WO2021077496A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021077496A1
WO2021077496A1 PCT/CN2019/118441 CN2019118441W WO2021077496A1 WO 2021077496 A1 WO2021077496 A1 WO 2021077496A1 CN 2019118441 W CN2019118441 W CN 2019118441W WO 2021077496 A1 WO2021077496 A1 WO 2021077496A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
photosensitive sensor
substrate
light
sub
Prior art date
Application number
PCT/CN2019/118441
Other languages
English (en)
French (fr)
Inventor
张桂洋
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2021077496A1 publication Critical patent/WO2021077496A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels

Definitions

  • the present invention relates to the field of display, in particular to a display panel and a display device.
  • Fingerprint recognition technology is mainly used for mobile phone unlocking, convenient payment, and password-free login, etc. It is a necessary technology for smart phones.
  • Early fingerprint recognition mostly used capacitive recognition solutions. The working principle was to add a capacitive sensor under the Home button or at the bottom of the phone, and use ridges and valleys to generate electrical signals of different sizes when touching the sensor. These electrical signals were processed and amplified. Convert into grayscale image to realize fingerprint recognition. This solution has low cost and fast unlocking speed.
  • the Home button needs to sacrifice a certain display area to place the capacitive sensor, resulting in a screen-to-body ratio of less than 80%, and the identification method on the back of the phone has many inconveniences. Therefore, with the emergence of the "full screen” concept and the gradual acceptance by the market, this capacitive fingerprint recognition solution has suffered a devastating blow.
  • Ultrasonic fingerprint recognition technology uses ultrasonic waves to penetrate glass, aluminum, stainless steel, sapphire, plastic and other materials, and is not affected by oil, sweat, skin care products on the fingers, and different media have different absorption, penetration and reflection effects on ultrasonic waves.
  • the fingerprint information is distinguished by the different reflection effects of the cortex at the spine position of the finger and the air at the valley position on the ultrasonic wave, and the recognition accuracy is high and the recognition speed is fast.
  • the cost of the ultrasonic fingerprint recognition solution is higher, and the effect of ultrasonic recognition is not good when the fingers are relatively dry.
  • optical fingerprint recognition technology Due to the need for a long optical path and a relatively large size, optical fingerprint recognition technology is mostly used for unlocking or identifying large-size devices, such as door locks, fingerprint punching machines, etc., with high recognition accuracy and low cost.
  • optical fingerprint recognition is not widely used in smart phones or tablet computers.
  • optical fingerprint recognition technology was first applied to OLED display devices. This is because OLED is an active light-emitting display, and the use of optical fingerprint recognition has inherent advantages. The light emitted by the OLED pixels shines on the finger, and the light reflected from the finger passes through the gap between the OLED pixels, and reaches the photosensitive sensor through the collimation or concentrating module under the pixel plane to realize fingerprint recognition.
  • the LCD device is a passive light-emitting display, and its internal film and pixel opening area have a large interference to the fingerprint signal, and the fingerprint signal is often submerged by these noise signals. Therefore, the optical fingerprint recognition technology based on LCD is still in the exploratory stage. There is no more mature plan.
  • the purpose of the present invention is to solve the technical problem of low signal-to-noise ratio of fingerprint signals in the existing under-screen fingerprint identification technology of LCD display devices.
  • the present invention provides a display panel including: a substrate; a first color filter substrate, which is provided on a surface of one side of the substrate; a second color filter substrate, which is provided on the substrate away from the first color film; The surface of one side of the film substrate; the photosensitive sensor is arranged on the side of the first color film substrate or the second color film substrate away from the substrate; the array substrate is arranged on the second color film substrate away from the substrate One side; and liquid crystal, which is provided between the second color filter substrate and the array substrate.
  • the photosensitive sensor is arranged on the surface of the array substrate on the side close to the liquid crystal.
  • the second color filter substrate includes pixel units; each pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the projection of the photosensitive sensor on the second color filter substrate and the red sub-pixel, the green sub-pixel, and the blue sub-pixel are located on the same straight line, or are composed of An array.
  • the sum of the width of the red sub-pixel, the green sub-pixel, and the blue sub-pixel in the same pixel unit is equal to the width of the photosensitive sensor.
  • the photosensitive sensor is arranged on the surface of the first color filter substrate on a side away from the substrate.
  • the first color filter substrate includes pixel units; each pixel unit includes a photosensitive sensor, a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the photosensitive sensor and the red sub-pixel, the green sub-pixel, and the blue sub-pixel are located on the same straight line, or form an array.
  • the sum of the width of the red sub-pixel, the green sub-pixel, and the blue sub-pixel in the same pixel unit is equal to the width of the photosensitive sensor.
  • the display panel further includes: a first polarizer arranged on the surface of the first color filter substrate on a side away from the substrate; and a second polarizer arranged on the array substrate away from the liquid crystal. The surface of the side.
  • the present invention also provides a display device including the above display panel.
  • the technical effect of the present invention is that the double-layer color film substrate is adopted, and the color film substrate on the upper layer of the substrate can block most of the strong noisy fingerprint signals and form beam collimation, so that the fingerprint signals received by the photosensitive sensor are mostly ideal fingerprint signals or weak.
  • the noisy fingerprint signal can improve the signal-to-noise ratio of the fingerprint signal and meet the requirements of fingerprint recognition under the stack of liquid crystal display panels.
  • FIG. 1 is a schematic diagram of the structure of the display panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of the display panel according to Embodiment 1 or 2 of the present invention.
  • Fig. 3 is a schematic diagram of fingerprint recognition according to embodiment 1 or 2 of the present invention.
  • Fig. 4 is a simulation diagram of fingerprint recognition in the detection light test according to embodiment 1 or 2 of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the display panel according to Embodiment 2 of the present invention.
  • Substrate 2. First color filter substrate; 3. Second color filter substrate; 4. Array substrate; 5. Liquid crystal; 6. Photosensitive sensor;
  • Fingerprint signal 81. Weak noise fingerprint signal; 82. Perfect fingerprint signal; 83. Strong noise fingerprint signal.
  • the component can be directly placed on the other component; there may also be an intermediate component on which the component is placed , And the intermediate component is placed on another component.
  • a component is described as “installed to” or “connected to” another component, both can be understood as directly “installed” or “connected”, or a component is “installed to” or “connected to” through an intermediate component Another component.
  • the display device includes a display panel as shown in FIGS. 1 to 2.
  • the display panel includes a substrate 1, a first color filter substrate 2, a second color filter substrate 3, and an array substrate 4.
  • the substrate 1 is a transparent glass substrate, which facilitates the passage of light.
  • the rigid substrate can be used as the substrate layer of the entire display panel to play a supporting role.
  • the first color filter substrate 2 is provided on the upper surface of the substrate 1 and plays a role of filtering light.
