WO2020220922A1 - Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 - Google Patents

Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 Download PDF

Info

Publication number
WO2020220922A1
WO2020220922A1 PCT/CN2020/082893 CN2020082893W WO2020220922A1 WO 2020220922 A1 WO2020220922 A1 WO 2020220922A1 CN 2020082893 W CN2020082893 W CN 2020082893W WO 2020220922 A1 WO2020220922 A1 WO 2020220922A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
anaerobic
aerobic
sludge
denitrification
Prior art date
Application number
PCT/CN2020/082893
Other languages
English (en)
French (fr)
Inventor
彭永臻
高歆婕
许载周
李夕耀
张琼
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/041,365 priority Critical patent/US11319230B2/en
Publication of WO2020220922A1 publication Critical patent/WO2020220922A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop

Definitions

  • the invention belongs to the field of urban sewage treatment and regeneration, and specifically relates to a method and a device for treating urban sewage by coupling anaerobic ammonia oxidation with source short-range denitrification in anoxic zone of AOA process.
  • Anammox has been widely studied as an autotrophic nitrogen removal technology.
  • Anammox is an autotrophic biological denitrification process in which ammonia nitrogen is used as an electron donor and nitrite nitrogen is used as an electron acceptor to convert two kinds of nitrogen into nitrogen and part of nitrate nitrogen. This process can achieve partial removal of nitrogen in sewage without organic matter.
  • short-cut denitrification is a process in which denitrifying bacteria reduce nitrate nitrogen to nitrite nitrogen under anoxic conditions, which can provide nitrous acid for the anaerobic ammonia oxidation reaction.
  • the removal of ammonia nitrogen through anaerobic ammonia oxidation can effectively reduce aeration and carbon source, which is suitable for domestic sewage with low C/N ratio.
  • a method and device for sludge dual-reflow AOA internal short-range denitrification coupled with anaerobic ammonia oxidation to treat urban sewage is proposed.
  • the internal carbon source is stored in the anaerobic section, the organic matter in the raw water is fully utilized, and nitrification is performed in the aerobic section.
  • the reaction removes part of the ammonia nitrogen in the raw water, and the post anoxic section further uses the internal carbon source for endogenous short-range denitrification to convert nitrate nitrogen into nitrous acid to provide a substrate for anammox.
  • it uses anammox bacteria on the filler to achieve The purpose of deep denitrification, while efficiently using resources.
  • the purpose of the present invention is to provide a method and device for the treatment of urban sewage by coupling of anaerobic ammonia oxidation and source short-range denitrification in the anoxic zone of the AOA process for the deep denitrification of urban sewage with low C/N ratio.
  • domestic sewage first enters the anaerobic zone of the AOA reactor from the raw water tank.
  • the glycan bacteria in the anaerobic zone use the organic matter in the domestic sewage to synthesize glycogen and PHA to remove organic matter, and then the mixed liquid enters the aerobic zone to undergo nitrification.
  • the invention does not require an external carbon source, can realize the deep denitrification of low-C/N municipal sewage, and has the characteristics of energy saving and consumption reduction.
  • a device for treating urban sewage with source short-range denitrification coupled with anaerobic ammonia oxidation in anoxic zone of AOA process characterized in that it includes a sewage raw water tank (1), an AOA reactor (2), and a sedimentation tank (3) connected in sequence; sewage The raw water tank (1) is equipped with an overflow pipe (1.1) and a vent pipe (1.2); the sewage raw water tank (1) is connected to the AOA reactor (2) through an inlet pump (2.1); the AOA reactor (2) includes 8 Each cell is divided into anaerobic zone (2.2), aerobic zone (2.3), and hypoxic zone (2.4) according to the direction of water flow. The volume of each reaction zone is equal, and each cell is connected up and down according to the direction of water flow.
  • Anaerobic zone (2.2) is equipped with agitator (2.5); aerobic zone (2.3) is equipped with air pump (2.6), aeration plate (2.7), gas flow meter (2.8); hypoxic zone is equipped with Agitator (2.5), packing frame (2.9); the sludge at the bottom of the sedimentation tank (3) is connected to the anaerobic zone (2.2) through the first sludge return pump (3.1), and connected through the second sludge return pump (3.2) To the hypoxic zone (2.5), water is finally discharged through the outlet pipe (3.3).
  • the treatment process of urban sewage in this device is as follows: the sewage first enters the anaerobic zone of the short-range denitrification coupled anaerobic ammonia oxidation reactor in the anoxic zone of the AOA process from the raw water tank, and stores the organic matter as an internal carbon source in the anaerobic zone. Then the mixed liquid enters the aerobic zone, where nitrification occurs; finally, it enters the anoxic zone, where the stored internal carbon source is used for short-range denitrification reaction, and the nitrous acid produced and the ammonia nitrogen in the mixed liquid undergo anaerobic ammonia oxidation reaction, finally achieving a deep The purpose of nitrogen removal.
  • the floc sludge is inoculated with nitrification and denitrification sludge, and the filler is anammox filler.
  • the AOA system has two sludge backflows.
  • the second sludge backflow to the first anaerobic stage has a backflow ratio R2 of 100%.
  • the 8 cells in the system are 2 cells anaerobic, 3 cells aerobic, and 3 cells anoxic; keep the sludge concentration in the anaerobic zone and aerobic zone at 3000-4000mg/L
  • the sludge concentration in the anoxic zone is controlled to 1-2mg/L in the aerobic zone at 4000-5000mg/L, and the C/N ratio can be controlled to be greater than 4 by adding an external carbon source; the system hydraulic retention time is 16h.
  • the total nitrogen in the effluent is less than 15mg/L, and it is maintained for more than 5 days, it is considered that the nitrification endogenous denitrification stage has started successfully.
  • the anammox packing rack is added to the anoxic zone.
