WO2021075237A1 - Pulley device and centrifugal clutch - Google Patents

Pulley device and centrifugal clutch Download PDF

Info

Publication number
WO2021075237A1
WO2021075237A1 PCT/JP2020/036464 JP2020036464W WO2021075237A1 WO 2021075237 A1 WO2021075237 A1 WO 2021075237A1 JP 2020036464 W JP2020036464 W JP 2020036464W WO 2021075237 A1 WO2021075237 A1 WO 2021075237A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
plate
movable
sleeve
clutch
Prior art date
Application number
PCT/JP2020/036464
Other languages
French (fr)
Japanese (ja)
Inventor
友太 横道
薫 青野
Original Assignee
株式会社エフ・シー・シー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフ・シー・シー filed Critical 株式会社エフ・シー・シー
Priority to CN202080065202.8A priority Critical patent/CN114450499A/en
Publication of WO2021075237A1 publication Critical patent/WO2021075237A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/14Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
    • F16D43/18Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members with friction clutching members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/14Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members
    • F16D2043/145Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating the clutching members directly in a direction which has at least a radial component; with centrifugal masses themselves being the clutching members the centrifugal masses being pivoting

Definitions

  • a pulley device that transmits the driving force from a drive source such as an engine and a centrifugal clutch equipped with the pulley device.
  • Patent Document 1 discloses a centrifugal clutch provided with a pulley device including a fixed sheave and a movable sheave that receive a driving force from an engine via a belt and rotationally drive the outside of the output shaft.
  • the fixed sheave is formed of a cylindrical body through which the output shaft penetrates, and a fixed boss that transmits the rotational driving force received by the fixed sheave via the belt to the drive plate extends in the axial direction.
  • the present invention has been made to address the above problems, and an object of the present invention is to provide a pulley device capable of improving the rigidity or durability of the fixed side sleeve and a centrifugal clutch provided with the pulley device.
  • the feature of the present invention is to have a fixed-side plate projecting radially outward on the outer peripheral surface of the fixed-side sleeve formed in a cylindrical shape to provide a driving force from a drive source. It has a fixed-side driven plate that receives it via a belt and drives it to rotate, and a movable-side plate that projects radially outward on the outer peripheral surface of the movable-side sleeve formed in a cylindrical shape and sandwiches the belt together with the fixed-side plate.
  • the movable side driven plate that receives the driving force from the drive source via the belt and is rotationally driven while approaching or separating from the fixed side plate, and the fixed side connection that is the connection part of the fixed side plate in the fixed side sleeve.
  • a concave cam portion formed in a spiral shape or a groove shape in one of the movable side connection portions which are the connection portions of the movable side plate in the portion and the movable side sleeve, and the fixed side connection portion and the movable side connection.
  • the other of the portions is provided with a convex cam portion that is formed so as to project in the radial direction and is slidably fitted in the concave cam portion.
  • a concave cam portion or a convex cam portion is formed at the fixed side connecting portion which is the connecting portion of the fixed side plate in the fixed side sleeve of the fixed side driven plate. Therefore, the rigidity or durability of the fixed side connection portion can be improved.
  • the fixed-side sleeve can be improved in rigidity by increasing the wall thickness and surface area of the fixed-side sleeve by forming a groove-shaped concave cam portion or a convex cam portion in the fixed-side connection portion.
  • the heat dissipation in the fixed side sleeve formed in a cylindrical shape can be improved to improve the durability.
  • the fixed side sleeve has a concave cam portion having a through hole formed in the fixed side connecting portion, so that the air permeability to the inside of the fixed side sleeve can be secured, the heat dissipation can be improved, and the durability can be improved. it can.
  • the fixed-side connecting portion of the fixed-side sleeve is a portion of the fixed-side sleeve where the fixed-side plate rises and a portion in the vicinity thereof, and the movable-side plate of the movable-side driven plate that slides in the axial direction of the fixed-side sleeve faces each other. It is the outer peripheral part of the fixed side sleeve.
  • the movable side connecting portion in the movable side sleeve is a portion of the movable side sleeve where the movable side plate rises and a portion in the vicinity thereof, and is an inner peripheral portion of the movable side sleeve with which the fixed side connecting portion faces.
  • the concave cam portion is formed on the cam forming protruding portion protruding from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve.
  • the concave cam portion is formed on the cam forming protrusion protruding from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve.
  • the fixed side sleeve or the movable side sleeve on which the concave cam portion is formed can function as a thickened rib to improve the rigidity and durability.
  • the convex cam portion is formed so as to protrude from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve and extend spirally in the axial direction. It is in.
  • the pulley device is formed in which the convex cam portion protrudes from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve and extends radially in the axial direction. Therefore, the fixed side sleeve or the movable side sleeve on which the convex cam portion is formed can function as a thickened rib to improve the rigidity and durability.
  • the movable side driven plate is formed as a separate body from the movable side driven plate, is fitted to the movable side sleeve, and is integrally rotationally driven.
  • the concave cam portion or the convex cam portion provided with the body and formed on the movable sleeve is formed on the cam forming cylinder.
  • the concave cam portion or the convex cam portion formed on the movable side sleeve is formed separately from the movable side driven plate, and the movable side sleeve is formed. Since it is formed in a cam forming cylinder that is fitted to and integrally driven to rotate, it is possible to facilitate the formation of a concave cam portion or a convex cam portion with respect to the movable side sleeve. Further, when the concave cam portion or the convex cam portion is damaged, the pulley device can easily regenerate the concave cam portion or the convex cam portion by replacing the cam forming cylinder.
  • the concave cam portion or the convex cam portion formed on the movable side sleeve and the convex cam portion or the concave cam portion formed on the fixed side sleeve can be made of different materials. It is possible to improve the slidability of the cam and suppress wear deterioration.
  • the cam-forming cylinder is integrally formed by press-fitting the movable-side sleeve into the movable-side sleeve, fitting through a fitting portion consisting of a pair of concave portions and convex portions that are fitted to each other, and welding or bonding. Can be transformed into.
  • Another feature of the present invention is that in the pulley device, the concave cam portion and the convex cam portion are made of different materials from each other.
  • the present invention can be implemented not only as an invention of a pulley device, but also as an invention of a centrifugal clutch provided with this pulley device.
  • the centrifugal clutch is a drive plate that is connected to the pulley device according to any one of claims 1 to 5 and is connected to a fixed-side sleeve to rotate and drive integrally with the fixed-side driven plate.
  • a clutch outer that has a cylindrical surface provided concentrically with the drive plate on the outside of the drive plate and is connected to the output shaft, and a cylindrical surface of the clutch outer that extends along the circumferential direction of the drive plate. It has a clutch shoe facing the surface, and one end side in the circumferential direction is rotatably attached to the drive plate, and the other end side is provided with a clutch weight that is displaced toward the cylindrical surface side of the clutch outer. It should be. According to this, the centrifugal clutch can be expected to have the same effect as the pulley device.
  • FIG. 1 It is a top sectional view schematically showing the structure of the power transmission mechanism provided with the pulley device and the centrifugal clutch according to the present invention, respectively. It is an assembly disassembled perspective view which shows the outline of the structure of the fixed side driven plate, the movable side driven plate and the cam forming cylinder which make up the pulley device shown in FIG.
  • FIG. 1 is a plan sectional view schematically showing a configuration of a power transmission mechanism 100 including a pulley device 130 and a centrifugal clutch 200 according to the present invention.
  • FIG. 1 shows a state in which the movable side driven plate 150 is closest to the fixed side driven plate 140 in the upper half of the pulley device 130 and the centrifugal clutch 200, and the lower half of each is the movable side.
  • the driven plate 150 shows the state in which the driven plate 150 is most separated from the fixed side driven plate 140.
  • the power transmission mechanism 100 provided with the pulley device 130 and the centrifugal clutch 200 is provided between the engine and the rear wheels, which are the driving wheels, mainly in a motorcycle such as a scooter, and has a reduction ratio with respect to the rotation speed of the engine. It is a mechanical device that transmits or shuts off the rotational driving force to the rear wheels while automatically changing. In this case, the centrifugal clutch 200 cuts off the transmission of the rotational driving force to the driven side until the engine reaches a predetermined rotational speed, and drives the rotational driving force when the engine reaches a predetermined rotational speed. It is a mechanical device that transmits to the side.
  • the power transmission mechanism 100 mainly includes a transmission 101 and a centrifugal clutch 200, respectively.
  • the transmission 101 is a mechanical device that continuously decelerates a rotational driving force from an engine (not shown) and transmits it to a centrifugal clutch 200, and is mainly composed of a drive pulley 110, a V-belt 120, and a pulley device 130, respectively.
  • the drive pulley 110 is a mechanical device provided on a crankshaft 111 extending from the engine and directly rotationally driven by the rotational driving force of the engine, and mainly includes a fixed drive plate 112 and a movable drive plate 113, respectively. It is configured.
  • the fixed drive plate 112 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the movable drive plate 113, and is configured by forming a metal material into a conical cylinder.
  • the fixed drive plate 112 is fixedly mounted on the crankshaft 111 with the convex side facing the movable drive plate 113 side (engine side). That is, the fixed drive plate 112 is always rotationally driven integrally with the crankshaft 111. Further, a plurality of heat radiation fins 112a are provided radially on the concave surface of the fixed drive plate 112 about the axis of the crankshaft 111.
  • the movable drive plate 113 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the fixed drive plate 112, and is configured by forming a metal material into a conical cylinder.
  • the movable drive plate 113 is attached to the crankshaft 111 with its convex surface facing the fixed drive plate 112.
  • the movable drive plate 113 is attached to the sleeve bearing 114 which is fixedly fitted to the crankshaft 111 via an impregnation bush, and slides in the axial direction and the circumferential direction with respect to the sleeve bearing 114, respectively. It is mounted freely.
  • a plurality of roller weights 115 are provided on the concave surface of the movable drive plate 113 in a state of being pressed by the lamp plate 116.
  • the roller weight 115 is a component for pressing the movable drive plate 113 toward the fixed drive plate 112 in cooperation with the lamp plate 116 by displacing the movable drive plate 113 outward in the radial direction as the rotation speed of the movable drive plate 113 increases. Yes, it is constructed by forming a metal material into a tubular shape.
  • the lamp plate 116 is a component that presses the roller weight 115 toward the movable drive plate 113, and is configured by bending the metal plate toward the movable drive plate 113.
  • the V-belt 120 is a component for transmitting the rotational driving force of the drive pulley 110 to the driven pulley 131 of the pulley device 130, and is formed in an endless ring shape in which the core wire is covered with an elastic material such as a rubber material.
  • the V-belt 120 is arranged between the fixed drive plate 112 and the movable drive plate 113 and between the fixed side driven plate 140 and the movable side driven plate 150 in the driven pulley 131, and is arranged between the drive pulley 110 and the driven pulley 131. It is erected between them.
  • the pulley device 130 is a mechanical device that is rotationally driven by a rotational driving force from an engine transmitted via a drive pulley 110 and a V-belt 120, respectively, and is composed of a driven pulley 131.
  • the driven pulley 131 is composed of a fixed-side driven plate 140 and a movable-side driven plate 150.
  • the fixed-side driven plate 140 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the movable-side driven plate 150, and is configured by forming a metal material such as an aluminum material into a conical cylinder.
  • the fixed-side driven plate 140 is mainly composed of a fixed-side plate 141 and a fixed-side sleeve 142.
  • the fixed-side plate 141 is a portion that sandwiches the V-belt 120 together with the movable-side plate 151, and is formed in a conical surface shape that projects convexly toward the movable-side plate 151.
  • a fixed-side sleeve 142 is formed in the center of the fixed-side plate 141.
  • the fixed-side sleeve 142 is a portion that is rotationally driven integrally with the fixed-side plate 141, and is formed in a cylindrical shape extending in a direction orthogonal to the fixed-side plate 141.
  • a fixed side plate 141 is connected to one end (right side in the drawing) of the fixed side sleeve 142, and a cam forming protrusion 143 is formed in the fixed side connecting portion 142a adjacent to the connecting portion. ..
  • An external tooth-shaped spline is formed at the other end (left side in the drawing) of the fixed-side sleeve 142, and the drive plate 210 is connected via the spline by spline fitting.
  • the fixed-side connecting portion 142a is a portion of the fixed-side sleeve 142 where the fixed-side plate 141 rises and a portion in the vicinity thereof, and the movable-side plate 151 of the movable-side driven plate 150 that slides in the axial direction of the fixed-side sleeve 142. Is the outer peripheral portion of the fixed side sleeve 142 facing the surface.
  • the cam forming projecting portion 143 is a portion for forming the concave cam portion 144 on the fixed side connecting portion 142a of the fixed side sleeve 142, and is formed so as to project convexly from the outer surface of the fixed side connecting portion 142a.
  • the concave cam portion 144 is a portion in which the convex cam portion 154 fits in a slidable state.
  • the cam forming protrusion 143 is formed in a spiral shape extending in the axial direction while being twisted in the circumferential direction of the fixed side sleeve 142. In this case, three cam-forming protrusions 143 are formed at equal intervals in the circumferential direction of the fixed-side sleeve 142.
  • one concave cam portion 144 is formed between the two cam forming protrusions 143 adjacent to each other on the fixed side connecting portion 142a of the fixed side sleeve 142. Therefore, the fixed-side connecting portion 142a of the fixed-side sleeve 142 is formed with three concave cam portions 144 via the cam-forming protrusions 143 in the circumferential direction.
  • the three concave cam portions 144 are each formed in a groove shape spirally extending in the axial direction of the fixed side sleeve 142.
  • the bottom portions of the three concave cam portions 144 are formed so as to project from the outer surface of the fixed side sleeve 142. That is, the fixed-side sleeve 142 has a slightly thicker outer diameter of the fixed-side connecting portion 142a to increase its rigidity.
  • the fixed-side sleeve 142 including the cam-forming protrusion 143 and the concave cam portion 144 and the fixed-side plate 141 are integrally formed of the same material by integral molding.
  • the fixed-side sleeve 142 including the cam-forming protrusion 143 and the concave cam portion 144 and the fixed-side plate 141 are formed as separate parts and connected to each other via welding or the like. It may be formed integrally.
  • the fixed-side driven plate 140 may be formed on the fixed-side sleeve 142 by connecting the cam-forming protrusion 143 to the fixed-side sleeve 142 as a separate body.
  • the drive shaft 145 penetrates through the fixed side sleeve 142 in the fixed side driven plate 140.
  • the drive shaft 145 is a metal rotating shaft body for driving the rear wheels of a motorcycle on which the power transmission mechanism 100 is mounted via a transmission (not shown). In this case, the rear wheel of the motorcycle is attached to one end (not shown) of the drive shaft 145 (on the right side of the drawing).
  • the drive shaft 145 supports the fixed-side driven plate 140 via bearings 146a and 146b.
  • a male screw is formed at the tip of the drive shaft 145 on the left side in the drawing, and the clutch outer 230 is attached via the male screw and a nut that is screw-fitted to the male screw.
  • the drive shaft 145 is shown by a chain double-dashed line.
  • the bearings 146a and 146b are annular parts for supporting the fixed side driven plate 140 on the drive shaft 145 in a state in which the fixed side driven plate 140 can be rotationally driven.
  • the bearing 146a is provided at the most advanced portion (the left end portion in the drawing) in which the drive shaft 145 supports the fixed side sleeve 142.
  • the bearing 146b is provided at the rearmost end portion (right end portion in the drawing) in which the drive shaft 145 supports the fixed side sleeve 142. That is, the bearing 146b is provided at a position where the cam forming protrusion 143 and the concave cam portion 144 overlap each other in the radial direction.
  • the bearing 146b may be configured to have the same load capacity as the bearing 146a, but in the present embodiment, the bearing is formed to have a longer axial length than the bearing 146a and has a larger load capacity.
  • the movable side driven plate 150 is a component that is rotationally driven while sandwiching and holding the V belt 120 together with the fixed side driven plate 140, and is configured by forming a metal material such as an aluminum material into a conical cylinder shape.
  • the movable side driven plate 150 is mainly composed of a movable side plate 151 and a movable side sleeve 152.
  • the movable side plate 151 is a portion that sandwiches the V belt 120 together with the fixed side plate 141, and is formed in a conical surface shape that projects convexly toward the fixed side plate 141 side.
  • a movable side sleeve 152 is formed in the center of the movable side plate 151.
  • the movable side sleeve 152 is a portion that is rotationally driven integrally with the movable side plate 151, and is formed in a cylindrical shape extending in a direction orthogonal to the movable side plate 151.
  • the movable side sleeve 152 is formed to have an inner diameter through which the fixed side sleeve 142 can penetrate.
  • the movable side plate 151 is connected to one end (right side in the drawing), and the cam connecting portion 152a is formed in the other end (left side in the drawing).
  • the cam connecting portion 152a is a portion for connecting the cam forming cylinder 153, and is formed by partially cutting out a part of the end portion of the movable side sleeve 152 in a concave shape in the axial direction.
  • the cam connecting portion 152a is formed with three concave notches along the circumferential direction at the end of the movable sleeve 152 in an even arrangement.
  • the cam forming cylinder 153 is arranged between the fixed side sleeve 142 and the movable side sleeve 152, slides the movable side sleeve 152 with respect to the fixed side sleeve 142, and slides the movable side sleeve 152. It is a component for forming a convex cam portion 154 on the movable side connecting portion 152b on the inner peripheral surface of the above, and is configured by forming a resin material in a cylindrical shape.
  • the movable side connecting portion 152b is a portion of the movable side sleeve 152 where the movable side plate 151 rises and a portion in the vicinity thereof, and is an inner peripheral portion of the movable side sleeve 152 facing the fixed side connecting portion 142a.
  • the tubular body constituting the cam-forming tubular body 153 is formed to have an outer diameter that is slidably fitted to the inner peripheral surface of the movable side sleeve 152, and is slidably fitted to the outer peripheral surface of the fixed side sleeve 142. It is formed to have an inner diameter to be fitted. Further, in the cam-forming tubular body 153, a sleeve connecting portion 153a is formed at one end of the tubular body, and a convex cam portion 154 is formed at the other end.
  • the sleeve connecting portion 153a is a portion that fits into the cam connecting portion 152a, and is formed so as to project radially outward from one end of the cam forming cylinder 153.
  • the sleeve connecting portion 153a is formed with three protruding portions evenly arranged along the circumferential direction at the end of the cam forming cylinder 153 so as to be fitted to the three cam connecting portions 152a, respectively. ..
  • the convex cam portion 154 is a portion that protrudes from the movable side connecting portion 152b on the inner peripheral surface of the movable side sleeve 152 and is slidably fitted to the concave cam portion 144 formed on the fixed side sleeve 142. It is formed so as to spirally project in the axial direction at the end of the formed cylinder 153.
  • the convex cam portion 154 may be configured to be in contact with the outer peripheral surface of the fixed side sleeve 142, but in the present embodiment, the convex cam portion 154 is formed so as to extend in a non-contact state.
  • Three convex cam portions 154 are formed at the end portions of the cam forming cylinder 153 so as to correspond to the concave cam portion 144 with equal intervals in the circumferential direction.
