WO2021075281A1 - Printing metal container - Google Patents

Printing metal container Download PDF

Info

Publication number
WO2021075281A1
WO2021075281A1 PCT/JP2020/037552 JP2020037552W WO2021075281A1 WO 2021075281 A1 WO2021075281 A1 WO 2021075281A1 JP 2020037552 W JP2020037552 W JP 2020037552W WO 2021075281 A1 WO2021075281 A1 WO 2021075281A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal container
printed
printed image
pseudo
printing
Prior art date
Application number
PCT/JP2020/037552
Other languages
French (fr)
Japanese (ja)
Inventor
久彰 森川
幸司 山田
清澄 眞仁田
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to JP2021552315A priority Critical patent/JPWO2021075281A1/ja
Publication of WO2021075281A1 publication Critical patent/WO2021075281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings

Definitions

  • the present invention relates to a printed metal container having a pseudo 3D printed image, and more specifically, to a printed metal container having the same appearance characteristics as those subjected to deformed processing while maintaining the mechanical strength of the container. ..
  • Metal containers such as metal cans have various irregular shapes such as embossing and beading to enhance the decorativeness of the container and the tactile sensation when gripped, or the side wall of the container is formed from a circumferential polyhedron. It is processed to increase its commercial value. Since such irregular shape processing is an additional processing performed in a normal metal container molding process, the number of processes increases, and productivity and economy are inferior. Further, in the field of seamless cans, since the thickness of the can body is reduced in order to reduce the weight, if a part of the can body is asymmetrically deformed, stress on the processed portion is applied. Mechanical strength such as buckling strength may decrease due to concentration.
  • the intersecting portion of the ridge line protrudes to the outside of the can relative to the constituent unit surface, so that the portion is from the outside as compared with other portions.
  • the buckling strength and the paneling strength may be lowered for the same reason as described above, and the mechanical strength of the container may be lowered.
  • Patent Document 1 a heat-shrinkable tubular label that can be attached to an object to be attached such as a container by heat shrinkage.
  • a heat-shrinkable tubular shape characterized in that a three-dimensional design display in which the portion corresponding to the convex portion on the surface of the three-dimensional model is bright and the portion corresponding to the concave portion is dark is printed on the tubular label body. Labels have been proposed.
  • Patent Document 2 a striped pattern in which a plurality of streaky cells are continuously formed in the circumferential direction of the can body is printed on the peripheral wall of the can body, and the gradation inside the cells changes in the circumferential direction of the can body.
  • the boundary of adjacent cells is displayed by the discontinuity of brightness, and one end of the cell in the circumferential direction is darker than the other end, and the brightness is in the middle of one end and the other end.
  • a metal can in which a bright part, which is the apex of the can, is formed has been proposed.
  • Patent Document 3 A printed matter that realistically reproduces the state of the surface of an object (sometimes referred to as a "3D scan object”) has been created (Patent Document 3).
  • the present inventors have a printing substrate having a clear printing layer having a three-dimensional printed image (hereinafter, may be referred to as "pseudo 3D printed image") obtained based on the data obtained by the 3D scanner, and a printing substrate thereof.
  • a manufacturing method was proposed (Japanese Patent Application No. 2019-24594).
  • an object of the present invention is to provide a metal container having a pseudo 3D printed image as if it has been deformed, without impairing the mechanical strength of the metal container.
  • the printed image is a pseudo 3D printed image based on data obtained by a 3D scanner, and the printed metal container is immediately before printing.
  • a printed metal container characterized by maintaining the buckling strength and paneling strength of the above.
  • the thickness of the body of the metal container is 230 ⁇ m or less.
  • the pseudo 3D printed image is a printed image having a line number of 100 lpi or more and / or a resolution of 300 dpi or more. 3.
  • the pseudo 3D printed image is a reproduction image of a 3D scan object having a surface unevenness step amount of 50 mm or less.
  • the 3D scan object is a base material that has been deformed.
  • the pseudo 3D printed image is formed on at least a part of the outer surface of the metal container. 6.
  • a diffused reflection layer is formed on the pseudo 3D printed image.
  • the metal container is an aluminum seamless can, 8.
  • the metal container is an aluminum seamless can with a deformed body. Is preferable.
  • the printed metal has the same appearance as the deformed metal container without lowering the buckling strength (strength against the load in the axial direction of the container) and the paneling strength (strength against the external pressure).
  • Containers can be provided.
  • a pseudo 3D printed image having a screen line number of 100 lpi or more and / or a resolution of 300 dpi or more, it is possible to realistically reproduce a 3D scan object that has been subjected to irregular shape processing. That is, as described above, the mechanical strength of the metal container may decrease due to the deformed processing applied to the metal container, and this tendency is particularly remarkable in the seamless can which has been thinned for weight reduction.
  • the deformed base material is converted into data by a 3D scanner and printed on the seamless can body without performing such deformation processing.
  • the seamless can is thinned, it is possible to impart the same appearance characteristics to the seamless can as if the deformed shape was processed by the pseudo 3D printed image without lowering the buckling strength and the like.
  • the printed metal container of the present invention is a printed metal container in which a pseudo 3D printed image based on data obtained by a 3D scanner, which looks like a deformed metal container, is formed on the outer surface of the metal container, it has mechanical strength (bending strength). And / or the deformation processing that reduces the paneling strength) is not actually performed, so that the mechanical strength is maintained before and after printing.
  • the deformed processing is a processing for forming point-shaped, linear or planar unevenness, and exemplifies machining such as embossing, bending, beat processing, laser engraving, embossing, foam molding and the like. can do.
  • the printed metal container is then subjected to opening processing such as necking processing and screw processing according to the desired shape to be taken by the metal container, but the buckling strength after printing in the present invention is performed. (Strength against axial load) and paneling strength (strength against external pressure) relate to the printed metal container before processing these openings.
  • the pseudo 3D printed image is an image printed based on data acquired from a 3D scan object using a 3D scanner, and the number of screen lines is 100 lpi or more and / Alternatively, it is desirable to consist of a high-definition printed image having a resolution of 300 dpi or more. Since the printed image is formed with the number of screen lines and resolution in the above range, the stereoscopic effect of the 3D scanned object can be finely and clearly expressed as a pseudo 3D printed image on a flat surface (curved surface) with high accuracy. It becomes possible to give the viewer the impression that the deformed shape is actually applied.
  • the printed image may be locally formed on a part of the outer surface of the metal container. That is, when the metal container is actually subjected to deformed processing, if it is locally formed in a part, the mechanical strength of the metal container decreases due to stress concentration on the processed portion as described above, but in the printed metal container of the present invention. Even if it is locally and asymmetrically formed in a part, there is no possibility of such a decrease in mechanical strength.
  • a printing method for forming a pseudo 3D printed image a conventionally known printing method can be adopted.
  • the printing method include, but are not limited to, inkjet printing, waterless flat plate printing, gravure printing, resin letterpress printing, flexo printing, direct plate making printing, screen printing, and the like. It is desirable to print a printed image having a line number of 100 lpi or more by waterless slab printing, and it is desirable to print a printed image having a resolution of 300 dpi or more by inkjet printing.
  • the pseudo 3D printed image may be formed by a plurality of printing methods.
  • the pseudo 3D printed image may be formed on the entire surface or a part of the substrate, or may be combined with a flat normal printed image.
  • the pseudo 3D printed image may be a printed image printed based on data formed by combining a plurality of data obtained from a plurality of 3D scan objects.
  • pseudo 3D printed images produced by different shapes of materials and irregularities can be combined to form a printed image having excellent design.
  • the printed image may be combined with a printed image for displaying information such as a product description, a date of manufacture, or a two-dimensional code, in addition to the pseudo 3D printed image described above, but printing for displaying information. It is desirable that the image is formed in the non-printed area of the pseudo 3D printed image because the design of the pseudo 3D printed image is not impaired. Further, the printed image for displaying such information is desirable because each feature is conspicuous because it is printed by a printing method different from that of the pseudo 3D printed image.
  • the pseudo 3D printed image is preferably reproduced from inks having four or more colors (yellow, magenta, cyan, black) or more. Further, even if printing is performed using ordinary printing ink, it is possible to form a printed image having a three-dimensional effect in which surface irregularities and the like are accurately reproduced, but a foaming ink containing heat-expandable microcapsules in the printing ink is used. It is possible to have a highly-designed printed image with a more three-dimensional effect by being printed by printing, thick printing by inkjet printing, or formed by tactile printing.
  • the 3D scan target that is the original image of the printed image is the material itself such as woodblock print, oil painting, stained glass, knitting, textile, patchwork, etc., stereolithography by 3D printer, thick printing by inkjet printing, tactile.
  • Examples thereof include printed matter such as printing, or processed matter in which a three-dimensional part is formed by embossing, bending, machining such as laser engraving, embossing, foam molding, etc., and these alone or 2
  • the base material is a substrate that has been subjected to deformed processing such as embossing or bending. Is desirable.
  • the metal container thinned for weight reduction when the metal container thinned for weight reduction is actually subjected to such deformation processing, the mechanical strength of the metal container is lowered, but the deformed base material is used.
  • the metal container By printing a pseudo 3D printed image from this scan data on a metal container as a 3D scan object, the metal container is given the same decorative effect as that of the deformed processing without impairing the mechanical strength of the metal container. It becomes possible to do.
  • the amount of steps of the irregularities is not particularly limited, but it is preferably 50 mm or less, particularly 30 mm or less.
  • the metal container used in the present invention is not limited to this, but is a surface-treated steel plate such as an aluminum plate, an aluminum alloy plate, and tin-free steel, a tin plate, a chrome-plated steel plate, an aluminum-plated steel plate, a nickel-plated steel plate, and a tin-nickel-plated steel plate.
  • Various types of metal cans such as seamless cans in which various metal plates such as various alloy-plated steel plates are formed by drawing, ironing, re-drawing, etc., and welded cans can be exemplified.
  • a resin film such as a polyester film, a nylon film, or a polypropylene film may be laminated on the surface of the metal can.
  • a white coat layer may be formed for the purpose of correcting the background color of the metal container and reducing the influence on the printed image.
  • a white coat layer a conventionally known one can be used.
  • a white pigment such as titanium oxide or zinc oxide is placed in a solvent together with a thermosetting, ultraviolet curable, or electron beam curable resin binder. It can be formed by applying and drying a dispersed white ink, and then curing it by heating, ultraviolet irradiation, electron beam irradiation, or the like.
  • the thickness of the metal container is not particularly limited, but as described above, the printed metal container of the present invention can have an appearance as if it has been deformed even when it is thinned for weight reduction.
  • an aluminum seamless can having a body thickness of 230 ⁇ m or less.
  • an aluminum seamless can in which the container body is deformed can be preferably used, and the deformed shape and the pseudo 3D printing are combined and shown in the results of Examples described later. The design can be improved.
  • a transparent diffused reflection layer is formed on the above-mentioned pseudo 3D printed image. ..
  • the diffused reflection layer is preferably formed on the outermost surface of the print substrate and at least on the above-mentioned printed image, and may be formed directly on the printed image or via a transparent film.
  • the printed image When the printed image is partially formed on the base material, it may be formed so as to cover the entire surface of the base material, or it may be formed only on the portion where the printed image is formed. Good.
  • various materials can be used as long as the surface gloss of the printing substrate can be reduced, such as forming fine irregularities on the surface, but it is preferably made of a matte varnish layer or a matte film.
  • the matte varnish is made by blending a matting agent with a finishing varnish conventionally used as a transparent top coat layer
  • the matte film is made by blending a matting agent with a transparent resin film. It is a thing.
  • a conventionally known transparent thermosetting resin is used as the finishing varnish (top coating agent) that constitutes the matte varnish layer.
  • a thermosetting polyester resin, acrylic resin, epoxy resin, or the like is used as a base resin. It is a coating composition containing an amino resin such as a phenol resin or a melamine resin, an isocyanate resin, or the like as a curing agent, and is appropriately dissolved in an organic solvent.
  • an amino resin such as a phenol resin or a melamine resin, an isocyanate resin, or the like
  • the transparent resin film constituting the matte film conventionally known transparent thermoplastic resins such as olefins such as low-density polyethylene, high-density polyethylene, polypropylene, poly1-butene, and poly4-methyl-1-pentene are used.
  • ethylene / vinyl copolymer resin such as ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, ethylene / vinyl chloride copolymer; polystyrene, acrylonitrile / styrene copolymer, ABS, ⁇ - Styrene-based resins such as methylstyrene / styrene copolymers; vinyl-based resins such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymers, methylpolyacrylate, polymethylmethacrylate, etc .; nylon 6, nylon 6 From polyamide resins such as -6, nylon 6-10, nylon 11, nylon 12; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polycarbonate; polyphenylene oxide; biodegradable resins such as polylactic acid; It may be formed.
  • polyester such as ethylene
  • the matting agent to be blended in the finishing varnish or the transparent resin film includes those composed of inorganic particles such as silica, aluminum hydroxide, aluminum oxide, calcium carbonate and magnesium carbonate, and organic materials such as silicone resin, acrylic resin and polyethylene.
  • inorganic particles such as silica, aluminum hydroxide, aluminum oxide, calcium carbonate and magnesium carbonate
  • organic materials such as silicone resin, acrylic resin and polyethylene.
  • silica can be particularly preferably used, and among these, those having an average particle size in the range of 1 to 10 ⁇ m can be preferably used.
  • the average particle size of silica is within the above range, the incident light can be efficiently diffusely reflected to reduce the surface gloss, and the printed image can be visually recognized without impairing the three-dimensional appearance such as surface unevenness and texture. become.
  • the matting agent is preferably contained in the finishing varnish or the transparent resin film in the range of 1% by weight or more, particularly 10 to 20% by weight of the resin solid content. If the amount of the matting agent is smaller than the above range, the matting effect cannot be sufficiently exhibited, and the three-dimensional appearance of the printed image may be impaired. Further, when the amount of the matting agent is larger than the above range, the coatability is inferior to that in the above range, and the scratch resistance may be lowered.
  • the thickness of the diffused reflection layer cannot be unconditionally specified depending on the application of the printing substrate, but generally, it is preferably in the range of 1 to 20 ⁇ m in the case of the matte varnish layer, and in the range of 8 to 50 ⁇ m in the case of the matte film. Is preferable.
  • a printed image can be directly formed on the metal container, but a base coat layer such as a white solid printing layer and / or an anchor coat layer conventionally used for forming a printing layer can be formed.
  • a base coat layer such as a white solid printing layer and / or an anchor coat layer conventionally used for forming a printing layer
  • the white solid printing layer can correct the background color of the metal container to reduce the influence on the printed image, and can form a clear image. It will be possible.
  • the white solid printing layer the same white coat layer as described above can be used.
  • the anchor coat layer it is possible to improve the adhesion of the printed image to the substrate.
  • the anchor coat layer can be formed by using an anchor coating agent known per se, for example, a thermosetting, ultraviolet curable or electron beam curable polyester resin, a thermosetting acrylic resin, or an epoxy. It is formed by applying and drying a coating liquid in which a resin, polyurethane resin, or the like is dispersed or dissolved in a predetermined solvent, and then curing by heating, ultraviolet irradiation, electron beam irradiation, or the like.
  • an anchor coating agent known per se, for example, a thermosetting, ultraviolet curable or electron beam curable polyester resin, a thermosetting acrylic resin, or an epoxy. It is formed by applying and drying a coating liquid in which a resin, polyurethane resin, or the like is dispersed or dissolved in a predetermined solvent, and then curing by heating, ultraviolet irradiation, electron beam irradiation, or the like.
  • the method for producing a printing substrate of the present invention includes a step of creating a 3D scan object having a surface unevenness step amount of 50 mm or less, a step of scanning the 3D scan object with a 3D scanner to create print data, and the print data. Based on this, it has at least a step of printing a pseudo 3D printed image on a substrate.
  • the step amount of the surface unevenness is 50 mm or less, particularly 30 mm or less, as the 3D scan target object which is the original image of the printed image of the printing substrate of the present invention.
  • plate making is performed based on the data.
  • only one type of data obtained from the 3D scan object may be used as it is, but plate making or printing may be performed by combining the data obtained from a plurality of 3D scan objects and editing the data. Can be done.
  • the range of print design is widened, and it becomes possible to form a decorative pseudo 3D printed image having more excellent design.
  • the printing method can be printed by conventionally known methods such as inkjet printing, waterless plate printing, gravure printing, resin letterpress printing, flexo printing, screen printing, etc., but in the present invention, the number of lines is 100 lpi. It is preferable to print so as to form a printed image having the above and / or resolution of 300 dpi or more. This makes it possible to reproduce the three-dimensional effect of a 3D scan object having surface irregularities in a fine and clear manner. In the present invention, among the above printing methods, it is preferable to form a printed image having the above screen number or resolution by waterless lithographic printing or inkjet printing.
  • a base coat layer such as the above-mentioned white solid layer or anchor coat layer is formed prior to printing.
  • the printed image can also form a printed image for displaying information together with the pseudo 3D printed image.
  • the decorativeness of the pseudo 3D printed image is not impaired after the pseudo 3D printed image is formed.
  • the pseudo 3D printed image can be printed on a preformed metal container (seamless can) by curved surface printing, or can be printed on a metal plate and then molded.
  • a preformed metal container stripless can
  • the surface of the metal container is glossy, it is preferable to form the diffused reflection layer described above on the formed pseudo 3D printed image so as to be the outermost surface layer of the printing substrate.
  • the diffused reflection layer may be either a matte varnish layer or a matte transparent resin film. Further, the body of the metal container after printing may be deformed.
  • points were added based on the evaluation criteria shown below for each item of practicality due to cost, design due to printing, and practicality due to strength. Since the cost is directly affected by the thickness of the body, the cost is set to 5 levels from no point addition to point addition 4 (++++). As for the design property, since the improvement of the design property by the pseudo 3D printed image is the main effect of the present invention, a point addition of 3 (+++) was given when the pseudo 3D printed image was used. Although the strength depends on the thickness of the body, 100 ⁇ m is added to 2 (++) and 280 ⁇ m is added to 4 (++++) to satisfy practicality.
  • Cost Since the cost is due to the thickness of the body, the point added is 0 at 280 ⁇ m. A point was added at 230 ⁇ m, a point was added at 190 ⁇ m, a point was added at 145 ⁇ m, and a point was added at 100 ⁇ m. Furthermore, the point was deducted by 1 by performing irregular shape processing. The deductions due to irregular shape processing are associated with the addition of processing processes, and the degree of processing may be light or strong. In Table 1, in the case of 230 ⁇ m, it can be seen that when the deformed shape processing is performed, the added point 1 of the cost is offset by the deducted point 1 of the deformed shape processing and becomes 0 point.
  • Designability was set to 3 points when a pseudo 3D printed image was used as the printed image. In the case of a printed image that is not pseudo 3D, 0 points were set. Further, by performing irregular shape processing, points were added 1 or points 2. In Table 1, it can be seen that 0 points are added for only the printed image that is not pseudo 3D, 3 points are added for only the pseudo 3D printed image, and 4 points or 5 points are added for the pseudo 3D printed image + irregular shape processing.
  • the present invention since it is possible to provide a printed metal container having a deformed appearance without a decrease in buckling strength or paneling strength, it is difficult to perform deformed processing, and the body thickness is reduced to 230 ⁇ m or less. It can be suitably used for metal containers, especially aluminum seamless cans.

