WO2021077865A1 - 组网定位方法、系统、设备及存储介质 - Google Patents

组网定位方法、系统、设备及存储介质 Download PDF

Info

Publication number
WO2021077865A1
WO2021077865A1 PCT/CN2020/108538 CN2020108538W WO2021077865A1 WO 2021077865 A1 WO2021077865 A1 WO 2021077865A1 CN 2020108538 W CN2020108538 W CN 2020108538W WO 2021077865 A1 WO2021077865 A1 WO 2021077865A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
base station
beacon
networking
bluetooth
Prior art date
Application number
PCT/CN2020/108538
Other languages
English (en)
French (fr)
Inventor
汪立富
谭泽汉
陈彦宇
李茹
黎小坚
蔡琪
叶盛世
孙波
Original Assignee
珠海格力电器股份有限公司
珠海联云科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 珠海联云科技有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/770,442 priority Critical patent/US20220394654A1/en
Publication of WO2021077865A1 publication Critical patent/WO2021077865A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a networking positioning method, system, equipment and storage medium.
  • UWB ultra-wideband
  • the positioning beacon needs to perform positioning network cycle phase synchronization and obtain the nearest main base station ID number.
  • the existing UWB positioning uses the time-of-flight ranging method TOF positioning method (UWB two-way measurement). Distance positioning and ranging method) Under the premise of satisfying positioning efficiency, it can only meet the location of the base station area block, that is, the base station can only be deployed according to the area block, and it cannot meet the large area seamless connection of the UWB base station.
  • the beacon point is positioned every time When it is necessary to obtain the ID of the nearest base station, it will occupy a part of the UWB communication ranging time, reduce the UWB positioning and ranging efficiency, and reduce the number of beacons that can be located.
  • At least some embodiments of the present disclosure provide a network positioning method, system, device, and storage medium, so as to at least partially overcome the above technical problems.
  • a networking positioning method is provided, which is applied to a positioning beacon, and the method includes: obtaining Bluetooth broadcast positioning data broadcast by a positioning master base station in a preset positioning area through Bluetooth communication; Wherein, the Bluetooth broadcast positioning data is used for network positioning of positioning beacons, and both the positioning beacon and the main positioning base station are equipped with Bluetooth communication equipment; based on the Bluetooth broadcast positioning data, the positioning beacon is Perform networking positioning.
  • the method before acquiring the Bluetooth broadcast positioning data broadcast by the positioning master base station in the preset positioning area through the Bluetooth communication, includes: scanning and acquiring through the Bluetooth communication Broadcast signals of multiple primary base stations within a preset range, where the broadcast signal includes: Bluetooth broadcast positioning data corresponding to each primary base station in the multiple primary base stations; the positioning is determined from the multiple primary base stations The main base station and determine the coverage area of the main positioning base station as the preset positioning area, wherein the main positioning base station is the broadcast signal of the plurality of main base stations whose broadcast signal strength indicates the strongest RSSI Main base station.
  • the Bluetooth broadcast positioning data includes: the ID of the positioning master base station and the positioning phase time interval in an idle state; and, the positioning communication phase of the positioning beacon and the positioning master base station
  • the time interval includes a plurality of the positioning phase time intervals
  • the preset positioning area further includes: at least two slave base stations; and network positioning of the positioning beacon based on the Bluetooth broadcast positioning data includes: The ID of the positioning master base station calculates the expected networking phase period; within the expected networking phase period, a networking request is sent to the positioning master base station to use the positioning phase time interval in the idle state to perform Networking; the distance between the positioning beacon and the positioning master base station and the distance between the positioning beacon and each slave base station are measured and calculated, so as to measure and calculate the distance between the positioning beacon and the positioning master base station Positioning beacons for positioning.
  • using the positioning phase time interval in the idle state for networking includes: acquiring the recording duration of sending and receiving information when the positioning beacon and the positioning master base station perform information interaction; Based on the recording time length, a preset networking algorithm is used to perform networking using the positioning phase time interval in an idle state.
  • the preset networking algorithm includes: TOF.
  • the ID of the positioning master base station and the ID of each slave base station are unique and non-overlapping; the distance between the positioning beacon and the positioning master base station and the positioning information
  • the measurement and calculation of the distance between the beacon and each slave base station to locate the positioning beacon in the preset positioning area includes: based on the ID of the positioning master base station and the ID of each slave base station, Sending ranging request signals to the positioning master base station and the at least two slave base stations in sequence; based on the feedback signals of the positioning master base station and the at least two slave base stations in response to the ranging request signals, the said The first distance data between the positioning beacon and the positioning master base station and the second distance data between the positioning beacon and the at least two slave base stations; the first distance data and the second distance data The distance data is sent to the main positioning base station, so that the main positioning base station calculates the first distance data and the second distance data to obtain the positioning coordinates of the positioning beacon.
  • the method further includes: determining whether the first distance data is greater than a preset threshold; when it is determined that the first distance data is greater than the preset threshold, determining that the positioning beacon has left the preset positioning area, and The idle positioning phase time interval in the idle state is released; when it is determined that the first distance data is less than or equal to the preset threshold, it is determined to send the first distance data and the second distance data to all
  • the positioning main base station is used to obtain the positioning coordinates of the positioning beacon.
  • a networking positioning system includes: an acquisition module configured to acquire Bluetooth broadcast positioning data broadcast by the positioning master base station in a preset positioning area through Bluetooth communication; Wherein, the Bluetooth broadcast positioning data is used for positioning beacons for networking positioning, and both the positioning beacons and the main positioning base station are provided with Bluetooth communication equipment; the networking positioning module is set to broadcast positioning data based on the Bluetooth , Perform networking positioning on the positioning beacon.
  • an electronic device including a processor and a memory; the memory is configured to store computer instructions, and the processor is configured to run the computer instructions stored in the memory to A network positioning method described above is realized.
  • a computer-readable storage medium stores one or more programs, and the one or more programs can be used by one or more The processor executes to implement the above-mentioned networking positioning method.
  • the positioning beacon can obtain the Bluetooth broadcast positioning data broadcast by the positioning master base station in the preset positioning area through Bluetooth communication, and the positioning master base station can also broadcast the Bluetooth broadcast positioning data.
  • Bluetooth broadcast positioning data is used for positioning beacons for network positioning.
  • UWB communication be modulated through Bluetooth communication to achieve parallel positioning of large-area base stations and multiple positioning beacons, but also the best can be obtained by positioning the Bluetooth communication on the main base station
  • the positioning area and each positioning beacon positioning networking phase cycle realizes rapid networking and positioning, thus avoiding the use of UWB communication to obtain communication time occupied by UWB positioning, realizing rapid and automatic networking of positioning beacons, and automatically acquiring positioning beacon positioning
  • the periodicity is regular, the positioning speed is increased, the number of beacons that can be located is increased, and the problem of the base station due to the local area limitation is solved.
  • Fig. 1 is a flowchart of a network positioning method according to one of the embodiments of the present disclosure.
  • Fig. 2(a) is a schematic diagram of the composition circuit of a positioning beacon according to one of the embodiments of the present disclosure.
  • Fig. 2(b) is a schematic diagram of a composition circuit of a slave base station according to one of the embodiments of the present disclosure.
  • Fig. 2(c) is a schematic diagram of the composition circuit of the positioning main base station according to one of the embodiments of the present disclosure.
  • Fig. 3 is a schematic diagram of Bluetooth broadcasting positioning data content according to one of the embodiments of the present disclosure.
  • Fig. 4 is a schematic diagram of a distribution relationship between a master-slave positioning base station deployment position according to one of the embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of positioning and networking of a positioning beacon according to one of the embodiments of the present disclosure.
  • Fig. 6 is a schematic diagram of a logical relationship between phase networking and phase release in an idle state according to one of the embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram of the phase cycle of positioning beacon networking according to one of the embodiments of the present disclosure.
  • Fig. 8 is a structural block diagram of a network positioning system according to one of the embodiments of the present disclosure.
  • Fig. 1 is a flowchart of a network positioning method according to one of the embodiments of the present disclosure. As shown in Fig. 1, the method can be applied to a positioning beacon, and the method includes:
  • S11 Obtain the Bluetooth broadcast positioning data broadcast by the positioning master base station in the preset positioning area through Bluetooth communication;
  • a Bluetooth communication circuit is added to the positioning main base station and the positioning beacon respectively.
  • both the positioning beacon and the positioning main base station are equipped with Bluetooth. Communication equipment.
  • the number of the positioning beacons is set to one or more. That is, these positioning beacons respectively obtain the Bluetooth broadcast positioning data broadcast by the positioning master base station in the corresponding preset positioning area.
  • the networking positioning algorithm involved here is not limited, which includes but is not limited to: TOF positioning method (UWB two-way ranging positioning and ranging method).
  • the positioning beacon can obtain the Bluetooth broadcast positioning data broadcast by the positioning master base station in the preset positioning area through Bluetooth communication, and the positioning master base station may also broadcast the Bluetooth broadcast positioning data.
  • the Bluetooth broadcast positioning data is used for positioning beacons for networking positioning, so that it can not only modulate UWB communication through Bluetooth communication to achieve parallel positioning of a large-area base station and multiple positioning beacons, but also use positioning on the main base station.
  • Bluetooth communication is used to obtain the best positioning area and the phase period of each positioning beacon positioning network to achieve rapid networking and positioning, thereby avoiding the use of UWB communication to obtain communication time for UWB positioning and realizing rapid and automatic networking of positioning beacons. Automatically obtain the positioning cycle regularity of the positioning beacon, improve the positioning speed, increase the number of beacons that can be positioned, and solve the problem of the base station due to the local area limitation.
  • the method further includes the following implementation steps:
  • S101 Scan and acquire broadcast signals of multiple main base stations within a preset range through Bluetooth communication, where the broadcast signal includes: Bluetooth broadcast positioning data corresponding to each of the multiple main base stations;
  • S102 Determine the positioning main base station from the multiple main base stations, and determine the coverage area of the positioning main base station as the preset positioning area, where the positioning main base station is the multiple main base stations
  • the signal strength received by the broadcast indicates the main base station of the broadcast signal with the strongest RSSI.
  • the positioning beacon needs to set the Bluetooth operation of the beacon to the Bluetooth scanning mode. If the Bluetooth scanning duration is half a positioning period Ts, the positioning beacon refreshing positioning rate is Ts, and after one scanning period If the Bluetooth signal of any positioning main base station is not scanned, it means that there is no positioning main base station around the positioning beacon, and the positioning beacon will stop scanning and enter low power consumption. After the preset interval time, the positioning beacon starts periodic scanning again.
