WO2018166287A1 - 无人机的定位方法及装置 - Google Patents

无人机的定位方法及装置 Download PDF

Info

Publication number
WO2018166287A1
WO2018166287A1 PCT/CN2018/072259 CN2018072259W WO2018166287A1 WO 2018166287 A1 WO2018166287 A1 WO 2018166287A1 CN 2018072259 W CN2018072259 W CN 2018072259W WO 2018166287 A1 WO2018166287 A1 WO 2018166287A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
gps
positioning system
auxiliary
weight
Prior art date
Application number
PCT/CN2018/072259
Other languages
English (en)
French (fr)
Inventor
王�琦
Original Assignee
北京京东尚科信息技术有限公司
北京京东世纪贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东尚科信息技术有限公司, 北京京东世纪贸易有限公司 filed Critical 北京京东尚科信息技术有限公司
Priority to US16/493,619 priority Critical patent/US20200081136A1/en
Publication of WO2018166287A1 publication Critical patent/WO2018166287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS

Definitions

  • the present disclosure relates to the field of drone technology, and in particular, to a method and device for positioning a drone.
  • UAV positioning methods usually use GPS (Global Positioning System) positioning, or use auxiliary positioning system positioning such as visual positioning technology, indoor positioning technology.
  • GPS Global Positioning System
  • auxiliary positioning system positioning such as visual positioning technology, indoor positioning technology.
  • GPS positioning accuracy is relatively low.
  • high positioning accuracy is required.
  • relying on GPS positioning may not meet the positioning requirements of the drone; the positioning accuracy of the auxiliary positioning system is greatly affected by the environment, so the auxiliary positioning system
  • the location information provided is also not accurate enough. How to improve the accuracy of the positioning of drones is an urgent problem to be solved.
  • One technical problem solved by the present disclosure is how to improve the accuracy of the positioning of the drone.
  • a method for locating a drone includes: receiving location information provided by a global positioning system (GPS) and location information provided by an auxiliary positioning system; determining positioning weights of the GPS and assisting the positioning system Positioning weight; according to the position information provided by the GPS, the position information provided by the auxiliary positioning system, the positioning weight of the GPS, and the positioning weight of the auxiliary positioning system, the position of the drone is calculated by weight.
  • GPS global positioning system
  • determining the positioning weight of the GPS and the positioning weight of the auxiliary positioning system include: calculating a GPS positioning error; taking a physical quantity negatively related to the GPS positioning error as a GPS positioning accuracy coefficient, and taking a positive correlation with the auxiliary positioning system signal quality information The physical quantity is used as the auxiliary positioning precision coefficient; according to the GPS positioning precision coefficient and the auxiliary positioning precision coefficient, the positioning weight of the GPS and the positioning weight of the auxiliary positioning system are determined.
  • the GPS positioning error is reciprocal and normalized to obtain a normalized GPS positioning accuracy coefficient; the auxiliary positioning system signal quality information is normalized to obtain a normalized auxiliary positioning accuracy coefficient.
  • calculating the GPS positioning error comprises: receiving a horizontal component positioning accuracy factor, a vertical component positioning accuracy factor, and a clock difference precision factor from the satellite; and a horizontal component positioning accuracy factor, a vertical component positioning accuracy factor, and a clock difference precision factor The arithmetic square root of the sum of squares is used as the GPS positioning error.
  • the auxiliary positioning system is a wireless positioning system
  • the auxiliary positioning system signal quality information is wireless signal quality information
  • the auxiliary positioning system is a visual aided positioning system that assists the positioning system in signal quality information for image quality information obtained by the drone from the ground to obtain an image.
  • the wireless positioning system includes: a Bluetooth positioning system, a wireless local area network positioning system, and a narrow bandwidth positioning system.
  • a positioning device for a drone comprising: an information receiving module configured to receive location information provided by a global positioning system GPS and location information provided by an auxiliary positioning system; weight determination The module is configured to determine a positioning weight of the GPS and a positioning weight of the auxiliary positioning system; the position calculation module is configured to: according to the position information provided by the GPS, the position information provided by the auxiliary positioning system, the positioning weight of the GPS, and the positioning weight of the auxiliary positioning system, Weight the position of the drone.
  • the weight determination module includes: an error calculation unit configured to calculate a GPS positioning error; a positioning accuracy coefficient determining unit configured to take a physical quantity negatively related to the GPS positioning error as a GPS positioning accuracy coefficient, and an auxiliary positioning system The physical quantity positively correlated with the signal quality information is used as an auxiliary positioning precision coefficient; the weight determining unit is configured to determine the positioning weight of the GPS and the positioning weight of the auxiliary positioning system according to the GPS positioning accuracy coefficient and the auxiliary positioning precision coefficient.