Abstract

The present invention relates to a printing metal container in which a print image is formed on at least an outer surface of a container barrel part. By forming a pseudo three-dimensional print image as if irregular shape processing based on data by a three-dimensional scanner were applied as the print image, it is possible to provide a metal container that is capable of maintaining buckling strength and/or paneling strength and has a pseudo three-dimensional print image having appearance characteristics as if irregular shape processing were applied without impairing mechanical strength of the metal container.

Description

印刷金属容器Printed metal container
 本発明は、疑似3D印刷画像を有する印刷金属容器に関するものであり、より詳細には、異形加工を施したと同様の外観特性を、容器の機械的強度を維持した状態で備える印刷金属容器に関する。 The present invention relates to a printed metal container having a pseudo 3D printed image, and more specifically, to a printed metal container having the same appearance characteristics as those subjected to deformed processing while maintaining the mechanical strength of the container. ..
 金属缶等の金属容器においては、容器の装飾性や把持した時の触感等を高めるために、エンボス加工やビード加工等を施したり、或いは容器側壁を周状多面体から形成する等、種々の異形加工を施し、商品価値を高めることが行われている。
 このような異形加工は、通常の金属容器の成形工程において、付加的に行われる加工であることから、工程数が増加し、生産性及び経済性に劣っている。また、シームレス缶の分野においては、軽量化のために缶胴部の薄肉化が図られていることから、缶胴部の一部に非対称に異形加工が施されると、加工部への応力集中により座屈強度等の機械的強度が低下するおそれがある。また、例えば上述した容器側壁が周状多面体から成る缶においては、稜線の交差部分は、構成単位面に比べて相対的に缶外側に突出していることから、他の部分に比べて外部からの衝撃が加わりやすくなるおそれがあると共に、やはり上記理由と同様に座屈強度やパネリング強度が低下し、容器の機械的強度が低下するおそれがある。
Metal containers such as metal cans have various irregular shapes such as embossing and beading to enhance the decorativeness of the container and the tactile sensation when gripped, or the side wall of the container is formed from a circumferential polyhedron. It is processed to increase its commercial value.
Since such irregular shape processing is an additional processing performed in a normal metal container molding process, the number of processes increases, and productivity and economy are inferior. Further, in the field of seamless cans, since the thickness of the can body is reduced in order to reduce the weight, if a part of the can body is asymmetrically deformed, stress on the processed portion is applied. Mechanical strength such as buckling strength may decrease due to concentration. Further, for example, in the above-mentioned can in which the side wall of the container is made of a circumferential polyhedron, the intersecting portion of the ridge line protrudes to the outside of the can relative to the constituent unit surface, so that the portion is from the outside as compared with other portions. In addition to the possibility that an impact is easily applied, the buckling strength and the paneling strength may be lowered for the same reason as described above, and the mechanical strength of the container may be lowered.
 ところで、金属容器の表面に立体的な装飾を印刷によって施すことが提案されており、例えば、下記特許文献1には、容器などの被装着体に熱収縮により装着可能な熱収縮性筒状ラベルに於いて、3次元モデル表面の凹凸高さ及び色彩を実測したデータを立体化補正処理することにより、3次元モデルを平面上に立体的に表現してなる2次元画像データに基づいて、前記3次元モデル表面の凸状部に対応する部分を明るく且つ凹状部に対応する部分を暗く表してなる立体的意匠表示が筒状ラベル本体に印刷されていることを特徴とする熱収縮性筒状ラベルが提案されている。 By the way, it has been proposed to give a three-dimensional decoration to the surface of a metal container by printing. For example, in Patent Document 1 below, a heat-shrinkable tubular label that can be attached to an object to be attached such as a container by heat shrinkage. In the above, based on the two-dimensional image data obtained by three-dimensionally expressing the three-dimensional model on a plane by performing three-dimensional correction processing on the data obtained by actually measuring the uneven height and color of the three-dimensional model surface. A heat-shrinkable tubular shape characterized in that a three-dimensional design display in which the portion corresponding to the convex portion on the surface of the three-dimensional model is bright and the portion corresponding to the concave portion is dark is printed on the tubular label body. Labels have been proposed.
 また下記特許文献2には、缶胴周壁に複数の筋状のセルが缶胴の周方向に連続して形成された縞模様が印刷され、セル内が缶胴の周方向において階調が変化するグラデーションで表示されると共に、隣接するセルの境界が明るさの不連続によって表示され、セル内はセルの周方向の一端が他端よりも暗く、かつ一端と他端の中間部に明るさの頂点となる明部が形成されて成る金属缶が提案されている。 Further, in Patent Document 2 below, a striped pattern in which a plurality of streaky cells are continuously formed in the circumferential direction of the can body is printed on the peripheral wall of the can body, and the gradation inside the cells changes in the circumferential direction of the can body. The boundary of adjacent cells is displayed by the discontinuity of brightness, and one end of the cell in the circumferential direction is darker than the other end, and the brightness is in the middle of one end and the other end. A metal can in which a bright part, which is the apex of the can, is formed has been proposed.
 一方、真上からの通常の走査ではとらえることのできない表面粗さや平坦度等の微細な表面構造を精度よく再現可能なマルチアングルスキャナ(3Dスキャナ)を用いて、凹凸のある被写体(以下、「3Dスキャン対象物」ということがある)の表面の状態をリアルに再現した印刷物を作成することが行われている(特許文献3)。
 本発明者等は、かかる3Dスキャナによるデータに基づいて得られた立体感のある印刷画像(以下、「疑似3D印刷画像」ということがある)を有する鮮明な印刷層を備えた印刷基体及びその製造方法を提案した(特願2019-24594号)。
On the other hand, using a multi-angle scanner (3D scanner) that can accurately reproduce fine surface structures such as surface roughness and flatness that cannot be captured by normal scanning from directly above, a subject with irregularities (hereinafter, "" A printed matter that realistically reproduces the state of the surface of an object (sometimes referred to as a "3D scan object") has been created (Patent Document 3).
The present inventors have a printing substrate having a clear printing layer having a three-dimensional printed image (hereinafter, may be referred to as "pseudo 3D printed image") obtained based on the data obtained by the 3D scanner, and a printing substrate thereof. A manufacturing method was proposed (Japanese Patent Application No. 2019-24594).
特開2006-201534号公報Japanese Unexamined Patent Publication No. 2006-201534 特開2016-94222号公報Japanese Unexamined Patent Publication No. 2016-94222 特許第4373492号公報Japanese Patent No. 4373492
 本発明者等は、かかる疑似3D印刷画像によれば、金属容器に実際に異形加工を施さなくても、異形加工を施したと同様の外観を付与することが可能であり、しかも異形加工を施した場合のように、金属容器の機械的強度を低下させることもないことを見出した。
 従って本発明の目的は、金属容器の機械的強度を損なうことなく、異形加工を施したような疑似3D印刷画像を有する金属容器を提供することである。
According to the pseudo 3D printed image, the present inventors can impart the same appearance as that of the deformed metal container without actually performing the deformed shape processing, and further perform the deformed shape processing. It was found that the mechanical strength of the metal container was not reduced as in the case of application.
Therefore, an object of the present invention is to provide a metal container having a pseudo 3D printed image as if it has been deformed, without impairing the mechanical strength of the metal container.
 本発明によれば、金属容器の少なくとも容器胴部外面に印刷画像が形成された印刷金属容器において、前記印刷画像が3Dスキャナによるデータに基づく疑似3D印刷画像であり、前記印刷金属容器が印刷直前の座屈強度及びパネリング強度を維持していることを特徴とする印刷金属容器が提供される。 According to the present invention, in a printed metal container in which a printed image is formed on at least the outer surface of the container body of the metal container, the printed image is a pseudo 3D printed image based on data obtained by a 3D scanner, and the printed metal container is immediately before printing. Provided is a printed metal container characterized by maintaining the buckling strength and paneling strength of the above.
 本発明の印刷金属容器においては、
1.金属容器の胴部における厚みが230μm以下であること、
2.前記疑似3D印刷画像が、線数が100lpi以上及び/又は解像度が300dpi以上の印刷画像であること、
3.前記疑似3D印刷画像が、表面凹凸段差量が50mm以下の3Dスキャン対象物の再現画像であること、
4.前記3Dスキャン対象物が、異形加工が施された基材であること、
5.前記疑似3D印刷画像が、前記金属容器外面の少なくとも一部に形成されていること、
6.前記疑似3D印刷画像上に乱反射層が形成されていること、
7.前記金属容器がアルミシームレス缶であること、
8.前記金属容器が容器胴部に異形加工を施したアルミシームレス缶であること、
が好適である。
In the printed metal container of the present invention
1. 1. The thickness of the body of the metal container is 230 μm or less.
2. The pseudo 3D printed image is a printed image having a line number of 100 lpi or more and / or a resolution of 300 dpi or more.
3. 3. The pseudo 3D printed image is a reproduction image of a 3D scan object having a surface unevenness step amount of 50 mm or less.
4. The 3D scan object is a base material that has been deformed.
5. The pseudo 3D printed image is formed on at least a part of the outer surface of the metal container.
6. A diffused reflection layer is formed on the pseudo 3D printed image.
7. The metal container is an aluminum seamless can,
8. The metal container is an aluminum seamless can with a deformed body.
Is preferable.
 本発明の印刷金属容器においては、座屈強度(容器軸方向の荷重に対する強度)やパネリング強度(外圧に対する強度)を低下することなく、異形加工を施した金属容器と同様の外観を有する印刷金属容器を提供することができる。しかもスクリーン線数が100lpi以上及び/又は解像度が300dpi以上の疑似3D印刷画像とすることにより、異形加工が施された3Dスキャン対象物をリアルに再現することが可能となる。