  • the ammonia nitrogen in the final aerobic water is controlled. If the aerobic ammonia nitrogen ⁇ 5mg/L, reduce the last cell in the aerobic zone, remove its aeration device, add a stirring device, and change it to an anoxic zone; if the aerobic ammonia nitrogen ⁇ 10mg/L, it will be deficient
  • the first compartment of the oxygen zone is changed to an aerobic zone.
  • the aerobic ammonia nitrogen is between 5-10 mg/L, the 8 compartments are kept as 2 compartments anaerobic, 2 compartments aerobic, and 4 compartments anoxic.
  • the sludge concentration in the anaerobic zone and aerobic zone at 300-4000mg/L; the sludge concentration in the anoxic zone at 4000-5000mg/L and the dissolved oxygen in the aerobic zone should be controlled to 1-2mg/L.
  • the ratio of sludge return to the second sludge return is 100%, and the system hydraulic retention time is 16h.
  • the 8 cells of the system are 2 cells anaerobic, 2 cells aerobic, and 4 cells anoxic. Adjust HRT according to the effluent nitrogen concentration. If the total nitrogen in the effluent is less than or equal to 5mg/L, the HRT will be reduced by 2h; if the total nitrogen in the effluent is ⁇ 15mg/L, the HRT will be extended by 2h.
  • the floc sludge concentration is 3000-4000mg/L in the anaerobic zone and aerobic zone; 4000-5000mg/L in the hypoxic zone and 1-2mg/L dissolved oxygen in the aerobic zone.
  • the method and device for treating urban sewage with short-range denitrification coupled with anaerobic ammonia oxidation in the anoxic zone of the AOA process of the present invention have the following advantages:
  • Source denitrification in the anoxic zone can further remove the nitrate nitrogen produced by anaerobic ammonia oxidation, and can stably realize that the effluent TN is less than 5mg/L, which is a deep denitrification.
  • Figure 1 A schematic diagram of the device structure of the source short-range denitrification coupled with anaerobic ammonia oxidation in the anoxic zone of the AOA process.
  • 1 is the raw water tank
  • 2 is the AOA reactor
  • 3 is the sedimentation tank
  • 1.1 is the raw water tank overflow pipe
  • 1.2 is the raw water tank vent pipe
  • 2.1 is the feed pump
  • 2.2 is the anaerobic zone
  • 2.3 is the aerobic zone
  • 2.4 It is an anoxic zone
  • 2.5 is a stirrer
  • 2.6 is an air pump
  • 2.7 is an aeration plate
  • 2.8 is a gas flow meter
  • 2.9 is a packing frame
  • 3.1 is the first sludge return pump
  • 3.2 is the second sludge return pump
  • 3.3 For the outlet pipe.
  • the method and device for treating urban sewage with short-range denitrification coupled with anaerobic ammonia oxidation in the hypoxic zone of the AOA process is characterized in that it includes a sewage raw water tank (1), AOA reactor (2), sedimentation tank (3); the raw sewage water tank (1) is equipped with an overflow pipe (1.1) and a vent pipe (1.2); the raw sewage water tank (1) reacts with AOA through the inlet pump (2.1)
  • the reactor (2) is connected; the AOA reactor (2) includes 8 cells, which are divided into anaerobic zone (2.2), aerobic zone (2.3), and anoxic zone (2.4) according to the direction of water flow.
  • each cell is provided with connecting holes staggered up and down according to the direction of water flow; anaerobic zone (2.2) is equipped with agitator (2.5); aerobic zone (2.3) is equipped with air pump (2.6), aeration plate (2.7) ), gas flow meter (2.8); anoxic zone is equipped with agitator (2.5), packing frame (2.9); sedimentation tank (3) bottom sludge through the first sludge return pump (3.1) connected to the anaerobic zone ( 2.2). Connect to the hypoxic zone (2.5) through the second sludge return pump (3.2) and finally discharge water through the outlet pipe (3.3).
  • the specific water quality during the operation period is as follows: COD 100-250mg/L, NH 4 + 30-80mg/L, NO 3 - ⁇ 2mg/L, NO 2 - ⁇ 0.5mg/L.
  • the test system is shown in Figure 1.
  • the effective volume of the source short-range denitrification coupled anaerobic ammonia oxygen reactor in the hypoxic zone of the AOA process is 88.48L, which is divided into 8 cells, each cell has an effective volume of 11.06L; the effective volume of the secondary settling tank is 37.2L , Are made of plexiglass.
  • the floc sludge is inoculated with nitrification and denitrification sludge, and the filler is anammox filler.
  • the AOA system has two sludge backflows.
  • the second sludge backflow to the first anaerobic stage has a backflow ratio R2 of 100%.
  • the 8 cells in the system are 2 cells anaerobic, 3 cells aerobic, and 3 cells anoxic; keep the sludge concentration in the anaerobic zone and aerobic zone at 3000-4000mg/L
  • the sludge concentration in the anoxic zone is controlled to 1-2mg/L in the aerobic zone at 4000-5000mg/L, and the C/N ratio can be controlled to be greater than 4 by adding an external carbon source; the system hydraulic retention time is 16h.
  • the total nitrogen in the effluent is less than 15mg/L, and it is maintained for more than 5 days, it is considered that the nitrification endogenous denitrification stage has started successfully.
  • the anammox packing rack is added to the anoxic zone.
  • the ammonia nitrogen in the final aerobic water is controlled. If the aerobic ammonia nitrogen ⁇ 5mg/L, reduce the last cell in the aerobic zone, remove its aeration device, add a stirring device, and change it to an anoxic zone; if the aerobic ammonia nitrogen ⁇ 10mg/L, it will be deficient
  • the first compartment of the oxygen zone is changed to an aerobic zone.
  • the aerobic ammonia nitrogen is between 5-10 mg/L, the 8 compartments are kept as 2 compartments anaerobic, 2 compartments aerobic, and 4 compartments anoxic.
  • the sludge concentration in the anaerobic zone and aerobic zone at 300-4000mg/L; the sludge concentration in the anoxic zone at 4000-5000mg/L and the dissolved oxygen in the aerobic zone should be controlled to 1-2mg/L.
  • the ratio of sludge return to the second sludge return is 100%, and the system hydraulic retention time is 16h.
  • the 8 cells of the system are 2 cells anaerobic, 2 cells aerobic, and 4 cells anoxic. Adjust HRT according to the effluent nitrogen concentration. If the total nitrogen in the effluent is less than or equal to 5mg/L, the HRT will be reduced by 2h; if the total nitrogen in the effluent is ⁇ 15mg/L, the HRT will be extended by 2h. When the total nitrogen in the effluent is between 5-15mg/L, the HRT will be maintained at 16h.
  • the floc sludge concentration is 3000-4000mg/L in the anaerobic zone and aerobic zone; 4000-5000mg/L in the hypoxic zone and 1-2mg/L dissolved oxygen in the aerobic zone.