  • the first color filter substrate 2 includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red sub-pixel can filter out the red light signal
  • the green sub-pixel can filter out the green light signal
  • the blue sub-pixel can filter out the green light signal. Can filter out the blue light signal.
  • the second color filter substrate 3 is provided on the lower surface of the substrate 1 and functions as a filter.
  • the second color filter substrate 3 includes a pixel unit 301.
  • the pixel unit 301 includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red sub-pixel can filter out the red light signal
  • the green sub-pixel can filter out the green sub-pixel.
  • Light signals, the blue sub-pixels can filter out blue light signals.
  • the double-layer color film substrate is used.
  • the color film substrate on the upper layer of the substrate can block most of the strong noisy fingerprint signals and form beam collimation, making the fingerprint signals received by the photosensitive sensor mostly ideal fingerprint signals or weak noise fingerprint signals, which can improve fingerprints
  • the signal-to-noise ratio of the signal meets the requirements of fingerprint recognition under the stack of liquid crystal display panels.
  • the array substrate 4 is disposed under the second color filter substrate 3 and is disposed opposite to the second color filter substrate 3.
  • the array substrate 4 provides circuit support for the display panel and serves as a switch of the display panel.
  • the liquid crystal 5 is arranged between the second color filter substrate 3 and the array substrate 4, and the liquid crystal 5 can control the entry of external light.
  • the working principle of the liquid crystal 5 is: when the power of the array substrate 4 is turned on, the liquid crystal 5 is energized, and under the action of the electric field, the arrangement of the liquid crystal 5 becomes orderly, so that light can pass through easily; when the array substrate 4 is in the closed state, the liquid crystal 5 It is a non-energized state. At this time, the arrangement of the liquid crystal 5 is disordered, which can prevent light from passing through.
  • the photosensitive sensor 6 is arranged on the upper surface of the array substrate 4 to receive and sense light signals. In this embodiment, it is a fingerprint light signal.
  • the fingerprint light signal needs to pass through the liquid crystal 5. Due to the scattering effect of the liquid crystal, the fingerprint The signal-to-noise ratio of the optical signal will be reduced.
  • the polarizer plays a role of polarization and includes a first polarizer 71 and a second polarizer 72.
  • the first polarizer 71 is provided on the lower surface of the array substrate 6, and the second polarizer 72 is provided on the upper surface of the second color filter substrate 3. .
  • the principle of liquid crystal display (LCD) optical fingerprint recognition is that the light emitted by the pixel is reflected by the fingerprint 8 skin, the refractive index of the finger surface is close to the refractive index of the display panel interface, and the reflected light of the finger ridge is weak. There is air between the valley and the display interface, so the reflection of the valley is strong. After the reflected light is received by the photosensitive sensor 6, through photoelectric conversion, light signals with different strengths are converted into high and low current or voltage signals for output, and then processed by algorithms to obtain a fingerprint structure.
  • LCD liquid crystal display
  • the photosensitive sensor 6 Since the fingerprint reflected light is distributed within a certain angle range, the photosensitive sensor 6 will not only receive a small-angle perfect fingerprint signal 82, but also large-angle interference signals, such as weak noise fingerprint signals 81 and strong noise fingerprint signals 83. When it is strong, the photosensitive sensor 6 will not be able to recognize fingerprint information.
  • a black matrix (BM) or molybdenum oxide opening treatment can be provided at the first color filter substrate 2 directly above the photosensitive sensor 6, so that light can pass through it. Only the upper surface of the photosensitive sensor 6 can transmit light, and the back (ie, the lower surface) of the photosensitive sensor 6 is backlit, so light cannot pass through.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 and the red sub-pixels, the green sub-pixels, and the blue sub-pixels are located on the same straight line or form a matrix.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 and the red sub-pixel, the green sub-pixel, and the blue sub-pixel are located on the same straight line. This is the first arrangement of the pixel unit and the photosensitive sensor. This method will reduce the aperture ratio of the screen to a certain extent, thereby affecting the brightness and battery life of the liquid crystal display.
  • Table 1 The first arrangement of pixel unit and photosensitive sensor
  • a monochrome or color screen can be used for fingerprint identification.
  • the intensity contrast between valleys and ridges is more obvious.
  • the detection light source is used to perform fingerprint identification on the display panel.
  • the detection light is visible light, such as red light, green light, Blue light, red and green light, blue and green light, red, green and blue light or infrared light.
  • red light when red light is used for fingerprint recognition, only the red sub-pixel can emit light. After this red light is irradiated to the fingerprint, the light reflected by the fingerprint can only pass through the opening above the photosensitive sensor 6 and the red sub-pixel to reach the photosensitive sensor 6.
  • the green sub-pixels and blue sub-pixels on the upper layer of the substrate 1 can block large-angle red interference light (light signals reflected by other fingerprints), which can greatly improve the signal-to-noise ratio of the fingerprint signal corresponding to the photosensitive sensor 6.
  • Green light or blue light can also be used as the detection light, and the principle is the same as that of red light detection.
  • the above detection methods need to use a monochrome screen for fingerprint recognition under the screen.
  • a color screen saver screen can be displayed when the fingerprint is unlocked, which can be limited by coating the surface of the photosensitive sensor 6, such as a monochromatic filter film or vapor-deposited color film, or by designing the luminous energy level of the photosensitive sensor 6.
  • the photosensitive wavelength range enables the photosensitive sensor 6 itself to have a light wavelength selection function. At this time, although red light, green light or blue light will reach the surface of the photosensitive sensor 6, it passes through the screening of the surface film of the photosensitive sensor 6 or the photosensitive sensor 6 itself. Wavelength selectivity, only light that meets the conditions can pass into the photosensitive sensor 6. For example, a blue filter film is added to the surface of the photosensitive sensor 6 and a full-color light source is used for fingerprint recognition.
  • the RGB tricolor light can reach the surface of the photosensitive sensor 6, only blue light can pass through because of the blue filter film. Or by adjusting the energy level structure, the light-emitting energy band inside the photosensitive sensor 6 is only sensitive to blue wavelengths, so there is no need to add a filter film above the photosensitive sensor 6. When the RGB light enters the photosensitive sensor 6, only the blue wavelength band effect. In this way, the fingerprint unlocking function under the color screen can be guaranteed.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels.
  • the photosensitive sensor is located on the other side of the pixel unit, and the red sub-pixels, green sub-pixels, and blue sub-pixels in the same pixel unit
  • the sum of the widths is equal to the width of the photosensitive sensor.
  • the bold in Table 2 is the second arrangement of the pixel unit and the photosensitive sensor. This method will reduce the aperture ratio of the screen to a certain extent, thereby affecting the brightness and battery life of the liquid crystal display.
