WO2021074993A1 - Showcase - Google Patents

Showcase Download PDF

Info

Publication number
WO2021074993A1
WO2021074993A1 PCT/JP2019/040632 JP2019040632W WO2021074993A1 WO 2021074993 A1 WO2021074993 A1 WO 2021074993A1 JP 2019040632 W JP2019040632 W JP 2019040632W WO 2021074993 A1 WO2021074993 A1 WO 2021074993A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
refrigerant
blower
evaporator
showcase
Prior art date
Application number
PCT/JP2019/040632
Other languages
French (fr)
Japanese (ja)
Inventor
杉本 猛
大林 誠善
賢一 実川
恵子 保坂
充 川島
千尋 田中
Original Assignee
三菱電機株式会社
三菱電機冷熱応用システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機冷熱応用システム株式会社 filed Critical 三菱電機株式会社
Priority to JP2021552032A priority Critical patent/JP7258174B2/en
Priority to PCT/JP2019/040632 priority patent/WO2021074993A1/en
Publication of WO2021074993A1 publication Critical patent/WO2021074993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a showcase installed in a store such as a supermarket or a convenience store.
  • Patent Document 1 a refrigerating device which is a condensing unit including a compressor and a heat source side heat exchanger, a plurality of drawing devices, and a plurality of indoor heat exchangers connected so as to be a pair thereof.
  • a device in which a plurality of showcases composed of the above are connected by a refrigerant pipe is disclosed.
  • the Freon Emission Control Law stipulates that the global warming potential of the refrigerant used in the refrigerating equipment connected to the showcase must be 1500 or less by 2025.
  • a refrigerant a hydrofluorocarbon-based mixed refrigerant such as R404A is used, but the global warming potential of R404A is 3920, which is higher than the value specified by the CFC Emission Control Law.
  • the global warming potential of R410A is 2090, which is higher than the value specified by the Freon Emission Control Law. Therefore, it is urgently necessary to implement measures to reduce the total amount of global warming potential.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a showcase capable of ensuring safety against leakage of a refrigerant.
  • the showcase according to the present invention has a refrigerant circuit in which a compressor, a condenser, a drawing device, and an evaporator are connected by a pipe and a refrigerant circulates, and a plurality of shelves, and absorbs heat from the evaporator of the refrigerant circuit.
  • a dexterous blower, an operation panel into which an operation pattern is input, and a control device for controlling the refrigerant circuit according to the operation pattern input to the operation panel are provided, and the control device is input by the operation panel.
  • the operation pattern is all-hot to turn on all of the plurality of heaters or to stop the compressor of the refrigerant circuit
  • the condenser blower is operated and the amount of air blown by the condenser blower is operated. Is raised and controlled according to the usage time.
  • the blower for the condenser is operated, so that the refrigerant should leak.
  • the blower for the condenser since it is suppressed from diffusing to reach the combustion concentration of the refrigerant, safety against leakage of the refrigerant can be ensured.
  • FIG. It is a schematic diagram which shows the showcase which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the drain water evaporation apparatus of the showcase which concerns on Embodiment 1.
  • FIG. It is a figure which shows the positional relationship between the condenser of the showcase and the blower for a condenser which concerns on Embodiment 1.
  • FIG. It is a figure which shows the operation pattern of each shelf of the showcase which concerns on Embodiment 1.
  • FIG. It is a figure which shows the concentration measurement point at the time of leakage of the propane refrigerant when the showcase which concerns on Embodiment 1 is seen from the front.
  • FIG. 1 It is a figure which shows the concentration measurement point at the time of leakage of the propane refrigerant which looked at the showcase which concerns on Embodiment 1 from the upper surface. It is a figure which shows the concentration measurement result of the propane refrigerant at the concentration measurement points E, C and D for each operation pattern of the showcase which concerns on Embodiment 1.
  • FIG. It is a figure which shows the refrigeration cycle of the showcase which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows the control function of the blower for a condenser of the control part of the showcase 1 which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the showcase 1 which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the machine room of the showcase which concerns on Embodiment 3.
  • FIG. 1 is a schematic view showing a showcase 1 according to the first embodiment.
  • FIG. 2 is a schematic view showing the drain water evaporator 22 of the showcase 1 according to the first embodiment.
  • the showcase 1 of the first embodiment is a showcase with a built-in refrigerator.
  • the showcase 1 of the first embodiment is a vertical open showcase, and includes a heat insulating wall 8 having an open front surface and side plates (not shown) attached to both sides of the heat insulating wall 8.
  • Inner layer partition plates 9 are attached to the inside of the heat insulating wall 8 at intervals, and an inner layer duct 10 is formed between the heat insulating wall 8 and the inner layer partition plate 9. Further, the storage chamber 11 is inside the inner layer partition plate 9.
  • the heat insulating wall 8 and the inner layer partition plate 9 are also referred to as a housing.
  • a four-level shelf 12 for displaying products is erected. Fluorescent lamps 13 for lighting are attached to the front portion of the lower surface of each shelf 12 and the ceiling portion 10a of the storage chamber 11.
  • a bottom duct 14 communicating with the inner layer duct 10 is provided below the bottom of the storage chamber 11.
  • an in-compartment blower 15 is installed in the bottom duct 14.
  • an evaporator 5 is vertically installed in the lower part of the inner layer duct 10 located behind the storage chamber 11.
  • An air outlet 17 is installed on the upper edge of the front opening 16 of the storage chamber 11, and a suction port 18 is attached to the lower edge of the front opening 16.
  • the lower portion of the bottom partition plate 19 forming the bottom surface of the bottom duct 14 is the machine room 20.
  • the bottom partition plate 19 is provided with a drain pan 21 that receives drain water such as defrost water generated from the evaporator 5.
  • the drain pan 21 is provided with a drain port 21a for dropping the drain water toward the drain water evaporator 22 in the machine room 20.
  • the drain water evaporator 22 includes an evaporating dish 23 for storing drain water, a plurality of evaporation plates 24, and a plurality of support members 27 for integrally supporting the plurality of evaporation plates 24.
  • the arrows indicate the wind passing direction.
  • the plurality of evaporation plates 24 are arranged so as to be parallel to the wind passing direction.
  • the plurality of evaporation plates 24 are arranged on the evaporation dish 23.
  • the evaporation plate 24 is made of, for example, a non-woven fabric in which PET (polyethylene terephthalate) and glass fibers are integrated, a porous resin molded product, or the like.
  • the compressor 2, the condenser 3, the drawing device 4, and the evaporator 5 at the top of the bottom partition plate 19 are sequentially connected by a pipe, and the refrigerant circulates in the pipe.
  • the refrigerant discharged from the compressor 2 is radiated to the outside air blown by the condenser blower 6 by the condenser 3, cooled, decompressed by the throttle device 4, evaporated by the evaporator 5, and returned to the compressor 2. By returning, the refrigeration cycle of showcase 1 is formed.
  • the refrigerant which is the working fluid of the showcase 1 according to the first embodiment will be described.
  • a flammable refrigerant which is an HC refrigerant having a global warming potential of 1500 or less is used, and for example, propane and isobutane are used.
  • propane and isobutane are used.
  • Propane has a global warming potential of 3.3
  • isobutane has a global warming potential of 4.
  • the global warming potential is also abbreviated as GWP.
  • the showcase 1 of the actual form 1 is an integrated device including a refrigeration cycle device, it can be miniaturized. Therefore, for example, in the case of propane, the filling amount of the refrigerant can be reduced to about 500 g because the liquid density is small.
  • the upper limit of filling of flammable refrigerant in household and commercial refrigeration equipment was deregulated and increased from 150g to 500g. Therefore, even when a flammable refrigerant having a global warming potential of 1500 or less such as propane is used, it is possible to provide a showcase that satisfies the safety standard against leakage of the refrigerant.
  • the air in the bottom duct 14 is blown out toward the rear inner layer duct 10, exchanges heat with the evaporator 5, and then blown up from the air outlet 17 on the upper edge of the front opening 16. , Is blown out toward the suction port 18 on the lower edge.
  • a cold air air curtain is formed in the front opening 16 of the storage chamber 11, and the intrusion of outside air from the front opening 16 is blocked or suppressed, and a part of the cold air curtain circulates in the storage chamber 11. Then, the inside of the storage chamber 11 is cooled.
  • the front opening 16 is closed by a night cover 31 (not shown). Then, these cold air and the like return from the suction port 18 to the bottom duct 14, and are sucked into the in-compartment blower 15 again.
  • drain water such as defrost water from the evaporator 5 falls on the drain pan 21, drain water falls from the drain port 21a onto the evaporation plate 24 of the drain water evaporator 22, and accumulates in the evaporating dish 23. ..
  • the drain water accumulated in the evaporating dish 23 is sucked up by the evaporating plate 24 due to the capillary phenomenon.
  • the drain water accumulated in the evaporating dish 23 may be sucked up by a pump or the like and sprinkled from above the evaporation plate 24.
  • the air from the condenser blower 6 passes through the condenser 3 and is warmed, and then flows toward the drain water evaporator 22.
  • the warm air flowing toward the drain water evaporator 22 is applied to the evaporation plate 24 of the drain water evaporator 22, whereby the drain water contained in the evaporation plate 24 evaporates.
  • frost formation progresses, the amount of heat exchange in the evaporator 5 decreases and the evaporation performance deteriorates. Therefore, the state of frost formation is detected, and for example, when the compressor 2 operates for a predetermined time, the evaporator 5 is defrosted. carry out.
  • a heater (not shown) is arranged in the evaporator 5, and defrosting is performed by energizing the heater for a predetermined time.
  • the drain water falls on the drain pan 21 as described above, and the drain water falls from the drain port 21a onto the evaporation plate 24 of the drain water evaporator 22 and accumulates in the evaporating dish 23.
  • the evaporating dish 23 may be provided with a float switch (not shown) for detecting the amount of drain water.
  • FIG. 4 is a diagram showing an operation pattern of each shelf 12 of the showcase 1 according to the first embodiment.
  • the first-stage AA, the second-stage BB, the third-stage CC, and the fourth-stage DD of the shelf 12 can handle both hot (heating) and cold (cooling), respectively.
  • the operation patterns of the first stage AA, the second stage BB, the third stage CC, and the fourth stage DD of the shelf 12 can be operated in four patterns of hole hot, second stage hot, one stage hot, and all cold. Further, when the operation is stopped, the stop is instructed as an operation pattern.
  • "Stop" is a stop of the compressor 2.
  • the “cooling operation” is an operation in which at least one of the first-stage AA, the second-stage BB, the third-stage CC, and the fourth-stage DD of the shelf 12 is cooled.
  • the heater 28 built into the corresponding shelf 12 is heated.
  • all the heaters 28 on the shelves 12 of the first-stage AA to the fourth-stage DD are heated.
  • the refrigerant circulates and cools the compressor 2, the condenser 3, the drawing device 4, and the evaporator 5.
  • the number of shelves 12 is 4 shelves, but other shelves such as 3 shelves and 5 shelves may be used.
  • the operation pattern is determined by the number of shelves.
  • the internal blower 15 is in operation except when it is all hot, and is stopped when it is all hot.
  • a plurality of holes are provided in the inner layer partition plate 9 on the front surface of the evaporator 5 so that cold air can be blown out. It is provided.
  • the refrigerant leaks from the evaporator 5
  • the leaked refrigerant may leak from the storage chamber 11 to the outside through a plurality of holes provided in the inner layer partition plate 9 as shown by arrows EE and FF shown in FIG.
  • the refrigerant leaking from the evaporator 5 may leak into the machine room 20 from the drain port 21a of the drain pan 21.
  • the fluorescent lamp 13, the in-compartment blower 15, and the heater 28, which are the parts in the showcase 1, can be structurally supported so as not to be an ignition source.
  • an outlet outside the showcase 1 may be an ignition source, and it is important to reduce the leakage concentration of the refrigerant outside the showcase 1.
  • FIG. 5 is a diagram showing concentration measurement points when the propane refrigerant leaks when the showcase 1 according to the first embodiment is viewed from the front.
  • FIG. 6 is a diagram showing concentration measurement points when the propane refrigerant leaks when the showcase 1 according to the first embodiment is viewed from the upper surface.
  • the concentration measurement point indicates the refrigerant concentration measurement point shown from IEC 60335-2-89: 2019.
  • the AFV in FIG. 5 is a front view of the showcase 1
  • the APB in FIG. 6 is a top view of the showcase 1
  • X is the distance from the wall specified by the manufacturer of the showcase 1 and 50 mm from the wall. Whichever is greater.
  • FL indicates the floor of the test room
  • R indicates the wall of the test room
  • A, B, C, D, and E indicate the concentration measurement points
  • the asterisk indicates the refrigerant leakage point (evaporator).
  • JISC9335-2-24 or JISC9335-2-89 When the refrigerant leaks, the method for simulating the refrigerant leak from the refrigerant circuit is shown in JISC9335-2-24 or JISC9335-2-89.
  • a refrigerant leak test was carried out by the method of JISC9335-2-24 or JISC9335-2-89, and the concentrations were measured at the concentration measuring points E, C and D having a high leakage concentration shown in IEC 60335-2-89: 2019.
  • FIG. 7 is a diagram showing the concentration measurement results of the propane refrigerant at the concentration measurement points E, C and D for each operation pattern of the showcase 1 according to the first embodiment.
  • FIG. 7 as a condition, a case where the leakage position of the refrigerant is from the evaporator 5 arranged in the refrigerator and a case where the leakage position is from the condenser 3 arranged in the machine room are shown.
  • the operation pattern also shows the case of all cold, one-stage hot, two-stage hot, and all-hot.
  • the condenser blower 6 uses a DC (Direct current) brushless blower that does not have a brush structure and no internal contact structure, and is being tested at full speed, medium speed, and stop.
  • the internal blower 15 also uses a DC brushless blower and is being tested at full speed and stopped. Since the brush motor electrically opens and closes at the brush portion in the process of rotating the coil, sparks may fly, and care must be taken when using a flammable refrigerant. On the other hand, in a DC brushless blower using a DC brushless motor, since the coil does not rotate and the brush portion does not exist, it does not open and close electrically, and it is safe to use a flammable refrigerant.
  • the test results show the highest indoor concentration (vol%) at concentration measurement points E, C and D.
  • the amount of refrigerant is 500 g, which is the permissible filling amount of flammable refrigerant revised in IEC 60335-2-89: 2019, and the leakage rate is set to 7.5 kg / h for 4 minutes.
  • the minimum concentration at which flammable gas mixed with air causes combustion by ignition is called the lower combustion limit (LFL).
  • LFL is 2.1 (vol%) in the case of propane.
  • the condenser blower 6 is stopped because the cooling operation is not normally performed, but even if the condenser blower 6 is stopped, the LFL of propane may be exceeded. Further, when the refrigerant leaks from the evaporator 5, even if the refrigerant circuit which is a unit is stopped, if the condenser blower 6 is stopped, the LFL of propane may be exceeded.
  • the refrigerant leaking from the evaporator 5 is stored as shown in EE and FF in FIG. 1 through a cold air blowing hole (not shown) of the inner layer partition plate 9 on the front surface of the evaporator 5. It may leak from the room 11 to the outside. In this case, when the condenser blower 6 is operating, the leaked refrigerant is agitated and the concentration becomes low.
  • the required air volume of the condenser blower 6 shall be equal to or greater than the blown air volume using the proposed formula of Colbourne. Further, although the number of blowers 6 for the condenser is one, it is possible to provide more safety by using a plurality of blowers 6.
  • the air volume passing through the condenser 3 is from the initial operation. Will also decrease, exceeding LFL.
  • the amount of air blown by the condenser blower 6 may be controlled to be increased according to the usage time.
  • the relationship between the usage time of the condenser blower 6 and the concentration at the concentration measurement point is obtained in advance, and the operating frequency of the condenser blower 6 is controlled according to the monitoring result of the usage time of the condenser blower 6. You may. Further, the condenser blower 6 may be controlled so as to continue the operation under the condition of the operating frequency at which the blower amount is large in anticipation of a decrease in the blower amount due to the usage time of the condenser blower 6.
  • the refrigerant exists on the condenser 3 side, but when the refrigerant leaks from the condenser 3, the leaked refrigerant is agitated by the condenser blower 6, so that the concentration does not exceed LFL.
  • the throttle device 4 is closed, but it is conceivable that the refrigerant moves from the condenser 3 side to the evaporator 5 side due to valve leakage in the throttle device 4.
  • the compressor 2 is operated periodically, for example, once a day, the throttle device 4 is closed, and a pump-down operation is performed so that the refrigerant does not accumulate in the evaporator 5.
  • a low pressure pressure sensor may be used instead of the evaporator inlet temperature sensor 29.
  • FIG. 9 is a functional block diagram showing a control function of the condenser blower 6 of the control device 7 of the showcase 1 according to the first embodiment.
  • the control device 7 includes an operation pattern determination unit 31, a compressor control unit 32, a condenser blower control unit 33, and an in-compression blower control unit 34.
  • the operation pattern determination unit 31 determines the operation pattern input from the operation panel 26.
  • the compressor control unit 32 stops the operation of the compressor 2 when the operation pattern determination unit 31 determines that the operation pattern input from the operation panel 26 is "all hot” or “stopped”. Specifically, the compressor control unit 32 closes the throttle device 4 when the operation pattern input by the operation panel 26 is switched from the cooling operation to the all-hot operation, continues the operation of the compressor 2, and evaporates. When the temperature detected by the vessel inlet temperature sensor 29 is equal to or less than a predetermined value, the operation of the compressor 2 is stopped. When the operation pattern input by the operation panel 26 is all hot, the throttle device 4 is closed, the compressor 2 is continued to operate, and the temperature detected by the evaporator inlet temperature sensor 29 is equal to or less than a predetermined value. Then, the operation of the compressor 2 is stopped.
  • the condenser blower control unit 33 operates the condenser blower 6 when the operation pattern determination unit 31 determines that the operation pattern input from the operation panel 26 is “all hot” or “stopped”. ..
  • the internal blower control unit 34 stops the operation of the internal blower 15. ..
  • the condenser 3 and the condenser blower 6 are arranged so as to suck the leaking refrigerant flowing in the refrigerant leakage directions EE and FF from the front, it is easy to suck and stir the leaked refrigerant. Become. Therefore, the rotation speed (air volume) of the condenser blower 6 can be reduced.
  • the in-flight blower 15 is operating except when it is all hot. Therefore, when cold air flows from the air outlet 17 of FIG. 10 to the suction port 18 to form a cold air curtain and the air speed is 0.88 m / s or more, the amount of the refrigerant leaking to the outside of the showcase 1 is suppressed. , The concentration does not exceed the LFL of the propane refrigerant. However, when the air conditioner is all hot, the air blower 15 is not operating, so that cold air does not flow from the air outlet 17 to the suction port 18, so that the cold air curtain is not formed.
  • the blower 6 for the condenser may be operated at the time of all hot, and a heat-resistant night cover 30 capable of withstanding the hole hot may be provided between the outlet 17 and the suction port 18 in FIG. 10 to prevent the refrigerant from leaking. ..
  • FIG. 11 is a diagram showing the configuration of the machine room 20 of the showcase 1 according to the third embodiment.
  • the drain is discharged from the drain port 21a of the drain pan 21 except when it is all hot.
  • the refrigerant leaked between the condenser 3 and the condenser blower 6 is discharged from the drain pan 21 through the drain trap 21c and from the discharge port 21b.
  • the leaked refrigerant is discharged from the drain pan 21 through the drain pipe from the drain port 21a.
  • the drain does not flow when all hot, if the refrigerant leaks, the leaked refrigerant will have a negative pressure at the position of the drain port 21a in FIGS. 1 and 10 because it is behind the condenser blower 6. It may not flow.
  • the discharge port 21b is provided in front of the condenser blower 6. That is, the discharge port 21b is provided on the windward side of the condenser blower 6. This makes it easier for the leaked refrigerant to flow in the showcase 1. Further, in this way, there is a possibility that the rotation speed (air volume) of the condenser blower 6 can be reduced.
  • the showcase 1 of the first to third embodiments it is possible to provide the showcase 1 with a built-in refrigerating device using a flammable refrigerant having a global warming potential of 1500 or less, and no extension pipe is required.
  • the filling amount of the above can be reduced to, for example, 500 g.
  • the refrigerator and indoor unit (showcase) are separated, it may be difficult to select the installation location because the machine room must be installed in the building due to the increase in the number of refrigerators. is there.
  • the showcase 1 according to the first to third embodiments is a showcase 1 with a built-in refrigerating device and is installed in the store, the installation location of the showcase 1 can be easily selected.
  • the embodiment is presented as an example and is not intended to limit the scope of the embodiment.
  • the first embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.

