(12)与分离壁(15)之间形成吸气通道(3),分离壁(15)与第二侧壁(18)之间形成分离通道(4),第二侧壁(18)围成排气通道(5)。
  3. 根据权利要求2所述的自动线屑分离装置,其特征在于,包括对气体进行导向以形成旋转气流的导向结构(2);
    所述导向结构(2)设置在分离通道(4)的顶端,横跨吸气通道(3)和分离通道(4),并分别与吸气通道(3)和分离通道(4)相连通;
    气体由吸气通道(3)流入导向结构(2),气体经过导向结构(2)后形成的旋转气流流入分离通道(4)。
  4. 根据权利要求3所述的自动线屑分离装置,其特征在于,导向结构(2)包括导向通道(6),导向通道(6)由延伸一定长度的侧壁(9)围成,侧壁(9)的一端开设导入气体的进气口(8),另一端开设导出气体的出气口(7);
    所述进气口(8)连通吸气通道(3),出气口(7)连通分离通道(4)。
  5. 根据权利要求4所述的自动线屑分离装置,其特征在于,导向结构(2)包括多个沿任一圆周或螺旋线分布的导向通道(6);
    所有导向通道(6)由进气口(8)指向出气口(7)的方向按顺时针或所有导向通道(6)由进气口(8)指向出气口(7)的方向按逆时针排列;
    优选地,导向通道(6)的轴线由进气口(8)到出气口(7)逐渐远离所述圆周或螺旋的中心;
    优选地,导向通道(6)的轴线沿水平面上倾或下倾。
  6. 根据权利要求2所述的自动线屑分离装置,其特征在于,所述吸气通道(3)的顶端设置第一封闭(11),封堵第一侧壁(12)顶端与分离壁(15)顶端之间的径向间隔面;
    第一侧壁(12)底端与分离壁(15)底端之间的径向间隔面形成吸气通道(3)供气体流入的第一开口(10);
    第一侧壁(12)向底部延伸的长度小于分离壁(15)向底部延伸的长度。
  7. 根据权利要求3所述的自动线屑分离装置,其特征在于,构成所述分离通道(4)分离壁(15)为径向截面逐渐缩小的喇叭形;
    所述分离通道(4)的顶端设置第二封闭(14),封堵分离壁(15)与第二侧壁(18)之间的除与导向结构(2)重合部分外的径向间隔面;
    分离壁(15)底端与第二侧壁(18)底端之间的径向间隔面形成分离通道(4)供线屑排出的排污口(13);
    分离壁(15)向底部延伸的长度大于第二侧壁(18)向底部延伸的长度;
    所述旋转气流在喇叭形分离壁(15)的底部上升进入排气通道(5)。
  8. 根据权利要求2所述的自动线屑分离装置,其特征在于,围成所述排气通道(5)的第二侧壁(18)为径向截面逐渐缩小的喇叭形;
    第二侧壁(18)的底端围成供气体流入排气通道(5)的第四开口(17)、第二侧壁(18)的顶端围成供气体排出的第三开口(16)。
  9. 一种衣物处理装置,包括利用循环气流进行烘干的烘干模块,其特征在于,烘干模块中设有如权利要求1-8任一项所述的分离气流中线屑的自动线屑分离装置(1)。
  10. 根据权利要求9所述的衣物处理装置,其特征在于,所述烘干模块中具有烘干装置(19),烘干模块中的气流从自动线屑分离装置(1)流入烘干装置(19);
    优选地,烘干装置包括风扇(20)、蒸发器(21)、冷凝器(22)。
PCT/CN2020/116516 2019-10-25 2020-09-21 一种自动线屑分离装置及衣物处理装置 WO2021077964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911021647.1 2019-10-25
CN201911021647.1A CN112709056A (zh) 2019-10-25 2019-10-25 一种自动线屑分离装置及衣物处理装置

Publications (1)

Publication Number Publication Date
WO2021077964A1 true WO2021077964A1 (zh) 2021-04-29

Family

ID=75541410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116516 WO2021077964A1 (zh) 2019-10-25 2020-09-21 一种自动线屑分离装置及衣物处理装置

Country Status (2)