 すなわち、前述したように、金属容器に施される異形加工によって金属容器の機械的強度が低下する場合があり、特に軽量化のために薄肉化されたシームレス缶ではその傾向が顕著である。これに対して本発明の印刷金属容器では、このような異形加工を行うことなく、異形加工が施された基材を3Dスキャン対象物として、3Dスキャナでデータ化してシームレス缶胴部に印刷することにより、薄肉化されたシームレス缶であっても座屈強度等を低下させることなく、疑似3D印刷画像により異形加工を施したと同様の外観特性をシームレス缶に付与することが可能になる。
In the printed metal container of the present invention, the printed metal has the same appearance as the deformed metal container without lowering the buckling strength (strength against the load in the axial direction of the container) and the paneling strength (strength against the external pressure). Containers can be provided. Moreover, by making a pseudo 3D printed image having a screen line number of 100 lpi or more and / or a resolution of 300 dpi or more, it is possible to realistically reproduce a 3D scan object that has been subjected to irregular shape processing.
That is, as described above, the mechanical strength of the metal container may decrease due to the deformed processing applied to the metal container, and this tendency is particularly remarkable in the seamless can which has been thinned for weight reduction. On the other hand, in the printed metal container of the present invention, the deformed base material is converted into data by a 3D scanner and printed on the seamless can body without performing such deformation processing. As a result, even if the seamless can is thinned, it is possible to impart the same appearance characteristics to the seamless can as if the deformed shape was processed by the pseudo 3D printed image without lowering the buckling strength and the like.
実施例で作成した、最高評点9の試作品(疑似3D画像印刷済みアルミシームレス缶)の写真(竹)である。It is a photograph (bamboo) of a prototype (aluminum seamless can with a pseudo 3D image printed) having a maximum score of 9 created in the example. 実施例で作成した、最高評点9の試作品(疑似3D画像印刷済みアルミシームレス缶)の写真(コルク)である。It is a photograph (cork) of a prototype (aluminum seamless can with a pseudo 3D image printed) having a maximum score of 9 created in the example.
(印刷金属容器)
 本発明の印刷金属容器は、金属容器外面に、異形加工を施したような3Dスキャナによるデータに基づく疑似3D印刷画像が形成されて成る印刷金属容器であることから、機械的強度(座屈強度及び/又はパネリング強度)が低下するような異形加工が実際には施されていないため、上記機械的強度が印刷前後で維持されている。
 本発明において、異形加工とは、点状、線状或いは面状の凹凸を形成する加工であり、エンボス加工、折り曲げ加工、ビート加工等の機械加工、レーザ彫刻、型押し、発泡成形等を例示することができる。
 尚、印刷が施された金属容器は、その後、金属容器がとるべき所望の形状に応じて、ネッキング加工や螺子加工等の開口部加工が施されるが、本発明における印刷後の座屈強度(軸方向荷重に対する強度)及びパネリング強度(外圧に対する強度)は、これらの開口部の加工を行う前の印刷金属容器に関するものである。
(Printed metal container)
Since the printed metal container of the present invention is a printed metal container in which a pseudo 3D printed image based on data obtained by a 3D scanner, which looks like a deformed metal container, is formed on the outer surface of the metal container, it has mechanical strength (bending strength). And / or the deformation processing that reduces the paneling strength) is not actually performed, so that the mechanical strength is maintained before and after printing.
In the present invention, the deformed processing is a processing for forming point-shaped, linear or planar unevenness, and exemplifies machining such as embossing, bending, beat processing, laser engraving, embossing, foam molding and the like. can do.
The printed metal container is then subjected to opening processing such as necking processing and screw processing according to the desired shape to be taken by the metal container, but the buckling strength after printing in the present invention is performed. (Strength against axial load) and paneling strength (strength against external pressure) relate to the printed metal container before processing these openings.
[印刷画像]
 本発明の印刷基体において、疑似3D印刷画像は、3Dスキャン対象物から3Dスキャナを用いて取得されたデータに基づき印刷された画像であり、これに限定されないが、スクリーン線数が100lpi以上及び/又は解像度が300dpi以上の高精細な印刷画像から成ることが望ましい。印刷画像が上記範囲のスクリーン線数や解像度で形成されていることにより、3Dスキャン対象物が有する立体感を微細且つ鮮明に平面(曲面)上に精度よくリアルに疑似3D印刷画像として表現することが可能となり、実際に異形加工が施されているかのような印象を観者に付与することが可能になる。またスクリーン線数及び解像度は大きいほど、高精細な印刷画像を形成可能である。
 また印刷画像は、金属容器外面の一部分に局所的に形成されていてもよい。すなわち、金属容器に実際に異形加工を施す場合、一部分に局所的に形成すると、前述したとおり、加工部分への応力集中により金属容器の機械的強度が低下するが、本発明の印刷金属容器においては、一部分に局所的に、非対称に形成されていても、このような機械的強度の低下のおそれがない。
[Print image]
In the printing substrate of the present invention, the pseudo 3D printed image is an image printed based on data acquired from a 3D scan object using a 3D scanner, and the number of screen lines is 100 lpi or more and / Alternatively, it is desirable to consist of a high-definition printed image having a resolution of 300 dpi or more. Since the printed image is formed with the number of screen lines and resolution in the above range, the stereoscopic effect of the 3D scanned object can be finely and clearly expressed as a pseudo 3D printed image on a flat surface (curved surface) with high accuracy. It becomes possible to give the viewer the impression that the deformed shape is actually applied. Further, the larger the number of screen lines and the resolution, the higher the definition of the printed image can be formed.
Further, the printed image may be locally formed on a part of the outer surface of the metal container. That is, when the metal container is actually subjected to deformed processing, if it is locally formed in a part, the mechanical strength of the metal container decreases due to stress concentration on the processed portion as described above, but in the printed metal container of the present invention. Even if it is locally and asymmetrically formed in a part, there is no possibility of such a decrease in mechanical strength.
 疑似3D印刷画像を形成する印刷方式は、従来公知の印刷方式を採用できる。印刷方式としては、これに限定さないが、インクジェット印刷、水なし平版印刷、グラビア印刷、樹脂凸版印刷、フレキソ印刷、ダイレクト製版印刷、スクリーン印刷等を例示することができるが、好適には、スクリーン線数が100lpi以上の印刷画像は水なし平版印刷により印刷することが望ましく、解像度が300dpi以上の印刷画像はインクジェット印刷により印刷することが望ましい。
 疑似3D印刷画像は、複数の印刷方式により形成されていてもよい。疑似3D印刷画像は、基体の全面或いは部分的に形成されていてもよく、平面的な通常の印刷画像との組み合わせであってもよい。
As a printing method for forming a pseudo 3D printed image, a conventionally known printing method can be adopted. Examples of the printing method include, but are not limited to, inkjet printing, waterless flat plate printing, gravure printing, resin letterpress printing, flexo printing, direct plate making printing, screen printing, and the like. It is desirable to print a printed image having a line number of 100 lpi or more by waterless slab printing, and it is desirable to print a printed image having a resolution of 300 dpi or more by inkjet printing.
The pseudo 3D printed image may be formed by a plurality of printing methods. The pseudo 3D printed image may be formed on the entire surface or a part of the substrate, or may be combined with a flat normal printed image.
 また疑似3D印刷画像は、後述するように、複数の3Dスキャン対象物から得られた複数のデータを組み合わせて形成されたデータに基づいて印刷された印刷画像であってもよい。これにより素材や凹凸の程度の異なる異形加工による疑似3D印刷画像が組み合わされ、意匠性に優れた印刷画像を形成することができる。
 更に印刷画像は、上述した疑似3D印刷画像以外に、商品説明や製造年月日、或いは二次元コード等の情報表示のための印刷画像と組み合わされていてもよいが、情報表示のための印刷画像は、疑似3D印刷画像の非印刷領域に形成されていることが疑似3D印刷画像の意匠性を損なわないことから望ましい。またかかる情報表示のための印刷画像は、疑似3D印刷画像と異なる印刷方式により印刷されていることによってそれぞれの特徴が際立つため望ましい。
Further, as will be described later, the pseudo 3D printed image may be a printed image printed based on data formed by combining a plurality of data obtained from a plurality of 3D scan objects. As a result, pseudo 3D printed images produced by different shapes of materials and irregularities can be combined to form a printed image having excellent design.
Further, the printed image may be combined with a printed image for displaying information such as a product description, a date of manufacture, or a two-dimensional code, in addition to the pseudo 3D printed image described above, but printing for displaying information. It is desirable that the image is formed in the non-printed area of the pseudo 3D printed image because the design of the pseudo 3D printed image is not impaired. Further, the printed image for displaying such information is desirable because each feature is conspicuous because it is printed by a printing method different from that of the pseudo 3D printed image.
 疑似3D印刷画像は、立体感のある画像を鮮明に再現する観点から使用色数として4色(イエロー、マゼンタ、シアン、ブラック)以上のインキから再現されていることが望ましい。
 また通常の印刷インキを用いて印刷されていても、表面凹凸等が精度よく再現された立体感のある印刷画像を形成できるが、印刷インキ中に熱膨張性マイクロカプセルを含有する発泡インキを用いて印刷されるか、インクジェット印刷による厚盛り印刷や、タクタイル印刷により形成されていることにより、より立体感が強調された意匠性の高い印刷画像を有することができる。
From the viewpoint of clearly reproducing a three-dimensional image, the pseudo 3D printed image is preferably reproduced from inks having four or more colors (yellow, magenta, cyan, black) or more.
Further, even if printing is performed using ordinary printing ink, it is possible to form a printed image having a three-dimensional effect in which surface irregularities and the like are accurately reproduced, but a foaming ink containing heat-expandable microcapsules in the printing ink is used. It is possible to have a highly-designed printed image with a more three-dimensional effect by being printed by printing, thick printing by inkjet printing, or formed by tactile printing.
