WO2021077472A1 - Comprehensive pyrolysis particle electrical fire monitoring method, device and system - Google Patents

Comprehensive pyrolysis particle electrical fire monitoring method, device and system Download PDF

Info

Publication number
WO2021077472A1
WO2021077472A1 PCT/CN2019/116569 CN2019116569W WO2021077472A1 WO 2021077472 A1 WO2021077472 A1 WO 2021077472A1 CN 2019116569 W CN2019116569 W CN 2019116569W WO 2021077472 A1 WO2021077472 A1 WO 2021077472A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
gas
alarm
electrical fire
concentration
Prior art date
Application number
PCT/CN2019/116569
Other languages
French (fr)
Chinese (zh)
Inventor
赵海龙
Original Assignee
北京航天常兴科技发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天常兴科技发展股份有限公司 filed Critical 北京航天常兴科技发展股份有限公司
Publication of WO2021077472A1 publication Critical patent/WO2021077472A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

A comprehensive pyrolysis particle electrical fire monitoring method, device and system. The method comprises: acquiring the real-time values of seven parameters in a low-voltage power distribution cabinet, wherein the seven parameters respectively comprise a temperature T, a temperature change rate VT, a thermally decomposed gas concentration C gas, a thermally decomposed gas concentration change rate Vgas, a PM1.0 particle concentration C1.0, a PM2.5 particle concentration C2.5 and a PM10 particle concentration C10; and acquiring threshold values d1, d2, d3, d4, d5, d6 and d7 respectively corresponding to the seven parameters (S1); assigning different dynamic weights to the parameters, performing overall integration on the parameter values exceeding the threshold values in conjunction with the dynamic weights, and calculating a processing result (S2); and raising an alarm prompt according to the processing result (S3). The seven parameters are acquired and are comprehensively taken as the important parameters of early-warning determination for safety in the low-voltage power distribution cabinet, and the seven parameters are subjected to overall integration analysis according to threshold settings and dynamic weight analysis, thereby realizing the accurate early detection of electrical fire safety hazards in the low-voltage power distribution cabinet, and preventing alarm failure and false alarms.

