WO2021073538A1 - 充电控制方法、设备及可读存储介质 - Google Patents

充电控制方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2021073538A1
WO2021073538A1 PCT/CN2020/120933 CN2020120933W WO2021073538A1 WO 2021073538 A1 WO2021073538 A1 WO 2021073538A1 CN 2020120933 W CN2020120933 W CN 2020120933W WO 2021073538 A1 WO2021073538 A1 WO 2021073538A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
type
power supply
charged
supply device
Prior art date
Application number
PCT/CN2020/120933
Other languages
English (en)
French (fr)
Inventor
李志杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20877511.4A priority Critical patent/EP4024653A4/en
Publication of WO2021073538A1 publication Critical patent/WO2021073538A1/zh
Priority to US17/713,899 priority patent/US20220231524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer

Definitions

  • the present disclosure relates to the field of charging technology, and in particular, to a charging control method, device, and readable storage medium.
  • QC Quality of Char
  • the QC protocol introduces a higher charging voltage in order to further increase the charging speed without changing the interface.
  • QC 2.0 can support voltage and current pairs of 5V/2A, 9V/2A, and 12V/1.5A.
  • QC 3.0 can also dynamically adjust the adapter output voltage from 3.6V to 20V at 0.2V.
  • the present disclosure provides a charging control method, device and readable storage medium.
  • a charging control method applied to a device to be charged, including: determining that the connection port provided by a power supply device connected to the device to be charged is a dedicated charging port Whether the type of the power supply device is the preset type or the QC type; and when the type of the power supply device is the QC type, obtain the QC protocol parameters stored in the device to be charged, and then obtain the QC protocol parameters according to the QC
  • the protocol parameter controls the battery unit of the device to be charged to charge; wherein the maximum output voltage of the power supply device of the preset type is less than the maximum output voltage of the power supply device of the QC type.
  • a device to be charged including: a charging interface, a battery unit, a first control module, and a second control module; wherein the first control module is connected to the charging interface for When it is recognized that the connection port provided by the power supply device connected to the device to be charged is a dedicated charging port, notify the second control module to identify whether the type of the power supply device is a preset type; determine the second control The module recognizes whether the type of the power supply device is the preset type; recognizes whether the type provided by the power supply device is the QC type; and when the type of the power supply device is recognized as the QC type, Acquire the QC protocol parameters stored in the device to be charged, and control the battery cells of the device to be charged to charge according to the QC protocol parameters; wherein, the maximum output voltage of the power supply device of the preset type is less than all The maximum output voltage of the QC type power supply device.
  • an electronic device including: a memory, a processor, and executable instructions stored in the memory and executable in the processor, and the processor executes the executable instructions When realizing any of the above methods.
  • a computer-readable storage medium having computer-executable instructions stored thereon, and when the executable instructions are executed by a processor, any one of the methods described above is implemented.
  • a set of charging control process is designed for the situation where the device to be charged can support the QC fast charging scheme and other fast charging schemes at the same time, which avoids conflicts between different fast charging schemes. It is unable to carry out fast charging, and even dangerous problems occur.
  • Fig. 1 is a flowchart showing a charging control method according to an exemplary embodiment.
  • Fig. 2 is a flowchart showing another charging control method according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing still another charging control method according to an exemplary embodiment.
  • Fig. 4 is a flowchart showing yet another charging control method according to an example embodiment.
  • Fig. 5 is a block diagram showing a device to be charged according to an exemplary embodiment.
  • Fig. 6 is a schematic structural diagram of a terminal device according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing a computer-readable storage medium according to an exemplary embodiment.
  • connection should be interpreted broadly. For example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection, or an indirect connection through an intermediary, or a connection between two components or an interaction relationship between two components .
  • connection may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection, or an indirect connection through an intermediary, or a connection between two components or an interaction relationship between two components .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • power supply devices such as power adapters, power banks, etc.
  • the power provided by the power supply device is transmitted to the device to be charged through the cable.
  • Charging equipment for charging is generally connected to the device to be charged through cables, and the power provided by the power supply device is transmitted to the device to be charged through the cable.
  • the principle of the QC fast charging protocol will be briefly described.
  • the power supply device that supports the QC fast charging protocol such as QC adapter, QC mobile power supply
  • D-Communicate and negotiate the current suitable voltage and current pairs Take the QC2.0 protocol as an example.
  • the supported voltage and current pairs are shown in Table 1:
  • the AP in the device to be charged uses the BC1.2 protocol to identify the connection port provided by the QC adapter Whether it is a dedicated charging port (Dedicated Charging Port, DCP). If it is recognized as a DCP, the data line D+/D- is short-circuited at this time, and the QC adapter outputs a voltage and current pair of 5V/2A, which can provide a normal charging mechanism for the device to be charged (compared to the fast charging mode, the adapter is in normal mode).
  • the charging speed in the charging mode is relatively slow, and it takes longer to fully charge the battery with the same capacity).
  • HVDCP a service process called HVDCP to further negotiate with the QC adapter whether it is suitable for fast charging voltage and current.
  • the HVDCP process loads the data line D+ with a voltage of 0.325V and maintains it for 1.25 seconds; when the QC adapter detects a voltage of 0.325V on the data line D+ for more than 1.25 seconds, it will disconnect the short circuit of the data line D+/D-.
  • the type of the power supply device is a QC adapter, and can start to request the required voltage with the QC adapter, such as requesting a voltage of 9V.
  • the AP requests a voltage of 9V by setting the data lines D+ and D- to 3.3V and 0.6V, respectively. If the current voltage needs to be reduced to 5V, the AP can set the data lines D+ and D- to 0.6V and 0V, respectively.
  • the QC adapter detects the corresponding voltages on the data lines D+ and D-, it will output the corresponding voltages.
  • the power supply device can output a relatively large current (usually greater than 2.5A, such as 4.5A, 5A or even higher).
  • the power supply device may be, for example, a first-type fast charging adapter, such as the maximum output power of 50W (10V/5A), and the fast charging mode is used to charge the device to be charged; or, the power supply device may also be a second-type fast charging adapter If the maximum output power is 20W (5V/4A), the fast charging mode is used to charge the device to be charged.
  • Fig. 1 is a flowchart showing a charging control method according to an exemplary embodiment.
  • the charging control method can be applied to the device to be charged.
  • the device to be charged may be, for example, a terminal or a communication terminal.
  • the terminal or communication terminal includes but is not limited to being set to be connected via a wired line, such as via a public switched telephone network (PSTN) or digital subscriber line (digital subscriber line). , DSL), digital cable, direct cable connection, and/or another data connection/network and/or via, for example, cellular network, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video broadcasting) Handheld, DVB-H) network digital TV network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or a device for receiving/transmitting communication signals on the wireless interface of another communication terminal .
  • PSTN public switched telephone network
  • DVB-H wireless local area network
  • AM-FM amplitude modulation-frequency modulation
  • a communication terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, Web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the terminal can also include, but is not limited to, electronic book readers, smart wearable devices, mobile power sources (such as power banks, travel chargers), electronic cigarettes, wireless mice, wireless keyboards, wireless headsets, Bluetooth speakers, etc. Rechargeable electronic equipment.
  • the charging control method 10 includes:
  • step S102 when it is recognized that the connection port provided by the power supply device connected to the device to be charged is a DCP, it is determined whether the type of the power supply device is a preset type or a QC type.
  • the AP of the device to be charged uses the BC1.2 protocol to identify whether the connection port provided by the power supply device is a DCP.
  • the AP may notify the control module of the device to be charged to identify whether the type of the power supply device is a preset type when it recognizes that the connection port provided by the power supply device connected to the device to be charged is a DCP.
  • the AP After the AP recognizes the DCP, it communicates with the control module of the device to be charged and informs it to further identify whether the type of the power supply device is a preset type.
  • the control module may be implemented by an independent Micro Control Unit (MCU), for example, to control the high-current fast charging process as described above.
  • MCU Micro Control Unit
  • the preset type may be, for example, the first type fast charging adapter or the second type fast charging adapter in the above-mentioned high current charging scheme.
  • the AP delays the start of the HVDCP service process, and first communicates with the control module to instruct the control module to first identify whether the power supply device is a preset type of power supply device.
  • the control module Since the control module usually needs to use the data line D+/D- in the USB cable to identify the preset type of power supply device, the delay in starting the HVDCP server process can avoid the two fast charging schemes using D+/D at the same time -The problem of wrong type recognition caused by recognition. If a type recognition error occurs, not only fast charging cannot be performed, but also danger due to improper charging voltage/charging current may occur. Further, the AP determines whether the type of the power supply device recognized by the control module is a preset type.
