WO2021077622A1 - 定位方法、定位系统及汽车 - Google Patents

定位方法、定位系统及汽车 Download PDF

Info

Publication number
WO2021077622A1
WO2021077622A1 PCT/CN2019/130854 CN2019130854W WO2021077622A1 WO 2021077622 A1 WO2021077622 A1 WO 2021077622A1 CN 2019130854 W CN2019130854 W CN 2019130854W WO 2021077622 A1 WO2021077622 A1 WO 2021077622A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
credibility
subsystem
weight coefficient
positioning subsystem
Prior art date
Application number
PCT/CN2019/130854
Other languages
English (en)
French (fr)
Inventor
宋聚宝
原诚寅
Original Assignee
北京新能源汽车技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车技术创新中心有限公司 filed Critical 北京新能源汽车技术创新中心有限公司
Priority to US17/770,300 priority Critical patent/US20220390621A1/en
Publication of WO2021077622A1 publication Critical patent/WO2021077622A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • a positioning method characterized in that it comprises:
  • the main filter that obtains the federated Kalman filter feeds back to the sub-filters of each federated Kalman filter, respectively, according to the global data, the second information that each positioning subsystem participates in the fusion operation and assigns weight coefficients;
  • the first information distribution weight coefficient and the second information distribution weight coefficient determine the final information distribution weight coefficient for each positioning subsystem to participate in the fusion operation;
  • the fusion operation is performed by the federated Kalman filter according to the final information of each subsystem and the weight coefficient is allocated, and the final positioning result is output.
  • the weight coefficient is allocated to the first information of the fusion operation.
  • the first information distribution weight coefficient of each of the positioning subsystems and the second information distribution weight coefficient of each of the subsystems are added together and the average value is taken as the final information of each positioning subsystem Assign weight coefficient.
  • the positioning method according to claim 1 characterized in that, based on the historical statistical data of the operating parameter status of each positioning subsystem, the maximum value of the operating parameters in the historical statistical data of each positioning subsystem is calculated. The percentage of the good state and the worst state obtains the credibility of the different states of each of the subsystems.
  • the multiple positioning subsystems include a combined navigation positioning subsystem , The laser point cloud positioning subsystem and the camera vision positioning subsystem, each of the sub-filters is used to filter the positioning data output by one of the positioning subsystems.
  • the credibility of the integrated navigation and positioning subsystem corresponding to different locations is set, and the credibility of the integrated navigation and positioning subsystem is the same as that of the The degree of obscuration of buildings is negatively related
  • the reliability of the laser point cloud positioning subsystem corresponding to different locations is set, and the reliability of the laser point cloud positioning subsystem is set It is positively correlated with the obvious degree of the features of the surrounding objects;
  • the credibility of the laser point cloud positioning subsystem corresponding to different locations is set, and the credibility of the camera visual positioning subsystem is the same as that of the The degree of light change is positively correlated.
  • the internal parameter mode comprises:
  • the reliability of the integrated navigation and positioning subsystem corresponding to different GNSS signal stability and the number of connected satellites is set.
  • the reliability of the system is positively correlated with the stability of the GNSS signal and the number of connected satellites;
  • the credibility of the laser point cloud positioning subsystem corresponding to different point cloud matching degrees is set; the credibility of the laser point cloud positioning subsystem is equal to The point cloud matching degree is positively correlated;
  • the reliability of the laser point cloud positioning subsystem corresponding to different PM2.5 values is set according to the PM2.5 value obtained by the external PM2.5 measurement sensor, wherein the reliability of the laser point cloud positioning subsystem is the same as that of the PM2. .5 value negative correlation;
  • the credibility of the camera vision positioning subsystem corresponding to different light brightness values is set according to the light brightness value acquired by the external light sensor, wherein the credibility of the camera vision positioning subsystem is positively correlated with the light brightness value.
  • a positioning system characterized by comprising: multiple positioning subsystems, a federated Kalman filter, a credibility database and a credibility evaluation module, the federated Kalman filter comprising a main filter and a plurality of sub-systems filter;
  • the credibility database is used to store the credibility data tables of each positioning subsystem, wherein each credibility data table stores the credibility of each positioning subsystem in different states;
  • the credibility evaluation module is used to obtain the real-time credibility of each positioning subsystem from the corresponding credibility data table according to the real-time positioning data of each positioning subsystem, and to obtain the real-time credibility of each positioning subsystem according to the real-time positioning data of each positioning subsystem.
  • the real-time credibility obtains the first information distribution weight coefficient of each positioning subsystem participating in the fusion operation of the federated Kalman filter;
  • the main filter is configured to feed back to each of the sub-filters respectively the second information allocation weight coefficient that each positioning subsystem participates in the fusion operation according to the global data;
  • the credibility evaluation module determines the final information distribution weight coefficient for each positioning subsystem to participate in the fusion operation according to the first information distribution weight coefficient and the second information distribution weight coefficient;
  • the federated Kalman filter allocates weight coefficients according to the final information of each subsystem to perform the fusion operation and output a final positioning result.
  • the credibility evaluation module assigns the weight coefficient of the first information of each of the positioning subsystems to the weight coefficient of each of the subsystems.
  • the second information distribution weight coefficients are added together and the average value is taken as the final information distribution weight coefficient of each positioning subsystem.
  • the credibility evaluation module is preset with a credibility threshold of each of the positioning subsystems, and when the real-time credibility of the subsystem is When the degree of reliability is greater than or equal to the corresponding credibility threshold, the subsystem participates in the fusion operation; when the real-time credibility of the subsystem is less than the corresponding credibility threshold, the subsystem Does not participate in the fusion operation.
  • the multiple subsystems include an integrated navigation positioning subsystem, a laser point cloud positioning subsystem, and a camera vision positioning subsystem, and each of the sub-filters is used to filter positioning data output by one positioning subsystem.
  • An automobile characterized by comprising the positioning system according to any one of claims 10 to 14.