[3Dスキャン対象物]
 印刷画像の原画となる3Dスキャン対象物としては、版画の版木や油絵、ステンドグラス、編み物や織物、パッチワーク等の素材そのもの、3Dプリンターによる光造形物や、インクジェット印刷による厚盛り印刷、タクタイル印刷等の印刷物、或いはエンボス加工、折り曲げ加工、レーザ彫刻等の機械加工、型押し、発泡成形等による立体的な部分が形成された加工物等を例示することができ、これらの単独、或いは2種以上を組み合わせて3Dスキャン対象物を形成することもできるが、本発明においては特に、上述した3Dスキャン対象物の中でも、エンボス加工や折り曲げ加工等の異形加工が施された基材であることが望ましい。すなわち、前述したとおり、軽量化のために薄肉化された金属容器に、このような異形加工を実際に施すと、金属容器の機械的強度が低下するが、異形加工が施された基材を3Dスキャン対象物として、このスキャンデータから疑似3D印刷画像を金属容器に印刷することにより、金属容器の機械的強度を損なうことなく、異形加工が施されたと同様の装飾的効果を金属容器に付与することが可能になる。
 また3Dスキャン対象物は、表面に凹凸がある限り、凹凸の段差量は特に限定されないが、50mm以下、特に30mm以下であることが望ましい。
[3D scan target]
The 3D scan target that is the original image of the printed image is the material itself such as woodblock print, oil painting, stained glass, knitting, textile, patchwork, etc., stereolithography by 3D printer, thick printing by inkjet printing, tactile. Examples thereof include printed matter such as printing, or processed matter in which a three-dimensional part is formed by embossing, bending, machining such as laser engraving, embossing, foam molding, etc., and these alone or 2 It is possible to form a 3D scan target by combining seeds or more, but in the present invention, among the above-mentioned 3D scan targets, the base material is a substrate that has been subjected to deformed processing such as embossing or bending. Is desirable. That is, as described above, when the metal container thinned for weight reduction is actually subjected to such deformation processing, the mechanical strength of the metal container is lowered, but the deformed base material is used. By printing a pseudo 3D printed image from this scan data on a metal container as a 3D scan object, the metal container is given the same decorative effect as that of the deformed processing without impairing the mechanical strength of the metal container. It becomes possible to do.
Further, as long as the surface of the 3D scan object has irregularities, the amount of steps of the irregularities is not particularly limited, but it is preferably 50 mm or less, particularly 30 mm or less.
[金属容器]
 本発明に用いる金属容器としては、これに限定されないが、アルミニウム板、アルミニウム合金板、ティンフリースチールなどの表面処理鋼板、ブリキ板、クロムメッキ鋼板、アルミメッキ鋼板、ニッケルメッキ鋼板、スズニッケルメッキ鋼板、その各種の合金メッキ鋼板などの各種金属板を、絞り加工、絞りしごき加工、再絞り加工などによって成形したシームレス缶、及び溶接缶など、各種のタイプの金属缶を例示できる。また、上記金属缶の表面には、ポリエステルフィルム、ナイロンフィルム、ポリプロピレンフィルム等の樹脂フィルムがラミネートされていてもよい。
 また金属容器がスチール缶等の場合には、金属容器の地色を補正して印刷画像への影響を低減する目的で、ホワイトコート層が形成されていてもよい。ホワイトコート層としては、従来公知のものを使用することができ、例えば、酸化チタンや酸化亜鉛等の白色顔料を、熱硬化性、紫外線硬化性、或いは電子線硬化性の樹脂バインダーと共に溶剤中に分散して成る白色インクを塗布・乾燥し、次いで加熱、紫外線照射或いは電子線照射等により硬化することにより形成できる。
 金属容器の厚みは特に限定されないが、前述したとおり、本発明の印刷金属容器においては、軽量化のために薄肉化された場合でも、異形加工が施されたような外観を有することができるため、胴部の厚みが230μm以下に薄肉化されたアルミシームレス缶にも好適に適用できる。
 本発明においては特に、容器胴部に異形加工が施されたアルミニウムシームレス缶を好適に使用することができ、かかる異形加工と疑似3D印刷とが相俟って、後述する実施例の結果に示すように意匠性を向上することができる。
[Metal container]
The metal container used in the present invention is not limited to this, but is a surface-treated steel plate such as an aluminum plate, an aluminum alloy plate, and tin-free steel, a tin plate, a chrome-plated steel plate, an aluminum-plated steel plate, a nickel-plated steel plate, and a tin-nickel-plated steel plate. , Various types of metal cans such as seamless cans in which various metal plates such as various alloy-plated steel plates are formed by drawing, ironing, re-drawing, etc., and welded cans can be exemplified. Further, a resin film such as a polyester film, a nylon film, or a polypropylene film may be laminated on the surface of the metal can.
When the metal container is a steel can or the like, a white coat layer may be formed for the purpose of correcting the background color of the metal container and reducing the influence on the printed image. As the white coat layer, a conventionally known one can be used. For example, a white pigment such as titanium oxide or zinc oxide is placed in a solvent together with a thermosetting, ultraviolet curable, or electron beam curable resin binder. It can be formed by applying and drying a dispersed white ink, and then curing it by heating, ultraviolet irradiation, electron beam irradiation, or the like.
The thickness of the metal container is not particularly limited, but as described above, the printed metal container of the present invention can have an appearance as if it has been deformed even when it is thinned for weight reduction. It can also be suitably applied to an aluminum seamless can having a body thickness of 230 μm or less.
In particular, in the present invention, an aluminum seamless can in which the container body is deformed can be preferably used, and the deformed shape and the pseudo 3D printing are combined and shown in the results of Examples described later. The design can be improved.
[乱反射層]
 本発明の印刷金属容器においては、金属容器が表面光沢を有しているような場合には、上述した疑似3D印刷画像の上に透明性を有する乱反射層が形成されていることが好適である。乱反射層が形成されていることにより、印刷画像を鮮明に視認できると共に、印刷画像に入射する光を乱反射して光沢を排除し、印刷画像が有する表面凹凸や質感のような立体感が損なわれることなく、視認されることが可能になる。
 乱反射層は、印刷基体の最表面且つ少なくとも上述した印刷画像の上に形成されていることが望ましく、印刷画像上に直接、或いは透明フィルムを介して形成されていてもよい。また印刷画像が基材に部分的に形成されているような場合には、基材の全面を覆うように形成されていてもよいし、印刷画像が形成された部分にのみ形成されていてもよい。
 乱反射層は、表面に微細な凹凸を形成する等、印刷基体の表面光沢を低減できる限り種々の材料のものを使用可能であるが、艶消しニス層又は艶消しフィルムから成ることが好ましい。艶消しニスとしては、従来透明トップコート層として使用されていた仕上げニスに、艶消し剤を配合して成るものであり、また艶消しフィルムは、透明樹脂フィルムに艶消し剤を配合して成るものである。
[Diffuse reflection layer]
In the printed metal container of the present invention, when the metal container has a surface gloss, it is preferable that a transparent diffused reflection layer is formed on the above-mentioned pseudo 3D printed image. .. By forming the diffused reflection layer, the printed image can be clearly seen, and the light incident on the printed image is diffusely reflected to eliminate the gloss, and the three-dimensional effect such as surface unevenness and texture of the printed image is impaired. It becomes possible to be visually recognized without any need.
The diffused reflection layer is preferably formed on the outermost surface of the print substrate and at least on the above-mentioned printed image, and may be formed directly on the printed image or via a transparent film. When the printed image is partially formed on the base material, it may be formed so as to cover the entire surface of the base material, or it may be formed only on the portion where the printed image is formed. Good.
As the diffused reflection layer, various materials can be used as long as the surface gloss of the printing substrate can be reduced, such as forming fine irregularities on the surface, but it is preferably made of a matte varnish layer or a matte film. The matte varnish is made by blending a matting agent with a finishing varnish conventionally used as a transparent top coat layer, and the matte film is made by blending a matting agent with a transparent resin film. It is a thing.
 艶消しニス層を構成する、仕上げニス(トップコート剤)としては、従来公知の透明な熱硬化性樹脂が使用され、例えば、熱硬化性のポリエステル樹脂、アクリル樹脂、エポキシ樹脂などをベース樹脂として含み、フェノール樹脂やメラミン樹脂などのアミノ樹脂或いはイソシアネート樹脂等を硬化剤として含有している塗料組成物であり、適宜有機溶剤に溶解させたものから成る。
 また艶消しフィルムを構成する透明樹脂フィルムとしては、従来公知の透明な熱可塑性樹脂、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテン等のオレフィン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル系共重合体樹脂;ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α-メチルスチレン・スチレン共重合体等のスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート;ポリフェニレンオキサイド;ポリ乳酸などの生分解性樹脂;などから形成されていてよい。一般的には、透明性に優れていると共に、耐熱性が良好であるという点で、ポリエチレンテレフタレート等のポリエステルを好適に使用できる。
A conventionally known transparent thermosetting resin is used as the finishing varnish (top coating agent) that constitutes the matte varnish layer. For example, a thermosetting polyester resin, acrylic resin, epoxy resin, or the like is used as a base resin. It is a coating composition containing an amino resin such as a phenol resin or a melamine resin, an isocyanate resin, or the like as a curing agent, and is appropriately dissolved in an organic solvent.
Further, as the transparent resin film constituting the matte film, conventionally known transparent thermoplastic resins such as olefins such as low-density polyethylene, high-density polyethylene, polypropylene, poly1-butene, and poly4-methyl-1-pentene are used. Based resin; ethylene / vinyl copolymer resin such as ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, ethylene / vinyl chloride copolymer; polystyrene, acrylonitrile / styrene copolymer, ABS, α- Styrene-based resins such as methylstyrene / styrene copolymers; vinyl-based resins such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymers, methylpolyacrylate, polymethylmethacrylate, etc .; nylon 6, nylon 6 From polyamide resins such as -6, nylon 6-10, nylon 11, nylon 12; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polycarbonate; polyphenylene oxide; biodegradable resins such as polylactic acid; It may be formed. In general, polyester such as polyethylene terephthalate can be preferably used in that it has excellent transparency and heat resistance.