Abstract

AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的装置,主要有污水原水箱(1)、AOA反应器(2)、沉淀池(3),污泥由沉淀池(3)底部分别回流至缺氧区(2.4)及厌氧区(2.2),在缺氧区(2.4)投加生物膜填料,污水进入AOA反应器(2),在厌氧区(2.2)污泥积累内碳源去除原水中的有机物,随后进入好氧区(2.3)进行硝化反应,产生的硝态氮进入缺氧区(2.4)进行内源短程反硝化,缺氧区(2.4)填料利用产生的亚硝与原水中剩余的氨氮进行厌氧氨氧化反应,产生的硝氮可在缺氧区(2.4)通过内源反硝化进一步去除,在缺氧区(2.4)利用内源短程反硝化耦合厌氧氨氧化进行脱氮,能减少好氧区(2.3)所需曝气量与缺氧区(2.4)所需碳源,可处理低C/N城市生活污水;还提供一种AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法。

Description

AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 技术领域
本发明属于城市污水处理与再生领域,具体涉及AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置。
背景技术
随着人类经济的快速发展,环境污染日益严重。其中水污染也越来越严重,尤其是氮和磷造成的水体富营养化的现象已经严重影响到人们的生活。目前,从低C/N比的污水中有效去除氮气并满足日益严格的污水处理厂质量标准是污水处理厂面临的主要挑战。
AAO作为污水处理领域常用处理工艺同样面临着这些挑战,因此通过优化或改造AAO工艺,实现低C/N比污水脱氮的优势具有重要意义。厌氧氨氧化作为一种自养脱氮技术被广泛研究。厌氧氨氧化是以氨氮为电子供体,亚硝态氮为电子受体,将两种氮素转化为氮气和和部分的硝态氮的自养生物脱氮过程。该过程无需有机物便能实现污水中氮素的部分去除。而厌氧氨氧化需要稳定的亚硝来源而短程反硝化是在缺氧条件下,反硝化菌将硝态氮还原为亚硝态氮的过程,能为厌氧氨氧化反应提供亚硝,部分氨氮通过厌氧氨氧化去除能有效的减少曝气量,以及碳源,适合低C/N比生活污水。
在此基础上提出污泥双回流AOA内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,在厌氧段储存内碳源,充分利用原水中的有机物,在好氧段进行硝化反应去除原水中的部分氨氮,后置缺氧段进一步利用内碳源进行内源短程反硝化将硝态氮转换为亚硝为厌氧氨氧化提供基质,同时利用填料上厌氧氨氧化菌达到深度脱氮的目的,同时高效利用资源。
发明内容
本发明的目的在于为低C/N比城市污水深度脱氮提供一种AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置。该装置中,生活污水首先由原水箱进入AOA反应器的厌氧区,厌氧区的聚糖菌利用生活污水中的有机物合成糖原与PHA去除有机物,而后混合液进入好氧区发生硝化反应去除部分氨氮;最后进入缺氧区,絮体污泥发生内源短程反硝化为填料上的厌氧氨氧化污泥提供亚硝,最终通过厌氧氨氧化实现脱氮的目的。此发明无需外加碳源,可实现低C/N城市生活污水深度脱氮,且具有节能降耗等特点。
AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的装置,其特征在于:包括顺序连接的污水原水箱(1)、AOA反应器(2)、沉淀池(3);污水原水箱(1)设有溢流管(1.1)和放空管(1.2);污水原水箱(1)通过进水泵(2.1)与AOA反应器(2)相连;AOA反应器(2)包括8个格室,按水流方向,共分为厌氧区(2.2)、好氧区(2.3)、缺氧区(2.4),各反应区体积相等,各格室均设有按水流方向上下交错连接的连接孔;厌氧区(2.2)设有搅拌器(2.5);好氧区(2.3)设有气泵(2.6)、曝气盘(2.7)、气体流量计(2.8);缺氧区设有搅拌器(2.5)、填料架(2.9);沉淀池(3)底部污泥通过第一污泥回流泵(3.1)连接至厌氧区(2.2)、 通过第二污泥回流泵(3.2)连接至缺氧区(2.5)最终通过出水管(3.3)出水。
城市污水在此装置的处理流程为:污水首先由原水箱进入AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化反应器的厌氧区,在厌氧区将有机物储存为内碳源,而后混合液进入好氧区,发生硝化反应;最后进入缺氧区,利用储存的内碳源进行短程反硝化反应,产生的亚硝与混合液中的氨氮进行厌氧氨氧化反应,最终实现深度脱氮的目的。
本发明AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法,其特征在于包括以下内容:
1)硝化内源反硝化启动阶段:
絮体污泥接种硝化反硝化污泥,填料为厌氧氨氧化填料。AOA系统共有两个污泥回流,其中第一污泥回流至第一格厌氧段回流比R1=100%,第二污泥回流至第一格缺氧段回流比R2为100%。启动硝化内源反硝化期间系统8个格室分别为2格室厌氧,3格室好氧,3格室缺氧;保持厌氧区、好氧区的污泥浓度在3000-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,可通过投加外碳源控制C/N比大于4;系统水力停留时间为16h。待厌氧末内碳源积累率达90%及以上时,出水总氮小于15mg/L,并稳定维持5d以上认为硝化内源反硝化阶段启动成功。
2)内源短程反硝化耦合厌氧氨氧化启动阶段:
启动内源短程反硝化耦合厌氧氨氧化期间,向缺氧区投加厌氧氨氧化填料架。通过控制好氧区体积,控制好氧末出水氨氮。若好氧末氨氮≤5mg/L,则减少好氧区最后一个格室,将其曝气装置去除,增加搅拌装置,改为缺氧区;若好氧末氨氮≥10mg/L,则将缺氧区第一格室改为好氧区,当好氧末氨氮在5-10mg/L之间则保持8格室分别为2格室厌氧,2格室好氧,4格室缺氧。此阶段保持厌氧区、好氧区的污泥浓度在300-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,第一污泥回流与第二污泥回流比为100%,系统水力停留时间为16h。待缺氧区厌氧氨氧化对总氮去除贡献达50%以上,并稳定维持10d以上,则认为内源短程反硝化耦合厌氧氨氧化阶段启动成功。
3)后期运行阶段:
长期运行中系统8个格室分别为2格室厌氧,2格室好氧,4格室缺氧,根据出水氮浓度调整HRT。出水总氮≤5mg/L,则将HRT减少2h;若出水总氮≥15mg/L,则将HRT延长2h,当出水总氮在5-15mg/L之间则HRT维持在16h。絮体污泥浓度为厌氧区、好氧区3000-4000mg/L;缺氧区4000-5000mg/L,好氧区溶解氧控制为1-2mg/L。
本发明AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,与现有工艺相比具有以下优势:
(1)城市污水中的有机物充分被聚糖菌利用储存为内碳源,减少了有机物的浪费,节约能源。
(2)部分氨氮通过厌氧氨氧化去除,可节省曝气量;内源短程反硝化为厌氧氨氧化提供亚硝,同时可节省反硝化至氮气所需的碳源。
(3)缺氧区内源反硝化可以进一步去除厌氧氨氧化产生的硝态氮,可稳定实现出水TN小于5mg/L,属于深度脱氮。
附图说明
图1AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化的装置结构示意图。
1为原水水箱,2为AOA反应器,3为沉淀池,1.1为原水水箱溢流管,1.2为原水水箱放空管,2.1为进水泵,2.2为厌氧区,2.3为好氧区,2.4为缺氧区,2.5为搅拌器,2.6为气泵,2.7为曝气盘,2.8为气体流量计,2.9为填料架,3.1为第一污泥回流泵,3.2为第二污泥回流泵,3.3为出水管。
具体实施方式:
下面结合附图和实施对本发明做进一步说明:AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置,其特征在于:包括顺序连接的污水原水箱(1)、AOA反应器(2)、沉淀池(3);污水原水箱(1)设有溢流管(1.1)和放空管(1.2);污水原水箱(1)通过进水泵(2.1)与AOA反应器(2)相连;AOA反应器(2)包括8个格室,按水流方向,共分为厌氧区(2.2)、好氧区(2.3)、缺氧区(2.4),各反应区体积相等,各格室均设有按水流方向上下交错连接的连接孔;厌氧区(2.2)设有搅拌器(2.5);好氧区(2.3)设有气泵(2.6)、曝气盘(2.7)、气体流量计(2.8);缺氧区设有搅拌器(2.5)、填料架(2.9);沉淀池(3)底部污泥通过第一污泥回流泵(3.1)连接至厌氧区(2.2)、通过第二污泥回流泵(3.2)连接至缺氧区(2.5)最终通过出水管(3.3)出水。
以北京某高校家属区化粪池废水为处理对象,运行期间具体水质如下:COD为100-250mg/L,NH 4 +为30-80mg/L,NO 3 -≤2mg/L,NO 2 -≤0.5mg/L。试验系统如图1所示,AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧反应器有效容积88.48L,均分为8格,每格有效容积11.06L;二沉池有效容积37.2L,均采用有机玻璃制成。
具体操作如下:
1)硝化内源反硝化启动阶段:
絮体污泥接种硝化反硝化污泥,填料为厌氧氨氧化填料。AOA系统共有两个污泥回流,其中第一污泥回流至第一格厌氧段回流比R1=100%,第二污泥回流至第一格缺氧段回流比R2为100%。启动硝化内源反硝化期间系统8个格室分别为2格室厌氧,3格室好氧,3格室缺氧;保持厌氧区、好氧区的污泥浓度在3000-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,可通过投加外碳源控制C/N比大于4;系统水力停留时间为16h。待厌氧末内碳源积累率达90%及以上时,出水总氮小于15mg/L,并稳定维持5d以上认为硝化内源反硝化阶段启动成功。
2)内源短程反硝化耦合厌氧氨氧化启动阶段:
启动内源短程反硝化耦合厌氧氨氧化期间,向缺氧区投加厌氧氨氧化填料架。通过控制好氧区体积,控制好氧末出水氨氮。若好氧末氨氮≤5mg/L,则减少好氧区最后一个格室,将其曝气装置去除,增加搅拌装置,改为缺氧区;若好氧末氨氮≥10mg/L,则将缺氧区第一格室改为好氧区,当好氧末氨氮在5-10mg/L之间则保持8格室分别为2格室厌氧,2格室好氧,4格室缺氧。此阶段保持厌氧区、好氧区的污泥浓度在300-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,第一污泥回流与第二污泥回流比为100%,系统水力停留时间为16h。待缺氧区厌氧氨氧化对总氮去除贡献达50%以上,并稳定维持10d以上,则认为内源短程反硝化耦合厌氧氨氧化阶段启动成功。
3)后期运行阶段:
长期运行中系统8个格室分别为2格室厌氧,2格室好氧,4格室缺氧,根据出水氮浓度调整HRT。出水总氮≤5mg/L,则将HRT减少2h;若出水总氮≥15mg/L,则将HRT延长2h,当出水总氮在5-15mg/L之间则HRT维持在16h。絮体污泥浓度为厌氧区、好氧区3000-4000mg/L;缺氧区4000-5000mg/L,好氧区溶解氧控制为1-2mg/L。
试验结果表明:运行稳定后,城市污水通过AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化反应器后出水COD为45-55mg/L,NH 4 +-N低于2mg/L,总氮低于5mg/L,出水COD、NH 4 +-N、TN等技术指标均稳定达到国家一级A排放标准。
以上是本发明的具体实施例,便于该技术领域的技术人员能更好的理解和应用本发明,本发明的实施不限于此,因此该技术领域的技术人员对本发明所做的简单改进都在本发明的范围之内。

