WO2021073537A1 - 待充电设备及充电方法 - Google Patents

待充电设备及充电方法 Download PDF

Info

Publication number
WO2021073537A1
WO2021073537A1 PCT/CN2020/120932 CN2020120932W WO2021073537A1 WO 2021073537 A1 WO2021073537 A1 WO 2021073537A1 CN 2020120932 W CN2020120932 W CN 2020120932W WO 2021073537 A1 WO2021073537 A1 WO 2021073537A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
type
charged
battery
battery unit
Prior art date
Application number
PCT/CN2020/120932
Other languages
English (en)
French (fr)
Inventor
李志杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20875911.8A priority Critical patent/EP3993218A4/en
Publication of WO2021073537A1 publication Critical patent/WO2021073537A1/zh
Priority to US17/575,484 priority patent/US20220140640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to charging technology, and in particular, to a device to be charged and a charging method.
  • Devices to be charged are increasingly favored by consumers, but these devices to be charged consume large amounts of power and need to be charged frequently. It usually takes several hours to charge these devices to be charged using low-power ordinary charging schemes.
  • the industry has successively proposed high-current single-cell charging schemes and the use of two A high-current charging scheme with series-connected batteries.
  • the present disclosure provides a device to be charged and a charging method.
  • a device to be charged including: a charging interface; a battery unit; a first charging circuit, respectively connected to the charging interface and the battery unit; The type of the power supply device that the interface is connected to the device to be charged; when the type of the power supply device is recognized as the first type, the first charging circuit controls the battery unit to charge in the first charging mode; when the power supply device is recognized When the type is the second type, the first charging circuit controls the battery unit to charge in the second charging mode; wherein the maximum output power of the first type of power supply device is greater than the maximum output power of the second type of power supply device ; Wherein, the maximum charging current of the battery cell in the first charging mode is greater than the maximum charging current in the second charging mode.
  • a charging method applied to a device to be charged including: identifying the type of a power supply device connected to the device to be charged through a charging interface of the device to be charged; When the type is the first type, the first charging circuit of the device to be charged controls the battery unit to charge in the first charging mode; and when the type of the power supply device is identified as the second type, the first charging circuit controls the battery The unit is charged in the second charging mode; wherein the maximum output power of the first type of power supply device is greater than the maximum output power of the second type of power supply device; wherein, the maximum charging current of the battery unit in the first charging mode It is greater than the maximum charging current in the second charging mode.
  • the type of the power supply device connected to it can be identified first through the control module, and after the third type fast charging adapter is identified, the second charging circuit controls the battery unit to perform Charging, and after identifying the first type fast charging adapter or the common type adapter, the first charging circuit is shared to control the battery to charge, and the battery unit is quickly charged through the charging control of the control module.
  • the device to be charged can be compatible with multiple charging schemes at the same time, which enhances the scalability and adaptability of the device to be charged, and also improves the charging experience of the user.
  • Fig. 1 is a block diagram showing a device to be charged according to an exemplary embodiment.
  • Fig. 2 is a block diagram showing another device to be charged according to an exemplary embodiment.
  • Fig. 3 is a flowchart showing a charging method according to an exemplary embodiment.
  • Fig. 4 is a flowchart showing another charging method according to an exemplary embodiment.
  • Fig. 5 is a flowchart showing yet another charging method according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing yet another charging method according to an exemplary embodiment.
  • connection should be interpreted broadly. For example, they may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection, or an indirect connection through an intermediary, or a connection between two components or an interaction relationship between two components .
  • connection may be fixedly connected, detachably connected, or integrated. ; It can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection, or an indirect connection through an intermediary, or a connection between two components or an interaction relationship between two components .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the normal charging mode means that the adapter outputs a relatively small current value (usually less than 2.5A) or uses a relatively small power (usually less than 15W) to charge the battery in the charging device. In the normal charging mode, it usually takes several hours to fully charge a large capacity battery (such as a 3000 mAh capacity battery).
  • Fast charging mode means that the adapter can output relatively large current (usually greater than 2.5A, such as 4.5A, 5A or even higher) or relatively large power (usually greater than or equal to 15W) to treat the battery in the charging device Recharge.