  • the positioning accuracy coefficient determining unit is configured to: perform a normalization operation on the GPS positioning error to obtain a normalized GPS positioning accuracy coefficient; and normalize the signal quality information of the auxiliary positioning system to obtain Normalized auxiliary positioning accuracy factor.
  • the auxiliary positioning system is a wireless positioning system
  • the auxiliary positioning system signal quality information is wireless signal quality information
  • the auxiliary positioning system is a visual aided positioning system that assists the positioning system in signal quality information for image quality information obtained by the drone from the ground to obtain an image.
  • the wireless positioning system includes: a Bluetooth positioning system, a wireless local area network positioning system, and a narrow bandwidth positioning system.
  • a positioning device for a drone comprising: a memory; and a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory The positioning method of the drone.
  • a computer readable storage medium stores computer instructions that, when executed by a processor, implement the aforementioned method of locating a drone.
  • the present disclosure weights the position of the drone according to the position information provided by the GPS, the position information provided by the auxiliary positioning system, the positioning weight of the GPS, and the positioning weight of the auxiliary positioning system, thereby improving the accuracy of the positioning of the drone.
  • 1 is a flow chart showing some embodiments of a positioning method of the disclosed drone.
  • FIG. 2 shows a flow diagram of some embodiments for determining positioning weights of GPS and positioning weights of an auxiliary positioning system.
  • 3 is a block diagram showing the construction of some embodiments of the positioning device of the disclosed drone.
  • FIG. 4 shows a block diagram of some embodiments of a weight determination module.
  • Figure 5 is a block diagram showing further embodiments of the positioning device of the disclosed drone.
  • Figure 6 is a block diagram showing still further embodiments of the positioning device of the disclosed drone.
  • the inventor analyzed the positioning method in the prior art, and pointed out that the reason for the low positioning accuracy of the UAV in the prior art is that the positioning of the UAV is relatively impossible by using a relatively single positioning method, and the positioning cannot be overcome.
  • the inherent defect of the method no matter which existing positioning method is adopted, the static positioning process will make the positioning result have a certain one-sidedness.
  • the inventor adopts the data fusion algorithm of the UAV assisted positioning system and the GPS positioning system, and realizes the dynamic positioning of the UAV according to different positioning accuracy of the plurality of positioning systems.
  • FIG. 1 is a flow chart showing some embodiments of a positioning method of the disclosed drone. As shown in FIG. 1, the positioning method of this embodiment includes steps S102 to S108.
  • step S102 location information provided by the GPS is received.
  • the drone can receive location information provided by the GPS from the satellite, and the location information can be longitude, latitude, and altitude information.
  • step S104 location information provided by the auxiliary positioning system is received.
  • the auxiliary positioning system may be a wireless positioning system, such as a Bluetooth positioning system, a wireless local area network positioning system, or a narrow bandwidth positioning system.
  • the assisted positioning system can also be a visual aided positioning system.
  • step S106 the positioning weight of the GPS and the positioning weight of the auxiliary positioning system are determined.
  • step S108 the position of the drone is weighted according to the position information provided by the GPS, the position information provided by the auxiliary positioning system, the positioning weight of the GPS, and the positioning weight of the auxiliary positioning system.
  • the position of the drone can be calculated according to formula (1).
  • P denotes the calculated position of the drone
  • Pg denotes the position information provided by the GPS
  • Pw denotes the position information provided by the auxiliary positioning system
  • Qg denotes the positioning weight of the GPS
  • Qw denotes the positioning weight of the auxiliary positioning system.
  • the composite positioning method is used to locate the UAV, which overcomes the inherent defects of the single positioning method, realizes the dynamic positioning of the UAV, and improves the positioning of the UAV.
  • the accuracy is required to determine the positioning weights of different positioning systems in real time.
  • FIG. 2 is a flow diagram showing some embodiments of determining GPS positioning weights and positioning weights of an auxiliary positioning system. As shown in FIG. 2, the implementation process of this embodiment includes steps S2062 to S2068.
  • step S2062 the drone calculates a GPS positioning error.
  • the drone can receive HDOP (horizontal dilution of precision, horizontal component accuracy factor), VDOP (vertical dilution of precision, vertical component positioning accuracy factor), and TDOP (time dilution of precision) clock precision factor from satellite.
  • HDOP indicates the positioning error of the GPS system in the horizontal direction