Claims (2)

  1. AOA工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的装置,其特征在于:包括顺序连接的污水原水箱(1)、AOA反应器(2)、沉淀池(3);污水原水箱(1)设有溢流管(1.1)和放空管(1.2);污水原水箱(1)通过进水泵(2.1)与AOA反应器(2)相连;AOA反应器(2)包括8个格室,按水流方向,共分为厌氧区(2.2)、好氧区(2.3)、缺氧区(2.4),各反应区体积相等,各格室均设有按水流方向上下交错连接的连接孔;厌氧区(2.2)设有搅拌器(2.5);好氧区(2.3)设有气泵(2.6)、曝气盘(2.7)、气体流量计(2.8);缺氧区设有搅拌器(2.5)、填料架(2.9);沉淀池(3)底部污泥通过第一污泥回流泵(3.1)连接至厌氧区(2.2)、通过第二污泥回流泵(3.2)连接至缺氧区(2.5)最终通过出水管(3.3)出水。
  2. 应用如权利要求1所述装置的方法,其特征在于,包括以下步骤:
    1)硝化内源反硝化启动阶段:
    絮体污泥接种硝化反硝化污泥,填料为厌氧氨氧化填料;AOA系统共有两个污泥回流,其中第一污泥回流至第一格厌氧段回流比R 1=100%,第二污泥回流至第一格缺氧段回流比R 2为100%;启动硝化内源反硝化期间系统8个格室分别为2格室厌氧,3格室好氧,3格室缺氧;保持厌氧区、好氧区的污泥浓度在3000-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,通过投加外碳源控制C/N比大于4;系统水力停留时间为16h;待厌氧末内碳源积累率达90%及以上时,出水总氮小于15mg/L,并稳定维持5d以上认为硝化内源反硝化阶段启动成功;
    2)内源短程反硝化耦合厌氧氨氧化启动阶段:
    启动内源短程反硝化耦合厌氧氨氧化期间,向缺氧区投加厌氧氨氧化填料架;通过控制好氧区体积,控制好氧末出水氨氮;若好氧末氨氮≤5mg/L,则减少好氧区最后一个格室,将其曝气装置去除,增加搅拌装置,改为缺氧区;若好氧末氨氮≥10mg/L,则将缺氧区第一格室改为好氧区,当好氧末氨氮在5-10mg/L之间则保持8格室分别为2格室厌氧,2格室好氧,4格室缺氧;此阶段保持厌氧区、好氧区的污泥浓度在300-4000mg/L;缺氧区的污泥浓度在4000-5000mg/L好氧区溶解氧控制为1-2mg/L,第一污泥回流与第二污泥回流比为100%,系统水力停留时间为16h;待缺氧区厌氧氨氧化对总氮去除贡献达50%以上,并稳定维持10d以上,则认为内源短程反硝化耦合厌氧氨氧化阶段启动成功;
    3)后期运行阶段:
    长期运行中系统8个格室分别为2格室厌氧,2格室好氧,4格室缺氧,根据出水氮浓度调整HRT;出水总氮≤5mg/L,则将HRT减少2h;若出水总氮≥15mg/L,则将HRT延长2h,当出水总氮在5-15mg/L之间则HRT维持在16h;絮体污泥浓度为厌氧区、好氧区3000-4000mg/L;缺氧区4000-5000mg/L,好氧区溶解氧控制为1-2mg/L。
PCT/CN2020/082893 2019-04-30 2020-04-02 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 WO2020220922A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,365 US11319230B2 (en) 2019-04-30 2020-04-02 Method and apparatus for treating municipal sewage by AOA process via endogenous partial denitrification coupled with anammox in anoxic zone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910358952.3A CN110015757B (zh) 2019-04-30 2019-04-30 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN201910358952.3 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220922A1 true WO2020220922A1 (zh) 2020-11-05

