WO2021074534A1 - Dispositif de filtration électronique de particules - Google Patents

Dispositif de filtration électronique de particules Download PDF

Info

Publication number
WO2021074534A1
WO2021074534A1 PCT/FR2020/051840 FR2020051840W WO2021074534A1 WO 2021074534 A1 WO2021074534 A1 WO 2021074534A1 FR 2020051840 W FR2020051840 W FR 2020051840W WO 2021074534 A1 WO2021074534 A1 WO 2021074534A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
armature
potential
stage
electrical insulator
Prior art date
Application number
PCT/FR2020/051840
Other languages
English (en)
Inventor
Pierre GUITTON
Renaud Marchand
Original Assignee
Teqoya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2005099A external-priority patent/FR3110433B1/fr
Application filed by Teqoya filed Critical Teqoya
Priority to KR1020227010851A priority Critical patent/KR20220078590A/ko
Priority to JP2022519286A priority patent/JP2022552113A/ja
Priority to EP20800236.0A priority patent/EP4045170A1/fr
Priority to CA3151194A priority patent/CA3151194A1/fr
Priority to CN202080069194.4A priority patent/CN114466701A/zh
Priority to BR112022005456A priority patent/BR112022005456A2/pt
Publication of WO2021074534A1 publication Critical patent/WO2021074534A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle

Definitions

  • the technical context of the present invention is that of air purification devices, and in particular particle filtering. More particularly, the invention relates to a collector stage of an electronic particle filtration device, as well as such an electronic particle filtration device. These technologies are also known as electrostatic precipitation and electrofiltration.
  • Air filtration is a widely used technology in building design.
  • double-flow ventilation systems are increasingly used which incorporate mechanical filters in order to retain some of the suspended particles present in the air.
  • air handling units comprising one or more filtration chambers formed by mechanical filters.
  • FIGURE 1 The principle of operation of known electronic filters is shown in FIGURE 1. It consists of two successive steps taken according to the direction of the air flow in the electronic filter
  • Each armature is brought to different electric potentials in order to generate an electric field between them.
  • a first known drawback of electronic filters lies in the emission of secondary pollutants, and in particular ozone, which are harmful to health and to ventilation ducts.
  • These secondary pollutants are emitted during electrostatic discharges which can occur between the armatures of electronic filters and because of the very high values of electric fields generated between them. Indeed, when these electrostatic discharges occur between the two armatures, by the Corona effect, also called the peak effect, a cold plasma is created and releases ozone.
  • a second known drawback of these electronic filters lies in the noise pollution produced by transient electrostatic discharges between the armatures, triggered for example by the presence of dust or by the humidity of the air passing through the electronic filters.
  • a third known drawback of these electronic filters lies in their bulk, the electrical insulation distances between elements not being suitable for compact devices.
  • the object of the present invention is to provide a novel collector stage of an electronic particle filtration device in order to at least largely meet the above problems and further lead to other advantages.
  • Another object of the invention is to limit the emission of pollutants during the operation of such a collector stage. Another object of the invention is to reduce the noise pollution of such a collector stage.
  • Another object of the invention is to improve the electrical safety of such a collector stage by avoiding any risk of electrostatic discharge on an individual touching it.
  • Another object of the invention is to allow compact shaping, in air passage sections of the order of 10 cm per side or less, by reducing the insulation distances usually used in electrostatic precipitators.
  • At least one of the aforementioned objectives is achieved with a collecting stage of an electronic particle filtration device, the collecting stage comprising at least one collection assembly comprising (i) a frame potential and (ii) a collector plate located opposite the potential armature, each collection assembly having a non-zero electric potential difference between the potential armature and the collector plate.
  • a central core located opposite the collector frame is covered with an electrical insulator.
  • the electronic filtration device is configured to filter particles contained in an air stream.
  • the collector stage makes it possible - when it is implemented in such an electronic filtration device - to generate a strong electric field between the plates of the collector stage, resulting from the difference in electric potential between they. In the presence of such an electric field, the particles - previously charged by an ionization stage of the electronic filtration device - which engulf between the frames of the collector stage are deflected in the direction of the collector frame.
  • the potential armature is brought to an electric potential greater than that of the collector armature.
  • the potential armature is brought to a positive electric potential while the potential armature is connected to an electric ground, and has an electric potential lower than that of the potential armature, or even zero.
  • the potential armature is brought to an electrical potential lower than that of the collector armature.
  • the reinforcement potential is brought to a negative electric potential while the potential armature is connected to an electric ground, and has an electric potential greater than that of the potential armature, or even zero.
  • the collector armatures and the potential armatures of the collector stage are advantageously flat, possibly curved. Preferably, they are all parallel to each other.
  • the heart of the potential armature is the part of the potential plate which is located in front of the collector plate, the heart being formed by at least one surface covering the potential and collector plates.
  • at least part of the core of the potential armature is covered with an electrical insulator located on one face of the potential armature located opposite the collector armature.
  • the heart of the potential armature can be directly electrically conductive or formed of one or more alternately electrically conductive and insulating layers.
  • electrical insulator a material whose dielectric strength is greater than 5 kV / mm.
  • a material is considered to be electrically conductive when it allows the circulation of electrons producing an electric current of very low intensity, of the order of a nano-Ampere, without requiring a high electric voltage, that is to say - say less than a few tens of Volts.
  • a material is electrically conductive when its electrical resistivity is less than 10 5 Ohms. metre.
  • the collector stage in accordance with the first aspect of the invention makes it possible to limit the occurrence of an electric arc between the potential armature and the collector armature, in particular in the presence of air laden with humidity between said armatures.
  • this configuration does not adversely affect the filtration efficiency of the collector stage, the filtration efficiency being taken as the rate of capture of particles passing through the collector stage relative to the number of particles entering said collecting stage.
  • the collector stage in accordance with the first aspect of the invention advantageously comprises at least one of the improvements below, the technical characteristics forming these improvements being able to be taken alone or in combination: -
  • the potential armature and the collector armature each take the form of a plate comprising an electrically conductive foliage.
  • the plate forming the potential armature and / or the collector armature may be formed of a stack of alternately electrically conductive and electrically insulating foliage.
  • the electrically conductive material is predominantly covered with an electrically insulating material, so that the electrically conductive material is not directly in contact with the air and / or in direct contact with the opposite armature of the collection set.
  • the potential armature and / or the collector armature of each collection assembly are each formed of a printed circuit board.
  • the plate forming the potential armature and / or the collector armature may be formed of an electrically conductive material, such as for example copper or any type of metal alloy.
  • the electrically conductive material is predominantly in direct contact with the air and / or in direct contact with the opposing frame of the collection assembly;
  • the heart of the potential armature of each collection set is covered with electrical insulation on a face opposite to the collector armature of said collection set.
  • This advantageous configuration improves the operation of the collector stage and improves the electrical insulation of the potential armature.
  • the collector stage comprises several collection assemblies
  • the electrical insulation of the heart of the potential armature on its two opposite faces makes it possible to place the electrical insulation opposite each air gap formed by two armatures. opposite the collector floor;
  • the potential armature of each collection assembly comprises a peripheral margin at the heart, the peripheral margin being covered with the electrical insulator on a face facing the collecting plate of said collection assembly and / or on a face opposite to the collector reinforcement of said set of collection.
  • the peripheral margin extends over all or part of the heart.
  • the peripheral margin forms a sidewalk which extends around the periphery of all or part of the heart of the potential reinforcement.
  • a central zone of the collector armature located opposite the potential armature is covered with an electrical insulator.
  • this configuration advantageously improves the efficiency of the collector stage and limits or even prevents the effects of breakdown during its operation.
  • the core area of the collector armature is covered with electrical insulation on one face of the collector armature located opposite the potential armature;
  • the central area of the collector armature of each collection set is covered with electrical insulation on a face opposite the potential armature of said collection set.
  • the collector armature of each collection assembly comprises a zone peripheral to the central zone, the peripheral zone being covered with the electrical insulation on a face facing the potential armature of said collection assembly and / or on one side opposite to the potential armature of said collection set.
  • the peripheral zone extends over all or part of the central zone of the collector frame.
  • the peripheral zone forms a sidewalk which extends around the periphery of all or part of the central zone of the collecting reinforcement.
  • the electrical insulator comprises (i) a first electrical insulator formed by the electrical insulator, the first electrical insulator being in contact with the potential armature and / or the collector armature of each collection assembly, and (ii) a second electrical insulator superimposed on the first electrical insulator.
  • this configuration makes it possible to limit the insulation of the central zones of the collector reinforcements and / or of the cores of the potential reinforcements, and thus to avoid excessively reducing the filtration performance of the collector stage in accordance with the first aspect of the invention
  • the second electrical insulator covers the peripheral margin of the potential armature and / or the peripheral zone of the collecting armature.
  • the electrical insulation of the peripheral margin of the potential reinforcement is reinforced with respect to the electrical insulation of the heart of said reinforcement and / or the electrical insulation of the peripheral zone of the collector reinforcement. is reinforced with respect to the electrical insulation of the central zone of said reinforcement.
  • a thickness of the electrical insulator is greater than the level of the peripheral margin of the potential armature, relative to the thickness of the electrical insulator taken at the level of the heart of said armature and / or the thickness of the armature.
  • the electrical insulation is greater than the level of the peripheral zone of the collector reinforcement, relative to the thickness of the electrical insulation taken at the level of the central zone of said reinforcement;
  • the second electrical insulator covers part of the heart of the potential armature located near the peripheral margin and / or the second electrical insulator covers part of the central zone of the collector armature located at proximity to the peripheral area.
  • the second electrical insulator partially covers part of the heart proximal to the peripheral margin of the potential armature, and / or the second electrical insulator partially covers part of the proximal central area of the peripheral area of the collector reinforcement;
  • a length of overlap of the second insulator on the part of the core and / or on the part of the central zone is between 0.5 mm and 5 mm .
  • the overlap length is equal to 3 mm.
  • the overlap length is taken in a direction perpendicular to the edge of the potential reinforcement and / or to the edge of the collector reinforcement, from an outer edge of the core of the potential reinforcement and / or of the central zone of the collecting frame, and in the direction of said core and / or said central zone;
  • a thickness of the first and of the second electrical insulator is between 100 nm and 500 ⁇ m;
  • the first electrical insulator is identical to the second electrical insulator, or the first electrical insulator is different from the second electrical insulator;
  • the first electrical insulator and the second electrical insulator are chosen from electrical insulating varnishes, thermoplastic films, plastic coatings and plastic overmoldings.
  • the first electrical insulator and the second electrical insulator may take the form of an anodization produced on the surface of the potential armature and / or of the collector armature. This configuration is particularly advantageous in the case where the potential armature and / or the collector armature is formed from an aluminum plate, since they confer on the plates thus treated a biocidal effect which is sought after for such collecting stages of pressure devices. electronic filtration.
  • the first electrical insulator is a sparing varnish
  • the second electrical insulator is a tropicalization varnish
  • the potential armature of a first collection set is located (i) at a first side, opposite of a collecting frame of the first collection set, and (ii) at a second side opposite the first side, facing a collecting frame of a second collection set.
  • the potential plates and the collector plates are all located in alternation from each other, each collector plate being adjacent to a potential armature and vice versa;
  • a dimension of the peripheral margin of the potential reinforcement taken between an outer edge of the heart of said potential reinforcement and a free edge of said peripheral margin, and / or a dimension of the peripheral zone of the collector reinforcement, taken between an outer edge of the central zone of said collecting frame and a free edge of said peripheral zone, is between 2 mm and 4 mm.
  • this dimension is equal to 3 mm;
  • a distance taken between the potential armature and the collector armature is between 2 mm and 4 mm. Preferably, this distance between two consecutive reinforcements is equal to 3 mm.
  • an electronic particle filtration device comprising (i) an electrical source, (ii) a collector stage in accordance with the first aspect of the invention or according to the invention. 'any of its improvements, each collection assembly of the collector stage being polarized by the electrical source, (iii) a sheath forming an air stream across which the collector stage extends, (iv) a ionization stage configured to electrically charge particles passing through the air stream.