  • the position where the photosensitive sensor 6 is placed is the wiring position of the gate circuit.
  • a light shielding layer such as black matrix or molybdenum oxide, needs to be added above the metal electrode. There is a light shielding layer at this position, so placing the photosensitive sensor 6 in this position hardly affects the aperture ratio of the screen, which is a better placement method.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels.
  • the bolded ones in Table 3 are
  • the third arrangement of the pixel unit and the photosensitive sensor, that is, the second column to the fifth column of the second row to the fifth row, is a matrix unit. This arrangement is compared with the arrangement in Table 1 or Table 2. In this way, the influence of large-angle interference light can be further reduced, and the signal-to-noise ratio of fingerprint signals can be further improved.
  • Table 3 The third arrangement of pixel unit and photosensitive sensor
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels. It is the fourth arrangement of the pixel unit and the photosensitive sensor. Compared with the arrangement in Table 3, this arrangement can further reduce the influence of large-angle interference light and further improve the signal-to-noise ratio of the fingerprint signal.
  • Table 4 The fourth arrangement of pixel unit and photosensitive sensor
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels. It is the fifth arrangement of the pixel unit and the photosensitive sensor. This arrangement can be greatly affected by large-angle interference light, and the fingerprint signal-to-noise ratio is relatively low.
  • Table 5 The fifth arrangement of pixel unit and photosensitive sensor
  • the technical effect of the display device described in this embodiment is that a double-layer color film substrate is used, and the color film substrate on the upper layer of the substrate can block most of the strong noisy fingerprint signals and form beam collimation, so that the fingerprint signals received by the photosensitive sensor are mostly ideal Fingerprint signal or weak-noise fingerprint signal can improve the signal-to-noise ratio of the fingerprint signal and meet the requirements of fingerprint recognition under the stack of liquid crystal display panels.
  • the display device includes a display panel as shown in FIG. 5.
  • the display panel includes a substrate 1, a first color filter substrate 2, a second color filter substrate 3, an array substrate 4, and a liquid crystal display panel. 5.
  • Photosensitive sensor 6 and polarizer are examples of the display panel.
  • the substrate 1 is a transparent glass substrate, which facilitates the passage of light.
  • the rigid substrate can be used as the substrate layer of the entire display panel to play a supporting role.
  • the first color filter substrate 2 is provided on the upper surface of the substrate 1 and plays a role of filtering light.
  • the first color filter substrate 2 includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red sub-pixel can filter out the red light signal
  • the green sub-pixel can filter out the green light signal
  • the blue sub-pixel can filter out the green light signal. Can filter out the blue light signal.
  • the second color filter substrate 3 is provided on the lower surface of the substrate 1 and functions as a filter.
  • the second color filter substrate 3 includes a pixel unit 301.
  • the pixel unit 301 includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red sub-pixel can filter out the red light signal
  • the green sub-pixel can filter out the green sub-pixel.
  • Light signals, the blue sub-pixels can filter out blue light signals.
  • the double-layer color film substrate is used.
  • the color film substrate on the upper layer of the substrate can block most of the strong noisy fingerprint signals and form beam collimation, making the fingerprint signals received by the photosensitive sensor mostly ideal fingerprint signals or weak noise fingerprint signals, which can improve fingerprints
  • the signal-to-noise ratio of the signal meets the requirements of fingerprint recognition under the stack of liquid crystal display panels.
  • the array substrate 4 is disposed under the second color filter substrate 3 and is disposed opposite to the second color filter substrate 3.
  • the array substrate 4 provides circuit support for the display panel and serves as a switch of the display panel.
  • the liquid crystal 5 is arranged between the second color filter substrate 3 and the array substrate 4, and the liquid crystal 5 can control the entry of external light.
  • the working principle of the liquid crystal 5 is: when the power of the array substrate 4 is turned on, the liquid crystal 5 is energized, and under the action of the electric field, the arrangement of the liquid crystal 5 becomes orderly, so that light can pass through easily; when the array substrate 4 is in the closed state, the liquid crystal 5 It is a non-energized state. At this time, the arrangement of the liquid crystal 5 is disordered, which can prevent light from passing through.
  • the photosensitive sensor 6 is arranged on the lower surface of the first color filter substrate 2 to receive and sense light signals. In this embodiment, it is a fingerprint light signal. Compared with Embodiment 1, the fingerprint light signal in this embodiment is not It needs to pass through the liquid crystal 5 without the scattering effect of the liquid crystal. The signal-to-noise ratio of the fingerprint light signal is higher than that in the first embodiment.
  • the polarizer plays a role of polarization and includes a first polarizer 71 and a second polarizer 72.
  • the first polarizer 71 is provided on the lower surface of the array substrate 6, and the second polarizer 72 is provided on the upper surface of the second color filter substrate 3. .
  • the principle of liquid crystal display (LCD) optical fingerprint recognition is that the light emitted by the pixel is reflected by the fingerprint 8 skin, the refractive index of the finger surface is close to the refractive index of the display panel interface, and the reflected light of the finger ridge is weak. There is air between the valley and the display interface, so the reflection of the valley is strong. After the reflected light is received by the photosensitive sensor 6, through photoelectric conversion, light signals with different strengths are converted into high and low current or voltage signals for output, and then processed by algorithms to obtain a fingerprint structure.
  • LCD liquid crystal display
  • the photosensitive sensor 6 Since the fingerprint reflected light is distributed within a certain angle range, the photosensitive sensor 6 will not only receive a small-angle perfect fingerprint signal 82, but also large-angle interference signals, such as weak noise fingerprint signals 81 and strong noise fingerprint signals 83. When it is strong, the photosensitive sensor 6 will not be able to recognize fingerprint information.
  • a black matrix (BM) or molybdenum oxide opening treatment can be provided at the first color filter substrate 2 directly above the photosensitive sensor 6, so that light can pass through it. Only the upper surface of the photosensitive sensor 6 can transmit light, and the back (ie, the lower surface) of the photosensitive sensor 6 is backlit, so light cannot pass through.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 and the red sub-pixels, the green sub-pixels, and the blue sub-pixels are located on the same straight line or form a matrix.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 and the red sub-pixel, the green sub-pixel, and the blue sub-pixel are located on the same straight line. This is the first arrangement of the pixel unit and the photosensitive sensor. This method will reduce the aperture ratio of the screen to a certain extent, thereby affecting the brightness and battery life of the liquid crystal display.
  • Table 1 The first arrangement of pixel unit and photosensitive sensor
  • a monochrome or color screen can be used for fingerprint identification.
  • the intensity contrast between valleys and ridges is more obvious.
  • the detection light source is used to perform fingerprint identification on the display panel.
  • the detection light is visible light, such as red light, green light, Blue light, red and green light, blue and green light, red, green and blue light or infrared light.