Abstract

A showcase equipped with: a refrigerant circuit in which a compressor, a condenser, a metering device and an evaporator are connected by piping and through which a refrigerant circulates; a housing having a storage chamber formed therein which has a plurality of shelves and in which cooling is performed by using the absorbed heat of the evaporator of the refrigerant circuit; a plurality of heating heaters respectively provided to the plurality of shelves in the storage chamber; a condenser fan for ventilating in order to cool the condenser, an operation panel where a drive pattern is inputted; and a control device for controlling the refrigerant circuit according to the drive pattern inputted on the operation panel. The control device drives the condenser fan and performs control so as to increase the ventilation amount from said condenser fan according to the usage duration when the drive pattern inputted on the operation panel is an all-hot operation for turning on all of the plurality of heating heaters or is a stop operation for stopping the compressor of the refrigerant circuit.

Description

ショーケースShowcase
 本発明は、スーパーマーケット又はコンビニエンスストア等の店舗に設置されるショーケースに関する。 The present invention relates to a showcase installed in a store such as a supermarket or a convenience store.
 従来よりスーパーマーケット又はコンビニエンスストア等の店舗には冷蔵あるいは冷凍用のショーケースが設置されている。例えば、特許文献1では、圧縮機と熱源側熱交換器とからなるコンデンシングユニットである冷凍装置と、複数の絞り装置とそれらに対になるように接続された複数の室内側熱交換器とからなる複数のショーケースとを冷媒配管にて接続した装置が開示されている。 Conventionally, showcases for refrigeration or freezing have been installed in stores such as supermarkets and convenience stores. For example, in Patent Document 1, a refrigerating device which is a condensing unit including a compressor and a heat source side heat exchanger, a plurality of drawing devices, and a plurality of indoor heat exchangers connected so as to be a pair thereof. A device in which a plurality of showcases composed of the above are connected by a refrigerant pipe is disclosed.
特開平4-297733号公報Japanese Unexamined Patent Publication No. 4-297733
 平成27年4月に施行されたフロン排出抑制法では、ショーケースと接続される冷凍装置に用いられる冷媒の地球温暖化係数を2025年までに1500以下にしなければならない旨が規定されている。冷媒としてハイドロフルオロカーボン系の混合冷媒例えばR404Aを用いたものがあるが、R404Aの地球温暖化係数は3920であり、フロン排出抑制法で規定された数値よりも高くなっている。また、冷媒としてR410Aを用いたものがあるが、R410Aの地球温暖化係数は2090であり、フロン排出抑制法で規定された数値よりも高くなっている。従って、地球温暖化係数総量値の低減策を早急に実現する必要がある。
 一方、特許文献1の冷凍装置において、R404Aの代わりに可燃性冷媒であるプロパンを冷媒として用いた場合は、プロパンの地球温暖化係数は3.3であるため、フロン排出抑制法で規定された数値に適合する。しかしながら、特許文献1の冷凍装置にプロパンを冷媒として用いた場合、複数のショーケースである室内機が接続された構成となっているため、プロパンの封入量が数十kgになる。また、プロパンは可燃性冷媒のため、プロパンの封入量が多くなるにつれて、冷媒の燃焼濃度に至る可能性が高くなる。従って、冷媒の漏れに対する安全性を確保することは重要である。
The Freon Emission Control Law, which came into effect in April 2015, stipulates that the global warming potential of the refrigerant used in the refrigerating equipment connected to the showcase must be 1500 or less by 2025. As a refrigerant, a hydrofluorocarbon-based mixed refrigerant such as R404A is used, but the global warming potential of R404A is 3920, which is higher than the value specified by the CFC Emission Control Law. Further, although there is a refrigerant using R410A, the global warming potential of R410A is 2090, which is higher than the value specified by the Freon Emission Control Law. Therefore, it is urgently necessary to implement measures to reduce the total amount of global warming potential.
On the other hand, in the refrigerating apparatus of Patent Document 1, when propane, which is a flammable refrigerant, is used as a refrigerant instead of R404A, the global warming potential of propane is 3.3, which is specified by the Freon Emission Control Law. Fits the numbers. However, when propane is used as a refrigerant in the refrigerating apparatus of Patent Document 1, the amount of propane enclosed is several tens of kg because the indoor units, which are a plurality of showcases, are connected to each other. Further, since propane is a flammable refrigerant, the possibility of reaching the combustion concentration of the refrigerant increases as the amount of propane enclosed increases. Therefore, it is important to ensure safety against refrigerant leakage.
 本発明は、上記実情に鑑みてなされたものであり、冷媒の漏れに対する安全性を確保することができるショーケースを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a showcase capable of ensuring safety against leakage of a refrigerant.
 本発明に係るショーケースは、圧縮機、凝縮器、絞り装置、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路と、複数の棚を有し、前記冷媒回路の蒸発器の吸熱を利用して冷却が行なわれる貯蔵室が内部に形成された筐体と、前記貯蔵室の前記複数の棚にそれぞれ設けられた複数の加熱ヒータと、前記凝縮器を冷却するために送風を行なう凝縮器用送風機と、運転パターンが入力される操作パネルと、前記操作パネルに入力された運転パターンに応じて、前記冷媒回路を制御する制御装置とを具備し、前記制御装置は、前記操作パネルにより入力された運転パターンが前記複数の加熱ヒータの全てをオンにするオールホットの場合又は前記冷媒回路の圧縮機の停止をする停止の場合、前記凝縮器用送風機を運転し、前記凝縮器用送風機の送風量を使用時間に応じて上げて制御する。 The showcase according to the present invention has a refrigerant circuit in which a compressor, a condenser, a drawing device, and an evaporator are connected by a pipe and a refrigerant circulates, and a plurality of shelves, and absorbs heat from the evaporator of the refrigerant circuit. A housing in which a storage chamber to be cooled by using the refrigerant is formed inside, a plurality of heaters provided on the plurality of shelves of the storage chamber, and a condenser that blows air to cool the condenser. A dexterous blower, an operation panel into which an operation pattern is input, and a control device for controlling the refrigerant circuit according to the operation pattern input to the operation panel are provided, and the control device is input by the operation panel. When the operation pattern is all-hot to turn on all of the plurality of heaters or to stop the compressor of the refrigerant circuit, the condenser blower is operated and the amount of air blown by the condenser blower is operated. Is raised and controlled according to the usage time.
 本発明によれば、複数の加熱ヒータの全てがオンの場合を示すオールホットの場合又は冷媒回路の冷媒循環が停止している場合、凝縮器用送風機を運転するので、万一冷媒が漏れたとしても、それが拡散して冷媒の燃焼濃度に至るのが抑制されるため、冷媒の漏れに対する安全性を確保することができる。 According to the present invention, in the case of all-hot indicating the case where all of the plurality of heaters are on or when the refrigerant circulation of the refrigerant circuit is stopped, the blower for the condenser is operated, so that the refrigerant should leak. However, since it is suppressed from diffusing to reach the combustion concentration of the refrigerant, safety against leakage of the refrigerant can be ensured.
実施の形態1に係るショーケースを示す模式図である。It is a schematic diagram which shows the showcase which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケースのドレン水蒸発装置を示す概略図である。It is the schematic which shows the drain water evaporation apparatus of the showcase which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケースの凝縮器と凝縮器用送風機との位置的関係を示す図である。It is a figure which shows the positional relationship between the condenser of the showcase and the blower for a condenser which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケースの各棚の運転パターンを示す図である。It is a figure which shows the operation pattern of each shelf of the showcase which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケースを正面からからみた場合のプロパン冷媒が漏れた場合の濃度測定点を示す図である。It is a figure which shows the concentration measurement point at the time of leakage of the propane refrigerant when the showcase which concerns on Embodiment 1 is seen from the front. 実施の形態1に係るショーケースを上面からみたプロパン冷媒が漏れた場合の濃度測定点を示す図である。It is a figure which shows the concentration measurement point at the time of leakage of the propane refrigerant which looked at the showcase which concerns on Embodiment 1 from the upper surface. 実施の形態1に係るショーケースの運転パターンごとの濃度測定点E、C及びDでのプロパン冷媒の濃度測定結果を示す図である。It is a figure which shows the concentration measurement result of the propane refrigerant at the concentration measurement points E, C and D for each operation pattern of the showcase which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケースの冷凍サイクルを示す図である。It is a figure which shows the refrigeration cycle of the showcase which concerns on Embodiment 1. FIG. 実施の形態1に係るショーケース1の制御部の凝縮器用送風機の制御機能を示す機能ブロック図である。It is a functional block diagram which shows the control function of the blower for a condenser of the control part of the showcase 1 which concerns on Embodiment 1. FIG. 実施の形態2に係るショーケース1を示す模式図である。It is a schematic diagram which shows the showcase 1 which concerns on Embodiment 2. FIG. 実施の形態3に係るショーケースの機械室の構成を示す図である。It is a figure which shows the structure of the machine room of the showcase which concerns on Embodiment 3.
 以下、図面を参照して、実施の形態1に係るショーケースについて説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。 Hereinafter, the showcase according to the first embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary.
実施の形態1.
 図1は、実施の形態1に係るショーケース1を示す模式図である。図2は、実施の形態1に係るショーケース1のドレン水蒸発装置22を示す概略図である。本実施の形態1のショーケース1は、冷凍装置内蔵型のショーケースである。図1に示すように、本実施の形態1のショーケース1は、縦型オープンショーケースであり、正面が開口した断熱壁8と、断熱壁8の両側に取り付けられる側板(図示せず)とを有する。断熱壁8の内側には間隔をおいて内層仕切板9が取り付けられており、断熱壁8と内層仕切板9との間が内層ダクト10とされている。また、内層仕切板9より内側が庫内である貯蔵室11とされている。断熱壁8と内層仕切板9は、筐体とも称する。
Embodiment 1.