  • the positioning beacon will sort all the scanned broadcast signals according to the RSSI signal strength, and select The positioning main base station with the strongest signal broadcasts the signal, and the main base station is the positioning main base station of the positioning beacon, and the area covered by the positioning main base station is the preset positioning area of the positioning beacon, because it is the positioning beacon receiving The stronger the RSSI signal strength, the closer the positioning beacon is to the positioning main base station, the higher the positioning accuracy of the positioning beacon under the nearest base station, and the better the positioning stability.
  • the Bluetooth broadcast positioning data includes: the ID of the positioning master base station and the positioning phase time interval in an idle state; and, the positioning communication phase of the positioning beacon and the positioning master base station
  • the time interval includes a plurality of the positioning phase time intervals
  • the preset positioning area further includes: at least two slave base stations;
  • an implementation manner of the foregoing S21 includes:
  • the positioning beacon after the positioning beacon obtains the ID of the positioning master base station, it needs to calculate the time it takes to network with the positioning master base station, and therefore, it is necessary to calculate the expected networking phase period in advance.
  • S212 Send a networking request to the positioning master base station within the expected networking phase period to use the idle positioning phase time interval for networking;
  • the positioning beacon needs to send a networking request to the positioning master base station, so as to use the idle positioning phase time interval for networking.
  • S213 Measure and calculate the distance between the positioning beacon and the positioning master base station and the distance between the positioning beacon and each slave base station, so as to perform the positioning calculation in the preset positioning area. Beacons for positioning.
  • the positioning beacon can measure and calculate its distance from the positioning master base station and the distance from the slave base station, so that the positioning can be realized based on the measurement and calculation results. Beacons for positioning.
  • the above-mentioned specific method of using the positioning phase time interval in the idle state for networking includes: acquiring the positioning beacon and the positioning main base station when performing information exchange and sending and receiving information Information recording time length; based on the recording time length, a preset networking algorithm is used to use the positioning phase time interval in an idle state for networking.
  • FIG. 7 is a schematic diagram of the phase cycle of positioning beacon networking according to one of the embodiments of the present disclosure.
  • Ti represents the time axis of the positioning main base station end;
  • Ti represents the time axis of the positioning beacon end;
  • ti 1 indicates that the idle phase of the main base station is at ti 1 period;
  • ti 2 indicates the broadcast time point of the main base station;
  • ti 3 indicates the time point of the main base station corresponding to the predicted phase network at the beacon end;
  • ti 4 --- indicates that the idle phase of the main base station is at ti 4 o'clock cycle;
  • t b indicates the time of the Bluetooth broadcast process;
  • tj 1 --- indicates that the beacon scans the broadcast data at tj 1 ;
  • tj 2 indicates The beacon stops scanning the broadcast data at tj 2 ;
  • tj 3 indicates the time point of the beacon's predicted phase networking;
  • t de indicates the delay time for the beacon's
  • the important idea to realize multiple beacons is to divide the phase time interval of the positioning communication between each positioning beacon and the positioning master base station into multiple positioning phase time intervals.
  • a small black rectangle represents a used positioning.
  • Phase time interval there are N positioning phase time intervals within a positioning period Ts, which means that the positioning master base station in the preset positioning area can support N UWB beacon positioning, and a small white rectangular bar indicates a positioning phase time to be networked Interval (ie: the above-mentioned positioning phase time interval in the idle state)
  • the Bluetooth broadcast time interval of the positioning main base station needs to be less than the positioning period Ts.
  • the Bluetooth broadcast interval of the positioning main base station is set to Ts/2, and the controller system time of the positioning main base station is ti;
  • the time for the secondary positioning of the Bluetooth broadcast data of the primary base station is ti 2 , and the time corresponding to the nearest idle positioning phase time interval before ti 2 is recorded as ti 1 , because it takes a while to locate the Bluetooth broadcast data packet of the primary base station.
  • the positioning beacon needs The phase time can be connected only after the delay t de time to avoid signal conflicts between the positioning beacon and other beacons during the networking process. Therefore, the phase difference TD 1 relative to the broadcast start time at tj 2 is:
  • TD 1 tj 2 -tj 1 +t b
  • the phase difference T 1 of the positioning beacon network phase time relative to the broadcast time is:
  • the system time ti 3 of the main base station at the time tj 2 of the positioning beacon is:
  • the beacon can be connected to the network phase time after N s integer cycles at the earliest, and the expected number of integer cycles N s is:
  • N s abs(ti 3 /T s )
  • phase delay time T 2 at time ti 3 is:
  • T 2 ((ti 3 /T s )-N s )/T s
  • the beacon At ti 4, the beacon’s Bluetooth is turned off and UWB communication is turned on. At ti 4 , it initiates a networking request to the primary base station.
  • the beacon calculates the time of the primary base station in the next idle positioning phase time interval at ti 2. Calculate the expected delay time t de . After the positioning beacon is delayed by t de , start sending a networking request to the positioning ie master base station at time tj 3.
  • the above represents the time for the beacon to obtain the positioning phase time interval in the idle state. In the method and process, the positioning phase time interval in the idle state is not in the next cycle.
  • this method represents the sequential logical process of the beacon networking use interval and the release phase interval.
  • the secondary base station does not add a Bluetooth circuit.
  • the secondary base station is mainly passive, mainly performing UWB bilateral two-way ranging according to the active positioning request of the positioning beacon, so there is no need to increase the Bluetooth circuit.
  • an implementation manner of the above-mentioned S213 includes: based on the ID of the positioning master base station and the ID of each slave base station, The positioning master base station and the at least two slave base stations sequentially send ranging request signals; based on the feedback signals of the positioning master base station and the at least two slave base stations respectively responding to the ranging request signal, the positioning beacon is obtained The first distance data between the positioning master base station and the second distance data between the positioning beacon and the at least two slave base stations; sending the first distance data and the second distance data To the main positioning base station, so that the main positioning base station resolves the first distance data and the second distance data to obtain the positioning coordinates of the positioning beacon.
  • the method further includes: determining whether the first distance data is greater than a preset threshold; when it is determined that the first distance data is greater than the preset threshold, determining that the positioning beacon has been Leave the preset positioning area, and the idle positioning phase time interval in the idle state is released; when it is determined that the first distance data is less than or equal to the preset threshold, it is determined to combine the first distance data with The second distance data is sent to the main positioning base station to obtain the positioning coordinates of the positioning beacon.
  • Figure 4 is a schematic diagram of the distribution relationship between the deployment positions of master-slave positioning base stations according to one of the embodiments of the present disclosure.
  • the base station and at least 2 or more positioning slave base stations.
  • the positioning master and slave base stations are numbered in sequence in advance. All base stations are divided according to each preset positioning area, that is, a positioning area has only one positioning master base station and at least two slave base stations, and the positioning master and slave base stations of each positioning area are number
  • the rule is: the ID numbers of the secondary base stations are automatically incremented by 1 counting unit based on the ID number of the primary base station in order to ensure that the ID numbers of the primary and secondary base stations in each positioning area are continuous, and that the IDs of all positioning base stations are unique and do not overlap.
  • the positioning beacon obtains the ID of the positioning master base station in the above steps, and at the same time corrects the phase period; Since the IDs deployed by the master and slave base stations meet the order of increasing relationship, only the master base station ID needs to be obtained and determined to know the slave base station ID and the number of base stations, so ranging requests can be made to the slave base stations, and the ranging method is carried out based on the master base station each time.
  • the ranging method adopts the shortest communication distance measurement method , That is, bilateral two-way ranging method; the ranging sequence has the main base station ID, the secondary base station ID+1, the secondary base station ID+2, and the secondary base station ID+3.
  • the distance data is in the beacon after each distance.
  • the beacon completes a round of ranging, the data is transmitted to the main base station through UWB, and the main base station calculates the position of the beacon, and then forwards it to the remote server through the network.
  • the UWB communication is modulated by Bluetooth communication to realize the parallel positioning of large-area base stations and beacons, and Bluetooth communication circuits are added to the main base station and the beacon to divide the time of each positioning cycle into multiple signals.
  • Bluetooth communication is used to replace the additional communication of UWB in addition to the positioning signal.
  • the positioning beacon sends positioning signals through UWB, and the rest of the communication is completed by Bluetooth communication, and the additional communication mainly refers to the ID number of the nearest main base station to obtain the best positioning area and the positioning phase time interval of the beacon network positioning, so that each UWB
  • the beacon automatically allocates phase time to realize rapid and automatic networking, thereby increasing the number of beacons that can be located, and solving the limitation of large-scale area use of multiple base stations.
  • the network topology relationship between the UWB positioning master base station and the UWB positioning slave base station is adopted.
  • the schematic diagram of the network topology and base station deployment diagram is shown in Figure 3.
  • the positioning master and slave base stations are numbered in sequence, and all base stations are numbered according to Each positioning area is divided, that is, a positioning area has only one positioning master base station and 2-5 slave base stations.
  • the numbering rule for positioning master and slave base stations in each positioning area is: the ID number of the slave base station is in turn in the positioning master base station ID number On the basis, it is automatically incremented by 1 counting unit in order to ensure that the ID numbers of the master and slave base stations in each positioning area are continuous, and that the IDs of all base stations are unique and do not overlap.
  • the main function of adding Bluetooth circuit to positioning the main base station is:
  • Bluetooth periodically broadcasts the parameters of the main base station, feedbacks response to the command parameters of the positioning beacon broadcast, broadcasts the beacon networking parameter information and the positioning phase time interval in the idle state;
  • the slave base station does not increase the Bluetooth circuit
  • the slave base station is mainly passive, mainly based on the UWB beacon active positioning request for UWB bilateral two-way ranging, so there is no need to increase the Bluetooth circuit.
  • the main function of the positioning beacon to increase the Bluetooth circuit is:
  • a Bluetooth communication circuit is added to the main base station circuit and the beacon circuit, and the positioning main base station is controlled by the main Receiver (STM32F4), UWB transceiver circuit (DW1000) and UWB antenna, Bluetooth chip circuit (CC2640R2F) and Bluetooth inverted F antenna, W5500 Ethernet and POE network interface, wireless WiFi circuit and 12V-DC5.5/2.5 connector and power supply
  • the location beacon is mainly composed of the low-power main processor Coter-M3 + Bluetooth transceiver circuit (CC2640R2F), UWB transceiver (DW1000) and UWB antenna, Bluetooth circuit and Bluetooth antenna, 3.7V lithium battery and power charging management circuit Module composition, (Description of location beacon circuit: CC2640R2F is a low-power main processor Coter0-M3+Bluetooth transceiver circuit integrated chip, so that the circuit saves the independent controller circuit, greatly reducing the power consumption of the beacon)
  • RF1 is a Bluetooth inverted F transceiver antenna (built-in);
  • RF2 is a UWB positioning transceiver antenna (built-in);
  • RF3 is a wireless WiFi transceiver antenna ( External);
  • the Cortex-M3+ Bluetooth circuit is a chip that uses TI’s CC2640R2F chip, which integrates the Bluetooth circuit and the main controller.
