WO2021077936A1 - 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺 - Google Patents

一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺 Download PDF

Info

Publication number
WO2021077936A1
WO2021077936A1 PCT/CN2020/114717 CN2020114717W WO2021077936A1 WO 2021077936 A1 WO2021077936 A1 WO 2021077936A1 CN 2020114717 W CN2020114717 W CN 2020114717W WO 2021077936 A1 WO2021077936 A1 WO 2021077936A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
sacr
sewage
anaerobic
denitrification
Prior art date
Application number
PCT/CN2020/114717
Other languages
English (en)
French (fr)
Inventor
王凯
武道吉
谭凤训
罗从伟
成小翔
李宏业
田宇
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Priority to US17/769,581 priority Critical patent/US11919790B2/en
Publication of WO2021077936A1 publication Critical patent/WO2021077936A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors

Definitions

  • the invention relates to the technical field of sewage treatment, in particular to an anaerobic-AO-SACR combined high ammonia nitrogen sewage deep denitrification system and process.
  • the A/O process has an independent anoxic zone for denitrification, the denitrification rate is faster, but because it belongs to pre-denitrification, the denitrification rate is not high. If the denitrification efficiency is to be improved, the internal circulation must be increased. In addition, the internal circulation liquid comes from the aeration tank and contains a certain amount of DO, which makes it difficult for the hypoxic zone to maintain an ideal hypoxic state, which affects the denitrification effect, and the denitrification rate is difficult to reach 90% .
  • the present invention provides an anaerobic-AO-SACR combined high ammonia nitrogen sewage deep denitrification system and process, which can perform deep denitrification on high ammonia nitrogen sewage without requiring an external carbon source.
  • the treatment cost is low, and for the sewage treatment facilities that have been built using the AO process, it does not need to be completely demolished and rebuilt.
  • the present invention first provides an anaerobic-AO-SACR combined high ammonia nitrogen sewage deep denitrification system, including: a regulating tank, an anaerobic reactor, AO reactor, sedimentation tank, intermediate tank and SACR reactor, SACR reactor is called self-carbon source adaptive reactor in Chinese; the outlet end of the regulating tank is connected with the inlet end of the intermediate tank through a pipeline, and the pipeline is equipped with In the water pump that adjusts the flow; the intermediate pool is equipped with water quality testing equipment; the AO reactor is divided into an anoxic zone and an aerobic zone, and the AO reactor is equipped with a part of the nitrified liquid after separation of the sedimentation tank to return to anoxic The nitrification liquid reflux pump in the zone and the sludge reflux pump used to return part of the sludge
  • the SACR reactor When the SACR reactor has a rapid decline in ORP, It indicates that the denitrification of the SACR reactor is over, and the stirring is turned off at this time, and the sedimentation and drainage is turned off; it also includes a PLC controller, which is respectively connected with the water quality detection equipment, the PH detector, the DO detector, the ORP detector, the aeration equipment and the stirring ⁇ communication connection.
  • a computer is further included, and the computer is in communication connection with the PLC controller.
  • the present invention also provides the aforementioned denitrification system using the anaerobic-AO-SACR combined process to treat high ammonia nitrogen sewage, including: (1) high ammonia nitrogen sewage enters the anaerobic reactor from the regulating tank, and the large amount of high ammonia nitrogen sewage The molecular refractory organic matter is decomposed into small molecules, and most of the organic matter in the high ammonia nitrogen sewage is removed; (2) The effluent from the anaerobic reactor enters the AO reactor, and the pre-denitrification is carried out in the anoxic zone, and it is carried out in the aerobic zone.
  • the range of T is 0-2.
  • the carbon to nitrogen ratio of the influent of the anaerobic reactor is greater than 5:1, and the volume load of the anaerobic reactor is 4-8KgCOD/m 3 •day.
  • the sludge concentration of the AO process is controlled at 4000 mg/L to 5000 mg/L, the nitrification liquid return ratio is 100% to 200%, and the sludge return ratio is 50% to 100%.
  • the sludge concentration of the SACR process is controlled at 5000mg/L ⁇ 8000mg/L, the drainage ratio is controlled at 25%-30%, the water intake time is 30-60 minutes, and the sedimentation time is 60- 90 minutes.