  • VDOP indicates the positioning error of the GPS system in the vertical direction
  • TDOP indicates the offset error of the UAV time table.
  • the drone calculates PDOP (position dilution of precision, three-dimensional position accuracy factor) according to formula (2), and further calculates GPS positioning error GDOP according to formula (3), that is, the horizontal component positioning accuracy factor, the vertical component positioning accuracy factor, and The arithmetic square root of the sum of the squares of the clock difference precision factors is used as the GPS positioning error, wherein the GDOP can reflect the positioning accuracy of the GPS.
  • PDOP position dilution of precision, three-dimensional position accuracy factor
  • step S2064 the physical quantity negatively correlated with the GPS positioning error is taken as the GPS positioning accuracy coefficient.
  • the core idea of this embodiment is to make the positioning weight higher when the positioning accuracy of the positioning system is higher. Therefore, for GPS, the smaller the GPS positioning error is, the higher the GPS positioning accuracy is, that is, the higher the GPS positioning accuracy coefficient, the higher the corresponding positioning weight. Therefore, the physical quantity negatively correlated with the GPS positioning error can be taken as the GPS positioning accuracy coefficient.
  • the normalization operation can be performed after taking the reciprocal of the GDOP to obtain a normalized GPS positioning accuracy coefficient G'.
  • step S2066 a physical quantity positively correlated with the auxiliary positioning system signal quality information is taken as the auxiliary positioning accuracy coefficient.
  • the drone normalizes the signal quality information of the auxiliary positioning system to obtain a normalized auxiliary positioning precision coefficient.
  • the auxiliary positioning system is a wireless positioning system
  • the auxiliary positioning system signal quality information is wireless signal quality information.
  • the factors affecting the positioning accuracy are mainly signal quality.
  • the signal quality information of the wireless positioning system is normalized to obtain a normalized auxiliary positioning accuracy coefficient R'.
  • the auxiliary positioning system is a visual aided positioning system
  • the auxiliary positioning system signal quality information is image quality information of the image obtained by the drone to capture the ground.
  • the image quality information may represent the positioning accuracy of the visual aided positioning system.
  • auxiliary positioning systems there are many types of auxiliary positioning systems, and the auxiliary positioning systems given in the examples are merely examples.
  • the core idea of this embodiment is to determine the weight according to different auxiliary positioning systems to find the physical quantity that can represent the positioning accuracy of the auxiliary positioning system.
  • step S2068 the positioning weight of the GPS and the positioning weight of the auxiliary positioning system are determined according to the GPS positioning accuracy coefficient and the auxiliary positioning precision coefficient.
  • the drone determines the positioning weight of the GPS and the positioning weight of the auxiliary positioning system according to the normalized GPS positioning accuracy coefficient and the normalized auxiliary positioning precision coefficient.
  • the positioning weight of the GPS and the positioning weight of the auxiliary positioning system can be determined according to formula (4).
  • the GPS signal is strong in the case of no occlusion and good weather, and the position information provided by the GPS is relatively accurate, and the GSP positioning accuracy decreases as the environment deteriorates.
  • the auxiliary positioning system at the landing point uses wireless positioning technology, and its positioning accuracy is related to the quality of the wireless signal. The better the quality of the wireless signal, the higher the positioning accuracy of the positioning system.
  • the signal strength of the auxiliary positioning system is strong near the ground, the position accuracy is high, and the positioning weight is large; as the altitude of the drone increases from the ground, the signal of the auxiliary positioning system gradually weakens. Reduced credibility.
  • the positioning system realizes the process of gradually switching from the auxiliary positioning system to the GPS.
  • the positioning system realizes the process of switching from GPS to auxiliary positioning system during the landing.
  • the method provided by the embodiment can significantly improve the positioning accuracy of the drone, and the ideal positioning accuracy of the drone can reach 10 cm or less, and the average positioning accuracy can reach 20 cm or less.
  • the positioning device 30 of the drone in this embodiment includes an information receiving module 302, a weight determining module 304, and a position calculating module 306.
  • the information receiving module 302 is configured to receive location information provided by the global positioning system (GPS) and location information provided by the auxiliary positioning system.
  • GPS global positioning system
  • the weight determination module 304 is configured to determine a positioning weight of the GPS and a positioning weight of the auxiliary positioning system.
  • the location calculation module 306 is configured to calculate the location of the drone according to the location information provided by the GPS, the location information provided by the auxiliary positioning system, the positioning weight of the GPS, and the positioning weight of the auxiliary positioning system.