  • the benefits of adding a Bluetooth circuit are: 1Bluetooth is a low-power communication device, and the power consumption during scanning or broadcasting can be reduced to uA level, 2Bluetooth on the beacon can be scanned within the receiving range
  • the data information broadcasted by multiple positioning main base stations Bluetooth makes it easy to filter out the best positioning area; therefore, the main purpose of adding Bluetooth communication is: 1
  • the positioning beacon scans to obtain the best positioning area, and the essence of obtaining the best positioning area is to obtain The ID information of the positioning main base station with the closest beacon to the position, the principle is: the closer the beacon is to the main base station positioning area, the stronger the RSSI signal scanned by the beacon, the better the positioning stability, and the higher the positioning accuracy;
  • 2Positioning beacon Obtain networking parameter information from the information broadcast by the main positioning base station, and the main positioning base station will update the idle positioning phase cycle time zone in real time; 3Reduce the time occupied by UWB communication ranging and positioning, if the beacon UWB is used to obtain the best
  • the positioning phase time interval of the positioning beacon in the positioning area is different. Change, when the positioning beacon moves to the next positioning area, the main base station of this positioning area will release the positioning phase time interval as an idle state, in order to prepare for a new positioning beacon to appear in the positioning area, and re-networking Occupy the positioning phase time interval to maximize positioning efficiency.
  • the time of the positioning phase time interval is scheduled and managed by the main base station timer in the area, and is controlled and executed by the controller STM32F4 of the main base station.
  • Step 1 The positioning beacon scans the broadcast data of the surrounding main base stations and obtains the latest main base station broadcast data parameters
  • Step 2 The positioning beacon calculates the latest idle phase time, and the positioning beacon calculates the estimated networking time
  • Step 3 The positioning beacon initiates networking and first ranging request to the positioning base station, and the main base station determines to execute the networking;
  • Step 4 Positioning the main base station to feedback the network determination signal, the positioning beacon again corrects the positioning phase time interval, and the main base station is the time reference, and the beacon networking time error is corrected again;
  • Step 5 According to the ID numbering rules and the master and slave base stations of the positioning area, the master and slave base stations in the positioning area are sequentially ranging.
  • Step 6 The positioning beacon completes a round of ranging, and sends the distance data to the main positioning base station for a positioning calculation. Once the positioning is completed, the next ranging cycle will return to the previous step. When the positioning is performed 10 times, it will return to the fourth step. Steps to time correction.
  • the steps of the positioning process represent the process and logic of positioning beacon acquisition from networking to successful networking to positioning calculation. As shown in Figure 5, it is a specific networking positioning flow.
  • the specific implementation methods and steps are as follows:
  • the network time of the system timer of the positioning main base station will always be on, and the main positioning base station will periodically broadcast Bluetooth broadcast positioning data.
  • the main function of the timer is to allocate the base time of the network phase cycle to the positioning beacons in the area.
  • the controller The Bluetooth chip circuit drives the Bluetooth chip circuit every T s /2 cycle to broadcast the ID number of the positioning main base station, the time ti of the base station system timer broadcast moment and the time of the positioning phase time interval in the idle state.
  • the broadcast content is shown in Figure 3, beacon Bluetooth scans the data once in the cycle T s .
  • the ti time belongs to the timing time at the main base station side of the positioning, and the tj time belongs to the timing time at the beacon side.
  • the timing of the two is essentially independent.
  • the positioning beacon obtains the ID number of the main base station and the phase time of the networking cycle.
  • the positioning beacon low-power main controller drives the Bluetooth chip for mode selection, and sets the Bluetooth work of the beacon to the Bluetooth scanning mode.
  • the Bluetooth scanning time is half the positioning cycle T s
  • the time for the beacon to refresh the positioning rate is T s
  • the beacon will stop scanning and enter low power consumption. After 10s, the beacon will start periodic scanning again.
  • the beacon main controller sorts all the scanned RSSI signal strengths after a scanning period T s , and selects the parameter data of the main base station with the strongest signal, and uses the main base station as the beacon positioning In small areas, the main base station ID number is used as a reference for ranging and positioning.
  • the principle is that the stronger the RSSI signal strength of the positioning beacon is, the closer the positioning beacon is to the positioning main base station, and the positioning beacon is under the nearest base station. The higher the positioning accuracy, the better the positioning stability.
  • the positioning beacon calculates the expected networking phase period, and the main base station scans the beacon networking request through Bluetooth, and the UWB function is turned off.
  • FIG. 7 it is the phase cycle diagram of the positioning beacon and the positioning main base station from before networking to after positioning.
  • the Bluetooth scan at the beacon side is specified to obtain the phase of the Bluetooth broadcast data at the base station (networking cycle phase time?)
  • the periodic diagram of the positioning ID number is to divide the phase time interval of the positioning communication between each positioning beacon and the positioning main base station into multiple positioning phase time intervals, as shown in Fig. 7 is a small black rectangle Indicates a used positioning phase time interval.
  • N positioning phase time intervals within a positioning period Ts which means that the positioning master base station in the preset positioning area can support N UWB beacon positioning, and a small white rectangular bar indicates a waiting period.
  • the positioning phase time interval of the networking (that is, the above-mentioned positioning phase time interval in the idle state).
  • the Bluetooth broadcast time interval of the positioning main base station needs to be less than the positioning period Ts.
  • the Bluetooth broadcast interval of the positioning main base station is set to Ts/2, and the controller system time of the positioning main base station is ti;
  • the time for the secondary positioning of the Bluetooth broadcast data of the primary base station is ti 2 , and the time corresponding to the nearest idle positioning phase time interval before ti 2 is recorded as ti 1 , because it takes a while to locate the Bluetooth broadcast data packet of the primary base station.
  • the positioning beacon needs The phase time can be connected only after the delay t de time to avoid signal conflicts between the positioning beacon and other beacons during the networking process. Therefore, the phase difference TD 1 relative to the broadcast start time at tj 2 is:
  • TD 1 tj 2 -tj 1 +t b
  • the phase difference T 1 of the positioning beacon network phase time relative to the broadcast time is:
  • the system time ti 3 of the main base station at the time tj 2 of the positioning beacon is:
  • the beacon can be connected to the network phase time after N s integer cycles at the earliest, and the expected number of integer cycles N s is:
  • N s abs(ti 3 /T s )
  • phase delay time T 2 at time ti 3 is:
  • T 2 ((ti 3 /T s )-N s )/T s
  • the beacon At ti 4, the beacon’s Bluetooth is turned off and UWB communication is turned on. At ti 4 , it initiates a networking request to the primary base station.
  • the beacon calculates the time of the primary base station in the next idle positioning phase time interval at ti 2. Calculate the expected delay time t de . After the positioning beacon is delayed by t de , start sending a networking request to the positioning ie master base station at time tj 3.
  • the above represents the time for the beacon to obtain the positioning phase time interval in the idle state. In the method and process, the positioning phase time interval in the idle state is not in the next cycle.
  • the positioning phase time interval in the idle state is in the next cycle, so the idle phase group at the master base station
  • the network is networked in the order of low to high phase in the idle networking phase interval.
  • the method shown in Figure 6 represents the sequential logic process of the beacon networking use interval and the release phase interval.
  • Networking feedback to determine and calibrate the positioning phase error offset the purpose of which includes: 1 It can prevent multiple idle beacons from simultaneously generating networking requests; 2 The phase deviation between the beacon and the base station positioning can be calibrated again, because there are multiple positioning Beacon, there is no fixed reference.
  • Set the time of the main base station as the standard reference time.
  • the ID number of the most recently located main base station and the phase time of the network can be determined.
  • the positioning beacon records the sending network request time tj 3 , the main base station The terminal receives the networking request and records the receiving time ti 4 , and the positioning main base station determines the networking and feeds ti 4 back to the beacon terminal. Therefore, the beacon terminal predicts the time of the primary base station at ti 4 as:
  • T drp ti 4 -(ti 2 +t b +(tj 3 -tj 1 ))
  • the next ranging time period becomes (T s- T drp ), thereby realizing the offset of the calibration positioning phase error.
  • the deployment rule is to deploy according to the positioning of small area blocks.
  • Each positioning area block has a positioning master base station and at least two positioning slave base stations.
  • the ID numbers of the master and slave base stations in the small positioning area have a sequential increasing relationship, and the ID number of each base station is unique.
  • the positioning beacon obtains the ID of the positioning master base station in the above steps, and also corrects the phase period;
  • the ID deployed by the slave base station meets the order of increasing relationship. You only need to obtain and determine the master base station ID to know the slave base station ID and the number of base stations. Therefore, you can make a ranging request to the slave base station.
  • the ranging method is based on the master base station as the criterion for ranging each time.
  • the beacon will continue to perform periodic ranging positioning according to the main base station ID; therefore, in order to increase the number of beacons that can be located, the ranging method adopts the shortest communication ranging method, namely Bilateral two-way ranging method; the ranging sequence has the primary base station ID, the secondary base station ID+1, the secondary base station ID+2, and the secondary base station ID+3.
  • the distance data is at the beacon end after each distance. After the beacon completes a round of ranging, the data is transmitted to the main base station via UWB, and the main base station calculates the position of the beacon, and then forwards it to the remote server through the network.
  • this disclosure uses STM32F4 as the main base station processor. After each response from the base station to the end of the ranging signal, when the positioning main base station detects the positioning beacon When the connection is lost, the positioning phase time interval is released, and the position of the positioning phase time interval status changes from occupied to idle. Only after a new positioning beacon request is made next, a new networking process is performed, as shown in Figure 6.
  • Networking cycle calibration due to the deviation of the crystal oscillator clock between the beacon controller time and the positioning master base station controller time, the longer the accumulation time of positioning times, the greater the error, which will seriously cause the positioning cycle of the positioning beacon and the positioning base station to match and converge No, it leads to conflicts between the UWB positioning signals of the front and rear phases.
  • the time and phase of the beacon needs to be corrected periodically.
  • the solution is to perform clock correction in 3 steps at the positioning beacon end every 10s/time return.
  • the parameter to be corrected is the data frame parameter of the positioning request in the positioning master base station, and the clock of the positioning beacon is corrected by subtracting the offset clock error.
  • the positioning main base station will detect whether all the positioning beacons lose connection for a period of time, and clear the positioning phase time interval occupied by the positioning beacons that have lost the connection, so as to free up the idle positioning phase time interval, and wait for the next new positioning. Beacon networking.
  • This method uses the TOF positioning method to find the best positioning area through Bluetooth broadcasting and scanning, and uses Bluetooth communication to calculate and predict the idle phase period of the main base station before networking, which greatly reduces the frequency of UWB non-range communication.