  • the ionization stage is located upstream of the collector stage.
  • the electronic filtration device according to the second aspect of the invention thus exhibits higher performance compared to the filtration devices.
  • known electronic filtration Indeed, the electrical insulation of the reinforcements forming its collector stage - as presented above - makes it possible to limit the appearance of tracing effects, reducing both the noise pollution of such an electronic filtration device and the production of harmful secondary pollutants, such as ozone.
  • the electronic filtration device advantageously comprises at least one of the improvements below, the technical characteristics forming these improvements can be taken alone or in combination:
  • the electrical source is advantageously of the type of a high voltage source.
  • the electrical source is of the type of a continuous supply.
  • the electrical source is of the type of an AC source;
  • the potential plates and the collector plates are elliptical, circular or polygonal shapes
  • the potential frames and the collector frames of all collection sets extend from one inner side of the cladding to the other.
  • a ventilation system comprising an electronic filtration device in accordance with the second aspect of the invention or according to any one of its improvements and a member generating a non-zero air flow. through the air stream.
  • the member generating the air flow is fluidly coupled to the air stream.
  • the member generating the air flow is configured to blow air through the sheath.
  • the member generating the air flow is configured to suck air through the air duct.
  • it may be a turbine generating a vacuum or a pump.
  • FIG. 1 illustrates a schematic side and top view of a first embodiment of the collector stage according to the first aspect of the invention
  • FIG.2 illustrates a schematic side and top view of a second embodiment of the collector stage according to the first aspect of the invention
  • FIG.3 illustrates a schematic side and top view of a third embodiment of the collector stage according to the first aspect of the invention
  • FIG. 4 illustrates a schematic view of the electronic filtration device according to the second aspect of the invention
  • FIG.5 illustrates a transverse view of the air stream of the electronic filtration device according to a first embodiment
  • FIG.6 illustrates a transverse view of the air stream of the electronic filtration device according to a first exemplary embodiment
  • FIG.7 illustrates a transverse view of the air stream of the electronic filtration device according to a first exemplary embodiment.
  • the characteristics, the variants and the different embodiments of the invention can be associated with one another, in various combinations, insofar as they are not incompatible or mutually exclusive. It is in particular possible to imagine variants of the invention comprising only a selection of characteristics described below in isolation from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from in the state of the prior art. In particular, all the variants and all the embodiments described can be combined with one another if there is nothing to prevent this combination from a technical point of view.
  • FIGURES 1 to 3 illustrate schematic views of three embodiments of the collector stage 10 according to the first aspect of the invention.
  • such a collector stage 10 comprises a plurality of collection assembly 1, each collection assembly 1 comprising a potential armature 11;
  • each collection assembly 1 having a non-zero electric potential difference between the potential armature 11 and the collector plate 12;
  • the potential armature 11 is aligned laterally with respect to the collector armature, so that a lateral edge 2 of the collector armature 12 is aligned with the edge side 2 of the potential armature 11.
  • an electrical insulator 13 covers at least a central core 111 of the potential armature 11 and located opposite the collector armature 12. More particularly, for a given collection set 1, the potential armature 11 comprises an active face 112 directly facing an active surface 122 of the collector armature 12, and the part of the core 111 systematically covered with the electrical insulator is located on the side of the active face 112 of the potential armature 11.
  • FIGURES 1 to 3 the surfaces of the reinforcements covered by the electrical insulator 13 are represented by hatched surfaces.
  • the heart 111 is located at the level of a middle zone of the potential armature 11, so that the entire surface of the heart 111 is located directly opposite a part of the plate. collector 12. In the embodiment illustrated in FIGURE 1, only the heart 111 of the potential armature 11 is covered, in whole or in part, by the electrical insulator 13.
  • the potential armature 11 and the collector armature 12 of the collector assemblies 1 each take the form of a plate.
  • the plate is at least partly electrically conductive:
  • the collector plate 12 and the potential plate 11 are simply formed of a conductive plate 3 made of an electrically conductive material, such as for example copper;
  • the collector armature 12 and the potential armature 11 are formed from a stack of alternately electrically conductive and electrically insulating foliage. More particularly, in the examples illustrated in FIGURES 2 and 3, the collector plate 12 and the potential plate 11 each comprise a substrate 4 housed between two conductive plates 3. By way of example, such plates 11, 12 can be formed from a printed circuit board.
  • the potential plates 11 and the collector plates 12 are advantageously all parallel to each other, so as to form an air gap between them, taken in pairs.
  • the potential plates 11 and the collector plates 12 are preferably all planar, or possibly all curves.
  • the potential plates 11 and the collector plates 12 all have the same geometric conformation that the air gap is of substantially constant length between them.
  • the potential armature 11 of each collection set 1 comprises a peripheral margin 113 located on the periphery of the heart 111 of the potential armature 11. More particularly, the peripheral margin 113 forms a sidewalk which encircles the heart 111 of the potential armature 11. In a particularly clever manner, the peripheral margin 113 is formed of the substrate 4 of the potential armature 11.
  • the collecting frame 12 of each collection assembly 1 comprises a peripheral zone 123 located on the periphery of a central zone 121 of said collecting armature 12 - analogous to the heart 111 of the potential armature 11. More particularly, the peripheral zone 123 forms a sidewalk which encircles the central zone 121 of the collecting armature 12. In a particularly clever manner, the peripheral zone 123 is formed of the substrate 4 of the collector frame 12.
  • the embodiments illustrated in FIGURES 2 and 3 illustrate complementary overlaps of the potential & 1 and collector 12 armatures by the electrical insulator 13. More particularly, the collector armature 12 and the potential armature 11 are entirely covered there by the electrical insulator 13. In in other words, the electrical insulator 13 completely surrounds the potential plates 11 and the collector plates 12, each surface of the plates being covered by a non-zero thickness of the electrical insulator 13.
  • the collector frame 12 is covered with the electrical insulation 13 at the level:
  • the electrical insulator 13 is of constant thickness all around the collector plate 12 on the one hand, and the potential armature 11 on the other hand.
  • the electrical insulation is reinforced at the level of the peripheral margin 113 of the potential armature 11 and at the level of the peripheral zone 123 of the collector plate 12.
  • the 'electrical insulator 13 comprises:
  • the second electrical insulator 132 covers the peripheral margin 113 of the potential armature 11, and the second electrical insulator 132 covers the peripheral zone 123 of the collector armature 12.
  • This configuration thus allows to reinforce the electrical insulation of the peripheral margin 113 of the potential armature 11 on the one hand and of the peripheral zone 123 of the collector plate 12 on the other hand, respectively with respect to the electrical insulation of the core 111 of the potential armature 11 and to the electrical insulation of the central zone 121 of the collector plate 12.
  • a thickness of the electrical insulator 13 is greater than the level of the peripheral margin 113 and of the peripheral zone 123, relative to the thickness of the electrical insulator 13 taken respectively at the level of the heart 111 and central zone 121.
  • the second electrical insulator 132 covers part of the core 111 of the potential armature 11 located near the peripheral margin 113 of said potential armature 11. In other words, the second electrical insulator 132 covers partially a part of the heart 111 proximal to the peripheral margin 113 of the potential reinforcement. Thus, the second insulator 132 protrudes from the peripheral margin 113 onto the part of the core 111 located directly near the peripheral margin 113; and or
  • the second electrical insulator 132 covers part of the central zone 121 of the collector plate 12 located near the peripheral zone 123 of said collector plate 12. In other words, the second electrical insulator 132 partially covers part of the central zone 121 proximal to the peripheral zone 123 of the collecting frame 12. Thus, the second insulator 132 overflows from the peripheral zone 123 onto the part of the central zone 121 situated directly close to the peripheral zone 123.
  • a length of overlap of the second insulator 132 on the part of the core 111 and / or on the part of the central zone 121 as described above is of the order of a length of the air gap between the collector armature 12 and the potential armature 11 of a given collection set 1.
  • the length of the second insulator 132 covering the part of the core 111 and / or the part of the central zone 121 is between 0.5 mm and 5 mm, preferably equal to 3 mm.
  • the overlap length is taken in a direction perpendicular to the edge 21 of the potential armature 11 and / or to the edge 22 of the collector armature 12, respectively from an outer edge of the core 111 of the voltage armature. potential 11 and / or of the central zone 121 of the collecting frame 12, and in the direction of said core 111 and / or of said central zone 121.
  • the first electrical insulator 131 and the second electrical insulator 132 have a dielectric strength greater than 5 kV / mm.
  • the first electrical insulator 131 and the second electrical insulator 132 are configured to prevent breakdown between a potential armature 11 and a collector armature 12 in humid air up to 100% relative humidity.
  • the first electrical insulator 131 and the second 132 are chosen from among electrical insulating varnishes, thermoplastic films, plastic coatings and plastic overmoldings.
  • the first electrical insulator 131 is of the type of a varnish saving ; and the second electrical insulator 132 is of the type of a tropicalization varnish.
  • an electronic filtration device 30 comprising:
  • an electrical source 32 preferably of the type of a high voltage source
  • an ionization stage 31 configured to electrically charge particles passing through the air stream 35.
  • FIGURE 4 illustrates a schematic side view of the electronic filtration device 30 according to the second aspect of the invention
  • FIGURES 4 to 7 illustrate 3 different embodiments of the air stream 35 formed by the sheath 33, seen in a cross section of said electronic filtration device 30.
  • FIGURE 4 an air flow passing through the electronic filter device 30 is illustrated by the arrows F: such an air flow passes through the electronic filter device 30 from the left to the right of FIGURE 4.
  • the air stream 35 propagates across the entire electronic filtration device 30, that is to say both across the ionization stage 31 and across the collector stage 10.
  • the ionization stage 31 is located upstream of the collector stage 10.
  • each collection assembly 1 of the collector stage 10 is biased by the electrical source 32. More particularly, the electrical source 32 is electrically connected to each potential armature 11 and each collector armature 12 of the collector stage 10, in order to create an electric field across the air stream 35 taken at the level of the collector stage 10, and more particularly between two reinforcements 11, 12 directly facing each other .
  • the potential armatures 11 and the collector plates 12 of all the collection sets 1 are supported by rails 34 integral with the sheath 33, respectively at their peripheral margin 113 and their peripheral zone 123.
  • the potential plates 11 and the collector plates 12 of the collector stage 10 are connected to the electric source 32 so as to be alternately brought to a different electric potential.
  • This configuration allows the potential difference between two consecutive plates 11, 12 to induce a Coulomb force which drives the particles, electrically charged by the ionization stage 31, towards the collecting plates 12.
  • the potential difference between the plates 11 , 12 induces an electric field close to, or greater than, the value of the disruptive field in humid air, ie approximately 10 6 V / m.
  • the potential plates 11 and the collector plates 12 of all the collection assemblies 1 extend on either side of the sheath 33, across the air stream 35, so that, in a plane transverse to the air flow F shown in FIGURE 4, the potential plates 11 and the collector plates collectively take the form of the sheath 33.
  • the collector stage 10 has a transverse profile in the shape of a square: the potential plates 11 and the collector plates 12 have dimensions and are arranged in such a way that 'they match the square section of the sheath 33.
  • the collector stage 10 has a transverse profile in the shape of a circle: the potential plates 11 and the collector plates 12 have dimensions and are arranged in such a way that 'they match the circular section of the sheath 33.
  • the collector stage 10 has a transverse profile in the form of an annular arc: the potential plates 11 and the collector plates 12 have dimensions and are arranged in a curved manner. , so that they match the annular section of the sheath 33.
  • the invention relates to a collector stage 10 of an electronic filtration device 30 in which the potential plates 11 and / or the plates manifold 12 are at least partially covered with an electrical insulator 13 at the level of the air gap in order to limit the appearance of peak effects during the operation of the electronic filtration device 30.