  • the present invention has the following beneficial effects: 1.
  • the present invention provides a high ammonia nitrogen sewage deep denitrification system and process.
  • the intermediate pool and SACR reactor can be added. It can achieve the purpose of deep denitrification of high ammonia nitrogen sewage, so that the effluent water quality meets the increasingly stringent environmental protection requirements.
  • the total nitrogen removal rate is high.
  • the total nitrogen removal rate of the AO process can reach 70% ⁇ 80%, the total nitrogen removal rate of SACR can reach more than 95%, and the total nitrogen removal rate of the final effluent of the system can reach more than 95% stably .
  • the water conservancy residence time is short, the nitrogen removal efficiency is high, and the operating cost is effectively reduced.
  • Figure 1 is a schematic diagram of the anaerobic-AO-SACR combined high-ammonia sewage deep denitrification system provided by the present invention.
  • Figure 2 is a flow chart of the working principle of the SACR reactor of the present invention.
  • FIG. 3 shows the removal of pollutants in various functional areas of the present invention.
  • Figure 4 shows the change of pollutants in one cycle of the SACR of the present invention.
  • Example 1 An anaerobic-AO-SACR combined high-ammonia sewage deep denitrification system.
  • an anaerobic-AO-SACR combined high-ammonia sewage deep denitrification system includes a regulating tank, an anaerobic reactor, an AO reactor, a sedimentation tank, an intermediate tank, and SACR, which are sequentially connected through a pipeline Reactor;
  • the outlet end of the regulating tank is connected with the inlet end of the intermediate tank through a pipeline, and a water pump for adjusting the flow is provided on the pipeline;
  • the AO reactor is divided into an anoxic zone and an aerobic zone, and the AO reactor is set to be useful
  • a nitrification liquid return pump used to return part of the nitrification liquid after separation of the sedimentation tank sludge to the anoxic zone and a sludge return pump used to return part of the sludge after separation of the sedimentation tank sludge to the anoxic zone;
  • the intermediate pool is provided There are water quality testing equipment;
  • the SACR reactor is equipped with a PH detector, a DO detector,
  • the anaerobic reactor is a UASB reactor or an IC reactor.
  • denitrifying bacteria have the characteristics of storing carbon sources.
  • denitrifying bacteria is a kind of facultative bacteria, which can breathe under aerobic or hypoxic conditions; when sewage is anaerobic When the sewage contains a large amount of organic matter, the denitrifying bacteria will adsorb and absorb the organic matter in the sewage into the body to form an internal carbon source; when the sewage lacks organic matter but contains nitrate nitrogen or nitrite nitrogen, and the dissolved oxygen is very low ( ⁇ 0.1 mg/L), denitrifying bacteria will use the internal carbon source stored in the body to carry out hypoxic respiration and obtain energy, that is, endogenous denitrification occurs.
  • the inventor designed this technical solution to achieve deep denitrification of high ammonia nitrogen sewage.
  • the SACR reactor and process play a vital role in deep denitrification. Its working principle is as follows: use water quality
  • the detection equipment, water pump and PLC controller adjust the carbon-nitrogen ratio of the SACR reactor inlet water, so that the COD concentration of the sewage after mixing in the intermediate pool is equal to the total nitrogen concentration of the AO reactor effluent + the ammonia nitrogen concentration of the intermediate pool influent 4-6
  • the SACR reactor first performs anoxic stirring.
  • the denitrifying bacteria uses the high ammonia nitrogen sewage raw water carbon source for pre-denitrification and denitrification, and absorbs the carbon source in the high ammonia nitrogen sewage to In its body, through the PH detector and PLC controller, when the pH value changes from rising to falling, it indicates the end of the pre-denitrification stage; after T hours, the T value is 0-2, the stirring is stopped, and the SACR reaction
  • the device starts aeration, the nitrifying bacteria perform aerobic respiration, and nitrification occurs, which converts the ammonia nitrogen in the sewage into nitrite nitrogen and nitrate nitrogen, which is monitored by the PH detector, DO detector and PLC controller.
  • Example 2 An anaerobic-AO-SACR combined high-ammonia sewage deep denitrification process.
