WO2021077370A1 - 一种用于建筑施工的多塔吊布置方法 - Google Patents

一种用于建筑施工的多塔吊布置方法 Download PDF

Info

Publication number
WO2021077370A1
WO2021077370A1 PCT/CN2019/113072 CN2019113072W WO2021077370A1 WO 2021077370 A1 WO2021077370 A1 WO 2021077370A1 CN 2019113072 W CN2019113072 W CN 2019113072W WO 2021077370 A1 WO2021077370 A1 WO 2021077370A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower crane
tower
building
discretization
cranes
Prior art date
Application number
PCT/CN2019/113072
Other languages
English (en)
French (fr)
Inventor
邵泉
卢德辉
凌文轩
程瀛
李祯
Original Assignee
广州建筑股份有限公司
广州一建建设集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州建筑股份有限公司, 广州一建建设集团有限公司 filed Critical 广州建筑股份有限公司
Priority to PCT/CN2019/113072 priority Critical patent/WO2021077370A1/zh
Priority to CN201980093616.9A priority patent/CN113557506B/zh
Publication of WO2021077370A1 publication Critical patent/WO2021077370A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/40Data acquisition and logging

Definitions

  • the present invention relates to the field of building construction, and more particularly, to a method for arranging multiple tower cranes for building construction.
  • the traditional method for determining the position of the tower crane is to roughly draw a feasible layout position on the building construction plan based on the experience of the project technical person, and iteratively check whether the position is feasible, and finally determine a "almost" feasible layout plan.
  • Traditional methods have problems such as difficulty in quantification, time-consuming labor, low efficiency, error-proneness, and difficulty in finding the optimal solution. Aiming at the problems of traditional methods, it is of great significance to develop a quantifiable, simple, reliable, and computationally efficient multi-tower crane arrangement method for building construction.
  • the object of the present invention is to provide a multi-tower crane arrangement method for building construction, which is simple and reliable, takes a short time and has high calculation efficiency.
  • the invention provides a multi-tower crane arrangement method for building construction, including the following steps:
  • the method further includes obtaining the optimal tower crane layout working condition, which is to select the most discrete building points in the hoisting area and each hoisting area in all the tower crane arranging working conditions.
  • the tower crane layout condition with the closest distance between the building discretization point and the tower crane, where the hoisting area is the area covered by the multi-tower crane boom.
  • the tower crane layout is the most reasonable and the construction is the easiest to operate.
  • a vector cross product algorithm is used to offset the building outline outward by a preset distance.
  • the preset distance is 5 meters, and this distance is set based on the overall size of the building.
  • deleting unavailable tower crane discretization points includes: deleting tower crane discretization points in the area where tower cranes are prohibited; using circle method to delete tower crane horizontal support points that cannot be installed; using tower crane 360-degree rotation iterative algorithm to delete tower crane points that cannot be dismantled.
  • the specific steps to delete the point where the horizontal support of the tower crane cannot be set up by the circle method are: take the discretization point of the tower crane as the center of the circle, and draw a circle with the support length of the tower crane as the radius. If there is an area forbidden to arrange the tower crane in the circle, judge the discretization point of the tower crane. Unavailable, and delete the point.
  • the specific steps of using the tower crane 360-degree rotation iterative algorithm to delete the points that the tower crane cannot be dismantled are: take the tower crane's discretization point as the center of the circle, and rotate the front and rear arms of the tower crane with a rotation accuracy of 5 degrees. If it intersects with the building outline, it is considered that the discretization point can be used for the tower crane; otherwise, it is judged that the discretization point of the tower crane is unavailable, and the point is deleted.
  • determining the arrangable working condition of the tower cranes is to determine that the minimum distance between every two tower cranes is not less than the maximum length of the tower crane arms of the two tower cranes, so that the tower cranes cannot collide.
  • the discretization accuracy of the building outline is 5m.
  • the discretization accuracy of the layout of the tower crane is 5m.
  • the method of the present invention proposes for the first time that by discretizing the building contour line and the tower crane layout contour line, it can quantitatively calculate and obtain the multi-tower crane layout working conditions and the optimal layout working conditions in the building construction process.