Description

一种综合性热解粒子电气火灾监控方法、装置及系统Comprehensive pyrolysis particle electrical fire monitoring method, device and system 技术领域Technical field
本发明涉及电气火灾安全监控领域,特别是涉及一种综合性热解粒子电气火灾监控方法、装置及系统。The invention relates to the field of electrical fire safety monitoring, in particular to a comprehensive pyrolysis particle electrical fire monitoring method, device and system.
背景技术Background technique
目前电气火灾安全监控装置种类多样,但检测参数单一,如测温式电气火灾安全监控装置仅检测温度;剩余电流式电气火灾安全监控系统仅检测剩余电流;感烟式电气火灾安全监控装置仅检测烟雾浓度。选择这些监控装置实现对低压配电柜的安全监测,不仅成本高而且误报情况时有发生。低压配电柜内最常用的探测器为感烟式探测器,但低压配电柜内接线集中,灰尘容易堆积,给探测器的检测造成干扰,难以实现有效防控。At present, there are various types of electrical fire safety monitoring devices, but the detection parameters are single. For example, the temperature-measuring electrical fire safety monitoring device only detects temperature; the residual current electrical fire safety monitoring system only detects residual current; the smoke-sensing electrical fire safety monitoring device only detects Smoke concentration. Choosing these monitoring devices to realize the safety monitoring of low-voltage power distribution cabinets is not only costly but also false alarms occur from time to time. The most commonly used detectors in low-voltage power distribution cabinets are smoke detectors, but the wiring in the low-voltage power distribution cabinets is concentrated, and dust is easy to accumulate, which interferes with the detection of the detectors and is difficult to achieve effective prevention and control.
由此可见,上述现有的电气火灾监控装置、系统与方法,显然仍存在有不便与缺陷,而亟待加以进一步改进。如何能创设一种可以实现电气火灾安全隐患准确预报的电器火灾监控装置、系统与方法,成为当前业界急需改进的目标。It can be seen that the above-mentioned existing electrical fire monitoring device, system and method obviously still have inconveniences and defects, and further improvement is urgently needed. How to create an electrical fire monitoring device, system and method that can accurately predict electrical fire safety hazards has become an urgent need for improvement in the industry.
发明内容Summary of the invention
本发明要解决的技术问题是提供一种电器火灾监控方法、装置及系统,使其可以实现低压配电柜内电气火灾安全隐患的准确早期探测,避免漏报、误报。The technical problem to be solved by the present invention is to provide an electrical fire monitoring method, device and system, which can realize accurate and early detection of electrical fire safety hazards in low-voltage power distribution cabinets, and avoid false alarms and false alarms.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the above technical problems, the present invention adopts the following technical solutions:
一方面,本发明提供了一种综合性热解粒子电气火灾监控方法,包括:On the one hand, the present invention provides a comprehensive pyrolysis particle electrical fire monitoring method, including:
S1、获取低压配电柜内的7个参量的实时数值,分别包括温度T、温度变化率V T、受热分解气体浓度C gas、受热分解气体浓度变化率V gas、PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10S1. Obtain the real-time values of 7 parameters in the low-voltage power distribution cabinet, including temperature T, temperature change rate V T , heated decomposition gas concentration C gas , heated decomposition gas concentration change rate V gas , PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 ;
获取7个参量分别对应的阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7 Obtain the thresholds d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , and d 7 corresponding to the 7 parameters respectively;
S2、对各参量赋予不同的动态权重并将超过阈值的各参量值结合动态权重整体融合计算处理结果;S2. Assign different dynamic weights to each parameter, and combine the value of each parameter that exceeds the threshold with the dynamic weight to integrate the calculation processing results as a whole;
S3、根据处理结果发出报警提示。S3. An alarm is issued according to the processing result.
作为本发明进一步地改进,所述S1中:所述阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7为根据实际应用场合核对或修改后的阈值。 As a further improvement of the present invention, in the S1: the thresholds d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , and d 7 are thresholds checked or modified according to actual applications.
进一步地,所述S1中:所述温度T及温度变化率V T由温度传感器实时采集;所述受热分解气体浓度C gas及受热分解气体浓度变化率V gas由污染气体传感器实时采集,所述PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5及PM10粒子浓度C 10由激光粉尘颗粒物传感器实时采集。 Further, in the S1: the temperature T and the temperature change rate V T are collected in real time by a temperature sensor; the heated decomposition gas concentration C gas and the heated decomposition gas concentration change rate V gas are collected in real time by a polluted gas sensor, the The PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 are collected by the laser dust particle sensor in real time.
进一步地,所述S2具体包括:Further, the S2 specifically includes:
S21、在获取阈值的基础上构建相应的对角矩阵S,其作为激活矩阵参与其中:S21. Construct a corresponding diagonal matrix S on the basis of obtaining the threshold, which participates in it as an activation matrix:
Figure PCTCN2019116569-appb-000001
Figure PCTCN2019116569-appb-000001
其中u(x)具有线性激活函数:Where u(x) has a linear activation function:
Figure PCTCN2019116569-appb-000002
Figure PCTCN2019116569-appb-000002
S22:计算初始报警参量A 0=(a 1 a 2 a 3 a 4 a 5 a 6 a 7),计算如下: S22: Calculate the initial alarm parameter A 0 = (a 1 a 2 a 3 a 4 a 5 a 6 a 7 ), the calculation is as follows:
Figure PCTCN2019116569-appb-000003
Figure PCTCN2019116569-appb-000003
其中各参量表示如下:The various parameters are expressed as follows:
x 1=T,x 2=V T,x 3=C gas, x 1 = T, x 2 = V T , x 3 = C gas ,
x 4=V gas,x 5=C 1.0,x 6=C 2.5,x 7=C 10 x 4 =V gas , x 5 =C 1.0 , x 6 =C 2.5 , x 7 =C 10
S23:对初始报警参量A 0与各参量权重结合,过程表示如下: S23: Combine the initial alarm parameter A 0 with the weight of each parameter, and the process is expressed as follows:
y=A 0·W 0 y=A 0 ·W 0
=A 0·(w 1 w 2 w 3 w 4 w 5 w 6 w 7) T =A 0 ·(w 1 w 2 w 3 w 4 w 5 w 6 w 7 ) T
其中W 0为初始权向量,w i(i=1,2,……7)表示各参量权重,危险等级结果y为标量; Among them, W 0 is the initial weight vector, w i (i=1, 2,...7) represents the weight of each parameter, and the hazard level result y is a scalar;
S24:参量值数值等级归一化:S24: Normalization of parameter value numerical level:
对权向量中各元素乘以相对应的倍率对角矩阵Q,其中Q中只有对角元素q 11,q 22,q 33,q 44,q 55,q 66,q 77非零,得归一化后的权向量W: Each element in the weight vector is multiplied by the corresponding magnification diagonal matrix Q, where only the diagonal elements q 11 , q 22 , q 33 , q 44 , q 55 , q 66 , and q 77 are non-zero, so they are normalized Weight vector W after transformation:
Figure PCTCN2019116569-appb-000004
Figure PCTCN2019116569-appb-000004
s.t. w 1+w 2+w 3+w 4+w 5+w 6+w 7≤1, st w 1 +w 2 +w 3 +w 4 +w 5 +w 6 +w 7 ≤1,
w 2+w 4≥0.4 w 2 +w 4 ≥0.4
S25:将实时数值与权重结合,根据权重偏离结合以上限定条件,确定最优权重,设计自适应权重算法:S25: Combine the real-time value with the weight, determine the optimal weight based on the weight deviation and the above limited conditions, and design the adaptive weight algorithm:
Figure PCTCN2019116569-appb-000005
Figure PCTCN2019116569-appb-000005
Figure PCTCN2019116569-appb-000006
Figure PCTCN2019116569-appb-000006
其中δ为平滑量,对获取最优权重至关重要。Among them, δ is the smoothing quantity, which is very important to obtain the optimal weight.
S26:计算结果y=A 0·W。 S26: Calculation result y=A 0 ·W.
进一步地,所述S3中,根据处理结果划定报警危险等级,以此调控蜂鸣器对外报警音量分贝。Further, in the S3, the alarm danger level is determined according to the processing result, so as to adjust the external alarm volume of the buzzer in decibels.
另一方面,本发明还提供了一种综合性热解粒子电气火灾监控装置,包括一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的综合性热解粒子电气火灾监控方法。On the other hand, the present invention also provides a comprehensive pyrolysis particle electrical fire monitoring device, including one or more processors; a storage device, used to store one or more programs, when the one or more programs are The one or more processors execute, so that the one or more processors implement the above-mentioned comprehensive pyrolysis particle electrical fire monitoring method.
再一方面,本发明还提供了一种综合性热解粒子电气火灾监控系统,其应用上述的综合性热解粒子电气火灾监控方法,包括温度传感器、激光粉尘颗粒物传感器、污染气体传感器、实时数据存储单元、阈值存储单元、权重分析处理单元、结果处理单元、报警单元,其中:In another aspect, the present invention also provides a comprehensive pyrolysis particle electrical fire monitoring system, which applies the above-mentioned comprehensive pyrolysis particle electrical fire monitoring method, including a temperature sensor, a laser dust particle sensor, a polluted gas sensor, and real-time data Storage unit, threshold storage unit, weight analysis processing unit, result processing unit, alarm unit, including:
温度传感器,用于获取温度T、温度变化率V T并存入实时数据存储单元;激光粉尘颗粒物传感器,用于获取PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10并存入实时数据存储单元;污染气体传感器,用于获取C-H链结构类的气体浓度C gas、C-H链结构类的气体浓度变化率V gas并存入实时数据存储单元;阈值存储单元,用于存储获取的各参量对应的阈值;权重分析处理单元,获取实时数据存储单元内存储的参量值及阈值存储单元内的阈值并对各参量赋予不同的动态权重;结果处理单元,将超过阈值的各参量值结合动态权重整体融合计算处理结果;报警单元,用 于根据上述结果处理单元计算的处理结果进行报警。 Temperature sensor, used to obtain temperature T, temperature change rate V T and stored in the real-time data storage unit; laser dust particle sensor, used to obtain PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 and stored in the real-time data storage unit; the polluted gas sensor is used to obtain the gas concentration C gas of the CH chain structure type and the gas concentration change rate V gas of the CH chain structure type and store it in the real-time data storage unit; the threshold value storage unit is used The threshold value corresponding to each parameter is stored; the weight analysis processing unit obtains the parameter value stored in the real-time data storage unit and the threshold value in the threshold value storage unit and assigns different dynamic weights to each parameter; the result processing unit will exceed the threshold value Each parameter value is combined with the dynamic weight to integrate the calculation processing result as a whole; the alarm unit is used to give an alarm according to the processing result calculated by the result processing unit.
作为本发明进一步地改进,所述系统还包括参数设置显示单元;所述参数设置显示单元通过数据接口与阈值存储单元连接;可通过数据接口导出默认阈值数据进行查看,或评估实际应用场合后修改阈值数据并重新导入保存至阈值存储单元。As a further improvement of the present invention, the system further includes a parameter setting display unit; the parameter setting display unit is connected to the threshold storage unit through a data interface; the default threshold data can be exported through the data interface for viewing, or modified after evaluating the actual application. Threshold data is re-imported and saved to the threshold storage unit.
进一步地,所述报警单元包括报警等级判别单元及蜂鸣器;所述报警等级判别单元根据结果处理单元的处理结果划定报警危险等级并调控蜂鸣器对外报警音量分贝。Further, the alarm unit includes an alarm level discrimination unit and a buzzer; the alarm level discrimination unit delimits the alarm hazard level according to the processing result of the result processing unit and regulates the external alarm volume of the buzzer in decibels.
通过采用上述技术方案,本发明至少具有以下优点:By adopting the above technical solutions, the present invention has at least the following advantages:
本发明中选取了温度T、温度变化率V T、受热分解气体浓度C gas、受热分解气体浓度变化率V gas、PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10这7个参数,综合作为低压配电柜内安全早期预警评判的重要参数,并根据阈值设置、动态权重分析将这7个参数进行整体融合分析,实现了低压配电柜内电气火灾安全隐患的准确早期探测,避免了漏报、误报。 In the present invention, temperature T, temperature change rate V T , heated decomposition gas concentration C gas , heated decomposition gas concentration change rate V gas , PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C are selected. 10 These 7 parameters are comprehensively regarded as important parameters for the early warning and evaluation of safety in the low-voltage power distribution cabinet. According to the threshold setting and dynamic weight analysis, these 7 parameters are integrated and analyzed to realize the hidden danger of electrical fire in the low-voltage power distribution cabinet. The accurate early detection avoids false negatives and false positives.
附图说明Description of the drawings
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。The foregoing is only an overview of the technical solutions of the present invention. In order to better understand the technical means of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明实施例的综合性热解粒子电气火灾监控方法流程图;Figure 1 is a flow chart of a comprehensive pyrolysis particle electrical fire monitoring method according to an embodiment of the present invention;