  • the charging speed of the adapter in the fast charging mode is faster, and the charging time required to fully charge the battery of the same capacity can be significantly shortened.
  • power supply devices such as power adapters, power banks, etc.
  • the power provided by the power supply device is transmitted to the device to be charged through the cable.
  • Charging equipment for charging is generally connected to the device to be charged through cables, and the power provided by the power supply device is transmitted to the device to be charged through the cable.
  • the power supply device can be a common type of adapter, for example, a power adapter with a maximum output power of 10W (5V/2A) that uses the above-mentioned common charging mode to charge the device to be charged; or, the power supply device can be a third type of fast charging
  • the adapter for example, a high-power adapter with a maximum output power of 50W (10V/5A), uses the aforementioned fast charging mode to charge the device to be charged; or, the power supply device can also be the first type of fast charging adapter, for example
  • the 20W (5V/4A) high-power adapter adopts the above-mentioned fast charging mode to charge the device to be charged.
  • the battery in the device to be charged is quickly charged through the second charging circuit.
  • the second charging circuit is usually closed, and the battery is normally charged through the first charging circuit.
  • the fast charging module logic cannot be performed, and it can only be used as a normal charging adapter to charge the battery in a normal mode.
  • Fig. 1 is a block diagram showing a device to be charged according to an exemplary embodiment.
  • the device to be charged 1 as shown in FIG. 1 may be, for example, a terminal or a communication terminal.
  • the terminal or communication terminal includes but is not limited to being set to be connected via a wired line, such as via a public switched telephone network (public switched telephone network, PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network and/or via, for example, cellular network, wireless local area network (WLAN) , Digital television networks such as digital video broadcasting (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal A device for receiving/sending communication signals on a wireless interface.
  • PSTN public switched telephone network
  • DSL digital subscriber line
  • WLAN wireless local area network
  • Digital television networks such as digital video broadcasting (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal
  • a communication terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal Digital Assistant (PDA) with intranet access, Web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • the terminal can also include, but is not limited to, electronic book readers, smart wearable devices, mobile power sources (such as power banks, travel chargers), electronic cigarettes, wireless mice, wireless keyboards, wireless headsets, Bluetooth speakers, etc. Rechargeable electronic equipment.
  • the device to be charged 1 includes: a charging interface 11, a battery unit 12, a control module 13, a charging circuit 14 and a charging circuit 15.
  • the device 1 to be charged is connected to the power supply device 2 through the charging interface 11 to charge the battery unit 12.
  • the charging interface 11 may be, for example, a USB 2.0 interface, a Micro USB interface, or a USB TYPE-C interface. In some embodiments, the charging interface 11 may also be a lightning interface, or any other type of parallel port or serial port that can be used for charging.
  • the battery unit 12 may be, for example, a lithium battery including two battery cells connected in series.
  • the battery cell 12 may also include two battery cells connected in series, and each battery cell is a lithium battery including a single battery cell or a plurality of battery cells.
  • the battery cell 12 includes two battery cells connected in series as an example.
  • the battery unit 12 includes: a first battery unit 121 and a second battery unit 122 as an example, and the two battery units are connected in series.
  • the battery unit 12 includes two battery cells connected in series, and each battery cell contains a single cell as an example, to illustrate how the use of multiple battery cells in series can increase the charging speed and reduce the waiting time when charging at a high current.
  • the calorific value of the charging device :
  • the battery structure can be modified to use multiple battery cells connected in series and directly charge the multiple battery cells, namely Directly load the voltage output by the adapter to the two ends of multiple battery cells.
  • the charging current required for multiple battery cells is about It is 1/N of the charging current required by a single battery cell (N is the number of battery cells connected in series).
  • N is the number of battery cells connected in series.
  • the charging circuit 14 is respectively connected to the charging interface 11 and the battery unit 12, and is used to provide the charging interface 11 and the battery unit 12 when the type of the power supply device 2 is the third type (for example, the above-mentioned third type fast charging adapter) In order to provide the output power of the third type of power supply device 2 to the battery unit 12.