  • the method is simple, reliable, and time-consuming. Short, high calculation efficiency, and good accuracy.
  • Figure 1 shows the original floor plan of the building with the outline of the building and the area where tower cranes are prohibited
  • Figure 2 shows the points and labels that can be arranged for the tower crane during construction
  • Figure 3 shows the optimal layout of the tower crane during construction.
  • a residential area is planned for a project, covering an area of 90,000 square meters, and 12 high-rise residential buildings are planned to be built. Due to site requirements, some areas cannot be equipped with tower cranes. The following 6 tower cranes are arranged according to the construction plan.
  • the outline of each building is drawn in a multi-line form in a counterclockwise direction, and a thick straight line is used to mark the area where tower cranes are forbidden, and the tower crane connection cannot be arranged in this area.
  • Structural support or plan not to arrange tower cranes are Among them: the length of the forearm of the tower crane is 60m, and the length of the rear arm is 15m; the distance between the tower crane and the building structure is 5m; the supporting length connecting the tower crane and the building structure is 7m.
  • the second step is to discretize the building outline
  • the contour line of each building is discretized according to the 5m accuracy requirement, that is, the distance of each point after discretization is not more than 5m, and the discretization point of the building is obtained.
  • the third step is to obtain the discretization point of the tower crane layout contour line
  • the vector cross product algorithm is used to offset the building outline by a preset distance of 5m, and then discretize according to the 5m accuracy requirements, that is, the distance between each point after discretization is not less than 5m, and the tower crane discretization point is obtained.
  • the fourth step is to obtain the points where the tower crane can be arranged
  • the specific steps are: take the discretization point of the tower crane as the center of the circle and draw a circle with the support length of the tower crane 7m as the radius. If there is an area forbidden to arrange the tower crane in the circle, judge the tower crane The discretization point is not available, and the point is deleted.
  • the specific steps are: take the tower crane's discretization point as the center of the circle, and rotate the front and rear arms of the tower crane with a rotation accuracy of 5 degrees. If it intersects with the building outline, it is considered that the discretization point can be used for the tower crane; otherwise, it is judged that the discretization point of the tower crane is unavailable, and the point is deleted.
  • the tower crane can be arranged points, and marked, as shown in Figure 2.
  • the fifth step is to determine the working conditions of the tower crane
  • Each tower crane deployment condition is a combination of 6 tower crane deployment points.
  • the main consideration is that the tower cranes cannot collide, that is, every The minimum distance between two tower cranes that can be arranged is not less than the larger value of the boom length of the two tower cranes.
  • the number of working conditions that meet the conditions is 203 items, and the following lists 10 items before and after each:
  • the tower crane can be arranged according to the needs in the applicable working conditions among the above-mentioned tower crane arranging working conditions.
  • the sixth step is to determine the best crane layout conditions
  • the optimal tower crane layout conditions can also be determined, that is, among all the tower crane layout conditions, the hoisting area covered by the multi-tower crane boom is selected to have the largest number of building discretization points, and the buildings in each hoisting area are discrete
  • the tower crane with the closest distance between the melting point and the tower crane can be deployed for working conditions.
  • the coordinates of each point are P0 (41.6, 226.5), P10 (122.8, 199.6), P14 (74.3, 108.7), P22 (130.9, 39.7), P34 (238.3, 45.3), P40 (193.7, 134.8).
  • the tower crane layout is carried out in accordance with the best working conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Jib Cranes (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种用于建筑施工的多塔吊布置方法,包括步骤:获取建筑轮廓线,设定禁止布置塔吊区域和塔吊基本参数;离散化建筑轮廓线,得到建筑离散化点;将建筑轮廓线向外偏移预设距离,得到塔吊布置轮廓线,离散化所述塔吊布置轮廓线,得到塔吊离散化点;根据禁止布置塔吊区域和塔吊基本参数,删除不可用的塔吊离散化点,得到塔吊可布置点;根据塔吊数量,确定塔吊可布置工况。该方法首次提出通过将建筑轮廓线和塔吊布置轮廓线进行离散化,能够量化地计算获得建筑施工过程中的多塔吊可布置工况以及最佳布置工况,该方法简单可靠、耗时短、计算效率高,精确性好。