FIG. 1 is a schematic view showing a showcase 1 according to the first embodiment. FIG. 2 is a schematic view showing the drain water evaporator 22 of the showcase 1 according to the first embodiment. The showcase 1 of the first embodiment is a showcase with a built-in refrigerator. As shown in FIG. 1, the showcase 1 of the first embodiment is a vertical open showcase, and includes a heat insulating wall 8 having an open front surface and side plates (not shown) attached to both sides of the heat insulating wall 8. Has. Inner layer partition plates 9 are attached to the inside of the heat insulating wall 8 at intervals, and an inner layer duct 10 is formed between the heat insulating wall 8 and the inner layer partition plate 9. Further, the storage chamber 11 is inside the inner layer partition plate 9. The heat insulating wall 8 and the inner layer partition plate 9 are also referred to as a housing.
 この貯蔵室11内には、商品陳列用の4段の棚12が架設される。各棚12の下面前部と貯蔵室11の天井部10aには照明用の蛍光灯13がそれぞれ取り付けられている。貯蔵室11の底部の下方には内層ダクト10に連通した底部ダクト14が設けられている。そしてこの底部ダクト14内には庫内送風機15が設置される。また、貯蔵室11の背方に位置する内層ダクト10内の下部には蒸発器5が縦設されている。 In this storage room 11, a four-level shelf 12 for displaying products is erected. Fluorescent lamps 13 for lighting are attached to the front portion of the lower surface of each shelf 12 and the ceiling portion 10a of the storage chamber 11. A bottom duct 14 communicating with the inner layer duct 10 is provided below the bottom of the storage chamber 11. Then, an in-compartment blower 15 is installed in the bottom duct 14. Further, an evaporator 5 is vertically installed in the lower part of the inner layer duct 10 located behind the storage chamber 11.
 貯蔵室11の前面開口部16の上縁には吹出口17が設置されており、また、前面開口部16の下縁には吸込口18が取り付けられている。底部ダクト14の底面を形成する底部仕切板19の下方部が機械室20とされている。 An air outlet 17 is installed on the upper edge of the front opening 16 of the storage chamber 11, and a suction port 18 is attached to the lower edge of the front opening 16. The lower portion of the bottom partition plate 19 forming the bottom surface of the bottom duct 14 is the machine room 20.
 底部仕切板19には、蒸発器5から生じる除霜水などのドレン水を受けるドレンパン21が設けられる。ドレンパン21には、機械室20内のドレン水蒸発装置22に向けて落下させるための排水口21aが設けられている。 The bottom partition plate 19 is provided with a drain pan 21 that receives drain water such as defrost water generated from the evaporator 5. The drain pan 21 is provided with a drain port 21a for dropping the drain water toward the drain water evaporator 22 in the machine room 20.
 ドレン水蒸発装置22は、図2に示すように、ドレン水をためる蒸発皿23と、複数の蒸発板24と、複数の蒸発板24を一体的に支持する複数の支持部材27とを備えている。図2において、矢印は風通過方向を示している。複数の蒸発板24は、風通過方向と平行になるように配置されている。複数の蒸発板24は蒸発皿23上に配置されている。蒸発板24は、例えばPET(ポリエチレンテレフタレート)とガラス繊維とが一体となった不織布、多孔質の樹脂成形体などで構成されている。 As shown in FIG. 2, the drain water evaporator 22 includes an evaporating dish 23 for storing drain water, a plurality of evaporation plates 24, and a plurality of support members 27 for integrally supporting the plurality of evaporation plates 24. There is. In FIG. 2, the arrows indicate the wind passing direction. The plurality of evaporation plates 24 are arranged so as to be parallel to the wind passing direction. The plurality of evaporation plates 24 are arranged on the evaporation dish 23. The evaporation plate 24 is made of, for example, a non-woven fabric in which PET (polyethylene terephthalate) and glass fibers are integrated, a porous resin molded product, or the like.
 棚12には加熱ヒータ28が組込まれている。各棚12は最上段部である1段目がAA、2段目がBB、3段目がCC及び4段目がDDとして示す。機械室20には、圧縮機2、凝縮器3、電子膨張弁である絞り装置4、凝縮器用送風機6及び制御装置7が設置されている。凝縮器用送風機6は、図1から見て凝縮器3の奥側、すなわち、凝縮器3の左側面側に配置されている。図3は、実施の形態1に係るショーケース1の凝縮器3と凝縮器用送風機6との位置的関係を示す図である。凝縮器用送風機6は、凝縮器3を冷却するための送風を行なう。図3において、凝縮器用送風機6の排風は右側面側にされる。 A heater 28 is incorporated in the shelf 12. Each shelf 12 has the uppermost tier, the first tier being AA, the second tier being BB, the third tier being CC, and the fourth tier being DD. In the machine room 20, a compressor 2, a condenser 3, a throttle device 4 which is an electronic expansion valve, a blower 6 for a condenser, and a control device 7 are installed. The condenser blower 6 is arranged on the back side of the condenser 3, that is, on the left side surface side of the condenser 3 as viewed from FIG. FIG. 3 is a diagram showing a positional relationship between the condenser 3 of the showcase 1 and the blower for the condenser 6 according to the first embodiment. The condenser blower 6 blows air to cool the condenser 3. In FIG. 3, the exhaust air of the condenser blower 6 is directed to the right side.
 また、断熱壁8の上部に設けられた庇25の外側にはユーザ操作用の操作パネル26が取り付けられている。操作パネル26には、例えば、ショーケース1の運転パターンが入力される。運転パターンについては、後述する。 Further, an operation panel 26 for user operation is attached to the outside of the eaves 25 provided on the upper part of the heat insulating wall 8. For example, the operation pattern of the showcase 1 is input to the operation panel 26. The operation pattern will be described later.
 圧縮機2、凝縮器3、絞り装置4及び底部仕切板19の上部の蒸発器5が順次配管で接続され、配管内を冷媒が循環する。圧縮機2から吐出された冷媒は、凝縮器3にて凝縮器用送風機6で送風された外気へ放熱して冷やされ、絞り装置4で減圧され、蒸発器5で蒸発して再び圧縮機2に戻ることでショーケース1の冷凍サイクルが形成される。 The compressor 2, the condenser 3, the drawing device 4, and the evaporator 5 at the top of the bottom partition plate 19 are sequentially connected by a pipe, and the refrigerant circulates in the pipe. The refrigerant discharged from the compressor 2 is radiated to the outside air blown by the condenser blower 6 by the condenser 3, cooled, decompressed by the throttle device 4, evaporated by the evaporator 5, and returned to the compressor 2. By returning, the refrigeration cycle of showcase 1 is formed.
 次に、本実施の形態1に係るショーケース1の作動流体である冷媒について説明する。
 本実施の形態1のショーケースでは、作動流体である冷媒として、地球温暖化係数が1500以下のHC冷媒である可燃性冷媒が用いられ、例えば、プロパン、イソブタンが用いられる。プロパンの地球温暖化係数は3.3、イソブタンの地球温暖化係数は4である。なお、当該技術分野においては、地球温暖化係数はGWPとも略称される。
Next, the refrigerant which is the working fluid of the showcase 1 according to the first embodiment will be described.
In the showcase of the first embodiment, as the refrigerant as the working fluid, a flammable refrigerant which is an HC refrigerant having a global warming potential of 1500 or less is used, and for example, propane and isobutane are used. Propane has a global warming potential of 3.3 and isobutane has a global warming potential of 4. In the technical field, the global warming potential is also abbreviated as GWP.
 本実態の形態1のショーケース1は、冷凍サイクル装置を含んだ一体型の装置であるため、小型化が可能である。従って、冷媒の充填量を、例えば、プロパンの場合は液密度が小さいので500g程度に低減することができる。IEC(国際電気標準会議)で、家庭用及び商業用の冷凍機器における可燃性冷媒の充填上限量が規制緩和され、150gから500gに拡大された。従って、プロパン等の地球温暖化係数が1500以下の可燃性冷媒を用いた場合であっても、冷媒の漏れに対する安全性の基準を満たしたショーケースを提供することができる。 Since the showcase 1 of the actual form 1 is an integrated device including a refrigeration cycle device, it can be miniaturized. Therefore, for example, in the case of propane, the filling amount of the refrigerant can be reduced to about 500 g because the liquid density is small. At the IEC (International Electrotechnical Commission), the upper limit of filling of flammable refrigerant in household and commercial refrigeration equipment was deregulated and increased from 150g to 500g. Therefore, even when a flammable refrigerant having a global warming potential of 1500 or less such as propane is used, it is possible to provide a showcase that satisfies the safety standard against leakage of the refrigerant.
 次に、本発明の実施の形態1に係るショーケース1の動作について説明する。
 庫内送風機15が運転されると、底部ダクト14内の空気は後方の内層ダクト10に向けて吹き出され、蒸発器5と熱交換した後吹き上げられ、前面開口部16上縁の吹出口17から、下縁の吸込口18に向けて吹き出される。
Next, the operation of the showcase 1 according to the first embodiment of the present invention will be described.
When the internal blower 15 is operated, the air in the bottom duct 14 is blown out toward the rear inner layer duct 10, exchanges heat with the evaporator 5, and then blown up from the air outlet 17 on the upper edge of the front opening 16. , Is blown out toward the suction port 18 on the lower edge.
 これにより、貯蔵室11の前面開口部16には冷気エアーカーテンが形成され、前面開口部16からの外気の侵入が阻止若しくは抑制されるとともに、冷気エアーカーテンの一部が貯蔵室11内に循環して貯蔵室11内は冷却される。なお、閉店時にはこの前面開口部16は図示していないナイトカバー31にて塞がれることになる。そして、これらの冷気などは吸込口18から底部ダクト14に帰還し、庫内送風機15に再び吸い込まれることになる。 As a result, a cold air air curtain is formed in the front opening 16 of the storage chamber 11, and the intrusion of outside air from the front opening 16 is blocked or suppressed, and a part of the cold air curtain circulates in the storage chamber 11. Then, the inside of the storage chamber 11 is cooled. When the store is closed, the front opening 16 is closed by a night cover 31 (not shown). Then, these cold air and the like return from the suction port 18 to the bottom duct 14, and are sucked into the in-compartment blower 15 again.
 ショーケース1の運転中、蒸発器5からの除霜水などのドレン水がドレンパン21に落ち、ドレン水が排水口21aからドレン水蒸発装置22の蒸発板24上に落ち、蒸発皿23にたまる。蒸発皿23にたまったドレン水は、毛細管現象により蒸発板24によって吸い上げられる。なお、蒸発板24にドレン水を含ませる構成として、更に、蒸発皿23にたまったドレン水をポンプなどで吸い上げて蒸発板24の上方から散水してもよい。 During the operation of the showcase 1, drain water such as defrost water from the evaporator 5 falls on the drain pan 21, drain water falls from the drain port 21a onto the evaporation plate 24 of the drain water evaporator 22, and accumulates in the evaporating dish 23. .. The drain water accumulated in the evaporating dish 23 is sucked up by the evaporating plate 24 due to the capillary phenomenon. In addition, in the configuration in which the evaporation plate 24 contains the drain water, the drain water accumulated in the evaporating dish 23 may be sucked up by a pump or the like and sprinkled from above the evaporation plate 24.