  • control module After the control module recognizes the first type fast charging adapter or the second type fast charging adapter, it will notify the type of the power supply device through communication with the AP, and the control module controls the first type fast charging adapter or the second type The process in which the fast charging adapter charges the device to be charged. And if the control module does not recognize the first type of fast charging adapter or the second type of fast charging adapter, it can also inform the AP through communication with the AP that the power supply device of the preset type is not recognized.
  • the AP may determine whether the type of the power supply device recognized by the control module is a preset type according to the type fed back by the control module.
  • the control module does not recognize the first type fast charging adapter or the second type fast charging adapter, it does not inform the AP. Or, due to some errors, the AP did not receive feedback from the control module. In order to prevent the AP from waiting for feedback information, in some embodiments, the AP can set a preset time. When the type information fed back by the control module is not received within the preset time, it is determined that the control module recognizes that the type of the power supply device is different. For the preset type. Generally, the type identification of the power supply device by the control module does not exceed 30 seconds, so the AP can set the preset time to 30 seconds, but the present disclosure is not limited to this.
  • the control module When the AP determines that the control module recognizes that the type of the power supply device is not the preset type, it recognizes whether the type of the power supply device is the QC type.
  • the AP can identify whether the type of the power supply device is the QC type, for example, by starting the HVDCP service process described above.
  • the specific identification type is as mentioned above.
  • the HVDCP process loads the data line D+ with a voltage of 0.325V and maintains it for 1.25 seconds; when the QC adapter detects a voltage of 0.325V on the data line D+ for more than 1.25 seconds, it will disconnect the data line D+/ Short connection of D-, at this time, the voltage on the data line D- will not change with the voltage on the data line D+, but directly drops; the AP of the device to be charged detects that the voltage on the data line D- has changed from 0.325 When V starts to drop, it means that the power supply device is a QC type power supply device, and the AP can start requesting the required voltage with the QC adapter, such as requesting a voltage of 9V.
  • the AP requests a voltage of 9V by setting the data lines D+ and D- to 3.3V and 0.6V, respectively. If the current voltage needs to be reduced to 5V, the AP can set the data lines D+ and D- to 0.6V and 0V, respectively. After the QC adapter detects the corresponding voltages on the data lines D+ and D-, it will output the corresponding voltages.
  • the AP may also start the HVDCP service process after identifying the DCP to perform the above-mentioned QC type identification.
  • step S104 when the type of the power supply device is the QC type, the QC protocol parameters stored in the device to be charged are obtained, and the battery unit of the device to be charged is controlled to charge according to the obtained QC protocol parameters.
  • the device to be charged that supports the QC protocol usually stores related parameters of the QC protocol in a preset file, such as the specific supported voltage and current pair parameters.
  • the AP can control the voltage/current provided by the QC adapter through communication with the QC adapter, and then control the communication of the device to be charged.
  • a set of charging control process is designed for the situation where the device to be charged can support the QC fast charging scheme and other fast charging schemes at the same time, which avoids conflicts between different fast charging schemes. It is unable to carry out fast charging, and even dangerous problems occur.
  • Fig. 2 is a flowchart showing another charging control method according to an exemplary embodiment. Different from the charging control method 10 shown in FIG. 1, the charging control method shown in FIG. 2 further illustrates how to control the battery cells of the device to be charged to charge according to the QC protocol. That is, the charging control method shown in FIG. 2 further provides a specific embodiment of step S104.
  • step S104 includes:
  • step S1042 it is determined whether the voltage of the battery cell in the device to be charged is higher than a preset voltage threshold.
  • the embodiment of the present disclosure further designs a voltage drop mechanism. By comparing the current voltage of the battery cell with a preset voltage threshold, it is determined whether the high voltage (such as 9V, 12V, etc.) currently used for fast charging needs to be adjusted back to a low voltage (such as 5V) to continue charging.
  • a preset voltage threshold By comparing the current voltage of the battery cell with a preset voltage threshold, it is determined whether the high voltage (such as 9V, 12V, etc.) currently used for fast charging needs to be adjusted back to a low voltage (such as 5V) to continue charging.
  • step S1044 when the voltage of the battery cell is higher than the voltage threshold, the power supply device is requested to adjust the output voltage to the first voltage.
  • the QC adapter can be requested to reduce the size of the output voltage adjustment, such as requesting that the output voltage be adjusted to the first voltage.
  • the first voltage is, for example, the above-mentioned 5V voltage.
  • step S1046 when the voltage of the battery cell is lower than the voltage threshold, the power supply device is requested to adjust the output voltage to the second voltage.
  • the AP may request the QC adapter to adjust the output voltage to a second voltage higher than the first voltage through communication with the QC adapter.
  • the first voltage is lower than the second voltage
  • the second voltage is, for example, the aforementioned 9V, 12V, and so on.
  • the charging control method provided by the embodiments of the present disclosure, by designing the charging voltage drop mechanism, the problem of battery dissatisfaction caused by the falsely high battery voltage can be avoided during the QC fast charging process.
  • Fig. 3 is a flowchart showing still another charging control method according to an exemplary embodiment. Different from the charging control method 10 shown in FIG. 1, the charging control method shown in FIG. 3 further illustrates how to control the battery cells of the device to be charged to charge according to the QC protocol. That is, the charging control method shown in FIG. 3 further provides another specific embodiment of step S104.
  • step S104 includes:
  • step S1041 it is determined whether the detected output voltage provided by the power supply device has risen from the first voltage to the second voltage.
  • the AP when the AP first recognizes through the BC1.2 protocol that the type of the connection port provided by the power supply device is DCP, it can first enter the normal charging mode to charge the battery unit in the device to be charged, and at the same time, it can start the corresponding thread through the Some current parameters are set to realize adaptive operation during charging.
  • the adaptive operation is, for example, an adaptive operation performed according to the current battery temperature, that is, different current parameter values are set corresponding to different battery temperatures.
  • the AP may determine whether the output voltage has changed through communication with a module for voltage detection in the device to be charged, for example.
  • step S1043 when the detected output voltage provided by the power supply device rises from the first voltage to the second voltage, the setting of the current parameter in the device to be charged is adjusted accordingly.
  • the AP can execute the detection operation by starting a dedicated thread, for example. In order not to affect the power consumption of the device to be charged.
  • the thread can be executed periodically, for example, every 50 milliseconds.
  • the AP After detecting the rise of the output voltage, the AP needs to adjust the above-mentioned current parameter settings accordingly to adapt to the change of the output voltage, such as the above-mentioned rise from the 5V voltage in the normal charging mode to the 9V voltage in the fast charging mode.
  • the thread usually only needs to run during the first detection. Once the fast charging mode is entered and a stable voltage is reached, the detection does not need to be performed. Therefore, the execution of the thread can be suspended to avoid wasting the power consumption of the charging device.
  • the charging parameters may include at least one of the following parameters: input current parameters for limiting the maximum output current of the power supply device, charging current parameters for limiting the maximum current input to the battery unit, and determining whether the battery unit is Full cut-off current parameters, etc.
  • step S104 may further include:
  • step S1045 it is determined whether the detected output voltage provided by the power supply device drops from the second voltage to the first voltage.
  • the AP can also perform this detection by setting a dedicated thread.
  • this thread can also be executed periodically.
  • step S1047 when it is determined that the detected output voltage of the power supply device drops from the second voltage to the first voltage, the setting of the current parameter in the device to be charged is adjusted accordingly.
  • the AP When the AP detects a drop in the output voltage, it also needs to adjust the current parameter settings accordingly, so as to avoid the problem of incorrect application of the adaptive parameters after the output voltage changes.
  • Fig. 4 is a flowchart showing yet another charging control method according to an example embodiment.
  • the charging control method 40 shown in FIG. 4 can also be applied to the device to be charged.
  • step S202 when the AP detects that a power supply device is inserted, it performs USB port identification through the BC1.2 protocol (step S202). Determine whether the identified port is a DCP (step S204); if the identified port is a DCP, the AP can go to step S212 to notify the control module to identify whether the type of the power supply device is a preset type; at the same time, if the identified port is a DCP, The AP may also enter step S206 to set the input current value in the normal charging mode, and this parameter is used to limit the maximum output current of the power supply device. The charging current value in the normal charging mode is further set, and this parameter is used to limit the maximum charging current loaded to the battery cell (step S208).
  • the input current value and the charging current value jointly determine the charging process, and the charging current loaded to the battery cell cannot exceed the minimum of these two values.
  • the cut-off current value is set (step S210), and the current value is used to determine whether the battery cell is fully charged. When the voltage of the battery cell is higher than the voltage threshold for determining full charge and the current entering the battery cell is less than the cut-off current value for a preset period of time, it is determined that the battery cell is fully charged.