 上記仕上げニス又は透明樹脂フィルムに配合される艶消し剤としては、シリカ、水酸化アルミニウム、酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム等の無機粒子から成るもの、シリコーン樹脂、アクリル樹脂、ポリエチレンなどの有機材料のパウダー又はビーズから成るものを例示できる。これらの中でも特にシリカを好適に使用することができ、中でも平均粒径が1~10μmの範囲にあるものを好適に使用することができる。シリカの平均粒径が上記範囲にあることにより、入射光を効率よく乱反射させて表面光沢を低減させることができ、印刷画像が有する表面凹凸や質感等の立体感が損なわれることなく、視認可能になる。
 艶消し剤は、仕上げニス又は透明樹脂フィルム中に、樹脂固形分の1重量%以上、特に10~20重量%の範囲で含有されていることが好適である。上記範囲よりも艶消し剤の量が少ない場合には、十分に艶消し効果を発現することができず、印刷画像の立体感を損なうおそれがある。また上記範囲よりも艶消し剤の量が多い場合には、上記範囲にある場合に比して塗工性に劣ると共に、耐疵付き性が低下するおそれがある。
The matting agent to be blended in the finishing varnish or the transparent resin film includes those composed of inorganic particles such as silica, aluminum hydroxide, aluminum oxide, calcium carbonate and magnesium carbonate, and organic materials such as silicone resin, acrylic resin and polyethylene. Can be exemplified by those composed of the powder or beads of. Among these, silica can be particularly preferably used, and among these, those having an average particle size in the range of 1 to 10 μm can be preferably used. When the average particle size of silica is within the above range, the incident light can be efficiently diffusely reflected to reduce the surface gloss, and the printed image can be visually recognized without impairing the three-dimensional appearance such as surface unevenness and texture. become.
The matting agent is preferably contained in the finishing varnish or the transparent resin film in the range of 1% by weight or more, particularly 10 to 20% by weight of the resin solid content. If the amount of the matting agent is smaller than the above range, the matting effect cannot be sufficiently exhibited, and the three-dimensional appearance of the printed image may be impaired. Further, when the amount of the matting agent is larger than the above range, the coatability is inferior to that in the above range, and the scratch resistance may be lowered.
 乱反射層の厚みは、印刷基体の用途などによって一概に規定できないが、一般に艶消しニス層の場合で1~20μmの範囲にあることが好ましく、艶消しフィルムの場合で8~50μmの範囲にあることが好ましい。 The thickness of the diffused reflection layer cannot be unconditionally specified depending on the application of the printing substrate, but generally, it is preferably in the range of 1 to 20 μm in the case of the matte varnish layer, and in the range of 8 to 50 μm in the case of the matte film. Is preferable.
[他の層]
 本発明の印刷金属容器においては、金属容器上に印刷画像を直接形成することもできるが、従来より印刷層を形成する際に用いられる白ベタ印刷層及び/又はアンカーコート層等のベースコート層や、ベースフィルムを介して印刷画像を形成することもできる。
 白ベタ印刷層は、金属容器に必要により形成されるホワイトコート層と同様に、金属容器の地色を補正して印刷画像への影響を低減することができ、鮮明な画像を形成することが可能になる。白ベタ印刷層は、ホワイトコート層として前述したものと同様のものを使用することができる。
 またアンカーコート層を形成することにより、印刷画像の基材への密着性を向上させることもできる。アンカーコート層は、アンカーコート剤としてそれ自体公知のものを使用することにより形成することができ、例えば、熱硬化性、紫外線硬化型或いは電子線硬化型のポリエステル樹脂、熱硬化性アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂等が所定の溶剤に分散乃至溶解された塗布液を塗布・乾燥し、次いで加熱、紫外線照射或いは電子線照射等により硬化することにより形成される。
[Other layers]
In the printed metal container of the present invention, a printed image can be directly formed on the metal container, but a base coat layer such as a white solid printing layer and / or an anchor coat layer conventionally used for forming a printing layer can be formed. , It is also possible to form a printed image via a base film.
Similar to the white coat layer formed on the metal container, the white solid printing layer can correct the background color of the metal container to reduce the influence on the printed image, and can form a clear image. It will be possible. As the white solid printing layer, the same white coat layer as described above can be used.
Further, by forming the anchor coat layer, it is possible to improve the adhesion of the printed image to the substrate. The anchor coat layer can be formed by using an anchor coating agent known per se, for example, a thermosetting, ultraviolet curable or electron beam curable polyester resin, a thermosetting acrylic resin, or an epoxy. It is formed by applying and drying a coating liquid in which a resin, polyurethane resin, or the like is dispersed or dissolved in a predetermined solvent, and then curing by heating, ultraviolet irradiation, electron beam irradiation, or the like.
(印刷基体の製造方法)
 本発明の印刷基体の製造方法は、表面凹凸段差量が50mm以下の3Dスキャン対象物を作成する工程、前記3Dスキャン対象物を3Dスキャナでスキャンして印刷データを作成する工程、前記印刷データに基づき疑似3D印刷画像を基材上に印刷する工程、を少なくとも有している。
(Manufacturing method of printed substrate)
The method for producing a printing substrate of the present invention includes a step of creating a 3D scan object having a surface unevenness step amount of 50 mm or less, a step of scanning the 3D scan object with a 3D scanner to create print data, and the print data. Based on this, it has at least a step of printing a pseudo 3D printed image on a substrate.
 本発明の印刷基体の印刷画像の原画となる3Dスキャン対象物としては、前述したとおり、表面凹凸の段差量が50mm以下、特に30mm以下であることが好適である。
 上述した3Dスキャン対象物の表面を、3Dスキャナを用いてデータ編集を行い、版式印刷により印刷を行う場合には、該データに基づき製版を行う。
 この際、3Dスキャン対象物から得られたデータは1種のみをそのまま使用してもよいが、複数の3Dスキャン対象物から得られたデータを組み合わせてデータ編集することにより、製版或いは印刷することができる。これにより、印刷デザインの幅が広がり、より意匠性に優れた装飾的な疑似3D印刷画像を形成することが可能になる。
As described above, it is preferable that the step amount of the surface unevenness is 50 mm or less, particularly 30 mm or less, as the 3D scan target object which is the original image of the printed image of the printing substrate of the present invention.
When data is edited on the surface of the above-mentioned 3D scan object using a 3D scanner and printing is performed by plate printing, plate making is performed based on the data.
At this time, only one type of data obtained from the 3D scan object may be used as it is, but plate making or printing may be performed by combining the data obtained from a plurality of 3D scan objects and editing the data. Can be done. As a result, the range of print design is widened, and it becomes possible to form a decorative pseudo 3D printed image having more excellent design.
 印刷方式は、前述したとおり、インクジェット印刷、水なし平版印刷、グラビア印刷、樹脂凸版印刷、フレキソ印刷、スクリーン印刷等従来公知の方法によって印刷することができるが、本発明においては、線数が100lpi以上及び/又は解像度が300dpi以上の印刷画像を形成するように印刷することが好適である。これにより表面凹凸を有する3Dスキャン対象物の立体感を精細且つ鮮明に再現することが可能になる。
 本発明においては、上記印刷方式の中でも、水なし平版印刷又はインクジェット印刷によって上記スクリーン線数又は解像度を有する印刷画像を形成することが好ましい。また疑似3D印刷画像を際立たせるために、必要により、印刷に先だって前述した白ベタ層或いはアンカーコート層等のベースコート層を形成する。
 また前述したとおり、印刷画像は、疑似3D印刷画像と共に情報表示のための印刷画像を形成することもでき、この場合には、疑似3D印刷画像形成後に、疑似3D印刷画像の装飾性を損なわないように、疑似3D印刷画像の非印刷領域にインクジェット印刷等によって形成することが望ましい。またこのように立体的な疑似3D印刷画像と組み合わせることにより、それぞれの特徴を際立たせることが可能になる。
As described above, the printing method can be printed by conventionally known methods such as inkjet printing, waterless plate printing, gravure printing, resin letterpress printing, flexo printing, screen printing, etc., but in the present invention, the number of lines is 100 lpi. It is preferable to print so as to form a printed image having the above and / or resolution of 300 dpi or more. This makes it possible to reproduce the three-dimensional effect of a 3D scan object having surface irregularities in a fine and clear manner.
In the present invention, among the above printing methods, it is preferable to form a printed image having the above screen number or resolution by waterless lithographic printing or inkjet printing. Further, in order to make the pseudo 3D printed image stand out, if necessary, a base coat layer such as the above-mentioned white solid layer or anchor coat layer is formed prior to printing.
Further, as described above, the printed image can also form a printed image for displaying information together with the pseudo 3D printed image. In this case, the decorativeness of the pseudo 3D printed image is not impaired after the pseudo 3D printed image is formed. As described above, it is desirable to form the pseudo 3D printed image in a non-printed area by inkjet printing or the like. Further, by combining with the three-dimensional pseudo 3D printed image in this way, it is possible to make each feature stand out.
 疑似3D印刷画像は、予め成形された金属容器(シームレス缶)に曲面印刷により印刷することもできるし、或いは金属板に印刷した後成形することもできる。また金属容器表面に光沢がある場合には、形成された疑似3D印刷画像の上に、前述した乱反射層を印刷基体の最表面層となるように形成することが好ましい。乱反射層は、艶消しニス層或いは艶消し透明樹脂フィルムのいずれであってもよい。また印刷後の金属容器の胴部に異形加工を施しても構わない。 The pseudo 3D printed image can be printed on a preformed metal container (seamless can) by curved surface printing, or can be printed on a metal plate and then molded. When the surface of the metal container is glossy, it is preferable to form the diffused reflection layer described above on the formed pseudo 3D printed image so as to be the outermost surface layer of the printing substrate. The diffused reflection layer may be either a matte varnish layer or a matte transparent resin film. Further, the body of the metal container after printing may be deformed.