Description

一种用于建筑施工的多塔吊布置方法 技术领域
本发明涉及建筑施工领域,更特别地,涉及一种用于建筑施工的多塔吊布置方法。
背景技术
在建筑施工过程中,很多时候都需要多个塔吊同时作业,塔吊是负责施工场地内物资垂直运输的重要设备,其位置布置严重影响着施工过程的安全和效率。塔吊位置传统的确定方法是根据项目技术负责人凭借经验在建筑施工平面图上大致绘制出可行的布置位置,并反复迭代验算位置是否可行,最终确定一个“差不多”可行的布置方案。传统方法存在难以定量、人工耗时长、效率低、易出错且难以找到最优解等问题。针对传统方法存在的问题,研发一种可量化的、简单可靠、计算效率高的用于建筑施工的多塔吊布置方法具有重要意义。
发明内容
为了解决以上的技术问题,本发明的目的在于提供一种用于建筑施工的多塔吊布置方法,该方法简单可靠,耗时短、计算效率高。
本发明提供的一种用于建筑施工的多塔吊布置方法,包括以下步骤:
获取建筑轮廓线,设定禁止布置塔吊区域和塔吊基本参数;
离散化建筑轮廓线,得到建筑离散化点;
将建筑轮廓线向外偏移预设距离,得到塔吊布置轮廓线,离散化所述塔吊布置轮廓线,得到塔吊离散化点;
根据禁止布置塔吊区域和塔吊基本参数,删除不可用的塔吊离散化点,得到塔吊可布置点;
根据塔吊数量,确定塔吊可布置工况。
通过上述方法,能够量化地计算获得建筑施工过程中的多塔吊可布置工况,在这些工况下,都可以进行塔吊的设置。
进一步地,该方法还包括获得最佳塔吊布置工况,该获得最佳塔吊布置工况为在所有塔吊可布置工况中,选择吊装区域内建筑离散化点最多、且每个吊装区域内的建筑离散化点与塔吊距离最近的塔吊布置工况,其中吊装区域为多塔吊吊臂覆盖的区域。在该最佳塔吊布置工况下,塔吊布置最合理,对于建筑进行操作最容易。通过此方法,能够量化地计算获得筑施工过程中的最佳塔吊布置工况。
进一步地,用向量叉乘算法将所述建筑轮廓线向外偏移预设距离。
进一步地,预设距离为5米,此距离基于建筑整体尺寸而设置。
进一步地,删除不可用的塔吊离散化点包括:删除禁止布置塔吊区域内的塔吊离散化点;用画圈法删除塔吊水平支撑无法搭设点;用塔吊360度旋转迭代算法删除塔吊无法拆卸点。画圈法删除塔吊水平支撑无法搭设点的具体步骤为:以塔吊离散化点为圆心,以塔吊的支撑长度为半径画圆,如果圆内出现有禁止布置塔吊区域,则判断该塔吊离散化点不可用,并删除该点。用塔吊360度旋转迭代算法删除塔吊无法拆卸点的具体步骤为:以塔吊离散化点为圆心,将塔吊前后臂按5度旋转精度进行360度旋转,在这过程中,如果存在有塔臂不与建筑物轮廓线相交的情况,则认为该离散化点可以布置塔吊,否则判断该塔吊离散化点不可用,并删除该点。
进一步地,确定塔吊可布置工况为确定每两个塔吊之间的最小距离不小于所述两个塔吊的塔吊臂的最大长度,使塔吊之间不能碰撞。
进一步地,建筑轮廓线离散化精度为5m。
进一步地,塔吊布置轮廓线离散化精度为5m。
本发明的有益效果
本发明的方法首次提出通过将建筑轮廓线和塔吊布置轮廓线进行离散化,能够量化地计算获得建筑施工过程中的多塔吊可布置工况以及最佳布置工况,该方法简单可靠、耗时短、计算效率高,精确性好。
附图说明
图1示出了最初的建筑平面图,该图绘有建筑轮廓线与禁止布置塔吊区域;
图2示出了建筑施工中的塔吊可布置点及标号;
图3示出了建筑施工中的最佳塔吊布置工况。
具体实施方式
下面结合附图通过具体实施方式对本申请进行进一步说明。
某工程规划住宅区,占地面积9万平方米,计划建设12栋高层住宅,由于场地要求部分区域不能布置塔吊。下面根据建筑施工平面布置图布置6台塔吊。