  • the control module determines whether the type of the power supply device recognized by the control module is the preset type (step S214); if so, starts the preset type fast charging thread, and keeps and controls the module In the communication between, the control module controls the charging process of the battery unit (step S216); if not, start the HVDCP service process, identify the QC type adapter, and go to step S220 to determine whether the type of the power supply device is the QC type. If it is not the QC type, return to step S206, and adaptively reset the aforementioned input current value, charging current value, cut-off current value, etc. according to the detected temperature of the battery cell.
  • step S222 is entered to start the charging process of the QC type adapter. After that, it is determined whether the voltage of the battery cell is higher than the preset voltage threshold (step S224); if not, go to step S226, request the power supply device to adjust the output voltage to the second voltage; and start a preset thread to detect The time point when the output voltage of the mode (such as 5V) is boosted to the second voltage (such as 9V) (step S228), after detecting this time point, return to step S206 to adjust the adaptive current parameter values. If it is determined that the voltage of the battery cell is higher than the preset voltage threshold, step S230 is entered to request the power supply device to adjust the output voltage to the first voltage.
  • this operation is an output voltage loop mechanism set up to prevent the battery from being dissatisfied due to a falsely high battery voltage.
  • the AP can also start another dedicated thread to detect the point in time when the output voltage drops from the current output voltage (for example, 9V) to the first voltage (for example, 5V) (step S232), and return after detecting this point in time Step S206.
  • step S220 only needs to be performed once, that is, the identification of whether it is a QC type adapter only needs to be performed once.
  • Fig. 5 is a block diagram showing a device to be charged according to an exemplary embodiment.
  • the device to be charged 1 includes: a charging interface 11, a battery unit 12, a first control module 13, and a second charging module 14.
  • the device 1 to be charged is connected to the power supply device 2 through the charging interface 11 to charge the battery unit 12.
  • the charging interface 11 may be, for example, a USB 2.0 interface, a Micro USB interface, or a USB TYPE-C interface. In some embodiments, the charging interface 11 may also be a lightning interface, or any other type of parallel port or serial port that can be used for charging.
  • the battery cell 12 may include a single lithium battery including a single cell or multiple cells; or may also include two battery cells connected in series, and each battery cell is a lithium battery including a single cell or multiple cells.
  • the battery structure can be modified to use multiple battery cells connected in series and directly charge the multiple battery cells, namely Directly load the voltage output by the adapter to the two ends of multiple battery cells.
  • the charging current required for multiple battery cells is about It is 1/N of the charging current required by a single battery cell (N is the number of battery cells connected in series).
  • N is the number of battery cells connected in series.
  • the first control module 13 is connected to the charging interface 11, and is used to notify the second control module 14 to identify the power supply device 1 when it recognizes whether the connection port provided by the power supply device 2 connected to the device to be charged 1 is a dedicated charging port. Whether the type is a preset type; identify whether the type of the power supply device 2 is the QC type; and when the type of the power supply device 2 is identified as the QC type, obtain the QC protocol parameters stored in the device to be charged 1 and follow the QC protocol Parameters to control the battery unit 12 of the device 1 to be charged for charging.
  • the first control module 13 is used to control the battery cell 12 of the device to be charged 1 to charge: determine whether the voltage of the battery cell 12 is higher than a preset voltage threshold; when the voltage of the battery cell 12 is higher than When the voltage threshold is set, the power supply device 2 is requested to adjust the output voltage to the first voltage; and when the voltage of the battery cell 12 is lower than the voltage threshold, the power supply device 2 is requested to adjust the output voltage to the second voltage; wherein, the first voltage is lower than The second voltage.
  • the first control module 13 is also used to control the battery unit 12 of the device to be charged 1 to charge: determine whether the detected output voltage provided by the power supply device 2 rises from the first voltage to the second voltage ; And when it is determined that the detected output voltage provided by the power supply device 2 rises from the first voltage to the second voltage, the setting of the current parameter in the device to be charged 1 is adjusted accordingly.
  • the first control module 13 is also used to control the battery unit 12 of the device to be charged 1 to charge: determine whether the detected output voltage provided by the power supply device 2 drops from the second voltage to the first voltage ; And when it is determined that the detected output voltage provided by the power supply device 2 drops from the second voltage to the first voltage, the current parameter settings in the device to be charged 1 are adjusted accordingly.
  • the current parameter includes at least one of the following parameters: an input current parameter for limiting the maximum output current of the power supply device 2, a charging current parameter for limiting the maximum current input to the battery unit 12, The cut-off current parameter used to determine whether the battery cell 12 is fully charged.
  • the first control module 13 is configured to determine whether the type of the power supply device 2 recognized by the second control module 14 is a preset type according to the type fed back by the second control module 14.
  • the first control module 13 is further configured to, when the type information fed back by the second control module 14 is not received within a preset time, determine that the second control module 14 recognizes that the type of the power supply device 2 is not Preset type.
  • the first control module 13 may be an application processor of the device 1 to be charged
  • the second control module 14 may be a micro control unit (MCU).
  • MCU micro control unit
  • a set of charging control process is designed to avoid the occurrence of different kinds of fast charging solutions.
  • conflict causes the inability to perform fast charging and even dangerous problems; on the other hand, by designing a voltage drop mechanism, the problem that the battery cannot be fully charged due to the false height of the battery cell during the fast charging process can be avoided; and one more
  • the relevant parameters in the adaptive operation can be adjusted in time to avoid using inappropriate parameter values during the charging process.
  • Fig. 6 is a schematic structural diagram of a terminal device according to an exemplary embodiment.
  • the device 700 shown in FIG. 6 may be a specific example of the device to be charged 1 described above, but it cannot be used to limit the present disclosure.
  • the device 700 may be, for example, a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 700 may include one or more of the following components: a processing component 702, a memory 704, a power supply component 706, a multimedia component 708, an audio component 710, an input/output (I/O) interface 712, and a sensor component 714 , And the communication component 716.
  • the processing component 702 generally controls the overall operations of the device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing element assembly 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the methods of the various embodiments of the present disclosure described above.
  • the processing component 702 may include one or more modules to facilitate the interaction between the processing component 702 and other components.
  • the processing component component 702 may include a multimedia module to facilitate the interaction between the multimedia component 708 and the processing component 702.
  • the memory 704 is configured to store various types of data to support operations on the device 700. Examples of such data include instructions for any application or method operating on the device 700, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 706 provides power to various components of the device 700.
  • the power supply component 706 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 700.
  • the multimedia component 708 includes a screen of an output interface provided between the device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 708 may also include a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 710 is configured to output and/or input audio signals.
  • the audio component 710 includes a microphone (MIC), and when the device 700 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal can be further stored in the memory 704 or sent via the communication component 716.
  • the audio component 710 further includes a speaker for outputting audio signals.
  • An input/output (I/O) interface 712 provides an interface between the processing component 702 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 714 includes one or more sensors for providing the device 700 with various aspects of status assessment.
  • the sensor component 714 can detect the on/off status of the device 700 and the relative positioning of components, such as the display and keypad of the device 700.
  • the sensor component 714 can also detect the position change of the device 700 or a component of the device 700. , The presence or absence of contact between the user and the device 700, the orientation or acceleration/deceleration of the device 700, and the temperature change of the device 700.
  • the sensor component 714 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the device 700 and other devices.
  • the device 700 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G, or 5G, or a combination thereof.
  • the communication component assembly 716 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component assembly 716 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 700 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • Fig. 7 is a schematic diagram showing a computer-readable storage medium according to an exemplary embodiment.
  • a program product 900 configured to implement the above method according to an embodiment of the present disclosure is described. It can adopt a portable compact disk read-only memory (CD-ROM) and include program code, and can be installed in a terminal device, For example, running on a personal computer.
  • the program product of the present disclosure is not limited thereto.
  • the readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, device, or device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the computer-readable medium realizes the functions shown in FIGS. 1 to 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种充电控制方法、设备及可读存储介质。该充电控制方法包括:当识别到与待充电设备连接的电源提供装置提供的连接端口为专用充电端口时,确定电源提供装置的类型是否为预设类型或QC类型(S102);以及当电源提供装置的类型为QC类型时,获取待充电设备中存储的QC协议参数,并根据QC协议参数,控制待充电设备的电池单元进行充电(S104);其中,预设类型的电源提供装置的最大输出电压小于QC类型的电源提供装置的最大输出电压。该方法可以避免不同种快速充电方案因发生冲突而导致的无法进行快速充电,甚至发生危险的问题。