Abstract

一种定位方法、定位系统及汽车,方法包括:获取每个定位子系统在不同状态下的可信度并生成可信度数据表;根据每个定位子系统的实时定位数据从对应的可信度数据表中获取实时可信度;根据每个定位子系统的实时可信度求取每个定位子系统参与联邦卡尔曼滤波器融合运算的第一信息分配权重系数;通过主滤波器根据全局数据分别向每个子滤波器反馈每个定位子系统参与融合运算的第二信息分配权重系数;根据第一信息分配权重系数和第二信息分配权重系数确定每个定位子系统参与融合运算的最终信息分配权重系数;通过联邦卡尔曼滤波器根据每个子系统的最终信息分配权重系数进行融合运算并输出最终的定位结果。该方法有效优化各个定位子系统的信息分配权重,进而提高系统定位精度并提高定位系统的鲁棒性。

Description

无标题
1、一种定位方法,其特征在于,包括:
获取多个不同的定位子系统中每个所述定位子系统在不同状态下的可信度并生成每个定位子系统可信度数据表;
根据每个定位子系统的实时定位数据从对应的所述可信度数据表中获取每个定位子系统的实时可信度;
根据每个定位子系统的所述实时可信度求取每个定位子系统参与联邦卡尔曼滤波器融合运算的第一信息分配权重系数;
获取所述联邦卡尔曼滤波器的主滤波器根据全局数据分别向每个所述联邦卡尔曼滤波器的子滤波器反馈每个定位子系统参与融合运算的第二信息分配权重系数;根据所述第一信息分配权重系数和所述第二信息分配权重系数确定每个定位子系统参与融合运算的最终信息分配权重系数;
通过所述联邦卡尔曼滤波器根据每个所述子系统的所述最终信息分配权重系数进行所述融合运算并输出最终的定位结果。
2、根据权利要求1所述的定位方法,其特征在于,根据每个定位子系统的所述实时可信度求取每个定位子系统参与联邦卡尔曼滤波器融合运算的第一信息分配权重系数包括:
求取每个定位子系统的所述实时可信度与所述多个子系统的所述实时可信度之和的百分比,将每个所述百分比作为每个定位子系统参与联邦卡尔曼滤波器融合运算的所述第一信息分配权重系数。
3、根据权利要求1所述的定位方法,其特征在于,根据所述第一信息分配权重系数和所述第二信息分配权重系数确定每个定位子系统参与融合运算的最终信息分配权重系数包括:
将每个所述定位子系统的所述第一信息分配权重系数与每个所述子系统的所述第二信息分配权重系数相加后取平均值作为每个定位子系统的所 述最终信息分配权重系数。
4、根据权利要求1所述的定位方法,其特征在于,在所述获取每个所述定位子系统在不同状态下的可信度之后还包括:
分别设置每个所述定位子系统的可信度阈值,当所述子系统的所述实时可信度大于等于对应的所述可信度阈值时,所述子系统参与所述融合运算;当所述子系统的所述实时可信度小于对应的所述可信度阈值时,所述子系统不参与所述融合运算。
5、根据权利要求1所述的定位方法,其特征在于,基于每个定位子系统运行参数状态的历史统计数据,通过计算每个所述定位子系统的所述历史统计数据中运行参数的最好状态与最差状态的百分比获得每个所述子系统不同状态的可信度。
6、根据权利要求1所述的定位方法,其特征在于,所述获取每个所述定位子系统在不同状态下的可信度包括:
通过高精地图方式、内部参数方式、外部参数方式的至少其中之一获取所述多个定位子系统在不同状态下的可信度;其中,所述多个定位子系统包括组合导航定位子系统、激光点云定位子系统和相机视觉定位子系统,每个所述子滤波器用于对一个所述定位子系统输出的定位数据进行滤波。
7、根据权利要求6所述的定位方法,其特征在于,所述高精地图方式包括:
根据所述高精地图获取在不同地点的外部环境信息中的建筑物遮挡程度设置所述组合导航定位子系统对应不同地点的可信度,所述组合导航定位子系统的可信度与所述建筑物遮挡程度负相关;