  • a cam forming notch portion 153b for forming each convex cam portion 154 is formed so as to extend in a spiral shape.
  • the cam-forming protrusions 143 formed on the fixed-side sleeve 142 are slidably fitted to the three cam-forming notches 153b. Therefore, the cam forming protrusion 143 formed on the fixed side sleeve 142 can be regarded as the convex cam portion according to the present invention formed on the fixed side sleeve 142, and the cam forming cylinder 153 (movable side sleeve 152).
  • the cam forming notch portion 153b formed in the above can also be regarded as a concave cam portion according to the present invention formed in the cam forming cylinder 153 (movable side sleeve 152).
  • the cam forming cylinder 153 is fixedly fitted in the movable side sleeve 152 of the movable side driven plate 150 in a state where the sleeve connecting portion 153a is fitted in the cam connecting portion 152a via an adhesive or the like. As a result, the cam forming cylinder 153 is integrated with the movable sleeve 152 in a state where the convex cam portion 154 is located at the movable side connecting portion 152b of the movable side sleeve 152 and is fitted to the concave cam portion 144 at this position. Rotationally driven.
  • thermoplastic resin As the resin material constituting the cam forming cylinder 153, a thermoplastic resin or a thermosetting resin having heat resistance and abrasion resistance can be used, and engineering plastics or super engineering plastics are preferable.
  • thermoplastic resin polyetheretherketone resin (PEEK), polyphenylene sulfide resin (PPS), polyamideimide resin (PAI), fluororesin (PTFE) or polyimide resin (PI) can be used.
  • thermosetting resin diallyl phthalate resin (PDAP), epoxy resin (EP) or silicon resin (SI) can be used.
  • a torque spring 155 is provided between the movable side driven plate 150 and the drive plate 210 of the centrifugal clutch 200 on the concave surface.
  • the torque spring 155 is a coil spring for elastically pressing the movable side driven plate 150 toward the fixed side driven plate 140 side. That is, the transmission 101 is defined by the diameter of sandwiching the V-belt 120 defined by the distance between the fixed drive plate 112 and the movable drive plate 113 and the distance between the fixed side driven plate 140 and the movable side driven plate 150. The engine speed is changed steplessly depending on the magnitude relationship with the diameter of the V-belt 120.
  • a centrifugal clutch 200 is provided on each tip side of the fixed side sleeve 142 and the drive shaft 145.
  • the centrifugal clutch 200 is a mechanical device that transmits or cuts off the rotational driving force of the engine transmitted via the transmission 101 to the drive shaft 145, and mainly disengages the drive plate 210, the three clutch weights 220, and the clutch outer 230, respectively. It is configured to prepare.
  • the drive plate 210 is a component that is rotationally driven integrally with the fixed side sleeve 142, and is configured by forming a metal material into a stepped disk shape. More specifically, the drive plate 210 is formed with an internal tooth-shaped spline that fits in the central portion of the flat plate-shaped bottom portion 211 with the external tooth-shaped spline of the fixed side sleeve 142 penetrating. A flange portion 212 is formed so as to project radially outward through a stepped portion that stands up around the bottom portion 211.
  • the drive plate 210 is provided with the torque spring 155 inside the stepped portion at the outer edge portion of the bottom portion 211.
  • the collar portion 212 is provided with three swing support pins 213 and three weight pressing body support portions 215 at equal intervals along the circumferential direction.
  • the swing support pin 213 is a component for rotatably supporting one end side of the clutch weight 220 described later and swinging the other end side, and is a metal stepped rod body. It is configured. In this case, the swing support pin 213 is fixedly attached to the collar portion 212 by the mounting bolt 213a. The swing support pin 213 is supported with the clutch weight 220 sandwiched between the side plate 214 attached to the tip of the swing support pin 213 while penetrating the inside of the pin sliding hole 222 of the clutch weight 220. ing.
  • the side plate 214 is a component for preventing the three clutch weights 220 from coming off from each swing support pin 213, and is configured by forming a metal material in a ring shape.
  • the side plate 214 is arranged on the side opposite to the drive plate 210 with respect to the three clutch weights 220 so as to face each clutch weight 220.
  • the weight pressing body support portion 215 is a component for supporting the weight pressing body 216 in a rotatable state, and is composed of a metal stepped rod body.
  • the weight pressing body support portion 215 is formed so as to project in a pin shape on a flange portion 212 facing a portion on the tip end side of the clutch weight 220 from the pin sliding hole 222 in the clutch weight 220.
  • the weight pressing body 216 is a component for pressing the clutch weight 220 toward the clutch outer 230 side, and is configured by forming a resin material in a cylindrical shape.
  • the three clutch weights 220 transmit or cut off the rotational driving force from the engine to the drive shaft 145 by contacting or separating the clutch outer 230 from the clutch outer 230 via the clutch shoe 221 according to the rotation speed of the drive plate 210, respectively.
  • a metal material (for example, a zinc material) is formed in a curved shape extending along the circumferential direction of the drive plate 210.
  • the clutch shoe 221 is a component for increasing the frictional force with respect to the inner peripheral surface of the clutch outer 230, and is configured by forming the friction material in a plate shape extending in an arc shape.
  • the clutch shoe 221 is provided in a state of being attached to the outer peripheral surface of the clutch weight 220 on the tip end side, which is the other end side of each clutch weight 220.
  • Each of these clutch weights 220 has a pin sliding hole 222 formed of an elongated through hole on one end side thereof, and the swing support pin 213 is formed through the pin sliding hole 222. It is rotatably supported. Further, each clutch weight 220 is connected to the clutch weight 220 whose other end side is adjacent to each other by a connecting spring 223 and is pulled toward the inside of the drive plate 210. That is, the clutch weight 220 is provided via the swing support pin 213 and the pin sliding hole 222 on the drive plate 210 so that the other end side on which the clutch shoe 221 is provided swings with respect to the clutch outer 230, respectively. Is supported.
  • the connecting spring 223 is a component for applying a tensile force to the clutch weight 220 to pull the other end side in a direction away from the clutch outer 230, and is composed of a metal coil spring. There is.
  • the connecting spring 223 is erected between the clutch weights 220 adjacent to each other along the circumferential direction of the drive plate 210.
  • a pressing body accommodating portion 224 is formed on the inner surface of each clutch weight 220 facing the drive plate 210.
  • the pressing body accommodating portion 224 is a portion where the pressing body receiving portion 224a on which the weight pressing body 216 is pressed while accommodating the weight pressing body 216 is formed, and is notched in a concave shape on the inner surface of the clutch weight 220. It is formed.
  • the pressing body receiving portion 224a is a portion for displacing the clutch weight 220 toward the clutch outer 230 side by pressing the weight pressing body 216.
  • the pressing body receiving portion 224a is formed of a smooth curved surface whose side surface inside the pressing body accommodating portion 224 is curved rearward and outward in the rotational driving direction of the drive plate 210.
  • the clutch outer 230 is a component that is rotationally driven integrally with the drive shaft 145, and is configured by forming a metal material from the drive plate 210 into a cup shape that covers the outer peripheral surface of the clutch weight 220. That is, the clutch outer 230 is configured to have a cylindrical surface 231 that frictionally contacts the clutch shoe 221 of the clutch weight 220 displaced to the outer peripheral side of the drive plate 210.
  • the centrifugal clutch 200 functions as a part of a power transmission mechanism 100 arranged between an engine and a rear wheel serving as a driving wheel in a motorcycle vehicle (for example, a scooter). First, the centrifugal clutch 200 cuts off the transmission of the driving force between the engine and the drive shaft 145 when the engine is idling, as shown in FIG.
  • the driven pulley 131 is rotationally driven by the rotational driving force of the engine transmitted via the drive pulley 110 and the V-belt 120, respectively.
  • the movable side driven plate 150 is connected to the fixed side driven plate 140 via the cam forming cylinder 153, and the fixed side driven plate 140 is directly connected to the drive plate 210.
  • the drive plate 210 is rotationally driven at the same rotation speed as the fixed side driven plate 140 and the movable side driven plate 150. That is, the three clutch weights 220 provided on the drive plate 210 in the centrifugal clutch 200 are rotationally driven at the same rotation speed as the drive plate 210.
  • the centrifugal force acting on the clutch weight 220 is smaller than the elastic force (tensile force) of the connecting spring 223, so that the clutch shoe 221 comes into contact with the cylindrical surface 231 of the clutch outer 230.
  • the clutch weight 220 does not tilt toward the cylindrical surface 231 side of the clutch outer 230 as much. Therefore, the centrifugal clutch 200 is in the clutch-off state without the rotational driving force of the engine being transmitted to the drive shaft 145.
  • the movable side driven plate 150 In this clutch-off state, the movable side driven plate 150 is elastically pressed by the torque spring 155 at the position closest to or near the fixed side driven plate 140. Therefore, the movable side driven plate 150 rotates in a state where the convex cam portion 154 in the cam forming cylinder 153 is fitted deep inside the concave cam portion 144 formed in the fixed side sleeve 142 of the fixed side driven plate 140.
  • the driving force is transmitted to the fixed side driven plate 140. That is, since the movable side driven plate 150 transmits the rotational driving force in the contact area where the contact area between the convex cam portion 154 and the concave cam portion 144 is the maximum or close to the maximum, the rotation speed such as idling of the engine is unstable. It is possible to stably transmit the rotational driving force to the fixed-side driven plate 140 at the time of low rotation, which tends to be.
  • the centrifugal clutch 200 transmits the rotational driving force of the engine to the drive shaft 145 in response to an increase in the number of revolutions of the engine due to the accelerator operation of the driver in the motorcycle. Specifically, in the centrifugal clutch 200, the centrifugal force acting on the clutch weight 220 becomes larger than the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed increases, and the clutch weight 220 becomes a swing support pin. It is rotationally displaced outward in the radial direction around 213.
  • the clutch shoe 220 is rotationally displaced toward the cylindrical surface 231 side of the clutch outer 230 while resisting the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed increases. 221 comes into contact with the cylindrical surface 231.
  • the clutch weight 220 receives a reaction force in the direction opposite to the rotational drive direction via the clutch shoe 221 and is displaced relative to the direction opposite to the rotational drive direction of the drive plate 210.
  • the clutch weight 220 is pushed toward the clutch outer 230 on the outer side in the radial direction as the pressing body receiving portion 224a rides on the weight pressing body 216 while rotating and displaces the weight pressing body 216, and the clutch shoe 221 has the same cylinder. It is strongly pressed against the surface 231.
  • the centrifugal clutch 200 after the clutch shoe 221 comes into contact with the cylindrical surface 231 of the clutch outer 230, the clutch shoe 221 is pressed against the cylindrical surface 231 in an extremely short time (in other words, instantaneously), and the clutch weight 220 is released. It is in a state of being inserted in a wedge shape between the weight pressing body 216 and the clutch outer 230. As a result, the centrifugal clutch 200 is in a clutch-on state in which the rotational driving force of the engine is completely transmitted to the drive shaft 145. Therefore, in a motorcycle, the rear wheels can be rotationally driven by the rotational driving force of the engine to travel.
  • the driven pulley 131 is moved to the side where the movable side driven plate 150 is separated from the fixed side driven plate 140 against the elastic force of the torque spring 155 as the engine speed increases. Displace. That is, the convex cam portion 154 formed on the movable side driven plate 150 is slidably displaced to the left side in the drawing with respect to the concave cam portion 144 formed on the fixed side driven plate 140. As a result, the cam-forming protruding portion 143 and the concave cam portion 144 formed on the fixed-side driven plate 140 reduce the amount of fitting with the cam-forming notch portion 153b and the convex cam portion 154 to the V-belt 120 side. It will be exposed.
  • the drive shaft 145 supports the fixed-side driven plate 140 via bearings 146a and 146b in a rotationally driven state.
  • the fixed-side driven plate 140 can release the heat generated in the bearings 146a and 146b to the outside through the cam-forming notch portion 153b and the convex cam portion 154, respectively.
  • the cam forming notch portion 153b and the convex cam portion 154 are formed in the vicinity of the large bearing 146b with respect to the bearing 146a, the heat generated in the bearing 146b can be efficiently dissipated.
  • the centrifugal clutch 200 cuts off the transmission of the engine rotation driving force to the drive shaft 145. Specifically, in the centrifugal clutch 200, the centrifugal force acting on the clutch weight 220 becomes smaller than the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed decreases, and the clutch weight 220 becomes a swing support pin. It is rotationally displaced inward in the radial direction around 213.
  • the clutch shoe 221 returns to the original position (the idling position) of the clutch weight 220 with the clutch shoe 221 separated from the cylindrical surface 231 of the clutch outer 230. That is, the centrifugal clutch 200 is in a clutch-off state in which the clutch shoe 221 does not come into contact with the clutch outer 230 and does not transmit the rotational driving force.
  • the driven pulley 131 is displaced so that the movable side driven plate 150 approaches the fixed side driven plate 140 due to the elastic force of the torque spring 155 as the engine speed decreases. That is, the concave cam portion 144 formed on the fixed side driven plate 140 is fitted with the convex cam portion 154 by sliding and displacementing the convex cam portion 154 formed on the movable side driven plate 150 to the right side in the drawing. The total amount increases and the exposure amount decreases.
  • the pulley device 130 has a concave cam on the fixed side connecting portion 142a which is the connecting portion of the fixed side plate 141 in the fixed side sleeve 142 of the fixed side driven plate 140. Since the portion 144 is formed, the rigidity or durability of the fixed side connecting portion 142a can be improved.
  • the fixed-side sleeve 142 can be made more rigid by forming a groove-shaped concave cam portion 144 in the fixed-side connecting portion 142a to increase the wall thickness and surface area of the fixed-side sleeve 142.
  • the heat dissipation in the fixed side sleeve 142 formed in a cylindrical shape can be improved to improve the durability.
  • the pulley device 130 forms a concave cam portion 144 on the fixed side sleeve 142 of the fixed side driven plate 140, and radially inwardly on the movable side sleeve 152 of the movable side driven plate 150.
  • a protruding convex cam portion 154 was formed and configured.
  • the pulley device 130 forms a convex cam portion 154 protruding outward in the radial direction on the fixed side sleeve 142 of the fixed side driven plate 140, and a concave cam on the movable side sleeve 152 of the movable side driven plate 150. It is also possible to form and configure the portion 144.
  • the pulley device 130 forms a groove-shaped or through-hole-shaped cam-forming notch 153b in the fixed-side sleeve 142 of the fixed-side driven plate 140, and also forms a cam in the movable-side sleeve 152 of the movable-side driven plate 150.
  • the protrusion 143 will be formed.
  • the concave cam portion 144 may be formed in a through-hole shape or a groove shape by spirally extending to one of the fixed side connecting portion 142a in the fixed side sleeve 142 and the movable side connecting portion 152b in the movable side sleeve 152. it can.
  • the convex cam portion 154 is formed so as to project radially to the other of the fixed side connecting portion 142a and the movable side connecting portion 152b so as to be slidably fitted in the concave cam portion 144. be able to.
  • the concave cam portion 144 is formed in a bottomed groove shape.
  • the concave cam portion 144 can also be formed with a through hole penetrating the fixed side connecting portion 142a extending spirally in the axial direction of the fixed side sleeve 142.
  • the concave cam portion 144 having a through hole shape is formed in the fixed side sleeve 142, the air permeability to the inside of the fixed side sleeve 142 is ensured to improve the heat dissipation and durability. The sex can be improved.
  • the concave cam portion 144 can be formed in the shape of a through hole even when it is formed on the movable side sleeve 152.
  • the concave cam portion 144 is formed by the cam forming protruding portion 143 formed on the outer peripheral surface of the fixed side sleeve 142.
  • the concave cam portion 144 can function the cam forming protrusion 143 as a rib having a thicker wall thickness on the fixed side sleeve 142 to improve the rigidity and durability.
  • the concave cam portion 144 can also be formed in the shape of a groove or a through hole recessed from the surface of the outer peripheral surface of the fixed side sleeve 142.
  • the convex cam portion 154 is formed so as to spirally project in the axial direction at the end portion of the cam forming cylinder 153.
  • the convex cam portion 154 is formed so as to project in a rail shape from the inner peripheral surface of the movable side sleeve 152.
  • the convex cam portion 154 may be configured so as to project convexly from the inner peripheral surface of the movable side sleeve 152 and be slidably fitted in the concave cam portion 144. Therefore, the convex cam portion 154 can be formed in a pin shape formed in a rod state, for example.
  • the convex cam portion 154 is formed on the cam forming cylinder 153 which is formed separately from the movable side sleeve 152.
  • the convex cam portion 154 may be configured so as to project convexly from the inner peripheral surface of the movable side sleeve 152 and be slidably fitted in the concave cam portion 144. Therefore, the convex cam portion 154 can be formed and configured directly on the inner peripheral surface of the movable side sleeve 152. As a result, the pulley device 130 can be configured with a reduced number of parts.
  • the convex cam portion 154 can be formed directly on the fixed side sleeve 142 or via a separate component. Further, the concave cam portion 144 can also be formed via a separate component with respect to the fixed side sleeve 142 or the movable side sleeve 152.
  • the concave cam portion 144 is made of a metal material and the convex cam portion 154 is made of a resin material. That is, in the pulley device 130, the concave cam portion 144 and the convex cam portion 154 are made of different materials. As a result, the centrifugal clutch 200 can improve the slidability between the concave cam portion 144 and the convex cam portion 154 and suppress wear deterioration.
  • the concave cam portion 144 may be made of a resin material and the convex cam portion 154 may be made of a metal material.
  • the concave cam portion 144 and the convex cam portion 154 may be made of a material other than the metal material and the resin material, for example, a ceramic material. Further, in the pulley device 130, the concave cam portion 144 and the convex cam portion 154 can be made of the same material.
  • the pulley device 130 is configured by forming three concave cam portions 144 and three convex cam portions 154, respectively.
  • the pulley device 130 may be configured by forming at least one set of a concave cam portion 144 and a convex cam portion 154.
  • the centrifugal clutch 200 is configured to include a weight pressing body 216, a pressing body accommodating portion 224, and a pressing body receiving portion 224a, respectively.
  • the centrifugal clutch 200 may be configured by omitting the weight pressing body 216, the pressing body accommodating portion 224, and the pressing body receiving portion 224a.
  • the pin sliding holes 222 are formed in a long hole shape in a plan view.
  • the centrifugal clutch 200 can also form the pin sliding holes 222 in a circular shape in a plan view.
  • the pulley device 130 is applied to the centrifugal clutch 200.
  • the pulley device 130 can be widely applied to a mechanical device that transmits a driving force from a driving source such as an engine or an electric motor to an output shaft such as a drive shaft 145. Therefore, the pulley device 130 includes, for example, two plates arranged to face each other, specifically, a plurality of friction plates provided with a friction material on the surface of a flat plate annular core metal and a plurality of clutch plates having no friction material. It can also be applied to a multi-plate clutch that transmits or shuts off rotational driving force by pressing against each other. Further, the pulley device 130 may be provided as a part of the driving force transmission mechanism between the electric motor and the driving wheels in the self-propelled electric vehicle using the electric motor as the driving source.
  • 100 Power transmission mechanism, 101 ... Transmission, 110 ... Drive pulley, 111 ... Crankshaft, 112 ... Fixed drive plate, 112a ... Radiation fin, 113 ... Movable drive plate, 114 ... Sleeve bearing, 115 ... Roller weight, 116 ... Lamp plate, 120 ... V belt, 130 ... pulley device, 131 ... driven pulley, 140 ... Fixed side driven plate, 141 ... Fixed side plate, 142 ... Fixed side sleeve, 142a ... Fixed side connection part, 143 ... Cam forming protrusion, 144 ... Concave cam part, 145 ... Drive shaft, 146a, 146b ... Bearing, 150 ... Movable side driven plate, 151 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Transmission Devices (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Pulleys (AREA)