  • the third type for example, the above-mentioned third type fast charging adapter
  • the charging circuit 15 is respectively connected to the charging interface 11 and the battery unit 12, and is used to provide charging between the charging interface 11 and the battery unit 12 when the type of the power supply device 2 is the second type (for example, the above-mentioned common type adapter)
  • the output power of the second type of power supply device 2 is provided to the battery unit 12 by the channel.
  • the charging circuit 15 is also used to provide the charging interface 11 and the battery unit 12 when the type of the power supply device 2 is the first type. In order to provide the output power of the first type of power supply device 2 to the battery unit 12.
  • the charging circuit 15 includes a voltage conversion circuit 151 (for example, a Boost boost circuit) for boosting the voltage provided by the first or second type of power supply device 2 to have two series-connected cells
  • the battery cell 12 may be used to charge the battery cell 12 including two battery cells connected in series.
  • the control module 13 is used to identify different types of power supply devices 2.
  • the charging circuit 14 controls the battery unit 12 to charge; when the type of the power supply device 2 is recognized as the first type, the battery unit 12 is charged by the charging circuit 15 The charging is performed in the first charging mode; when it is recognized that the type of the power supply device 2 is the second type, the battery unit 12 is charged in the second charging mode through the charging circuit 15.
  • the maximum charging current of the battery unit 12 in the first charging mode is greater than the maximum charging current in the second charging mode.
  • the first charging mode is, for example, the fast charging mode when the input power is provided by the first type of power supply device, and the second charging mode is the normal charging mode as described above.
  • the control module 13 may be implemented by, for example, an independent Micro Control Unit (MCU), or may also be implemented by an application processor (AP) inside the device 1 to be charged.
  • MCU Micro Control Unit
  • AP application processor
  • the type of the power supply device connected to it can be identified first through the control module, and after the first type of fast charging adapter or the common type of adapter is recognized, the common charging mode is shared.
  • the first charging circuit controls the battery to charge, and realizes rapid charging of the battery unit through the charging control of the control module.
  • the device to be charged can be compatible with multiple charging schemes at the same time, which enhances the scalability and adaptability of the device to be charged, and also improves the charging experience of the user. Further, the device to be charged may also control the battery unit to charge through the second charging circuit after recognizing that the type of the power supply device is the third type quick charging adapter.
  • Fig. 2 is a block diagram showing another device to be charged according to an exemplary embodiment. The difference from the device to be charged 1 shown in FIG. 1 is that the control module 13 in the device to be charged 1'shown in FIG. 2 may further include a first control module 131 and a second control module 132.
  • the first control module 131 may be, for example, an application processor in the device 1'to be charged.
  • the first control module 131 is used to identify whether the connection port provided by the power supply device 2 is a dedicated charging port (DCP), which does not support data transmission and can provide a charging current of more than 1.5A. There is a short circuit between the D+ and D- lines of the port. This type of port can support chargers with higher charging capabilities and car chargers.
  • the first control module 131 identifies whether the connection port provided by the power supply device 2 is a DCP through the BC2.1 protocol.
  • BC2.1 is the USB charging specification, which regulates the detection, control and reporting mechanism of the device charging through the USB port.
  • the BC2.1 protocol is well known by those of ordinary skill in the art, and in order to avoid obscuring the present disclosure, it will not be repeated here.
  • the first control module 131 When the first control module 131 recognizes that the port provided by the power supply device 2 is a dedicated charging port, it can start the charging thread for the above-mentioned normal charging mode, and perform the corresponding charging parameter setting of the normal charging mode, including for inputting current The input current, cut-off current, etc. set adaptively. In addition, the first control module 131 will also notify the second control module 132 to identify the type of the power supply device by switching D+/D-.
  • the second control module 132 may be, for example, an MCU for fast charging control, which is connected to the first control module 131.
  • the first control module 131 recognizes that the port provided by the power supply device is a dedicated charging port
  • the second control module 132 The type of power supply device 2 is further identified.
  • the data line D+/D- can be used for identification.
  • the type of the power supply device 2 can be identified by setting D+/D- to load different preset communication levels, such as identifying whether it is the above-mentioned third type or The first type.