 そして、凝縮器用送風機6からの風が、凝縮器3を通過して温められた後、ドレン水蒸発装置22に向かって流される。ドレン水蒸発装置22に向かって流された温かい風は、ドレン水蒸発装置22の蒸発板24に当てられ、これにより蒸発板24に含まれたドレン水が蒸発する。 Then, the air from the condenser blower 6 passes through the condenser 3 and is warmed, and then flows toward the drain water evaporator 22. The warm air flowing toward the drain water evaporator 22 is applied to the evaporation plate 24 of the drain water evaporator 22, whereby the drain water contained in the evaporation plate 24 evaporates.
 蒸発器5からのドレン水は、ショーケースが運転中、庫内温度が約10℃以下であると、蒸発器5に着霜する。着霜が進むと、蒸発器5の熱交換量が低下し、蒸発性能が低下するため、着霜の具合を検知し、例えば、圧縮機2が所定時間運転すると、蒸発器5の除霜を実施する。蒸発器5には図示しないヒータが配置され、所定時間ヒータに通電することにより除霜を行う。除霜が行われると、前述したようにドレン水がドレンパン21に落ち、ドレン水が排水口21aからドレン水蒸発装置22の蒸発板24に落ち、蒸発皿23にたまる。蒸発皿23にはドレン水のドレン量を検知するフロートスイッチ(図示せず)を設けても良い。 The drain water from the evaporator 5 frosts on the evaporator 5 when the showcase is in operation and the temperature inside the refrigerator is about 10 ° C. or lower. As frost formation progresses, the amount of heat exchange in the evaporator 5 decreases and the evaporation performance deteriorates. Therefore, the state of frost formation is detected, and for example, when the compressor 2 operates for a predetermined time, the evaporator 5 is defrosted. carry out. A heater (not shown) is arranged in the evaporator 5, and defrosting is performed by energizing the heater for a predetermined time. When defrosting is performed, the drain water falls on the drain pan 21 as described above, and the drain water falls from the drain port 21a onto the evaporation plate 24 of the drain water evaporator 22 and accumulates in the evaporating dish 23. The evaporating dish 23 may be provided with a float switch (not shown) for detecting the amount of drain water.
 図4は、実施の形態1に係るショーケース1の各棚12の運転パターンを示す図である。図4に示すように、棚12の1段目AA、2段目BB、3段目CC及び4段目DDは、それぞれホット(加熱)、コールド(冷却)両方に対応可能である。棚12の1段目AA、2段目BB、3段目CC及び4段目DDの運転パターンは、ホールホット、2段ホット、1段ホット、オールコールドの4パターンで運転できる。また、運転を停止する場合、運転パターンとして停止が指示される。「停止」は、圧縮機2の停止である。「冷却運転」は、棚12の1段目AA、2段目BB、3段目CC及び4段目DDのうち、少なくとも1つ棚12を冷却する場合の運転である。 FIG. 4 is a diagram showing an operation pattern of each shelf 12 of the showcase 1 according to the first embodiment. As shown in FIG. 4, the first-stage AA, the second-stage BB, the third-stage CC, and the fourth-stage DD of the shelf 12 can handle both hot (heating) and cold (cooling), respectively. The operation patterns of the first stage AA, the second stage BB, the third stage CC, and the fourth stage DD of the shelf 12 can be operated in four patterns of hole hot, second stage hot, one stage hot, and all cold. Further, when the operation is stopped, the stop is instructed as an operation pattern. "Stop" is a stop of the compressor 2. The “cooling operation” is an operation in which at least one of the first-stage AA, the second-stage BB, the third-stage CC, and the fourth-stage DD of the shelf 12 is cooled.
 オールホット、2段ホット、1段ホットについては、対応する棚12に組込まれた加熱ヒータ28が加熱される。オールホットでは、1段目AA~4段目DDの棚12の全ての加熱ヒータ28が加熱される。 For all hot, two-stage hot, and one-stage hot, the heater 28 built into the corresponding shelf 12 is heated. In all-hot, all the heaters 28 on the shelves 12 of the first-stage AA to the fourth-stage DD are heated.
 ホールホット以外は圧縮機2、凝縮器3、絞り装置4、蒸発器5を冷媒が循環して冷却する。図1では棚12の数は4段を示したが、3段、5段等の他の棚数でもよい。運転パターンは、棚数により決定される。庫内送風機15は、オールホット時以外は運転しており、オールホット時は停止している。 Except for hole hot, the refrigerant circulates and cools the compressor 2, the condenser 3, the drawing device 4, and the evaporator 5. In FIG. 1, the number of shelves 12 is 4 shelves, but other shelves such as 3 shelves and 5 shelves may be used. The operation pattern is determined by the number of shelves. The internal blower 15 is in operation except when it is all hot, and is stopped when it is all hot.
 図1に示した実施の形態1に係るショーケース1の模式図において、蒸発器5の前面にある内層仕切板9には冷風を吹出すことができるように複数の穴(図示せず)が設けられている。蒸発器5から冷媒が漏れた場合、漏れた冷媒は、内層仕切板9に設けられた複数の穴から、図1に示す矢印EE及びFFのように貯蔵室11から外部に漏れる場合がある。 In the schematic view of the showcase 1 according to the first embodiment shown in FIG. 1, a plurality of holes (not shown) are provided in the inner layer partition plate 9 on the front surface of the evaporator 5 so that cold air can be blown out. It is provided. When the refrigerant leaks from the evaporator 5, the leaked refrigerant may leak from the storage chamber 11 to the outside through a plurality of holes provided in the inner layer partition plate 9 as shown by arrows EE and FF shown in FIG.
 また、蒸発器5から漏れた冷媒が、ドレンパン21の排水口21aから機械室20内に漏れる可能性がある。ショーケース1内の部品である、蛍光灯13、庫内送風機15、加熱ヒータ28は、着火源にならないように構造的に対応できる。しかし、ショーケース1外に漏れた冷媒に関しては、ショーケース1外の例えばコンセント等が着火源になる可能性があり、ショーケース1外の冷媒の漏れ濃度を少なくすることが重要である。 Further, the refrigerant leaking from the evaporator 5 may leak into the machine room 20 from the drain port 21a of the drain pan 21. The fluorescent lamp 13, the in-compartment blower 15, and the heater 28, which are the parts in the showcase 1, can be structurally supported so as not to be an ignition source. However, with respect to the refrigerant leaking to the outside of the showcase 1, for example, an outlet outside the showcase 1 may be an ignition source, and it is important to reduce the leakage concentration of the refrigerant outside the showcase 1.
 プロパン冷媒を使用する場合に、万一冷媒が漏れた場合の濃度測定を実施する。図5は、実施の形態1に係るショーケース1を正面からからみた場合のプロパン冷媒が漏れた場合の濃度測定点を示す図である。図6は、実施の形態1に係るショーケース1を上面からみたプロパン冷媒が漏れた場合の濃度測定点を示す図である。 When using propane refrigerant, measure the concentration in the unlikely event that the refrigerant leaks. FIG. 5 is a diagram showing concentration measurement points when the propane refrigerant leaks when the showcase 1 according to the first embodiment is viewed from the front. FIG. 6 is a diagram showing concentration measurement points when the propane refrigerant leaks when the showcase 1 according to the first embodiment is viewed from the upper surface.
 図5及び図6において、濃度測定点は、IEC 60335-2-89:2019から示された冷媒濃度測定点を示している。図5におけるAFVはショーケース1を正面から見た図、図6におけるAPBはショーケース1を上面から見た図、Xはショーケース1の製造業者が指定する壁からの距離と、壁から50mmとのいずれか大きい値を示す。FLは試験室の床、Rは試験室の壁、A、B、C、D、Eは濃度測定点、星印は冷媒漏れ個所(蒸発器)を示す。 In FIGS. 5 and 6, the concentration measurement point indicates the refrigerant concentration measurement point shown from IEC 60335-2-89: 2019. The AFV in FIG. 5 is a front view of the showcase 1, the APB in FIG. 6 is a top view of the showcase 1, and X is the distance from the wall specified by the manufacturer of the showcase 1 and 50 mm from the wall. Whichever is greater. FL indicates the floor of the test room, R indicates the wall of the test room, A, B, C, D, and E indicate the concentration measurement points, and the asterisk indicates the refrigerant leakage point (evaporator).
 冷媒が漏れた場合に、冷媒回路からの冷媒漏れの模擬方法等はJISC9335-2-24又はJISC9335-2-89に示される。JISC9335-2-24又はJISC9335-2-89の方法で冷媒漏れ試験を実施し、IEC 60335-2-89:2019に示された漏れ濃度が高い濃度測定点E、C、Dについて濃度測定した。 When the refrigerant leaks, the method for simulating the refrigerant leak from the refrigerant circuit is shown in JISC9335-2-24 or JISC9335-2-89. A refrigerant leak test was carried out by the method of JISC9335-2-24 or JISC9335-2-89, and the concentrations were measured at the concentration measuring points E, C and D having a high leakage concentration shown in IEC 60335-2-89: 2019.
 図7は、実施の形態1に係るショーケース1の運転パターンごとの濃度測定点E、C及びDでのプロパン冷媒の濃度測定結果を示す図である。図7において、条件としては、冷媒の漏れ位置が、庫内に配置された蒸発器5からの場合と、機械室に配置された凝縮器3からの場合を示している。また、運転パターンもオールコールド、1段ホット、2段ホット、オールホットの場合を示している。 FIG. 7 is a diagram showing the concentration measurement results of the propane refrigerant at the concentration measurement points E, C and D for each operation pattern of the showcase 1 according to the first embodiment. In FIG. 7, as a condition, a case where the leakage position of the refrigerant is from the evaporator 5 arranged in the refrigerator and a case where the leakage position is from the condenser 3 arranged in the machine room are shown. The operation pattern also shows the case of all cold, one-stage hot, two-stage hot, and all-hot.
 凝縮器用送風機6はブラシ構造をもたなく内部に接点構造をもたないDC(Direct current)ブラシレス送風機を使用して、全速、中速、停止で試験実施している。庫内送風機15もDCブラシレス送風機を使用し、全速、停止で試験実施している。ブラシモータは、コイルが回転する過程でそのブラシ部にて電気的に開閉が生ずるため、火花が飛ぶ可能性があり、可燃性冷媒を使用する場合には注意を要する。一方、DCラシレスモータを使用するDCブラシレス送風機は、コイルが回転せず、かつブラシ部が存在しないので、電気的に開閉が生じず、可燃性冷媒を使用しても安全である。 The condenser blower 6 uses a DC (Direct current) brushless blower that does not have a brush structure and no internal contact structure, and is being tested at full speed, medium speed, and stop. The internal blower 15 also uses a DC brushless blower and is being tested at full speed and stopped. Since the brush motor electrically opens and closes at the brush portion in the process of rotating the coil, sparks may fly, and care must be taken when using a flammable refrigerant. On the other hand, in a DC brushless blower using a DC brushless motor, since the coil does not rotate and the brush portion does not exist, it does not open and close electrically, and it is safe to use a flammable refrigerant.