第一步、数据准备及初始条件
如图1所示,在绘有建筑平面图的CAD格式图中,以多线形式逆时针方向描绘每栋建筑的轮廓线,以粗直线标记出禁止布置塔吊区域,在该区域中不能布置塔吊连接结构支撑或者计划不布置塔吊。其中:塔吊前臂长60m,后臂长15m;塔吊与建筑结构之间的距离为5m;连接塔吊与建筑结构的支撑长度为7m。
第二步、离散化建筑轮廓线
将每栋建筑的轮廓线根据5m精度要求离散化,即离散后的每个点距离不大于5m,得到建筑离散化点。
第三步、获取塔吊布置轮廓线离散化点
采用向量叉乘算法将建筑轮廓线以预设的5m距离向外偏移,然后根据5m精度要求进行离散化,即离散化后每个点之间的距离不小于5m,得到塔吊离散化点。
第四步,获取塔吊可布置点
删除禁止布置塔吊区域内的塔吊离散化点。
用画圈法删除塔吊水平支撑无法搭设点,具体操作步骤为:以塔吊离散化点为圆心,以塔吊的支撑长度7m为半径画圆,如果圆内出现有禁止布置塔吊区域,则判断该塔吊离散化点不可用,并删除该点。
用塔吊360度旋转迭代算法删除塔吊无法拆卸点,具体步骤为:以塔吊离散化点为圆心,将塔吊前后臂按5度旋转精度进行360度旋转,在这过程中,如果存在有塔臂不与建筑物轮廓线相交的情况,则认为该离散化点可以布置塔吊,否则判断该塔吊离散化点不可用,并删除该点。
由此,得到塔吊可布置点,并标号,如图2所示。
第五步,确定塔吊可布置工况
根据塔吊数量6台,在塔吊可布置点中选择塔吊可布置工况,每种塔吊可布置工况为6个塔吊可布置点的组合,主要考虑的限制条件是塔吊之间不能碰撞,即每两个塔吊可布置点之间的最小距离不小于该两个塔吊的塔吊臂长度的较大值。列出塔吊布置工况,检查两个塔吊之间的距离。满足条件的工况数为203项,以下列出前后各10项:
(0,8,14,20,34,40)
(0,8,14,21,32,40)
(0,8,14,21,32,41)
(0,8,14,21,33,40)
(0,8,14,21,33,41)
(0,8,14,21,34,40)
(0,8,14,21,39,40)
(0,8,14,21,39,41)
(0,8,14,22,33,40)
(0,8,14,22,33,41)
(7,10,15,21,32,40)
(7,10,15,21,32,41)
(7,10,15,21,33,40)
(7,10,15,21,33,41)
(7,10,15,21,34,40)
(7,10,15,21,39,40)
(7,10,15,21,39,41)
(7,10,15,22,33,40)
(7,10,15,22,33,41)
(7,10,15,22,34,40)
可以根据需要在上述塔吊可布置工况中选择适用的工况进行塔吊布置。
第六步,确定最佳塔吊布置工况
在此基础上,还可确定最佳塔吊布置工况,即在所有塔吊可布置工况中,选择多塔吊吊臂覆盖的吊装区域内建筑离散化点最多,且每个吊装区域内的建筑离散化点与该塔吊距离最近的塔吊可布置工况。在上面203项塔吊可布置工况中进行搜索,得到多塔塔吊布置的最佳工况(0,10,14,22,34,40),如图3所示,即6个塔吊分别设置在第0号、第10号、第14号、第22号、第34号和第40号塔吊可布置点。各点坐标为P0(41.6,226.5),P10(122.8,199.6),P14(74.3,108.7),P22(130.9,39.7),P34(238.3,45.3),P40(193.7,134.8)。
按照该最佳工况进行塔吊布置。