  • the charging circuit 14 controls the battery unit 12 to charge.
  • the first control module 131 is also used to control the battery unit 12 through the charging circuit 15 when it is recognized that the port provided by the power supply device is a dedicated charging port, and the second control module 132 recognizes that the type of the power supply device is not the third type. Charge it.
  • the second control module 132 when the second control module 132 recognizes that the type of the power supply device 2 is the aforementioned first type, it informs the first control module 131 through the connection with the first control module 131. After that, the first control module 131 controls the battery unit 12 to charge through the charging circuit 15; and when the second control module 132 recognizes that the type of the power supply device 2 is neither the third type nor the first type, it is also determined by The first control module 131 controls the battery unit 12 to charge through the charging circuit 15.
  • the first control module 131 further provides corresponding charging logic control for the battery unit 12 charged by the first type of power supply device 2.
  • the first control module 131 may learn that the type of the power supply device 2 is the first type, and set the parameter value of the charging parameter for the device 1'to be charged. These charging parameters correspond to different parameter values in different battery temperature intervals.
  • the charging parameters may include at least one of the following parameters: an input current parameter used to limit the maximum output current of the power supply device 2, a charging current parameter used to limit the maximum current input to the battery unit 12, and a battery The cut-off current parameter for whether the cell 12 is fully charged, the cut-off voltage parameter for judging whether the battery cell 12 is fully charged under fast charging, and so on.
  • the first control module 131 may also be used to provide the following charging control logic:
  • the first control module 131 uses the output power provided by the first type of power supply device 2 to control the battery unit 12 to charge in the first charging mode, if it is determined that the voltage of the battery unit 12 reaches the current temperature of the battery unit 12 If the voltage cut-off threshold is set based on the aforementioned cut-off voltage parameter, the communication with the second control module 132 is cut off, and the battery unit 12 is controlled to be charged in the second charging mode. Wherein, the output power provided by the first type of power supply device 2 in the first charging mode is greater than the output power provided in the second charging mode.
  • the second charging mode is, for example, the normal charging mode described above, that is, even if it is connected to the first type of power supply device 2, the power supply device 2 can provide a fast charging mode (such as the first charging mode), and can also provide a general charging mode. Charging mode (such as the second charging mode).
  • the first control module 131 controls the battery unit 12 to charge the battery unit at a constant voltage when the battery unit 12 is charged in the second charging mode, and when the charging current of the battery unit is less than the cut-off current threshold within a preset time (as based on the above-mentioned When the cut-off current parameter is set), it is determined that the battery cell 12 is fully charged.
  • the battery charging process can include: trickle charging phase (or mode), constant current charging phase (or mode), and constant voltage charging phase (or mode).
  • trickle charge stage the fully discharged battery is precharged (ie, restorative charging).
  • the trickle charge current is usually one-tenth of the constant current charge current.
  • the battery voltage rises above the trickle charge voltage threshold , Increase the charging current and enter the constant current charging stage; in the constant current charging stage, the battery is charged with a constant current, and the charging voltage rises rapidly.
  • the charging voltage reaches the expected charging voltage threshold of the battery, it will switch to the constant voltage charging stage;
  • the battery is charged with a constant voltage, and the charging current gradually decreases.
  • the charging current drops to the set current threshold (the current threshold is usually one-tenth or more of the charging current value in the constant current charging stage).
  • the current threshold can be tens of milliamps or less), the battery is fully charged.
  • the first control module 131 controls the battery unit 12 to be charged in the first charging mode, and detects that it is fully charged in the first charging mode (that is, fully charged in the fast charging mode), it enters the normal charging mode (second (Charging mode) for charging. At this time, it should enter the constant voltage charging stage in the normal charging mode, that is, continue to charge the battery cell 12 with a constant voltage until the battery cell 12 is fully charged.
  • the constant voltage charging stage is directly used for charging, and the required time will be relatively long.
  • the constant voltage charging phase is transferred to the aforementioned constant voltage charging phase until the battery cell 12 is fully charged.