图2是本发明实施例的综合性热解粒子电气火灾监控系统框图。Fig. 2 is a block diagram of a comprehensive pyrolysis particle electrical fire monitoring system according to an embodiment of the present invention.
具体实施方式Detailed ways
针现有技术中无法对低压配电柜内电气火灾安全隐患进行早期准确判断的问题,本发明通过深入研究,探究造成低压配电柜内电气安全隐患的本质原因,综合分析多个参考值,实现了低压配电柜内电气火灾安全隐患的准确早期探测,避免漏报、误报。Aiming at the problem in the prior art that it is impossible to make an early and accurate judgment of potential electrical fire safety hazards in low-voltage power distribution cabinets, the present invention explores the essential causes of electrical safety hazards in low-voltage power distribution cabinets through in-depth research, and comprehensively analyzes multiple reference values, The accurate and early detection of electrical fire safety hazards in the low-voltage power distribution cabinet is realized, and false alarms and false alarms are avoided.
当低压配电柜内存在电气火灾安全隐患时,一般会伴有温度、烟雾、光等因素的变化。其中温度的变化,是其他因素产生变化的重要诱导因素,因此,本发明将实时的温度值以及温度变化率,作为低压配电柜内安全早期预警评判的重要参数之一。When there is a potential electrical fire safety hazard in the low-voltage power distribution cabinet, it is generally accompanied by changes in factors such as temperature, smoke, and light. The temperature change is an important inducing factor for other factors to change. Therefore, the present invention uses the real-time temperature value and the temperature change rate as one of the important parameters for the early warning and evaluation of safety in the low-voltage power distribution cabinet.
低压配电柜内包含绝缘电线、断路器、电路板基板等,其材质多为ABS材料、聚氯乙烯、环氧树脂等C-H链合成材料。一旦外界温度过高、线路电流过大等原因引起的电气火灾,对低压配电柜内部最直接的影响是柜内物质受热分解出粒子,因此可以通过检测以自由状态存在的粒子密度作为重要的预警参考量。根据粒子直径大小,检测大小分为:C-H链结构等气体、超细颗粒物PM1.0、直径小于等于2.5微米的颗粒物PM2.5以及粒径在10微米以下的可吸入颗粒物PM10。针对粒子种类、直径大小的不同,检测方法不同。利用不同类型热解粒子密度,是本发明专利判断低压配电柜内电气安全隐患的重要评估参数之一。The low-voltage power distribution cabinet contains insulated wires, circuit breakers, circuit board substrates, etc., and its materials are mostly ABS materials, polyvinyl chloride, epoxy resin and other C-H chain synthetic materials. Once the external temperature is too high, the line current is too large, etc., the most direct impact on the interior of the low-voltage power distribution cabinet is that the material in the cabinet is heated to decompose particles. Therefore, the particle density in the free state can be detected as an important factor. Early warning reference amount. According to the particle diameter, the detection size is divided into: C-H chain structure and other gases, ultrafine particles PM1.0, particles less than or equal to 2.5 microns in diameter PM2.5, and inhalable particles less than 10 microns in diameter PM10. The detection methods are different for different particle types and diameters. Using the density of different types of pyrolysis particles is one of the important evaluation parameters for judging potential electrical safety hazards in the low-voltage power distribution cabinet of the present invention.
图1为本发明实施例的综合性热解粒子电气火灾监控方法流程图,包括:Figure 1 is a flow chart of a comprehensive pyrolysis particle electrical fire monitoring method according to an embodiment of the present invention, including:
S1、获取低压配电柜内的7个参量的实时数值,分别包括温度T、温度变化率V T、受热分解气体浓度C gas、受热分解气体浓度变化率V gas、PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10S1. Obtain the real-time values of 7 parameters in the low-voltage power distribution cabinet, including temperature T, temperature change rate V T , heated decomposition gas concentration C gas , heated decomposition gas concentration change rate V gas , PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 ;
获取7个参量分别对应的阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7 Obtain the thresholds d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , and d 7 corresponding to the 7 parameters respectively;
S2、对各参量赋予不同的动态权重并将超过阈值的各参量值结合动态权重整体融合计算处理结果;S2. Assign different dynamic weights to each parameter, and combine the value of each parameter that exceeds the threshold with the dynamic weight to integrate the calculation processing results as a whole;
S3、根据处理结果发出报警提示。S3. An alarm is issued according to the processing result.
下面将分别进行详细展开描述:The detailed description will be given below:
Step1:根据低压配电柜内环境条件分析,为实现电气火灾安全隐患的准确预报,需获取配电柜内的多个参量值,包括实时的温度、温度变化率、PM1.0粒子浓度、PM2.5粒子浓度、PM10粒子浓度、C-H链结构等受热分解气体浓度、C-H链结构等受热分解气体浓度变化率。这些参量的设定方 式如下:Step1: According to the analysis of the environmental conditions in the low-voltage power distribution cabinet, in order to achieve accurate prediction of electrical fire safety hazards, it is necessary to obtain multiple parameter values in the power distribution cabinet, including real-time temperature, temperature change rate, PM1.0 particle concentration, PM2 .5 The rate of change of particle concentration, PM10 particle concentration, CH chain structure and other thermally decomposed gas concentration, CH chain structure and other thermally decomposed gas concentration change rate. The setting methods of these parameters are as follows:
1)获取温度T。通过温度传感器的热敏电阻的热效应测量环境内的实时温度,设定起始时间,设间隔Δt对环境温度进行采样。假设间隔Δt的两个温度为T 1、T 2,则T=(T 1+T 2)/2; 1) Obtain the temperature T. The real-time temperature in the environment is measured by the thermal effect of the thermistor of the temperature sensor, the start time is set, and the interval Δt is set to sample the ambient temperature. Assuming that the two temperatures in the interval Δt are T 1 and T 2 , then T=(T 1 +T 2 )/2;
2)温度变化率。以获取实时温度为参考量,温度变化率为V T=(T 2-T 1)/Δt。 2) Rate of temperature change. Taking the real-time temperature as the reference quantity, the temperature change rate is V T =(T 2 -T 1 )/Δt.
3)C-H链结构、VOC等各类低压配电柜内物质的受热分解气体浓度Cgas。低压配电柜内物质受热能够产生的气体包括各种C-H链的烷类化合物以及硫化氢、挥发性化合物等。由于气味分子的吸附和表面反应,使污染气体传感器的特定半导体的电阻值发生敏感变化,进而高灵敏检测低压配电柜内气体浓度。3) C-H chain structure, VOC and other low-voltage power distribution cabinets and other substances in the heated decomposition gas concentration Cgas. The gases that can be generated by heating the materials in the low-voltage distribution cabinet include various C-H chain alkane compounds, hydrogen sulfide, and volatile compounds. Due to the adsorption and surface reaction of odor molecules, the resistance value of the specific semiconductor of the polluted gas sensor is sensitively changed, and the gas concentration in the low-voltage power distribution cabinet is detected with high sensitivity.