Abstract

Provided are a pulley device and a centrifugal clutch with which the stiffness or durability of a fixed-side sleeve can be improved. A pulley device 130 comprises a driven pulley 131 configured from a fixed-side driven plate 140 and a movable-side driven plate 150 rotatably driven by the motive power of an engine. In the fixed-side driven plate 140, a fixed-side plate 141 is formed at an end part of a fixed-side sleeve 142 formed into a cylinder, and a groove-form recessed cam part 144 is formed in a fixed-side connecting portion 142a in which the fixed-side plate 141 is formed. In the movable-side driven plate 150, a movable-side plate 151 is formed on a movable-side sleeve 152 formed into a cylinder, and a cam-forming tube body 153 fits together with a movable-side connecting portion 152b in which the movable-side plate 151 is formed. A protruding cam part 154 that slidably fits together with the recessed cam part 144 is formed in the cam-forming tube body 153.

Description

プーリ装置および遠心クラッチPulley device and centrifugal clutch
 エンジンなどの駆動源からの駆動力を伝達するプーリ装置および同プーリ装置を備えた遠心クラッチに関する。 Regarding a pulley device that transmits the driving force from a drive source such as an engine and a centrifugal clutch equipped with the pulley device.
 従来から、エンジンなどの駆動源からの駆動力を伝達するプーリ装置がある。例えば、下記特許文献1には、出力軸の外側にエンジンからの駆動力をベルトを介して受けて回転駆動する固定シーブと可動シーブとで構成されるプーリ装置を備えた遠心クラッチが開示されている。この場合、固定シーブには、出力軸が貫通する円筒体で構成されて固定シーブがベルトを介して受ける回転駆動力をドライブプレートに伝達する固定ボスが軸方向に延びて形成されている。 Conventionally, there is a pulley device that transmits the driving force from a driving source such as an engine. For example, Patent Document 1 below discloses a centrifugal clutch provided with a pulley device including a fixed sheave and a movable sheave that receive a driving force from an engine via a belt and rotationally drive the outside of the output shaft. There is. In this case, the fixed sheave is formed of a cylindrical body through which the output shaft penetrates, and a fixed boss that transmits the rotational driving force received by the fixed sheave via the belt to the drive plate extends in the axial direction.
特開2019-127993号公報Japanese Unexamined Patent Publication No. 2019-127993
 しかしながら、上記特許文献1に記載されたプーリ装置においては、エンジンからの回転駆動力を受けてドライブプレートに伝達する固定側スリーブとしての固定ボスが薄肉の円筒状に形成されているため、剛性または耐久性の確保が困難であるという問題がある。 However, in the pulley device described in Patent Document 1, since the fixed boss as the fixed side sleeve that receives the rotational driving force from the engine and transmits it to the drive plate is formed in a thin cylindrical shape, it is rigid or There is a problem that it is difficult to secure durability.
 本発明は上記問題に対処するためなされたもので、その目的は、固定側スリーブの剛性または耐久性を向上させることができるプーリ装置および同プーリ装置を備えた遠心クラッチを提供することにある。 The present invention has been made to address the above problems, and an object of the present invention is to provide a pulley device capable of improving the rigidity or durability of the fixed side sleeve and a centrifugal clutch provided with the pulley device.
 上記目的を達成するため、本発明の特徴は、円筒状に形成された固定側スリーブの外周面上に径方向外側にフランジ状に張り出した固定側プレートを有して駆動源からの駆動力をベルトを介して受けて回転駆動する固定側ドリブンプレートと、円筒状に形成された可動側スリーブの外周面上に径方向外側にフランジ状に張り出して固定側プレートとともにベルトを挟む可動側プレートを有して固定側プレートに対して接近または離隔しながら駆動源からの駆動力をベルトを介して受けて回転駆動する可動側ドリブンプレートと、固定側スリーブにおける固定側プレートの接続部分である固定側接続部分および可動側スリーブにおける可動側プレートの接続部分である可動側接続部分のうちの一方にらせん状に延びる貫通孔状または溝状に形成された凹状カム部と、固定側接続部分および可動側接続部分のうちの他方に径方向に突出して形成されて凹状カム部内に摺動可能に嵌合する凸状カム部とを備えることにある。 In order to achieve the above object, the feature of the present invention is to have a fixed-side plate projecting radially outward on the outer peripheral surface of the fixed-side sleeve formed in a cylindrical shape to provide a driving force from a drive source. It has a fixed-side driven plate that receives it via a belt and drives it to rotate, and a movable-side plate that projects radially outward on the outer peripheral surface of the movable-side sleeve formed in a cylindrical shape and sandwiches the belt together with the fixed-side plate. The movable side driven plate that receives the driving force from the drive source via the belt and is rotationally driven while approaching or separating from the fixed side plate, and the fixed side connection that is the connection part of the fixed side plate in the fixed side sleeve. A concave cam portion formed in a spiral shape or a groove shape in one of the movable side connection portions which are the connection portions of the movable side plate in the portion and the movable side sleeve, and the fixed side connection portion and the movable side connection. The other of the portions is provided with a convex cam portion that is formed so as to project in the radial direction and is slidably fitted in the concave cam portion.
 このように構成した本発明の特徴によれば、プーリ装置は、固定側ドリブンプレートの固定側スリーブにおける固定側プレートの接続部分である固定側接続部分に凹状カム部または凸状カム部が形成されているため、固定側接続部分の剛性または耐久性を向上させることができる。この場合、固定側スリーブは、固定側接続部分に溝状の凹状カム部または凸状カム部が形成されることで固定側スリーブの肉厚および表面積が増加して剛性を向上させることができるおよび/または円筒状に形成された固定側スリーブ内の放熱性を向上させて耐久性を向上させることができる。また、固定側スリーブは、固定側接続部分に貫通孔状の凹状カム部が形成されることで固定側スリーブの内部に対する通気性を確保して放熱性を向上させて耐久性を向上させることができる。 According to the feature of the present invention configured as described above, in the pulley device, a concave cam portion or a convex cam portion is formed at the fixed side connecting portion which is the connecting portion of the fixed side plate in the fixed side sleeve of the fixed side driven plate. Therefore, the rigidity or durability of the fixed side connection portion can be improved. In this case, the fixed-side sleeve can be improved in rigidity by increasing the wall thickness and surface area of the fixed-side sleeve by forming a groove-shaped concave cam portion or a convex cam portion in the fixed-side connection portion. / Or the heat dissipation in the fixed side sleeve formed in a cylindrical shape can be improved to improve the durability. Further, the fixed side sleeve has a concave cam portion having a through hole formed in the fixed side connecting portion, so that the air permeability to the inside of the fixed side sleeve can be secured, the heat dissipation can be improved, and the durability can be improved. it can.
 なお、固定側スリーブにおける固定側接続部分とは、固定側スリーブにおける固定側プレートが立ち上がる部分およびその近傍部分であり、固定側スリーブの軸方向に摺動する可動側ドリブンプレートにおける可動側プレートが対向する固定側スリーブの外周部分である。また、可動側スリーブにおける可動側接続部分とは、可動側スリーブにおける可動側プレートが立ち上がる部分およびその近傍部分であり、前記固定側接続部分が対向する可動側スリーブの内周部分である。 The fixed-side connecting portion of the fixed-side sleeve is a portion of the fixed-side sleeve where the fixed-side plate rises and a portion in the vicinity thereof, and the movable-side plate of the movable-side driven plate that slides in the axial direction of the fixed-side sleeve faces each other. It is the outer peripheral part of the fixed side sleeve. Further, the movable side connecting portion in the movable side sleeve is a portion of the movable side sleeve where the movable side plate rises and a portion in the vicinity thereof, and is an inner peripheral portion of the movable side sleeve with which the fixed side connecting portion faces.
 また、本発明の他の特徴は、プーリ装置において、凹状カム部は、固定側スリーブの外周面または可動側スリーブの内周面から突出するカム形成突出部に形成されていることにある。 Further, another feature of the present invention is that in the pulley device, the concave cam portion is formed on the cam forming protruding portion protruding from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve.
 このように構成した本発明の他の特徴によれば、プーリ装置は、凹状カム部が固定側スリーブの外周面または可動側スリーブの内周面から突出するカム形成突出部に形成されているため、凹状カム部が形成された固定側スリーブまたは可動側スリーブの肉厚を厚くしたリブとして機能させて剛性および耐久性を向上させることができる。 According to another feature of the present invention configured as described above, in the pulley device, the concave cam portion is formed on the cam forming protrusion protruding from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve. , The fixed side sleeve or the movable side sleeve on which the concave cam portion is formed can function as a thickened rib to improve the rigidity and durability.
 また、本発明の他の特徴は、プーリ装置において、凸状カム部は、固定側スリーブの外周面または可動側スリーブの内周面から突出して軸方向にらせん状に延びて形成されていることにある。 Another feature of the present invention is that, in the pulley device, the convex cam portion is formed so as to protrude from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve and extend spirally in the axial direction. It is in.
 このように構成した本発明の他の特徴によれば、プーリ装置は、凸状カム部が固定側スリーブの外周面または可動側スリーブの内周面から突出して軸方向にらせん状に延びて形成されているため、凸状カム部が形成された固定側スリーブまたは可動側スリーブの肉厚を厚くしたリブとして機能して剛性および耐久性を向上させることができる。 According to another feature of the present invention configured as described above, the pulley device is formed in which the convex cam portion protrudes from the outer peripheral surface of the fixed side sleeve or the inner peripheral surface of the movable side sleeve and extends radially in the axial direction. Therefore, the fixed side sleeve or the movable side sleeve on which the convex cam portion is formed can function as a thickened rib to improve the rigidity and durability.
 また、本発明の他の特徴は、プーリ装置において、可動側ドリブンプレートは、同可動側ドリブンプレートとは別体で構成されて可動側スリーブに嵌合して一体的に回転駆動するカム形成筒体を備え、可動側スリーブに形成される凹状カム部または凸状カム部は、カム形成筒体に形成されていることにある。 Another feature of the present invention is that in the pulley device, the movable side driven plate is formed as a separate body from the movable side driven plate, is fitted to the movable side sleeve, and is integrally rotationally driven. The concave cam portion or the convex cam portion provided with the body and formed on the movable sleeve is formed on the cam forming cylinder.
 このように構成した本発明の他の特徴によれば、プーリ装置は、可動側スリーブに形成される凹状カム部または凸状カム部が可動側ドリブンプレートとは別体で構成されて可動側スリーブに嵌合して一体的に回転駆動するカム形成筒体に形成されているため、可動側スリーブに対する凹状カム部または凸状カム部の形成を容易にすることができる。また、プーリ装置は、凹状カム部または凸状カム部が損傷した場合にはカム形成筒体を交換することで容易に凹状カム部または凸状カム部を再生することができる。また、プーリ装置は、可動側スリーブに形成される凹状カム部または凸状カム部と固定側スリーブに形成される凸状カム部または凹状カム部とを互いに異なる材質で構成することができ、両者の摺動性の向上および摩耗劣化の抑制を図ることができる。なお、カム形成筒体は、可動側スリーブに対して可動側スリーブ内への圧入、互いに嵌合し合う一対の凹部と凸部とからなる嵌合部を介した嵌合、溶接または接着によって一体化することができる。 According to another feature of the present invention configured in this way, in the pulley device, the concave cam portion or the convex cam portion formed on the movable side sleeve is formed separately from the movable side driven plate, and the movable side sleeve is formed. Since it is formed in a cam forming cylinder that is fitted to and integrally driven to rotate, it is possible to facilitate the formation of a concave cam portion or a convex cam portion with respect to the movable side sleeve. Further, when the concave cam portion or the convex cam portion is damaged, the pulley device can easily regenerate the concave cam portion or the convex cam portion by replacing the cam forming cylinder. Further, in the pulley device, the concave cam portion or the convex cam portion formed on the movable side sleeve and the convex cam portion or the concave cam portion formed on the fixed side sleeve can be made of different materials. It is possible to improve the slidability of the cam and suppress wear deterioration. The cam-forming cylinder is integrally formed by press-fitting the movable-side sleeve into the movable-side sleeve, fitting through a fitting portion consisting of a pair of concave portions and convex portions that are fitted to each other, and welding or bonding. Can be transformed into.
 また、本発明の他の特徴は、前記プーリ装置において、凹状カム部および凸状カム部は、互いに異種材料によって構成されていることにある。 Another feature of the present invention is that in the pulley device, the concave cam portion and the convex cam portion are made of different materials from each other.
 このように構成した本発明の他の特徴によれば、プーリ装置は、凹状カム部および凸状カム部が互いに異種材料によって構成されているため、両者の摺動性の向上および摩耗劣化の抑制を図ることができる。 According to another feature of the present invention configured in this way, in the pulley device, since the concave cam portion and the convex cam portion are made of different materials, the slidability of both is improved and the deterioration of wear is suppressed. Can be planned.
 また、本発明は、プーリ装置の発明として実施できるばかりでなく、このプーリ装置を備えた遠心クラッチの発明としても実施できるものである。 Further, the present invention can be implemented not only as an invention of a pulley device, but also as an invention of a centrifugal clutch provided with this pulley device.
 具体的には、遠心クラッチは、請求項1ないし請求項5のうちのいずれか1つに記載したプーリ装置と、固定側スリーブに連結されて固定側ドリブンプレートと一体的に回転駆動するドライブプレートと、ドライブプレートの外側にこのドライブプレートと同心で設けられた円筒面を有して出力軸に連結されるクラッチアウタと、ドライブプレートの周方向に沿って延びて形成されてクラッチアウタの円筒面に面するクラッチシューを有して前記周方向における一方の端部側がドライブプレートに回動可能に取り付けられるとともに他方の端部側がクラッチアウタの円筒面側に向かって変位するクラッチウエイトとを備えるようにすればよい。これによれば、遠心クラッチは、上記プーリ装置と同様の作用効果を期待することができる。 Specifically, the centrifugal clutch is a drive plate that is connected to the pulley device according to any one of claims 1 to 5 and is connected to a fixed-side sleeve to rotate and drive integrally with the fixed-side driven plate. A clutch outer that has a cylindrical surface provided concentrically with the drive plate on the outside of the drive plate and is connected to the output shaft, and a cylindrical surface of the clutch outer that extends along the circumferential direction of the drive plate. It has a clutch shoe facing the surface, and one end side in the circumferential direction is rotatably attached to the drive plate, and the other end side is provided with a clutch weight that is displaced toward the cylindrical surface side of the clutch outer. It should be. According to this, the centrifugal clutch can be expected to have the same effect as the pulley device.
本発明に係るプーリ装置および遠心クラッチをそれぞれ備えた動力伝達機構の構成を概略的に示す平面断面図である。It is a top sectional view schematically showing the structure of the power transmission mechanism provided with the pulley device and the centrifugal clutch according to the present invention, respectively. 図1に示すプーリ装置を構成する固定側ドリブンプレート、可動側ドリブンプレートおよびカム形成筒体の構成の概略を示す組立分解斜視図である。It is an assembly disassembled perspective view which shows the outline of the structure of the fixed side driven plate, the movable side driven plate and the cam forming cylinder which make up the pulley device shown in FIG.
 以下、本発明に係るプーリ装置および同プーリ装置を備えた遠心クラッチの一実施形態について図面を参照しながら説明する。図1は、本発明に係るプーリ装置130および遠心クラッチ200を備えた動力伝達機構100の構成を概略的に示す平面断面図である。この場合、図1は、プーリ装置130および遠心クラッチ200における各上側半分の図が可動側ドリブンプレート150が固定側ドリブンプレート140に最接近した状態を示すとともに、各下側半分の図が可動側ドリブンプレート150が固定側ドリブンプレート140に対して最も離隔した状態を示している。 Hereinafter, an embodiment of the pulley device according to the present invention and the centrifugal clutch provided with the pulley device will be described with reference to the drawings. FIG. 1 is a plan sectional view schematically showing a configuration of a power transmission mechanism 100 including a pulley device 130 and a centrifugal clutch 200 according to the present invention. In this case, FIG. 1 shows a state in which the movable side driven plate 150 is closest to the fixed side driven plate 140 in the upper half of the pulley device 130 and the centrifugal clutch 200, and the lower half of each is the movable side. The driven plate 150 shows the state in which the driven plate 150 is most separated from the fixed side driven plate 140.
 これらのプーリ装置130および遠心クラッチ200をそれぞれ備えた動力伝達機構100は、主としてスクータなどの自動二輪車両において、エンジンと駆動輪である後輪との間に設けられてエンジンの回転数に対する減速比を自動的に変更しながら回転駆動力を後輪に伝達または遮断する機械装置である。この場合、遠心クラッチ200は、エンジンが所定の回転数に達するまでの間は回転駆動力の従動側への伝達を遮断するとともに、エンジンが所定の回転数に達したときに回転駆動力を従動側に伝達する機械装置である。 The power transmission mechanism 100 provided with the pulley device 130 and the centrifugal clutch 200 is provided between the engine and the rear wheels, which are the driving wheels, mainly in a motorcycle such as a scooter, and has a reduction ratio with respect to the rotation speed of the engine. It is a mechanical device that transmits or shuts off the rotational driving force to the rear wheels while automatically changing. In this case, the centrifugal clutch 200 cuts off the transmission of the rotational driving force to the driven side until the engine reaches a predetermined rotational speed, and drives the rotational driving force when the engine reaches a predetermined rotational speed. It is a mechanical device that transmits to the side.
(プーリ装置130および遠心クラッチ200の構成)
 この動力伝達機構100は、主として、変速機101および遠心クラッチ200をそれぞれ備えている。変速機101は、図示しないエンジンからの回転駆動力を無段階で減速して遠心クラッチ200に伝達する機械装置であり、主として、ドライブプーリ110、Vベルト120およびプーリ装置130をそれぞれ備えて構成されている。これらのうち、ドライブプーリ110は、エンジンから延びるクランク軸111上に設けられてエンジンの回転駆動力によって直接回転駆動する機械装置であり、主として、固定ドライブプレート112および可動ドライブプレート113をそれぞれ備えて構成されている。
(Structure of Pulley Device 130 and Centrifugal Clutch 200)
The power transmission mechanism 100 mainly includes a transmission 101 and a centrifugal clutch 200, respectively. The transmission 101 is a mechanical device that continuously decelerates a rotational driving force from an engine (not shown) and transmits it to a centrifugal clutch 200, and is mainly composed of a drive pulley 110, a V-belt 120, and a pulley device 130, respectively. ing. Of these, the drive pulley 110 is a mechanical device provided on a crankshaft 111 extending from the engine and directly rotationally driven by the rotational driving force of the engine, and mainly includes a fixed drive plate 112 and a movable drive plate 113, respectively. It is configured.
 固定ドライブプレート112は、可動ドライブプレート113とともにVベルト120を挟んで保持した状態で回転駆動する部品であり、金属材料を円錐筒状に形成して構成されている。この固定ドライブプレート112は、凸側の面が可動ドライブプレート113側(エンジン側)に向いた状態でクランク軸111上に固定的に取り付けられている。すなわち、固定ドライブプレート112は、常にクランク軸111と一体的に回転駆動する。また、固定ドライブプレート112における凹側の面上には、複数の放熱フィン112aがクランク軸111の軸線を中心として放射状に設けられている。 The fixed drive plate 112 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the movable drive plate 113, and is configured by forming a metal material into a conical cylinder. The fixed drive plate 112 is fixedly mounted on the crankshaft 111 with the convex side facing the movable drive plate 113 side (engine side). That is, the fixed drive plate 112 is always rotationally driven integrally with the crankshaft 111. Further, a plurality of heat radiation fins 112a are provided radially on the concave surface of the fixed drive plate 112 about the axis of the crankshaft 111.