 試験結果は、濃度測定点E、C及びDでの室内最高濃度(vol%)を示している。冷媒量はIEC 60335-2-89:2019で改定された可燃性冷媒の許容充填量である500gとし、漏れ速度は4分全量漏れ速度7.5kg/hとしている。空気と混合した可燃性がガスが着火によって燃焼を起こす最低濃度を燃焼下限界(LFL)と呼んでいる。LFLは、プロパンの場合、2.1(vol%)となっている。 The test results show the highest indoor concentration (vol%) at concentration measurement points E, C and D. The amount of refrigerant is 500 g, which is the permissible filling amount of flammable refrigerant revised in IEC 60335-2-89: 2019, and the leakage rate is set to 7.5 kg / h for 4 minutes. The minimum concentration at which flammable gas mixed with air causes combustion by ignition is called the lower combustion limit (LFL). LFL is 2.1 (vol%) in the case of propane.
 オールホットの場合、通常は冷却運転しないので凝縮器用送風機6は停止であるが、凝縮器用送風機6を停止した場合もプロパンのLFLを超える可能性がある。また、蒸発器5から冷媒が漏れた場合、ユニットである冷媒回路を停止した場合も、凝縮器用送風機6を停止すると、プロパンのLFLを超える可能性がある。 In the case of all hot, the condenser blower 6 is stopped because the cooling operation is not normally performed, but even if the condenser blower 6 is stopped, the LFL of propane may be exceeded. Further, when the refrigerant leaks from the evaporator 5, even if the refrigerant circuit which is a unit is stopped, if the condenser blower 6 is stopped, the LFL of propane may be exceeded.
 凝縮器3から冷媒が漏れた場合も、オールホットで、凝縮器用送風機6が停止の場合、プロパンのLFLを超える可能性がある。従って、オールホット時又はユニットである冷媒回路の停止時において、通常は凝縮器用送風機6を停止させる場合であっても、凝縮器用送風機6を運転させる必要がある。すなわち、オールホット時及び停止時において、凝縮器用送風機6が駆動されている場合には、冷媒漏れ濃度は2.1(vol%)を下回る。 Even if the refrigerant leaks from the condenser 3, if it is all hot and the condenser blower 6 is stopped, it may exceed the LFL of propane. Therefore, it is necessary to operate the condenser blower 6 even when the condenser blower 6 is normally stopped at the time of all-hot or when the unit refrigerant circuit is stopped. That is, when the condenser blower 6 is driven at the time of all hot and at the time of stopping, the refrigerant leakage concentration is lower than 2.1 (vol%).
 冷媒が漏れる経路としては、蒸発器5の前面にある内層仕切板9の冷風吹出穴(図示せず)を介して、蒸発器5から漏れた冷媒が、図1のEE,FFのように貯蔵室11から外部に漏れる場合がある。この場合、凝縮器用送風機6が運転していると、漏れた冷媒が撹拌され、濃度が低くなる。 As a path for the refrigerant to leak, the refrigerant leaking from the evaporator 5 is stored as shown in EE and FF in FIG. 1 through a cold air blowing hole (not shown) of the inner layer partition plate 9 on the front surface of the evaporator 5. It may leak from the room 11 to the outside. In this case, when the condenser blower 6 is operating, the leaked refrigerant is agitated and the concentration becomes low.
 ドレンパン21の排水口21aから機械室20内に漏れる可能性がある冷媒についても、凝縮器用送風機6が運転していると撹拌される。ただしこの場合は後述するドレンパン21の排水口の位置変更が必要である。また、機械室20内の圧縮機2及び凝縮器3から冷媒が漏れた場合も、冷媒は凝縮器用送風機6により攪拌される。そして、機械室20を構成する筐体の隙間から冷媒が外部に徐々に漏れ出して行く。 The refrigerant that may leak from the drain port 21a of the drain pan 21 into the machine room 20 is also agitated when the condenser blower 6 is operating. However, in this case, it is necessary to change the position of the drain port of the drain pan 21, which will be described later. Further, even when the refrigerant leaks from the compressor 2 and the condenser 3 in the machine room 20, the refrigerant is agitated by the condenser blower 6. Then, the refrigerant gradually leaks to the outside from the gap of the housing constituting the machine room 20.
 冷媒が凝縮器3から漏れた場合は、凝縮器用送風機6の必要風量はColbourneの提案式を使用し、その吹出風量以上とする。また凝縮器用送風機6は1台としているが、複数台にしたほうがさらに安全対応が可能となる。 If the refrigerant leaks from the condenser 3, the required air volume of the condenser blower 6 shall be equal to or greater than the blown air volume using the proposed formula of Colbourne. Further, although the number of blowers 6 for the condenser is one, it is possible to provide more safety by using a plurality of blowers 6.
 なお、凝縮器用送風機6の送風量は、多いほど冷媒漏れ濃度は下がりやすい。また、凝縮器用送風機6の送風量が多いと消費電力が大きくなることから、送風量は冷媒漏れ濃度が2.1(vol%)を下回る程度の送風量に調整するのが最適である。 Note that the larger the amount of air blown by the condenser blower 6, the easier it is for the refrigerant leakage concentration to decrease. Further, since the power consumption increases when the amount of air blown by the condenser blower 6 is large, it is optimal to adjust the amount of air blown to such that the refrigerant leakage concentration is less than 2.1 (vol%).
 また、ショーケース1は、運転時間が経過すると熱交換器への埃の詰まりなどにより、運転初期と同じ風量で凝縮器用送風機6を運転しても、凝縮器3を通過する風量は運転初期よりも少なくなり、LFLを上回ってしまう。 Further, in the showcase 1, even if the condenser blower 6 is operated with the same air volume as the initial operation due to the clogging of the heat exchanger with dust after the operation time elapses, the air volume passing through the condenser 3 is from the initial operation. Will also decrease, exceeding LFL.
 このような使用時間の経過に伴なう送風量の減少に対処するために、凝縮器用送風機6の送風量を使用時間に応じて上げるように制御しても良い。例えば、凝縮器用送風機6の使用時間と濃度測定地点での濃度との関係を予め求めておき、凝縮器用送風機6の使用時間のモニター結果に応じて凝縮器用送風機6の運転周波数を制御するようにしても良い。また、凝縮器用送風機6の使用時間に伴なう送風量の低下を見越して、大きめの送風量となる運転周波数の条件で運転し続けるように凝縮器用送風機6を制御しても良い。 In order to deal with such a decrease in the amount of air blown with the passage of the usage time, the amount of air blown by the condenser blower 6 may be controlled to be increased according to the usage time. For example, the relationship between the usage time of the condenser blower 6 and the concentration at the concentration measurement point is obtained in advance, and the operating frequency of the condenser blower 6 is controlled according to the monitoring result of the usage time of the condenser blower 6. You may. Further, the condenser blower 6 may be controlled so as to continue the operation under the condition of the operating frequency at which the blower amount is large in anticipation of a decrease in the blower amount due to the usage time of the condenser blower 6.
 オールホット時の蒸発器5からの冷媒漏れであるが、蒸発器5内の冷媒量が少ないほど、冷媒漏れの安全性が保たれる。この場合、凝縮器3側に冷媒が存在するが、凝縮器3から冷媒が漏れた場合は凝縮器用送風機6で漏れた冷媒が撹拌されるので、LFLをこえるような濃度にはならない。 Refrigerant leaks from the evaporator 5 when all hot, but the smaller the amount of refrigerant in the evaporator 5, the more the safety of the refrigerant leak is maintained. In this case, the refrigerant exists on the condenser 3 side, but when the refrigerant leaks from the condenser 3, the leaked refrigerant is agitated by the condenser blower 6, so that the concentration does not exceed LFL.
 図8は、実施の形態1に係るショーケース1の冷凍サイクルを示す図である。圧縮機2、凝縮器3、絞り装置4及び蒸発器5を連通して冷凍サイクルが形成される。蒸発器5入口側には蒸発器入口温度センサ29が配置される。絞り装置4は電子膨張弁とし、冷却運転からオールホット切り替わり時には、絞り装置4を閉じて、圧縮機2は運転継続し、蒸発器入口温度センサ29が、例えば-30℃の所定値以下になれば、圧縮機2を停止するポンプダウン運転を実施する。若しくは、絞装置4を閉じて、圧縮機2を所定時間運転し、ポンプダウン運転を実施する。 FIG. 8 is a diagram showing a refrigeration cycle of the showcase 1 according to the first embodiment. A refrigeration cycle is formed by communicating the compressor 2, the condenser 3, the squeezing device 4, and the evaporator 5. An evaporator inlet temperature sensor 29 is arranged on the evaporator 5 inlet side. The throttle device 4 is an electronic expansion valve, and when switching from cooling operation to all-hot operation, the throttle device 4 is closed, the compressor 2 continues to operate, and the evaporator inlet temperature sensor 29 should be below a predetermined value of, for example, -30 ° C. For example, a pump-down operation for stopping the compressor 2 is performed. Alternatively, the throttle device 4 is closed, the compressor 2 is operated for a predetermined time, and the pump down operation is performed.
 またオールホット時であるが、絞り装置4は閉じているが、絞り装置4内の弁漏れで、冷媒が凝縮器3側から蒸発器5側に移動することも考えられる。この場合、例えば1回/1日のように定期的に圧縮機2を運転し、絞り装置4を閉じて、ポンプダウン運転を実施し、蒸発器5内に冷媒が溜らないようにする。蒸発器入口温度センサ29の代わりに、低圧圧力センサを使用してもよい。 Although it is all hot, the throttle device 4 is closed, but it is conceivable that the refrigerant moves from the condenser 3 side to the evaporator 5 side due to valve leakage in the throttle device 4. In this case, the compressor 2 is operated periodically, for example, once a day, the throttle device 4 is closed, and a pump-down operation is performed so that the refrigerant does not accumulate in the evaporator 5. A low pressure pressure sensor may be used instead of the evaporator inlet temperature sensor 29.
 図9は、実施の形態1に係るショーケース1の制御装置7の凝縮器用送風機6の制御機能を示す機能ブロック図である。図9に示すように、制御装置7は、運転パターン判断部31、圧縮機制御部32、凝縮器用送風機制御部33及び庫内送風機制御部34を有する。運転パターン判断部31は、操作パネル26から入力された運転パターンを判断する。 FIG. 9 is a functional block diagram showing a control function of the condenser blower 6 of the control device 7 of the showcase 1 according to the first embodiment. As shown in FIG. 9, the control device 7 includes an operation pattern determination unit 31, a compressor control unit 32, a condenser blower control unit 33, and an in-compression blower control unit 34. The operation pattern determination unit 31 determines the operation pattern input from the operation panel 26.