Family

ID=67192918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082893 WO2020220922A1 (zh) 2019-04-30 2020-04-02 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置

Country Status (3)

Country Link
US (1) US11319230B2 (zh)
CN (1) CN110015757B (zh)
WO (1) WO2020220922A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551810A (zh) * 2020-11-19 2021-03-26 武汉芳笛环保股份有限公司 一种反硝化ibr脱氮除磷一体化反应器及其反应工艺
CN112624339A (zh) * 2020-12-30 2021-04-09 山东大学 一种含亚硝酸盐污水中碳、氮、磷同步深度去除装置及深度去除方法
CN112744917A (zh) * 2021-01-05 2021-05-04 境友环保科技(北京)有限公司 一种无须回流污泥除磷的污水处理工艺
CN113461264A (zh) * 2021-07-08 2021-10-01 中持水务股份有限公司 一种偶联生物调控脱氮系统及其使用方法
CN113480084A (zh) * 2021-05-31 2021-10-08 国能朗新明环保科技有限公司 一种高氨氮、低碳氮比污泥干化液达标处理方法及系统
CN113603314A (zh) * 2021-09-22 2021-11-05 福州大学 一种罐式一体化污水处理装置及其运行方法
CN113666495A (zh) * 2021-08-26 2021-11-19 西北工业大学 一种高效深度脱氮系统和方法
CN113845222A (zh) * 2021-10-03 2021-12-28 北京工业大学 一种两次排水内源短程反硝化/厌氧氨氧化两段式工艺实现生活污水深度脱氮的装置和方法
CN114275971A (zh) * 2021-12-25 2022-04-05 广东台泉环保科技有限公司 一种一体化污水处理工艺
CN114409084A (zh) * 2022-02-17 2022-04-29 浙江浙能技术研究院有限公司 A/o和mcr工艺处理煤制气废水难降解有机物的节能控制系统
CN114853173A (zh) * 2022-06-01 2022-08-05 北京建筑大学 连续流固定床自养脱氮处理老龄垃圾渗滤液的方法
CN114940539A (zh) * 2022-06-17 2022-08-26 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015757B (zh) * 2019-04-30 2021-10-26 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
CN111333183A (zh) * 2020-02-07 2020-06-26 中日友好环境保护中心(生态环境部环境发展中心) 应用a2/o工艺处理发制品产业集聚区综合污水的方法
CN111825280B (zh) * 2020-07-24 2022-05-17 苏州汇博龙环保科技有限公司 一种靛红酸酐废水资源化处理工艺和设备
CN111977789A (zh) * 2020-08-21 2020-11-24 南昌航空大学 一种稀土矿废水的高速脱氮装置及其使用方法
EE202100007A (et) * 2021-03-08 2022-10-17 Tallinna Tehnikaülikool Meetod lämmastiku, fosfori ja orgaaniliste reostuskomponentide ärastamiseks reoveest süstikreþiimis
CN113233596A (zh) * 2021-05-20 2021-08-10 北京工业大学 连续流短程硝化/内源短程反硝化/厌氧氨氧化一体化工艺处理中晚期垃圾渗滤液的方法
CN113415910B (zh) * 2021-06-04 2023-01-13 北京工业大学 一种铁氨氧化强化aao工艺中短程反硝化耦合厌氧氨氧化生物脱氮除磷的装置与方法
WO2023005088A1 (zh) * 2021-07-28 2023-02-02 北控水务(中国)投资有限公司 基于污泥双回流aoa工艺的全流程自动控制系统和方法
CN113998783B (zh) * 2021-11-02 2023-03-17 海南大学 一种基于部分回流污泥深度厌氧处理的城市污水低碳脱氮除磷装置和方法
CN114455706A (zh) * 2021-12-21 2022-05-10 江苏裕隆环保有限公司 一种污水双污泥回流aoa深度脱氮系统
CN114620840A (zh) * 2022-01-09 2022-06-14 上海大学 一种城市污水厌氧氨氧化深度脱氮的方法
CN114409081A (zh) * 2022-02-08 2022-04-29 黑龙江工程学院 一种强化深度脱氮除磷的装置及其运行控制方法
CN114477420B (zh) * 2022-02-16 2023-04-07 北京工业大学 连续流aoa短程硝化及内源短程反硝化双耦合厌氧氨氧化实现污水深度脱氮的方法与装置
CN114735819B (zh) * 2022-03-08 2023-06-30 苏州科技大学 一种abr预处理-短程反硝化厌氧氨氧化处理生活污水的方法
CN114477456A (zh) * 2022-03-14 2022-05-13 郑州大学 一种内源短程反硝化强化城市污水短程硝化/厌氧氨氧化深度脱氮装置与方法
CN114656035A (zh) * 2022-04-13 2022-06-24 北控水务(中国)投资有限公司 能多工况运行的高效节能aao生物处理系统及方法
CN114804339B (zh) * 2022-04-19 2023-08-22 青岛思普润水处理股份有限公司 基于bfm形式的高效aoa耦合厌氧氨氧化污水处理方法及系统
CN114772731B (zh) * 2022-04-19 2023-08-22 青岛思普润水处理股份有限公司 一种基于bfm形式的aoa耦合自养脱氮水处理方法与系统
CN114702136B (zh) * 2022-04-19 2023-08-22 青岛思普润水处理股份有限公司 一种aoa耦合高效自养脱氮水处理方法与系统
CN114735826A (zh) * 2022-05-12 2022-07-12 北控水务(中国)投资有限公司 自动补碳系统、自动补碳方法及aao污水处理系统
CN114956334A (zh) * 2022-06-14 2022-08-30 郑州市郑东新区水务有限公司 一种强化污水处理生物池的脱氮工艺
CN115259375A (zh) * 2022-07-28 2022-11-01 北京工业大学 通过分段进水强化aoa工艺厌氧氨氧化与反硝化除磷的装置与方法
CN116947215B (zh) * 2023-09-19 2023-12-05 中铁建发展集团有限公司 多工艺深度脱氮耦合原位发酵除磷装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217786A (zh) * 2015-10-25 2016-01-06 北京工业大学 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
CN105753153A (zh) * 2016-03-17 2016-07-13 北京工业大学 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法