 可動ドライブプレート113は、固定ドライブプレート112とともにVベルト120を挟んで保持した状態で回転駆動する部品であり、金属材料を円錐筒状に形成して構成されている。この可動ドライブプレート113は、凸側の面が固定ドライブプレート112に対向する向きでクランク軸111に取り付けられている。この場合、可動ドライブプレート113は、クランク軸111に対して固定的に嵌合するスリーブ軸受114上に含浸ブッシュを介して取り付けられており、スリーブ軸受114に対して軸方向および周方向にそれぞれ摺動自在に取り付けられている。 The movable drive plate 113 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the fixed drive plate 112, and is configured by forming a metal material into a conical cylinder. The movable drive plate 113 is attached to the crankshaft 111 with its convex surface facing the fixed drive plate 112. In this case, the movable drive plate 113 is attached to the sleeve bearing 114 which is fixedly fitted to the crankshaft 111 via an impregnation bush, and slides in the axial direction and the circumferential direction with respect to the sleeve bearing 114, respectively. It is mounted freely.
 一方、可動ドライブプレート113の凹側の面には、複数のローラウエイト115がランププレート116によって押圧された状態で設けられている。ローラウエイト115は、可動ドライブプレート113の回転数の増加に応じて径方向外側に変位することによってランププレート116と協働して可動ドライブプレート113を固定ドライブプレート112側に押圧するための部品であり、金属材料を筒状に形成して構成されている。また、ランププレート116は、ローラウエイト115を可動ドライブプレート113側に押圧する部品であり、金属板を可動ドライブプレート113側に屈曲させて構成されている。 On the other hand, a plurality of roller weights 115 are provided on the concave surface of the movable drive plate 113 in a state of being pressed by the lamp plate 116. The roller weight 115 is a component for pressing the movable drive plate 113 toward the fixed drive plate 112 in cooperation with the lamp plate 116 by displacing the movable drive plate 113 outward in the radial direction as the rotation speed of the movable drive plate 113 increases. Yes, it is constructed by forming a metal material into a tubular shape. Further, the lamp plate 116 is a component that presses the roller weight 115 toward the movable drive plate 113, and is configured by bending the metal plate toward the movable drive plate 113.
 Vベルト120は、ドライブプーリ110の回転駆動力をプーリ装置130のドリブンプーリ131に伝達するための部品であり、芯線をゴム材などの弾性材料で覆った無端のリング状に形成されている。このVベルト120は、固定ドライブプレート112と可動ドライブプレート113との間およびドリブンプーリ131における固定側ドリブンプレート140と可動側ドリブンプレート150との間に配置されてドライブプーリ110とドリブンプーリ131との間に架設されている。 The V-belt 120 is a component for transmitting the rotational driving force of the drive pulley 110 to the driven pulley 131 of the pulley device 130, and is formed in an endless ring shape in which the core wire is covered with an elastic material such as a rubber material. The V-belt 120 is arranged between the fixed drive plate 112 and the movable drive plate 113 and between the fixed side driven plate 140 and the movable side driven plate 150 in the driven pulley 131, and is arranged between the drive pulley 110 and the driven pulley 131. It is erected between them.
 プーリ装置130は、ドライブプーリ110およびVベルト120をそれぞれ介して伝達されるエンジンからの回転駆動力によって回転駆動する機械装置でありドリブンプーリ131によって構成されている。ドリブンプーリ131は、図2に示すように、固定側ドリブンプレート140と可動側ドリブンプレート150とで構成されている。 The pulley device 130 is a mechanical device that is rotationally driven by a rotational driving force from an engine transmitted via a drive pulley 110 and a V-belt 120, respectively, and is composed of a driven pulley 131. As shown in FIG. 2, the driven pulley 131 is composed of a fixed-side driven plate 140 and a movable-side driven plate 150.
 固定側ドリブンプレート140は、可動側ドリブンプレート150とともにVベルト120を挟んで保持した状態で回転駆動する部品であり、アルミニウム材などの金属材料を円錐筒状に形成して構成されている。この固定側ドリブンプレート140は、主として、固定側プレート141と固定側スリーブ142とで構成されている。 The fixed-side driven plate 140 is a component that is rotationally driven while sandwiching and holding the V-belt 120 together with the movable-side driven plate 150, and is configured by forming a metal material such as an aluminum material into a conical cylinder. The fixed-side driven plate 140 is mainly composed of a fixed-side plate 141 and a fixed-side sleeve 142.
 固定側プレート141は、可動側プレート151とともにVベルト120を挟む部分であり、可動側プレート151側に凸状に張り出す円錐面状に形成されている。この固定側プレート141には、中心部に固定側スリーブ142が形成されている。 The fixed-side plate 141 is a portion that sandwiches the V-belt 120 together with the movable-side plate 151, and is formed in a conical surface shape that projects convexly toward the movable-side plate 151. A fixed-side sleeve 142 is formed in the center of the fixed-side plate 141.
 固定側スリーブ142は、固定側プレート141と一体的に回転駆動する部分であり、固定側プレート141に対して直交する方向に延びる円筒状に形成されている。この固定側スリーブ142における一方(図示右側)の端部には、固定側プレート141が接続されているとともに、この接続部分に隣接する固定側接続部分142aにカム形成突出部143が形成されている。また、固定側スリーブ142における他方(図示左側)の端部には、外歯状のスプラインが形成されているとともに、このスプラインを介してドライブプレート210がスプライン嵌合によって連結されている。 The fixed-side sleeve 142 is a portion that is rotationally driven integrally with the fixed-side plate 141, and is formed in a cylindrical shape extending in a direction orthogonal to the fixed-side plate 141. A fixed side plate 141 is connected to one end (right side in the drawing) of the fixed side sleeve 142, and a cam forming protrusion 143 is formed in the fixed side connecting portion 142a adjacent to the connecting portion. .. An external tooth-shaped spline is formed at the other end (left side in the drawing) of the fixed-side sleeve 142, and the drive plate 210 is connected via the spline by spline fitting.
 ここで、固定側接続部分142aは、固定側スリーブ142における固定側プレート141が立ち上がる部分およびその近傍部分であり、固定側スリーブ142の軸方向に摺動する可動側ドリブンプレート150における可動側プレート151が対向する固定側スリーブ142の外周部分である。 Here, the fixed-side connecting portion 142a is a portion of the fixed-side sleeve 142 where the fixed-side plate 141 rises and a portion in the vicinity thereof, and the movable-side plate 151 of the movable-side driven plate 150 that slides in the axial direction of the fixed-side sleeve 142. Is the outer peripheral portion of the fixed side sleeve 142 facing the surface.
 カム形成突出部143は、固定側スリーブ142における固定側接続部分142aに凹状カム部144を形成するための部分であり、固定側接続部分142aの外表面から凸状に突出して形成されている。ここで、凹状カム部144は、凸状カム部154が摺動自在な状態で嵌合する部分である。本実施形態においては、カム形成突出部143は、固定側スリーブ142の周方向に捩じれながら軸方向に延びるらせん状に形成されている。この場合、カム形成突出部143は、固定側スリーブ142の周方向に均等な間隔を介して3つ形成されている。 The cam forming projecting portion 143 is a portion for forming the concave cam portion 144 on the fixed side connecting portion 142a of the fixed side sleeve 142, and is formed so as to project convexly from the outer surface of the fixed side connecting portion 142a. Here, the concave cam portion 144 is a portion in which the convex cam portion 154 fits in a slidable state. In the present embodiment, the cam forming protrusion 143 is formed in a spiral shape extending in the axial direction while being twisted in the circumferential direction of the fixed side sleeve 142. In this case, three cam-forming protrusions 143 are formed at equal intervals in the circumferential direction of the fixed-side sleeve 142.
 これにより、固定側スリーブ142における固定側接続部分142aには、互いに隣接する2つのカム形成突出部143の間に1つの凹状カム部144が形成される。したがって、固定側スリーブ142における固定側接続部分142aには、周方向にカム形成突出部143を介して3つの凹状カム部144が形成される。この場合、3つの凹状カム部144は、固定側スリーブ142の軸方向にらせん状に延びる溝状にそれぞれ形成されている。また、3つの凹状カム部144は、底部が固定側スリーブ142の外表面から突出して形成されている。すなわち、固定側スリーブ142は、固定側接続部分142aの外径が若干太く形成されて剛性が高められている。 As a result, one concave cam portion 144 is formed between the two cam forming protrusions 143 adjacent to each other on the fixed side connecting portion 142a of the fixed side sleeve 142. Therefore, the fixed-side connecting portion 142a of the fixed-side sleeve 142 is formed with three concave cam portions 144 via the cam-forming protrusions 143 in the circumferential direction. In this case, the three concave cam portions 144 are each formed in a groove shape spirally extending in the axial direction of the fixed side sleeve 142. Further, the bottom portions of the three concave cam portions 144 are formed so as to project from the outer surface of the fixed side sleeve 142. That is, the fixed-side sleeve 142 has a slightly thicker outer diameter of the fixed-side connecting portion 142a to increase its rigidity.
 この固定側ドリブンプレート140は、カム形成突出部143および凹状カム部144を含む固定側スリーブ142と固定側プレート141とが互いに同じ材料で一体成形によって一体的に形成されている。なお、固定側ドリブンプレート140は、カム形成突出部143および凹状カム部144を含む固定側スリーブ142と固定側プレート141とが互いに別部品で成形されて溶接などを介して互いに連結されることで一体的に形成されていてもよい。また、固定側ドリブンプレート140は、カム形成突出部143が固定側スリーブ142に対して別体で構成されて連結されることで固定側スリーブ142に形成されていてもよい。 In this fixed-side driven plate 140, the fixed-side sleeve 142 including the cam-forming protrusion 143 and the concave cam portion 144 and the fixed-side plate 141 are integrally formed of the same material by integral molding. In the fixed-side driven plate 140, the fixed-side sleeve 142 including the cam-forming protrusion 143 and the concave cam portion 144 and the fixed-side plate 141 are formed as separate parts and connected to each other via welding or the like. It may be formed integrally. Further, the fixed-side driven plate 140 may be formed on the fixed-side sleeve 142 by connecting the cam-forming protrusion 143 to the fixed-side sleeve 142 as a separate body.
 この固定側ドリブンプレート140には、固定側スリーブ142内にドライブシャフト145が貫通している。ドライブシャフト145は、この動力伝達機構100が搭載される自動二輪車両の後輪を図示しないトランスミッションを介して駆動するための金属製の回転軸体である。この場合、自動二輪車両の後輪は、ドライブシャフト145における一方(図示右側)の端部(図示せず)に取り付けられている。このドライブシャフト145は、軸受け146a,146bを介して固定側ドリブンプレート140を支持している。また、ドライブシャフト145における図示左側の先端部には、雄ネジが形成されており、この雄ネジおよび同雄ネジにネジ嵌合するナットを介してクラッチアウタ230が取り付けられている。なお、図1においては、ドライブシャフト145を二点鎖線で示している。 The drive shaft 145 penetrates through the fixed side sleeve 142 in the fixed side driven plate 140. The drive shaft 145 is a metal rotating shaft body for driving the rear wheels of a motorcycle on which the power transmission mechanism 100 is mounted via a transmission (not shown). In this case, the rear wheel of the motorcycle is attached to one end (not shown) of the drive shaft 145 (on the right side of the drawing). The drive shaft 145 supports the fixed-side driven plate 140 via bearings 146a and 146b. A male screw is formed at the tip of the drive shaft 145 on the left side in the drawing, and the clutch outer 230 is attached via the male screw and a nut that is screw-fitted to the male screw. In FIG. 1, the drive shaft 145 is shown by a chain double-dashed line.
 軸受け146a,146bは、ドライブシャフト145上で固定側ドリブンプレート140を回転駆動可能な状態で支持するための環状の部品である。この場合、軸受け146aは、ドライブシャフト145が固定側スリーブ142を支持する最先端部(図示左側端部)に設けられている。また、軸受け146bは、ドライブシャフト145が固定側スリーブ142を支持する最後端部(図示右側端部)に設けられている。すなわち、軸受け146bは、カム形成突出部143および凹状カム部144の径方向内側に重なる位置に設けられている。なお、軸受け146bは、軸受け146aと同じ耐荷重で構成されていてもよいが、本実施形態においては軸受け146aよりも軸方向の長さが長く形成されて耐荷重が大きく構成されている。 The bearings 146a and 146b are annular parts for supporting the fixed side driven plate 140 on the drive shaft 145 in a state in which the fixed side driven plate 140 can be rotationally driven. In this case, the bearing 146a is provided at the most advanced portion (the left end portion in the drawing) in which the drive shaft 145 supports the fixed side sleeve 142. Further, the bearing 146b is provided at the rearmost end portion (right end portion in the drawing) in which the drive shaft 145 supports the fixed side sleeve 142. That is, the bearing 146b is provided at a position where the cam forming protrusion 143 and the concave cam portion 144 overlap each other in the radial direction. The bearing 146b may be configured to have the same load capacity as the bearing 146a, but in the present embodiment, the bearing is formed to have a longer axial length than the bearing 146a and has a larger load capacity.
 可動側ドリブンプレート150は、固定側ドリブンプレート140とともにVベルト120を挟んで保持した状態で回転駆動する部品であり、アルミニウム材などの金属材料を円錐筒状に形成して構成されている。この可動側ドリブンプレート150は、主として、可動側プレート151と可動側スリーブ152とで構成されている。 The movable side driven plate 150 is a component that is rotationally driven while sandwiching and holding the V belt 120 together with the fixed side driven plate 140, and is configured by forming a metal material such as an aluminum material into a conical cylinder shape. The movable side driven plate 150 is mainly composed of a movable side plate 151 and a movable side sleeve 152.
 可動側プレート151は、固定側プレート141とともにVベルト120を挟む部分であり、固定側プレート141側に凸状に張り出す円錐面状に形成されている。この可動側プレート151には、中心部に可動側スリーブ152が形成されている。 The movable side plate 151 is a portion that sandwiches the V belt 120 together with the fixed side plate 141, and is formed in a conical surface shape that projects convexly toward the fixed side plate 141 side. A movable side sleeve 152 is formed in the center of the movable side plate 151.
 可動側スリーブ152は、可動側プレート151と一体的に回転駆動する部分であり、可動側プレート151に対して直交する方向に延びる円筒状に形成されている。この場合、可動側スリーブ152は、固定側スリーブ142が貫通可能な内径に形成されている。この可動側スリーブ152は、一方(図示右側)の端部に可動側プレート151が接続されているとともに、他方(図示左側)の端部にカム連結部152aが形成されている。 The movable side sleeve 152 is a portion that is rotationally driven integrally with the movable side plate 151, and is formed in a cylindrical shape extending in a direction orthogonal to the movable side plate 151. In this case, the movable side sleeve 152 is formed to have an inner diameter through which the fixed side sleeve 142 can penetrate. In the movable side sleeve 152, the movable side plate 151 is connected to one end (right side in the drawing), and the cam connecting portion 152a is formed in the other end (left side in the drawing).
 カム連結部152aは、カム形成筒体153を連結するための部分であり、可動側スリーブ152の端部の一部が軸方向に凹状に切り欠かれて形成されている。本実施形態においては、カム連結部152aは、可動側スリーブ152の端部に周方向に沿って3つの凹状の切り欠き部が均等な配置で形成されている。 The cam connecting portion 152a is a portion for connecting the cam forming cylinder 153, and is formed by partially cutting out a part of the end portion of the movable side sleeve 152 in a concave shape in the axial direction. In the present embodiment, the cam connecting portion 152a is formed with three concave notches along the circumferential direction at the end of the movable sleeve 152 in an even arrangement.
 カム形成筒体153は、図2に示すように、固定側スリーブ142と可動側スリーブ152との間に配置されて可動側スリーブ152を固定側スリーブ142に対して摺動させるとともに可動側スリーブ152の内周面における可動側接続部分152bに凸状カム部154を形成するための部品であり、樹脂材を円筒形に形成して構成されている。ここで、可動側接続部分152bは、可動側スリーブ152における可動側プレート151が立ち上がる部分およびその近傍部分であり、前記固定側接続部分142aが対向する可動側スリーブ152の内周部分である。 As shown in FIG. 2, the cam forming cylinder 153 is arranged between the fixed side sleeve 142 and the movable side sleeve 152, slides the movable side sleeve 152 with respect to the fixed side sleeve 142, and slides the movable side sleeve 152. It is a component for forming a convex cam portion 154 on the movable side connecting portion 152b on the inner peripheral surface of the above, and is configured by forming a resin material in a cylindrical shape. Here, the movable side connecting portion 152b is a portion of the movable side sleeve 152 where the movable side plate 151 rises and a portion in the vicinity thereof, and is an inner peripheral portion of the movable side sleeve 152 facing the fixed side connecting portion 142a.
 このカム形成筒体153を構成する筒状体は、可動側スリーブ152の内周面に摺動自在に嵌合する外径に形成されるとともに、固定側スリーブ142の外周面に摺動自在に嵌合する内径に形成されている。また、カム形成筒体153は、筒状体の一方の端部にスリーブ連結部153aが形成されるとともに、他方の端部に凸状カム部154が形成されている。 The tubular body constituting the cam-forming tubular body 153 is formed to have an outer diameter that is slidably fitted to the inner peripheral surface of the movable side sleeve 152, and is slidably fitted to the outer peripheral surface of the fixed side sleeve 142. It is formed to have an inner diameter to be fitted. Further, in the cam-forming tubular body 153, a sleeve connecting portion 153a is formed at one end of the tubular body, and a convex cam portion 154 is formed at the other end.
 スリーブ連結部153aは、前記カム連結部152aに嵌合する部分であり、カム形成筒体153における一方の端部から径方向外側に張り出して形成されている。この場合、スリーブ連結部153aは、3つのカム連結部152aにそれぞれ嵌合するように、カム形成筒体153の端部に周方向に沿って3つの突出部が均等な配置で形成されている。 The sleeve connecting portion 153a is a portion that fits into the cam connecting portion 152a, and is formed so as to project radially outward from one end of the cam forming cylinder 153. In this case, the sleeve connecting portion 153a is formed with three protruding portions evenly arranged along the circumferential direction at the end of the cam forming cylinder 153 so as to be fitted to the three cam connecting portions 152a, respectively. ..
 凸状カム部154は、可動側スリーブ152の内周面における可動側接続部分152bから突出して固定側スリーブ142に形成された前記凹状カム部144に摺動自在に嵌合する部分であり、カム形成筒体153の端部に軸方向にらせん状に張り出して形成されている。この場合、凸状カム部154は、固定側スリーブ142の外周面に対して接触するように構成されていてもよいが、本実施形態においては非接触な状態で延びて形成されている。この凸状カム部154は、凹状カム部144に対応するようにカム形成筒体153の端部に周方向に均等な間隔を介して3つ形成されている。 The convex cam portion 154 is a portion that protrudes from the movable side connecting portion 152b on the inner peripheral surface of the movable side sleeve 152 and is slidably fitted to the concave cam portion 144 formed on the fixed side sleeve 142. It is formed so as to spirally project in the axial direction at the end of the formed cylinder 153. In this case, the convex cam portion 154 may be configured to be in contact with the outer peripheral surface of the fixed side sleeve 142, but in the present embodiment, the convex cam portion 154 is formed so as to extend in a non-contact state. Three convex cam portions 154 are formed at the end portions of the cam forming cylinder 153 so as to correspond to the concave cam portion 144 with equal intervals in the circumferential direction.
 すなわち、3つの各凸状カム部154の各間には、各凸状カム部154を形成するためのカム形成切欠き部153bがらせん状に延びてそれぞれ形成されている。そして、これら3つのカム形成切欠き部153bは、固定側スリーブ142に形成されたカム形成突出部143が摺動自在に嵌合する。したがって、固定側スリーブ142に形成されたカム形成突出部143は固定側スリーブ142に形成された本願発明に係る凸状カム部とみることができるとともに、カム形成筒体153(可動側スリーブ152)に形成されたカム形成切欠き部153bはカム形成筒体153(可動側スリーブ152)に形成された本願発明に係る凹状カム部とみることもできる。 That is, between each of the three convex cam portions 154, a cam forming notch portion 153b for forming each convex cam portion 154 is formed so as to extend in a spiral shape. The cam-forming protrusions 143 formed on the fixed-side sleeve 142 are slidably fitted to the three cam-forming notches 153b. Therefore, the cam forming protrusion 143 formed on the fixed side sleeve 142 can be regarded as the convex cam portion according to the present invention formed on the fixed side sleeve 142, and the cam forming cylinder 153 (movable side sleeve 152). The cam forming notch portion 153b formed in the above can also be regarded as a concave cam portion according to the present invention formed in the cam forming cylinder 153 (movable side sleeve 152).