Landscapes

  • Electrostatic Separation (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

L'invention concerne un étage collecteur (10) d'un dispositif de filtration électronique (30) dans lequel les armatures de potentiel (11) et/ou les armatures collectrice (12) sont recouvertes au moins partiellement d'un isolant électrique (13) au niveau de l'entrefer afin de limiter l'apparition d'effets de pointes durant le fonctionnement du dispositif de filtration électronique (30).

Description

DISPOSITIF DE FILTRATION ELECTRONIQUE DE PARTICULES
Le contexte technique de la présente invention est celui des dispositifs de purification de l’air, et notamment du filtrage de particules. Plus particulièrement, l’invention a trait à un étage collecteur d’un dispositif de filtration électronique de particules, ainsi qu’un tel dispositif de filtration électronique de particules. Ces technologies sont aussi connues sous le nom de précipitation électrostatique et d’électrofiltration.
La filtration de l'air est une technologie très usitée dans la conception de bâtiments. D’une part, dans les bâtiments à usage domestique, on utilise de plus en plus des systèmes de ventilation à double flux qui intègrent des filtres mécaniques afin de retenir une partie des particules en suspension présentes dans l’air. D’autre part, dans les bâtiments tertiaires et industriels notamment, on connaît l’utilisation de centrales de traitement de l'air comportant un ou plusieurs caissons de filtration formés de filtres mécaniques.
Par ailleurs, en France, la réglementation en vigueur empêche la filtration conventionnelle mécanique de l'air entrant dans les bâtiments par des systèmes de ventilation dits "simple flux".
L’utilisation de tels filtres mécaniques est loin d’être optimale et présente notamment les inconvénients suivants
- une consommation d'énergie importante, liée aux pertes de charge aérauliques du filtre ;
- des coûts de maintenance élevés, en particulier pour les filtres de haute efficacité sur les particules les fines ;
- un entretien complexe nécessitant une mise en arrêt partiel de la centrale de filtration ou une réduction du débit de ventilation durant l’intervention ;
- un risque de relargage de bio-contaminants (bactéries, virus), ou de prolifération des germes dans les conduits de ventilation.
Afin de contourner ces inconvénients, on connaît l’utilisation de filtres électroniques qui permettent de réduire la consommation électrique des filtres du fait de leur très faibles pertes de charges aérauliques, relativement aux filtres mécaniques. En outre, les filtres électroniques présentent une maintenance moins onéreuse car sans consommables, et évitent le risque de contamination biologique des conduits de ventilation.
Le principe de fonctionnement des filtres électroniques connus est représenté sur la FIGURE 1 . Il est constitué de deux étapes successives prises selon le sens de l’écoulement de l’air dans le filtre électronique
- une étape amont d’ionisation intensive de l’air, afin de charger électrostatiquement les contaminants particulaires ;
- une étape avale de collecte des particules chargées dans un système d’armatures parallèles et en vis-à-vis deux à deux. Chaque armature est portée à des potentiels électriques différents afin de générer un champ électrique entre elles.
Un premier inconvénient connu des filtres électroniques réside dans l’émission de polluants secondaires, et en particulier d’ozone, qui sont nocifs pour la santé et pour les conduits de ventilation. Ces polluants secondaires sont émis lors de décharges électrostatiques qui peuvent se produire entre les armatures des filtres électronique et du fait des très hautes valeurs de champs électriques générés entre elles. En effet, lorsque se produisent ces décharges électrostatiques entre les deux armatures, par effet Corona, aussi appelé effet de pointe, un plasma froid est créé et relargue de l’ozone.
Un deuxième inconvénient connu de ces filtres électroniques réside dans les nuisances sonores produites par des décharges électrostatiques transitoires entre les armatures, déclenchés par exemple par la présence de poussières ou par l’humidité de l’air traversant les filtres électroniques.
Un troisième inconvénient connu de ces filtres électroniques réside dans leur encombrement, les distances d’isolation électrique entre éléments n’étant pas appropriées à des dispositifs compacts.
La présente invention a pour objet de proposer un nouvel étage collecteur d’un dispositif de filtration électronique de particules afin de répondre au moins en grande partie aux problèmes précédents et de conduire en outre à d’autres avantages.
Un autre but de l’invention est de limiter l’émission de polluants durant le fonctionnement d’un tel étage collecteur. Un autre but de l’invention est de réduire les nuisances sonores d’un tel étage collecteur.
Un autre but de l’invention est d’améliorer la sécurité électrique d’un tel étage collecteur en évitant tout risque de décharge électrostatique sur un individu le touchant.
Un autre but de l’invention est de permettre une mise en forme compact, dans des sections de passage d’air de l’ordre de 10 cm de côté ou inférieur, en réduisant les distances d’isolation usuellement utilisées dans les électrofiltres.
Selon un premier aspect de l’invention, on atteint au moins l’un des objectifs précités avec un étage collecteur d’un dispositif de filtration électronique de particules, l’étage collecteur comportant au moins un ensemble de collection comprenant (i) une armature de potentiel et (ii) une armature collectrice située en regard de l’armature de potentiel, chaque ensemble de collection présentant une différence de potentiel électrique non nulle entre l’armature de potentiel et l’armature collectrice. Dans l’étage collecteur selon l’invention, un cœur central situé en regard de l’armature collectrice est recouvert d’un isolant électrique.
Le dispositif de filtration électronique est configuré pour permettre de filtrer des particules contenues dans un courant d’air. D’une manière générale, l’étage collecteur permet - lorsqu’il est mis en œuvre dans un tel dispositif de filtration électronique - de générer un fort champ électrique entre les armatures de l’étage collecteur, résultant de la différence de potentiel électrique entre elles. En présence d’un tel champ électrique, les particules - préalablement chargées par un étage d’ionisation du dispositif de filtration électronique - qui s’engouffrent entre les armatures de l’étage collecteur sont déviées en direction de l’armature collectrice.
Selon une première variante de réalisation, l’armature de potentiel est portée à un potentiel électrique supérieur à celui de l’armature collectrice. Préférentiellement, l’armature de potentiel est portée à un potentiel électrique positif tandis que l’armature de potentiel est reliée à une masse électrique, et présente un potentiel électrique inférieur à celui de l’armature de potentiel, voire nul. Selon une deuxième variante de réalisation, l’armature de potentiel est portée à un potentiel électrique inférieur à celui de l’armature collectrice. Préférentiellement, l’armature de potentiel est portée à un potentiel électrique négatif tandis que l’armature de potentiel est reliée à une masse électrique, et présente un potentiel électrique supérieur à celui de l’armature de potentiel, voire nul.
D’une manière non limitative, les armatures collectrices et les armatures de potentiel de l’étage collecteur sont avantageusement planes, éventuellement courbes. Préférentiellement, elles sont toutes parallèles entre elles.
Le cœur de l’armature de potentiel est la partie de la plaque potentiel qui est situé en face de l’armature collectrice, le cœur étant formé par au moins une surface de recouvrement des plaques de potentiel et de collecte. Dans l’invention conforme à son premier aspect, au moins une partie du cœur de l’armature de potentiel est recouverte d’un isolant électrique situé sur une face de l’armature de potentiel située en regard de l’armature collectrice. Le cœur de l’armature de potentiel peut être directement électriquement conducteur ou formé d’une ou plusieurs couches alternativement électriquement conductrices et isolantes.
Par isolant électrique, on entend un matériau dont la rigidité diélectrique est supérieure à 5 kV/mm. A contrario, un matériau est considéré comme étant électriquement conducteur lorsqu’il autorise la circulation d’électrons produisant un courant électrique de très faible intensité, de l’ordre du nano-Ampère, sans nécessiter une tension électrique élevée, c’est-à-dire inférieure à quelques dizaines de Volts. En d’autres termes, un matériau est électriquement conducteur lorsque sa résistivité électrique est inférieure à 105 Ohms. mètre.
L’étage collecteur conforme au premier aspect de l’invention permet de limiter l’apparition d’arc électrique entre l’armature de potentiel et l’armature collectrice, notamment en présence d’un air chargé d’humidité entre lesdites armatures. En outre, de manière astucieuse et inattendue, cette configuration ne nuit pas à l’efficacité de filtration de l’étage collecteur, l’efficacité de filtration étant prise comme le taux de capture de particules traversant l’étage collecteur par rapport au nombre de particules entrant dans ledit étage collecteur.
L’étage collecteur conforme au premier aspect de l’invention comprend avantageusement au moins un des perfectionnements ci-dessous, les caractéristiques techniques formant ces perfectionnements pouvant être prises seules ou en combinaison : - pour chaque ensemble de collection, l’armature de potentiel et l’armature collectrice prennent chacune la forme d’une plaque comportant un feuillage électriquement conducteur. Selon une première variante de réalisation, la plaque formant l’armature de potentiel et/ou l’armature collectrice peut être formée d’un empilement de feuillages alternativement électriquement conducteur et électriquement isolant. Dans cette première variante de réalisation, le matériau électriquement conducteur est majoritairement recouvert d’un matériau électriquement isolant, de sorte que le matériau électriquement conducteur ne soit pas directement au contact de l’aire et/ou en regard direct avec l’armature opposée de l’ensemble de collection. A titre d’exemple non limitatif, l’armature de potentiel et/ou l’armature collectrice de chaque ensemble de collection sont chacune formées d’une plaque de circuit imprimé. Selon une deuxième variante de réalisation, la plaque formant l’armature de potentiel et/ou l’armature collectrice peut être formée d’un matériau électriquement conducteur, tel que par exemple du cuivre ou n’importe quel type d’alliage métallique. Dans cette deuxième variante de réalisation, le matériau électriquement conducteur est majoritairement en contact direct avec l’air et/ou en regard direct avec l’armature opposée de l’ensemble de collection ;