 圧縮機制御部32は、運転パターン判断部31により、操作パネル26から入力された運転パターンが「オールホット」又は「停止」であると判断された場合に、圧縮機2の運転を停止する。具体的には、圧縮機制御部32は、操作パネル26により入力された運転パターンが、冷却運転からオールホットへの切り替え時に、絞り装置4を閉じ、圧縮機2の運転を継続し、及び蒸発器入口温度センサ29により検出される温度が所定値以下の場合に、圧縮機2の運転を停止する。また、操作パネル26により入力された運転パターンが、オールホットの場合、絞り装置4を閉じ、圧縮機2の運転を継続し、蒸発器入口温度センサ29により検出される温度が所定値以下の場合に、圧縮機2の運転を停止する。 The compressor control unit 32 stops the operation of the compressor 2 when the operation pattern determination unit 31 determines that the operation pattern input from the operation panel 26 is "all hot" or "stopped". Specifically, the compressor control unit 32 closes the throttle device 4 when the operation pattern input by the operation panel 26 is switched from the cooling operation to the all-hot operation, continues the operation of the compressor 2, and evaporates. When the temperature detected by the vessel inlet temperature sensor 29 is equal to or less than a predetermined value, the operation of the compressor 2 is stopped. When the operation pattern input by the operation panel 26 is all hot, the throttle device 4 is closed, the compressor 2 is continued to operate, and the temperature detected by the evaporator inlet temperature sensor 29 is equal to or less than a predetermined value. Then, the operation of the compressor 2 is stopped.
 凝縮器用送風機制御部33は、運転パターン判断部31により、操作パネル26から入力された運転パターンが「オールホット」又は「停止」であると判断された場合に、凝縮器用送風機6の運転を行なう。 The condenser blower control unit 33 operates the condenser blower 6 when the operation pattern determination unit 31 determines that the operation pattern input from the operation panel 26 is “all hot” or “stopped”. ..
 庫内送風機制御部34は、運転パターン判断部31により、操作パネル26から入力された運転パターンが「オールホット」又は「停止」であると判断された場合、庫内送風機15の運転を停止する。 When the operation pattern determination unit 31 determines that the operation pattern input from the operation panel 26 is "all hot" or "stopped", the internal blower control unit 34 stops the operation of the internal blower 15. ..
 図1において矢印EE、FFで示す方向をショーケース1の正面とすると、凝縮器用送風機6の送風は、背面側から正面方向に行なわれる。図1における凝縮器用送風機6の配置は、ショーケース1の正面からドレン水蒸発装置22をメンテナンス可能とするための配置である。 Assuming that the directions indicated by the arrows EE and FF in FIG. 1 are the front of the showcase 1, the blower of the condenser 6 is blown from the back side to the front direction. The arrangement of the condenser blower 6 in FIG. 1 is such that the drain water evaporator 22 can be maintained from the front of the showcase 1.
実施の形態2.
 図10は、実施の形態2に係るショーケース1を示す模式図である。なお、図1と同一部分には同一符号を付して、その説明を省略する。
Embodiment 2.
FIG. 10 is a schematic view showing the showcase 1 according to the second embodiment. The same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図10に示すように、凝縮器3及び凝縮器用送風機6は、冷媒の漏れ方向EE、FFに流れる漏れ冷媒を正面から吸込むように配置される。凝縮器3は、機械室20の最も正面側に配置される。次に、凝縮器3に隣接して後方側に凝縮器用送風機6が配置される。凝縮器用送風機6は正面側から背面側方向に送風する。凝縮器用送風機6に隣接して後方側にドレン水蒸発装置22が配置される。 As shown in FIG. 10, the condenser 3 and the condenser blower 6 are arranged so as to suck the leaking refrigerant flowing in the refrigerant leak directions EE and FF from the front. The condenser 3 is arranged on the frontmost side of the machine room 20. Next, the condenser blower 6 is arranged on the rear side adjacent to the condenser 3. The condenser blower 6 blows air from the front side to the back side. The drain water evaporator 22 is arranged on the rear side adjacent to the condenser blower 6.
 実施の形態2に係るショーケース1によれば、凝縮器3及び凝縮器用送風機6を冷媒の漏れ方向EE、FFに流れる漏れ冷媒を正面から吸込むように配置するので、漏れた冷媒を吸引撹拌しやすくなる。従って、凝縮器用送風機6の回転数(風量)を低減できる。 According to the showcase 1 according to the second embodiment, since the condenser 3 and the condenser blower 6 are arranged so as to suck the leaking refrigerant flowing in the refrigerant leakage directions EE and FF from the front, it is easy to suck and stir the leaked refrigerant. Become. Therefore, the rotation speed (air volume) of the condenser blower 6 can be reduced.
 オールホット時以外は庫内送風機15は運転している。従って、図10の吹出口17から吸込口18に冷風が流れ、冷気エアーカーテンが形成され、その風速が0.88m/s以上であると、冷媒のショーケース1外への漏れ量が抑制され、プロパン冷媒のLFLを超えるような濃度にはならない。しかし、オールホット時は庫内送風機15が運転していないので、吹出口17から吸込口18に冷風が流れないので、冷気エアーカーテンが形成されない。そこでオールホット時に凝縮器用送風機6を運転させるとともに、図10で、吹出口17から吸込口18の間にホールホット時に耐えうる耐熱のナイトカバー30を設けて冷媒が漏れるのを防止しても良い。 The in-flight blower 15 is operating except when it is all hot. Therefore, when cold air flows from the air outlet 17 of FIG. 10 to the suction port 18 to form a cold air curtain and the air speed is 0.88 m / s or more, the amount of the refrigerant leaking to the outside of the showcase 1 is suppressed. , The concentration does not exceed the LFL of the propane refrigerant. However, when the air conditioner is all hot, the air blower 15 is not operating, so that cold air does not flow from the air outlet 17 to the suction port 18, so that the cold air curtain is not formed. Therefore, the blower 6 for the condenser may be operated at the time of all hot, and a heat-resistant night cover 30 capable of withstanding the hole hot may be provided between the outlet 17 and the suction port 18 in FIG. 10 to prevent the refrigerant from leaking. ..
実施の形態3.
 図11は、実施の形態3に係るショーケース1の機械室20の構成を示す図である。図11において、オールホット時以外はドレンパン21の排水口21aからドレンが排出される。
Embodiment 3.
FIG. 11 is a diagram showing the configuration of the machine room 20 of the showcase 1 according to the third embodiment. In FIG. 11, the drain is discharged from the drain port 21a of the drain pan 21 except when it is all hot.
 オールホット時は凝縮器3と凝縮器用送風機6の間に万一漏れた冷媒がドレンパン21からドレントラップ21cを通って、排出口21bから排出される。オールホット時以外の冷却時(コールド)は、漏れた冷媒は、ドレンパン21からドレン配管にて排水口21aから排出される。 At the time of all hot, the refrigerant leaked between the condenser 3 and the condenser blower 6 is discharged from the drain pan 21 through the drain trap 21c and from the discharge port 21b. During cooling (cold) other than when all hot, the leaked refrigerant is discharged from the drain pan 21 through the drain pipe from the drain port 21a.
 オールホット時はドレンが流れないので、万一冷媒が漏れた場合は、図1及び図10の排水口21aの位置だと、凝縮器用送風機6の後方のため、負圧となり、漏れた冷媒が流れない可能性がある。 Since the drain does not flow when all hot, if the refrigerant leaks, the leaked refrigerant will have a negative pressure at the position of the drain port 21a in FIGS. 1 and 10 because it is behind the condenser blower 6. It may not flow.
 実施の形態3では、排出口21bを凝縮器用送風機6前方に設ける。すなわち、排出口21bは、凝縮器用送風機6の風上に設けられる。これにより、漏れた冷媒がショーケース1内において流れやすくなる。また、このようにすると、凝縮器用送風機6の回転数(風量)を低減できる可能性がある。 In the third embodiment, the discharge port 21b is provided in front of the condenser blower 6. That is, the discharge port 21b is provided on the windward side of the condenser blower 6. This makes it easier for the leaked refrigerant to flow in the showcase 1. Further, in this way, there is a possibility that the rotation speed (air volume) of the condenser blower 6 can be reduced.
 従って、実施の形態1~3のショーケース1によれば、地球温暖化係数が1500以下の可燃性冷媒を用いた冷凍装置内蔵型のショーケース1を提供でき、延長配管も必要ないため、冷媒の充填量を例えば500gのように低減することができる。 Therefore, according to the showcase 1 of the first to third embodiments, it is possible to provide the showcase 1 with a built-in refrigerating device using a flammable refrigerant having a global warming potential of 1500 or less, and no extension pipe is required. The filling amount of the above can be reduced to, for example, 500 g.
 また、実施の形態1~3のショーケース1によれば、地球温暖化係数が1500以下の可燃性冷媒を用いた場合であっても、漏れた冷媒の拡散により、冷媒の漏れに対する安全性を確保するショーケース1を提供することができる。 Further, according to Showcase 1 of the first to third embodiments, even when a flammable refrigerant having a global warming potential of 1500 or less is used, the leakage of the refrigerant diffuses the leakage of the refrigerant to improve safety against leakage of the refrigerant. The showcase 1 to be secured can be provided.
 さらに、冷凍装置と室内機(ショーケース)を別体とした場合は、冷凍装置の台数の増加等のために、機械室を建物内に設けなければならず設置場所の選定に苦慮する場合がある。しかしながら、本実施の形態1~3に係るショーケース1は、冷凍装置内蔵型のショーケース1であり、店内に設置される構成されるため、ショーケース1の設置場所を容易に選定できる。 Furthermore, if the refrigerator and indoor unit (showcase) are separated, it may be difficult to select the installation location because the machine room must be installed in the building due to the increase in the number of refrigerators. is there. However, since the showcase 1 according to the first to third embodiments is a showcase 1 with a built-in refrigerating device and is installed in the store, the installation location of the showcase 1 can be easily selected.
 実施の形態は、例として提示したものであり、実施の形態の範囲を限定することは意図していない。実施の形態1は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of the embodiment. The first embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.
 1 ショーケース、2 圧縮機、3 凝縮器、4 絞り装置、5 蒸発器、6 凝縮器用送風機、7 制御装置、8 断熱壁、9 内層仕切板、10 内層ダクト、10a 天井部、11 貯蔵室、12 棚、13 蛍光灯、14 底部ダクト、15 庫内送風機、16 前面開口部、17 吹出口、18 吸込口、19 底部仕切板、20 機械室、21 ドレンパン、21a 排水口、21b 排出口、21c ドレントラップ、22 ドレン水蒸発装置、23 蒸発皿、24 蒸発板、25 庇、26 操作パネル、27 支持部材、28 加熱ヒータ、29 蒸発器入口温度センサ、30 ナイトカバー、31 運転パターン判断部、32 圧縮機制御部、33 凝縮器用送風機制御部、34 庫内送風機制御部、A、B、C、D、E 濃度測定点、EE、FF 冷媒の漏れ方向、AA 1段目、BB 2段目、CC 3段目、DD 4段目。 1 showcase, 2 compressor, 3 condenser, 4 throttle device, 5 evaporator, 6 condenser blower, 7 control device, 8 insulation wall, 9 inner layer partition plate, 10 inner layer duct, 10a ceiling, 11 storage room, 12 shelves, 13 fluorescent lamps, 14 bottom duct, 15 internal blower, 16 front opening, 17 air outlet, 18 suction port, 19 bottom partition plate, 20 machine room, 21 drain pan, 21a drain port, 21b discharge port, 21c Drain trap, 22 Drain water evaporator, 23 Evaporator, 24 Evaporator, 25 Ceiling, 26 Operation panel, 27 Support member, 28 Heater, 29 Evaporator inlet temperature sensor, 30 Night cover, 31 Operation pattern judgment unit, 32 Compressor control unit, 33 condenser blower control unit, 34 internal blower control unit, A, B, C, D, E concentration measurement points, EE, FF refrigerant leakage direction, AA 1st stage, BB 2nd stage, CC 3rd stage, DD 4th stage.