 このカム形成筒体153は、スリーブ連結部153aがカム連結部152aに嵌合した状態で可動側ドリブンプレート150の可動側スリーブ152内に接着剤などを介して固定的に嵌合している。これにより、カム形成筒体153は、凸状カム部154が可動側スリーブ152における可動側接続部分152bに位置するとともに、この位置において凹状カム部144に嵌合した状態で可動側スリーブ152と一体的に回転駆動する。 The cam forming cylinder 153 is fixedly fitted in the movable side sleeve 152 of the movable side driven plate 150 in a state where the sleeve connecting portion 153a is fitted in the cam connecting portion 152a via an adhesive or the like. As a result, the cam forming cylinder 153 is integrated with the movable sleeve 152 in a state where the convex cam portion 154 is located at the movable side connecting portion 152b of the movable side sleeve 152 and is fitted to the concave cam portion 144 at this position. Rotationally driven.
 なお、カム形成筒体153を構成する樹脂材としては、耐熱性および耐摩耗性を有する熱可塑性樹脂または熱硬化性樹脂を用いることができ、エンジニアリングプラスチックまたはスーパーエンジニアリングプラスチックが好適である。具体的には、熱可塑性樹脂としては、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンサルファイド樹脂(PPS)、ポリアミドイミド樹脂(PAI)、フッ素樹脂(PTFE)またはポリイミド樹脂(PI)を用いることができ、熱硬化性樹脂としては、ジアリルフタレート樹脂(PDAP)、エポキシ樹脂(EP)またはシリコン樹脂(SI)を用いることができる。 As the resin material constituting the cam forming cylinder 153, a thermoplastic resin or a thermosetting resin having heat resistance and abrasion resistance can be used, and engineering plastics or super engineering plastics are preferable. Specifically, as the thermoplastic resin, polyetheretherketone resin (PEEK), polyphenylene sulfide resin (PPS), polyamideimide resin (PAI), fluororesin (PTFE) or polyimide resin (PI) can be used. As the thermosetting resin, diallyl phthalate resin (PDAP), epoxy resin (EP) or silicon resin (SI) can be used.
 一方、可動側ドリブンプレート150の凹側の面には、遠心クラッチ200におけるドライブプレート210との間にトルクスプリング155が設けられている。トルクスプリング155は、可動側ドリブンプレート150を固定側ドリブンプレート140側に弾性的に押圧するためのコイルスプリングである。すなわち、この変速機101は、固定ドライブプレート112と可動ドライブプレート113との間隔で規定されるVベルト120を挟む直径と、固定側ドリブンプレート140と可動側ドリブンプレート150との間隔で規定されるVベルト120を挟む直径との大小関係によってエンジンの回転数を無段階で変速する。そして、固定側スリーブ142およびドライブシャフト145における各先端部側には遠心クラッチ200が設けられている。 On the other hand, a torque spring 155 is provided between the movable side driven plate 150 and the drive plate 210 of the centrifugal clutch 200 on the concave surface. The torque spring 155 is a coil spring for elastically pressing the movable side driven plate 150 toward the fixed side driven plate 140 side. That is, the transmission 101 is defined by the diameter of sandwiching the V-belt 120 defined by the distance between the fixed drive plate 112 and the movable drive plate 113 and the distance between the fixed side driven plate 140 and the movable side driven plate 150. The engine speed is changed steplessly depending on the magnitude relationship with the diameter of the V-belt 120. A centrifugal clutch 200 is provided on each tip side of the fixed side sleeve 142 and the drive shaft 145.
 遠心クラッチ200は、変速機101を介して伝達されたエンジンの回転駆動力をドライブシャフト145に伝達または遮断する機械装置であり、主として、ドライブプレート210、3つのクラッチウエイト220およびクラッチアウタ230をそれぞれ備えて構成されている。 The centrifugal clutch 200 is a mechanical device that transmits or cuts off the rotational driving force of the engine transmitted via the transmission 101 to the drive shaft 145, and mainly disengages the drive plate 210, the three clutch weights 220, and the clutch outer 230, respectively. It is configured to prepare.
 ドライブプレート210は、固定側スリーブ142と一体的に回転駆動する部品であり、金属材料を段付きの円板状に形成して構成されている。より具体的には、ドライブプレート210は、平板状の底部211の中央部に固定側スリーブ142の外歯状のスプラインが貫通した状態で嵌合する内歯状のスプラインが形成されているとともに、この底部211の周囲に起立した段差部分を介して更に径方向外側にフランジ状に張り出した鍔部212が形成されて構成されている。 The drive plate 210 is a component that is rotationally driven integrally with the fixed side sleeve 142, and is configured by forming a metal material into a stepped disk shape. More specifically, the drive plate 210 is formed with an internal tooth-shaped spline that fits in the central portion of the flat plate-shaped bottom portion 211 with the external tooth-shaped spline of the fixed side sleeve 142 penetrating. A flange portion 212 is formed so as to project radially outward through a stepped portion that stands up around the bottom portion 211.
 また、ドライブプレート210には、底部211の外縁部分における前記段差部分の内側には前記トルクスプリング155が設けられている。また、鍔部212には、周方向に沿ってそれぞれ3つずつの揺動支持ピン213およびウエイト押圧体支持部215がそれぞれ等間隔で設けられている。 Further, the drive plate 210 is provided with the torque spring 155 inside the stepped portion at the outer edge portion of the bottom portion 211. Further, the collar portion 212 is provided with three swing support pins 213 and three weight pressing body support portions 215 at equal intervals along the circumferential direction.
 揺動支持ピン213は、後述するクラッチウエイト220における一方の端部側を回動可能に支持して他方の端部側を揺動させるための部品であり、金属製の段付きの棒体で構成されている。この場合、揺動支持ピン213は、取付ボルト213aによって鍔部212に固定的に取り付けられている。この揺動支持ピン213は、クラッチウエイト220のピン摺動孔222内を貫通した状態で、揺動支持ピン213の先端部に取り付けられるサイドプレート214とでクラッチウエイト220を挟んだ状態で支持している。 The swing support pin 213 is a component for rotatably supporting one end side of the clutch weight 220 described later and swinging the other end side, and is a metal stepped rod body. It is configured. In this case, the swing support pin 213 is fixedly attached to the collar portion 212 by the mounting bolt 213a. The swing support pin 213 is supported with the clutch weight 220 sandwiched between the side plate 214 attached to the tip of the swing support pin 213 while penetrating the inside of the pin sliding hole 222 of the clutch weight 220. ing.
 サイドプレート214は、3つのクラッチウエイト220が各揺動支持ピン213から抜けることを防止するための部品であり、金属材料をリング状に形成して構成されている。このサイドプレート214は、3つのクラッチウエイト220に対してドライブプレート210とは反対側で各クラッチウエイト220にそれぞれ面した状態で配置されている。 The side plate 214 is a component for preventing the three clutch weights 220 from coming off from each swing support pin 213, and is configured by forming a metal material in a ring shape. The side plate 214 is arranged on the side opposite to the drive plate 210 with respect to the three clutch weights 220 so as to face each clutch weight 220.
 ウエイト押圧体支持部215は、ウエイト押圧体216を回転自在な状態で支持するための部品であり、金属製の段付きの棒体で構成されている。このウエイト押圧体支持部215は、クラッチウエイト220におけるピン摺動孔222よりもクラッチウエイト220の先端部側の部分に対向する鍔部212上にピン状に突出して形成されている。ウエイト押圧体216は、クラッチウエイト220をクラッチアウタ230側に押圧するための部品であり、樹脂材料を円筒状に形成して構成されている。 The weight pressing body support portion 215 is a component for supporting the weight pressing body 216 in a rotatable state, and is composed of a metal stepped rod body. The weight pressing body support portion 215 is formed so as to project in a pin shape on a flange portion 212 facing a portion on the tip end side of the clutch weight 220 from the pin sliding hole 222 in the clutch weight 220. The weight pressing body 216 is a component for pressing the clutch weight 220 toward the clutch outer 230 side, and is configured by forming a resin material in a cylindrical shape.
 3つのクラッチウエイト220は、それぞれドライブプレート210の回転数に応じてクラッチアウタ230に対してクラッチシュー221を介して接触または離隔することによってエンジンからの回転駆動力をドライブシャフト145に伝達または遮断するための部品であり、金属材料(例えば、亜鉛材)をドライブプレート210の周方向に沿って延びる湾曲した形状に形成して構成されている。 The three clutch weights 220 transmit or cut off the rotational driving force from the engine to the drive shaft 145 by contacting or separating the clutch outer 230 from the clutch outer 230 via the clutch shoe 221 according to the rotation speed of the drive plate 210, respectively. A metal material (for example, a zinc material) is formed in a curved shape extending along the circumferential direction of the drive plate 210.
 クラッチシュー221は、クラッチアウタ230の内周面に対する摩擦力を増大させるための部品であり、摩擦材を円弧状に延びる板状に形成して構成されている。このクラッチシュー221は、各クラッチウエイト220における前記他方の端部側であるクラッチウエイト220の先端部側の外周面に張り付けられた状態で設けられている。 The clutch shoe 221 is a component for increasing the frictional force with respect to the inner peripheral surface of the clutch outer 230, and is configured by forming the friction material in a plate shape extending in an arc shape. The clutch shoe 221 is provided in a state of being attached to the outer peripheral surface of the clutch weight 220 on the tip end side, which is the other end side of each clutch weight 220.
 これらのクラッチウエイト220は、それぞれ一方の端部側に長孔状の貫通孔で構成されたピン摺動孔222が形成されており、このピン摺動孔222を介して揺動支持ピン213によって回動自在に支持されている。また、各クラッチウエイト220は、他方の端部側が互いに隣接するクラッチウエイト220に連結スプリング223によって連結されてドライブプレート210の内側方向に向かって引っ張られている。すなわち、クラッチウエイト220は、クラッチシュー221が設けられた前記他方の端部側がクラッチアウタ230に対して揺動するようにドライブプレート210上に揺動支持ピン213およびピン摺動孔222をそれぞれ介して支持されている。 Each of these clutch weights 220 has a pin sliding hole 222 formed of an elongated through hole on one end side thereof, and the swing support pin 213 is formed through the pin sliding hole 222. It is rotatably supported. Further, each clutch weight 220 is connected to the clutch weight 220 whose other end side is adjacent to each other by a connecting spring 223 and is pulled toward the inside of the drive plate 210. That is, the clutch weight 220 is provided via the swing support pin 213 and the pin sliding hole 222 on the drive plate 210 so that the other end side on which the clutch shoe 221 is provided swings with respect to the clutch outer 230, respectively. Is supported.
 連結スプリング223は、クラッチウエイト220に対して引張力を作用させて前記他方の端部側をクラッチアウタ230に対して離隔する方向に引っ張るための部品であり、金属製のコイルスプリングによって構成されている。この連結スプリング223は、ドライブプレート210の周方向に沿って互いに隣接し合うクラッチウエイト220間にそれぞれ架設されている。 The connecting spring 223 is a component for applying a tensile force to the clutch weight 220 to pull the other end side in a direction away from the clutch outer 230, and is composed of a metal coil spring. There is. The connecting spring 223 is erected between the clutch weights 220 adjacent to each other along the circumferential direction of the drive plate 210.
 また、各クラッチウエイト220におけるドライブプレート210に対向する内側面には、押圧体収容部224がそれぞれ形成されている。押圧体収容部224は、前記ウエイト押圧体216を収容しつつこのウエイト押圧体216が押し付けられる押圧体受け部224aが形成される部分であり、クラッチウエイト220の内側面に凹状に切り欠かれて形成されている。 Further, a pressing body accommodating portion 224 is formed on the inner surface of each clutch weight 220 facing the drive plate 210. The pressing body accommodating portion 224 is a portion where the pressing body receiving portion 224a on which the weight pressing body 216 is pressed while accommodating the weight pressing body 216 is formed, and is notched in a concave shape on the inner surface of the clutch weight 220. It is formed.
 押圧体受け部224aは、ウエイト押圧体216が押し付けられることでクラッチウエイト220をクラッチアウタ230側に変位させるための部分である。この押圧体受け部224aは、押圧体収容部224内の側面がドライブプレート210の回転駆動方向の後方かつ外側に向かって湾曲して延び滑らかな曲面で構成されている。 The pressing body receiving portion 224a is a portion for displacing the clutch weight 220 toward the clutch outer 230 side by pressing the weight pressing body 216. The pressing body receiving portion 224a is formed of a smooth curved surface whose side surface inside the pressing body accommodating portion 224 is curved rearward and outward in the rotational driving direction of the drive plate 210.
 クラッチアウタ230は、ドライブシャフト145と一体的に回転駆動する部品であり、金属材料をドライブプレート210からクラッチウエイト220の外周面を覆うカップ状に形成して構成されている。すなわち、クラッチアウタ230は、ドライブプレート210の外周側に変位したクラッチウエイト220のクラッチシュー221に摩擦接触する円筒面231を有して構成されている。 The clutch outer 230 is a component that is rotationally driven integrally with the drive shaft 145, and is configured by forming a metal material from the drive plate 210 into a cup shape that covers the outer peripheral surface of the clutch weight 220. That is, the clutch outer 230 is configured to have a cylindrical surface 231 that frictionally contacts the clutch shoe 221 of the clutch weight 220 displaced to the outer peripheral side of the drive plate 210.
 (プーリ装置130および遠心クラッチ200の作動)
 次に、上記のように構成したプーリ装置130および遠心クラッチ200の作動について説明する。この遠心クラッチ200は、自動二輪車車両(例えば、スクータ)におけるエンジンと駆動輪となる後輪との間に配置された動力伝達機構100の一部を構成して機能する。まず、遠心クラッチ200は、エンジンがアイドリング状態においては、図1に示すように、エンジンとドライブシャフト145との間の駆動力の伝達を遮断する。
(Operation of pulley device 130 and centrifugal clutch 200)
Next, the operation of the pulley device 130 and the centrifugal clutch 200 configured as described above will be described. The centrifugal clutch 200 functions as a part of a power transmission mechanism 100 arranged between an engine and a rear wheel serving as a driving wheel in a motorcycle vehicle (for example, a scooter). First, the centrifugal clutch 200 cuts off the transmission of the driving force between the engine and the drive shaft 145 when the engine is idling, as shown in FIG.
 具体的には、プーリ装置130は、ドライブプーリ110およびVベルト120をそれぞれ介して伝達されるエンジンの回転駆動力によってドリブンプーリ131が回転駆動する。ここで、ドリブンプーリ131は、可動側ドリブンプレート150がカム形成筒体153を介して固定側ドリブンプレート140に連結されているとともに、固定側ドリブンプレート140がドライブプレート210に直接連結されている。これにより、ドライブプレート210は、固定側ドリブンプレート140および可動側ドリブンプレート150と同じ回転数で回転駆動する。すなわち、遠心クラッチ200におけるドライブプレート210に設けられた3つのクラッチウエイト220は、ドライブプレート210と同じ回転数で回転駆動する。 Specifically, in the pulley device 130, the driven pulley 131 is rotationally driven by the rotational driving force of the engine transmitted via the drive pulley 110 and the V-belt 120, respectively. Here, in the driven pulley 131, the movable side driven plate 150 is connected to the fixed side driven plate 140 via the cam forming cylinder 153, and the fixed side driven plate 140 is directly connected to the drive plate 210. As a result, the drive plate 210 is rotationally driven at the same rotation speed as the fixed side driven plate 140 and the movable side driven plate 150. That is, the three clutch weights 220 provided on the drive plate 210 in the centrifugal clutch 200 are rotationally driven at the same rotation speed as the drive plate 210.
 しかし、この場合、遠心クラッチ200は、クラッチウエイト220に作用する遠心力が連結スプリング223の弾性力(引張力)よりも小さいため、クラッチシュー221がクラッチアウタ230の円筒面231に接触するに至るほどクラッチウエイト220がクラッチアウタ230の円筒面231側に傾倒することはない。したがって、遠心クラッチ200は、エンジンの回転駆動力がドライブシャフト145に伝達されることはなくクラッチオフ状態となっている。 However, in this case, in the centrifugal clutch 200, the centrifugal force acting on the clutch weight 220 is smaller than the elastic force (tensile force) of the connecting spring 223, so that the clutch shoe 221 comes into contact with the cylindrical surface 231 of the clutch outer 230. The clutch weight 220 does not tilt toward the cylindrical surface 231 side of the clutch outer 230 as much. Therefore, the centrifugal clutch 200 is in the clutch-off state without the rotational driving force of the engine being transmitted to the drive shaft 145.
 このクラッチオフ状態においてドリブンプーリ131は、可動側ドリブンプレート150がトルクスプリング155によって固定側ドリブンプレート140に最も近い位置またはその近傍の位置で弾性的に押圧されている。このため、可動側ドリブンプレート150は、カム形成筒体153における凸状カム部154が固定側ドリブンプレート140の固定側スリーブ142に形成された凹状カム部144内の奥深くまで嵌合した状態で回転駆動力を固定側ドリブンプレート140に伝達する。すなわち、可動側ドリブンプレート150は、凸状カム部154と凹状カム部144との接触面積が最大または最大に近い接触面積で回転駆動力を伝達するため、エンジンのアイドリングなどの回転数が不安定になりがちな低回転時において安定的に回転駆動力を固定側ドリブンプレート140に伝達することができる。 In this clutch-off state, the movable side driven plate 150 is elastically pressed by the torque spring 155 at the position closest to or near the fixed side driven plate 140. Therefore, the movable side driven plate 150 rotates in a state where the convex cam portion 154 in the cam forming cylinder 153 is fitted deep inside the concave cam portion 144 formed in the fixed side sleeve 142 of the fixed side driven plate 140. The driving force is transmitted to the fixed side driven plate 140. That is, since the movable side driven plate 150 transmits the rotational driving force in the contact area where the contact area between the convex cam portion 154 and the concave cam portion 144 is the maximum or close to the maximum, the rotation speed such as idling of the engine is unstable. It is possible to stably transmit the rotational driving force to the fixed-side driven plate 140 at the time of low rotation, which tends to be.
 次に、遠心クラッチ200は、自動二輪車両における運転者のアクセル操作によるエンジンの回転数の増加に応じてエンジンの回転駆動力をドライブシャフト145に伝達する。具体的には、遠心クラッチ200は、エンジンの回転数が増加するに従ってクラッチウエイト220に作用する遠心力が連結スプリング223の弾性力(引張力)よりも大きくなってクラッチウエイト220が揺動支持ピン213を中心として径方向外側に向かって回動変位する。 Next, the centrifugal clutch 200 transmits the rotational driving force of the engine to the drive shaft 145 in response to an increase in the number of revolutions of the engine due to the accelerator operation of the driver in the motorcycle. Specifically, in the centrifugal clutch 200, the centrifugal force acting on the clutch weight 220 becomes larger than the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed increases, and the clutch weight 220 becomes a swing support pin. It is rotationally displaced outward in the radial direction around 213.
 すなわち、遠心クラッチ200は、エンジンの回転数が増加するに従ってクラッチウエイト220が連結スプリング223の弾性力(引張力)に抗しながらクラッチアウタ230の円筒面231側に回動変位する結果、クラッチシュー221が円筒面231に接触する。 That is, in the centrifugal clutch 200, the clutch shoe 220 is rotationally displaced toward the cylindrical surface 231 side of the clutch outer 230 while resisting the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed increases. 221 comes into contact with the cylindrical surface 231.
 これにより、クラッチウエイト220は、クラッチシュー221を介して回転駆動方向とは反対方向の反力を受けてドライブプレート210の回転駆動方向とは反対方向に相対変位する。この場合、クラッチウエイト220は、押圧体受け部224aがウエイト押圧体216を回転変位させながらウエイト押圧体216上に乗り上がるに従って径方向外側のクラッチアウタ230側に押されてクラッチシュー221が同円筒面231に強く押し付けられる。 As a result, the clutch weight 220 receives a reaction force in the direction opposite to the rotational drive direction via the clutch shoe 221 and is displaced relative to the direction opposite to the rotational drive direction of the drive plate 210. In this case, the clutch weight 220 is pushed toward the clutch outer 230 on the outer side in the radial direction as the pressing body receiving portion 224a rides on the weight pressing body 216 while rotating and displaces the weight pressing body 216, and the clutch shoe 221 has the same cylinder. It is strongly pressed against the surface 231.