- l’armature de potentiel et/ou l’armature collectrice forment une surface pleine ou ajourée ;
- le cœur de l’armature de potentiel de chaque ensemble de collection est recouvert de l’isolant électrique sur une face opposée à l’armature collectrice dudit ensemble de collection. Cette configuration avantageuse permet d’améliorer le fonctionnement de l’étage collecteur et d’améliorer l’isolation électrique de l’armature de potentiel. En particulier, dans le cas où l’étage collecteur comporte plusieurs ensembles de collection, l’isolation électrique du cœur de l’armature de potentiel sur ses deux faces opposées permet de disposer l’isolant électrique en regard de chaque entrefer formé par deux armatures en regard de l’étage collecteur ;
- l’armature de potentiel de chaque ensemble de collection comporte une marge périphérique au cœur, la marge périphérique étant recouverte de l’isolant électrique sur une face en regard de l’armature collectrice dudit ensemble de collection et/ou sur une face opposée à l’armature collectrice dudit ensemble de collection. La marge périphérique s’étend sur tout ou partie du cœur. A titre d’exemple non limitatif, la marge périphérique forme un trottoir qui s’étend en périphérie de tout ou partie du cœur de l’armature de potentiel. Cette configuration avantageuse permet de limiter l’apparition d’effets de pointe au niveau des marges périphériques des armatures de potentiel de l’étage collecteur conforme au premier aspect de l’invention ;
- une tranche de l’armature de potentiel de chaque ensemble de collection est recouverte de l’isolant électrique. Cette configuration avantageuse permet de limiter l’apparition d’effets de pointe entre deux armatures en regard l’une de l’autre de l’étage collecteur conforme au premier aspect de l’invention ;
- de manière analogue au cœur de l’armature de potentiel, une zone centrale de l’armature collectrice située en regard de l’armature de potentiel est recouverte d’un isolant électrique. En combinaison avec l’isolant électrique sur le cœur de l’armature de potentiel, cette configuration permet avantageusement d’améliorer l’efficacité de l’étage de collecteur et de limiter voire empêcher les effets de claquage durant son fonctionnement. A minima, la zone de cœur de l’armature collectrice est recouverte de l’isolant électrique sur une face de l’armature collectrice située en regard de l’armature de potentiel ;
- la zone centrale de l’armature collectrice de chaque ensemble de collection est recouverte de l’isolant électrique sur une face opposée à l’armature de potentiel dudit ensemble de collection. Cette configuration avantageuse permet d’améliorer le fonctionnement de l’étage collecteur et d’améliorer l’isolation électrique de l’armature collectrice. En particulier, dans le cas où l’étage collecteur comporte plusieurs ensembles de collection, l’isolation électrique de la zone centrale de l’armature collectrice sur ses deux faces opposées permet de disposer l’isolant électrique en regard de chaque entrefer formé par deux armatures en regard de l’étage collecteur ;
- l’armature collectrice de chaque ensemble de collection comporte une zone périphérique à la zone centrale, la zone périphérique étant recouverte de l’isolant électrique sur une face en regard de l’armature de potentiel dudit ensemble de collection et/ou sur une face opposée à l’armature de potentiel dudit ensemble de collection. La zone périphérique s’étend sur tout ou partie de la zone centrale de l’armature collectrice. A titre d’exemple non limitatif, la zone périphérique forme un trottoir qui s’étend en périphérie de tout ou partie de la zone centrale de l’armature collectrice. Cette configuration avantageuse permet de limiter l’apparition d’effets de pointe au niveau des zones périphériques des armatures collectrices de l’étage collecteur conforme au premier aspect de l’invention ;
- un chant de l’armature collectrice de chaque ensemble de collection est recouvert de l’isolant électrique. Cette configuration avantageuse permet de limiter l’apparition d’effets de pointe entre deux armatures en regard l’une de l’autre de l’étage collecteur conforme au premier aspect de l’invention ;
- l’isolant électrique comporte (i) un premier isolant électrique formé par l’isolant électrique, le premier isolant électrique étant en contact avec l’armature de potentiel et/ou l’armature collectrice de chaque ensemble de collection, et (ii) un deuxième isolant électrique superposé au premier isolant électrique. Cette superposition partielle des deux isolants électriques permet de renforcer l’isolation électrique des armatures de l’étage collecteur. En particulier, cette configuration avantageuse permet de mieux définir les zones des armatures à isoler et de limiter les effets de claquage durant le fonctionnement de l’étage collecteur. Consécutivement, cette configuration permet de limiter l'isolation des zones centrales des armatures collectrices et/ou des cœurs des armatures de potentiel, et d’éviter ainsi de trop réduire les performances de filtration de l’étage collecteur conforme au premier aspect de l’invention ;
- en particulier, pour chaque ensemble de collection, le deuxième isolant électrique recouvre la marge périphérique de l’armature de potentiel et/ou la zone périphérique de l’armature collectrice. En d’autres termes, l’isolation électrique de la marge périphérique de l’armature de potentiel est renforcée par rapport à l’isolation électrique du cœur de ladite armature et/ou l’isolation électrique de la zone périphérique de l’armature collectrice est renforcée par rapport à l’isolation électrique de la zone centrale de ladite armature. Eventuellement, une épaisseur de l’isolant électrique est supérieure au niveau de la marge périphérique de l’armature de potentiel, relativement à l’épaisseur de l’isolant électrique pris au niveau du cœur de ladite armature et/ou l’épaisseur de l’isolant électrique est supérieure au niveau de la zone périphérique de l’armature collectrice, relativement à l’épaisseur de l’isolant électrique pris au niveau de la zone centrale de ladite armature ;
- pour chaque ensemble de collection, le deuxième isolant électrique recouvre une partie du cœur de l’armature de potentiel située à proximité de la marge périphérique et/ou le deuxième isolant électrique recouvre une partie de la zone centrale de l’armature collectrice située à proximité de la zone périphérique. En d’autres termes, le deuxième isolant électrique recouvre partiellement une partie du cœur proximale de la marge périphérique de l’armature de potentiel, et/ou le deuxième isolant électrique recouvre partiellement une partie de la zone centrale proximale de la zone périphérique de l’armature collectrice ;
- selon une coupe transversale de l’armature de potentiel et/ou de l’armature collectrice, une longueur de recouvrement du deuxième isolant sur la partie du cœur et/ou sur la partie de la zone centrale est comprise entre 0.5 mm et 5 mm. Préférentiellement, la longueur de recouvrement est égale à 3 mm. La longueur de recouvrement est prise selon une direction perpendiculaire à la tranche de l’armature de potentiel et/ou au chant de l’armature collectrice, à partir d’un bord extérieur du cœur de l’armature de potentiel et/ou de la zone centrale de l’armature collectrice, et en direction dudit cœur et/ou de ladite zone centrale ;
- une épaisseur du premier et du deuxième isolant électrique est comprise entre 100 nm et 500 pm ;
- le premier isolant électrique est identique au deuxième isolant électrique, ou le premier isolant électrique est différent du deuxième isolant électrique ;
- le premier isolant électrique et le deuxième isolant électrique sont choisis parmi des vernis d’isolation électrique, des films thermoplastiques, des enrobages plastiques et des surmoulages plastiques. Eventuellement encore, le premier isolant électrique et le deuxième isolant électrique peuvent prendre la forme d’une anodisation réalisée en surface de l’armature de potentiel et/ou de l’armature collectrice. Cette configuration est particulièrement avantageuse dans le cas où l’armature de potentiel et/ou l’armature collectrice est formée d’une plaque d’aluminium, car ils confèrent aux armatures ainsi traitées un effet biocide recherché pour de tels étages collecteurs de dispositifs de filtration électronique. De manière avantageuse, le premier isolant électrique est un vernis épargne, et le deuxième isolant électrique est un vernis de tropicalisation ;
- dans le cas où l’étage collecteur conforme au premier aspect de l’invention comporte plusieurs ensembles de collection, l’armature de potentiel d’un premier ensemble de collection est située (i) au niveau d’un premier côté, en regard d’une armature collectrice du premier ensemble de collection, et (ii) au niveau d’un deuxième côté opposé au premier côté, en regard d’une armature collectrice d’un deuxième ensemble de collection. En d’autres termes, les armatures de potentiel et les armatures collectrices sont toutes situées en alternances les unes des autres, chaque armature collectrice étant adjacente à une armature de potentiel et réciproquement ;
- une dimension de la marge périphérique de l’armature de potentiel, prise entre un bord extérieur du cœur de ladite armature de potentiel et un bord libre de ladite marge périphérique, et/ou une dimension de la zone périphérique de l’armature collectrice, prise entre un bord extérieur de la zone centrale de ladite armature collectrice et un bord libre de ladite zone périphérique, est comprise entre 2 mm et 4 mm. Préférentiellement, cette dimension est égale à 3 mm ;
- une distance prise entre l’armature de potentiel et l’armature collectrice est comprise entre 2 mm et 4 mm. Préférentiellement, cette distance entre deux armatures consécutives est égale à 3 mm.
Selon un deuxième aspect de l’invention, il est proposé un dispositif de filtration électronique de particules, le dispositif de filtration électronique comprenant (i) une source électrique, (ii) un étage collecteur conforme au premier aspect de l’invention ou selon l’un quelconque de ses perfectionnements, chaque ensemble de collection de l’étage collecteur étant polarisé par la source électrique, (iii) une gaine formant une veine d’air en travers de laquelle s’étend l’étage collecteur, (iv) un étage d’ionisation configuré pour charger électriquement des particules traversant la veine d’air.