Claims (8)

  1. 一种用于建筑施工的多塔吊布置方法,其特征在于,所述方法包括以下步骤:
    获取建筑轮廓线,设定禁止布置塔吊区域和塔吊基本参数;
    离散化所述建筑轮廓线,得到建筑离散化点;
    将所述建筑轮廓线向外偏移预设距离,得到塔吊布置轮廓线,离散化所述塔吊布置轮廓线,得到塔吊离散化点;
    根据所述禁止布置塔吊区域和所述塔吊基本参数,删除不可用的塔吊离散化点,得到塔吊可布置点;
    根据塔吊数量,确定塔吊可布置工况。
  2. 根据权利要求1所述的一种用于建筑施工的多塔吊布置方法,其特征在于,所述方法还包括获得最佳塔吊布置工况,所述获得最佳塔吊布置工况为在所有塔吊可布置工况中,选择吊装区域内建筑离散化点最多、且每个吊装区域内的建筑离散化点与塔吊距离最近的塔吊布置工况。
  3. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,用向量叉乘算法将所述建筑轮廓线向外偏移预设距离。
  4. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,所述预设距离为5米。
  5. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,所述删除不可用的塔吊离散化点包括:删除禁止布置塔吊区域内的塔吊离散化点;用画圈法删除塔吊水平支撑无法搭设点;用塔吊360度旋转迭代算法删除塔吊无法拆卸点。
  6. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,确定塔吊可布置工况为确定每两个塔吊之间的最小距离不小于所述两个塔吊的塔吊臂的最大长度。
  7. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,所述建筑轮廓线离散化精度为5m。
  8. 根据权利要求1或2所述的一种用于建筑施工的多塔吊布置方法,其特征在于,所述塔吊布置轮廓线离散化精度为5m。
PCT/CN2019/113072 2019-10-24 2019-10-24 一种用于建筑施工的多塔吊布置方法 WO2021077370A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/113072 WO2021077370A1 (zh) 2019-10-24 2019-10-24 一种用于建筑施工的多塔吊布置方法
CN201980093616.9A CN113557506B (zh) 2019-10-24 2019-10-24 一种可量化、程序化的建筑施工群塔优化布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113072 WO2021077370A1 (zh) 2019-10-24 2019-10-24 一种用于建筑施工的多塔吊布置方法

Publications (1)

Publication Number Publication Date
WO2021077370A1 true WO2021077370A1 (zh) 2021-04-29

Family

ID=75619574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113072 WO2021077370A1 (zh) 2019-10-24 2019-10-24 一种用于建筑施工的多塔吊布置方法

Country Status (2)