  • An anaerobic-AO-SACR combined high ammonia nitrogen sewage deep denitrification process includes the following steps: (1) The high ammonia nitrogen sewage enters the anaerobic reactor from a regulating tank, and the volume load of the anaerobic reactor is 6KgCOD/m 3 •On the day, the large molecules in the high ammonia nitrogen sewage are decomposed into small molecules, and most of the organic substances in the high ammonia nitrogen sewage are removed; (2) The effluent of the anaerobic reactor enters the AO reactor, before proceeding in the anoxic zone Set denitrification, perform aerobic nitrification in the aerobic zone; the mud-water mixture is separated from the mud and water in the sedimentation tank, part of the effluent enters the intermediate tank, and the part is returned to the front end of the anoxic zone through the nitrification liquid return pump of the AO reactor for pre-denitrification Part of the sludge is returned to the front end of the anoxic
  • the sludge reflux ratio is 75%; (3)
  • the effluent from the AO reactor enters the intermediate pool. At the same time, it is adjusted and controlled by the water quality testing equipment and the PLC controller.
  • the water pump introduces part of the high ammonia nitrogen sewage from the regulating pool into the intermediate pool for the sewage carbon-nitrogen ratio
  • the stirring is turned off and the sedimentation is drained; the sludge concentration of the SACR process is controlled at 6000mg/L, the drainage ratio is controlled at 30%, and the water intake time is 30 minutes. The settling time is 60 minutes.
  • the combined process of UASB+AO+SACR is adopted, and the treatment object is a landfill leachate with a COD of 14000mg/L ⁇ 200mg/L and an ammonia nitrogen concentration of 1500mg/L ⁇ 100mg/L.
  • the removal situation and removal rate of the pollutants in each functional area of the system are shown in Figure 3.
  • the COD drops significantly, and the removal rate reaches about 60%.
  • the leachate was processed by the AO reactor, and the effluent COD, ammonia nitrogen and total nitrogen were 750 mg/L, 1.2 mg/L and 420 mg/L, respectively.
  • the removal rates of COD, ammonia nitrogen and total nitrogen reached 95% and 99%, respectively. And about 73%.
  • the COD, ammonia nitrogen and total nitrogen of the leachate were 3100mg/L, 252mg/L and 662mg/L, respectively.
  • the leachate then enters the SACR reactor for final denitrification.
  • the concentrations of COD, ammonia nitrogen and total nitrogen in SACR effluent are 732mg/L, 1.1mg/L and 30mg/L, respectively.
  • the removal rates of COD, ammonia nitrogen and total nitrogen reached about 95%, 99% and 98%, respectively, realizing the deep denitrification of the leachate.
  • the influent COD, ammonia nitrogen and total nitrogen concentrations of the SACR reactor are 3100 mg/L, 252 mg/L and 662 mg/L, respectively.
  • the concentration of pollutants decreased to a certain extent due to the dilution effect.
  • the reactor started anoxic stirring.
  • the COD, total nitrogen and nitrite nitrogen of the sewage have been significantly reduced, but the ammonia nitrogen concentration has not changed significantly.
  • the nitrite nitrogen in the sewage was denitrified, and the concentration was almost 0mg/L.
  • the total nitrogen also decreased significantly, from 199mg/L at the initial stage of the reaction to 82mg/L.
  • COD dropped from 1480mg/L at the beginning of the reaction to 882mg/L.
  • the SACR reactor stopped stirring and started aeration.
  • the ammonia nitrogen concentration gradually decreased, and the COD concentration also decreased to a certain extent.
  • the nitrification ended, the ammonia nitrogen concentration was almost 0 mg/L, the COD concentration was 781 mg/L, and the remaining All are refractory organics.
  • the total nitrogen concentration dropped from 82mg/L at the beginning of the aeration to 61mg/L.
  • the SACR reactor began to continue anoxic stirring, and post-endogenous denitrification occurred.
  • COD and ammonia nitrogen were basically unchanged, but the concentration of nitrite nitrogen and total nitrogen continued to decrease, indicating that the pollution
  • the mud is using internal carbon sources for denitrification and denitrification.
  • the reaction progressed to the 12th hour the nitrite nitrogen and ammonia nitrogen in the SACR reactor were all degraded, and the total nitrogen concentration was 5mg/L, which realized the deep denitrification of the leachate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明提供了一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统及工艺,高氨氮污水首先进入厌氧反应器,去除污水中大部分有机物,出水后进入AO反应器,在缺氧区进行前置反硝化脱氮,在好氧区进行剩余有机物的去除和氨氮的硝化,出水后进入中间水池,同时,通过水质检测设备和PLC控制器控制,引入部分原水进入中间水池以调节污水的碳氮比,然后,出水进入SACR反应器,利用反硝化细菌的特性,并通过PH/DO/ORP检测仪和PLC控制器对SACR反应器的调控,使污水精确的进行前置反硝化-硝化-内源反硝化,从而深度脱氮,同时,不需要外加碳源,工艺成本低,而且,对于已建成采用AO工艺的污水处理设施,仅需增加中间水池和SACR反应器便可以实施本技术方案的工艺,升级改造成本低。