  • the interval and number of beacon positioning are increased, which can largely solve the problem of parallel large-scale positioning of multiple beacons.
  • the positioning network topology of master base station + slave base station can solve the signal conflict and collision problem of simultaneous positioning of multiple beacons.
  • Each small positioning area of 50*50m can realize parallel positioning of 1000 beacons at the same time, and multiple small positioning areas will be able to Parallel positioning of 1000 beacons, large-scale positioning and use.
  • the method adopted in this paper is to use Bluetooth circuit communication to obtain the parameter information of the main base station, which frees up relatively idle time for the base station UWB communication.
  • the clock of the controller is used for networking and phase offset correction, and the time correction level is changed to The us level makes it easy to control the phase time.
  • Fig. 8 is a structural block diagram of a network positioning system according to one of the embodiments of the present disclosure. As shown in Fig. 8, the network positioning system is included in a positioning beacon, and the system includes:
  • the obtaining module 110 is configured to obtain Bluetooth broadcast positioning data broadcast by a positioning master base station in a preset positioning area through Bluetooth communication, wherein the Bluetooth broadcast positioning data is set as a positioning beacon for networking positioning;
  • the networking positioning module 120 is configured to perform networking positioning on the positioning beacon based on the Bluetooth broadcast positioning data.
  • the system further includes: a scanning module configured to scan through Bluetooth communication and obtain broadcast signals of a plurality of main base stations within a preset range, wherein the broadcast signal includes: the plurality of main base stations The Bluetooth broadcast positioning data corresponding to each main base station in the base station; the positioning main base station determining module is configured to determine the positioning main base station from the plurality of main base stations, and determine the coverage area of the positioning main base station as the A preset positioning area, where the positioning primary base station is a primary base station of the multiple primary base stations that broadcasts and receives a signal strength indicating the strongest RSSI.
  • a scanning module configured to scan through Bluetooth communication and obtain broadcast signals of a plurality of main base stations within a preset range, wherein the broadcast signal includes: the plurality of main base stations The Bluetooth broadcast positioning data corresponding to each main base station in the base station; the positioning main base station determining module is configured to determine the positioning main base station from the plurality of main base stations, and determine the coverage area of the positioning main base station as the A preset positioning area,
  • the Bluetooth broadcast positioning data includes: the ID of the positioning master base station and the positioning phase time interval in an idle state; and, the phase time of the positioning communication between the positioning beacon and the positioning master base station
  • the interval includes a plurality of the positioning phase time intervals
  • the preset positioning area further includes: at least two slave base stations;
  • the networking positioning module 120 includes: a networking time calculation unit configured to calculate the expected networking phase period based on the ID of the positioning main base station; the networking unit set to be within the expected networking phase period, Send a networking request to the main positioning base station to use the idle positioning phase time interval for networking; the positioning unit is set to determine the distance between the positioning beacon and the main positioning base station and the distance between the positioning beacon and the main positioning base station. The distance between the positioning beacon and each slave base station is measured and calculated, so as to locate the positioning beacon in the preset positioning area.
  • the positioning unit is further specifically configured to: obtain the recording duration of sending and receiving information when the positioning beacon interacts with the positioning master base station; It is assumed that the networking algorithm uses the positioning phase time interval in the idle state for networking.
  • the preset networking algorithm includes: TOF.
  • the ID of the positioning master base station and the ID of each slave base station are unique and non-overlapping; the positioning unit is further set to: based on the ID of the positioning master base station and each slave base station Send ranging request signals to the main positioning base station and the at least two slave base stations in sequence; based on the feedback signals of the main positioning base station and the at least two slave base stations respectively responding to the ranging request signal, Obtain the first distance data between the positioning beacon and the positioning master base station and the second distance data between the positioning beacon and the at least two slave base stations; The second distance data is sent to the main positioning base station, so that the main positioning base station calculates the first distance data and the second distance data to obtain the positioning coordinates of the positioning beacon.
  • the system further includes: a judgment module configured to determine whether the first distance data is greater than a preset threshold; when it is determined that the first distance data is greater than the preset threshold, determine The positioning beacon has left the preset positioning area, and the idle positioning phase time interval in the idle state is released; when it is determined that the first distance data is less than or equal to the preset threshold, it is determined to The first distance data and the second distance data are sent to the main positioning base station to obtain the positioning coordinates of the positioning beacon.