 各種の胴部厚みを有するアルミシームレス缶に対して、印刷画像の種類、胴部への異形加工の有無の点で異なる試作品を作製し表1にまとめた。
 表1では、印刷画像に関して、疑似3D印刷画像を「A」、疑似3Dではない印刷画像を「B」で表記し、胴部への異形加工(全面加工または部分エンボスの程度)に関して、無しを「A」、軽加工を「B」、強加工を「C」で表記した。異形加工を施した場合は、座屈強度の低下率(%)を併記した。
For aluminum seamless cans with various body thicknesses, different prototypes were prepared in terms of the type of printed image and the presence or absence of deformed processing on the body, and are summarized in Table 1.
In Table 1, the pseudo 3D printed image is indicated by "A" and the non-pseudo 3D printed image is indicated by "B" with respect to the printed image. "A", light processing is indicated by "B", and strong processing is indicated by "C". When deformed, the rate of decrease in buckling strength (%) is also shown.
 また各試作品について、コスト起因による実用性、印刷起因による意匠性、強度起因による実用性の各項目について以下に示す評価基準で加点をした。
 コストは、直接的に胴部厚みの影響を受けるため、加点無し~加点4(++++)までの5段階とした。
 意匠性は、疑似3D印刷画像による意匠性の改善が本発明の主たる効果であるため、疑似3D印刷画像を用いた場合加点3(+++)とした。
 強度は、胴部厚みに依存するものの100μmでも実用性を満足するため加点2(++)とし、280μmを加点4(++++)とした。
For each prototype, points were added based on the evaluation criteria shown below for each item of practicality due to cost, design due to printing, and practicality due to strength.
Since the cost is directly affected by the thickness of the body, the cost is set to 5 levels from no point addition to point addition 4 (++++).
As for the design property, since the improvement of the design property by the pseudo 3D printed image is the main effect of the present invention, a point addition of 3 (+++) was given when the pseudo 3D printed image was used.
Although the strength depends on the thickness of the body, 100 μm is added to 2 (++) and 280 μm is added to 4 (++++) to satisfy practicality.
 さらに、異形加工を施すことにより、コスト、意匠性、強度に影響が及ぶ。各項目に及ぼす影響を、加点1(+)または加点2(++)、減点1(― ―)または減点2(― ―)とした。 Furthermore, the cost, design, and strength are affected by the deformed processing. The effects on each item were added as points 1 (+) or added 2 (++), deducted 1 (---) or deducted 2 (---).
 評点(加減の合計)をもとに行った製品化のための総合的な合否判定では、各項目の合計が評点7以上でかつ実用性を満足することを合格基準とした。
 また、合否判定で最高の評点9の試作品(胴部厚み145μmで異形加工無し)の写真を図1及び図2に示す。
In the comprehensive pass / fail judgment for commercialization based on the score (total of adjustments), the acceptance criteria was that the total of each item had a score of 7 or more and satisfied the practicality.
In addition, photographs of a prototype having the highest score of 9 in the pass / fail judgment (body thickness of 145 μm and no deformation processing) are shown in FIGS. 1 and 2.
 以下に、各試作品の実用性(コスト)、意匠性、実用性(強度)の各項目の評価基準について詳細に説明する。
(1)コスト
 コストは胴部厚みに起因しているため、280μmでは加点0とした。230μmで加点1、190μmでは加点2、145μmでは加点3、100μmでは加点4とした。
 さらに、異形加工を行うことで減点1とした。なお、異形加工による減点は加工工程の追加に伴うものであり、加工の程度の軽・強を問わない。
 表1では、230μmの場合、異形加工を施すとコストの加点1が異形加工の減点1で相殺されて0点となることがわかる。
The evaluation criteria for each item of practicality (cost), designability, and practicality (strength) of each prototype will be described in detail below.
(1) Cost Since the cost is due to the thickness of the body, the point added is 0 at 280 μm. A point was added at 230 μm, a point was added at 190 μm, a point was added at 145 μm, and a point was added at 100 μm.
Furthermore, the point was deducted by 1 by performing irregular shape processing. The deductions due to irregular shape processing are associated with the addition of processing processes, and the degree of processing may be light or strong.
In Table 1, in the case of 230 μm, it can be seen that when the deformed shape processing is performed, the added point 1 of the cost is offset by the deducted point 1 of the deformed shape processing and becomes 0 point.
(2)意匠性
 意匠性は、印刷画像に疑似3D印刷画像を用いた場合加点3とした。疑似3Dではない印刷画像の場合は0点とした。さらに異形加工を施すことで加点1または加点2とした。
 表1では、疑似3Dではない印刷画像のみの場合加点0、疑似3D印刷画像のみの場合加点3、疑似3D印刷画像+異形加工で加点4または加点5となることが分かる。
(2) Designability The designability was set to 3 points when a pseudo 3D printed image was used as the printed image. In the case of a printed image that is not pseudo 3D, 0 points were set. Further, by performing irregular shape processing, points were added 1 or points 2.
In Table 1, it can be seen that 0 points are added for only the printed image that is not pseudo 3D, 3 points are added for only the pseudo 3D printed image, and 4 points or 5 points are added for the pseudo 3D printed image + irregular shape processing.
(3)強度
 胴部厚みが主たる要因のため、280μmでは加点4とした。ただし相対的に薄肉の100μmにおいても実用性は満足するため加点2とした。その他は傾斜配点させず、230μm、190μm、145μmいずれも加点3とした。
 さらに、異形加工を施すことで強度を減点1とした。また胴部厚みが薄くなると強度への影響が大きくなる。そのため、胴部厚み100μmの場合は軽加工では減点1、強加工で減点2となる。
 表1では、100μmの場合、強加工の異形加工を施すと強度の加点2が異形加工の減点2で相殺されて0点となることがわかる。
(3) Strength Since the thickness of the body is the main factor, a point of 4 was added at 280 μm. However, since practicality is satisfied even with a relatively thin thickness of 100 μm, a point of 2 was added. Other points were not graded, and points were added to 230 μm, 190 μm, and 145 μm.
Further, the strength was deducted by 1 by performing the deformed shape processing. In addition, the thinner the body thickness, the greater the effect on strength. Therefore, when the body thickness is 100 μm, the deduction is 1 for light processing and 2 for strong processing.
In Table 1, in the case of 100 μm, it can be seen that when the deformed processing of the strong processing is performed, the added point 2 of the strength is offset by the deducted point 2 of the deformed processing and becomes 0 point.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 表1の合否判定について考察をする。
 疑似3D印刷画像を印刷し異形加工を施さない場合、コスト、意匠性、強度に関する評点は、230μmで評点7、190μmで評点8、145μmで評点9、100μmで評点9となりいずれも合格となる。
 疑似3D印刷画像を印刷し異形加工を施した場合は、異形加工による加減を伴って、230μmで評点8、190μmで評点9、145μmで評点9、100μmで評点8となる。
 230μmの場合はコストで加点0、100μmの場合強度で加点0となり実用性に課題が生じる境界域とはなるもののともに評点は8と高かった。
 胴部厚みが280μmで疑似3D印刷画像を印刷した場合、評点は7に達するが、前述したコストの加点が0となり、かつ前述の230μm、100μmよりも評点が1少ないため、金属容器の胴部における厚みは230μm以下が好適であることがわかる。
 比較例に示した疑似3Dではない印刷画像及び異形加工なしのシームレス缶においては、評点が4~6となっており合格点に達しなかった。
 尚、表1には記載していないが、比較例に示した疑似3Dでない印刷画像を形成したシームレス缶に異形加工を施した場合には、実施例における異形加工の加点要素と同一(230μm、190μmでは加点1、145μmでは加点0、100μmでは減点1)と考えられることから、230μmで評点5、190μmで評点6、145μmで評点6、100μmで評点5となり、いずれも合格基準を満たさないと考えられる。
 従って、疑似3D印刷画像が印刷された、胴部厚み230μm以下の金属容器が好適であることがわかった。
 更に、図1及び図2から明らかなように、疑似3D印刷画像が印刷された試作品は、アルミシームレス缶が、竹(図1)或いはコルク(図2)から成る容器のような印象を与え、高い意匠性を有することがわかる。
(Discussion)
Consider the pass / fail judgment in Table 1.
When a pseudo 3D printed image is printed and no deformation processing is performed, the score regarding cost, design, and strength is 7, a score of 230 μm, a score of 190 μm, a score of 9, 145 μm, and a score of 9, 100 μm, all of which are acceptable.
When a pseudo 3D printed image is printed and deformed, the score is 8 at 230 μm, 9 at 190 μm, 9 at 145 μm, and 8 at 100 μm.
In the case of 230 μm, points were added 0 in terms of cost, and in the case of 100 μm, points were added 0 in strength, which was a boundary area where practical problems occurred, but the score was as high as 8.
When a pseudo 3D printed image is printed with a body thickness of 280 μm, the score reaches 7, but the above-mentioned cost addition is 0, and the score is 1 less than the above-mentioned 230 μm and 100 μm. It can be seen that the thickness in the above is preferably 230 μm or less.
In the non-pseudo 3D printed image and the seamless can without deformation processing shown in the comparative example, the score was 4 to 6, and the passing score was not reached.
Although not shown in Table 1, when the seamless can on which the non-pseudo 3D printed image shown in the comparative example is formed is deformed, it is the same as the point addition element of the deformed processing in the example (230 μm, Since it is considered that 190 μm adds points 1, 145 μm adds 0 points, and 100 μm deducts 1), 230 μm gives a score of 5, 190 μm gives a score of 6, 145 μm gives a score of 6, and 100 μm gives a score of 5. Conceivable.
Therefore, it was found that a metal container having a body thickness of 230 μm or less on which a pseudo 3D printed image was printed is suitable.
Further, as is clear from FIGS. 1 and 2, the prototype printed with the pseudo 3D printed image gives the impression that the aluminum seamless can is like a container made of bamboo (Fig. 1) or cork (Fig. 2). It can be seen that it has a high degree of design.
 本発明においては、座屈強度やパネリング強度の低下なく、異形加工を施した外観を有する印刷金属容器を提供できることから、異形加工を施すことが難しい、胴部厚みが230μm以下に薄肉化された金属容器、特にアルミシームレス缶に好適に利用できる。 In the present invention, since it is possible to provide a printed metal container having a deformed appearance without a decrease in buckling strength or paneling strength, it is difficult to perform deformed processing, and the body thickness is reduced to 230 μm or less. It can be suitably used for metal containers, especially aluminum seamless cans.