Description

一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统及工艺 技术领域
本发明涉及污水处理技术领域,尤其是一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统及工艺。
背景技术
目前,伴随着环境保护意识的加强、环境污染治理力度的加强以及环保技术的发展,水体污染初步得到了比较有效的控制,但是,工业生产中常见的高氨氮废水的达标排放仍然是亟需解决的问题。高氨氮废水主要来源于化肥、石油化工、养殖、垃圾处理等行业,在高氨氮废水处理方面,不仅要追求高效脱氮的技术指标,还要考虑降低能耗、节约能源以及降低运行处理成本。
技术问题
如今,国内外对于高氨氮废水的处理,采取的最主要的工艺之一是A/O工艺。A/O工艺虽然有独立的的缺氧区进行反硝化,脱氮速率较快,但由于属于前置反硝化,因此脱氮率不高,若要提高脱氮效率,又必须加大内循环比,因而,又增加了运行费用;此外,内循环液来自曝气池,含有一定的DO,使得缺氧区难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。
技术解决方案
为解决现有技术中的不足,本发明提供一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统及工艺,能够对高氨氮污水进行深度脱氮,同时不需要外加碳源,工艺处理成本低,而且,对于已经建成的采用AO工艺的污水处理设施,不需要完全推倒重建,仅需要增加中间水池和SACR反应器便可以实施本技术方案的工艺,达到深度脱氮的效果,有效的控制了升级改造成本,具体技术方案如下:本发明首先提供了一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,包括:通过管道依次连通的调节池、厌氧反应器、AO反应器、沉淀池、中间水池以及SACR反应器,SACR反应器中文全称为自碳源自适应反应器;所述调节池出口端与所述中间水池进口端通过管道连通,且管道上设置用于调节流量的水泵;所述中间水池设置有水质检测设备;所述AO反应器分缺氧区和好氧区,AO反应器设置有用于将沉淀池泥水分离后的部分硝化液回流至缺氧区的硝化液回流泵和用于将沉淀池泥水分离后的部分污泥回流至缺氧区的污泥回流泵;所述SACR反应器设置有PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器;所述SACR反应器全称为自碳源自适应反应器,其工作原理为,当污水从中间水池进入SACR反应器后,先缺氧搅拌,进行前置反硝化脱氮,并进行碳源贮存;当PH值由上升变为下降时,表明SACR反应器前置反硝化已经结束,此后T小时,停止搅拌,开始曝气硝化,当SACR反应器出现pH由下降到上升且DO大幅度上升后,表明SACR反应器已经硝化结束,此时,关闭曝气,继续搅拌,开始内源反硝化,并观察SACR反应器ORP的变化,当SACR反应器出现ORP的快速下降时,表明SACR反应器反硝化结束,此时关闭搅拌,沉淀排水;还包括PLC控制器,所述PLC控制器分别与水质检测设备、PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器通信连接。
在本发明的一些具体实施方式中,还包括计算机,所述计算机与所述PLC控制器通信连接。
在本发明的一些具体实施方式中,所述AO反应器分缺氧区和好氧区,缺氧区和好氧区的容积根据污水的产量和污染物总氮浓度确定;具体计算方法为:缺氧区的容积=a×(高氨氮污水总氮浓度值/50×3×每小时的污水产量值)m 3,好氧区的容积= a×(高氨氮污水总氮浓度值/50×12×每小时的污水产量值)m 3;其中,a的范围为1~1.5,高氨氮污水总氮浓度单位是mg/L,每小时的污水产量单位为m 3
在本发明的一些具体实施方式中,所述SACR反应器的容积根据污水的产量和污染物浓度确定;具体计算方法为:SACR容积= a×(高氨氮污水总氮浓度值/50×20×每小时的污水产量值)m 3;其中,a的范围为1~1.5,高氨氮污水总氮浓度单位是mg/L,每小时的污水产量单位为m 3
本发明还提供了前述的脱氮系统利用厌氧-AO-SACR组合工艺处理高氨氮污水的工艺,包括:(1)高氨氮污水由调节池进入厌氧反应器,将高氨氮污水中的大分子难降解有机物分解为小分子,同时去除高氨氮污水中的大部分有机物;(2)厌氧反应器的出水进入AO反应器,在缺氧区进行前置反硝化,在好氧区进行好氧硝化;泥水混合物通过沉淀池进行泥水分离,一部分出水进入中间水池,一部分通过AO反应器的硝化液回流泵回到缺氧区的前端进行前置反硝化;污泥一部分通过AO反应器的污泥回流泵回到缺氧区前端,另一部分作为剩余污泥排掉;(3)AO反应器的出水进入中间水池,同时,通过水质检测设备和PLC控制器调节和控制,水泵将部分高氨氮污水从调节池引入中间水池进行污水碳氮比的调节,污水碳氮比的调节规则为:混合后污水的COD浓度=AO反应器出水总氮浓度×b+中间水池进水氨氮浓度×b,其中b的范围为4~6。