  • the composite positioning method is used to locate the UAV, which overcomes the inherent defects of the single positioning method, realizes the dynamic positioning of the UAV, and improves the positioning of the UAV.
  • the accuracy is required to determine the positioning weights of different positioning systems in real time.
  • weight determination module Some embodiments of the weight determination module are described below in conjunction with FIG.
  • the weight determination module 304 in this embodiment includes an error calculation unit 4042, a positioning accuracy coefficient determination unit 4044, and a weight determination unit 4046.
  • the error calculation unit 4042 is configured to calculate a GPS positioning error.
  • the positioning accuracy coefficient determining unit 4044 is configured to take a physical quantity negatively related to the GPS positioning error as a GPS positioning precision coefficient, and take a physical quantity positively correlated with the auxiliary positioning system signal quality information as an auxiliary positioning precision coefficient.
  • the weight determining unit 4046 is configured to determine the positioning weight of the GPS and the positioning weight of the auxiliary positioning system according to the GPS positioning precision coefficient and the auxiliary positioning precision coefficient.
  • the GPS signal is strong in the case of no occlusion and good weather, and the position information provided by the GPS is relatively accurate, and the GSP positioning accuracy decreases as the environment deteriorates.
  • the auxiliary positioning system at the landing point uses wireless positioning technology, and its positioning accuracy is related to the quality of the wireless signal. The better the quality of the wireless signal, the higher the positioning accuracy of the positioning system.
  • the signal strength of the auxiliary positioning system is strong near the ground, the position accuracy is high, and the positioning weight is large; as the altitude of the drone increases from the ground, the signal of the auxiliary positioning system gradually weakens. Reduced credibility.
  • the positioning system realizes the process of gradually switching from the auxiliary positioning system to the GPS.
  • the positioning system realizes the process of switching from GPS to auxiliary positioning system during the landing.
  • the method provided by the embodiment can significantly improve the positioning accuracy of the drone, and the ideal positioning accuracy of the drone can reach 10 cm or less, and the average positioning accuracy can reach 20 cm or less.
  • the positioning accuracy coefficient determining unit is configured to: perform a normalization operation on the GPS positioning error to obtain a normalized GPS positioning accuracy coefficient; and normalize the signal quality information of the auxiliary positioning system to obtain Normalized auxiliary positioning accuracy factor.
  • the error calculation unit is configured to: receive a horizontal component positioning accuracy factor, a vertical component positioning accuracy factor, and a clock difference precision factor from the satellite; and set the horizontal component positioning accuracy factor, the vertical component positioning accuracy factor, and the clock difference precision factor
  • the arithmetic square root of the sum of squares is used as the GPS positioning error.
  • the auxiliary positioning system is a wireless positioning system that assists in positioning system signal quality information as wireless signal quality information.
  • the auxiliary positioning system is a visual aided positioning system that assists the positioning system in signal quality information for image quality information obtained by the drone from the ground to obtain an image.
  • the wireless positioning system includes: a Bluetooth positioning system, a wireless local area network positioning system, and a narrow bandwidth positioning system.
  • FIG. 5 is a block diagram showing further embodiments of the positioning device of the disclosed drone.
  • the positioning device 50 of the drone of this embodiment includes a memory 510 and a processor 520 coupled to the memory 510, the processor 520 being configured to perform the foregoing based on instructions stored in the memory 510.
  • the memory 510 may include, for example, a system memory, a fixed non-volatile storage medium, or the like.
  • the system memory stores, for example, an operating system, an application, a boot loader, and other programs.
  • FIG. 6 is a block diagram showing still further embodiments of the positioning device of the disclosed drone.
  • the positioning device 60 of the drone of this embodiment includes a memory 510 and a processor 520, and may further include an input/output interface 630, a network interface 640, a storage interface 650, and the like. These interfaces 630, 640, 650 and the memory 510 and the processor 520 can be connected, for example, via a bus 650.
  • the input/output interface 630 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • Network interface 640 provides a connection interface for various networked devices.
  • the storage interface 650 provides a connection interface for an external storage device such as an SD card or a USB flash drive.
  • the present disclosure also includes a computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement a method of locating a drone in any of the foregoing embodiments.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种无人机的定位方法及装置,涉及无人机技术领域,其中的无人机的定位方法包括:接收全球定位系统GPS提供的位置信息(步骤S102)以及接收辅助定位系统提供的位置信息(步骤S104);确定GPS的定位权重以及辅助定位系统的定位权重(步骤S106);根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置(步骤S108);从而提高了无人机定位的准确性。