 すなわち、遠心クラッチ200は、クラッチシュー221がクラッチアウタ230の円筒面231に接触した後、極めて短時間(換言すれば、瞬間的)にクラッチシュー221が円筒面231に押し付けられてクラッチウエイト220がウエイト押圧体216とクラッチアウタ230との間に楔状に入り込んだ状態となる。これにより、遠心クラッチ200は、エンジンの回転駆動力を完全にドライブシャフト145に伝達するクラッチオン状態となる。したがって、自動二輪車両は、エンジンの回転駆動力によって後輪が回転駆動して走行することができる。 That is, in the centrifugal clutch 200, after the clutch shoe 221 comes into contact with the cylindrical surface 231 of the clutch outer 230, the clutch shoe 221 is pressed against the cylindrical surface 231 in an extremely short time (in other words, instantaneously), and the clutch weight 220 is released. It is in a state of being inserted in a wedge shape between the weight pressing body 216 and the clutch outer 230. As a result, the centrifugal clutch 200 is in a clutch-on state in which the rotational driving force of the engine is completely transmitted to the drive shaft 145. Therefore, in a motorcycle, the rear wheels can be rotationally driven by the rotational driving force of the engine to travel.
 このクラッチオン状態に移行する過程においてドリブンプーリ131は、エンジンの回転数が増加するに従って可動側ドリブンプレート150がトルクスプリング155の弾性力に抗して固定側ドリブンプレート140に対して離隔する側に変位する。すなわち、可動側ドリブンプレート150に形成された凸状カム部154は、固定側ドリブンプレート140に形成された凹状カム部144に対して図示左側に摺動変位する。これにより、固定側ドリブンプレート140に形成されたカム形成突出部143および凹状カム部144は、カム形成切欠き部153bおよび凸状カム部154との嵌合量が減少してVベルト120側に露出するようになる。 In the process of shifting to the clutch-on state, the driven pulley 131 is moved to the side where the movable side driven plate 150 is separated from the fixed side driven plate 140 against the elastic force of the torque spring 155 as the engine speed increases. Displace. That is, the convex cam portion 154 formed on the movable side driven plate 150 is slidably displaced to the left side in the drawing with respect to the concave cam portion 144 formed on the fixed side driven plate 140. As a result, the cam-forming protruding portion 143 and the concave cam portion 144 formed on the fixed-side driven plate 140 reduce the amount of fitting with the cam-forming notch portion 153b and the convex cam portion 154 to the V-belt 120 side. It will be exposed.
 この場合、ドライブシャフト145は、回転駆動した状態で軸受け146a,146bを介して固定側ドリブンプレート140を支持している。これにより、固定側ドリブンプレート140は、軸受け146a,146bに生じた熱を露出したカム形成切欠き部153bおよび凸状カム部154をそれぞれ介して外部に逃がすことができる。特に、カム形成切欠き部153bおよび凸状カム部154は、軸受け146aに対して大型の軸受け146bの近傍に形成しされているため、軸受け146bに生じた熱を効率的に逃がすことができる。 In this case, the drive shaft 145 supports the fixed-side driven plate 140 via bearings 146a and 146b in a rotationally driven state. As a result, the fixed-side driven plate 140 can release the heat generated in the bearings 146a and 146b to the outside through the cam-forming notch portion 153b and the convex cam portion 154, respectively. In particular, since the cam forming notch portion 153b and the convex cam portion 154 are formed in the vicinity of the large bearing 146b with respect to the bearing 146a, the heat generated in the bearing 146b can be efficiently dissipated.
 一方、エンジンの回転数が減少していく場合においては、遠心クラッチ200は、エンジンの回転駆動力のドライブシャフト145への伝達を遮断する。具体的には、遠心クラッチ200は、エンジンの回転数が減少するに従ってクラッチウエイト220に作用する遠心力が連結スプリング223の弾性力(引張力)よりも小さくなってクラッチウエイト220が揺動支持ピン213を中心として径方向内側に向かって回動変位する。 On the other hand, when the engine speed decreases, the centrifugal clutch 200 cuts off the transmission of the engine rotation driving force to the drive shaft 145. Specifically, in the centrifugal clutch 200, the centrifugal force acting on the clutch weight 220 becomes smaller than the elastic force (tensile force) of the connecting spring 223 as the engine rotation speed decreases, and the clutch weight 220 becomes a swing support pin. It is rotationally displaced inward in the radial direction around 213.
 これにより、クラッチウエイト220は、クラッチシュー221がクラッチアウタ230の円筒面231から離隔して元の位置(前記アイドリング時の位置)に復帰する。すなわち、遠心クラッチ200は、クラッチシュー221がクラッチアウタ230に接触せず回転駆動力を伝達しないクラッチオフ状態となる。 As a result, the clutch shoe 221 returns to the original position (the idling position) of the clutch weight 220 with the clutch shoe 221 separated from the cylindrical surface 231 of the clutch outer 230. That is, the centrifugal clutch 200 is in a clutch-off state in which the clutch shoe 221 does not come into contact with the clutch outer 230 and does not transmit the rotational driving force.
 この場合、ドリブンプーリ131は、エンジンの回転数が減少するに従って可動側ドリブンプレート150がトルクスプリング155の弾性力によって固定側ドリブンプレート140に接近するように変位する。すなわち、固定側ドリブンプレート140に形成された凹状カム部144は、可動側ドリブンプレート150に形成された凸状カム部154が図示右側に摺動変位することで同凸状カム部154との嵌合量が増加して露出量が減少する。 In this case, the driven pulley 131 is displaced so that the movable side driven plate 150 approaches the fixed side driven plate 140 due to the elastic force of the torque spring 155 as the engine speed decreases. That is, the concave cam portion 144 formed on the fixed side driven plate 140 is fitted with the convex cam portion 154 by sliding and displacementing the convex cam portion 154 formed on the movable side driven plate 150 to the right side in the drawing. The total amount increases and the exposure amount decreases.
 上記作動説明からも理解できるように、上記実施形態によれば、プーリ装置130は、固定側ドリブンプレート140の固定側スリーブ142における固定側プレート141の接続部分である固定側接続部分142aに凹状カム部144が形成されているため、固定側接続部分142aの剛性または耐久性を向上させることができる。この場合、固定側スリーブ142は、固定側接続部分142aに溝状の凹状カム部144が形成されることで固定側スリーブ142の肉厚および表面積が増加して剛性を向上させることができるおよび/または円筒状に形成された固定側スリーブ142内の放熱性を向上させて耐久性を向上させることができる。 As can be understood from the above operation description, according to the above embodiment, the pulley device 130 has a concave cam on the fixed side connecting portion 142a which is the connecting portion of the fixed side plate 141 in the fixed side sleeve 142 of the fixed side driven plate 140. Since the portion 144 is formed, the rigidity or durability of the fixed side connecting portion 142a can be improved. In this case, the fixed-side sleeve 142 can be made more rigid by forming a groove-shaped concave cam portion 144 in the fixed-side connecting portion 142a to increase the wall thickness and surface area of the fixed-side sleeve 142. Alternatively, the heat dissipation in the fixed side sleeve 142 formed in a cylindrical shape can be improved to improve the durability.
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Furthermore, the implementation of the present invention is not limited to the above-described embodiment, and various changes can be made as long as the object of the present invention is not deviated.
 例えば、上記実施形態においては、プーリ装置130は、固定側ドリブンプレート140の固定側スリーブ142に凹状カム部144を形成するとともに、可動側ドリブンプレート150の可動側スリーブ152に径方向内側に向かって突出する凸状カム部154を形成して構成した。しかし、プーリ装置130は、固定側ドリブンプレート140の固定側スリーブ142に径方向の外側に向かって突出する凸状カム部154を形成するとともに、可動側ドリブンプレート150の可動側スリーブ152に凹状カム部144を形成して構成することもできる。この場合、プーリ装置130は、固定側ドリブンプレート140の固定側スリーブ142に溝状または貫通孔状のカム形成切欠き部153bを形成するとともに、可動側ドリブンプレート150の可動側スリーブ152にカム形成突出部143を形成することになる。 For example, in the above embodiment, the pulley device 130 forms a concave cam portion 144 on the fixed side sleeve 142 of the fixed side driven plate 140, and radially inwardly on the movable side sleeve 152 of the movable side driven plate 150. A protruding convex cam portion 154 was formed and configured. However, the pulley device 130 forms a convex cam portion 154 protruding outward in the radial direction on the fixed side sleeve 142 of the fixed side driven plate 140, and a concave cam on the movable side sleeve 152 of the movable side driven plate 150. It is also possible to form and configure the portion 144. In this case, the pulley device 130 forms a groove-shaped or through-hole-shaped cam-forming notch 153b in the fixed-side sleeve 142 of the fixed-side driven plate 140, and also forms a cam in the movable-side sleeve 152 of the movable-side driven plate 150. The protrusion 143 will be formed.
 すなわち、凹状カム部144は、固定側スリーブ142における固定側接続部分142aおよび可動側スリーブ152における可動側接続部分152bのうちの一方にらせん状に延びて貫通孔状または溝状に形成することができる。また、この場合、凸状カム部154は、固定側接続部分142aおよび可動側接続部分152bのうちの他方に径方向に突出して凹状カム部144内に摺動可能に嵌合するように形成することができる。 That is, the concave cam portion 144 may be formed in a through-hole shape or a groove shape by spirally extending to one of the fixed side connecting portion 142a in the fixed side sleeve 142 and the movable side connecting portion 152b in the movable side sleeve 152. it can. Further, in this case, the convex cam portion 154 is formed so as to project radially to the other of the fixed side connecting portion 142a and the movable side connecting portion 152b so as to be slidably fitted in the concave cam portion 144. be able to.
 また、上記実施形態においては、凹状カム部144は、有底の溝状に形成した。しかし、凹状カム部144は、固定側接続部分142aを貫通する貫通孔が固定側スリーブ142の軸方向にらせん状に延びて形成することもできる。これによれば、プーリ装置130は、固定側スリーブ142に貫通孔状の凹状カム部144が形成されているため、固定側スリーブ142の内部に対する通気性を確保して放熱性を向上させて耐久性を向上させることができる。なお、凹状カム部144は、可動側スリーブ152に形成する場合においても貫通孔状に形成することができる。 Further, in the above embodiment, the concave cam portion 144 is formed in a bottomed groove shape. However, the concave cam portion 144 can also be formed with a through hole penetrating the fixed side connecting portion 142a extending spirally in the axial direction of the fixed side sleeve 142. According to this, in the pulley device 130, since the concave cam portion 144 having a through hole shape is formed in the fixed side sleeve 142, the air permeability to the inside of the fixed side sleeve 142 is ensured to improve the heat dissipation and durability. The sex can be improved. The concave cam portion 144 can be formed in the shape of a through hole even when it is formed on the movable side sleeve 152.
 また、上記実施形態においては、凹状カム部144は、固定側スリーブ142の外周面上に形成したカム形成突出部143によって形成した。これにより、凹状カム部144は、カム形成突出部143を固定側スリーブ142の肉厚を厚くしたリブとして機能させて剛性および耐久性を向上させることができる。しかし、凹状カム部144は、固定側スリーブ142の外周面の表面から凹状に窪んだ溝状または貫通孔状に形成することもできる。 Further, in the above embodiment, the concave cam portion 144 is formed by the cam forming protruding portion 143 formed on the outer peripheral surface of the fixed side sleeve 142. As a result, the concave cam portion 144 can function the cam forming protrusion 143 as a rib having a thicker wall thickness on the fixed side sleeve 142 to improve the rigidity and durability. However, the concave cam portion 144 can also be formed in the shape of a groove or a through hole recessed from the surface of the outer peripheral surface of the fixed side sleeve 142.
 また、上記実施形態においては、凸状カム部154は、カム形成筒体153の端部に軸方向にらせん状に張り出して形成されている。これにより、凸状カム部154は、可動側スリーブ152の内周面からレール状に突出して形成される。しかし、凸状カム部154は、可動側スリーブ152の内周面から凸状に突出して凹状カム部144内に摺動自在に嵌合するように構成されていればよい。したがって、凸状カム部154は、例えば、棒状態で構成されたピン状に形成することもできる。 Further, in the above embodiment, the convex cam portion 154 is formed so as to spirally project in the axial direction at the end portion of the cam forming cylinder 153. As a result, the convex cam portion 154 is formed so as to project in a rail shape from the inner peripheral surface of the movable side sleeve 152. However, the convex cam portion 154 may be configured so as to project convexly from the inner peripheral surface of the movable side sleeve 152 and be slidably fitted in the concave cam portion 144. Therefore, the convex cam portion 154 can be formed in a pin shape formed in a rod state, for example.
 また、上記実施形態においては、凸状カム部154は、可動側スリーブ152とは別体で構成されたカム形成筒体153に形成した。しかし、凸状カム部154は、可動側スリーブ152の内周面から凸状に突出して凹状カム部144内に摺動自在に嵌合するように構成されていればよい。したがって、凸状カム部154は、可動側スリーブ152の内周面に直接形成して構成することもできる。これにより、プーリ装置130は、部品点数を抑えて構成することができる。なお、凸状カム部154は、固定側スリーブ142に形成する場合においても固定側スリーブ142に直接または別体の部品を介して形成することができる。また、凹状カム部144についても、固定側スリーブ142または可動側スリーブ152に対して別体の部品を介して形成することができる。 Further, in the above embodiment, the convex cam portion 154 is formed on the cam forming cylinder 153 which is formed separately from the movable side sleeve 152. However, the convex cam portion 154 may be configured so as to project convexly from the inner peripheral surface of the movable side sleeve 152 and be slidably fitted in the concave cam portion 144. Therefore, the convex cam portion 154 can be formed and configured directly on the inner peripheral surface of the movable side sleeve 152. As a result, the pulley device 130 can be configured with a reduced number of parts. Even when the convex cam portion 154 is formed on the fixed side sleeve 142, it can be formed directly on the fixed side sleeve 142 or via a separate component. Further, the concave cam portion 144 can also be formed via a separate component with respect to the fixed side sleeve 142 or the movable side sleeve 152.
 また、上記実施形態においては、プーリ装置130は、凹状カム部144を金属材料で構成するとともに凸状カム部154を樹脂材料で構成した。すなわち、プーリ装置130は、凹状カム部144と凸状カム部154とを互いに異なる材料で構成した。これにより、遠心クラッチ200は、凹状カム部144と凸状カム部154との間の摺動性の向上および摩耗劣化の抑制を図ることができる。この場合、プーリ装置130は、凹状カム部144を樹脂材料で構成するとともに凸状カム部154を金属材料で構成することもできる。また、凹状カム部144および凸状カム部154は、金属材および樹脂材以外の材料、例えば、セラミック材で構成することもできる。また、プーリ装置130は、凹状カム部144と凸状カム部154とを互いに同じ材料で構成することもできる。 Further, in the above embodiment, in the pulley device 130, the concave cam portion 144 is made of a metal material and the convex cam portion 154 is made of a resin material. That is, in the pulley device 130, the concave cam portion 144 and the convex cam portion 154 are made of different materials. As a result, the centrifugal clutch 200 can improve the slidability between the concave cam portion 144 and the convex cam portion 154 and suppress wear deterioration. In this case, in the pulley device 130, the concave cam portion 144 may be made of a resin material and the convex cam portion 154 may be made of a metal material. Further, the concave cam portion 144 and the convex cam portion 154 may be made of a material other than the metal material and the resin material, for example, a ceramic material. Further, in the pulley device 130, the concave cam portion 144 and the convex cam portion 154 can be made of the same material.
 また、上記実施形態においては、プーリ装置130は、凹状カム部144および凸状カム部154をそれぞれ3つずつ形成して構成した。しかし、プーリ装置130は、凹状カム部144および凸状カム部154を少なくとも一組ずつ形成して構成すればよい。 Further, in the above embodiment, the pulley device 130 is configured by forming three concave cam portions 144 and three convex cam portions 154, respectively. However, the pulley device 130 may be configured by forming at least one set of a concave cam portion 144 and a convex cam portion 154.
 また、上記実施形態においては、遠心クラッチ200は、ウエイト押圧体216、押圧体収容部224および押圧体受け部224aをそれぞれ備えて構成した。しかし、遠心クラッチ200は、ウエイト押圧体216、押圧体収容部224および押圧体受け部224aを省略して構成することもできる。また、遠心クラッチ200は、ピン摺動孔222を平面視で長孔状に形成した。しかし、遠心クラッチ200は、ピン摺動孔222を平面視で円状に形成することもできる。 Further, in the above embodiment, the centrifugal clutch 200 is configured to include a weight pressing body 216, a pressing body accommodating portion 224, and a pressing body receiving portion 224a, respectively. However, the centrifugal clutch 200 may be configured by omitting the weight pressing body 216, the pressing body accommodating portion 224, and the pressing body receiving portion 224a. Further, in the centrifugal clutch 200, the pin sliding holes 222 are formed in a long hole shape in a plan view. However, the centrifugal clutch 200 can also form the pin sliding holes 222 in a circular shape in a plan view.
 また、上記実施形態においては、プーリ装置130は、遠心クラッチ200に適用した。しかし、プーリ装置130は、エンジンまたは電動モータなどの駆動源からの駆動力をドライブシャフト145などの出力軸に伝達する機械装置に広く適用することができる。したがって、プーリ装置130は、例えば、対向配置される2つのプレート、具体的には、平板環状の芯金の表面に摩擦材を設けた複数の摩擦プレートと摩擦材がない複数のクラッチプレートとを互いに押し付け合うことにより回転駆動力の伝達または遮断を行う多板クラッチに適用することもできる。また、プーリ装置130は、電動モータを駆動源として自走する電気自動車において電動モータと駆動輪との間の駆動力伝達機構の一部に設けることもできる。 Further, in the above embodiment, the pulley device 130 is applied to the centrifugal clutch 200. However, the pulley device 130 can be widely applied to a mechanical device that transmits a driving force from a driving source such as an engine or an electric motor to an output shaft such as a drive shaft 145. Therefore, the pulley device 130 includes, for example, two plates arranged to face each other, specifically, a plurality of friction plates provided with a friction material on the surface of a flat plate annular core metal and a plurality of clutch plates having no friction material. It can also be applied to a multi-plate clutch that transmits or shuts off rotational driving force by pressing against each other. Further, the pulley device 130 may be provided as a part of the driving force transmission mechanism between the electric motor and the driving wheels in the self-propelled electric vehicle using the electric motor as the driving source.
100…動力伝達機構、101…変速機、
110…ドライブプーリ、111…クランク軸、112…固定ドライブプレート、112a…放熱フィン、113…可動ドライブプレート、114…スリーブ軸受、115…ローラウエイト、116…ランププレート、
120…Vベルト、
130…プーリ装置、131…ドリブンプーリ、
140…固定側ドリブンプレート、141…固定側プレート、142…固定側スリーブ、142a…固定側接続部分、143…カム形成突出部、144…凹状カム部、145…ドライブシャフト、146a,146b…軸受け、
150…可動側ドリブンプレート、151…可動側プレート、152…可動側スリーブ、152a…カム連結部、152b…可動側接続部分、153…カム形成筒体、153a…スリーブ連結部、153b…カム形成切欠き部、154…凸状カム部、155…トルクスプリング、
200…遠心クラッチ、
210…ドライブプレート、211…底部、212…鍔部、213…揺動支持ピン、213a…取付ボルト、214…サイドプレート、215…ウエイト押圧体支持部、216…ウエイト押圧体、
220…クラッチウエイト、221…クラッチシュー、222…ピン摺動孔、223…連結スプリング、224…押圧体収容部、224a…押圧体受け部、
230…クラッチアウタ、231…円筒面。
100 ... Power transmission mechanism, 101 ... Transmission,
110 ... Drive pulley, 111 ... Crankshaft, 112 ... Fixed drive plate, 112a ... Radiation fin, 113 ... Movable drive plate, 114 ... Sleeve bearing, 115 ... Roller weight, 116 ... Lamp plate,
120 ... V belt,
130 ... pulley device, 131 ... driven pulley,
140 ... Fixed side driven plate, 141 ... Fixed side plate, 142 ... Fixed side sleeve, 142a ... Fixed side connection part, 143 ... Cam forming protrusion, 144 ... Concave cam part, 145 ... Drive shaft, 146a, 146b ... Bearing,
150 ... Movable side driven plate, 151 ... Movable side plate, 152 ... Movable side sleeve, 152a ... Cam connecting part, 152b ... Movable side connecting part, 153 ... Cam forming cylinder, 153a ... Sleeve connecting part, 153b ... Cam forming cutoff Notch, 154 ... Convex cam, 155 ... Torque spring,
200 ... Centrifugal clutch,
210 ... drive plate, 211 ... bottom, 212 ... collar, 213 ... rocking support pin, 213a ... mounting bolt, 214 ... side plate, 215 ... weight pressing body support, 216 ... weight pressing body,
220 ... Clutch weight, 221 ... Clutch shoe, 222 ... Pin sliding hole, 223 ... Connecting spring, 224 ... Pressing body accommodating part, 224a ... Pressing body receiving part,
230 ... Clutch outer, 231 ... Cylindrical surface.