Description

充电控制方法、设备及可读存储介质
交叉引用
本公开要求于2019年10月16日提交的申请号为201910983722.6名称为“充电控制方法、设备及可读存储介质”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及充电技术领域,具体而言,涉及一种充电控制方法、设备及可读存储介质。
背景技术
QC(Quick Charge,快速充电)是一种快速充电的方案。与大电流快速充电技术不同的是,QC协议为了在不改变接口的情况下进一步提高充电速度,引入了更高的充电电压。以QC 2.0为例,其可以支持5V/2A、9V/2A、12V/1.5A的电压电流对。QC 3.0更可以0.2V为一档动态调整3.6V至20V的适配器输出电压。
为了在待充电设备(例如智能手机,移动终端或智能设备)中兼容QC快速充电方案与其他快速充电方案(如大电流充电方案),需要设计一套完整的充电控制方案,使多种快速充电方案在待充电设备进行充电时不发生冲突。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开提供一种充电控制方法、设备及可读存储介质。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一方面,提供一种充电控制方法,应用于待充电设备中,包括:当识别到与所述待充电设备连接的电源提供装置提供的连接端口为专用充电端口时,确定所述电源提供装置的类型是否为所述预设类型或QC类型;以及当所述电源提供装置的类型为所述QC类型时,获取所述待充电设备中存储的QC协议参数,并根据所述QC协议参数,控制所述待充电设备的电池单元进行充电;其中,所述预设类型的电源提供装置的最大输出电压小于所述QC类型的电源提供装置的最大输出电压。
根据本公开的一方面,提供一种待充电设备,包括:充电接口、电池单元、第一控制 模块及第二控制模块;其中,所述第一控制模块与所述充电接口连接,用于当识别到与所述待充电设备连接的电源提供装置提供的连接端口为专用充电端口时,通知所述第二控制模块识别所述电源提供装置的类型是否为预设类型;确定所述第二控制模块识别到所述电源提供装置的类型是否为所述预设类型;识别所述电源提供装置提供的类型是否为QC类型;及当识别到所述电源提供装置的类型为所述QC类型时,获取所述待充电设备中存储的QC协议参数,并根据所述QC协议参数,控制所述待充电设备的电池单元进行充电;其中,所述预设类型的电源提供装置的最大输出电压小于所述QC类型的电源提供装置的最大输出电压。
根据本公开的一方面,提供一种电子设备,包括:存储器、处理器及存储在所述存储器中并可在所述处理器中运行的可执行指令,所述处理器执行所述可执行指令时实现如上述任意一种方法。
根据本公开的一方面,提供一种计算机可读存储介质,其上存储有计算机可执行指令,所述可执行指令被处理器执行时实现如上述任意一种方法。
根据本公开实施方式提供的充电控制方法,针对待充电设备可以同时支持QC快速充电方案和其他快速充电方案的情况,设计了一套充电控制流程,避免了不同种快速充电方案因发生冲突而导致的无法进行快速充电,甚至发生危险的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例性实施方式示出的一种充电控制方法的流程图。
图2是根据一示例性实施例示出的另一种充电控制方法的流程图。
图3是根据一示例性实施例示出的再一种充电控制方法的流程图。
图4是根据一示例实施方式示出的再一种充电控制方法的流程图。
图5是根据一示例性实施方式示出的一种待充电设备的框图。
图6是根据一示例性实施方式示出的一种终端设备的结构示意图。
图7是根据一示例性实施方式示出的一种计算机可读存储介质的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
在本公开中,除非另有明确的规定和限定,术语“相连”、“连接”、等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或还可以是成一体;可以是机械连接,也可以是电连接,或还可以是通信连接;可以是直接相连,也可以是通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在本公开的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在充电过程中,一般将电源提供装置(如电源适配器、移动电源(Power Bank)等设备)通过线缆与待充电设备相连,通过电缆将电源提供装置提供的电能传输至待充电设备,以为待充电设备充电。
在介绍本公开实施方式之前,先对QC快速充电协议的原理做简要说明。支持QC快速充电协议的电源提供装置(如QC适配器、QC移动电源)与待充电设备连接后,与待充电设备中的应用处理器(Application Processor,AP)利用USB缆线中的数据线D+/D-进行通信,协商当前适合的电压电流对,以QC2.0协议为例,其支持的电压电流对如表1所示:
表1
Figure PCTCN2020120933-appb-000001
以支持9V/2A的QC协议的待充电设备与QC适配器连接为例,首先当待充电设备的充电接口中插入QC适配器,待充电设备中的AP利用BC1.2协议识别QC适配器提供的连接端口是否为专用充电端口(Dedicated Charging Port,DCP)。如果识别出是DCP,此时数据线D+/D-短接,QC适配器输出5V/2A的电压电流对,可以为待充电设备提供普通充电机制(相较于快速充电模式而言,适配器在普通充电模式下的充电速度比较慢,完全 充满相同容量电池所需要的充电时间更长)。
因为待充电设备AP支持QC快速充电协议,其会启动一个名为HVDCP的服务进程,用于进一步与QC适配器协商是否适用于快速充电的电压和电流。HVDCP进程使数据线D+上加载0.325V的电压并保持1.25秒;当QC适配器在数据线D+上检测到超过1.25秒的0.325V电压时,会断开数据线D+/D-的短接,此时数据线D-上的电压不会随着数据线D+上的电压变化而变化,而是直接下降;待充电设备的AP检测到数据线D-上的电压从0.325V开始下降时,表示AP识别到电源提供装置的类型为QC适配器,并可以开始与QC适配器请求所需要的电压,比如请求9V的电压。此时,AP通过将数据线D+和D-分别设置为3.3V和0.6V来请求9V的电压。而如果需要降低当前的电压到5V,则AP可以将数据线D+和D-分别设置为0.6V和0V。QC适配器检测到数据线D+和D-上相应的电压后,则会输出对应的电压。
需要说明的是,由于不同型号的待充电设备的硬件不同,并不能完全支持表1中的所有电压电流对。例如,某些待充电设备即使识别到QC适配器,但也仅能通过5V/2A电压电流对在普通充电模式下进行充电;而某些待充电设备仅能支持5V/2A和9V/2A两种电流对等。待充电设备具体可以支持的QC协议的充电参数可以在预设的文件中读取。
在相关技术中,除了上述的QC快速充电方案外,还存在着大电流充电技术方案。在大电流快速充电方案中,电源提供装置能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)。电源提供装置例如可以为第一类型快速充电适配器,如最大输出功率为50W(10V/5A),采用快速充电模式为待充电设备进行充电;或者,电源提供装置还可以为第二类型快速充电适配器,如最大输出功率为20W(5V/4A),采用快速充电模式为待充电设备进行充电。
如上述,为了在待充电设备中兼容不同的快速充电方案,需要设计一套充电控制方法,来避免不同快速充电方案之间的冲突。
下面具体说明本公开实施方式提供的充电控制方法。
图1是根据一示例性实施方式示出的一种充电控制方法的流程图。该充电控制方法可以应用于待充电设备中。
待充电设备例如可以是终端或通信终端,该终端或通信终端包括但不限于被设置成经由有线线路连接,如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络和/或经由例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据 处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。此外,该终端还可以包括但不限于诸如电子书阅读器、智能穿戴设备、移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备。
参考图1,充电控制方法10包括:
在步骤S102中,当识别到与待充电设备连接的电源提供装置提供的连接端口为DCP时,确定电源提供装置的类型是否为预设类型或QC类型。
如上述,例如由待充电设备的AP通过BC1.2协议来识别电源提供装置提供的连接端口是否为DCP。
在一些实施例中,AP可以当当识别到与待充电设备连接的电源提供装置提供的连接端口为DCP时,通知待充电设备的控制模块识别电源提供装置的类型是否为预设类型。
在AP识别到DCP后,通过与待充电设备的控制模块进行通信,通知其进一步识别电源提供装置的类型是否为预设类型。
该控制模块例如可以通过独立的微控制单元(Micro Control Unit,MCU)实现,用于控制如上述的大电流快速充电过程。该预设类型例如可以为上述大电流充电方案中的第一类型快速充电适配器或第二类型快速充电适配器。