  • red light when red light is used for fingerprint recognition, only the red sub-pixel can emit light. After this red light is irradiated to the fingerprint, the light reflected by the fingerprint can only pass through the opening above the photosensitive sensor 6 and the red sub-pixel to reach the photosensitive sensor 6.
  • the green sub-pixels and blue sub-pixels on the upper layer of the substrate 1 can block large-angle red interference light (light signals reflected by other fingerprints), which can greatly improve the signal-to-noise ratio of the fingerprint signal corresponding to the photosensitive sensor 6.
  • Green light or blue light can also be used as the detection light, and the principle is the same as that of red light detection.
  • the above detection methods need to use a monochrome screen for fingerprint recognition under the screen.
  • a color screen saver screen can be displayed when the fingerprint is unlocked, which can be limited by coating the surface of the photosensitive sensor 6, such as a monochromatic filter film or vapor-deposited color film, or by designing the luminous energy level of the photosensitive sensor 6.
  • the photosensitive wavelength range enables the photosensitive sensor 6 itself to have a light wavelength selection function. At this time, although red light, green light or blue light will reach the surface of the photosensitive sensor 6, it passes through the screening of the surface film of the photosensitive sensor 6 or the photosensitive sensor 6 itself. Wavelength selectivity, only light that meets the conditions can pass into the photosensitive sensor 6. For example, a blue filter film is added to the surface of the photosensitive sensor 6 and a full-color light source is used for fingerprint recognition.
  • the RGB tricolor light can reach the surface of the photosensitive sensor 6, only blue light can pass through because of the blue filter film. Or by adjusting the energy level structure, the light-emitting energy band inside the photosensitive sensor 6 is only sensitive to blue wavelengths, so there is no need to add a filter film above the photosensitive sensor 6. When the RGB light enters the photosensitive sensor 6, only the blue wavelength band effect. In this way, the fingerprint unlocking function under the color screen can be guaranteed.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels.
  • the photosensitive sensor is located on the other side of the pixel unit, and the red sub-pixels, green sub-pixels, and blue sub-pixels in the same pixel unit
  • the sum of the widths is equal to the width of the photosensitive sensor.
  • the bold in Table 2 is the second arrangement of the pixel unit and the photosensitive sensor. This method will reduce the aperture ratio of the screen to a certain extent, thereby affecting the brightness and battery life of the liquid crystal display.
  • the position where the photosensitive sensor 6 is placed is the wiring position of the gate circuit.
  • a light shielding layer such as black matrix or molybdenum oxide, needs to be added above the metal electrode. There is a light shielding layer at this position, so placing the photosensitive sensor 6 in this position hardly affects the aperture ratio of the screen, which is a better placement method.
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels.
  • the bolded ones in Table 3 are
  • the third arrangement of the pixel unit and the photosensitive sensor, that is, the second column to the fifth column of the second row to the fifth row, is a matrix unit. This arrangement is compared with the arrangement in Table 1 or Table 2. In this way, the influence of large-angle interference light can be further reduced, and the signal-to-noise ratio of fingerprint signals can be further improved.
  • Table 3 The third arrangement of pixel unit and photosensitive sensor