Relativement à un flux d’air traversant le dispositif de filtration électronique, l’étage d’ionisation est situé en amont de l’étage collecteur.
Le dispositif de filtration électronique conforme au deuxième aspect de l’invention présente ainsi des performances plus élevées par rapport aux dispositifs de filtration électronique connus. En effet, l’isolation électrique des armatures formant son étage collecteur - telle que présentée précédemment - permet de limiter l’apparition d’effets de calquage, réduisant à la fois les nuisances sonores d’un tel dispositif de filtration électronique et la production de polluants secondaires nocifs, tels que l’ozone.
Le dispositif de filtration électronique conforme au deuxième aspect de l’invention comprend avantageusement au moins un des perfectionnements ci-dessous, les caractéristiques techniques formant ces perfectionnements pouvant être prises seules ou en combinaison :
- la source électrique est avantageusement du type d’une source une haute tension. Selon une première variante de réalisation, la source électrique est du type d’une alimentation continue. Selon une deuxième variante de réalisation, la source électrique est du type d’une source alternative ;
- les armatures de potentiel et les armatures collectrices de tous les ensembles de collection sont supportées par des rails solidaires de la gaine, respectivement au niveau de leur marge périphérique et de leur zone périphérique ;
- les armatures de potentiel et les armatures collectrices sont de formes elliptiques, circulaires ou polygonales ;
- les armatures de potentiel et les armatures collectrices de tous les ensembles de collection s’étendent d’un flanc intérieur à l’autre de la gaine.
Selon un troisième aspect de l’invention, il est proposé un système de ventilation comportant un dispositif de filtration électronique conforme au deuxième aspect de l’invention ou selon l’un quelconque de ses perfectionnements et un organe générant un flux d’air non nul au travers de la veine d’air.
L’organe générant le flux d’air est couplé fluidiquement à la veine d’air. Selon une première variante de réalisation, l’organe générant le flux d’air est configuré pour souffler de l’air au travers de la gaine. A titre d’exemple non limitatif, il peut s’agir d’un ventilateur ou d’une turbine soufflant de l’air. Selon une deuxième variante de réalisation, l’organe générant le flux d’air est configuré pour aspirer de l’air au travers de la gaine d’air. A titre d’exemple non limitatif, il peut s’agir d’une turbine générant une dépression ou d’une pompe. Des modes de réalisation variés de l’invention sont prévus, intégrant selon l’ensemble de leurs combinaisons possibles les différentes caractéristiques optionnelles exposées ici.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels :
[Fig .1 ] illustre une vue schématique de profil et de dessus d’un premier exemple de réalisation de l’étage collecteur conforme au premier aspect de l’invention ;
[Fig.2] illustre une vue schématique de profil et de dessus d’un deuxième exemple de réalisation de l’étage collecteur conforme au premier aspect de l’invention ;
[Fig.3] illustre une vue schématique de profil et de dessus d’un troisième exemple de réalisation de l’étage collecteur conforme au premier aspect de l’invention ;
[Fig .4] illustre une vue schématique du dispositif de filtration électronique conforme au deuxième aspect de l’invention ;
[Fig.5] illustre une vue transversale de la veine d’air du dispositif de filtration électronique selon un premier exemple de réalisation ;
[Fig.6] illustre une vue transversale de la veine d’air du dispositif de filtration électronique selon un premier exemple de réalisation ;
[Fig.7] illustre une vue transversale de la veine d’air du dispositif de filtration électronique selon un premier exemple de réalisation.
Bien entendu, les caractéristiques, les variantes et les différentes formes de réalisation de l'invention peuvent être associées les unes avec les autres, selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. On pourra notamment imaginer des variantes de l’invention ne comprenant qu’une sélection de caractéristiques décrites par la suite de manière isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l’invention par rapport à l’état de la technique antérieur. En particulier toutes les variantes et tous les modes de réalisation décrits sont combinables entre eux si rien ne s’oppose à cette combinaison sur le plan technique.
Sur les figures, les éléments communs à plusieurs figures conservent la même référence.
Les FIGURES 1 à 3 illustrent des vues schématiques de trois exemples de réalisation de l’étage collecteur 10 conforme au premier aspect de l’invention.
D’une manière générale et commune à tous les exemples de réalisation, un tel étage collecteur 10 comporte une pluralité d’ensemble de collection 1 , chaque ensemble de collection 1 comprenant une armature de potentiel 11 ;
- une armature collectrice 12 située en regard de l’armature de potentiel 11 , chaque ensemble de collection 1 présentant une différence de potentiel électrique non nulle entre l’armature de potentiel 11 et l’armature collectrice 12 ;
Afin d’être en regard l’une de l’autre, l’armature de potentiel 11 est alignée latéralement par rapport à l’armature collectrice, de sorte qu’un bord latéral 2 de l’armature collectrice 12 soit aligné avec le bord latéral 2 de l’armature de potentiel 11.
Conformément à l’invention, et tel que visible dans tous les exemples de réalisation, un isolant électrique 13 recouvre à minima un cœur 111 central de l’armature de potentiel 11 et situé en regard de l’armature collectrice 12. Plus particulièrement, pour un ensemble de collection 1 donné, l’armature de potentiel 11 comporte une face active 112 faisant directement face à une surface active 122 de l’armature collectrice 12, et la partie du cœur 111 systématiquement recouverte de l’isolant électrique est située du côté de la face active 112 de l’armature de potentiel 11 .
Sur les FIGURES 1 à 3, les surfaces des armatures recouvertes par l’isolant électrique 13 sont représentées par des surfaces hachurées.
Comme visible sur les FIGURES 1 à 3, le cœur 111 est situé au niveau d’une zone médiane de l’armature de potentiel 11 , de sorte que toute la surface du cœur 111 soit située directement en regard d’une partie de la plaque collectrice 12. Dans l’exemple de réalisation illustré sur la FIGURE 1 , seul le cœur 111 de l’armature de potentiel 11 est recouvert, en tout ou partie, par l’isolant électrique 13.
D’une manière avantageuse, l’armature de potentiel 11 et l’armature collectrice 12 des ensembles collecteur 1 prennent chacune la forme d’une plaque. La plaque est au moins en partie électriquement conductrice :
- dans l’exemple de réalisation illustré sur la FIGURE 1 , l’armature collectrice 12 et l’armature de potentiel 11 sont simplement formées d’une plaque conductrice 3 constituée d’un matériau électriquement conducteur, tel que par exemple du cuivre ;
- dans les exemples illustrés sur les FIGURES 2 et 3, l’armature collectrice 12 et l’armature de potentiel 11 sont formées d’un empilement de feuillages alternativement électriquement conducteur et électriquement isolant. Plus particulièrement, dans les exemples illustrés sur les FIGURES 2 et 3, l’armature collectrice 12 et l’armature de potentiel 11 comportent chacune un substrat 4 logé entre deux plaques conductrices 3. A titre d’exemple, de telles armatures 11 , 12 peuvent être formée d’une plaque de circuit imprimé.
Les armatures de potentiel 11 et les armatures collectrice 12 sont avantageusement toutes parallèles entre elles, de sorte à former un entrefer entre elles, prises deux à deux. En outre, les armatures de potentiel 11 et les armatures collectrice 12 sont préférentiellement toutes planes, ou éventuellement toutes courbes. D’une manière générale, les armatures de potentiel 11 et les armatures collectrice 12 présentent toutes la même conformation géométrique que l’entrefer soit de longueur sensiblement constante entre elles.
Dans les exemples de réalisation illustrés sur les FIGURES 2 et 3, l’armature de potentiel 11 de chaque ensemble de collection 1 comporte une marge périphérique 113 située en périphérie du cœur 111 de l’armature de potentiel 11. Plus particulièrement, la marge périphérique 113 forme un trottoir qui encercle le cœur 111 de l’armature de potentiel 11. De manière particulièrement astucieuse, la marge périphérique 113 est formée du substrat 4 de l’armature de potentiel 11 . De manière analogue, l’armature collectrice 12 de chaque ensemble de collection 1 comporte une zone périphérique 123 située en périphérie d’une zone centrale 121 de ladite armature collectrice 12 - analogue au cœur 111 de l’armature de potentiel 11. Plus particulièrement, la zone périphérique 123 forme un trottoir qui encercle la zone centrale 121 de l’armature collectrice 12. De manière particulièrement astucieuse, la zone périphérique 123 est formée du substrat 4 de l’armature collectrice 12.
Comme évoqué précédemment, afin de limiter l’apparition d’effets de pointe et de claquage entre les armatures 11 , 12 de l’étage collecteur 10, il est nécessaire de recouvrir au moins en partie les armatures 11 , 12 d’isolant électrique 13. En complément de la présence d’isolant électrique 13 sur la partie du cœur 111 de l’armature de potentiel 11 située en regard de l’armature collectrice 12 d’un ensemble de collection 1 donnée, les exemples de réalisation illustrés sur les FIGURES 2 et 3, illustrent des recouvrements complémentaires des armatures de potentiel &1 et collectrice 12 par l’isolant électrique 13. Plus particulièrement, l’armature collectrice 12 et l’armature de potentiel 11 y sont entièrement recouvertes de l’isolant électrique 13. En d’autres termes, l’isolant électrique 13 entoure totalement les armatures de potentiel 11 et les armatures collectrice 12, chaque surface des armatures étant recouverte par une épaisseur non nulle de l’isolant électrique 13.
Ainsi, dans les exemples de réalisation illustrés sur les FIGURES 2 et 3, et pour chaque ensemble de collection 1 formant l’étage collecteur 10, l’armature de potentiel 11 est recouverte de l’isolant électrique 13 au niveau