Description

无人机的定位方法及装置
本申请是以CN申请号为201710148785.0,申请日为2017年3月14日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及无人机技术领域,特别涉及一种无人机的定位方法及装置。
背景技术
传统的无人机定位方法通常采用GPS(Global Positioning System,全球定位系统)定位,或者采用诸如视觉定位技术、室内定位技术等辅助定位系统定位。
发明内容
发明人认识到:GPS定位精度相对较低。当无人机位于起降点时,需要较高的定位精度,此时仅依靠GPS定位可能无法满足无人机的定位要求;辅助定位系统的定位准确性受环境影响较大,因此辅助定位系统提供的位置信息也不够准确。如何提高无人机定位的准确性,是目前亟待解决的问题。
本公开解决的一个技术问题是,如何提高无人机定位的准确性。
根据本公开实施例的一个方面,提供了一种无人机的定位方法,包括:接收全球定位系统GPS提供的位置信息以及辅助定位系统提供的位置信息;确定GPS的定位权重以及辅助定位系统的定位权重;根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
在一些实施例中,确定GPS的定位权重以及辅助定位系统的定位权重包括:计算GPS定位误差;取与GPS定位误差负相关的物理量作为GPS定位精度系数,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数;根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
在一些实施例中,对GPS定位误差取倒数后进行归一化操作,得到归一化GPS定位精度系数;对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。
在一些实施例中,计算GPS定位误差包括:从卫星接收水平分量定位精度因子、 垂直分量定位精度因子以及钟差精度因子;将水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子的平方和的算术平方根作为GPS定位误差。
在一些实施例中,辅助定位系统为无线定位系统,辅助定位系统信号质量信息为无线信号质量信息。
在一些实施例中,辅助定位系统为视觉辅助定位系统,辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。
在一些实施例中,无线定位系统包括:蓝牙定位系统、无线局域网定位系统、窄带宽定位系统。
根据本公开实施例的一个方面,提供了一种无人机的定位装置,其中,包括:信息接收模块,配置为接收全球定位系统GPS提供的位置信息以及辅助定位系统提供的位置信息;权重确定模块,配置为确定GPS的定位权重以及辅助定位系统的定位权重;位置计算模块,配置为根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
在一些实施例中,权重确定模块包括:误差计算单元,配置为计算GPS定位误差;定位精度系数确定单元,配置为取与GPS定位误差负相关的物理量作为GPS定位精度系数,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数;权重确定单元,配置为根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
在一些实施例中,定位精度系数确定单元配置为:对GPS定位误差取倒数后进行归一化操作,得到归一化GPS定位精度系数;对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。
在一些实施例中,辅助定位系统为无线定位系统,辅助定位系统信号质量信息为无线信号质量信息。
在一些实施例中,辅助定位系统为视觉辅助定位系统,辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。
在一些实施例中,无线定位系统包括:蓝牙定位系统、无线局域网定位系统、窄带宽定位系统。
根据本公开实施例的一个方面,提供了一种无人机的定位装置,其中,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述的无人机的定位方法。
根据本公开实施例的一个方面,提供了一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现前述的无人机的定位方法。
本公开根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置,从而提高了无人机定位的准确性。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开无人机的定位方法的一些实施例的流程示意图。
图2示出确定GPS的定位权重以及辅助定位系统的定位权重的一些实施例的流程示意图。
图3示出本公开无人机的定位装置的一些实施例的结构示意图。
图4示出权重确定模块的一些实施例的结构示意图。
图5示出本公开无人机的定位装置的另一些实施例的结构图。
图6示出本公开无人机的定位装置的又一些实施例的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
发明人对现有技术中的定位方法进行了分析,指出现有技术中无人机定位准确性较低的原因在于:采用相对单一的定位方法,对无人机进行定位,始终无法克服该定 位方法的固有缺陷;无论采用哪一种现有的定位方法,静态的定位过程都会使定位结果具有一定的片面性。
有鉴于此,发明人采用无人机辅助定位系统与GPS定位系统的数据融合算法,根据多个定位系统的不同定位精度实现无人机的动态定位。下面结合图1描述本公开提供的无人机的定位方法的一些实施例。
图1示出本公开无人机的定位方法的一些实施例的流程示意图。如图1所示,该实施例的定位方法包括步骤S102~步骤S108。
在步骤S102中,接收GPS提供的位置信息。
例如,无人机可以从卫星接收GPS提供的位置信息,该位置信息可以为经度、纬度以及高度信息。
在步骤S104中,接收辅助定位系统提供的位置信息。
其中,辅助定位系统可以为无线定位系统,例如蓝牙定位系统、无线局域网定位系统或者窄带宽定位系统。辅助定位系统还可以为视觉辅助定位系统。
在步骤S106中,确定GPS的定位权重以及辅助定位系统的定位权重。
无人机确定GPS的定位权重以及辅助定位系统的定位权重的具体过程在后文中进行详细描述。
在步骤S108中,根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
例如,可以根据公式(1)计算无人机的位置。
P=Qg*Pg+Qw*Pw                (1)
其中,P表示计算得到的无人机的位置,Pg表示GPS提供的位置信息,Pw表示辅助定位系统提供的位置信息,Qg表示GPS的定位权重,Qw表示辅助定位系统的定位权重。
根据上述实施例,无人机在运行过程中,需要实时动态的确定不同定位系统的定位权重。通过引入不同定位系统的数据可信度作为定位权重,采用复合的定位方法对无人机进行定位,克服了单一定位方法的固有缺陷,实现了无人机的动态定位,提高了无人机定位的准确性。