Claims (6)

  1.  円筒状に形成された固定側スリーブの外周面上に径方向外側にフランジ状に張り出した固定側プレートを有して駆動源からの駆動力をベルトを介して受けて回転駆動する固定側ドリブンプレートと、
     円筒状に形成された可動側スリーブの外周面上に径方向外側にフランジ状に張り出して前記固定側プレートとともに前記ベルトを挟む可動側プレートを有して前記固定側プレートに対して接近または離隔しながら前記駆動源からの駆動力を前記ベルトを介して受けて回転駆動する可動側ドリブンプレートと、
     前記固定側スリーブにおける前記固定側プレートの接続部分である固定側接続部分および前記可動側スリーブにおける前記可動側プレートの接続部分である可動側接続部分のうちの一方にらせん状に延びる貫通孔状または溝状に形成された凹状カム部と、
     前記固定側接続部分および前記可動側接続部分のうちの他方に径方向に突出して形成されて前記凹状カム部内に摺動可能に嵌合する凸状カム部とを備えることを特徴とするプーリ装置。
    A fixed-side driven plate that has a fixed-side plate that projects radially outward on the outer peripheral surface of the fixed-side sleeve that is formed in a cylindrical shape and receives the driving force from the drive source via a belt to rotate and drive. When,
    It has a movable side plate that projects radially outward on the outer peripheral surface of the movable side sleeve formed in a cylindrical shape and sandwiches the belt together with the fixed side plate, and approaches or separates from the fixed side plate. While receiving the driving force from the driving source via the belt and rotationally driving the movable side driven plate,
    A through hole or a through hole extending spirally into one of the fixed side connection portion which is the connection portion of the fixed side plate in the fixed side sleeve and the movable side connection portion which is the connection portion of the movable side plate in the movable side sleeve. The concave cam part formed in a groove shape and
    A pulley device comprising a convex cam portion formed so as to project radially in the other of the fixed side connecting portion and the movable side connecting portion and slidably fitted in the concave cam portion. ..
  2.  請求項1に記載したプーリ装置において、
     前記凹状カム部は、
     前記固定側スリーブの外周面または前記可動側スリーブの内周面から突出するカム形成突出部に形成されていることを特徴とするプーリ装置。
    In the pulley device according to claim 1,
    The concave cam portion is
    A pulley device that is formed on a cam-forming protrusion that protrudes from the outer peripheral surface of the fixed-side sleeve or the inner peripheral surface of the movable-side sleeve.
  3.  請求項2に記載したプーリ装置において、
     前記凸状カム部は、
     前記固定側スリーブの外周面または前記可動側スリーブの内周面から突出して軸方向にらせん状に延びて形成されていることを特徴とするプーリ装置。
    In the pulley device according to claim 2,
    The convex cam portion is
    A pulley device characterized in that it protrudes from the outer peripheral surface of the fixed-side sleeve or the inner peripheral surface of the movable-side sleeve and extends spirally in the axial direction.
  4.  請求項1ないし請求項3のうちのいずれか1つに記載したプーリ装置において、
     前記可動側ドリブンプレートは、
     同可動側ドリブンプレートとは別体で構成されて前記可動側スリーブに嵌合して一体的に回転駆動するカム形成筒体を備え、
     前記可動側スリーブに形成される前記凹状カム部または前記凸状カム部は、
     前記カム形成筒体に形成されていることを特徴とするプーリ装置。
    In the pulley device according to any one of claims 1 to 3.
    The movable side driven plate is
    It is provided with a cam-forming cylinder that is formed separately from the movable-side driven plate and that is fitted to the movable-side sleeve and integrally rotationally driven.
    The concave cam portion or the convex cam portion formed on the movable side sleeve is
    A pulley device characterized in that it is formed on the cam forming cylinder.
  5.  請求項1ないし請求項4のうちのいずれか1つに記載したプーリ装置において、
     前記凹状カム部および前記凸状カム部は、
     互いに異種材料によって構成されていることを特徴とするプーリ装置。
    In the pulley device according to any one of claims 1 to 4.
    The concave cam portion and the convex cam portion
    A pulley device characterized by being composed of different materials from each other.
  6.  請求項1ないし請求項5のうちのいずれか1つに記載したプーリ装置と、
     前記固定側スリーブに連結されて前記固定側ドリブンプレートと一体的に回転駆動するドライブプレートと、
     前記ドライブプレートの外側にこのドライブプレートと同心で設けられた円筒面を有して出力軸に連結されるクラッチアウタと、
     前記ドライブプレートの周方向に沿って延びて形成されて前記クラッチアウタの円筒面に面するクラッチシューを有して前記周方向における一方の端部側が前記ドライブプレートに回動可能に取り付けられるとともに他方の端部側が前記クラッチアウタの円筒面側に向かって変位するクラッチウエイトとを備えることを特徴とする遠心クラッチ。
    The pulley device according to any one of claims 1 to 5.
    A drive plate that is connected to the fixed-side sleeve and rotationally driven integrally with the fixed-side driven plate.
    A clutch outer that has a cylindrical surface provided concentrically with the drive plate on the outside of the drive plate and is connected to the output shaft.
    It has a clutch shoe that extends along the circumferential direction of the drive plate and faces the cylindrical surface of the clutch outer, and one end side in the circumferential direction is rotatably attached to the drive plate and the other. A centrifugal clutch comprising a clutch weight whose end side is displaced toward the cylindrical surface side of the clutch outer.
PCT/JP2020/036464 2019-10-17 2020-09-25 Pulley device and centrifugal clutch WO2021075237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080065202.8A CN114450499A (en) 2019-10-17 2020-09-25 Pulley device and centrifugal clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190523A JP2021067278A (en) 2019-10-17 2019-10-17 Pulley device and centrifugal clutch
JP2019-190523 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021075237A1 true WO2021075237A1 (en) 2021-04-22