  • a judgment module configured to determine whether the first distance data is greater than a preset threshold; when it is determined that the first distance data is greater than the preset threshold, determine The positioning beacon has left the preset positioning area, and the idle positioning phase time interval in the idle state is released; when it is determined that the first distance data is less than or equal to the preset threshold, it is determined to The first distance data and the second distance data are sent to the main positioning base station to obtain the positioning coordinates of the positioning beacon.
  • an electronic device including a processor and a memory; the memory is configured to store computer instructions, and the processor is configured to run the computer instructions stored in the memory to A network positioning method described above is realized.
  • a computer-readable storage medium stores one or more modules, and the one or more modules can be configured by one or more The processor executes to implement the above-mentioned networking positioning method.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种组网定位方法、系统、设备及存储介质,其中,该方法包括:通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据,定位信标及定位主基站均设置有蓝牙通讯设备;基于蓝牙广播定位数据,对定位信标进行组网定位。定位信标通过蓝牙通讯来调制UWB通讯实现大面积基站和多个定位信标并行定位,还能通过定位主基站上的蓝牙通讯来获取最佳定位区域和每个定位信标定位组网相位周期,实现快速组网和定位,从而避免了使用UWB通讯获取占用UWB定位的通讯时间,从而实现定位信标快速自动组网,自动获取定位信标的定位周期规律,提高定位速度,增加可定位信标的个数,解决基站因局域限制问题。

Description

组网定位方法、系统、设备及存储介质
交叉援引
本公开基于申请号为201911002150.5、申请日为2019-10-21的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及无线通讯技术领域,尤其涉及一种组网定位方法、系统、设备及存储介质。
背景技术
由于超带宽(UWB)信号频段和通道的本身特性,2个UWB设备发射的信号之间存在严重干扰和信号冲突碰撞问题,因此一个UWB设备接收不到其他2个UWB设备同一时间刻发送的信号,由此会导致UWB接收端接收严重出错,甚至可能损坏接收器一直接收不到数据。在多基站的情况下,需要对UWB信标的开始测距相位时间进行分配组网,对每个信标的周期测距相位时间进行规划和调整,避免测距定位时刻存在两个或以上UWB设备信号交叉碰撞情况,这样会导致测距定位数据混乱,无法测距和定位。在大面积大规模多信标并行定位情况下,定位信标需要进行定位组网周期相位同步和获取最近主基站ID号,现有的UWB定位采用飞行时间测距法TOF定位方式(UWB双向测距定位测距方式)在满足定位效率的前提下只能满足基站区域块定位,即基站只能按照区域块进行部署,无法满足UWB基站的大面积无缝衔接,其原因是信标点每次定位时需要获取最近基站ID,会极大占用UWB一部分通讯测距时间,会降低UWB定位测距效率,减少可定位信标个数。
发明内容
本公开至少部分实施例提供了一种组网定位方法、系统、设备及存储介质, 以至少部分地克服上述技术问题。
在本公开其中一可选实施例中,提供了一种组网定位方法,应用于定位信标,所述方法包括:通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据,其中,所述蓝牙广播定位数据用于定位信标进行组网定位,所述定位信标和所述定位主基站均设置有蓝牙通讯设备;基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
在一些可选实施例中,在通过所述蓝牙通讯获取所述预设定位区域中所述定位主基站广播的所述蓝牙广播定位数据之前,所述方法包括:通过所述蓝牙通讯扫描并获取预设范围内多个主基站的广播信号,其中,所述广播信号包括:所述多个主基站中每个主基站对应的蓝牙广播定位数据;从所述多个主基站中确定所述定位主基站,并将所述定位主基站的覆盖区域确定为所述预设定位区域,其中,所述定位主基站为所述多个主基站中广播接收的信号强度指示RSSI最强的广播信号的主基站。
在一些可选实施例中,所述蓝牙广播定位数据包括:所述定位主基站的ID和处于空闲状态的定位相位时间区间;而且,所述定位信标和所述定位主基站定位通讯的相位时间区间包括多个所述定位相位时间区间,所述预设定位区域中还包括:至少两个从基站;基于所述蓝牙广播定位数据,对所述定位信标进行组网定位,包括:基于所述定位主基站的ID,计算出预计组网相位周期;在所述预计组网相位周期内,向所述定位主基站发出组网请求,以使用所述处于空闲状态的定位相位时间区间进行组网;对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行定位。
在一些可选实施例中,使用所述处于空闲状态的定位相位时间区间进行组网,包括:获取所述定位信标与所述定位主基站进行信息交互时发送信息及接收信息的记录时长;基于所述记录时长,通过预设组网算法使用所述处于空闲状态的定位相位时间区间进行组网。
在一些可选实施例中,所述预设组网算法包括:飞行时间测距法TOF。
在一些可选实施例中,所述定位主基站的ID与每个从基站的ID均是唯一且不重叠;对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行 定位,包括:基于所述定位主基站的ID及每个从基站的ID,向所述定位主基站及所述至少两个从基站依次发送测距请求信号;基于所述定位主基站及所述至少两个从基站分别响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的第一距离数据以及所述定位信标与所述至少两个从基站之间的第二距离数据;将所述第一距离数据和所述第二距离数据发送至所述定位主基站,以使所述定位主基站对所述第一距离数据和所述第二距离数据进行解算,得到所述定位信标的定位坐标。
在一些可选实施例中,在基于所述定位主基站响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的所述第一距离数据之后,所述方法还包括:确定所述第一距离数据是否大于预设阈值;当确定所述第一距离数据大于所述预设阈值时,确定所述定位信标已离开所述预设定位区域,而且所述处于空闲状态的空闲定位相位时间区间被释放;当确定所述第一距离数据小于或等于所述预设阈值时,确定将所述第一距离数据和所述第二距离数据发送至所述定位主基站以得到所述定位信标的定位坐标。
在本公开其中一可选实施例中,还提供了一种组网定位系统,所述系统包括:获取模块,设置为通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据,其中,所述蓝牙广播定位数据用于定位信标进行组网定位,所述定位信标和所述定位主基站均设置有蓝牙通讯设备;组网定位模块,设置为基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
在本公开其中一可选实施例中,还提供了一种电子设备,包括处理器和存储器;所述存储器设置为存储计算机指令,所述处理器设置为运行所述存储器存储的计算机指令,以实现上述的一种组网定位方法。
在本公开其中一可选实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述的一种组网定位方法。
本公开至少部分实施例具有如下有益效果:定位信标可以通过蓝牙通讯获取到预设定位区域中定位主基站广播的蓝牙广播定位数据,而定位主基站也可以广播该蓝牙广播定位数据,所述蓝牙广播定位数据用于定位信标进行组网定位,不仅可以通过蓝牙通讯来调制UWB通讯实现大面积基站和多个定位信标并行定位,还能通过定位主基站上的蓝牙通讯来获取最佳定位区域和每个定位信标 定位组网相位周期,实现快速组网和定位,从而避免了使用UWB通讯获取占用UWB定位的通讯时间,实现定位信标快速自动组网,自动获取定位信标的定位周期规律,提高定位速度,增加可定位信标的个数,解决基站因局域限制问题。
附图说明
图1是根据本公开其中一实施例的组网定位方法的流程图。
图2(a)是根据本公开其中一实施例的定位信标的组成电路示意图。
图2(b)是根据本公开其中一实施例的从基站的组成电路示意图。
图2(c)是根据本公开其中一实施例的定位主基站的组成电路示意图。
图3是根据本公开其中一实施例的蓝牙广播定位数据内容的示意图。
图4是根据本公开其中一实施例的主从定位基站部署位置分布关系示意图。
图5是根据本公开其中一实施例的定位信标进行定位组网的示意图。
图6是根据本公开其中一实施例的处于空闲状态的相位组网和相位释放逻辑关系示意图。
图7是根据本公开其中一实施例的定位信标组网相位周期示意图。
图8是根据本公开其中一实施例的组网定位系统的结构框图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
为了便于理解本公开实施例,下面通过几个具体实施例对本公开的实施过程进行详细的阐述。
图1是根据本公开其中一实施例的组网定位方法的流程图,如图1所示,该方法可应用于定位信标,该方法包括:
S11:通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据;
在本实施例中,该定位主基站和定位信标上分别增加有一个蓝牙通讯电路, 当然,在另一实施例中,也可以是所述定位信标及所述定位主基站均设置有蓝牙通讯设备。
当然,在本实施例中,该定位信标的数量设置为一个或多个。即:这些定位信标分别获取对应预设定位区域中定位主基站广播的蓝牙广播定位数据。
S21:基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
在本实施例中,并不对此处涉及的组网定位算法进行限定,其包括但不限于:飞行时间测距法TOF定位方式(UWB双向测距定位测距方式)。
故此,该定位信标可以通过蓝牙通讯获取到预设定位区域中定位主基站广播的蓝牙广播定位数据,而定位主基站也可以广播该蓝牙广播定位数据。其中,所述蓝牙广播定位数据用于定位信标进行组网定位,从而,既能通过蓝牙通讯来调制UWB通讯实现大面积基站和多个定位信标并行定位,还能通过定位主基站上的蓝牙通讯来获取最佳定位区域和每个定位信标定位组网相位周期,实现快速组网和定位,从而避免了使用UWB通讯获取占用UWB定位的通讯时间,实现定位信标快速自动组网,自动获取定位信标的定位周期规律,提高定位速度,增加可定位信标的个数,解决基站因局域限制问题。
此外,在上述S11之前,该方法还包括以下实现步骤:
S101:通过蓝牙通讯扫描并获取预设范围内多个主基站的广播信号,其中,所述广播信号包括:所述多个主基站中每个主基站对应的蓝牙广播定位数据;
S102:从所述多个主基站中确定所述定位主基站,并将所述定位主基站的覆盖区域确定为所述预设定位区域,其中,所述定位主基站为所述多个主基站中广播接收的信号强度指示RSSI最强的广播信号的主基站。
在本实施例中,该定位信标需要将信标端蓝牙工作设置为蓝牙扫描模式,若蓝牙扫描时长为半个定位周期Ts,定位信标刷新定位速率的时长为Ts,当一个扫描周期后没有扫描任何定位主基站的蓝牙信号,表示定位信标周围没有定位主基站,则定位信标会停止扫描,进入低功耗。在预设间隔时长后,定位信标再次开启周期扫描,若扫描到任何主基站的蓝牙广播信号,则一个扫描周期Ts后,定位信标将所有扫描到广播信号按照的RSSI信号强度排序,选出信号最强的定位主基站广播信号,并以该主基站为定位信标的定位主基站,而该定位主基站所覆盖的区域则为该定位信标的预设定位区域,因为是定位信标接收RSSI信号强度越强,则表示定位信标距离该定位主基站的距离越近,定位信标在最近基站下 的定位精度就越高,定位稳定性就越好。