4)在间隔时间Δt的受热分解气体浓度Cgas浓度变化率为Vgas=(Cgas 2-Cgas 1)/Δt 4) The rate of change of the thermal decomposition gas concentration Cgas concentration at the interval Δt is Vgas=(Cgas 2 -Cgas 1 )/Δt
5)颗粒物PM1.0浓度C 1.0、颗粒物PM2.5浓度C 2.5、颗粒物PM10浓度C 10。利用激光粉尘颗粒物传感器进行检测,通过激光照射在空气中的悬浮颗粒物上产生光散射,将其在某一角度范围内收集的散射光强线性转换成电压,以此基于散射理论等效为粒径及单位体积内不同粒径的颗粒数量,以此获取PM1.0浓度C 1.0、颗粒物PM2.5浓度C 2.5、颗粒物PM10浓度C 105) The concentration of particulate matter PM1.0 is C 1.0 , the concentration of particulate matter PM2.5 is C 2.5 , and the concentration of particulate matter PM10 is C 10 . The laser dust particle sensor is used for detection, and the light is scattered on the suspended particles in the air by laser irradiation, and the scattered light intensity collected in a certain angle range is linearly converted into a voltage, which is equivalent to the particle size based on the scattering theory And the number of particles of different particle sizes in a unit volume to obtain the PM1.0 concentration C 1.0 , the particulate matter PM2.5 concentration C 2.5 , and the particulate matter PM10 concentration C 10 .
其中不同测量值的标定单位分别为:温度℃、温度变化率为℃/s、气体浓度ppm、气体浓度变化率ppm/s、不同粒径颗粒浓度ug/m 3The calibration units for different measurement values are: temperature °C, temperature change rate °C/s, gas concentration ppm, gas concentration change rate ppm/s, and particle concentration of different particle sizes ug/m 3 .
Step2:核对或修改各参数对应阈值。在不同节气、场所安装的低压配电柜其常规环境参量值不同,因此阈值有所调整。其中T、V T、Cgas、Vgas、C 1.0、C 2.5、C 10在内的7个参量对应的阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7,其中D=(d 1 d 2 d 3 d 4 d 5 d 6 d 7)。 Step2: Check or modify the corresponding threshold of each parameter. Low-voltage power distribution cabinets installed in different solar terms and locations have different values of conventional environmental parameters, so the thresholds have been adjusted. Wherein T, V T, Cgas, Vgas , C 1.0, C 2.5, C 10 , including seven parameters corresponding to the threshold value d 1, d 2, d 3 , d 4, d 5, d 6, d 7, wherein D = (D 1 d 2 d 3 d 4 d 5 d 6 d 7 ).
Step3:在阈值设定成功的基础上构建相应的对角矩阵S,其作为激活矩阵参与其中:Step3: Construct the corresponding diagonal matrix S based on the successful threshold setting, which participates as an activation matrix:
Figure PCTCN2019116569-appb-000007
Figure PCTCN2019116569-appb-000007
其中u(x)具有线性激活函数:Where u(x) has a linear activation function:
Figure PCTCN2019116569-appb-000008
Figure PCTCN2019116569-appb-000008
Step4:计算初始报警参量A 0=(a 1 a 2 a 3 a 4 a 5 a 6 a 7)。计算如下: Step4: Calculate the initial alarm parameter A 0 = (a 1 a 2 a 3 a 4 a 5 a 6 a 7 ). The calculation is as follows:
Figure PCTCN2019116569-appb-000009
Figure PCTCN2019116569-appb-000009
其中各参量表示如下:The various parameters are expressed as follows:
x 1=T,x 2=V T,x 3=C gas, x 1 = T, x 2 = V T , x 3 = C gas ,
x 4=V gas,x 5=C 1.0,x 6=C 2.5,x 7=C 10 x 4 =V gas , x 5 =C 1.0 , x 6 =C 2.5 , x 7 =C 10
Step5:基于各个参量数值等级差别所表示的危险系数不同,代表的报警程度不同,因此对初始报警参量(行向量)A 0与各参量权重结合,过程表示如下: Step5: Based on the different hazard coefficients represented by the difference in the numerical level of each parameter, the degree of alarm represented is different. Therefore, the initial alarm parameter (row vector) A 0 is combined with the weight of each parameter, and the process is expressed as follows:
y=A 0·W 0 y=A 0 ·W 0
=A 0·(w 1 w 2 w 3 w 4 w 5 w 6 w 7) T =A 0 ·(w 1 w 2 w 3 w 4 w 5 w 6 w 7 ) T
其中W 0为初始权向量,w i(i=1,2,……7)表示各参量权重,危险等级结果y为标量。 Among them, W 0 is the initial weight vector, w i (i = 1, 2, ... 7) represents the weight of each parameter, and the hazard level result y is a scalar.
Step6:参量值数值等级归一化。Step6: Normalize the numerical level of the parameter value.
基于各参量值数值取值范围,需进行归一化处理,对测定值X中多个元素进行处理。X中元素与设定权向量W中元素具有对应关系,且各检测参量的大小范围不统一,因此对权向量中各元素乘以相对应的倍率对角矩阵Q(Q中只有对角元素q 11,q 22,q 33,q 44,q 55,q 66,q 77非零,各元素大小参考对应检测参量的检测范围),得归一化后的权向量W: Based on the value range of each parameter value, normalization processing is required to process multiple elements in the measured value X. The element in X has a corresponding relationship with the element in the set weight vector W, and the size range of each detection parameter is not uniform. Therefore, each element in the weight vector is multiplied by the corresponding magnification diagonal matrix Q (Q only has the diagonal element q 11 , q 22 , q 33 , q 44 , q 55 , q 66 , and q 77 are non-zero, and the size of each element refers to the detection range of the corresponding detection parameter), and the normalized weight vector W is obtained:
Figure PCTCN2019116569-appb-000010
Figure PCTCN2019116569-appb-000010
Step7:为了准确估计向量W,并使最终判别结果及时反映电气火灾早期安全隐患,将实时测定值与权重结合,根据权重偏离结合以上限定条件,确定最优权重。因此设计自适应权重算法:Step7: In order to accurately estimate the vector W, and make the final judgment result timely reflect the early safety hazards of electrical fire, the real-time measured value and the weight are combined, and the optimal weight is determined according to the deviation of the weight and the above restrictions. Therefore, the adaptive weighting algorithm is designed:
Figure PCTCN2019116569-appb-000011
Figure PCTCN2019116569-appb-000011
Figure PCTCN2019116569-appb-000012
Figure PCTCN2019116569-appb-000012
其中δ为平滑量,对获取最优权重至关重要。根据以上条件,获取最优权重值。Among them, δ is the smoothing quantity, which is very important to obtain the optimal weight. According to the above conditions, the optimal weight value is obtained.
Step8:计算结果y=A 0·W。 Step8: The calculation result y=A 0 ·W.
Step9:根据计算结果进行报警。Step9: Alarm based on the calculation result.
本实施例还提供了一种综合性热解粒子电气火灾监控装置,包括一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的综合性热解粒子电气火灾监控方法。This embodiment also provides a comprehensive pyrolysis particle electrical fire monitoring device, including one or more processors; a storage device, for storing one or more programs, when the one or more programs are used by the one Or multiple processors execute, so that the one or more processors implement the above-mentioned comprehensive pyrolysis particle electrical fire monitoring method.