Claims (9)

  1.  金属容器の少なくとも容器胴部外面に印刷画像が形成された印刷金属容器において、
     前記印刷画像が3Dスキャナによるデータに基づく疑似3D印刷画像であり、前記印刷金属容器が印刷直前の座屈強度及び/又はパネリング強度を維持していることを特徴とする印刷金属容器。
    In a printed metal container in which a printed image is formed at least on the outer surface of the container body of the metal container.
    A printed metal container characterized in that the printed image is a pseudo 3D printed image based on data obtained by a 3D scanner, and the printed metal container maintains buckling strength and / or paneling strength immediately before printing.
  2.  前記金属容器の胴部における厚みが230μm以下である請求項1記載の印刷金属容器。 The printed metal container according to claim 1, wherein the thickness of the body of the metal container is 230 μm or less.
  3.  前記疑似3D印刷画像が、線数が100lpi以上及び/又は解像度が300dpi以上の印刷画像である請求項1又は2記載の印刷金属容器。 The printed metal container according to claim 1 or 2, wherein the pseudo 3D printed image is a printed image having a line number of 100 lpi or more and / or a resolution of 300 dpi or more.
  4.  前記疑似3D印刷画像が、表面凹凸段差量が50mm以下の3Dスキャン対象物の再現画像である請求項1~3の何れかに記載の印刷金属容器。 The printed metal container according to any one of claims 1 to 3, wherein the pseudo 3D printed image is a reproduced image of a 3D scanned object having a surface unevenness step amount of 50 mm or less.
  5.  前記3Dスキャン対象物が、異形加工が施された基材である請求項4記載の印刷金属容器。 The printed metal container according to claim 4, wherein the 3D scan target is a base material that has been subjected to deformed processing.
  6.  前記疑似3D印刷画像が、前記金属容器外面の少なくとも一部に形成されている請求項1~5の何れかに記載の印刷金属容器。 The printed metal container according to any one of claims 1 to 5, wherein the pseudo 3D printed image is formed on at least a part of the outer surface of the metal container.
  7.  前記疑似3D印刷画像上に乱反射層が形成されている請求項1~6の何れかに記載の印刷金属容器。 The printed metal container according to any one of claims 1 to 6, wherein a diffused reflection layer is formed on the pseudo 3D printed image.
  8.  前記金属容器がアルミシームレス缶である請求項1~7の何れかに記載の印刷金属容器。 The printed metal container according to any one of claims 1 to 7, wherein the metal container is an aluminum seamless can.
  9.  前記金属容器が容器胴部に異形加工を施したアルミシームレス缶である請求項1~7の何れかに記載の印刷金属容器。 The printed metal container according to any one of claims 1 to 7, wherein the metal container is an aluminum seamless can in which the body of the container is deformed.
PCT/JP2020/037552 2019-10-15 2020-10-02 Printing metal container WO2021075281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021552315A JPWO2021075281A1 (en) 2019-10-15 2020-10-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019188570 2019-10-15
JP2019-188570 2019-10-15