Family

ID=75537794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036464 WO2021075237A1 (en) 2019-10-17 2020-09-25 Pulley device and centrifugal clutch

Country Status (4)

Country Link
JP (1) JP2021067278A (en)
CN (1) CN114450499A (en)
TW (1) TW202117207A (en)
WO (1) WO2021075237A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233049A (en) * 1995-02-28 1996-09-10 Aichi Mach Ind Co Ltd Torque cam mechanism of continuously variable transmission
US20060276280A1 (en) * 2002-06-19 2006-12-07 Jonckheere Marc R Utility machinery and associated control arrangements
JP2007278449A (en) * 2006-04-10 2007-10-25 Yamada Seisakusho Co Ltd V-belt type automatic transmission
JP2015203429A (en) * 2014-04-11 2015-11-16 株式会社エフ・シー・シー centrifugal clutch
JP2017082971A (en) * 2015-10-30 2017-05-18 株式会社エクセディ Pulley device
JP2017096352A (en) * 2015-11-20 2017-06-01 株式会社エクセディ Pulley device
WO2018055514A1 (en) * 2016-09-21 2018-03-29 Piaggio & C. S.P.A. Continuously variable transmission device with device for varying the transmission curve
JP2019127993A (en) * 2018-01-24 2019-08-01 株式会社エクセディ Pulley device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233049A (en) * 1995-02-28 1996-09-10 Aichi Mach Ind Co Ltd Torque cam mechanism of continuously variable transmission
US20060276280A1 (en) * 2002-06-19 2006-12-07 Jonckheere Marc R Utility machinery and associated control arrangements
JP2007278449A (en) * 2006-04-10 2007-10-25 Yamada Seisakusho Co Ltd V-belt type automatic transmission
JP2015203429A (en) * 2014-04-11 2015-11-16 株式会社エフ・シー・シー centrifugal clutch
JP2017082971A (en) * 2015-10-30 2017-05-18 株式会社エクセディ Pulley device
JP2017096352A (en) * 2015-11-20 2017-06-01 株式会社エクセディ Pulley device
WO2018055514A1 (en) * 2016-09-21 2018-03-29 Piaggio & C. S.P.A. Continuously variable transmission device with device for varying the transmission curve
JP2019127993A (en) * 2018-01-24 2019-08-01 株式会社エクセディ Pulley device

Also Published As

Publication number Publication date
TW202117207A (en) 2021-05-01
CN114450499A (en) 2022-05-06
JP2021067278A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US11149805B2 (en) Centrifugal clutch
WO2019138653A1 (en) Centrifugal clutch
TWI732941B (en) Centrifugal clutch
US11415187B2 (en) Centrifugal clutch
WO2019138649A1 (en) Centrifugal clutch
WO2021075239A1 (en) Pulley device and centrifugal clutch
JP6503152B1 (en) Centrifugal clutch
WO2021075237A1 (en) Pulley device and centrifugal clutch
CN109844345B (en) Centrifugal clutch
WO2019230574A1 (en) Centrifugal clutch
JP6510159B1 (en) Centrifugal clutch
JP2021067281A5 (en)
JP6796624B2 (en) Continuously variable transmission
JP6501224B2 (en) Pulley device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876739

Country of ref document: EP

Kind code of ref document: A1