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels. It is the fourth arrangement of the pixel unit and the photosensitive sensor. Compared with the arrangement in Table 3, this arrangement can further reduce the influence of large-angle interference light and further improve the signal-to-noise ratio of the fingerprint signal.
  • Table 4 The fourth arrangement of pixel unit and photosensitive sensor
  • the orthographic projection of the photosensitive sensor 6 on the second color filter substrate 3 forms a matrix with the red sub-pixels, the green sub-pixels, and the blue sub-pixels. It is the fifth arrangement of the pixel unit and the photosensitive sensor. This arrangement can be greatly affected by large-angle interference light, and the fingerprint signal-to-noise ratio is relatively low.
  • Table 5 The fifth arrangement of pixel unit and photosensitive sensor
  • the technical effect of the display device described in this embodiment is that a double-layer color film substrate is used, and the color film substrate on the upper layer of the substrate can block most of the strong noisy fingerprint signals and form beam collimation, so that the fingerprint signals received by the photosensitive sensor are mostly ideal Fingerprint signal or weak-noise fingerprint signal can improve the signal-to-noise ratio of the fingerprint signal and meet the requirements of fingerprint recognition under the stack of liquid crystal display panels.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Mathematical Physics (AREA)
  • Optical Filters (AREA)

Abstract

提供一种显示面板及显示装置,显示面板包括:基板(1)、第一彩膜基板(2)、第二彩膜基板(3)、感光传感器(6)、阵列基板(4)以及液晶(5)。

Description

显示面板及显示装置 技术领域
本发明涉及显示领域,特别涉及一种显示面板及显示装置。
背景技术
指纹识别技术主要用于手机解锁、便捷支付、免密登陆等,是智能手机的必配技术。早期的指纹识别多是利用电容式识别方案,其工作原理是在Home键下方或者手机底部添加电容传感器,利用脊和谷在接触传感器时产生不同大小的电学信号,这些电学信号经处理和放大后转换成灰度图,实现指纹识别,此方案成本低、解锁速度快。但是Home键需牺牲一定的显示区域来放置电容传感器,导致其屏占比低于80%,而在手机背部进行识别的方式又有诸多不便之处。因此随着“全面屏”概念的产生和逐渐被市场认可,这种电容式指纹识别方案就遭受到毁灭性的打击。
光学指纹识别和超声波指纹识别技术是屏下识别技术,可达成“全面屏”的效果,其屏占比可提高到90%以上。超声波指纹识别技术利用超声波能够穿透由玻璃、铝、不锈钢、蓝宝石、塑料等材料,不受手指上的油污、汗渍、护肤用品的影响,且不同介质对超声波的吸收、穿透和反射效果不同,通过手指脊位置的皮层和谷位置的空气对超声波不同的反射效果来辨别指纹信息,其识别精度高、识别速度快。但是超声波指纹识别方案成本较高,且当手指较为干燥时超声波识别的效果不佳。
由于需要较长的光路和比较大的尺寸,光学指纹识别技术多用于大尺寸设备的解锁或识别,如门锁、指纹打卡机等,其识别精度高,成本低。当前光学指纹识别在智能手机或者平板电脑方面的应用并不广泛。近两年光学指纹识别技术率先应用在OLED显示设备中这是因为OLED是主动发光显示,使用光学指纹识别具有先天的优势。OLED像素发出的光照射在手指上,从手指反射的光透过OLED像素之间的空隙,通过像素平面下方的准直或者聚光模组到达感光sensor上,实现指纹识别。但是LCD设备是被动发光显示,其内部的膜层和像素开口区对指纹信号的干扰较大,指纹信号常常会被这些噪声信号淹没,因此基于LCD的光学指纹识别技术尚在探索阶段,目前还未出现比较成熟的方案。
技术问题
本发明的目的在于,解决现有的LCD显示装置屏下指纹识别技术中指纹信 号信噪比低的技术问题。
技术解决方案
为实现上述目的,本发明提供一种显示面板,包括:基板;第一彩膜基板,设于所述基板一侧的表面;第二彩膜基板,设于所述基板远离所述第一彩膜基板一侧的表面;感光传感器,设于所述第一彩膜基板或所述第二彩膜基板远离所述基板一侧;阵列基板,设于所述第二彩膜基板远离所述基板一侧;以及液晶,设于所述第二彩膜基板与所述阵列基板之间。
进一步地,所述感光传感器设于所述阵列基板靠近所述液晶一侧的表面。
进一步地,所述第二彩膜基板包括像素单元;每一像素单元包括红色子像素、绿色子像素以及蓝色子像素。
进一步地,在同一像素单元中,所述感光传感器在所述第二彩膜基板的投影与所述红色子像素、所述绿色子像素以及所述蓝色子像素位于同一直线上,或者,组成一阵列。
进一步地,同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。
进一步地,所述感光传感器设于所述第一彩膜基板远离所述基板一侧的表面。
进一步地,所述第一彩膜基板包括像素单元;每一像素单元包括感光传感器、红色子像素、绿色子像素以及蓝色子像素。
进一步地,在同一像素单元中,所述感光传感器与所述红色子像素、所述绿色子像素以及所述蓝色子像素位于同一直线上,或者,组成一阵列。
进一步地,同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。
进一步地,所述显示面板还包括:第一偏光片,设于所述第一彩膜基板远离所述基板一侧的表面;以及第二偏光片,设于所述阵列基板远离所述液晶一侧的表面。
为实现上述目的,本发明还提供一种显示装置,包括上述显示面板。
有益效果
本发明的技术效果在于,采用双层彩膜基板,基板上层的彩膜基板能阻挡大部分强噪声指纹信号,形成光束准直,使得感光传感器接收到的指纹信号多为理想指纹信号或是弱噪声指纹信号,可提高指纹信号的信噪比,满足液晶显示面板 堆屏下指纹识别的要求。
附图说明
图1为本发明实施例1所述显示面板的结构示意图;
图2为本发明实施例1或2所述显示面板的俯视图;
图3为本发明实施例1或2所述指纹识别的原理图;
图4为本发明实施例1或2所述探测光测试指纹识别的模拟图;
图5为本发明实施例2所述显示面板的结构示意图。
部分组件标识如下:
1、基板;2、第一彩膜基板;3、第二彩膜基板;4、阵列基板;5、液晶;6、感光传感器;
31、红色子像素;32、绿色子像素;33、蓝色子像素;
71、第一偏光片;72、第二偏光片;
8、指纹信号;81、弱噪声指纹信号;82、完全理想指纹信号;83、强噪声指纹信号。
本发明的最佳实施方式
以下结合说明书附图详细说明本发明的优选实施例,以向本领域中的技术人员完整介绍本发明的技术内容,以举例证明本发明可以实施,使得本发明公开的技术内容更加清楚,使得本领域的技术人员更容易理解如何实施本发明。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例,下文实施例的说明并非用来限制本发明的范围。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,本文所使用的方向用语是用来解释和说明本发明,而不是用来限定本发明的保护范围。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。此外,为了便于理解和描述,附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。