也即,在识别到DCP之后,AP延迟启动HVDCP服务进程,先通过与控制模块通信,指示控制模块先识别电源提供装置是否为预设类型的电源提供装置。
由于控制模块在识别预设类型的电源提供装置时通常也需要使用USB缆线中的数据线D+/D-来进行识别,因此延迟启动HVDCP服务器进程可以避免两种快速充电方案同时利用D+/D-进行识别而导致的类型识别错误的问题。如果发生类型识别错误,不仅无法进行快速充电,还有可能发生因不合适的充电电压/充电电流而导致的危险。进一步地,AP确定控制模块识别到电源提供装置的类型是否为预设类型。
控制模块在识别到第一类型快速充电适配器或第二类型快速充电适配器后,会通过与AP的通信告知电源提供装置的类型,并且由控制模块来控制该第一类型快速充电适配器或第二类型快速充电适配器为待充电设备充电的过程。而如果控制模块没有识别到第一类型快速充电适配器或第二类型快速充电适配器,也可以通过与AP之间的通信告知AP没有识别到预设类型的电源提供装置。
也即,在一些实施例中,AP可以根据控制模块反馈的类型,确定控制模块识别到电源提供装置的类型是否为预设类型。
而如果控制模块没有识别到第一类型快速充电适配器或第二类型快速充电适配器,不告知AP。或者,由于出现一些错误,导致AP没有收到控制模块的反馈。为了避免AP一 直等待反馈信息,在一些实施例中,AP可以设置一个预设时间,当在预设时间内没有收到控制模块反馈的类型信息时,确定控制模块识别到电源提供装置的类型不为预设类型。通常,控制模块对电源提供装置的类型识别不会超过30秒,因此AP可以将该预设时间设置为30秒,但本公开不以此为限。
当AP确定控制模块识别到电源提供装置的类型不为预设类型时,识别电源提供装置的类型是否为QC类型。
在确定电源提供装置不为预设类型时,AP如可以通过上述的启动HVDCP服务进程来识别电源提供装置的类型是否为QC的类型。具体的识别类型如上述,HVDCP进程使数据线D+上加载0.325V的电压并保持1.25秒;当QC适配器在数据线D+上检测到超过1.25秒的0.325V电压后,会断开数据线D+/D-的短接,此时数据线D-上的电压不会随着数据线D+上的电压变化而变化,而是直接下降;待充电设备的AP检测到数据线D-上的电压从0.325V开始下降时,表示电源提供装置为QC类型的电源提供装置,并且AP可以开始与QC适配器请求所需要的电压,比如请求9V的电压。此时,AP通过将数据线D+和D-分别设置为3.3V和0.6V来请求9V的电压。而如果需要降低当前的电压到5V,则AP可以将数据线D+和D-分别设置为0.6V和0V。QC适配器检测到数据线D+和D-上相应的电压后,则会输出对应的电压。
或者,在一些实施例中,AP也可以在识别到DCP之后,先启动HVDCP服务进程,进行如上述的QC类型识别。
在步骤S104中,当电源提供装置的类型为QC类型时,获取待充电设备中存储的QC协议参数,并根据获取的QC协议参数,控制待充电设备的电池单元进行充电。
如上述,支持QC协议的待充电设备通常会在预设的文档中存储有QC协议的相关参数,例如具体支持的电压电流对参数等。
获取到QC协议参数后,AP可以通过与QC适配器之间的通信,控制QC适配器提供的电压/电流,进而控制对待充电设备的通信。
根据本公开实施方式提供的充电控制方法,针对待充电设备可以同时支持QC快速充电方案和其他快速充电方案的情况,设计了一套充电控制流程,避免了不同种快速充电方案因发生冲突而导致的无法进行快速充电,甚至发生危险的问题。
应清楚地理解,本公开描述了如何形成和使用特定示例,但本公开的原理不限于这些示例的任何细节。相反,基于本公开公开的内容的教导,这些原理能够应用于许多其它实施方式。
图2是根据一示例性实施例示出的另一种充电控制方法的流程图。与图1所示的充电控制方法10不同的是,图2所示的充电控制方法进一步说明了如何根据QC协议,控制待充电设备的电池单元进行充电。也即,图2所示的充电控制方法进一步提供了步骤S104的具体实施例。
参考图2,步骤S104包括:
在步骤S1042中,确定待充电设备中电池单元的电压是否高于预设的电压阈值。
在快速充电过程中,当电池单元快被充满时,通常会出现因电池单元电压虚高而导致电池单元充不满的问题。为了避免该问题,本公开实施例进一步设计了电压回落机制。通过将电池单元当前的电压与预设的电压阈值进行比较,来确定是否需要将当前快速充电使用的高电压(如9V、12V等)调整回低电压(如5V)来继续充电。
在步骤S1044中,当电池单元的电压高于该电压阈值时,请求电源提供装置将输出电压调整为第一电压。
如果电池单元的电压高于该电压阈值,则有可能说明电池单元当前的电压存在虚高的问题。这时可以通过与QC适配器的通信(如上述调整数据线D+和D-上的电压)来请求降低QC适配器调整输出电压的大小,如请求将输出电压调整为第一电压。
第一电压例如为上述的5V电压。
在步骤S1046中,当电池单元的电压低于电压阈值时,请求电源提供装置将输出电压调整为第二电压。
如果电池单元的电压低于电压阈值,则AP可以通过与QC适配器的通信来请求QC适配器将输出电压调整为高于第一电压的第二电压。
其中,第一电压低于所述第二电压,第二电压例如为上述的9V、12V电压等。
如上述,根据本公开实施例提供的充电控制方法,通过设计充电电压回落机制,可以在QC快速充电过程中,避免因电池电压虚高而导致的电池充不满的问题。
需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。也即,并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。另外,这些处理还可以是在多个模块中同步或异步执行的。
图3是根据一示例性实施例示出的再一种充电控制方法的流程图。与图1所示的充电控制方法10不同的是,图3所示的充电控制方法进一步说明了如何根据QC协议,控制待充电设备的电池单元进行充电。也即,图3所示的充电控制方法进一步提供了步骤S104的另一具体实施例。
参考图3,步骤S104包括:
在步骤S1041中,确定检测到的电源提供装置提供的输出电压是否由第一电压上升至第二电压。
如上述,在AP首先通过BC1.2协议识别到电源提供装置提供的连接端口的类型为DCP时,可以先进入普通充电模式对待充电设备中的电池单元进行充电,同时可以启动相应的线程通过对一些电流参数进行设置来实现充电过程中的自适应操作。所述的自适应操 作例如为根据当前电池的温度进行的自适应操作,也即对应不同的电池温度对应有不同的电流参数值的设置。
AP例如可以通过与待充电设备中用于电压检测的模块的通信来确定输出电压是否发生变化。
在步骤S1043中,当检测到的电源提供装置提供的输出电压由第一电压上升至第二电压时,相应地调整待充电设备中的电流参数的设置。
AP例如可以通过启动一个专用线程来执行该检测操作。为了不影响待充电设备的功耗。该线程例如可以周期地进行,如可以每50毫秒检测一次。
当检测到输出电压的上升后,AP需要对相应地调整上述的电流参数设置,以适应输出电压的变化,如上述由普通充电模式下的5V电压上升为快速充电模式下的9V电压等。
此外,该线程通常仅需在首次检测时运行,一旦进入快速充电模式并达到稳定的电压后,则无需再执行该检测,因此可以暂停该线程的执行,避免对待充电设备功耗的浪费。
充电参数如可以包括下述参数中的至少一种:用于限制电源提供装置的最大输出电流的输入电流参数、用于限制输入到电池单元的最大电流的充电电流参数、用于判断电池单元是否充满的截止电流参数等。
此外,在一些实施例中,步骤S104还可以进一步包括:
在步骤S1045中,确定检测到的电源提供装置提供的输出电压是否由第二电压下降至第一电压。
在输出电压下降时(如上述,为了避免电池电压虚高而设计的输出电压回落机制),也需要检测输出电压的变化。
例如,AP也可以通过设置专用的线程来执行该检测。为了节省待充电设备的功耗,该线程也可以周期地进行。
在步骤S1047中,当确定检测到的电源提供装置的输出电压由第二电压下降至第一电压时,相应调整待充电设备中的电流参数的设置。
AP在检测到输出电压的下降时,也需要相应地调整电流参数的设置,从而避免出现输出电压改变后自适应参数适用错误的问题。
图4是根据一示例实施方式示出的再一种充电控制方法的流程图。如图4所示的充电控制方法40同样可以应用于待充电设备中。
参考图4,当AP检测到有电源提供装置插入时,通过BC1.2协议进行USB端口识别(步骤S202)。判断识别到的端口是否为DCP(步骤S204);如果识别到的是DCP,AP可以进入步骤S212,通知控制模块识别电源提供装置的类型是否为预设类型;同时,如果识别到的是DCP,AP还可以进入步骤S206,设置普通充电模式下的输入电流值,该参数用于限制电源提供装置的最大输出电流。进一步设置普通充电模式下的充电电流值,该参数用于限制加载到电池单元的最大充电电流(步骤S208)。输入电流值和充电电流值 共同决定充电过程,加载给电池单元的充电电流的大小不能超过这两个值的最小值。之后,再设置截止电流值(步骤S210),该电流值用于判断电池单元是否充满。当电池单元的电压高于判断充满的电压阈值同时进入电池单元的电流小于该截止电流值一段预设时间,则判断电池单元充电被充满。