CN106830324A (zh) * 2017-03-22 2017-06-13 北京工业大学 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN106938863A (zh) * 2017-04-24 2017-07-11 北京工业大学 污泥双回流aoa实现城市污水深度脱氮除磷的装置与方法
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN109354191A (zh) * 2018-12-06 2019-02-19 北京工业大学 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN109368791A (zh) * 2018-11-21 2019-02-22 北京工业大学 通过投加污泥发酵物实现短程反硝化厌氧氨氧化的方法
JP6491056B2 (ja) * 2015-07-07 2019-03-27 水ing株式会社 窒素除去方法及び窒素除去装置
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2630328A1 (en) * 2008-05-02 2009-11-02 Richard Ladouceur Liquid aeration apparatus and wastewater treatment apparatus
US8758620B2 (en) * 2012-04-17 2014-06-24 Environmental Dynamics International, Inc. Decanted bio-balanced reactor and method
US20140367330A1 (en) * 2013-06-17 2014-12-18 Veolia Water Solutions & Technologies Support Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
US11078098B2 (en) * 2016-07-06 2021-08-03 John H. Reid Flow equalization reactor having multiple wastewater treatment zones
CN107032489A (zh) * 2017-04-24 2017-08-11 北京工业大学 实现连续流aoa半短程厌氧氨氧化耦合内源反硝化的方法
CN107381813B (zh) * 2017-08-31 2020-02-21 北京城市排水集团有限责任公司 污泥分段回流强化厌氧氨氧化脱氮工艺的装置及方法
CN108439599B (zh) * 2018-05-04 2020-10-27 北京工业大学 一种城市生活污水内源短程反硝化耦合anammox深度脱氮除磷的装置与方法
CN108675451A (zh) * 2018-05-14 2018-10-19 北京工业大学 连续流ao-bco-deamox深度脱氮除磷的装置与方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491056B2 (ja) * 2015-07-07 2019-03-27 水ing株式会社 窒素除去方法及び窒素除去装置
CN105217786A (zh) * 2015-10-25 2016-01-06 北京工业大学 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
CN105753153A (zh) * 2016-03-17 2016-07-13 北京工业大学 基于deamox的改良a/o四点分段进水高效生物脱氮除磷装置及应用方法
CN106830324A (zh) * 2017-03-22 2017-06-13 北京工业大学 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN106938863A (zh) * 2017-04-24 2017-07-11 北京工业大学 污泥双回流aoa实现城市污水深度脱氮除磷的装置与方法
CN107032488A (zh) * 2017-04-24 2017-08-11 北京工业大学 一种通过污泥双回流aoa工艺实现城市污水短程硝化的方法
CN109368791A (zh) * 2018-11-21 2019-02-22 北京工业大学 通过投加污泥发酵物实现短程反硝化厌氧氨氧化的方法
CN109354191A (zh) * 2018-12-06 2019-02-19 北京工业大学 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN109368792A (zh) * 2018-12-06 2019-02-22 北京工业大学 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN110015757A (zh) * 2019-04-30 2019-07-16 北京工业大学 Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112551810A (zh) * 2020-11-19 2021-03-26 武汉芳笛环保股份有限公司 一种反硝化ibr脱氮除磷一体化反应器及其反应工艺
CN112551810B (zh) * 2020-11-19 2023-05-30 武汉芳笛环保股份有限公司 一种反硝化ibr脱氮除磷一体化反应器及其反应工艺
CN112624339A (zh) * 2020-12-30 2021-04-09 山东大学 一种含亚硝酸盐污水中碳、氮、磷同步深度去除装置及深度去除方法
CN112744917A (zh) * 2021-01-05 2021-05-04 境友环保科技(北京)有限公司 一种无须回流污泥除磷的污水处理工艺
CN113480084A (zh) * 2021-05-31 2021-10-08 国能朗新明环保科技有限公司 一种高氨氮、低碳氮比污泥干化液达标处理方法及系统
CN113461264A (zh) * 2021-07-08 2021-10-01 中持水务股份有限公司 一种偶联生物调控脱氮系统及其使用方法
CN113666495A (zh) * 2021-08-26 2021-11-19 西北工业大学 一种高效深度脱氮系统和方法
CN113603314A (zh) * 2021-09-22 2021-11-05 福州大学 一种罐式一体化污水处理装置及其运行方法
CN113845222A (zh) * 2021-10-03 2021-12-28 北京工业大学 一种两次排水内源短程反硝化/厌氧氨氧化两段式工艺实现生活污水深度脱氮的装置和方法
CN113845222B (zh) * 2021-10-03 2023-06-02 北京工业大学 一种两次排水内源短程反硝化/厌氧氨氧化两段式工艺实现生活污水深度脱氮的装置和方法
CN114275971A (zh) * 2021-12-25 2022-04-05 广东台泉环保科技有限公司 一种一体化污水处理工艺
CN114409084A (zh) * 2022-02-17 2022-04-29 浙江浙能技术研究院有限公司 A/o和mcr工艺处理煤制气废水难降解有机物的节能控制系统
CN114853173A (zh) * 2022-06-01 2022-08-05 北京建筑大学 连续流固定床自养脱氮处理老龄垃圾渗滤液的方法
CN114940539A (zh) * 2022-06-17 2022-08-26 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法
CN114940539B (zh) * 2022-06-17 2024-02-06 北京工业大学 一种基于deamox技术强化a2n工艺生物脱氮除磷的装置与方法