(4)污水从中间水池进入SACR反应器后,先进行缺氧搅拌,当PH由上升变为下降时,表明SACR反应器前置反硝化已经结束,此后T小时,停止搅拌,开始曝气硝化,当SACR反应器出现pH由下降到上升且DO大幅度上升时,表明SACR反应器已经硝化结束,此时,关闭曝气,继续搅拌,开始内源反硝化,并观察SACR反应器ORP的变化,当SACR反应器出现ORP的快速下降时,表明SACR反应器反硝化结束,此时,关闭搅拌,沉淀排水。
在本发明的一些具体实施方式中, T的范围为0-2。
在本发明的一些具体实施方式中,厌氧反应器的进水的碳氮比大于5:1,厌氧反应器的容积负荷为4~8KgCOD/m 3•天。
在本发明的一些具体实施方式中,AO工艺的污泥浓度控制在4000mg/L~5000mg/L,硝化液回流比100%~200%,污泥回流比50%~100%。
在本发明的一些具体实施方式中,SACR工艺的污泥浓度控制在5000mg/L~8000mg/L,排水比控制在25%-30%,进水时间为30-60分钟,沉淀时间为60-90分钟。
有益效果
本发明具有如下有益效果:1、本发明提供一种高氨氮污水深度脱氮系统及工艺,可以在现有的采用AO工艺的污水处理系统的基础上,通过增加中间水池和SACR反应器,就可以达到对高氨氮污水的深度脱氮目的,使得出水水质符合日趋严格的环保要求。
2、对现有的AO工艺的污水处理系统兼容性强,无需对现有污水处理设施完全推倒重建,升级改造成本低。
3、总氮去除率高,AO工艺的总氮去除率可以达到70%~80%,SACR的总氮去除率可以达到95%以上,系统最终出水的总氮去除率可以稳定的达到95%以上。
4、水利停留时间短,脱氮效率高,有效的降低运营成本。
5、不用外加任何碳源,有效的降低了工艺处理成本。
6、总氮去除率高、脱氮效率高以及运营维护成本低等特点使得本系统及工艺可以作为全新的高氨氮污水深度脱氮系统和工艺进行大规模商业化应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的厌氧-AO-SACR组合式高氨氮污水深度脱氮系统示意图。
图2为本发明SACR反应器工作原理流程图。
图3为本发明各个功能区污染物的去除情况。
图4为本发明SACR一个周期内的污染物变化情况。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行、清楚完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,不应该用来限制本发明的保护范围。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1:一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统。
如图1所示,一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,包括,通过管道依次连通的调节池、厌氧反应器、AO反应器、沉淀池、中间水池以及SACR反应器;所述调节池出口端与所述中间水池进口端通过管道连通,且管道上设置用于调节流量的水泵;所述AO反应器分缺氧区和好氧区,AO反应器设置有用于将沉淀池泥水分离后的部分硝化液回流至缺氧区的硝化液回流泵和用于将沉淀池泥水分离后的部分污泥回流至缺氧区的污泥回流泵;所述中间水池设置有水质检测设备;所述SACR反应器设置有PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器;还包括PLC控制器,所述PLC控制器分别与水质检测设备、PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器通信连接。
本实施例中,厌氧反应器为UASB反应器或IC反应器。
本发明人在实验过程中发现,反硝化菌具有贮存碳源的特性,同时,反硝化菌是一种兼氧细菌,在好氧或者缺氧的条件下,它都会呼吸;当污水处于厌氧状态且含有大量有机物时,反硝化菌将污水中的有机物吸附吸收至体内,形成内碳源;当污水缺少有机物但含有硝态氮或者亚硝态氮时,且溶解氧很低时(<0.1mg/L),反硝化菌会利用体内贮存的内碳源进行缺氧呼吸,获得能量,即发生内源反硝化。
本发明人基于反硝化细菌的特性,设计本技术方案,能够实现高氨氮污水深度脱氮,其中,SACR反应器和工艺对于深度脱氮起到了至关重要的作用,其工作原理如下:利用水质检测设备、水泵及PLC控制器对SACR反应器进水进行碳氮比调节,使得中间水池混合后污水的COD浓度等于AO反应器出水总氮浓度+中间水池进水氨氮浓度总合的4-6倍;进水后,SACR反应器首先进行缺氧搅拌,反硝化细菌在缺氧状态下,利用高氨氮污水原水碳源进行前置反硝化脱氮,并将高氨氮污水中的碳源吸收至其体内,通过PH检测仪和PLC控制器,当监测到PH值由上升变为下降时,表明前置反硝化阶段结束;此后T小时,其中,T值为0-2,停止搅拌,SACR反应器开始曝气,硝化细菌进行好氧呼吸,发生硝化作用,将污水中的氨氮转换成亚硝态氮和硝态氮,通过PH检测仪、DO检测仪和PLC控制器监测,当PH出现由下降到上升的拐点,同时DO大幅度上升时,表明硝化结束;此时停止曝气,并继续搅拌,反硝化细菌在缺氧并且有丰富硝态氮和亚硝态氮的情况下,会利用体内贮存的碳源进行缺氧呼吸,基于此特性,反应器中开始进入内源反硝化的阶段,对总氮有良好的去除作用,通过ORP检测仪和PLC控制器监测,当ORP大幅下降时,表明反硝化阶段结束,此时停止搅拌,沉淀排水。通过前置反硝化-硝化-内源反硝化三个阶段,能够有效的解决高氨氮污水深度脱氮的难题。