AP在步骤S212中通知控制模块识别预定类型后,确定控制模块识别到的电源提供装置的类型是否为预设类型(步骤S214);如果是,则启动预设类型快速充电线程,保持与控制模块之间的通信,由控制模块控制电池单元的充电过程(步骤S216);如果不是,则启动HVDCP服务进程,识别QC类型的适配器,并进入步骤S220,确定电源提供装置的类型是否为QC类型。如果不是QC类型,则返回步骤S206,根据检测到的电池单元的温度自适应的重新设置上述的输入电流值、充电电流值、截止电流值等。而如果是QC类型,则进入步骤S222,启动QC类型适配器的充电过程。之后,确定电池单元的电压是否高于预设的电压阈值(步骤S224);如果不是,进入步骤S226,请求电源提供装置将输出电压调整为第二电压;并启动一个预设线程来检测由普通模式的输出电压(如5V)升压到第二电压(如9V)的时间点(步骤S228),在检测到该时间点后返回步骤S206,调整自适应的各电流参数值。如果确定电池单元的电压高于预设的电压阈值,则进入步骤S230,请求电源提供装置将输出电压调整为第一电压。如上述,该操作是为了避免因电池电压虚高而导致电池充不满而设置的输出电压回路机制。同时,AP也可以启动另一个专用线程用于检测输出电压由当前的输出电压(如9V)回落到第一电压(如5V)的时间点(步骤S232),并在检测到该时间点后返回步骤S206。
需要说明的是,步骤S220仅需要执行一次,也即对是否为QC类型适配器的识别仅需要进行一次。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图5是根据一示例性实施方式示出的一种待充电设备的框图。
参考图5,待充电设备1包括:充电接口11、电池单元12、第一控制模块13及第二充电模块14。
其中,待充电设备1通过充电接口11与电源提供装置2连接,以为电池单元12充电。
充电接口11例如可以为USB 2.0接口、Micro USB接口或USB TYPE-C接口。在一些实施例中,充电接口11还可以为lightning接口,或者其他任意类型的能够用于充电的并口或串口。
电池单元12可以包括单个包含单电芯或多电芯的锂电池;或者也可以包括两个相互串联的电池单元,每个电池单元为包含单电芯或多电芯的锂电池。
以电池单元包含单电芯为例,对于包含单个电池单元的待充电设备,当使用较大的充电电流为单个电池单元充电时,待充电设备的发热现象会比较严重。为了保证待充电设备 的充电速度,并缓解待充电设备在充电过程中的发热现象,可对电池结构进行改造,使用相互串联的多个电池单元,并对该多个电池单元进行直充,即直接将适配器输出的电压加载到多个电池单元的两端。与单个电池单元方案相比(即认为改进前的单个电池单元的容量与改进后串联多个电池单元的总容量相同),如果要达到相同的充电速度,多个电池单元所需的充电电流约为单个电池单元所需的充电电流的1/N(N为串联的电池单元的数目),换句话说,在保证同等充电速度的前提下,多个电池单元串联可以大幅降低充电电流的大小,从而进一步减小待充电设备在充电过程中的发热量。因此,为了提升充电速度并降低待充电设备在充电过程中的发热量,待充电设备可以采用多个串联的电池单元。
第一控制模块13与充电接口11连接,用于当识别到与待充电设备1连接的电源提供装置2提供的连接端口是否为专用充电端口时,通知第二控制模块14识别电源提供装置1的类型是否为预设类型;识别电源提供装置2的类型是否为QC类型;及当识别到电源提供装置2的类型为QC类型时,获取待充电设备1中存储的QC协议参数,并根据QC协议参数,控制待充电设备1的电池单元12进行充电。
在一些实施例中,第一控制模块13用于在控制待充电设备1的电池单元12进行充电时:确定电池单元12的电压是否高于预设的电压阈值;当电池单元12的电压高于电压阈值时,请求电源提供装置2调整输出电压为第一电压;及当电池单元12的电压低于电压阈值时,请求电源提供装置2调整输出电压为第二电压;其中,第一电压低于第二电压。
在一些实施例中,第一控制模块13还用于在控制待充电设备1的电池单元12进行充电时:确定检测到的电源提供装置2提供的输出电压是否由第一电压上升至第二电压;及当确定检测到的电源提供装置2提供的输出电压由第一电压上升至第二电压时,相应调整待充电设备1中的电流参数的设置。
在一些实施例中,第一控制模块13还用于在控制待充电设备1的电池单元12进行充电时:确定检测到的电源提供装置2提供的输出电压是否由第二电压下降至第一电压;及当确定检测到的电源提供装置2提供的输出电压由第二电压下降至第一电压时,相应调整待充电设备1中的电流参数的设置。
在一些实施例中,电流参数包括下述参数中的至少一种:用于限制电源提供装置2的最大输出电流的输入电流参数、用于限制输入到电池单元12的最大电流的充电电流参数、用于判断电池单元12是否被充满的截止电流参数。
在一些实施例中,第一控制模块13用于根据第二控制模块14反馈的类型,确定第二控制模块14识别到电源提供装置2的类型是否为预设类型。
在一些实施例中,第一控制模块13还用于当在预设时间内没有收到第二控制模块14反馈的类型信息时,确定第二控制模块14识别到电源提供装置2的类型不为预设类型。
如上述,第一控制模块13可以为待充电设备1的应用处理器,第二控制模块14为微控制单元(MCU)。
根据本公开实施方式提供的待充电设备,一方面,针对待充电设备可以同时支持QC 快速充电方案和其他快速充电方案的情况,设计了一套充电控制流程,避免了不同种快速充电方案因发生冲突而导致的无法进行快速充电,甚至发生危险的问题;另一方面,通过设计电压回落机制,可以避免在快速充电过程中,因电池单元虚高而导致的电池无法被充满的问题;再一方面,通过对最大输入电流改变时间点的检测,可以及时对自适应操作中的相关参数进行调整,避免在充电过程中使用不合适的参数值。
需要注意的是,上述附图中所示的框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
图6是根据一示例性实施方式示出的一种终端设备的结构示意图。图6中所示的设备700可以为上述待充电设备1的一具体实例,但不能用于限制本公开。设备700例如可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,设备700可以包括以下一个或多个组件:处理组件702,存储器704,电源电力组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制设备700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件组件702可以包括一个或多个处理器720来执行指令,以完成上述本公开各实施方式的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理部件组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在设备700上的操作。这些数据的示例包括用于在设备700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为设备700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为设备700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述设备700和用户之间提供的一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中, 多媒体组件708还可以包括一个前置摄像头和/或后置摄像头。当设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当设备700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
输入/输出(I/O)接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为设备700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如所述组件为设备700的显示器和小键盘,传感器组件714还可以检测设备700或设备700一个组件的位置改变,用户与设备700接触的存在或不存在,设备700方位或加速/减速和设备700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于设备700和其他设备之间有线或无线方式的通信。设备700可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G或5G,或它们的组合。在一个示例性实施例中,通信部件组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,设备700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图7是根据一示例性实施方式示出的一种计算机可读存储介质的示意图。
参考图7所示,描述了根据本公开的实施方式的设置为实现上述方法的程序产品900,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者 与其结合使用。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如图1-图4中所示的功能。
以上具体地示出和描述了本公开的示例性实施方式。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (20)