此外,在另一实施例中,该蓝牙广播定位数据包括:所述定位主基站的ID和处于空闲状态的定位相位时间区间;而且,所述定位信标和所述定位主基站定位通讯的相位时间区间包括多个所述定位相位时间区间,所述预设定位区域中还包括:至少两个从基站;
在此情况下,上述S21的一种实现方式包括:
S211:基于所述定位主基站的ID,计算出预计组网相位周期;
在本实施例中,该定位信标在获得定位主基站的ID后,需要计算其与定位主基站进行组网的时间,从而,需要预先计算出预计组网相位周期。
S212:在所述预计组网相位周期内,向所述定位主基站发出组网请求,以使用所述处于空闲状态的定位相位时间区间进行组网;
所以,当到达该预设组网相位周期时,该定位信标需要向定位主基站发出组网请求,从而使用该处于空闲状态的定位相位时间区间进行组网。
S213:对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行定位。
在组网完成后,在本实施例中,该定位信标可以对其相对于定位主基站的距离以及相对于从基站的距离进行测量计算,从而,可以根据该测量计算结果以实现对该定位信标进行定位。
此外,在另一实施例中,针对上述使用处于空闲状态的定位相位时间区间进行组网的具体方式,其包括:获取所述定位信标与所述定位主基站进行信息交互时发送信息及接收信息的记录时长;基于所述记录时长,通过预设组网算法使用所述处于空闲状态的定位相位时间区间进行组网。
图7是根据本公开其中一实施例的定位信标组网相位周期示意图,如图7所示,Ti---表示定位主基站端的时间轴;Ti---表示定位信标端的时间轴;ti 1---表示主基站空闲相位在ti 1点周期;ti 2---表示主基站的广播时间点;ti 3---表示信标端预测相位组网对应主基站的时间点;ti 4---表示主基站空闲相位在ti 4点周期;t b---表示蓝牙广播过程的时间;tj 1---表示信标在tj 1时刻扫描到广播数据;tj 2---表示信标在tj 2时刻停止扫描广播数据;tj 3---表示信标端预测相位组网的 时间点;t de---表示信标预测相位组网需要延时的时间;T s---表示一个定位周期;N---表示一个定位周期内有N个可组网相位区间,表示N个可定位信标。故在本实施例中,如图7所示,图7为定位信标端的蓝牙扫描获取定位主基站端蓝牙广播数据的相位组网周期相位时间和定位主基站的ID号的周期图。
其中,实现多信标的重要思路是将每个定位信标和定位主基站的定位通讯的相位时间区间划分为多个定位相位时间区间,图7中一个细小黑色小矩形条表示一个已使用的定位相位时间区间,一个定位周期Ts内有N个定位相位时间区间,表示该预设定位区域中定位主基站可支持N个UWB信标定位,用白色小矩形条表示一个待组网的定位相位时间区间(即:上述处于空闲状态的定位相位时间区间)。为解决信标组网问题,定位主基站的蓝牙广播时间间隔需要小于定位周期Ts,本文将定位主基站的蓝牙广播间隔设定为Ts/2,定位主基站的控制器系统时间为ti;某次定位主基站端蓝牙广播数据的时间为ti 2,在ti 2时间前最近的处于空闲状态的定位相位时间区间对应的时间记为ti 1,由于定位主基站的蓝牙广播数据包需要一段时间,记蓝牙广播时间为t b,当定位信标端的蓝牙扫描到该广播信号时记扫描时间为tj 1,在tj 2时刻完成一个扫描周期,停止扫描,解析该广播数据,主要包括解析主基站ID号、定位主基站系统定时器广播时刻的时间ti 2和空闲相位时间ti 1,ti 1和ti 2均是采用主基站端的时基,ti 1和ti 2均是采用定位信标端的时基,两个时间相互独立,这里需要将两者的时间关联起来,其方法是在tj 2时刻信标扫描接收,假定定位信标计算出并预计在tj 3时刻可开始组网,则定位信标需要延时t de时间后方可对接相位时间,才能避免该定位信标在组网过程中与其他信标产生信号冲突,于是,在tj 2时刻相对于广播开始时间的相位差TD 1为:
TD 1=tj 2-tj 1+t b
定位信标组网相位时间相对于广播时间的相位差T 1为:
T 1=ti 2-ti 1
在定位信标端tj 2时刻的主基站系统时间ti 3为:
ti 3=T 1+TD 1
预计信标最快经过N s个整数周期后可对接组网相位时间,预计经过整数周期数N s为:
N s=abs(ti 3/T s)
则在ti 3时刻的相位延时时间T 2为:
T 2=((ti 3/T s)-N s)/T s
最后得到延时时间t de为:
t de=N s*T s–T 2
在ti 4时刻信标蓝牙关闭,开启UWB通讯,ti 4时刻向主基站发起组网请求,信标在ti 2时刻计算出下一次的处于空闲状态的定位相位时间区间的主基站端时间,同时计算预计还需要延时的时间t de,定位信标延时t de后在tj 3时刻向定位ie主基站开始发送组网请求,以上表示信标获取处于空闲状态的定位相位时间区间的时间的方法和过程,处于空闲状态的定位相位时间区间并非在下一个周期,若扫描停止时间在空闲相位时间之后,则该处于空闲状态的定位相位时间区间在下下个周期,于是,主基站端空闲相位组网是按照空闲组网相位区间中相位低到高的顺序组网,如图6所示,该方法表示信标组网使用区间和释放相位区间的顺序逻辑过程。
值得注意的是,从基站不增加蓝牙电路,该从基站主要是被动作用,主要是根据定位信标主动定位请求进行UWB双边双向测距,因此无需增加蓝牙电路。
而且,该定位主基站的ID与每个从基站的ID均是唯一且不重叠;上述S213的一种实现方式包括:基于所述定位主基站的ID及每个从基站的ID,向所述定位主基站及所述至少两个从基站依次发送测距请求信号;基于所述定位主基站及所述至少两个从基站分别响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的第一距离数据以及所述定位信标与所述至少两个从基站之间的第二距离数据;将所述第一距离数据和所述第二距离数据发送至所述定位主基站,以使所述定位主基站对所述第一距离数据和所述第二距离数据进行解算,得到所述定位信标的定位坐标。
在一些可选实施例中,该方法还包括::确定所述第一距离数据是否大于预设阈值;当确定所述第一距离数据大于所述预设阈值时,确定所述定位信标已离开所述预设定位区域,而且所述处于空闲状态的空闲定位相位时间区间被释放;当确定所述第一距离数据小于或等于所述预设阈值时,确定将所述第一距离数据和所述第二距离数据发送至所述定位主基站以得到所述定位信标的定位坐标。
图4是根据本公开其中一实施例的主从定位基站部署位置分布关系示意图,如图4所示,基站的部署规律是按照预设定位区域块规律部署,每个定位区域块 有一个定位主基站和至少2个以上定位从基站。
而且,预先将定位主从基站进行顺序ID编号,所有基站按照每个预设定位区域划分,即一个定位区域只有一个定位主基站和至少两个从基站,每个定位区域的定位主从基站编号规则是:从基站的ID编号依次在在主基站ID号的基础上自动顺序递增1个计数单位,保证每个定位区域内主从基站的ID号连续,保证所有定位基站的ID唯一不重叠。
由于一个小定位区域主从基站ID号具有顺序递增关系,且每个基站的ID号是唯一的,定位信标在上述步骤中获取了定位主基站的ID,同时对相位周期也进行了矫正;由于主从基站部署的ID满足顺序递增关系,只需要获取并确定主基站ID即可知从基站ID和基站数量,因此可向从基站进行测距请求,每次测距方法以主基站为准则进行测距,当定位信标没有更新定位主基站ID时候,信标将继续按照主基站ID以周期测距定位;从而,为了增加可定位信标的数目,测距法采用最通讯测距短时间方法,即双边双向测距法;测距顺序具有先后与主基站ID,从基站ID+1,从基站ID+2,从基站ID+3逐一顺序测距,每次距离后距离数据均在信标端,当信标完成一轮测距后将数据通过UWB传输到主基站,由主基站进行信标位置解算,再通过网络转发到远程服务器端。
在一些可选实施例中,通过蓝牙通讯来调制UWB通讯实现大面积基站和信标并行定位,在主基站端和信标端各增加蓝牙通讯电路,将每个定位周期的时间平均划分为多个信标定位测距的定位相位时间区间,采用蓝牙通讯替换UWB除定位信号的额外通讯。即,定位信标通过UWB发出定位信号,其余通讯均由蓝牙通讯完成,而额外通讯主要指获取最佳定位区域的最近主基站ID号和信标组网定位的定位相位时间区间,使得每个UWB信标自动分配相位时间,实现快速自动组网,从而增加了可定位信标的个数,解决多基站大规模面积使用的局限性。
在一些可选实施例中,采用UWB定位主基站和UWB定位从基站的网络拓扑关系,其网络拓扑和基站部署图示意图如图3所示,将定位主从基站进行顺序ID编号,所有基站按照每个定位区域划分,即一个定位区域只有一个定位主基站和2-5个从基站,每个定位区域的定位主从基站编号规则是:从基站的ID编号是依次在定位主基站ID号的基础上自动顺序递增1个计数单位,保证每个定位区域内主从基站的ID号连续,保证所有基站的ID唯一不重叠。
定位主基站增加蓝牙电路的主要作用是:
1、蓝牙周期广播主基站的参数,回馈答复定位信标广播的命令参数,广播信标组网参数信息和处于空闲状态的定位相位时间区间;
2、根据UWB信标(上述定位信标)主动定位请求帧进行UWB双边双向测距;
3、统一定位解算区域内定位信标坐标,统一上传距离数据或定位数据;
值得注意的是,从基站不增加蓝牙电路,从基站主要是被动作用,主要是根据UWB信标主动定位请求进行UWB双边双向测距,因此无需增加蓝牙电路。
定位信标增加蓝牙电路的主要作用是:
1、通过蓝牙扫描探嗅最佳定位区域并获取周围所有主基站广播信息;
2、按照广播的参数数据进行区域内相位周期组网定位;
3、计算预计组网相位周期,并在该预计组网相位周期时,主动发起定位请求,实现与主从基站测距定位。
在一些可选实施例中,如图2(a)、图2(b)和图2(c)所示,在主基站电路和信标电路上各增加一个蓝牙通讯电路,定位主基站由主控制器(STM32F4)、UWB收发器电路(DW1000)和UWB天线、蓝牙芯片电路(CC2640R2F)和蓝牙倒F天线、W5500以太网进而POE网络接口、无线WiFi电路以及12V-DC5.5/2.5接头和电源管理组成的;定位信标主要由低功耗主处理器Coter-M3+蓝牙收发电路(CC2640R2F)、UWB收发器(DW1000)和UWB天线、蓝牙电路和蓝牙天线、3.7V锂电池和电源充电管理电路模块组成,(定位信标电路说明:CC2640R2F是一款低功耗主处理器Coter0-M3+蓝牙收发电路集成在一起的芯片,从而电路省去了独立控制器电路,大大降低了信标功耗);定位从基站主要由主基站由主控制器(STM32F4)、UWB收发器电路(DW1000)和UWB天线、以及12V-DC5.5/2.5接头和电源管理组成。在图2(a)、图2(b)和图2(c)中,其中,RF1为蓝牙倒F收发天线(内置);RF2为UWB定位收发天线(内置);RF3为无线WiFi收发天线(外置);Cortex-M3+蓝牙电路为使用TI的CC2640R2F芯片,集成蓝牙电路和主控制器于一体的芯片。
此外,在本实施例中,增加蓝牙电路的好处是:①蓝牙是低功耗通讯设备,在扫描或广播时的功耗可降低至uA级别,②信标上蓝牙可在接收范围内扫描到多个定位主基站蓝牙广播的数据信息,方便筛选出最佳定位区域;故增加蓝牙通讯的主要目的是:①定位信标通过扫描以获取最佳定位区域,而获取最佳定位区 域实质是获取信标距离位置最近的定位主基站ID信息,原理为:信标距离主基站定位区域越近,信标扫描到的RSSI信号越强,定位稳定性越好,定位精度越高;②定位信标从定位主基站广播的信息中获取组网参数信息,定位主基站会实时更新空闲定位相位周期时区;③减少UWB通讯测距定位占用的时间,若采用信标UWB获取最佳定位区域占用通讯定位的时间。
在实际应用中,每个定位信标是到处移动的,可从一个定位区域到另一个定位区域,因此信标对每个定位区域组网是动态变化的过程,若有定位信标进入或离开定位区域(定位区域指的是满足定位信标能定位的最小基站区域范围),每个定位区域的通讯测距定位是不断变化更新的。因此本方法核心点是将每个定位信标通过基站定位所需时间看成一个通讯定位相位时间区间α,则在一个定位周期Ts内最多有N=Ts/α个通讯定位相位时间区间,表示在这个区域内可并行实现N个定位信标同时定位,每个定位信标是动态的过程,若定位信标在该定位区域内移动,则该定位信标在定位区域的定位相位时间区间不改变,当定位信标移动到下一个定位区域后,本定位区域的主基站将释放该段定位相位时间区间为空闲状态,以备有新的定位信标出现在本定位区域,将重新组网占用该定位相位时间区间,实现定位效率的最大化。定位相位时间区间的时间由该区域的主基站定时器进行调度管理,由主基站的控制器STM32F4进行主控执行。
而且,当一个定位信标进入一个定位区域时,其组网定位流程:
第1步:定位信标扫描周围主基站的广播数据、获取最近主基站广播数据参数;
第2步:定位信标解算最新空闲相位时间,且定位信标计算预计组网时间;
第3步:定位信标向定位基站发起组网和首次测距请求,主基站确定执行组网;
第4步:定位主基站回馈组网确定信号,定位信标再次矫正定位相位时间区间,相对主基站为时间参考,信标组网时间误差再次矫正;
第5步:根据ID号编号规则和定位区域的主从基站依次顺序测距,定位主基站监测定位信标是否离开区域。
第6步:定位信标完成一轮测距,将距离数据发到定位主基站进行一次定位解算,一次定位完成,则下一个测距周期则返回上一步,当定位10次后返回第4步骤进行时间矫正。
其定位流程的步骤表示定位信标从组网获取到组网成功再到定位计算的过程和逻辑,如图5所示,为具体的组网定位流程,具体实现的方法和步骤如下:
1、定位主基站的系统定时器组网时间将一直开启,定位主基站将周期广播蓝牙广播定位数据,定时器主要作用是给该区域的定位信标分配组网相位周期的基准时间,控制器驱动蓝牙芯片电路每T s/2的周期广播出定位主基站ID号、基站系统定时器广播时刻的时间ti和处于空闲状态的定位相位时间区间的时间,广播内容如图3所示,信标蓝牙会在周期T s扫描一次数据,ti时间属于在定位主基站端的计时时间,tj时间属于在信标端计时时间,两者计时时间之间本质是独立的。