如图2所示,为本发明实施例的综合性热解粒子电气火灾监控系统框图。该系统包括:温度传感器、激光粉尘颗粒物传感器、污染气体传感器、实时数据存储单元、阈值存储单元、权重分析处理单元、结果处理单元、报警单元,其中:As shown in Figure 2, it is a block diagram of a comprehensive pyrolysis particle electrical fire monitoring system according to an embodiment of the present invention. The system includes: temperature sensor, laser dust particle sensor, polluted gas sensor, real-time data storage unit, threshold storage unit, weight analysis and processing unit, result processing unit, alarm unit, among them:
温度传感器,用于获取温度T、温度变化率V T并存入实时数据存储单元;激光粉尘颗粒物传感器,用于获取PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10并存入实时数据存储单元;污染气体传感器,用于获取C-H链结构类的气体浓度C gas、C-H链结构类的气体浓度变化率V gas并存入实时数据存储单元;阈值存储单元,用于存储获取的各参量对应的阈值;权重分析处理单元,获取实时数据存储单元内存储的参量值及阈值存储单元内的阈值并对各参量赋予不同的动态权重;结果处理单元,将超过阈值的各参量值结合动态权重整体融合计算处理结果;报警单元,用于根据上述结果处理单元计算的处理结果进行报警,包括报警等级判别单元及蜂鸣器;报警等级判别单元根据结果处理单元的处理结果划定报警危险等级并调控蜂鸣器对外报警音量分贝。 Temperature sensor, used to obtain temperature T, temperature change rate V T and stored in the real-time data storage unit; laser dust particle sensor, used to obtain PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 and stored in the real-time data storage unit; the polluted gas sensor is used to obtain the gas concentration C gas of the CH chain structure type and the gas concentration change rate V gas of the CH chain structure type and store it in the real-time data storage unit; the threshold value storage unit is used The threshold value corresponding to each parameter is stored; the weight analysis processing unit obtains the parameter value stored in the real-time data storage unit and the threshold value in the threshold value storage unit and assigns different dynamic weights to each parameter; the result processing unit will exceed the threshold value Each parameter value is combined with the dynamic weight to integrate the calculation processing result; the alarm unit is used to give an alarm based on the processing result calculated by the above result processing unit, including an alarm level discrimination unit and a buzzer; the alarm level discrimination unit processes the unit's processing result according to the result Define the alarm hazard level and regulate the external alarm volume of the buzzer in decibels.
作为优选的方案,上述系统还包括参数设置显示单元;参数设置显示单元通过数据接口与阈值存储单元连接;可通过数据接口导出默认阈值数据进行查看,或评估实际应用场合后修改阈值数据并重新导入保存至阈值存储单元。阈值可调模式不仅减小了某些情况下的误报率,并且可对安全性要求非常严格的场所发生电气火灾安全隐患早期进行准确预报。As a preferred solution, the above system also includes a parameter setting display unit; the parameter setting display unit is connected to the threshold storage unit through a data interface; the default threshold data can be exported through the data interface for viewing, or the threshold data can be modified and re-imported after evaluating the actual application. Save to the threshold storage unit. The adjustable threshold mode not only reduces the false alarm rate in some cases, but also can accurately predict the potential safety hazards of electrical fires in places with very strict safety requirements.
即上述系统在执行过程中遵循数据收集、数据处理、数据存储三个过程。其数据收集包括:实时数据(温度、不同粒径颗粒浓度、受热分解气 体浓度)、阈值D。实时数据由温度传感器、激光粉尘颗粒物传感器、污染气体传感器实时采集。阈值D可通过数据接口导出默认阈值数据进行查看,或评估实际情况后修改阈值数据并重新导入保存至阈值D存储单元。数据处理包括:权重分析处理、计算最终结果的处理,由权重分析处理单元和结果处理单元完成。基于以上过程,其数据存储包括通过不同传感器获取的实时数据、阈值数据的保存,即实时数据存储单元和阈值存储单元。针对应用方面,报警等级判别单元依据根据结果处理单元传送结果划定报警危险等级,以此调控蜂鸣器对外报警音量分贝。That is to say, the above system follows the three processes of data collection, data processing, and data storage in the execution process. Its data collection includes: real-time data (temperature, particle concentration of different sizes, concentration of heated decomposition gas), threshold D. Real-time data is collected in real time by temperature sensors, laser dust particles sensors, and polluted gas sensors. The threshold value D can be exported through the data interface to view the default threshold value data, or the threshold value data can be modified after evaluating the actual situation and re-imported and saved to the threshold value D storage unit. Data processing includes: weight analysis processing, processing of calculating the final result, which is completed by the weight analysis processing unit and the result processing unit. Based on the above process, its data storage includes the storage of real-time data and threshold data acquired by different sensors, namely real-time data storage unit and threshold storage unit. In terms of application, the alarm level judging unit delimits the alarm hazard level based on the transmission result of the result processing unit, thereby regulating the external alarm volume of the buzzer in decibels.
综上所述,本发明中选取了温度T、温度变化率V T、受热分解气体浓度C gas、受热分解气体浓度变化率V gas、PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10这7个参数,综合作为低压配电柜内安全早期预警评判的重要参数,并根据阈值设置、动态权重分析将这7个参数进行整体融合分析,实现了低压配电柜内电气火灾安全隐患的准确早期探测,避免了漏报、误报,适于推广应用。 In summary, the present invention selects temperature T, temperature change rate V T , heated decomposition gas concentration C gas , heated decomposition gas concentration change rate V gas , PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 The 7 parameters of PM10 and PM10 particle concentration C 10 are integrated as important parameters for the early warning and evaluation of safety in the low-voltage power distribution cabinet. According to the threshold setting and dynamic weight analysis, these 7 parameters are integrated and analyzed to realize the low-voltage power distribution cabinet. Accurate early detection of internal electrical fire safety hazards avoids false alarms and false alarms, and is suitable for promotion and application.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Those skilled in the art use the technical content disclosed above to make some simple modifications, equivalent changes or modifications, which fall within the present invention. Within the scope of protection of the invention.