下面结合图2描述确定GPS的定位权重以及辅助定位系统的定位权重的一些实施例。
图2示出确定GPS的定位权重以及辅助定位系统的定位权重的一些实施例的流程 示意图。如图2所示,该实施例的实现过程包括步骤S2062~步骤S2068。
在步骤S2062中,无人机计算GPS定位误差。
例如,无人机可以从卫星接收HDOP(horizontal dilution of precision,水平分量精度因子)、VDOP(vertical dilution of precision,垂直分量定位精度因子)以及TDOP(time dilution of precision)钟差精度因子。其中,HDOP表示GPS系统在水平方向的定位误差,VDOP表示GPS系统在垂直方向的定位误差,TDOP表示无人机时表偏移误差。无人机根据公式(2)计算PDOP(position dilution of precision,三维位置精度因子),并进一步根据公式(3)计算GPS定位误差GDOP,即,将水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子的平方和的算术平方根作为GPS定位误差,其中,GDOP可以反映GPS的定位精度。
HDOP 2+VDOP 2=PDOP 2                 (2)
PDOP 2+TDOP 2=GDOP 2                 (3)
在步骤S2064中,取与GPS定位误差负相关的物理量作为GPS定位精度系数。
本领域技术人员应理解,本实施例的核心思想是使得定位系统的定位精度越高时定位权重越高。因此对于GPS而言,GPS定位误差越小GPS定位精度越高,也就是说GPS定位精度系数越高,相应的定位权重越高。所以可以取与GPS定位误差负相关的物理量作为GPS定位精度系数。例如,可以对GDOP取倒数后进行归一化操作,得到归一化GPS定位精度系数G’。
在步骤S2066中,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数。
例如,无人机对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。当辅助定位系统为无线定位系统时,辅助定位系统信号质量信息为无线信号质量信息。在无线定位技术中,影响定位精度的因素主要为信号质量。对无线定位系统信号质量信息进行归一化,得到归一化辅助定位精度系数R’。当辅助定位系统为视觉辅助定位系统时,辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。在视觉辅助定位技术中,图像质量信息可以表示视觉辅助定位系统的定位精度。
本领域技术人员应理解,辅助定位系统有很多种类,实施例中给出的辅助定位系统仅作为示例。本实施例的核心思想是,根据不同辅助定位系统,找出能代表该辅助定位系统定位精度的物理量来确定权重。
在步骤S2068中,根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
无人机根据归一化GPS定位精度系数以及归一化辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
例如,可以根据公式(4)确定GPS的定位权重以及辅助定位系统的定位权重。
Figure PCTCN2018072259-appb-000001
Figure PCTCN2018072259-appb-000002
根据上述实施例,在无遮挡、天气好的情况下GPS信号较强,GPS提供的位置信息相对准确,GSP定位精度随着环境变差而降低。另一方面,位于起落点的辅助定位系统采用无线定位技术,其定位精度和无线信号质量有关。无线信号质量越好辅助定位系统的定位精度越高。
根据无人机的起飞过程,在地面附近时辅助定位系统信号强度较强,提供的位置准确性高,定位权重较大;随着无人机距离地面高度的增加,辅助定位系统信号逐渐减弱,可信度降低。相对而言,由于环境逐渐变得开阔,GPS信号质量逐渐变好,GPS定位权重增加。因此伴随着无人机起飞过程,定位系统实现从辅助定位系统逐渐切换到GPS的过程。反之,降落过程中定位系统实现从GPS切换到辅助定位系统的过程。根据实际情况统计,采用本实施例提供的方法可以显著提高无人机的定位准确性,无人机的理想定位精度可以达到10cm以内,平均定位精度可以达到20cm以内。
下面结合图3描述本公开提供的无人机的定位装置的一些实施例。
图3示出本公开无人机的定位装置的一些实施例的结构示意图。如图3所示,该实施例中的无人机的定位装置30包括:信息接收模块302、权重确定模块304以及位置计算模块306。
信息接收模块302,配置为接收全球定位系统GPS提供的位置信息以及辅助定位系统提供的位置信息。
权重确定模块304,配置为确定GPS的定位权重以及辅助定位系统的定位权重。
位置计算模块306,配置为根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
根据上述实施例,无人机在运行过程中,需要实时动态的确定不同定位系统的定位权重。通过引入不同定位系统的数据可信度作为定位权重,采用复合的定位方法对 无人机进行定位,克服了单一定位方法的固有缺陷,实现了无人机的动态定位,提高了无人机定位的准确性。
下面结合图4描述权重确定模块的一些实施例。
图4示出权重确定模块的一些实施例的结构示意图。如图4所示,该实施例中的权重确定模块304包括:误差计算单元4042、定位精度系数确定单元4044以及权重确定单元4046。
误差计算单元4042,配置为计算GPS定位误差。
定位精度系数确定单元4044,配置为取与GPS定位误差负相关的物理量作为GPS定位精度系数,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数。
权重确定单元4046,配置为根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
根据上述实施例,在无遮挡、天气好的情况下GPS信号较强,GPS提供的位置信息相对准确,GSP定位精度随着环境变差而降低。另一方面,位于起落点的辅助定位系统采用无线定位技术,其定位精度和无线信号质量有关。无线信号质量越好辅助定位系统的定位精度越高。
根据无人机的起飞过程,在地面附近时辅助定位系统信号强度较强,提供的位置准确性高,定位权重较大;随着无人机距离地面高度的增加,辅助定位系统信号逐渐减弱,可信度降低。相对而言,由于环境逐渐变得开阔,GPS信号质量逐渐变好,GPS定位权重增加。因此伴随着无人机起飞过程,定位系统实现从辅助定位系统逐渐切换到GPS的过程。反之,降落过程中定位系统实现从GPS切换到辅助定位系统的过程。根据实际情况统计,采用本实施例提供的方法可以显著提高无人机的定位准确性,无人机的理想定位精度可以达到10cm以内,平均定位精度可以达到20cm以内。
在一些实施例中,定位精度系数确定单元配置为:对GPS定位误差取倒数后进行归一化操作,得到归一化GPS定位精度系数;对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。