根据所述高精地图获取在不同地点的外部环境信息中的周围物体特征明显程度设置所述激光点云定位子系统对应不同地点的可信度,所述激光点云定位子系统的可信度与所述周围物体特征明显程度正相关;
根据所述高精地图获取在不同地点的外部环境信息中的光线变化程度 设置所述激光点云定位子系统对应不同地点的可信度,所述相机视觉定位子系统的可信度与所述光线变化程度正相关。
8、根据权利要求6所述的定位方法,其特征在于,所述内部参数方式包括:
根据所述组合导航定位子系统中的GNSS信号稳定程度及连接卫星个数设置所述组合导航定位子系统对应不同GNSS信号稳定程度及不同连接卫星个数的可信度,所述组合导航定位子系统的可信度与所述GNSS信号稳定程度及连接卫星个数正相关;
根据所述所述激光点云定位子系统中的点云匹配度设置所述激光点云定位子系统对应不同点云匹配度的可信度;所述激光点云定位子系统的可信度与所述点云匹配度正相关;
根据所述相机视觉定位子系统中的特征匹配度设置所述相机视觉定位子系统对应不同特征匹配度的可信度,所述相机视觉定位子系统的可信度与所述特征匹配度正相关。
9、根据权利要求6所述的定位方法,其特征在于,所述外部参数方式包括:
根据外部PM2.5测量传感器获取的PM2.5值设置所述激光点云定位子系统对应不同PM2.5值的可信度,其中所述激光点云定位子系统的可信度与所述PM2.5值负相关;
根据外部光线传感器获取的光线明亮值设置所述相机视觉定位子系统对应不同光线明亮值的可信度,其中所述相机视觉定位子系统的可信度与所述光线明亮值正相关。
10、一种定位系统,其特征在于,包括:多个定位子系统、联邦卡尔曼滤波器、可信度数据库和可信度评价模块,所述联邦卡尔曼滤波器包括主滤波器和多个子滤波器;
所述可信度数据库用于存储每个定位子系统可信度数据表,其中每个 所述可信度数据表中存储有每个所述定位子系统在不同状态下的可信度;
所述可信度评价模块用于根据每个定位子系统的实时定位数据从对应的所述可信度数据表中获取每个定位子系统的实时可信度,并根据每个定位子系统的所述实时可信度求取每个定位子系统参与联邦卡尔曼滤波器融合运算的第一信息分配权重系数;
所述主滤波器用于根据全局数据分别向每个所述子滤波器反馈每个定位子系统参与融合运算的第二信息分配权重系数;
所述所述可信度评价模块根据所述第一信息分配权重系数和所述第二信息分配权重系数确定每个定位子系统参与融合运算的最终信息分配权重系数;
所述联邦卡尔曼滤波器根据每个所述子系统的所述最终信息分配权重系数进行所述融合运算并输出最终的定位结果。
11、根据权利要求10所述的定位系统,其特征在于,所述可信度评价模块通过计算每个定位子系统的所述实时可信度与所述多个子系统的所述实时可信度之和的百分比,以及将每个所述百分比作为每个定位子系统参与联邦卡尔曼滤波器融合运算的所述第一信息分配权重系数。
12、根据权利要求10所述的定位系统,其特征在于,所述可信度评价模块将每个所述定位子系统的所述第一信息分配权重系数与每个所述子系统的所述第二信息分配权重系数相加后取平均值作为每个定位子系统的所述最终信息分配权重系数。
13、根据权利要求10所述的定位系统,其特征在于,所述可信度评价模块预设有每个所述定位子系统的可信度阈值,当所述子系统的所述实时可信度大于等于对应的所述可信度阈值时,所述子系统参与所述融合运算;当所述子系统的所述实时可信度小于对应的所述可信度阈值时,所述子系统不参与所述融合运算。
14、根据权利要求10所述的定位系统,其特征在于,还包括高精地图 和惯性传感器,所述高精地图和所述惯性传感器用于提供绝对位置信息;
所述多个子系统包括组合导航定位子系统、激光点云定位子系统和相机视觉定位子系统,每个所述子滤波器用于对一个所述定位子系统输出的定位数据进行滤波。
15、一种汽车,其特征在于,包括根据权利要求10至14任意一项所述的定位系统。