Claims (9)

  1. 一种综合性热解粒子电气火灾监控方法,其特征在于,包括:A comprehensive pyrolysis particle electrical fire monitoring method, which is characterized in that it comprises:
    S1、获取低压配电柜内的7个参量的实时数值,分别包括温度T、温度变化率V T、受热分解气体浓度C gas、受热分解气体浓度变化率V gas、PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10S1. Obtain the real-time values of 7 parameters in the low-voltage power distribution cabinet, including temperature T, temperature change rate V T , heated decomposition gas concentration C gas , heated decomposition gas concentration change rate V gas , PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 ;
    获取7个参量分别对应的阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7 Obtain the thresholds d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , and d 7 corresponding to the 7 parameters respectively;
    S2、对各参量赋予不同的动态权重并将超过阈值的各参量值结合动态权重整体融合计算处理结果;S2. Assign different dynamic weights to each parameter, and combine the value of each parameter that exceeds the threshold with the dynamic weight to integrate the calculation processing results as a whole;
    S3、根据处理结果发出报警提示。S3. An alarm is issued according to the processing result.
  2. 根据权利要求1所述的综合性热解粒子电气火灾监控方法,其特征在于,所述S1中:所述阈值d 1、d 2、d 3、d 4、d 5、d 6、d 7为根据实际应用场合核对或修改后的阈值。 The comprehensive pyrolysis particle electrical fire monitoring method according to claim 1, wherein in the S1: the threshold values d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , and d 7 are Check or modify the threshold according to the actual application.
  3. 根据权利要求1所述的综合性热解粒子电气火灾监控方法,其特征在于,所述S1中:所述温度T及温度变化率V T由温度传感器实时采集;所述受热分解气体浓度C gas及受热分解气体浓度变化率V gas由污染气体传感器实时采集,所述PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5及PM10粒子浓度C 10由激光粉尘颗粒物传感器实时采集。 The comprehensive pyrolysis particle electrical fire monitoring method according to claim 1, wherein in the S1: the temperature T and the temperature change rate V T are collected by a temperature sensor in real time; the thermal decomposition gas concentration C gas The concentration change rate V gas of the heated decomposition gas is collected in real time by the polluted gas sensor, and the PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 are collected in real time by the laser dust particle sensor.
  4. 根据权利要求1-3任一项所述的综合性热解粒子电气火灾监控方法,其特征在于,所述S2具体包括:The comprehensive pyrolysis particle electrical fire monitoring method according to any one of claims 1 to 3, wherein the S2 specifically includes:
    S21、在获取阈值的基础上构建相应的对角矩阵S,其作为激活矩阵参与其中:S21. Construct a corresponding diagonal matrix S on the basis of obtaining the threshold, which participates in it as an activation matrix:
    Figure PCTCN2019116569-appb-100001
    Figure PCTCN2019116569-appb-100001
    其中u(x)具有线性激活函数:Where u(x) has a linear activation function:
    Figure PCTCN2019116569-appb-100002
    Figure PCTCN2019116569-appb-100002
    S22:计算初始报警参量A 0=(a 1 a 2 a 3 a 4 a 5 a 6 a 7),计算如下: S22: Calculate the initial alarm parameter A 0 = (a 1 a 2 a 3 a 4 a 5 a 6 a 7 ), the calculation is as follows:
    Figure PCTCN2019116569-appb-100003
    Figure PCTCN2019116569-appb-100003
    其中各参量表示如下:The various parameters are expressed as follows:
    x 1=T,x 2=V T,x 3=C gas, x 1 = T, x 2 = V T , x 3 = C gas ,
    x 4=V gas,x 5=C 1.0,x 6=C 2.5,x 7=C 10 x 4 =V gas , x 5 =C 1.0 , x 6 =C 2.5 , x 7 =C 10
    S23:对初始报警参量A 0与各参量权重结合,过程表示如下: S23: Combine the initial alarm parameter A 0 with the weight of each parameter, and the process is expressed as follows:
    y=A 0·W 0 y=A 0 ·W 0
    =A 0·(w 1 w 2 w 3 w 4 w 5 w 6 w 7) T =A 0 ·(w 1 w 2 w 3 w 4 w 5 w 6 w 7 ) T
    其中W 0为初始权向量,w i(i=1,2,……7)表示各参量权重,危险等级结果y为标量; Among them, W 0 is the initial weight vector, w i (i=1, 2,...7) represents the weight of each parameter, and the hazard level result y is a scalar;
    S24:参量值数值等级归一化:S24: Normalization of parameter value numerical level:
    对权向量中各元素乘以相对应的倍率对角矩阵Q,其中Q中只有对角元素q 11,q 22,q 33,q 44,q 55,q 66,q 77非零,得归一化后的权向量W: Each element in the weight vector is multiplied by the corresponding magnification diagonal matrix Q, where only the diagonal elements q 11 , q 22 , q 33 , q 44 , q 55 , q 66 , and q 77 are non-zero, so they are normalized Weight vector W after transformation:
    Figure PCTCN2019116569-appb-100004
    Figure PCTCN2019116569-appb-100004
    s.t.w 1+w 2+w 3+w 4+w 5+w 6+w 7=1, stw 1 +w 2 +w 3 +w 4 +w 5 +w 6 +w 7 = 1,
    w 2+w 4≥0.4 w 2 +w 4 ≥0.4
    S25:将实时数值与权重结合,根据权重偏离结合以上限定条件,确定最优权重,设计自适应权重算法:S25: Combine the real-time value with the weight, determine the optimal weight based on the weight deviation and the above limited conditions, and design the adaptive weight algorithm:
    Figure PCTCN2019116569-appb-100005
    Figure PCTCN2019116569-appb-100005
    Figure PCTCN2019116569-appb-100006
    Figure PCTCN2019116569-appb-100006
    其中δ为平滑量;根据以上条件,获取最优权重值;Among them, δ is the smoothing amount; according to the above conditions, obtain the optimal weight value;
    S26:计算结果y=A 0·W。 S26: Calculation result y=A 0 ·W.
  5. 根据权利要求1所述的综合性热解粒子电气火灾监控方法,其特征在于,所述S3中,根据处理结果划定报警危险等级,以此调控蜂鸣器对外报警音量分贝。The comprehensive pyrolysis particle electrical fire monitoring method according to claim 1, wherein in said S3, an alarm hazard level is determined according to the processing result, so as to adjust the external alarm volume of the buzzer in decibels.
  6. 一种综合性热解粒子电气火灾监控装置,其特征在于,包括一个或多个处理器;A comprehensive pyrolysis particle electrical fire monitoring device, which is characterized in that it comprises one or more processors;
    存储装置,用于存储一个或多个程序,Storage device, used to store one or more programs,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据权利要求1至6任意一项所述的综合性热解粒子电气火灾监控方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the comprehensive pyrolysis particle electrical fire monitoring method according to any one of claims 1 to 6 .
  7. 一种综合性热解粒子电气火灾监控系统,其特征在于,应用权利要 求1-5任一项所述的综合性热解粒子电气火灾监控方法,包括温度传感器、激光粉尘颗粒物传感器、污染气体传感器、实时数据存储单元、阈值存储单元、权重分析处理单元、结果处理单元、报警单元,其中:A comprehensive pyrolysis particle electrical fire monitoring system, characterized by applying the comprehensive pyrolysis particle electrical fire monitoring method of any one of claims 1-5, including a temperature sensor, a laser dust particle sensor, and a polluted gas sensor , Real-time data storage unit, threshold storage unit, weight analysis processing unit, result processing unit, alarm unit, including:
    温度传感器,用于获取温度T、温度变化率V T并存入实时数据存储单元; The temperature sensor is used to obtain the temperature T and the temperature change rate V T and store them in the real-time data storage unit;
    激光粉尘颗粒物传感器,用于获取PM1.0粒子浓度C 1.0、PM2.5粒子浓度C 2.5和PM10粒子浓度C 10并存入实时数据存储单元; Laser dust particle sensor, used to obtain PM1.0 particle concentration C 1.0 , PM2.5 particle concentration C 2.5 and PM10 particle concentration C 10 and store them in the real-time data storage unit;
    污染气体传感器,用于获取C-H链结构类的气体浓度C gas、C-H链结构类的气体浓度变化率V gas并存入实时数据存储单元; The polluted gas sensor is used to obtain the gas concentration C gas of the CH chain structure type and the gas concentration change rate V gas of the CH chain structure type and store it in the real-time data storage unit;
    阈值存储单元,用于存储获取的各参量对应的阈值;The threshold value storage unit is used to store the threshold value corresponding to each acquired parameter;
    权重分析处理单元,获取实时数据存储单元内存储的参量值及阈值存储单元内的阈值并对各参量赋予不同的动态权重;The weight analysis processing unit obtains the parameter value stored in the real-time data storage unit and the threshold value in the threshold storage unit and assigns different dynamic weights to each parameter;
    结果处理单元,将超过阈值的各参量值结合动态权重整体融合计算处理结果;The result processing unit integrates each parameter value exceeding the threshold value with the dynamic weight to calculate the processing result as a whole;
    报警单元,用于根据上述结果处理单元计算的处理结果进行报警。The alarm unit is used to give an alarm based on the processing result calculated by the result processing unit.
  8. 根据权利要求7所述的综合性热解粒子电气火灾监控系统,其特征在于,还包括参数设置显示单元;所述参数设置显示单元通过数据接口与阈值存储单元连接;可通过数据接口导出默认阈值数据进行查看,或评估实际应用场合后修改阈值数据并重新导入保存至阈值存储单元。The comprehensive pyrolysis particle electrical fire monitoring system according to claim 7, further comprising a parameter setting display unit; the parameter setting display unit is connected to the threshold storage unit through a data interface; the default threshold can be derived through the data interface Check the data, or modify the threshold data after evaluating the actual application, and re-import and save it to the threshold storage unit.
  9. 根据权利要求7所述的综合性热解粒子电气火灾监控系统,其特征在于,所述报警单元包括报警等级判别单元及蜂鸣器;所述报警等级判别单元根据结果处理单元的处理结果划定报警危险等级并调控蜂鸣器对外报警音量分贝。The comprehensive pyrolysis particle electrical fire monitoring system according to claim 7, wherein the alarm unit includes an alarm level discrimination unit and a buzzer; the alarm level discrimination unit is defined according to the processing result of the result processing unit Alarm hazard level and adjust the external alarm volume of the buzzer in decibels.
PCT/CN2019/116569 2019-10-22 2019-11-08 Comprehensive pyrolysis particle electrical fire monitoring method, device and system WO2021077472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911006619.2 2019-10-22
CN201911006619.2A CN110706444B (en) 2019-10-22 2019-10-22 Comprehensive pyrolytic particle electrical fire monitoring method, device and system