Publications (1)

Publication Number Publication Date
WO2021075281A1 true WO2021075281A1 (en) 2021-04-22

Family

ID=75537967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037552 WO2021075281A1 (en) 2019-10-15 2020-10-02 Printing metal container

Country Status (3)

Country Link
JP (1) JPWO2021075281A1 (en)
TW (1) TW202128507A (en)
WO (1) WO2021075281A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191697A (en) * 2000-01-13 2001-07-17 Dainippon Printing Co Ltd Decorative material having pseudo-cubic effect
JP2003341216A (en) * 2002-05-24 2003-12-03 Matiere:Kk Printed matter with pattern having visual cubic effect and manufacturing method therefor
JP2008158936A (en) * 2006-12-26 2008-07-10 Dainippon Printing Co Ltd Three-dimensional scan data correction system, method and program for correcting three-dimensional scan data
JP2009532301A (en) * 2006-04-03 2009-09-10 ウィリアム エム カーセス Microlens windows and rearranged images for packaging and printing and methods of manufacturing
JP2012218172A (en) * 2011-04-04 2012-11-12 Daimaru Graphics:Kk Method for manufacturing three-dimensional printed matter and printed matter manufactured by this method
JP2016094222A (en) * 2014-11-14 2016-05-26 アサヒビール株式会社 Metal can
CN105997302A (en) * 2016-07-18 2016-10-12 青岛三帝生物科技有限公司 3D printing-based capsule contracture-preventive breast prosthesis manufacturing method and breast prosthesis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191697A (en) * 2000-01-13 2001-07-17 Dainippon Printing Co Ltd Decorative material having pseudo-cubic effect
JP2003341216A (en) * 2002-05-24 2003-12-03 Matiere:Kk Printed matter with pattern having visual cubic effect and manufacturing method therefor
JP2009532301A (en) * 2006-04-03 2009-09-10 ウィリアム エム カーセス Microlens windows and rearranged images for packaging and printing and methods of manufacturing
JP2008158936A (en) * 2006-12-26 2008-07-10 Dainippon Printing Co Ltd Three-dimensional scan data correction system, method and program for correcting three-dimensional scan data
JP2012218172A (en) * 2011-04-04 2012-11-12 Daimaru Graphics:Kk Method for manufacturing three-dimensional printed matter and printed matter manufactured by this method
JP2016094222A (en) * 2014-11-14 2016-05-26 アサヒビール株式会社 Metal can
CN105997302A (en) * 2016-07-18 2016-10-12 青岛三帝生物科技有限公司 3D printing-based capsule contracture-preventive breast prosthesis manufacturing method and breast prosthesis

Also Published As

Publication number Publication date
TW202128507A (en) 2021-08-01
JPWO2021075281A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US6424467B1 (en) High definition lenticular lens
US9193153B2 (en) Method for producing a decorated profile body
JP7294408B2 (en) decorative material
US20140314896A1 (en) Printed mold and textured panels formed using the same
WO2020255798A1 (en) Printing base member having pseudo 3d printing image and manufacturing method therefor
WO2021075281A1 (en) Printing metal container
JP4087885B1 (en) Three-dimensional ornament and method for producing three-dimensional ornament
WO2020166564A1 (en) Printing base member and manufacturing method therefor
JP2022529004A (en) Layering with a 3D structure and a 2D projection of that structure
JP7472910B2 (en) Printed substrate having pseudo 3D printed image and method of manufacturing same
JP5655289B2 (en) Decorative sheet
JP4715250B2 (en) Manufacturing method of embossed decorative paper and paper container using the same
JP2009262336A (en) Paper container and its manufacturing method
JP6945122B2 (en) Transparent sheet-fed film material for printing
JP2020049734A (en) Decorative material
JP7405224B2 (en) makeup sheet
CN114639326B (en) Precise microstructure presenting three-dimensional relief image and preparation method and application thereof
JP6996588B2 (en) Design image acquisition system, printing container, and manufacturing method of printing container
JP2022007674A (en) Molded product
JP6117523B2 (en) Method for producing printing film
WO2023136226A1 (en) Three-dimensional printed matter, and method for manufacturing three-dimensional printed matter
WO2021085190A1 (en) Printing container and method for manufacturing same
JP3169568B2 (en) Thermoformed article with partial metallic luster
KR101727167B1 (en) Metal printing plate and manufacturing method thereof
US20090243140A1 (en) Art infused films and methods for making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876588

Country of ref document: EP

Kind code of ref document: A1