当某些组件,被描述为“在”另一组件“上”时,所述组件可以直接置于所述另一组件上;也可以存在一中间组件,所述组件置于所述中间组件上,且所述中间组件置于另一组件上。当一个组件被描述为“安装至”或“连接至”另一组件时,二 者可以理解为直接“安装”或“连接”,或者一个组件通过一中间组件“安装至”或“连接至”另一个组件。
实施例1
本实施例提供一种显示装置,所示显示装置包括如图1~图2所示的显示面板,所示显示面板包括基板1、第一彩膜基板2、第二彩膜基板3、阵列基板4、液晶5、感光传感器6以及偏光片。
基板1为透明玻璃基板,便于光线穿过,同时,硬质基板可当做整个显示面板的衬底层,起到支撑的作用。
第一彩膜基板2设于基板1的上表面,起到滤光的作用。第一彩膜基板2包括红色子像素、绿色子像素及蓝色子像素,所述红色子像素可过滤出红光信号,所述绿色子像素可过滤出绿光信号,所述蓝色子像素可过滤出蓝光信号。
第二彩膜基板3设于基板1的下表面,起到滤光的作用。第二彩膜基板3包括像素单元301,像素单元301包括:红色子像素、绿色子像素及蓝色子像素,所述红色子像素可过滤出红光信号,所述绿色子像素可过滤出绿光信号,所述蓝色子像素可过滤出蓝光信号。
采用双层彩膜基板,基板上层的彩膜基板能阻挡大部分强噪声指纹信号,形成光束准直,使得感光传感器接收到的指纹信号多为理想指纹信号或是弱噪声指纹信号,可提高指纹信号的信噪比,满足液晶显示面板堆屏下指纹识别的要求。
阵列基板4设于第二彩膜基板3的下方,且与第二彩膜基板3相对设置,阵列基板4为显示面板提供电路支持,作为显示面板的开关。
液晶5设于第二彩膜基板3与阵列基板4之间,液晶5可控制外界光线的进入。液晶5的工作原理为:当阵列基板4的电源打开时,液晶5通电,在电场的作用下,液晶5排列变的有秩序,使光线容易通过;当阵列基板4处于关闭状态时,液晶5为不通电状态,此时,液晶5的排列混乱,可阻止光线通过,图1中为液晶5通电状态。
感光传感器6设于阵列基板4的上表面,用以接收并感应光信号,在本实施例中为指纹光信号,所述指纹光信号需要透过液晶5,由于液晶的散射作用,所述指纹光信号的信噪比会有所降低。
偏光片起到偏光作用,包括第一偏光片71及第二偏光片72,第一偏光片71设于阵列基板6的下表面,第二偏光片72设于第二彩膜基板3的上表面。
如图3所示,液晶显示器(LCD)光学指纹识别的原理在于,像素发出的光被指纹8皮肤反射,手指表面的折射率和显示面板界面折射率接近,手指脊的反射光较弱,手指谷和显示界面之间存在空气,所以谷的反射较强。反射光被感光传感器6接收后,通过光电转换,强弱不同的光信号转变为高低电流或者电压信号输出,再经过算法处理得到指纹结构。由于指纹反射光分布在一定角度范围内,感光传感器6除了接收小角度的完全理想指纹信号82,还会接收大角度的干扰信号,例如弱噪声指纹信号81和强噪声指纹信号83,当干扰信号较强时,感光传感器6将无法识别出指纹信息。
在感光传感器6正上方的第一彩膜基板2处可设置黑色矩阵(BM)或是氧化钼开孔处理,使得光线能从中透过。感光传感器6只有上表面可以透光,其背面(即下表面)为背光,所以光线无法透过。
感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素位于同一直线上或组成一矩阵。
如表1所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素位于同一直线上,表1中加粗的即为第一种像素单元与感光传感器的排列方式,这种方式一定程度上会降低屏幕的开口率,从而影响液晶显示器的亮度和续航时间。
表1像素单元与感光传感器的第一种排列方式
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
如图4所示,可采用单色或彩色画面进行指纹识别,谷和脊的强度对比较为明显,使用探测光源对显示面板进行指纹识别,所述探测光为可见光,如红光、绿光、蓝光、红绿光、蓝绿光、红绿蓝三色光或者红外光。
采用单色画面进行指纹识别的方案:
例如采用红光进行指纹识别时,只有红色子像素能够出射光,此红光照射到指纹后,指纹反射的光只能从感光传感器6上方的开孔处和红色子像素处透过到达感光传感器6,而基板1上层的绿色子像素和蓝色子像素能够遮挡大角度的红色干扰光(其他指纹反射的光信号),如此能够极大的提高感光传感器6所对应指纹信号的信噪比。同样可使用绿光或者蓝光作为探测光,原理同红光探测一致。以上的探测方式需要采用单色画面进行屏下指纹识别。
采用彩色画面进行指纹识别的方案:
为提高指纹识别体验,在指纹解锁时可显示彩色屏保画面,可通过在感光传感器6表面镀膜,如单色滤光膜或者蒸镀彩膜的方式或者通过设计感光传感器6的发光能级来限定光敏波长范围,使感光传感器6自身带有光波长选择功能,此时尽管红光、绿光或者蓝光光都会到达感光传感器6表面,但通过感光传感器6表面膜层的筛选或者感光传感器6自身的波长选择性,只有满足条件的光能够通过进入感光传感器6内部。如在感光传感器6表面加入蓝色滤光膜,采用全彩色光源进行指纹识别,尽管RGB三色光都能到达感光传感器6表面,但受蓝色滤光膜的阻挡,只有蓝光可以通过。或者通过调整能级结构使感光传感器6内部发光能带只对蓝光波长敏感,如此就不需要在感光传感器6上方添加滤光膜,当RGB三色光都进入感光传感器6内部时,仅蓝光波段其作用。这种方式就能够保证彩色画面下的指纹解锁功能。
如表2所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵。在所述像素单元与所述感光传感器的第二种排列方式中,所述感光传感器位于所述像素单元的另一侧,同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。表2中加粗的即为第二种像素单元与感光传感器的排列方式,这种方式一定程度上会降低屏幕的开口率,从而影响液晶显示器的亮度和续航时间。
感光传感器6所放置的位置是栅极电路走线位置,为避免金属电极在液晶面板内部光反射影响液晶显示面板的对比度,需要在金属电极上方添加遮光层,如黑色矩阵或者氧化钼等。此位置本来就存在遮光层,因此将感光传感器6放置于此位置几乎不影响屏幕的开口率,是较佳的放置方式。
表2像素单元与感光传感器的第二种排列方式
Figure PCTCN2019118441-appb-000001
如表3所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表3加粗的即为第三种像素单元与感光传感器的排列方式,即第二排到第五排的第二列到第五列,为一个矩阵单元,这一种排列方式相比于表1或表2中的排列方式,能进一步降低大角度干扰光的影响,进一步提高指纹信号的信噪比。
表3像素单元与感光传感器的第三种排列方式
R G B S R G B
S R G B S R G
B S R G B S R
G B S R G B S
R G B S R G B
S R G B S R G
B S R G B S R
如表4所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表4中加粗的即为第四种像素单 元与感光传感器的排列方式,这一种排列方式相比于表3中的排列方式,能进一步降低大角度干扰光的影响,进一步提高指纹信号的信噪比。
表4像素单元与感光传感器的第四种排列方式
R G B S R G B
S R G B S R G
B S R G B S R
G B S R G B S
R G B S R G B
S R G B S R G
B S R G B S R
如表5所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表5中加粗的即为第五种像素单元与感光传感器的排列方式,这一种排列方式能受到大角度干扰光的影响较大,指纹信噪比相对较低。
表5像素单元与感光传感器的第五种排列方式
R G R G R G R G
B S B S B S B S
R G R G R G R G
B S B S B S B S
R G R G R G R G
B S B S B S B S
本实施例所述显示装置的技术效果在于,采用双层彩膜基板,基板上层的彩膜基板能阻挡大部分强噪声指纹信号,形成光束准直,使得感光传感器接收到的指纹信号多为理想指纹信号或是弱噪声指纹信号,可提高指纹信号的信噪比,满足液晶显示面板堆屏下指纹识别的要求。
实施例2
本实施例提供一种显示装置,所示显示装置包括如图5所示的显示面板,所示显示面板包括基板1、第一彩膜基板2、第二彩膜基板3、阵列基板4、液晶5、感光传感器6以及偏光片。
基板1为透明玻璃基板,便于光线穿过,同时,硬质基板可当做整个显示面板的衬底层,起到支撑的作用。
第一彩膜基板2设于基板1的上表面,起到滤光的作用。第一彩膜基板2包括红色子像素、绿色子像素及蓝色子像素,所述红色子像素可过滤出红光信号,所述绿色子像素可过滤出绿光信号,所述蓝色子像素可过滤出蓝光信号。
第二彩膜基板3设于基板1的下表面,起到滤光的作用。第二彩膜基板3包括像素单元301,像素单元301包括:红色子像素、绿色子像素及蓝色子像素,所述红色子像素可过滤出红光信号,所述绿色子像素可过滤出绿光信号,所述蓝色子像素可过滤出蓝光信号。