Publications (1)

Publication Number Publication Date
WO2021077472A1 true WO2021077472A1 (en) 2021-04-29

Family

ID=69200935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116569 WO2021077472A1 (en) 2019-10-22 2019-11-08 Comprehensive pyrolysis particle electrical fire monitoring method, device and system

Country Status (2)

Country Link
CN (1) CN110706444B (en)
WO (1) WO2021077472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114064628A (en) * 2021-11-25 2022-02-18 北京中海兴达建设有限公司 Data processing system for fire early warning of construction site

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927463A (en) * 2021-03-26 2021-06-08 华侨大学 Pyrolysis particle electric fire monitoring device and method and distribution box
CN113538838B (en) * 2021-07-22 2022-12-06 应急管理部沈阳消防研究所 Electrical fire monitoring method for identifying pyrolytic particle characteristics of cultural relics and buildings
CN113554843A (en) * 2021-07-29 2021-10-26 无锡圣敏传感科技股份有限公司 Pyrolytic particle fire detection method and detector
CN113936411A (en) * 2021-12-08 2022-01-14 天津市普迅电力信息技术有限公司 Electrical fire early warning method, system and device
CN114419830A (en) * 2022-01-26 2022-04-29 江苏南工科技集团有限公司 Pyrolysis particle fire detection early warning method based on weight algorithm technology
CN115753527A (en) * 2022-11-19 2023-03-07 北京思维实创科技有限公司 Electromechanical device fire early warning method and system, terminal device and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065755A (en) * 2012-11-21 2014-05-30 성진씨앤티(주) Fire area environmental monitoring terminal using wireless communication
CN105701955A (en) * 2016-04-22 2016-06-22 沈阳申泰电器系统有限公司 Electrical fire monitoring detection system and method
CN206849218U (en) * 2017-06-20 2018-01-05 无锡圣敏传感科技股份有限公司 Fire detector, rack and fire detecting system
CN109034038A (en) * 2018-07-19 2018-12-18 东华大学 A kind of fire identification device based on multi-feature fusion
CN109243130A (en) * 2018-09-07 2019-01-18 公安部四川消防研究所 More methods physics fusion fire monitoring system and its predict fire probability
CN110276228A (en) * 2018-03-14 2019-09-24 福州大学 Multiple features fusion video fire hazard recognizer
CN110276926A (en) * 2018-03-16 2019-09-24 许耿祯 Detect the incipient fire early warning system of Airborne particulate value

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194574A1 (en) * 2009-01-30 2010-08-05 David James Monk Particle detection system and method of detecting particles
CN107871379A (en) * 2016-02-22 2018-04-03 钱珺佳 Fire Long Range Detecting and Ranging, detection method based on unmanned plane
CN207764332U (en) * 2017-11-22 2018-08-24 天津市中力神盾电子科技有限公司 Electric fire monitoring detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065755A (en) * 2012-11-21 2014-05-30 성진씨앤티(주) Fire area environmental monitoring terminal using wireless communication
CN105701955A (en) * 2016-04-22 2016-06-22 沈阳申泰电器系统有限公司 Electrical fire monitoring detection system and method
CN206849218U (en) * 2017-06-20 2018-01-05 无锡圣敏传感科技股份有限公司 Fire detector, rack and fire detecting system
CN110276228A (en) * 2018-03-14 2019-09-24 福州大学 Multiple features fusion video fire hazard recognizer
CN110276926A (en) * 2018-03-16 2019-09-24 许耿祯 Detect the incipient fire early warning system of Airborne particulate value
CN109034038A (en) * 2018-07-19 2018-12-18 东华大学 A kind of fire identification device based on multi-feature fusion
CN109243130A (en) * 2018-09-07 2019-01-18 公安部四川消防研究所 More methods physics fusion fire monitoring system and its predict fire probability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114064628A (en) * 2021-11-25 2022-02-18 北京中海兴达建设有限公司 Data processing system for fire early warning of construction site
CN114064628B (en) * 2021-11-25 2022-05-31 北京中海兴达建设有限公司 Data processing system for fire early warning of construction site

Also Published As

Publication number Publication date
CN110706444A (en) 2020-01-17
CN110706444B (en) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2021077472A1 (en) Comprehensive pyrolysis particle electrical fire monitoring method, device and system
Wang et al. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement
Salter et al. An empirically derived inorganic sea spray source function incorporating sea surface temperature
CN109579091B (en) Sensor enabled range hood system and method
US9109989B2 (en) Corrosion detector apparatus for universal assessment of pollution in data centers
Mylne Concentration fluctuation measurements in a plume dispersing in a stable surface layer
CN110044407B (en) Method for detecting an electrical fault, device for carrying out said method and electrical enclosure
CN111089875B (en) Test device and evaluation method for spontaneous combustion danger of metal dust in wet condition
Gutmacher et al. Comparison of gas sensor technologies for fire gas detection
RU2344859C2 (en) Method of fire detection and intellectual station of guidance for method realisation
Pangestu et al. The Monitoring System of Indoor Air Quality Based on Internet of Things
CN113936411A (en) Electrical fire early warning method, system and device
Amoah et al. Calibration of low-cost particulate matter sensors for coal dust monitoring
Deng et al. Eliminating the effects of refractive indices for both white smokes and black smokes in optical fire detector
CN116989897B (en) Low-power-consumption vehicle-mounted remote abnormality monitoring system for dangerous waste warehouse
Perera et al. Quantification of optical and physical properties of combustion-generated carbonaceous aerosols (< PM 2.5) using analytical and microscopic techniques
Fan et al. Emission and local ventilation control of droplets generated by condensation and bubble-bursting during pickling
US7019657B2 (en) Method, apparatus and system for fire detection
Newman et al. Smoke characterization and damage potentials
CN115615930B (en) Two-stage absorption enhanced photoacoustic spectroscopy gas detection method and device
WO2017019062A1 (en) Protecting a computing device from environmental issues in an enclosure
Malachowski et al. Workplace and environmental air contaminant concentrations measured by open path Fourier transform infrared spectroscopy: a statistical process control technique to detect changes from normal operating conditions
JP7268710B2 (en) Particle measurement method
Yogalakshmi et al. Design and prototype implementation of indoor air quality monitoring using LonWorks technology
Mensch et al. Measurements and Predictions of the Aerosol Dynamics of Smoke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949583

Country of ref document: EP

Kind code of ref document: A1