  1. 一种充电控制方法,应用于待充电设备中,其特征在于,包括:
    当识别到与所述待充电设备连接的电源提供装置提供的连接端口为专用充电端口时,确定所述电源提供装置的类型是否为预设类型或QC类型;以及
    当所述电源提供装置的类型为所述QC类型时,获取所述待充电设备中存储的QC协议参数,并根据所述QC协议参数,控制所述待充电设备的电池单元进行充电;
    其中,所述预设类型的电源提供装置的最大输出电压小于所述QC类型的电源提供装置的最大输出电压。
  2. 根据权利要求1所述的方法,其特征在于,根据所述QC协议,控制所述待充电设备的电池单元进行充电包括:
    确定所述电池单元的电压是否高于预设的电压阈值;
    当所述电池单元的电压高于所述电压阈值时,请求所述电源提供装置将输出电压调整为第一电压;以及
    当所述电池单元的电压低于所述电压阈值时,请求所述电源提供装置将输出电压调整为第二电压;
    其中,所述第一电压低于所述第二电压。
  3. 根据权利要求1所述的方法,其特征在于,根据所述QC协议,控制所述待充电设备的电池单元进行充电包括:
    确定检测到的所述电源提供装置提供的输出电压是否由第一电压上升至第二电压;以及
    当确定检测到的所述电源提供装置提供的输出电压由所述第一电压上升至所述第二电压时,相应调整所述待充电设备中的电流参数的设置。
  4. 根据权利要求3所述的方法,其特征在于,根据所述QC协议,控制所述待充电设备的电池单元进行充电还包括:
    确定检测到的所述电源提供装置提供的输出电压是否由所述第二电压下降至所述第一电压;以及
    当确定检测到的所述电源提供装置提供的输出电压由所述第二电压下降至所述第一电压时,相应调整所述待充电设备中的电流参数的设置。
  5. 根据权利要求3或4所述的方法,其特征在于,所述电流参数包括下述参数中的至少一种:用于限制所述电源提供装置的最大输出电流的输入电流参数、用于入限制输到所述电池单元的最大电流的充电电流参数、用于判断所述电池单 元是否被充满的截止电流参数。
  6. 根据权利要求1所述的方法,其特征在于,确定所述电源提供装置的类型是否为所述预设类型包括:
    根据所述待充电设备的控制模块反馈的类型,确定所述控制模块识别到所述电源提供装置的类型是否为所述预设类型。
  7. 根据权利要求6所述的方法,其特征在于,确定所述电源提供装置的类型是否为所述预设类型还包括:
    当在预设时间内没有收到所述控制模块反馈的类型信息时,确定所述控制模块识别到所述电源提供装置的类型不为所述预设类型。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述电源提供装置的类型为所述预设类型时,启动所述预设类型对应的快速充电线程。
  9. 根据权利要求8所述的方法,其特征在于,所述预设类型包括第一类型快速充电适配器、第二类型快速充电适配器中的至少一种。
  10. 一种待充电设备,其特征在于,包括:充电接口、电池单元、第一控制模块及第二控制模块;
    其中,所述第一控制模块与所述充电接口连接,用于当识别到与所述待充电设备连接的电源提供装置提供的连接端口为专用充电端口时,通知所述第二控制模块识别所述电源提供装置的类型是否为预设类型;识别所述电源提供装置提供的类型是否为QC类型;及当识别到所述电源提供装置的类型为所述QC类型时,获取所述待充电设备中存储的QC协议参数,并根据所述QC协议参数,控制所述待充电设备的电池单元进行充电;
    其中,所述预设类型的电源提供装置的最大输出电压小于所述QC类型的电源提供装置的最大输出电压。
  11. 根据权利要求10所述的待充电设备,其特征在于,所述第一控制模块用于在控制所述待充电设备的电池单元进行充电时:确定所述电池单元的电压是否高于预设的电压阈值;当所述电池单元的电压高于所述电压阈值时,请求所述电源提供装置将输出电压调整为第一电压;及当所述电池单元的电压低于所述电压阈值时,请求所述电源提供装置将输出电压调整为第二电压;其中,所述第一电压低于所述第二电压。
  12. 根据权利要求10所述的待充电设备,其特征在于,所述第一控制模块用于在控制所述待充电设备的电池单元进行充电时:确定检测到的所述电源提供装 置提供的输出电压是否由第一电压上升至第二电压;及当确定检测到的所述电源提供装置提供的输出电压由所述第一电压上升至所述第二电压时,相应调整所述待充电设备中的电流参数的设置。
  13. 根据权利要求12所述的待充电设备,其特征在于,所述第一控制模块还用于在控制所述待充电设备的电池单元进行充电时:确定检测到的所述电源提供装置提供的输出电压是否由所述第二电压下降至所述第一电压;及当确定检测到的所述电源提供装置提供的输出电压由所述第二电压下降至所述第一电压时,相应调整所述待充电设备中的电流参数的设置。
  14. 根据权利要求12或13所述的待充电设备,其特征在于,所述电流参数包括下述参数中的至少一种:用于限制所述电源提供装置的最大输出电流的输入电流参数、用于限制输入到所述电池单元的最大电流的充电电流参数、用于判断所述电池单元是否被充满的截止电流参数。
  15. 根据权利要求10所述的待充电设备,其特征在于,所述第一控制模块用于根据所述第二控制模块反馈的类型,确定所述第二控制模块识别到所述电源提供装置的类型是否为所述预设类型。
  16. 根据权利要求15所述的待充电设备,其特征在于,所述第一控制模块还用于当在预设时间内没有收到所述第二控制模块反馈的类型信息时,确定所述第二控制模块识别到所述电源提供装置的类型不为所述预设类型。
  17. 根据权利要求10所述的待充电设备,其特征在于,所述第一控制模块为应用处理器,所述第二控制模块为微控制单元。
  18. 根据权利要求10所述的待充电设备,其特征在于,所述第一控制模块还用于当所述电源提供装置的类型为所述预设类型时,启动所述预设类型对应的快速充电线程。
  19. 一种电子设备,包括:存储器、处理器及存储在所述存储器中并可在所述处理器中运行的可执行指令,其特征在于,所述处理器执行所述可执行指令时实现如权利要求1-9任一项所述的方法。
  20. 一种计算机可读存储介质,其上存储有计算机可执行指令,其特征在于,所述可执行指令被处理器执行时实现如权利要求1-9任一项所述的方法。
PCT/CN2020/120933 2019-10-16 2020-10-14 充电控制方法、设备及可读存储介质 WO2021073538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20877511.4A EP4024653A4 (en) 2019-10-16 2020-10-14 LOAD CONTROL METHOD AND DEVICE, AND READABLE MEDIA
US17/713,899 US20220231524A1 (en) 2019-10-16 2022-04-05 Charging control method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910983722.6 2019-10-16
CN201910983722.6A CN112671051A (zh) 2019-10-16 2019-10-16 充电控制方法、设备及可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/713,899 Continuation US20220231524A1 (en) 2019-10-16 2022-04-05 Charging control method and device