2、获取并解析最近定位基站端蓝牙广播数据,主要是定位信标获取主基站端ID号和组网周期相位时间。首先定位信标低功耗主控制器驱动蓝牙芯片进行模式选择,将信标端蓝牙工作设置为蓝牙扫描模式,蓝牙扫描的时间为半个定位周期T s,信标刷新定位速率的时间为T s,当一个扫描周期T s后没有扫描任何定位基站的蓝牙信号,表示信标周围没有定位基站,则信标会停止扫描,进入低功耗,10s后信标再次开启周期扫描,若扫描到任何定位主基站的蓝牙广播信号,则一个扫描周期T s后信标主控制器对所有扫描到的RSSI信号强度排序,选出信号最强的主基站参数数据,以此主基站为信标的定位小区域,以主基站ID号作为参考进行测距定位,其原理是定位信标接收RSSI信号强度越强,则表示定位信标距离该定位主基站的距离越近,定位信标在最近基站下的定位精度就越高,定位稳定性就越好。
3、定位信标计算预计组网相位周期,而主基站通过蓝牙扫描信标组网请求,而且,UWB功能关闭。
如图7所示,是定位信标和定位主基站从组网前到定位后的相位周期图,具体指定位信标端的蓝牙扫描获取基站端蓝牙广播数据的相位(组网周期相位时间?)和定位ID号的周期图;实现多信标的重要思路是将每个定位信标和定位主基站的定位通讯的相位时间区间划分为多个定位相位时间区间,图7中一个细小黑色小矩形条表示一个已使用的定位相位时间区间,一个定位周期Ts内有N个定位相位时间区间,表示该预设定位区域中定位主基站可支持N个UWB信标定位,用白色小矩形条表示一个待组网的定位相位时间区间(即:上述处于空闲状态的定位相位时间区间)。为解决信标组网问题,定位主基站的蓝牙广播时间间 隔需要小于定位周期Ts,本文将定位主基站的蓝牙广播间隔设定为Ts/2,定位主基站的控制器系统时间为ti;某次定位主基站端蓝牙广播数据的时间为ti 2,在ti 2时间前最近的处于空闲状态的定位相位时间区间对应的时间记为ti 1,由于定位主基站的蓝牙广播数据包需要一段时间,记蓝牙广播时间为t b,当定位信标端的蓝牙扫描到该广播信号时记扫描时间为tj 1,在tj 2时刻完成一个扫描周期,停止扫描,解析该广播数据,主要包括解析主基站ID号、定位主基站系统定时器广播时刻的时间ti 2和空闲相位时间ti 1,ti 1和ti 2均是采用主基站端的时基,ti 1和ti 2均是采用定位信标端的时基,两个时间相互独立,这里需要将两者的时间关联起来,其方法是在tj 2时刻信标扫描接收,假定定位信标计算出并预计在tj 3时刻可开始组网,则定位信标需要延时t de时间后方可对接相位时间,才能避免该定位信标在组网过程中与其他信标产生信号冲突,于是,在tj 2时刻相对于广播开始时间的相位差TD 1为:
TD 1=tj 2-tj 1+t b
定位信标组网相位时间相对于广播时间的相位差T 1为:
T 1=ti 2-ti 1
在定位信标端tj 2时刻的主基站系统时间ti 3为:
ti 3=T 1+TD 1
预计信标最快经过N s个整数周期后可对接组网相位时间,预计经过整数周期数N s为:
N s=abs(ti 3/T s)
则在ti 3时刻的相位延时时间T 2为:
T 2=((ti 3/T s)-N s)/T s
最后得到延时时间t de为:
t de=N s*T s–T 2
在ti 4时刻信标蓝牙关闭,开启UWB通讯,ti 4时刻向主基站发起组网请求,信标在ti 2时刻计算出下一次的处于空闲状态的定位相位时间区间的主基站端时间,同时计算预计还需要延时的时间t de,定位信标延时t de后在tj 3时刻向定位ie主基站开始发送组网请求,以上表示信标获取处于空闲状态的定位相位时间区间的时间的方法和过程,处于空闲状态的定位相位时间区间并非在下一个周期,若扫描停止时间在空闲相位时间之后,则该处于空闲状态的定位相位时间区间在 下下个周期,于是,主基站端空闲相位组网是按照空闲组网相位区间中相位低到高的顺序组网,如图6所示的方法,方法表示信标组网使用区间和释放相位区间的顺序逻辑过程。
4、组网反馈确定并校准定位相位误差偏移,其目的包括:①可避免多个空闲信标同时出现组网请求;②可再次校准信标与基站定位的相位偏差,由于存在多个定位信标,没有固定参考,将主基站的时间设置为标准参考时间,在步骤2可确定最近定位主基站ID号和组网的相位时间,定位信标记录发送组网请求时间tj 3,主基站端接收到组网请求并记录接收时间ti 4,定位主基站确定组网后将ti 4反馈到信标端,因此,信标端预计主基站在ti 4时刻的时间为:
ti 2+t b+(tj 3-tj 1)
因此信标端下次组网的时间需要减去矫正时间T drp
T drp=ti 4-(ti 2+t b+(tj 3-tj 1))
则定位信标完成一个定位解算周期后下次测距时间周期变为(T s-T drp),从而实现校准定位相位误差的偏移。
5、组网成功,开始UWB定位测距,如图4所示,部署规律是按照定位小区域块规律部署,每个定位区域块有一个定位主基站和至少2个以上定位从基站,由于一个小定位区域主从基站ID号具有顺序递增关系,且每个基站的ID号是唯一的,定位信标在上述步骤中获取了定位主基站的ID,同时对相位周期也进行了矫正;由于主从基站部署的ID满足顺序递增关系,只需要获取并确定主基站ID即可知从基站ID和基站数量,因此可向从基站进行测距请求,每次测距方法以主基站为准则进行测距,当定位信标没有更新定位主基站ID时候,信标将继续按照主基站ID以周期测距定位;从而,为了增加可定位信标的数目,测距法采用最通讯测距短时间方法,即双边双向测距法;测距顺序具有先后与主基站ID,从基站ID+1,从基站ID+2,从基站ID+3逐一顺序测距,每次距离后距离数据均在信标端,当信标完成一轮测距后将数据通过UWB传输到主基站,由主基站进行信标位置解算,再通过网络转发到远程服务器端。
由于信标组网频繁,主基站数据吞吐量很大,运算量较大,本公开使用STM32F4为主基站处理器,从基站每次答复测距信号结束后,当定位主基站检测到定位信标失去连接,就释放该定位相位时间区间,该定位相位时间区间状态从 占用变为空闲,只有下次有新的定位信标请求后,才进行新一次组网流程,如图6所示。
6、组网周期校准,由于信标控制器时间和定位主基站控制器时间均存在晶振时钟偏差,定位次数累积时间越久,误差越大,严重会导致定位信标和定位基站的定位周期匹配衔接不上,导致前后相位的UWB定位信号冲突,为避免时钟偏移的误差,需要周期性对信标时间相位校正,解决方法是定位信标端每周期10s/次返回3骤进行时钟校正,其矫正的参数是在定位主基站回复定位请求的数据帧参数,通过减去偏移时钟误差对定位信标的时钟进行校正。同时定位主基站会定时一段时间检测所有定位信标是否失去连接,将失去连接的定位信标所占用的定位相位时间区间清空,以腾出处于空闲状态的定位相位时间区间,待下一次新定位信标组网。
本方法采用的是TOF定位方式,通过蓝牙广播和扫描方式寻找最佳定位区域,使用蓝牙通讯方式进行组网前计算和预测主基站空闲相位周期,极大减少了UWB非测距通讯的频次,增加了信标定位的区间和个数,可以很大程度上解决多信标并行大规模定位的问题。采用主基站+从基站的定位网络拓扑定位,可以解决多信标同时定位的信号冲突碰撞问题,每50*50m的定位小区域可同时实现1000个信标并行定位,多个定位小区域将可并行1000个信标定位,可大规模定位使用。
当然,还可以使用TDOA无线时钟同步法需要对UWB的时钟进行频繁的校正,是直接对电磁波皮秒级别的时间进行同步,UWB皮秒对时钟精度要求极高高,无线时钟同步法很难实现飞秒级别的时钟同步,目前市场上采用TDOA定位方法的精度只能做到50cm,且现场安装调试的难度很大;本文介绍的方法是基于TOF方式的蓝牙通讯实现的UWB多信标大规模并行定位法,精度仍然可保证在10cm-20cm,且现场的安装难度较小,无需皮秒级别的无线时钟同步。本文采用的方法是采用蓝牙电路通讯获取主基站参数信息,为基站UWB通讯腾出了相对空闲时间,采用的是控制器的时钟进行组网的和相位偏移矫正的,将时间矫正级别变为us级别,使相位时间控制变得容易。
图8是根据本公开其中一实施例的组网定位系统的结构框图,如图8所示,该组网定位系统包含于定位信标,所述系统包括:
获取模块110,设置为通过蓝牙通讯获取预设定位区域中定位主基站广播的 蓝牙广播定位数据,其中,所述蓝牙广播定位数据设置为定位信标进行组网定位;
组网定位模块120,设置为基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
在一些可选实施例中,所述系统还包括:扫描模块,设置为通过蓝牙通讯扫描并获取预设范围内多个主基站的广播信号,其中,所述广播信号包括:所述多个主基站中每个主基站对应的蓝牙广播定位数据;定位主基站确定模块,设置为从所述多个主基站中确定所述定位主基站,并将所述定位主基站的覆盖区域确定为所述预设定位区域,其中,所述定位主基站为所述多个主基站中广播接收的信号强度指示RSSI最强的广播信号的主基站。
在一些可选实施例中,因为蓝牙广播定位数据包括:所述定位主基站的ID和处于空闲状态的定位相位时间区间;而且,所述定位信标和所述定位主基站定位通讯的相位时间区间包括多个所述定位相位时间区间,所述预设定位区域中还包括:至少两个从基站;
所以,组网定位模块120包括:组网时间计算单元,设置为基于所述定位主基站的ID,计算出预计组网相位周期;组网单元,设置为在所述预计组网相位周期内,向所述定位主基站发出组网请求,以使用所述处于空闲状态的定位相位时间区间进行组网;定位单元,设置为对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行定位。
在一些可选实施例中,所述定位单元还具体设置为:获取所述定位信标与所述定位主基站进行信息交互时发送信息及接收信息的记录时长;基于所述记录时长,通过预设组网算法使用所述处于空闲状态的定位相位时间区间进行组网。
在一些可选实施例中,所述预设组网算法包括:飞行时间测距法TOF。
在一些可选实施例中,所述定位主基站的ID与每个从基站的ID均是唯一且不重叠;所述定位单元还设置为:基于所述定位主基站的ID及每个从基站的ID,向所述定位主基站及所述至少两个从基站依次发送测距请求信号;基于所述定位主基站及所述至少两个从基站分别响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的第一距离数据以及所述定位信标与所述至少两个从基站之间的第二距离数据;将所述第一距离数据和所述第二距离数据发送至所述定位主基站,以使所述定位主基站对所述第一距离数据和所述第二距离数 据进行解算,得到所述定位信标的定位坐标。
在一些可选实施例中,所述系统还包括:判断模块,设置为确定所述第一距离数据是否大于预设阈值;当确定所述第一距离数据大于所述预设阈值时,确定所述定位信标已离开所述预设定位区域,而且所述处于空闲状态的空闲定位相位时间区间被释放;当确定所述第一距离数据小于或等于所述预设阈值时,确定将所述第一距离数据和所述第二距离数据发送至所述定位主基站以得到所述定位信标的定位坐标。
在本公开其中一可选实施例中,还提供了一种电子设备,包括处理器和存储器;所述存储器设置为存储计算机指令,所述处理器设置为运行所述存储器存储的计算机指令,以实现上述的一种组网定位方法。
在本公开其中一可选实施例中的一种电子设备所涉及的名词及实现原理具体可以参照本公开上述实施例中的一种组网定位方法,在此不再赘述。
在本公开其中一可选实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个模块,所述一个或者多个模块可被一个或者多个处理器执行,以实现上述的一种组网定位方法。
在本公开其中一可选实施例中的一种计算机可读存储介质所涉及的名词及实现原理具体可以参照本公开上述实施例中的一种组网定位方法,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质 上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (10)

  1. 一种组网定位方法,所述方法包括:
    通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据,其中,所述蓝牙广播定位数据用于定位信标进行组网定位,所述定位信标和所述定位主基站均设置有蓝牙通讯设备;
    基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
  2. 根据权利要求1所述的方法,其中,在通过所述蓝牙通讯获取所述预设定位区域中所述定位主基站广播的所述蓝牙广播定位数据之前,所述方法包括:
    通过所述蓝牙通讯扫描并获取预设范围内多个主基站的广播信号,其中,所述广播信号包括:所述多个主基站中每个主基站对应的蓝牙广播定位数据;
    从所述多个主基站中确定所述定位主基站,并将所述定位主基站的覆盖区域确定为所述预设定位区域,其中,所述定位主基站为所述多个主基站中广播接收的信号强度指示RSSI最强的广播信号的主基站。
  3. 根据权利要求1所述的方法,其中,所述蓝牙广播定位数据包括:所述定位主基站的标识ID和处于空闲状态的定位相位时间区间;所述预设定位区域中还包括:至少两个从基站;
    基于所述蓝牙广播定位数据,对所述定位信标进行组网定位,包括:
    基于所述定位主基站的ID,计算出预计组网相位周期;
    在所述预计组网相位周期内,向所述定位主基站发出组网请求,以使用所述处于空闲状态的定位相位时间区间进行组网;
    对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行定位。
  4. 根据权利要求3所述的方法,其中,使用所述处于空闲状态的定位相位时间区间进行组网,包括:
    获取所述定位信标与所述定位主基站进行信息交互时发送信息及接收信息的记录时长;
    基于所述记录时长,通过预设组网算法使用所述处于空闲状态的定位相位时间区间进行组网。
  5. 根据权利要求4所述的方法,其中,所述预设组网算法包括:飞行时间测距法TOF。
  6. 根据权利要求3所述的方法,其中,所述定位主基站的ID与每个从基站的ID均是唯一且不重叠;
    对所述定位信标与所述定位主基站之间的距离以及所述定位信标与每个从基站之间的距离进行测量计算,以在所述预设定位区域中对所述定位信标进行定位,包括:
    基于所述定位主基站的ID及每个从基站的ID,向所述定位主基站及所述至少两个从基站依次发送测距请求信号;
    基于所述定位主基站及所述至少两个从基站分别响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的第一距离数据以及所述定位信标与所述至少两个从基站之间的第二距离数据;
    将所述第一距离数据和所述第二距离数据发送至所述定位主基站,以使所述定位主基站对所述第一距离数据和所述第二距离数据进行解算,得到所述定位信标的定位坐标。
  7. 根据权利要求6所述的方法,其中,在基于所述定位主基站响应所述测距请求信号的反馈信号,得到所述定位信标与所述定位主基站之间的所述第一距离数据之后,所述方法还包括:
    确定所述第一距离数据是否大于预设阈值;
    当确定所述第一距离数据大于所述预设阈值时,确定所述定位信标已离开所述预设定位区域,而且所述处于空闲状态的空闲定位相位时间区间被释放;当确定所述第一距离数据小于或等于所述预设阈值时,确定将所述第一距离数据和所述第二距离数据发送至所述定位主基站以得到所述定位信标的定位坐标。
  8. 一种组网定位系统,所述系统包括:
    获取模块,设置为通过蓝牙通讯获取预设定位区域中定位主基站广播的蓝牙广播定位数据,其中,所述蓝牙广播定位数据用于定位信标进行组网定位,所述定位信标和所述定位主基站均设置有蓝牙通讯设备;
    组网定位模块,设置为基于所述蓝牙广播定位数据,对所述定位信标进行组网定位。
  9. 一种电子设备,包括处理器和存储器;
    所述存储器设置为存储计算机指令,所述处理器设置为运行所述存储器存储的计算机指令,以实现权利要求1至7中任一项所述的一种组网定位方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至7中任一项所述的一种组网定位方法。
PCT/CN2020/108538 2019-10-21 2020-08-11 组网定位方法、系统、设备及存储介质 WO2021077865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,442 US20220394654A1 (en) 2019-10-21 2020-08-11 Networking and positioning method, system and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911002150.5 2019-10-21
CN201911002150.5A CN112770268B (zh) 2019-10-21 2019-10-21 组网定位方法、系统、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021077865A1 true WO2021077865A1 (zh) 2021-04-29

Family

ID=75619386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108538 WO2021077865A1 (zh) 2019-10-21 2020-08-11 组网定位方法、系统、设备及存储介质

Country Status (3)

Country Link
US (1) US20220394654A1 (zh)
CN (1) CN112770268B (zh)
WO (1) WO2021077865A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923667A (zh) * 2021-09-30 2022-01-11 北京字节跳动网络技术有限公司 终端设备的控制方法、装置、设备及介质
CN114363799A (zh) * 2021-12-01 2022-04-15 云南电网有限责任公司昆明供电局 一种根据需求动态启停的无人机室内定位系统
CN115015835A (zh) * 2022-06-23 2022-09-06 武汉理工大学 一种基于uwb定位系统的地图增强锚点选择定位方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507743B (zh) * 2021-06-21 2023-03-28 上海闻泰信息技术有限公司 Uwb定位系统及其组网方法
CN113923752B (zh) * 2021-08-26 2023-04-07 珠海格力电器股份有限公司 一种组网测距方法、存储介质以及设备
CN114513747A (zh) * 2022-02-21 2022-05-17 长沙驰芯半导体科技有限公司 一种uwb定位网络跨区域时钟同步的方法
CN114859291A (zh) * 2022-07-07 2022-08-05 广东师大维智信息科技有限公司 狭长空间定位方法、计算机可读存储介质及计算机设备
CN116471604A (zh) * 2023-05-04 2023-07-21 乾位智通(深圳)技术有限公司 组网系统、方法、装置、uwb定位基站和存储介质
CN117119585B (zh) * 2023-08-26 2024-02-06 江苏蓝策电子科技有限公司 一种蓝牙定位导航系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103995251A (zh) * 2014-06-11 2014-08-20 中国电信股份有限公司南京分公司 室内移动设备的定位系统及其方法
US20170164315A1 (en) * 2011-08-18 2017-06-08 Rivada Research, Llc Method and System for Performing Trilateration for Fixed Infrastructure Nodes (FIN) Based On Enhanced Location Based Information
CN107315166A (zh) * 2017-07-02 2017-11-03 武汉大学 基于单个或多个蓝牙发射单元的微星基站定位系统及方法
CN107631732A (zh) * 2017-11-02 2018-01-26 武汉大学 基于蓝牙、Wi‑Fi和声波的混合室内定位方法及系统
CN109640268A (zh) * 2018-12-14 2019-04-16 长沙智能机器人研究院有限公司 一种超宽带无线通信室内定位系统的组网方法
CN109975758A (zh) * 2019-02-20 2019-07-05 苏州普息导航技术有限公司 Wi-Fi蓝牙一体化基站定位系统
CN209250893U (zh) * 2018-11-06 2019-08-13 南京沃旭通讯科技有限公司 一种提供定位服务的uwb基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346120B2 (en) * 1998-12-11 2008-03-18 Freescale Semiconductor Inc. Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions
CN106879067A (zh) * 2017-01-17 2017-06-20 广州土圭垚信息科技有限公司 一种基于双差分双工的超宽带无线定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170164315A1 (en) * 2011-08-18 2017-06-08 Rivada Research, Llc Method and System for Performing Trilateration for Fixed Infrastructure Nodes (FIN) Based On Enhanced Location Based Information
CN103995251A (zh) * 2014-06-11 2014-08-20 中国电信股份有限公司南京分公司 室内移动设备的定位系统及其方法
CN107315166A (zh) * 2017-07-02 2017-11-03 武汉大学 基于单个或多个蓝牙发射单元的微星基站定位系统及方法
CN107631732A (zh) * 2017-11-02 2018-01-26 武汉大学 基于蓝牙、Wi‑Fi和声波的混合室内定位方法及系统
CN209250893U (zh) * 2018-11-06 2019-08-13 南京沃旭通讯科技有限公司 一种提供定位服务的uwb基站
CN109640268A (zh) * 2018-12-14 2019-04-16 长沙智能机器人研究院有限公司 一种超宽带无线通信室内定位系统的组网方法
CN109975758A (zh) * 2019-02-20 2019-07-05 苏州普息导航技术有限公司 Wi-Fi蓝牙一体化基站定位系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923667A (zh) * 2021-09-30 2022-01-11 北京字节跳动网络技术有限公司 终端设备的控制方法、装置、设备及介质
CN114363799A (zh) * 2021-12-01 2022-04-15 云南电网有限责任公司昆明供电局 一种根据需求动态启停的无人机室内定位系统
CN115015835A (zh) * 2022-06-23 2022-09-06 武汉理工大学 一种基于uwb定位系统的地图增强锚点选择定位方法
CN115015835B (zh) * 2022-06-23 2024-04-12 武汉理工大学 一种基于uwb定位系统的地图增强锚点选择定位方法

Also Published As

Publication number Publication date
US20220394654A1 (en) 2022-12-08
CN112770268B (zh) 2022-07-15
CN112770268A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2021077865A1 (zh) 组网定位方法、系统、设备及存储介质
US20200305017A1 (en) Method, device, and system for inter-frequency cell measurement
US8982774B2 (en) Method for ranging to a station in power saving mode
WO2020258962A1 (zh) 一种传输时延指示方法及装置
CN104703233A (zh) 受限信道上的对等通信
KR20100034534A (ko) 무선노드의 이동성을 지원하는 위치인식 메시징 방법
WO2014004153A1 (en) Method for ranging to a station in power saving mode
US9219986B2 (en) Client device location using synchronized wireless receivers
US9971014B2 (en) Access point-assisted positioning framework
KR20090085104A (ko) 듀얼 라디오 디바이스 내의 자기유도 간섭을 방지하는 장치, 방법 및 물품
US11632762B2 (en) Communication using dynamic spectrum access based on channel selection
US20180206134A1 (en) Wireless environment information collection system and method
KR20060070570A (ko) 강화된 수동 스캐닝
CA2573290A1 (en) Neighbor scanning in wireless local area networks
JP2010175535A (ja) マルチオブジェクト測位システムおよび電力制御ベースの多重アクセス制御方法
US9414343B2 (en) Method and apparatus for synchronization for device-to-device communication in unlicensed frequency bands
CN111328081B (zh) 一种无线自组网方法
US11641619B2 (en) Optimized user equipment measurements for fast cell access
KR101874191B1 (ko) 무선 네트워크에서의 데이터 전송 예약 방법 및 장치
US11792653B2 (en) Channel control for communication using dynamic spectrum access
US10182413B2 (en) Wireless positioning using scheduled transmissions
US20150078239A1 (en) Power saving in wireless network entities
CN115066010B (zh) 多信道lora监测系统多级同步组网方法
CN103916931A (zh) 异构网络的终端接入方法、大基站、小基站、终端和系统
Kim et al. IEEE 802.15. 4a CSS-based localization system for wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879894

Country of ref document: EP

Kind code of ref document: A1