Claims (1)

  1. Figure PCTCN2019130854-appb-100001
    Figure PCTCN2019130854-appb-100002
    Figure PCTCN2019130854-appb-100003
    Figure PCTCN2019130854-appb-100004
    Figure PCTCN2019130854-appb-100005
    Figure PCTCN2019130854-appb-100006
    Figure PCTCN2019130854-appb-100007
    Figure PCTCN2019130854-appb-100008
    Figure PCTCN2019130854-appb-100009
    Figure PCTCN2019130854-appb-100010
    Figure PCTCN2019130854-appb-100011
    Figure PCTCN2019130854-appb-100012
    Figure PCTCN2019130854-appb-100013
    Figure PCTCN2019130854-appb-100014
    Figure PCTCN2019130854-appb-100015
PCT/CN2019/130854 2019-10-22 2019-12-31 定位方法、定位系统及汽车 WO2021077622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,300 US20220390621A1 (en) 2019-10-22 2019-12-31 Positioning Method, Positioning System and Automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911006726.5 2019-10-22
CN201911006726.5A CN110646825B (zh) 2019-10-22 2019-10-22 定位方法、定位系统及汽车

Publications (1)

Publication Number Publication Date
WO2021077622A1 true WO2021077622A1 (zh) 2021-04-29

Family

ID=69013428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130854 WO2021077622A1 (zh) 2019-10-22 2019-12-31 定位方法、定位系统及汽车

Country Status (3)

Country Link
US (1) US20220390621A1 (zh)
CN (1) CN110646825B (zh)
WO (1) WO2021077622A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428759A (zh) * 2020-03-10 2020-07-17 北京新能源汽车技术创新中心有限公司 数据融合方法、电子设备及存储介质
CN111486840A (zh) * 2020-06-28 2020-08-04 北京云迹科技有限公司 机器人定位方法、装置、机器人及可读存储介质
CN114076959A (zh) * 2020-08-20 2022-02-22 华为技术有限公司 故障检测方法、装置及系统
CN112444246B (zh) * 2020-11-06 2024-01-26 北京易达恩能科技有限公司 高精度的数字孪生场景中的激光融合定位方法
CN112595329B (zh) * 2020-12-25 2023-02-28 北京百度网讯科技有限公司 车辆位置的确定方法、装置和电子设备
CN112415558B (zh) * 2021-01-25 2021-04-16 腾讯科技(深圳)有限公司 行进轨迹的处理方法及相关设备
CN114035187A (zh) * 2021-10-26 2022-02-11 北京国家新能源汽车技术创新中心有限公司 一种自动驾驶系统的感知融合方法
CN115468585A (zh) * 2022-08-30 2022-12-13 广州导远电子科技有限公司 一种组合导航数据的完好性检测方法及系统
CN116661465B (zh) * 2023-07-04 2023-10-31 无锡八英里电子科技有限公司 一种基于时序分析与多传感器融合的机器人自动行驶方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252677A (zh) * 2011-04-18 2011-11-23 哈尔滨工程大学 一种基于时间序列分析的变比例自适应联邦滤波方法
CN102673569A (zh) * 2012-05-25 2012-09-19 同济大学 车辆状态测算装置、方法及使用该装置的车辆
CN104406605A (zh) * 2014-10-13 2015-03-11 中国电子科技集团公司第十研究所 机载多导航源综合导航仿真系统
CN109459019A (zh) * 2018-12-21 2019-03-12 哈尔滨工程大学 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法
CN109471146A (zh) * 2018-12-04 2019-03-15 北京壹氢科技有限公司 一种基于ls-svm的自适应容错gps/ins组合导航方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143806A2 (en) * 2006-06-15 2007-12-21 Uti Limited Partnership Vehicular navigation and positioning system
US20090058723A1 (en) * 2007-09-04 2009-03-05 Mediatek Inc. Positioning system and method thereof
CN105866812B (zh) * 2016-03-24 2018-11-09 广东机电职业技术学院 一种车辆组合定位算法
KR102569904B1 (ko) * 2018-12-18 2023-08-24 현대자동차주식회사 표적 차량 추적 장치 및 그의 표적 차량 추적 방법과 그를 포함하는 차량