Also Published As

Publication number Publication date
CN110015757A (zh) 2019-07-16
US20210246057A1 (en) 2021-08-12
CN110015757B (zh) 2021-10-26
US11319230B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2020220922A1 (zh) Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置
WO2021051781A1 (zh) 一种基于deamox污泥双回流aoao污水深度脱氮除磷的装置与方法
CN109368792B (zh) 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置
CN110143725B (zh) 混合污泥发酵液为碳源连续流短程反硝化耦合厌氧氨氧化工艺处理城市污水装置和方法
CN106830324B (zh) 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN110104773B (zh) 全流程厌氧氨氧化强化脱氮的aoa工艺处理城市污水的方法与装置
CN102633359B (zh) 一种适用于含氮化工废水总氮的处理方法
CN101289264B (zh) 污泥消化液短程硝化与厌氧氨氧化组合脱氮的装置和方法
CN102515350B (zh) 垃圾渗滤液sbr与厌氧氨氧化组合脱氮装置与方法
CN105923774B (zh) 一种三段式短程硝化-厌氧氨氧化-短程反硝化工艺实现污泥消化液深度脱氮的装置与方法
CN110002594B (zh) 一种基于羟胺旁侧抑制实现短程硝化-厌氧氨氧化的装置和方法
CN105461061A (zh) 一种城市污水a2/o-生物同步脱氮除磷装置及方法
CN109354191B (zh) 一种污泥发酵强化内源反硝化的双污泥回流aoa深度脱氮方法
CN108046518B (zh) 一种低碳源污水的强化脱氮除磷的装置和方法
CN105923770A (zh) 短程硝化接厌氧氨氧化耦合短程反硝化进行污水脱氮的装置与方法
CN102690019A (zh) 一种处理低浓度废水高效同步脱氮除磷的方法
CN104944689A (zh) 一种处理高氨氮废水的装置及方法
CN106630414A (zh) 半短程硝化‑厌氧氨氧化多级a/o自养脱氮装置与方法
CN104710087A (zh) 一种制革废水的缺氧-好氧综合处理方法
CN102583883B (zh) 分段并联厌氧氨氧化处理城市污水的工艺和方法
CN105692902A (zh) 一种处理城市生活污水的双颗粒污泥一体化工艺
CN105800784A (zh) 基于deamox技术的改良uct分段进水高效生物脱氮除磷装置及应用方法
CN107512774A (zh) 前置短程反硝化‑厌氧氨氧化处理低c/n城市污水的装置与方法
CN104891655A (zh) 处理高氨氮废水的装置及方法
CN105198084A (zh) 一种通过前置部分反硝化耦合氨氧化deamox工艺实现深度脱氮的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798665

Country of ref document: EP

Kind code of ref document: A1