- de son cœur 111 , sur la face active 112 et sur une face opposée 114 à la face active 112, relativement à l’armature collectrice 12 associée d’un ensemble de collection 10 donnée ; et de sa marge périphérique 113 ;
- d’une tranche 21 prise au niveau du bord latéral 2 de l’armature de potentiel 11 et au niveau d’un bord libre 23 de la marge périphérique 113.
De manière analogue, dans les exemples de réalisation illustrés sur les FIGURES 2 et 3, et pour chaque ensemble de collection 1 formant l’étage collecteur 10, l’armature collectrice 12 est recouverte de l’isolant électrique 13 au niveau :
- de sa zone centrale 121 , sur la surface active 122 et sur une surface opposée
124 à la surface active 121 , relativement à l’armature de potentiel 11 associée d’un ensemble de collection 10 donnée ; et de sa zone périphérique 123 ;
- d’un chant 22 pris au niveau du bord latéral 2 de l’armature collectrice 12 et au niveau d’un bord libre 23 de la zone périphérique 123.
Dans l’exemple illustré sur la FIGURE 2, l’isolant électrique 13 est d’épaisseur constante sur tout le pourtour de l’armature collectrice 12 d’une part, et de l’armature de potentiel 11 d’autre part.
Dans l’exemple illustré sur la FIGURE 3, l’isolation électrique est renforcée au niveau de la marge périphérique 113 de l’armature de potentiel 11 et au niveau de la zone périphérique 123 de l’armature collectrice 12. A cet effet, l’isolant électrique 13 comporte :
- un premier isolant électrique 131 en contact avec l’armature de potentiel 11 d’une part et avec l’armature collectrice 12 d’autre part, pour chaque ensemble de collection 1 de l’étage collecteur 10 ; et
- un deuxième isolant électrique 132 superposé au premier isolant électrique. 131 .
En particulier, pour chaque ensemble de collection 1 , le deuxième isolant électrique 132 recouvre la marge périphérique 113 de l’armature de potentiel 11 , et le deuxième isolant électrique 132 recouvre la zone périphérique 123 de l’armature collectrice 12. Cette configuration permet ainsi de renforcer l’isolation électrique de la marge périphérique 113 de l’armature de potentiel 11 d’une part et de la zone périphérique 123 de l’armature collectrice 12 d’autre part, respectivement par rapport à l’isolation électrique du cœur 111 de l’armature de potentiel 11 et à l’isolation électrique de la zone centrale 121 de l’armature collectrice 12.
Consécutivement, et comme visible sur la FIGURE 3, une épaisseur de l’isolant électrique 13 est supérieure au niveau de la marge périphérique 113 et de la zone périphérique 123, relativement à l’épaisseur de l’isolant électrique 13 pris au niveau respectivement du cœur 111 et de la zone centrale 121 .
Dans l’exemple de réalisation illustré sur la FIGURE 3, pour chaque ensemble de collection 1 :
- le deuxième isolant électrique 132 recouvre une partie du cœur 111 de l’armature de potentiel 11 située à proximité de la marge périphérique 113 de ladite armature de potentiel 11. En d’autres termes, le deuxième isolant électrique 132 recouvre partiellement une partie du cœur 111 proximale de la marge périphérique 113 de l’armature de potentiel. Ainsi, le deuxième isolant 132 déborde depuis la marge périphérique 113 sur la partie du cœur 111 située directement à proximité de la marge périphérique 113 ; et/ou
- le deuxième isolant électrique 132 recouvre une partie de la zone centrale 121 de l’armature collectrice 12 située à proximité de la zone périphérique 123 de ladite armature collectrice 12. En d’autres termes, le deuxième isolant électrique 132 recouvre partiellement une partie de la zone centrale 121 proximale de la zone périphérique 123 de l’armature collectrice 12. Ainsi, le deuxième isolant 132 déborde depuis la zone périphérique 123 sur la partie du zone centrale 121 située directement à proximité de la zone périphérique 123.
Afin de permettre une efficacité optimale de l’isolation, une longueur de recouvrement du deuxième isolant 132 sur la partie du cœur 111 et/ou sur la partie de la zone centrale 121 tel que décrit précédemment est de l’ordre d’une longueur de l’entrefer entre l’armature collectrice 12 et l’armature de potentiel 11 d’un ensemble de collection 1 donné. Avantageusement, la longueur de recouvrement du deuxième isolant 132 sur la partie du cœur 111 et/ou sur la partie de la zone centrale 121 est comprise entre 0.5 mm et 5 mm, préférentiellement égale à 3 mm. La longueur de recouvrement est prise selon une direction perpendiculaire à la tranche 21 de l’armature de potentiel 11 et/ou au chant 22 de l’armature collectrice 12, à partir respectivement d’un bord extérieur du cœur 111 de l’armature de potentiel 11 et/ou de la zone centrale 121 de l’armature collectrice 12, et en direction dudit cœur 111 et/ou de ladite zone centrale 121 .
Le premier isolant électrique 131 et le deuxième isolant électrique 132 présentent une rigidité diélectrique supérieure à 5 kV/mm. D’une manière générale, le premier isolant électrique 131 et le deuxième isolant électrique 132 sont configurés pour permettre d’éviter le claquage entre une armature de potentiel 11 et une armature collectrice 12 en air humide jusqu’à 100% d’humidité relative.
Dans le contexte de la présente invention, le premier 131 et le deuxième 132 isolant électrique sont choisis parmi des vernis d’isolation électrique, des films thermoplastiques, des enrobages plastiques et des surmoulages plastiques. De manière préférée, le premier isolant électrique 131 est du type d’un vernis épargne ; et le deuxième isolant électrique 132 est du type d’un vernis de tropicalisation.
En référence aux FIGURES 4 à 7, l’invention concerne aussi un dispositif de filtration électronique 30 comportant :
- une source électrique 32, préférentiellement du type d’une source une haute tension ;
- un étage collecteur 10 tel que décrit précédemment dans l’une quelconque de ses variantes ;
- une gaine 33 formant une veine d’air 35 en travers de laquelle s’étend l’étage collecteur 10 ; et
- un étage d’ionisation 31 configuré pour charger électriquement des particules traversant la veine d’air 35.
La FIGURE 4 illustre une vue schématique de profil du dispositif de filtration électronique 30 conforme au deuxième aspect de l’invention ; et les FIGURES 4 à 7 illustrent 3 variantes de réalisation différentes de la veine d’air 35 formée par la gaine 33, vues selon une coupe transversale dudit dispositif de filtration électronique 30.
Sur la FIGURE 4, un flux d’air traversant le dispositif de filtration électronique 30 est illustré par les flèches F : un tel flux d’air traverse le dispositif de filtration électronique 30 depuis la gauche vers la droite de la FIGURE 4. Ainsi, la veine d’air 35 se propage en travers de tout le dispositif de filtration électronique 30, c’est-à-dire à la fois en travers de l’étage d’ionisation 31 et en travers de l’étage collecteur 10.
Relativement au flux d’air traversant le dispositif de filtration électronique 10, l’étage d’ionisation 31 est situé en amont de l’étage collecteur 10.
Dans un tel dispositif de filtration électronique 30, chaque ensemble de collection 1 de l’étage collecteur 10 est polarisé par la source électrique 32. Plus particulièrement, la source électrique 32 est reliée électriquement à chaque armature de potentiel 11 et chaque armature collectrice 12 de l’étage collecteur 10, afin de créer un champ électrique en travers de la veine d’air 35 prise au niveau de l’étage collecteur 10, et plus particulièrement entre deux armatures 11 , 12 directement en regard l’une de l’autre. Afin de supporter les armatures 11 , 12 de l’étage collecteur 10 du dispositif de filtration électronique 30 en travers de la veine d’air 35, les armatures de potentiel 11 et les armatures collectrices 12 de tous les ensembles de collection 1 sont supportées par des rails 34 solidaires de la gaine 33, respectivement au niveau de leur marge périphérique 113 et de leur zone périphérique 123.
Les armatures de potentiel 11 et les armatures collectrices 12 de l’étage collecteur 10 sont reliées à la source électrique 32 de sorte à être alternativement portées à un potentiel électrique différent. Cette configuration permet que la différence de potentiel entre deux armatures 11 , 12 consécutives induise une force de Coulomb qui entraîne les particules, électriquement chargées par l’étage d’ionisation 31 , vers les armatures collectrices 12. La différence de potentiel entre les armatures 11 , 12 induit un champ électrique proche de, ou supérieur à, la valeur du champ disruptif dans l’air humide, soit environ 106 V/m.
Les armatures de potentiel 11 et les armatures collectrices 12 de tous les ensembles de collection 1 s’étendent de part et d’autre de la gaine 33, en travers de la veine d’air 35, de sorte que, selon un plan transversal au flux d’air F représenté sur la FIGURE 4, les armatures de potentiel 11 et les armatures collectrices prennent collectivement la forme de la gaine 33.
Dans le mode de réalisation illustré sur la FIGURE 5, l’étage collecteur 10 a un profil transversal de la forme d’un carré : les armatures de potentiel 11 et les armatures collectrices 12 ont des dimensions et sont disposées d’une manière telle qu’elles épousent la section carrée de la gaine 33.
Dans le mode de réalisation illustré sur la FIGURE 6, l’étage collecteur 10 a un profil transversal de la forme d’un cercle : les armatures de potentiel 11 et les armatures collectrices 12 ont des dimensions et sont disposées d’une manière telle qu’elles épousent la section circulaire de la gaine 33.
Dans le mode de réalisation illustré sur la FIGURE 7, l’étage collecteur 10 a un profil transversal de la forme d’un arc annulaire : les armatures de potentiel 11 et les armatures collectrices 12 ont des dimensions et sont disposées d’une manière courbe, de sorte qu’elles épousent la section annulaire de la gaine 33.
En synthèse, l’invention concerne un étage collecteur 10 d’un dispositif de filtration électronique 30 dans lequel les armatures de potentiel 11 et/ou les armatures collectrice 12 sont recouvertes au moins partiellement d’un isolant électrique 13 au niveau de l’entrefer afin de limiter l’apparition d’effets de pointes durant le fonctionnement du dispositif de filtration électronique 30.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. Notamment, les différentes caractéristiques, formes, variantes et modes de réalisation de l’invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. En particulier toutes les variantes et modes de réalisation décrits précédemment sont combinables entre eux.