Country Link
CN (1) CN112709056A (zh)
WO (1) WO2021077964A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440718A (zh) * 2002-02-27 2003-09-10 三星光州电子株式会社 用于吸尘器中旋风式集尘器的格栅组件
JP2004105805A (ja) * 2002-09-13 2004-04-08 Sharp Corp 還流式分離器
KR20050118485A (ko) * 2004-06-14 2005-12-19 엘지전자 주식회사 사이클론을 구비한 건조장치
CN1766211A (zh) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 具备旋风集尘器的烘干装置
CN1786327A (zh) * 2004-12-10 2006-06-14 Lg电子株式会社 结合有干衣机的洗衣机
CN1887183A (zh) * 2005-06-29 2007-01-03 乐金电子(天津)电器有限公司 多重旋风集尘装置
CN1887435A (zh) * 2005-06-29 2007-01-03 乐金电子(天津)电器有限公司 多重旋流集尘装置
CN102877280A (zh) * 2012-09-06 2013-01-16 海尔集团公司 一种异物去除装置以及采用此种装置的干衣机
CN203256515U (zh) * 2012-09-06 2013-10-30 海尔集团公司 一种异物去除装置以及采用此种装置的干衣机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445802B1 (ko) * 2002-02-28 2004-08-25 삼성광주전자 주식회사 진공청소기용 사이클론 집진장치
CN1888267A (zh) * 2005-06-30 2007-01-03 乐金电子(天津)电器有限公司 干燥机
CN103898726B (zh) * 2012-12-25 2018-02-23 青岛海尔洗衣机有限公司 一种干衣机的线屑过滤装置及干衣机
CN205387626U (zh) * 2016-03-07 2016-07-20 海信(山东)冰箱有限公司 一种洗干一体机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440718A (zh) * 2002-02-27 2003-09-10 三星光州电子株式会社 用于吸尘器中旋风式集尘器的格栅组件
JP2004105805A (ja) * 2002-09-13 2004-04-08 Sharp Corp 還流式分離器
KR20050118485A (ko) * 2004-06-14 2005-12-19 엘지전자 주식회사 사이클론을 구비한 건조장치
CN1766211A (zh) * 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 具备旋风集尘器的烘干装置
CN1786327A (zh) * 2004-12-10 2006-06-14 Lg电子株式会社 结合有干衣机的洗衣机
CN1887183A (zh) * 2005-06-29 2007-01-03 乐金电子(天津)电器有限公司 多重旋风集尘装置
CN1887435A (zh) * 2005-06-29 2007-01-03 乐金电子(天津)电器有限公司 多重旋流集尘装置
CN102877280A (zh) * 2012-09-06 2013-01-16 海尔集团公司 一种异物去除装置以及采用此种装置的干衣机
CN203256515U (zh) * 2012-09-06 2013-10-30 海尔集团公司 一种异物去除装置以及采用此种装置的干衣机

Also Published As

Publication number Publication date
CN112709056A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN206310567U (zh) 微波炉的油烟抽取结构及微波炉
JP2007175695A (ja) サイクロン空気清浄機
CN106439979A (zh) 抽油烟机
US2259033A (en) Liquid and air contact column for cleaning air and gases
WO2021077964A1 (zh) 一种自动线屑分离装置及衣物处理装置
WO2020119604A1 (zh) 空气加湿器
TW201941814A (zh) 以多重氣旋濾塵的粉塵收集裝置
CN108061321B (zh) 一种厨房制冷吸油烟机
WO2015010629A1 (zh) 气水分离装置及清洁设备
WO2020119601A1 (zh) 净化装置
CN105757755A (zh) 顶吸式抽油烟机
CN212157582U (zh) 风管、新风机构及空调器
CN113623755B (zh) 用于水净化模块的净化腔、水净化模块和空调
KR20160018036A (ko) 열교환 집진기
CN205783159U (zh) 顶吸式抽油烟机
JP2018008227A (ja) サイクロン分離装置
CN112246064A (zh) 一种四工位抛光机的净化装置
CN111503864A (zh) 风管、新风机构及空调器
US3024914A (en) Anti-vortex device for dishwashing machines
CN207035273U (zh) 双重水幕旋幕过滤吸油烟机
WO2023006126A1 (zh) 一种干衣机及其具有线屑过滤组件的风道
KR100628131B1 (ko) 다중 싸이클론 집진장치
CN208659171U (zh) 单锥结构和吸尘器
CN113623745B (zh) 水净化模块及空调
CN211822709U (zh) 空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879919

Country of ref document: EP

Kind code of ref document: A1