实施例2:一种厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺。
本实施例中的工艺基于实施例1中的系统,并且,厌氧反应器为UASB反应器;AO反应器缺氧区的容积=(高氨氮污水总氮浓度值/50×3×每小时的污水产量值)m 3,好氧区的容积=(高氨氮污水总氮浓度值/50×12×每小时的污水产量值)m 3;SACR容积=(高氨氮污水总氮浓度值/50×20×每小时的污水产量值)m 3;高氨氮污水总氮浓度单位是mg/L,每小时的污水产量单位为m 3
一种厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,包括如下步骤:(1)高氨氮污水由调节池进入厌氧反应器,其中厌氧反应器的容积负荷为6KgCOD/m 3•天,将高氨氮污水中的大分子难降解有机物分解为小分子,同时去除高氨氮污水中的大部分有机物;(2)厌氧反应器的出水进入AO反应器,在缺氧区进行前置反硝化,在好氧区进行好氧硝化;泥水混合物通过沉淀池进行泥水分离,一部分出水进入中间水池,一部分通过AO反应器的硝化液回流泵回到缺氧区的前端进行前置反硝化;污泥一部分通过AO反应器的污泥回流泵回到缺氧区前端,另一部分作为剩余污泥排掉;其中,AO工艺的污泥浓度控制在4500mg/L,硝化液回流比150%,污泥回流比75%;(3)AO反应器的出水进入中间水池,同时,通过水质检测设备和PLC控制器调节和控制,水泵将部分高氨氮污水从调节池引入中间水池进行污水碳氮比的调节,污水碳氮比的调节规则为:混合后污水的COD浓度=AO反应器出水总氮浓度×b+中间水池进水氨氮浓度×b,其中b的值为4;(4)污水从中间水池进入SACR反应器后,先进行缺氧搅拌,当PH值由上升变为下降时,表明SACR反应器前置反硝化已经结束,此时,停止搅拌,开始曝气硝化,当SACR反应器出现pH由下降到上升且溶解氧大幅度上升后,表明SACR反应器已经硝化结束,此时,关闭曝气,继续搅拌,开始内源反硝化,并观察SACR反应器ORP的变化,当SACR反应器出现ORP的快速下降时,表明SACR反应器反硝化结束,此时关闭搅拌,沉淀排水;其中SACR工艺的污泥浓度控制在6000mg/L,排水比控制在30%,进水时间为30分钟,沉淀时间为60分钟。
本实施例中,采用UASB+AO+SACR组合工艺,处理对象是COD为14000mg/L±200mg/L,氨氮浓度为1500mg/L±100mg/L的垃圾渗滤液。该系统各个功能区污染物的去除情况和去除率如图3所示,由图3可知,当渗滤液进入UASB反应器后,COD有明显的下降,去除率达到了60%左右。随后,渗滤液经过AO反应器的处理,出水COD、氨氮和总氮分别为750mg/L、1.2mg/L和420mg/L,COD、氨氮和总氮的去除率分别达到了95%、99%和73%左右。通过中间水池的调节,渗滤液的COD、氨氮和总氮分别为3100mg/L、252mg/L和662mg/L。随后渗滤液进入SACR反应器进行最后的脱氮。SACR的出水COD、氨氮和总氮的浓度分别为732mg/L、1.1mg/L和30mg/L。COD、氨氮和总氮的去除率分别达到了95%、99%和98%左右,实现了对渗滤液的深度脱氮。
SACR一个周期内的污染物变化情况如图4所示。
由图4可知,SACR反应器的进水COD、氨氮和总氮浓度分别为3100mg/L、252mg/L和662mg/L。进水后,由于稀释作用,污染物浓度出现了一定程度的下降。随后,反应器开始缺氧搅拌。在搅拌的过程中,由于发生了前置反硝化,污水的COD、总氮和亚硝态氮出现了比较明显的下降,而氨氮浓度没有明显的变化。当前置反硝化结束时,污水中的亚硝态氮被反硝化完毕,浓度几乎为0mg/L,因此,总氮也出现了明显的降低,由反应初期的199mg/L下降到了82mg/L,COD由反应初期的1480mg/L下降到882mg/L。随后,SACR反应器停止搅拌,开始曝气,氨氮浓度逐渐降低,COD浓度也出现了一定程度的下降,3小时后,硝化结束,氨氮浓度几乎为0mg/L,COD浓度为781mg/L,剩余的均为难降解有机物。由于在曝气的过程中发生了同步硝化反硝化的过程,总氮浓度由曝气开始时的82mg/L下降到了61mg/L。随后,SACR反应器开始继续缺氧搅拌,发生后置内源反硝化,在内源反硝化的过程中,COD和氨氮基本没有变化,但亚硝态氮浓度和总氮浓度不断降低,表明污泥在利用内碳源进行反硝化脱氮。当反应进行到第12个小时的时候,SACR反应器的亚硝态氮和氨氮均被降解完毕,总氮浓度为5mg/L,实现对渗滤液的深度脱氮。
上述具体实施方式仅是本发明的具体个案,本发明的专利保护范围包括但不限于上述具体实施方式的产品形态和式样,任何符合本发明权利要求书且任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应落入本发明的专利保护范围。