Claims

REVENDICATIONS
[Revendication 1 ] jEtage collecteur (10) d’un dispositif de filtration électronique (30) de particules, l’étage collecteur (10) comportant au moins un ensemble de collection (1) comprenant :
- une armature de potentiel (11) ;
- une armature collectrice (12) située en regard de l’armature de potentiel (11 ), chaque ensemble de collection (1 ) présentant une différence de potentiel électrique non nulle entre l’armature de potentiel (11) et l’armature collectrice (12) ; caractérisé en ce qu’un cœur (111) central de l’armature de potentiel (11 ) situé en regard de l’armature collectrice (12) est recouvert d’un isolant électrique (13).
[Revendication 2] Etage collecteur (10) selon la revendication précédente, dans lequel, pour chaque ensemble de collection (1), l’armature de potentiel (11 ) et l’armature collectrice (12) prennent chacune la forme d’une plaque comportant un feuillage électriquement conducteur.
[Revendication 3] Etage collecteur (10) selon l’une quelconque des revendications précédentes, dans lequel, le cœur (111 ) de l’armature de potentiel (11 ) de chaque ensemble de collection (1 ) est recouvert de l’isolant électrique (13) sur une face opposée à l’armature collectrice (12) dudit ensemble de collection (1).
[Revendication 4] Etage collecteur (10) selon l’une quelconque des revendications précédentes, dans lequel, l’armature de potentiel (11) de chaque ensemble de collection (1 ) comporte une marge périphérique (113) au cœur (111), la marge périphérique (113) étant recouverte de l’isolant électrique (13) sur une face en regard de l’armature collectrice (12) dudit ensemble de collection (1) et/ou sur une face opposée à l’armature collectrice (12) dudit ensemble de collection (1).
[Revendication 5] Etage collecteur (10) selon l’une quelconque des revendications précédentes, dans lequel, une tranche (21) de l’armature de potentiel (11 ) de chaque ensemble de collection (1 ) est recouverte de l’isolant électrique (13).
[Revendication 6] Etage collecteur (10) selon l’une quelconque des revendications précédentes, dans lequel, une zone centrale (121) de l’armature collectrice (12) située en regard de l’armature de potentiel (11) est recouverte d’un isolant électrique (13).
[Revendication 7] Etage collecteur (10) selon la revendication précédente, dans lequel, la zone centrale (121) de l’armature collectrice (12) de chaque ensemble de collection (1) est recouverte de l’isolant électrique (13) sur une face opposée à l’armature collectrice (12) dudit ensemble de collection (1).
[Revendication 8] Etage collecteur (10) selon l’une quelconque des revendications 6 ou 7, dans lequel, l’armature collectrice (12) de chaque ensemble de collection (1) comporte une zone périphérique (123) à la zone centrale (121), la zone périphérique (123) étant recouverte de l’isolant électrique (13) sur une face en regard de l’armature de potentiel (11) dudit ensemble de collection (1) et/ou sur une face opposée à l’armature de potentiel (11 ) dudit ensemble de collection (1 )
[Revendication 9] Etage collecteur (10) selon l’une quelconque des revendications 6 à 8, dans lequel, un chant (22) de l’armature collectrice (12) de chaque ensemble de collection (1) est recouvert de l’isolant électrique (13).
[Revendication 10] Etage collecteur (10) selon l’une quelconque des revendications précédentes, dans lequel, l’isolant électrique (13) comporte :
- un premier isolant électrique (131 ) formé par l’isolant électrique (13), le premier isolant électrique (132) étant en contact avec l’armature de potentiel (11) et/ou l’armature collectrice (12) de chaque ensemble de collection (1) ; et
- un deuxième isolant électrique (132) superposé au premier isolant électrique (131).
[Revendication 11 ] Etage collecteur (10) selon l’une quelconque des revendications précédentes prise en combinaison avec la revendication 8, dans lequel, pour chaque ensemble de collection (1 ), le deuxième isolant électrique (132) recouvre la marge périphérique (113) de l’armature de potentiel (11) et/ou la zone périphérique (123) de l’armature collectrice (12).
[Revendication 12] Etage collecteur (10) selon la revendication précédente, dans lequel, pour chaque ensemble de collection (1), le deuxième isolant électrique (132) recouvre une partie du cœur (111 ) de l’armature de potentiel (11 ) située à proximité de la marge périphérique (113) et/ou le deuxième isolant électrique (132) recouvre une partie de la zone centrale (121) de l’armature collectrice (12) située à proximité de la zone périphérique (123). [Revendication 13] Etage collecteur (10) selon l’une quelconque des revendications 10 à 12, dans lequel, le premier isolant électrique (131) et le deuxième isolant électrique (132) sont choisis parmi des vernis d’isolation électrique, des films thermoplastiques, des enrobages plastiques et des surmoulages plastiques. [Revendication 14] Dispositif de filtration électronique (30) de particules, le dispositif de filtration électronique (30) comprenant :
- une source électrique (32) ;
- un étage collecteur (10) selon l’une quelconque des revendications précédentes, chaque ensemble de collection (1) de l’étage collecteur (10) étant polarisé par la source électrique (32) ;
- une gaine (33) formant une veine d’air (35) en travers de laquelle s’étend l’étage collecteur (10) ;
- un étage d’ionisation (31) configuré pour charger électriquement des particules traversant la veine d’air (33). [Revendication 15] Système de ventilation comportant un dispositif de filtration électronique (30) selon la revendication précédente et un organe générant un flux d’air non nul au travers de la veine d’air (35). |
PCT/FR2020/051840 2019-10-15 2020-10-15 Dispositif de filtration électronique de particules WO2021074534A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227010851A KR20220078590A (ko) 2019-10-15 2020-10-15 입자를 전자식으로 여과하는 디바이스
JP2022519286A JP2022552113A (ja) 2019-10-15 2020-10-15 粒子を電子的に濾過するための装置
EP20800236.0A EP4045170A1 (fr) 2019-10-15 2020-10-15 Dispositif de filtration électronique de particules
CA3151194A CA3151194A1 (fr) 2019-10-15 2020-10-15 Dispositif de filtration electronique de particules
CN202080069194.4A CN114466701A (zh) 2019-10-15 2020-10-15 用于电子过滤颗粒的装置
BR112022005456A BR112022005456A2 (pt) 2019-10-15 2020-10-15 Dispositivo para filtragem eletrônica de partículas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1911484 2019-10-15
FRFR1911484 2019-10-15
FR2005099A FR3110433B1 (fr) 2020-05-19 2020-05-19 Dispositif de filtration électronique de particules
FRFR2005099 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021074534A1 true WO2021074534A1 (fr) 2021-04-22

Family

ID=73040133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051840 WO2021074534A1 (fr) 2019-10-15 2020-10-15 Dispositif de filtration électronique de particules

Country Status (7)

Country Link
EP (1) EP4045170A1 (fr)
JP (1) JP2022552113A (fr)
KR (1) KR20220078590A (fr)
CN (1) CN114466701A (fr)
BR (1) BR112022005456A2 (fr)
CA (1) CA3151194A1 (fr)
WO (1) WO2021074534A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466701A (zh) * 2019-10-15 2022-05-10 得康氧公司 用于电子过滤颗粒的装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875845A (en) * 1955-03-18 1959-03-03 Gaylord W Penney Electrostatic precipitator
WO2005077540A1 (fr) * 2004-02-09 2005-08-25 Sharper Image Corporation Depoussiereurs electrostatiques comprenant des electrodes de commande isolees

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9908099D0 (en) * 1999-04-12 1999-06-02 Gay Geoffrey N W Air cleaning collection device
JP4632858B2 (ja) * 2005-05-18 2011-02-16 三菱電機株式会社 電気機器
US20100037776A1 (en) * 2008-08-14 2010-02-18 Sik Leung Chan Devices for removing particles from a gas comprising an electrostatic precipitator
JP2010075864A (ja) * 2008-09-26 2010-04-08 Panasonic Corp 電気集塵機
KR101610024B1 (ko) * 2008-12-01 2016-04-21 삼성전자 주식회사 전기집진장치 및 그 전극
KR101032618B1 (ko) * 2009-02-17 2011-05-06 한국기계연구원 탄소섬유를 이용한 전기집진기
CN202666994U (zh) * 2011-12-29 2013-01-16 东莞市宇洁新材料有限公司 一体化静电集尘装置
CN102580854B (zh) * 2011-12-29 2014-07-16 东莞市宇洁新材料有限公司 一体化结构的静电集尘过滤器及其驻极处理工艺
JP2016209783A (ja) * 2015-04-30 2016-12-15 学校法人近畿大学 静電場スクリーン発生装置、食材保管装置及びコンテナ
CN114466701A (zh) * 2019-10-15 2022-05-10 得康氧公司 用于电子过滤颗粒的装置
FR3110433B1 (fr) * 2020-05-19 2022-11-04 Teqoya Dispositif de filtration électronique de particules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875845A (en) * 1955-03-18 1959-03-03 Gaylord W Penney Electrostatic precipitator
WO2005077540A1 (fr) * 2004-02-09 2005-08-25 Sharper Image Corporation Depoussiereurs electrostatiques comprenant des electrodes de commande isolees

Also Published As

Publication number Publication date
BR112022005456A2 (pt) 2022-06-21
CA3151194A1 (fr) 2021-04-22
JP2022552113A (ja) 2022-12-15
KR20220078590A (ko) 2022-06-10
CN114466701A (zh) 2022-05-10
EP4045170A1 (fr) 2022-08-24

Similar Documents

Publication Publication Date Title
US10179336B2 (en) Portable air cleaner with improved multi-stage electrostatic precipitator
EP2564933B1 (fr) Dispositif de collecte électrostatique de particules en suspension dans un milieu gazeux
FR2514266A1 (fr) Filtre electrostatique a rendement eleve
US20070000236A1 (en) Exhaust gas processing method and exhaust gas processing system
FR2483806A1 (fr) Dispositif electrostatique de filtration d'air a rendement eleve
FR2829041A1 (fr) Epurateur d'air electrostatique
FR2566290A1 (fr) Collecteur de poussiere a filtre electrostatique
FR2889463A1 (fr) Dispositif d'ionisation de particules vehiculees dans un flux d'air, pour une installation de ventilation, de chauffage et/ou de climatisation notamment.
JP5351791B2 (ja) ディーゼルエンジンの排気処理装置
KR100722863B1 (ko) 전기 집진기의 콜렉터 셀 유니트
EP4045170A1 (fr) Dispositif de filtration électronique de particules
EP1738817A1 (fr) Dispositif de traitement de gaz par catalyse, notamment pour hotte de filtration
FR3110433A1 (fr) Dispositif de filtration électronique de particules
JP2006525113A (ja) 導電性のガス精製フィルターおよびフィルターアセンブリー
WO2003035264A1 (fr) Systeme pour manipuler par dielectrophorese des particules dielectriques, en particulier des cellules biologiques
EP1899073A1 (fr) Dispositif de precipitation electrostatique de particules chargees et vehiculees dans un flux d air
WO2008107598A1 (fr) Dispositif de filtre electrostatique pour la capture et la destruction de particules de suie contenues dans les gaz d'echappement d'un moteur a combustion
CN106999952B (zh) 集尘器单元
TWI763132B (zh) 電場裝置和氣體淨化裝置以及淨化方法
WO2008006981A1 (fr) Dispositif et procede pour la capture et l'elimination des particules contenues dans les gaz d'echappement d'un moteur a combustion interne de vehicule automobile
WO2020104678A1 (fr) Precipitateur/collecteur electrostatique pour purificateur d'air ou epurateur d'aerosols
FR2564335A1 (fr) Electrode pour utilisation electrostatique
FR2893864A1 (fr) Dispositif de collecte par precipitation electrostatique de particules chargees et vehiculees dans un flux d'air.
JP2001020721A (ja) ディーゼルパティキュレートフィルタシステム
EP4285941A1 (fr) Dispositif ionique de traitement de l'air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20800236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3151194

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022519286

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005456

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020800236

Country of ref document: EP

Effective date: 20220516

ENP Entry into the national phase

Ref document number: 112022005456

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220323