采用双层彩膜基板,基板上层的彩膜基板能阻挡大部分强噪声指纹信号,形成光束准直,使得感光传感器接收到的指纹信号多为理想指纹信号或是弱噪声指纹信号,可提高指纹信号的信噪比,满足液晶显示面板堆屏下指纹识别的要求。
阵列基板4设于第二彩膜基板3的下方,且与第二彩膜基板3相对设置,阵列基板4为显示面板提供电路支持,作为显示面板的开关。
液晶5设于第二彩膜基板3与阵列基板4之间,液晶5可控制外界光线的进入。液晶5的工作原理为:当阵列基板4的电源打开时,液晶5通电,在电场的作用下,液晶5排列变的有秩序,使光线容易通过;当阵列基板4处于关闭状态时,液晶5为不通电状态,此时,液晶5的排列混乱,可阻止光线通过,图1中为液晶5通电状态。
感光传感器6设于第一彩膜基板2的下表面,用以接收并感应光信号,在本实施例中为指纹光信号,与实施例1相比,本实施例中所述指纹光信号不需要透过液晶5,没有液晶的散射作用,所述指纹光信号的信噪比高于实施例1中的信噪比。
偏光片起到偏光作用,包括第一偏光片71及第二偏光片72,第一偏光片71设于阵列基板6的下表面,第二偏光片72设于第二彩膜基板3的上表面。
如图3所示,液晶显示器(LCD)光学指纹识别的原理在于,像素发出的光被指纹8皮肤反射,手指表面的折射率和显示面板界面折射率接近,手指脊的反射光较弱,手指谷和显示界面之间存在空气,所以谷的反射较强。反射光被感光传感器6接收后,通过光电转换,强弱不同的光信号转变为高低电流或者电压信号输出,再经过算法处理得到指纹结构。由于指纹反射光分布在一定角度范围内,感光传感器6除了接收小角度的完全理想指纹信号82,还会接收大角度的干扰信号,例如弱噪声指纹信号81和强噪声指纹信号83,当干扰信号较强时,感光传感器6将无法识别出指纹信息。
在感光传感器6正上方的第一彩膜基板2处可设置黑色矩阵(BM)或是氧化钼开孔处理,使得光线能从中透过。感光传感器6只有上表面可以透光,其背面(即下表面)为背光,所以光线无法透过。
感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素位于同一直线上或组成一矩阵。
如表1所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素位于同一直线上,表1中加粗的即为第一种像素单元与感光传感器的排列方式,这种方式一定程度上会降低屏幕的开口率,从而影响液晶显示器的亮度和续航时间。
表1像素单元与感光传感器的第一种排列方式
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
R G B S R G B S
如图4所示,可采用单色或彩色画面进行指纹识别,谷和脊的强度对比较为明显,使用探测光源对显示面板进行指纹识别,所述探测光为可见光,如红光、绿光、蓝光、红绿光、蓝绿光、红绿蓝三色光或者红外光。
采用单色画面进行指纹识别的方案:
例如采用红光进行指纹识别时,只有红色子像素能够出射光,此红光照射到指纹后,指纹反射的光只能从感光传感器6上方的开孔处和红色子像素处透过到达感光传感器6,而基板1上层的绿色子像素和蓝色子像素能够遮挡大角度的红色干扰光(其他指纹反射的光信号),如此能够极大的提高感光传感器6所对应指纹信号的信噪比。同样可使用绿光或者蓝光作为探测光,原理同红光探测一致。以上的探测方式需要采用单色画面进行屏下指纹识别。
采用彩色画面进行指纹识别的方案:
为提高指纹识别体验,在指纹解锁时可显示彩色屏保画面,可通过在感光传感器6表面镀膜,如单色滤光膜或者蒸镀彩膜的方式或者通过设计感光传感器6的发光能级来限定光敏波长范围,使感光传感器6自身带有光波长选择功能,此时尽管红光、绿光或者蓝光光都会到达感光传感器6表面,但通过感光传感器6表面膜层的筛选或者感光传感器6自身的波长选择性,只有满足条件的光能够通过进入感光传感器6内部。如在感光传感器6表面加入蓝色滤光膜,采用全彩色光源进行指纹识别,尽管RGB三色光都能到达感光传感器6表面,但受蓝色滤光膜的阻挡,只有蓝光可以通过。或者通过调整能级结构使感光传感器6内部发光能带只对蓝光波长敏感,如此就不需要在感光传感器6上方添加滤光膜,当RGB三色光都进入感光传感器6内部时,仅蓝光波段其作用。这种方式就能够保证彩色画面下的指纹解锁功能。
如表2所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵。在所述像素单元与所述感光传感器的第二种排列方式中,所述感光传感器位于所述像素单元的另一侧,同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。表2中加粗的即为第二种像素单元与感光传感器的排列方式,这种方式一定程度上会降低屏幕的开口率,从而影响液晶显示器的亮度和续航时间。
感光传感器6所放置的位置是栅极电路走线位置,为避免金属电极在液晶面板内部光反射影响液晶显示面板的对比度,需要在金属电极上方添加遮光层,如黑色矩阵或者氧化钼等。此位置本来就存在遮光层,因此将感光传感器6放置于此位置几乎不影响屏幕的开口率,是较佳的放置方式。
表2像素单元与感光传感器的第二种排列方式
Figure PCTCN2019118441-appb-000002
如表3所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表3加粗的即为第三种像素单元与感光传感器的排列方式,即第二排到第五排的第二列到第五列,为一个矩阵单元,这一种排列方式相比于表1或表2中的排列方式,能进一步降低大角度干扰光的影响,进一步提高指纹信号的信噪比。
表3像素单元与感光传感器的第三种排列方式
R G B S R G B
S R G B S R G
B S R G B S R
G B S R G B S
R G B S R G B
S R G B S R G
B S R G B S R
如表4所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表4中加粗的即为第四种像素单元与感光传感器的排列方式,这一种排列方式相比于表3中的排列方式,能进一步降低大角度干扰光的影响,进一步提高指纹信号的信噪比。
表4像素单元与感光传感器的第四种排列方式
R G B S R G B
S R G B S R G
B S R G B S R
G B S R G B S
R G B S R G B
S R G B S R G
B S R G B S R
如表5所示,感光传感器6在第二彩膜基板3上的正投影与所述红色子像素、所述绿色子像素及所述蓝色子像素组成一矩阵,表5中加粗的即为第五种像素单元与感光传感器的排列方式,这一种排列方式能受到大角度干扰光的影响较大,指纹信噪比相对较低。
表5像素单元与感光传感器的第五种排列方式
R G R G R G R G
B S B S B S B S
R G R G R G R G
B S B S B S B S
R G R G R G R G
B S B S B S B S
本实施例所述显示装置的技术效果在于,采用双层彩膜基板,基板上层的彩膜基板能阻挡大部分强噪声指纹信号,形成光束准直,使得感光传感器接收到的指纹信号多为理想指纹信号或是弱噪声指纹信号,可提高指纹信号的信噪比,满足液晶显示面板堆屏下指纹识别的要求。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种显示面板,其包括:
    基板;
    第一彩膜基板,设于所述基板一侧的表面;
    第二彩膜基板,设于所述基板远离所述第一彩膜基板一侧的表面;
    感光传感器,设于所述第一彩膜基板或所述第二彩膜基板远离所述基板一侧;
    阵列基板,设于所述第二彩膜基板远离所述基板一侧;以及
    液晶,设于所述第二彩膜基板与所述阵列基板之间。
  2. 如权利要求1所述的显示面板,其中,
    所述感光传感器设于所述阵列基板靠近所述液晶一侧的表面。
  3. 如权利要求2所述的显示面板,其中,
    所述第二彩膜基板包括像素单元;
    每一像素单元包括红色子像素、绿色子像素以及蓝色子像素。
  4. 如权利要求3所述的显示面板,其中,
    在同一像素单元中,
    所述感光传感器在所述第二彩膜基板的投影与所述红色子像素、所述绿色子像素以及所述蓝色子像素位于同一直线上,或者,组成一阵列。
  5. 如权利要求3所述的显示面板,其中,
    同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。
  6. 如权利要求1所述的显示面板,其中,
    所述感光传感器设于所述第一彩膜基板远离所述基板一侧的表面。
  7. 如权利要求6所述的显示面板,其中,
    所述第一彩膜基板包括像素单元;
    每一像素单元包括感光传感器、红色子像素、绿色子像素以及蓝色子像素。
  8. 如权利要求7所述的显示面板,其中,
    在同一像素单元中,
    所述感光传感器与所述红色子像素、所述绿色子像素以及所述蓝色子像素位于同一直线上,或者,组成一阵列。
  9. 如权利要求7所述的显示面板,其中,
    同一像素单元中的红色子像素、绿色子像素以及蓝色子像素的宽度之和等同于所述感光传感器的宽度。
  10. 如权利要求1所述的显示面板,其还包括:
    第一偏光片,设于所述第一彩膜基板远离所述基板一侧的表面;以及