Claims (9)

  1. 一种厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,其特征在于,包括:
    通过管道依次连通的调节池、厌氧反应器、AO反应器、沉淀池、中间水池
    以及SACR反应器;
    所述调节池出口端与所述中间水池进口端通过管道连通,且管道上设置用于调节流量的水泵;
    所述AO反应器分缺氧区和好氧区,AO反应器设置有用于将沉淀池泥水分离后的部分硝化液回流至缺氧区的硝化液回流泵和用于将沉淀池泥水分离后的部分污泥回流至缺氧区的污泥回流泵;
    所述中间水池设置有水质检测设备;
    所述SACR反应器设置有PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器;
    所述SACR反应器全称为自碳源自适应反应器,其工作原理为,当污水从中间水池进入SACR反应器后,先进行缺氧搅拌,当PH值由上升变为下降时,表明SACR反应器前置反硝化已经结束,此后T小时,停止搅拌,开始曝气硝化,当SACR反应器出现pH由下降到上升且DO大幅度上升后,表明SACR反应器已经硝化结束,此时,关闭曝气,继续搅拌,开始内源反硝化,并观察SACR反应器ORP的变化,当SACR反应器出现ORP的快速下降时,表明SACR反应器反硝化结束,此时关闭搅拌,沉淀排水;
    还包括PLC控制器,所述PLC控制器分别与水质检测设备、PH检测仪、DO检测仪、ORP检测仪、曝气设备及搅拌器通信连接。
  2. 如权利要求1所述的厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,其特征在于,
    所述AO反应器分缺氧区和好氧区,缺氧区和好氧区的容积根据污水的产量和污染物总氮浓度确定;
    具体计算方法为:缺氧区的容积=a×(高氨氮污水总氮浓度值/50×3×每小时的污水产量值)m 3,好氧区的容积= a×(高氨氮污水总氮浓度值/50×12×每小时的污水产量值)m 3;其中,a的范围为1~1.5,高氨氮污水总氮浓度单位是mg/L,每小时的污水产量单位为m 3
  3. 如权利要求1或2所述的厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,其特征在于,
    所述SACR反应器的容积根据污水的产量和污染物浓度确定;
    具体计算方法为:SACR容积= a×(高氨氮污水总氮浓度值/50×20×每小时的污水产量值)m 3;其中,a的范围为1~1.5,高氨氮污水总氮浓度单位是mg/L,每小时的污水产量单位为m 3
  4. 如权利要求1所述的厌氧-AO-SACR组合式高氨氮污水深度脱氮系统,其特征在于,还包括计算机,所述计算机与所述PLC控制器通信连接。
  5. 一种厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,其特征在于,采用权利要求2所述的厌氧-AO-SACR组合式高氨氮污水深度脱氮系统来深度脱氮,包括如下步骤:
    (1)高氨氮污水由调节池进入厌氧反应器,将高氨氮污水中的大分子难降解有机物分解为小分子,同时去除高氨氮污水中的大部分有机物;
    (2)厌氧反应器的出水进入AO反应器,在缺氧区进行前置反硝化,在好氧区进行好氧硝化;泥水混合物通过沉淀池进行泥水分离,一部分出水进入中间水池,一部分通过AO反应器的硝化液回流泵回到缺氧区的前端进行前置反硝化;污泥一部分通过AO反应器的污泥回流泵回到缺氧区前端,另一部分作为剩余污泥排掉;
    (3)AO反应器的出水进入中间水池,同时,通过水质检测设备和PLC控制器调节和控制,水泵将部分高氨氮污水从调节池引入中间水池进行污水碳氮比的调节,污水碳氮比的调节规则为:混合后污水的COD浓度=AO反应器出水总氮浓度×b+中间水池进水氨氮浓度×b,其中b的范围为4~6;
    (4)污水从中间水池进入SACR反应器后,先进行缺氧搅拌,当pH由上升变为下降时,表明SACR反应器前置反硝化已经结束,此后T小时,停止搅拌,开始曝气硝化,当SACR反应器出现pH由下降到上升且DO大幅度上升时,表明SACR反应器已经硝化结束,此时,关闭曝气,继续搅拌,开始内源反硝化,并观察SACR反应器ORP的变化,当SACR反应器出现ORP的快速下降时,表明SACR反应器反硝化结束,此时,关闭搅拌,沉淀排水。
  6. 如权利要求5所述厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,其特征在于,T的范围为0-2。
  7. 如权利要求5所述厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,其特征在于,厌氧反应器的进水的碳氮比大于5:1,厌氧反应器的容积负荷为4~8KgCOD/m 3•天。
  8. 如权利要求5所述厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,其特征在于,AO工艺的污泥浓度控制在4000mg/L~5000mg/L,硝化液回流比100%~200%,污泥回流比50%~100%。
  9. 如权利要求5-8任意一项所述厌氧-AO-SACR组合式高氨氮污水深度脱氮工艺,其特征在于,SACR工艺的污泥浓度控制在5000mg/L~8000mg/L,排水比控制在25%-30%,进水时间为30-60分钟,沉淀时间为60-90分钟。
PCT/CN2020/114717 2019-10-25 2020-09-11 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺 WO2021077936A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/769,581 US11919790B2 (en) 2019-10-25 2020-09-11 Anaerobic-AO-SACR combined advanced nitrogen removal system and technology for high ammonia-nitrogen wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911025152.6 2019-10-25
CN201911025152.6A CN110642474B (zh) 2019-10-25 2019-10-25 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺

Publications (1)

Publication Number Publication Date
WO2021077936A1 true WO2021077936A1 (zh) 2021-04-29

Family

ID=68994735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114717 WO2021077936A1 (zh) 2019-10-25 2020-09-11 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺

Country Status (3)