在一些实施例中,误差计算单元配置为:从卫星接收水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子;将水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子的平方和的算术平方根作为GPS定位误差。
在一些实施例中,辅助定位系统为无线定位系统,辅助定位系统信号质量信息为 无线信号质量信息。
在一些实施例中,辅助定位系统为视觉辅助定位系统,辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。
在一些实施例中,无线定位系统包括:蓝牙定位系统、无线局域网定位系统、窄带宽定位系统。
图5示出了本公开无人机的定位装置的另一些实施例的结构图。如图5所示,该实施例的无人机的定位装置50包括:存储器510以及耦接至该存储器510的处理器520,处理器520被配置为基于存储在存储器510中的指令,执行前述任意一些实施例中的无人机的定位方法。
其中,存储器510例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
图6示出了本公开无人机的定位装置的又一些实施例的结构图。如图6所示,该实施例的无人机的定位装置60包括:存储器510以及处理器520,还可以包括输入输出接口630、网络接口640、存储接口650等。这些接口630,640,650以及存储器510和处理器520之间例如可以通过总线650连接。其中,输入输出接口630为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口640为各种联网设备提供连接接口。存储接口650为SD卡、U盘等外置存储设备提供连接接口。
本公开还包括一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现前述任意一些实施例中的无人机的定位方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框 或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种无人机的定位方法,包括:
    接收全球定位系统GPS提供的位置信息以及辅助定位系统提供的位置信息;
    确定GPS的定位权重以及辅助定位系统的定位权重;
    根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
  2. 如权利要求1所述的方法,其中,所述确定GPS的定位权重以及辅助定位系统的定位权重包括:
    计算GPS定位误差;
    取与GPS定位误差负相关的物理量作为GPS定位精度系数,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数;
    根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
  3. 如权利要求2所述的方法,其中,
    对GPS定位误差取倒数后进行归一化操作,得到归一化GPS定位精度系数;
    对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。
  4. 如权利要求2所述的方法,其中,所述计算GPS定位误差包括:
    从卫星接收水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子;
    将水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子的平方和的算术平方根作为GPS定位误差。
  5. 如权利要求1所述的方法,其中,所述辅助定位系统为无线定位系统,所述辅助定位系统信号质量信息为无线信号质量信息。
  6. 如权利要求1所述的方法,其中,所述辅助定位系统为视觉辅助定位系统,所述辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。
  7. 如权利要求5所述的方法,其中,所述无线定位系统包括:蓝牙定位系统、无线局域网定位系统、窄带宽定位系统。
  8. 一种无人机的定位装置,包括:
    信息接收模块,配置为接收全球定位系统GPS提供的位置信息以及辅助定位系统提供的位置信息;
    权重确定模块,配置为确定GPS的定位权重以及辅助定位系统的定位权重;
    位置计算模块,配置为根据GPS提供的位置信息、辅助定位系统提供的位置信息、GPS的定位权重以及辅助定位系统的定位权重,加权计算无人机的位置。
  9. 如权利要求8所述的装置,其中,所述权重确定模块包括:
    误差计算单元,配置为计算GPS定位误差;
    定位精度系数确定单元,配置为取与GPS定位误差负相关的物理量作为GPS定位精度系数,取与辅助定位系统信号质量信息正相关的物理量作为辅助定位精度系数;
    权重确定单元,配置为根据GPS定位精度系数以及辅助定位精度系数,确定GPS的定位权重以及辅助定位系统的定位权重。
  10. 如权利要求9所述的装置,其中,所述定位精度系数确定单元配置为:
    对GPS定位误差取倒数后进行归一化操作,得到归一化GPS定位精度系数;
    对辅助定位系统信号质量信息进行归一化操作,得到归一化辅助定位精度系数。
  11. 如权利要求9所述的装置,其中,所述误差计算单元配置为:
    从卫星接收水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子;
    将水平分量定位精度因子、垂直分量定位精度因子以及钟差精度因子的平方和的算术平方根作为GPS定位误差。
  12. 如权利要求8所述的装置,其中,所述辅助定位系统为无线定位系统,所述辅助定位系统信号质量信息为无线信号质量信息。
  13. 如权利要求8所述的装置,其中,所述辅助定位系统为视觉辅助定位系统,所述辅助定位系统信号质量信息为无人机拍摄地面得到图像的图像质量信息。
  14. 如权利要求12所述的装置,其中,所述无线定位系统包括:蓝牙定位系统、无线局域网定位系统、窄带宽定位系统。
  15. 一种无人机的定位装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求1至7中任一项所述的无人机的定位方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求1至7中任一项所述的无人机的定位方法。
PCT/CN2018/072259 2017-03-14 2018-01-11 无人机的定位方法及装置 WO2018166287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/493,619 US20200081136A1 (en) 2017-03-14 2018-01-11 Positioning method and device of unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710148785.0 2017-03-14
CN201710148785.0A CN106896391A (zh) 2017-03-14 2017-03-14 无人机的定位方法及装置