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252677A (zh) * 2011-04-18 2011-11-23 哈尔滨工程大学 一种基于时间序列分析的变比例自适应联邦滤波方法
CN102673569A (zh) * 2012-05-25 2012-09-19 同济大学 车辆状态测算装置、方法及使用该装置的车辆
CN104406605A (zh) * 2014-10-13 2015-03-11 中国电子科技集团公司第十研究所 机载多导航源综合导航仿真系统
CN109471146A (zh) * 2018-12-04 2019-03-15 北京壹氢科技有限公司 一种基于ls-svm的自适应容错gps/ins组合导航方法
CN109459019A (zh) * 2018-12-21 2019-03-12 哈尔滨工程大学 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法

Also Published As

Publication number Publication date
CN110646825B (zh) 2022-01-25
US20220390621A1 (en) 2022-12-08
CN110646825A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2021077622A1 (zh) 定位方法、定位系统及汽车
US11004261B2 (en) Method, device, computer system, and mobile apparatus for generating three-dimensional point cloud
US9965689B2 (en) Geometric matching in visual navigation systems
Wheeler et al. Consensus surfaces for modeling 3D objects from multiple range images
WO2018166287A1 (zh) 无人机的定位方法及装置
EP2573584A1 (en) Generic surface feature extraction from a set of range data
US20170085864A1 (en) Underwater 3d image reconstruction utilizing triple wavelength dispersion and camera system thereof
KR101996623B1 (ko) Gps 궤적 품질 지표를 이용한 고정밀 지도 데이터 구축 방법 및 시스템
US10991157B2 (en) Method and apparatus for matching 3-dimensional terrain information using heterogeneous altitude aerial images
CN109360239B (zh) 障碍物检测方法、装置、计算机设备和存储介质
WO2016169227A1 (zh) Gnss单点定位的方法及装置
JP2013513095A (ja) 物体の改善されたステレオ画像を得る方法およびシステム
WO2019033882A1 (zh) 数据处理方法、装置、系统和计算机可读存储介质
US20130028482A1 (en) Method and System for Thinning a Point Cloud
CN110033046B (zh) 一种计算特征匹配点分布可信度的量化方法
CN105701787B (zh) 基于置信度的深度图融合方法
KR101074277B1 (ko) 구조물 윤곽선 추출장치 및 방법
JP2007170821A (ja) 三次元変位計測方法
JP2006194705A (ja) 液体下の表面形状測定方法及びそのシステム
CN116777966A (zh) 一种农田路面环境下车辆航向角的计算方法
US20210149050A1 (en) Distance measuring method and apparatus
CN109238243B (zh) 一种基于倾斜摄影的测量方法、系统、存储介质及设备
JP7389883B1 (ja) 地表点抽出装置、地表点抽出方法およびプログラム
JP7366227B1 (ja) 地表点抽出装置、地表点抽出方法およびプログラム
JP3854270B2 (ja) 浸水深補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950086

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19950086

Country of ref document: EP

Kind code of ref document: A1