Publications (1)

Publication Number Publication Date
WO2021073538A1 true WO2021073538A1 (zh) 2021-04-22

Family

ID=75400679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120933 WO2021073538A1 (zh) 2019-10-16 2020-10-14 充电控制方法、设备及可读存储介质

Country Status (4)

Country Link
US (1) US20220231524A1 (zh)
EP (1) EP4024653A4 (zh)
CN (1) CN112671051A (zh)
WO (1) WO2021073538A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769156A (zh) * 2012-07-17 2012-11-07 广东欧珀移动通信有限公司 一种快速充电方法
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
US20180159359A1 (en) * 2014-08-05 2018-06-07 Korea Electrotechnology Research Institute Wireless power transmission device and system using impedance matching
CN108347068A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 一种充电的方法及移动终端
CN109560591A (zh) * 2019-01-25 2019-04-02 维沃移动通信有限公司 充电方法、装置和终端
CN109728652A (zh) * 2017-10-31 2019-05-07 北京小米移动软件有限公司 无线充电方法、发射端、接收端及电源管理芯片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102468187B1 (ko) * 2016-03-04 2022-11-17 삼성전자주식회사 전자 장치 및 전자 장치의 외부 장치 충전 방법
CN106329627A (zh) * 2016-08-31 2017-01-11 宇龙计算机通信科技(深圳)有限公司 一种充电方法及装置
CN106329625B (zh) * 2016-08-31 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种充电方法及装置
CN106329654A (zh) * 2016-09-26 2017-01-11 宇龙计算机通信科技(深圳)有限公司 电子装置及其充电方法
CN207304045U (zh) * 2017-08-08 2018-05-01 广东小天才科技有限公司 一种快速充电电路、适配器及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769156A (zh) * 2012-07-17 2012-11-07 广东欧珀移动通信有限公司 一种快速充电方法
US20180159359A1 (en) * 2014-08-05 2018-06-07 Korea Electrotechnology Research Institute Wireless power transmission device and system using impedance matching
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
CN108347068A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 一种充电的方法及移动终端
CN109728652A (zh) * 2017-10-31 2019-05-07 北京小米移动软件有限公司 无线充电方法、发射端、接收端及电源管理芯片
CN109560591A (zh) * 2019-01-25 2019-04-02 维沃移动通信有限公司 充电方法、装置和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024653A4 *

Also Published As

Publication number Publication date
EP4024653A4 (en) 2022-11-09
US20220231524A1 (en) 2022-07-21
EP4024653A1 (en) 2022-07-06
CN112671051A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2020015160A1 (zh) 反向充电设备、反向充电电流的调节方法及装置
WO2017012267A1 (zh) 充电方法及装置
CN108365657B (zh) 充电电流的控制方法、装置和存储介质
WO2017088376A1 (zh) 连接被控智能设备的方法及装置
US11411422B2 (en) Battery charging method, battery charging apparatus and storage medium
CN108631401B (zh) 充电电路、方法、电子设备和存储介质
US11588342B2 (en) Charging circuit, electronic device, charging control method and device
CN111261081B (zh) 屏幕显示方法及装置
CN113824195A (zh) 充电控制方法及装置、终端、计算机可读存储介质
CN112909364B (zh) 充电方法及装置、终端设备、存储介质
US20220393496A1 (en) Charge control method, charge control apparatus and storage medium
CN107124012B (zh) 充电方法、装置、充电器、终端和系统
CN112821508B (zh) 充电方法、装置以及存储介质
WO2021073538A1 (zh) 充电控制方法、设备及可读存储介质
KR20130093962A (ko) 휴대 단말기등의 디스플레이부에서 사용자 편의성을 고려하여 안면 인식을 이용한 소비 전력 저감 방법 및 장치
CN112421702B (zh) 锂电池充电方法及装置
CN112019681B (zh) 移动终端的控制方法、移动终端及存储介质
US11444477B2 (en) Constant power charging method and device for mobile terminal
US20230054954A1 (en) Electronic device and operating method thereof
CN114498792A (zh) 充电方法、装置、设备及存储介质
CN116365616A (zh) 关机电压调整方法、装置、设备及存储介质
CN116031960A (zh) 确定显示电量的方法、装置、设备、系统及存储介质
CN114006429A (zh) 充电方法、装置、终端设备及计算机可读存储介质
CN115706446A (zh) 充电电路、充电控制方法、装置、终端及存储介质
CN118057700A (zh) 电池充电控制方法、装置、介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020877511

Country of ref document: EP

Effective date: 20220331

NENP Non-entry into the national phase

Ref country code: DE