Claims (6)

  1.  圧縮機、凝縮器、絞り装置、及び蒸発器が配管で接続され、冷媒が循環する冷媒回路と、
     複数の棚を有し、前記冷媒回路の蒸発器の吸熱を利用して冷却が行なわれる貯蔵室が内部に形成された筐体と、
     前記貯蔵室の前記複数の棚にそれぞれ設けられた複数の加熱ヒータと、
     前記凝縮器を冷却するために送風を行なう凝縮器用送風機と、
     運転パターンが入力される操作パネルと、
     前記操作パネルに入力された運転パターンに応じて、前記冷媒回路を制御する制御装置と
    を具備し、
     前記制御装置は、前記操作パネルにより入力された運転パターンが前記複数の加熱ヒータの全てをオンにするオールホットの場合又は前記冷媒回路の圧縮機の停止をする停止の場合、前記凝縮器用送風機を運転し、前記凝縮器用送風機の送風量を使用時間に応じて上げて制御するショーケース。
    A refrigerant circuit in which a compressor, a condenser, a throttle device, and an evaporator are connected by piping and a refrigerant circulates.
    A housing having a plurality of shelves and having a storage chamber internally formed for cooling by utilizing the endothermic heat of the evaporator of the refrigerant circuit.
    A plurality of heaters provided on the plurality of shelves in the storage chamber, and
    A condenser blower that blows air to cool the condenser,
    The operation panel where the operation pattern is input and
    A control device for controlling the refrigerant circuit according to the operation pattern input to the operation panel is provided.
    When the operation pattern input by the operation panel is all-hot to turn on all of the plurality of heaters or to stop the compressor of the refrigerant circuit, the control device uses the condenser blower. A showcase that operates and controls the amount of air blown by the compressor blower according to the usage time.
  2.  前記凝縮器用送風機は、複数台設けられている、
    請求項1に記載のショーケース。
    A plurality of blowers for the condenser are provided.
    The showcase according to claim 1.
  3.  前記貯蔵室の吹出口から吸込口の間に前記オールホットに耐えうる耐熱性のナイトカバーをさらに具備する、
    請求項1又は2に記載のショーケース。
    A heat-resistant night cover capable of withstanding the all-hot is further provided between the outlet and the suction port of the storage chamber.
    The showcase according to claim 1 or 2.
  4.  前記蒸発器から生ずるドレン水を受けるドレンパンと、
     前記ドレンパンからのドレン水を蒸発させるドレン水蒸発装置とをさらに具備し、
     前記凝縮器用送風機は、前記凝縮器と前記ドレン水蒸発装置との間に配置され、前記ドレン水蒸発装置に送風する、
    請求項1~3のいずれか1項に記載のショーケース。
    A drain pan that receives the drain water generated from the evaporator and
    A drain water evaporator for evaporating the drain water from the drain pan is further provided.
    The blower for the condenser is arranged between the condenser and the drain water evaporator, and blows air to the drain water evaporator.
    The showcase according to any one of claims 1 to 3.
  5.  前記ドレンパンの排出口は、前記凝縮器用送風機の風上に設けられている、
    請求項1~4のいずれか1項に記載のショーケース。
    The drain pan outlet is provided on the windward side of the condenser blower.
    The showcase according to any one of claims 1 to 4.
  6.  前記蒸発器が設置される内層ダクトに連通し、前貯蔵室の下部に形成される底部ダクトに設置される庫内送風機をさらに具備し、
     前記制御装置は、前記操作パネルにより入力された運転パターンが前記オールホット又は前記停止の場合、前記庫内送風機の運転を停止する、
    請求項1~5のいずれか1項に記載のショーケース。
    Further provided with an internal blower that communicates with the inner layer duct in which the evaporator is installed and is installed in the bottom duct formed in the lower part of the front storage chamber.
    The control device stops the operation of the in-compartment blower when the operation pattern input by the operation panel is the all-hot or the stop.
    The showcase according to any one of claims 1 to 5.
PCT/JP2019/040632 2019-10-16 2019-10-16 Showcase WO2021074993A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021552032A JP7258174B2 (en) 2019-10-16 2019-10-16 Showcase
PCT/JP2019/040632 WO2021074993A1 (en) 2019-10-16 2019-10-16 Showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040632 WO2021074993A1 (en) 2019-10-16 2019-10-16 Showcase