Country Link
US (1) US11919790B2 (zh)
CN (1) CN110642474B (zh)
WO (1) WO2021077936A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506977A (zh) * 2022-02-18 2022-05-17 湖北中新开维现代牧业有限公司 一种养殖场沼液氨氮回收方法
CN116022975A (zh) * 2023-03-06 2023-04-28 重庆三峰科技有限公司 飞灰污水处理方法及处理系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642474B (zh) 2019-10-25 2020-06-30 山东建筑大学 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺
CN116750870B (zh) * 2023-08-16 2023-10-27 山东铭浩环保科技有限公司 一种废水总氮脱除方法
CN117509913A (zh) * 2023-12-26 2024-02-06 上海水合环境工程有限公司 一种集约化深度处理有机氮污水的多点回流ao装置和工艺
CN118063025A (zh) * 2024-02-05 2024-05-24 江南大学 一种高盐高氮水热碳化液能源化及全量化处理的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805096A (zh) * 2010-03-26 2010-08-18 北京工业大学 两级uasb+a/o+sbr工艺处理不同时期垃圾渗滤液深度脱氮的方法
WO2011129493A1 (en) * 2010-04-13 2011-10-20 Essa Co., Ltd. Sewage treatment apparatus for buried type tank
CN103936149A (zh) * 2014-03-26 2014-07-23 北京工业大学 高氨氮高有机物废水深度脱氮处理系统的控制方法及装置
CN104944582A (zh) * 2015-07-07 2015-09-30 北京工业大学 Sbr反硝化除磷耦合一体化厌氧氨氧化的试验装置与方法
CN109354190A (zh) * 2018-12-03 2019-02-19 倍适莱茵(北京)节能科技有限公司 一种高氨氮生活污水的处理装置和方法
CN110642474A (zh) * 2019-10-25 2020-01-03 山东建筑大学 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279794B (zh) * 2008-04-18 2010-04-14 清华大学 强化内源反硝化的膜-生物反应器脱氮除磷工艺及装置
CN104098227B (zh) * 2014-07-15 2016-01-20 江南大学 一种利用短程硝化反硝化处理餐厨厌氧废水的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805096A (zh) * 2010-03-26 2010-08-18 北京工业大学 两级uasb+a/o+sbr工艺处理不同时期垃圾渗滤液深度脱氮的方法
WO2011129493A1 (en) * 2010-04-13 2011-10-20 Essa Co., Ltd. Sewage treatment apparatus for buried type tank
CN103936149A (zh) * 2014-03-26 2014-07-23 北京工业大学 高氨氮高有机物废水深度脱氮处理系统的控制方法及装置
CN104944582A (zh) * 2015-07-07 2015-09-30 北京工业大学 Sbr反硝化除磷耦合一体化厌氧氨氧化的试验装置与方法
CN109354190A (zh) * 2018-12-03 2019-02-19 倍适莱茵(北京)节能科技有限公司 一种高氨氮生活污水的处理装置和方法
CN110642474A (zh) * 2019-10-25 2020-01-03 山东建筑大学 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506977A (zh) * 2022-02-18 2022-05-17 湖北中新开维现代牧业有限公司 一种养殖场沼液氨氮回收方法
CN116022975A (zh) * 2023-03-06 2023-04-28 重庆三峰科技有限公司 飞灰污水处理方法及处理系统

Also Published As

Publication number Publication date
US11919790B2 (en) 2024-03-05
CN110642474A (zh) 2020-01-03
CN110642474B (zh) 2020-06-30
US20230159361A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
CN108483655B (zh) 一种短程硝化反硝化耦合厌氧氨氧化和硫自养反硝化深度脱氮的方法
WO2020220922A1 (zh) Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
WO2021077936A1 (zh) 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮系统及工艺
CN100422096C (zh) 两级uasb+a/o工艺处理城市生活垃圾渗滤液的方法
CN112573652B (zh) 一种硫自养反硝化脱氮处理工艺
CN105776775A (zh) 厌氧-自养脱氮-臭氧氧化耦合的垃圾渗滤液全流程零排放处理工艺
CN112850946B (zh) 一种增强型Fenton氧化工艺处理焦化废水的方法
CN105481190B (zh) 反硝化除磷耦合短程硝化联合厌氧氨氧化进行深度脱氮除磷处理的控制方法及装置
WO2022170787A1 (zh) 分段进水短程硝化-厌氧氨氧化组合同步处理污水与污泥的装置与方法
CN112010493A (zh) 一种电镀废水治理的新工艺
CN107840550B (zh) 一种垃圾渗沥液的处理方法
CN114620840A (zh) 一种城市污水厌氧氨氧化深度脱氮的方法
CN114477613A (zh) 一种垃圾渗滤液深度脱氮的方法
CN104250053B (zh) 一种处理含氨氮对氨基二苯胺生产废水的方法
CN103601294A (zh) 一种实现微污染水自养脱氮的系统与方法
CN112551677A (zh) 一种新型芬顿氧化法工业废水处理工艺
CN112250188A (zh) 一种含硫脲氨氮废水的脱氮处理方法及脱氮处理系统
CN111285547A (zh) 一种显影液废液处理方法
CN110194568A (zh) 一种高氨氮废水的处理方法
CN103466795B (zh) 一种减少生活污水处理过程中n2o产生的方法
CN115477388A (zh) 一种硝酸铵废水处理装置及其方法
CN108862587A (zh) 连续流短程硝化/厌氧氨氧化联合deamox处理高氨氮废水和生活污水的装置和方法
Liao et al. Pilot-scale treatment of municipal garbage mechanical dewatering wastewater by an integrated system involving partial nitrification and denitrification
CN213357071U (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统
CN2931465Y (zh) 两级uasb+a/o工艺处理城市生活垃圾渗滤液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878091

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20D06MM/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20878091

Country of ref document: EP

Kind code of ref document: A1