Country Link
CN (1) CN113557506B (zh)
WO (1) WO2021077370A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113128077A (zh) * 2021-05-25 2021-07-16 上海建工四建集团有限公司 一种群塔竖向爬升策划数字仿真优化方法
CN113449401A (zh) * 2021-07-27 2021-09-28 哈尔滨工业大学(深圳) 一种塔吊反力识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943961A1 (de) * 1979-10-31 1981-05-07 Aka Aufbereitung Konstruktion Anlage zur aufbereitung von kohle, erz o.dgl.
CN103791894A (zh) * 2014-02-18 2014-05-14 北京恒华伟业科技股份有限公司 用于架空输电线路的杆塔定位方法和装置
CN106986275A (zh) * 2017-03-13 2017-07-28 同济大学 一种基于bim的装配式建筑塔吊平面布置及选型方法
CN108038265A (zh) * 2017-11-17 2018-05-15 上海二十冶建设有限公司 一种基于bim的山地建筑群施工临时道路布置方法
CN108319741A (zh) * 2017-12-12 2018-07-24 上海建工五建集团有限公司 基于bim的塔吊布置比选方法及系统
CN109086490A (zh) * 2018-07-04 2018-12-25 中国二十冶集团有限公司 一种装配式工程基于bim技术的塔吊选型布置方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103967040B (zh) * 2014-05-19 2015-12-02 中国建筑第八工程局有限公司 塔吊基础结构及其施工方法
CN105731262B (zh) * 2016-04-01 2018-02-06 中国建筑第八工程局有限公司 基于bim技术的塔吊平面布置系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943961A1 (de) * 1979-10-31 1981-05-07 Aka Aufbereitung Konstruktion Anlage zur aufbereitung von kohle, erz o.dgl.
CN103791894A (zh) * 2014-02-18 2014-05-14 北京恒华伟业科技股份有限公司 用于架空输电线路的杆塔定位方法和装置
CN106986275A (zh) * 2017-03-13 2017-07-28 同济大学 一种基于bim的装配式建筑塔吊平面布置及选型方法
CN108038265A (zh) * 2017-11-17 2018-05-15 上海二十冶建设有限公司 一种基于bim的山地建筑群施工临时道路布置方法
CN108319741A (zh) * 2017-12-12 2018-07-24 上海建工五建集团有限公司 基于bim的塔吊布置比选方法及系统
CN109086490A (zh) * 2018-07-04 2018-12-25 中国二十冶集团有限公司 一种装配式工程基于bim技术的塔吊选型布置方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113128077A (zh) * 2021-05-25 2021-07-16 上海建工四建集团有限公司 一种群塔竖向爬升策划数字仿真优化方法
CN113128077B (zh) * 2021-05-25 2024-04-23 上海建工四建集团有限公司 一种群塔竖向爬升策划数字仿真优化方法
CN113449401A (zh) * 2021-07-27 2021-09-28 哈尔滨工业大学(深圳) 一种塔吊反力识别方法
CN113449401B (zh) * 2021-07-27 2023-01-20 哈尔滨工业大学(深圳) 一种塔吊反力识别方法

Also Published As

Publication number Publication date
CN113557506B (zh) 2022-04-26
CN113557506A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2021077370A1 (zh) 一种用于建筑施工的多塔吊布置方法
CN104746884A (zh) 一种装配式建筑的预制构件的吊装方法
CN106840124B (zh) 一种用于高层建筑快速测量放样的方法
CN103114732A (zh) 铸钢相贯管节点空间定位方法
WO2021049112A1 (ja) シミュレーション装置
CN103174302A (zh) 大直径筒仓仓顶的施工方法
CN105468796A (zh) 一种钢结构拼装临时支撑胎架体系的建立方法
CN104060839B (zh) 专用于大型场馆金属幕墙钢结构竖向龙骨施工控制方法
CN105484299A (zh) 用于确定桩基中心的收缩定位支架及其施工方法
CN108252519A (zh) 一种基于bim的房建工程模板施工工艺样板的施工方法
CN115977401A (zh) 一种钢结构高空安装方法
CN101761134A (zh) 空间多变曲面钢筋混凝土异型筒体群结构施工工艺
CN103397780B (zh) 空冷塔x型柱施工方法
CN104264781B (zh) 网格状柱面钢结构网壳及其施工方法
CN114319884A (zh) 一种玻璃幕墙的施工方法
CN107724574B (zh) 全透明百叶玻璃双层呼吸式幕墙等效空间施工工艺
CN104964674A (zh) 用于大型结构物建造尺寸的控制网
EP4197956A1 (en) Information acquisition system
CN106437024A (zh) 一种异形大跨度网架高空定位分块安装方法
CN113670259A (zh) 一种测量古建筑木结构大小头圆柱倾斜的方法
CN209100964U (zh) 折叠悬挂式测量仪器支架
CN108363862B (zh) 一种圆钢管施工误差的逆向分析方法
CN101994389B (zh) 一种高大模板施工方法
CN111750831A (zh) 一种测量圆柱倾斜率的方法
CN109522632B (zh) 建筑工程施工中总负荷最小的塔机布置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950153

Country of ref document: EP

Kind code of ref document: A1