Publications (1)

Publication Number Publication Date
WO2021074993A1 true WO2021074993A1 (en) 2021-04-22

Family

ID=75537521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040632 WO2021074993A1 (en) 2019-10-16 2019-10-16 Showcase

Country Status (2)

Country Link
JP (1) JP7258174B2 (en)
WO (1) WO2021074993A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366366A (en) * 1991-06-14 1992-12-18 Fuji Electric Co Ltd Controlling method for cooling device to prevent from clogging
JPH08327195A (en) * 1995-05-29 1996-12-13 Sanyo Electric Co Ltd Freezing device
JP2698255B2 (en) * 1991-11-20 1998-01-19 三洋電機株式会社 Drain water evaporator
JPH1073366A (en) * 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Cooling storage cabinet
JPH10110996A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Method and apparatus for controlling air conditioner
JP2000074508A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Condensing unit
JP2004101131A (en) * 2002-09-12 2004-04-02 Nakano Refrigerators Co Ltd Showcase with refrigerator built-in
JP2005156034A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Showcase
JP2007018137A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Vending machine
JP2007175130A (en) * 2005-12-27 2007-07-12 Sanyo Electric Co Ltd Open showcase
JP2012107823A (en) * 2010-11-18 2012-06-07 Panasonic Corp Refrigerating showcase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297733A (en) * 1991-03-07 1992-10-21 Mitsubishi Electric Corp Control device for refrigerating system
JPH0828969A (en) * 1994-07-15 1996-02-02 Sanyo Electric Co Ltd Cooling system
JP3188125B2 (en) 1995-02-28 2001-07-16 三洋電機株式会社 Cooling device operation control device
JP4785935B2 (en) 2009-01-05 2011-10-05 三菱電機株式会社 Refrigeration cycle equipment
WO2019142324A1 (en) 2018-01-19 2019-07-25 三菱電機株式会社 Showcase

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366366A (en) * 1991-06-14 1992-12-18 Fuji Electric Co Ltd Controlling method for cooling device to prevent from clogging
JP2698255B2 (en) * 1991-11-20 1998-01-19 三洋電機株式会社 Drain water evaporator
JPH08327195A (en) * 1995-05-29 1996-12-13 Sanyo Electric Co Ltd Freezing device
JPH1073366A (en) * 1996-08-30 1998-03-17 Sanyo Electric Co Ltd Cooling storage cabinet
JPH10110996A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Method and apparatus for controlling air conditioner
JP2000074508A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Condensing unit
JP2004101131A (en) * 2002-09-12 2004-04-02 Nakano Refrigerators Co Ltd Showcase with refrigerator built-in
JP2005156034A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Showcase
JP2007018137A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Vending machine
JP2007175130A (en) * 2005-12-27 2007-07-12 Sanyo Electric Co Ltd Open showcase
JP2012107823A (en) * 2010-11-18 2012-06-07 Panasonic Corp Refrigerating showcase

Also Published As

Publication number Publication date
JP7258174B2 (en) 2023-04-14
JPWO2021074993A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6598878B2 (en) Refrigeration cycle equipment
JP6289757B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
WO2016157615A1 (en) Refrigeration cycle device and refrigeration cycle system
JP6336121B2 (en) Refrigeration cycle equipment
JP5677233B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
JP6157789B1 (en) Refrigeration cycle apparatus and refrigerant leakage detection method
JP2018173249A (en) Indoor unit of freezer
JP2012017920A (en) Refrigerator
JP4654073B2 (en) Refrigeration air conditioning system
JP5898568B2 (en) Radiant air conditioner
WO2021074993A1 (en) Showcase
JP5496465B2 (en) Showcase
JP6987250B2 (en) Showcase and cooling unit
JP7321297B2 (en) Showcase
JPH08303918A (en) Low temperature show case
JP7154441B2 (en) Showcase
KR20200144205A (en) Refrigeration Showcase with automatic humidity control
JP2000266439A (en) Refrigerator
JP2016114319A (en) Heating system
JP2021179280A (en) Refrigerator and show case equipped with refrigerator
JP6991369B2 (en) Air conditioner
JP5992735B2 (en) Air conditioner
JP7071613B2 (en) Refrigeration equipment
JP3482405B2 (en) refrigerator
JP5714301B2 (en) Cooling system and cooling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949129

Country of ref document: EP

Kind code of ref document: A1