Publications (1)

Publication Number Publication Date
WO2018166287A1 true WO2018166287A1 (zh) 2018-09-20

Family

ID=59193986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072259 WO2018166287A1 (zh) 2017-03-14 2018-01-11 无人机的定位方法及装置

Country Status (3)

Country Link
US (1) US20200081136A1 (zh)
CN (1) CN106896391A (zh)
WO (1) WO2018166287A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454487A (zh) * 2019-03-13 2021-09-28 千叶工业大学 信息处理装置以及移动机器人

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896391A (zh) * 2017-03-14 2017-06-27 北京京东尚科信息技术有限公司 无人机的定位方法及装置
CN110275194A (zh) * 2018-03-14 2019-09-24 北京嘀嘀无限科技发展有限公司 一种车辆轨迹矫正方法和系统
CN110362098B (zh) * 2018-03-26 2022-07-05 北京京东尚科信息技术有限公司 无人机视觉伺服控制方法、装置以及无人机
CN110412626B (zh) * 2018-04-28 2021-12-31 北京京东乾石科技有限公司 物流无人机的多gps定位方法、系统、设备及存储介质
CN108759835B (zh) * 2018-05-04 2022-09-13 华东交通大学 一种定位方法、装置、可读存储介质及移动终端
CN109541661B (zh) * 2018-11-13 2021-08-10 中国联合网络通信集团有限公司 一种定位方法和装置
CN111645727A (zh) * 2019-03-04 2020-09-11 比亚迪股份有限公司 列车及其定位方法和装置
CN110673179B (zh) * 2019-09-12 2021-12-03 华为技术有限公司 定位方法、装置及存储介质
WO2021056144A1 (zh) * 2019-09-23 2021-04-01 深圳市大疆创新科技有限公司 可移动平台的返航控制方法、装置及可移动平台
CN112771411A (zh) * 2020-04-24 2021-05-07 深圳市大疆创新科技有限公司 定位方法、系统及存储介质
CN111812698A (zh) * 2020-07-03 2020-10-23 北京图森未来科技有限公司 一种定位方法、装置、介质和设备
CN111721290B (zh) * 2020-07-13 2023-11-21 南京理工大学 一种多源传感器信息融合定位切换方法
CN112533133B (zh) * 2020-10-29 2023-08-08 泰斗微电子科技有限公司 双通道切换方法、无人机及控制终端
CN112925341A (zh) * 2021-01-19 2021-06-08 北京京东乾石科技有限公司 一种飞行器的飞行控制方法、相关飞行器及飞行器系统
US20230027369A1 (en) * 2021-07-26 2023-01-26 Motional Ad Llc Vehicle location using combined inputs of redundant localization pipelines
CN115460553B (zh) * 2022-10-27 2023-01-31 中航信移动科技有限公司 一种基于多卫星数据源的数据融合系统
CN116321418B (zh) * 2023-03-02 2024-01-02 中国人民解放军国防科技大学 一种基于节点构型优选的集群无人机融合估计定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201331348Y (zh) * 2009-01-06 2009-10-21 山东科沐华信息技术有限公司 惯导组合gps车载终端
CN102065536A (zh) * 2009-11-11 2011-05-18 中兴通讯股份有限公司 用户终端定位方法、装置以及用户终端导航方法、装置
US20150185024A1 (en) * 2014-01-02 2015-07-02 Caterpillar Inc. Machine positioning system utilizing relative pose information
CN104854428A (zh) * 2013-12-10 2015-08-19 深圳市大疆创新科技有限公司 传感器融合
CN106896391A (zh) * 2017-03-14 2017-06-27 北京京东尚科信息技术有限公司 无人机的定位方法及装置
CN107783119A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 应用在避障系统中的决策融合方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932523A (zh) * 2015-05-27 2015-09-23 深圳市高巨创新科技开发有限公司 一种无人飞行器的定位方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201331348Y (zh) * 2009-01-06 2009-10-21 山东科沐华信息技术有限公司 惯导组合gps车载终端
CN102065536A (zh) * 2009-11-11 2011-05-18 中兴通讯股份有限公司 用户终端定位方法、装置以及用户终端导航方法、装置
CN104854428A (zh) * 2013-12-10 2015-08-19 深圳市大疆创新科技有限公司 传感器融合
US20150185024A1 (en) * 2014-01-02 2015-07-02 Caterpillar Inc. Machine positioning system utilizing relative pose information
CN107783119A (zh) * 2016-08-25 2018-03-09 大连楼兰科技股份有限公司 应用在避障系统中的决策融合方法
CN106896391A (zh) * 2017-03-14 2017-06-27 北京京东尚科信息技术有限公司 无人机的定位方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454487A (zh) * 2019-03-13 2021-09-28 千叶工业大学 信息处理装置以及移动机器人
EP3940422A4 (en) * 2019-03-13 2022-10-26 Chiba Institute of Technology INFORMATION PROCESSING DEVICE AND MOBILE ROBOT

Also Published As

Publication number Publication date
CN106896391A (zh) 2017-06-27
US20200081136A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018166287A1 (zh) 无人机的定位方法及装置
US10789771B2 (en) Method and apparatus for fusing point cloud data
US10281911B1 (en) System and method for controlling a remote aerial device for up-close inspection
JP2018526626A (ja) 視覚慣性オドメトリ姿勢ドリフト較正
JP6865521B2 (ja) 航法信号処理装置、航法信号処理方法および航法信号処理用プログラム
CN104111445A (zh) 用于室内导航的超声波阵列辅助定位方法与系统
Niu et al. Development and evaluation of GNSS/INS data processing software for position and orientation systems
US11953602B2 (en) Detecting three-dimensional structure models at runtime in vehicles
US20150269436A1 (en) Line segment tracking in computer vision applications
WO2021212477A1 (zh) 校正点云数据的方法和相关装置
CN113933818A (zh) 激光雷达外参的标定的方法、设备、存储介质及程序产品
WO2022055582A1 (en) Systems and methods for gps-based and sensor-based relocalization
CN113610702B (zh) 一种建图方法、装置、电子设备及存储介质
CN110412626B (zh) 物流无人机的多gps定位方法、系统、设备及存储介质
US8467990B2 (en) Method for setting the geolocation of a non-GPS enabled device
WO2019147938A2 (en) Systems and methods for rapid alignment of digital imagery datasets to models of structures
CN109712076B (zh) 图像拼接方法、装置、设备和存储介质
US20210348938A1 (en) Sensor calibration for space translation
CN107869990B (zh) 室内位置数据的采集方法及装置、计算机设备及可读介质
US9852542B1 (en) Methods and apparatus related to georeferenced pose of 3D models
CN113917506A (zh) 模糊度固定方法、装置、电子设备及自动驾驶设备
CN114549988A (zh) 用于智能交通的图像处理方法、装置、电子设备和介质
CN107845122B (zh) 一种确定建筑物的面状信息的方法与装置
US20170211937A1 (en) Indoor Positioning System with Fast Plan Mapping
RU2759773C1 (ru) Способ и система определения местоположения пользователя

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18768176

Country of ref document: EP

Kind code of ref document: A1