    第二偏光片,设于所述阵列基板远离所述液晶一侧的表面。
  11. 一种显示装置,包括如权利要求1所述的显示面板。
PCT/CN2019/118441 2019-10-22 2019-11-14 显示面板及显示装置 WO2021077496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911005334.7A CN110796055B (zh) 2019-10-22 2019-10-22 显示面板及显示装置
CN201911005334.7 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021077496A1 true WO2021077496A1 (zh) 2021-04-29

Family

ID=69440537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118441 WO2021077496A1 (zh) 2019-10-22 2019-11-14 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN110796055B (zh)
WO (1) WO2021077496A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928032B (zh) * 2019-12-13 2021-09-24 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
US11429001B2 (en) 2019-12-13 2022-08-30 Wuhan China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and liquid crystal display device
CN111160323B (zh) * 2020-02-19 2023-08-01 武汉华星光电技术有限公司 一种显示面板及电子装置
CN111178335A (zh) * 2020-02-27 2020-05-19 武汉华星光电技术有限公司 显示面板
CN111258101A (zh) * 2020-03-18 2020-06-09 武汉华星光电技术有限公司 一种显示装置
CN111308774A (zh) * 2020-04-02 2020-06-19 深圳市华星光电半导体显示技术有限公司 液晶显示面板及其制备方法
US11340487B2 (en) 2020-04-15 2022-05-24 Wuhan China Star Optoelectronics Technology Co., Ltd. Display device
CN111352268A (zh) * 2020-04-15 2020-06-30 武汉华星光电技术有限公司 显示装置
CN111708202B (zh) * 2020-07-17 2023-12-01 京东方科技集团股份有限公司 一种显示面板和显示装置
CN114815364B (zh) * 2021-01-18 2023-11-21 北京小米移动软件有限公司 显示屏及显示屏的制作方法、终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163601A1 (en) * 2001-05-04 2002-11-07 Min Kyoung Il Liquid crystal display and fingerprint capture panel
CN106940488A (zh) * 2017-04-27 2017-07-11 上海天马微电子有限公司 显示面板及显示装置
CN109445161A (zh) * 2018-12-27 2019-03-08 厦门天马微电子有限公司 显示面板和显示装置
KR20190090241A (ko) * 2018-01-24 2019-08-01 연세대학교 산학협력단 이미지 센서 내장형 디스플레이
CN110161739A (zh) * 2019-06-19 2019-08-23 厦门天马微电子有限公司 一种显示面板及显示装置
CN110222620A (zh) * 2019-05-30 2019-09-10 武汉华星光电技术有限公司 一种显示面板
CN110308583A (zh) * 2019-07-05 2019-10-08 厦门天马微电子有限公司 显示面板及指纹识别显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163601A1 (en) * 2001-05-04 2002-11-07 Min Kyoung Il Liquid crystal display and fingerprint capture panel
CN106940488A (zh) * 2017-04-27 2017-07-11 上海天马微电子有限公司 显示面板及显示装置
KR20190090241A (ko) * 2018-01-24 2019-08-01 연세대학교 산학협력단 이미지 센서 내장형 디스플레이
CN109445161A (zh) * 2018-12-27 2019-03-08 厦门天马微电子有限公司 显示面板和显示装置
CN110222620A (zh) * 2019-05-30 2019-09-10 武汉华星光电技术有限公司 一种显示面板
CN110161739A (zh) * 2019-06-19 2019-08-23 厦门天马微电子有限公司 一种显示面板及显示装置
CN110308583A (zh) * 2019-07-05 2019-10-08 厦门天马微电子有限公司 显示面板及指纹识别显示装置

Also Published As

Publication number Publication date
CN110796055A (zh) 2020-02-14
CN110796055B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2021077496A1 (zh) 显示面板及显示装置
US11424298B2 (en) Display panel and display device
WO2018161541A1 (zh) 一种指纹识别显示装置及其驱动方法
WO2020077721A1 (zh) 一种显示面板
CN108415188A (zh) 一种液晶显示面板、显示装置及其指纹解锁方法
US11301707B2 (en) Texture recognition device and driving method of texture recognition device
US11322558B2 (en) Display panel and electronic device
CN209327746U (zh) 显示屏组件及电子设备
US10810398B2 (en) Display panel for fingerprint recognition and display device
US20190099096A1 (en) Display device and method of detecting heart rate information
WO2021042501A1 (zh) 一种显示面板及显示装置
WO2019148798A1 (en) Pattern identification device and display apparatus
TWI730519B (zh) 液晶顯示裝置
WO2020232949A1 (zh) 显示面板和电子设备
US10817698B2 (en) Touch display panel with fingerprint recognition device
WO2019033348A1 (zh) 显示模组及电子设备
US20190087624A1 (en) Fingerprint identification sensor, fingerprint identification method and electronic device
WO2021114504A1 (zh) 液晶显示面板及液晶显示装置
WO2021249178A1 (zh) 显示面板和显示装置
WO2021164108A1 (zh) 一种显示面板及电子装置
WO2020191913A1 (zh) 显示面板及显示装置
WO2020232637A1 (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
CN112101270B (zh) 一种应用于屏下指纹识别的显示面板
CN109426022A (zh) 显示模组
WO2019041215A1 (zh) 显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950071

Country of ref document: EP

Kind code of ref document: A1