  • the first control module 131 can also be used to enable the first type of power supply device 2 to adjust the maximum output current according to the current temperature of the battery unit 12. For example, when the battery unit 12 is charged with the maximum output current corresponding to the first battery temperature range (for example, 35 degrees to 37 degrees), the temperature of the battery unit 12 gradually increases and is higher than the first battery temperature range. The changed temperature, for example, falls within the second battery temperature range (greater than 37 degrees), then the first control module 131 communicates with the power supply device 2 to notify the power supply device 2 to adjust its maximum output current to the second battery The maximum output current corresponding to the temperature range.
  • the first control module 131 communicates with the power supply device 2 to notify the power supply device 2 to adjust its maximum output current to the second battery The maximum output current corresponding to the temperature range.
  • the third battery temperature interval can be used to determine whether to adjust the above-mentioned maximum output current.
  • the upper limit of the third battery temperature interval is, for example, the upper limit of the first battery temperature interval minus the temperature threshold (for example, it can be set to 1 degree).
  • the power supply device 2 is notified to adjust its maximum output current to the maximum output current corresponding to the third battery temperature range.
  • the third battery temperature interval corresponds to the same maximum output current as the first battery temperature interval.
  • the temperature of the battery unit 12 gradually decreases and is lower than the first battery temperature range.
  • the changed temperature for example, falls within the fourth battery temperature range (for example, 12 degrees to 35 degrees)
  • the first control module 131 informs the power supply device 2 to adjust its maximum output current through communication with the power supply device 2 Is the maximum output current corresponding to the fourth battery temperature interval.
  • the fifth battery temperature interval can be used to determine whether to adjust the above-mentioned maximum output current.
  • the lower limit of the fifth battery temperature interval is, for example, the lower limit of the first battery temperature interval plus a temperature threshold (for example, it can be set to 1 degree).
  • the power supply device 2 is notified to adjust its maximum output current to the maximum output current corresponding to the fifth battery temperature range.
  • the fifth battery temperature interval corresponds to the same maximum output current as the first battery temperature interval.
  • the maximum output current has different parameter values corresponding to the same battery temperature interval when the device to be charged 1'performs on-screen charging and when off-screen charging is performed.
  • the device to be charged 1' may further include a detection module 16 for detecting the temperature, voltage, and charging current of the battery unit 12.
  • a software control solution compatible with the first type of power supply device is further provided.
  • the first control module implements the control of the charging logic of the fast charging in the first charging mode. Therefore, the device to be charged that supports multiple battery cells can also be charged with high power when the first type of power supply device is used for charging.
  • Fig. 3 is a flowchart showing a charging method according to an exemplary embodiment.
  • the charging method 10 shown in FIG. 3 can be applied to the above-mentioned device 1 to be charged.
  • the charging method 10 includes:
  • step S102 the type of the power supply device connected to the device to be charged through the charging interface of the device to be charged is identified.
  • step S104 when it is recognized that the type of the power supply device is the first type, the first charging circuit controls the battery unit to charge in the first charging mode.
  • step S106 when it is recognized that the type of the power supply device is the second type, the first charging circuit controls the battery unit to charge in the second charging mode.
  • it may further include: in step S108, when it is recognized that the type of the power supply device is the third type, controlling the battery unit of the device to be charged to charge the battery unit of the device to be charged through the second charging circuit of the device to be charged.
  • the maximum output power of the power supply device of the third type is greater than the maximum output power of the power supply device of the first type, and the maximum output power of the power supply device of the first type is greater than the maximum output power of the power supply device of the second type .
  • the maximum charging current of the battery unit in the first charging mode is greater than the maximum charging current in the second charging mode.
  • the type of the power supply device connected to it can be identified first through the control module, and after the first type of fast charging adapter or the ordinary type of adapter is identified, the first type of the ordinary charging mode can be shared.
  • a charging circuit controls the battery to charge, and realizes the rapid charging of the battery unit through the charging control of the control module.
  • the device to be charged can be compatible with multiple charging schemes at the same time, which enhances the scalability and adaptability of the device to be charged, and also improves the charging experience of the user.
  • the charging method can also control the battery unit to charge through the second charging circuit after identifying the third type of fast charging adapter.
  • Fig. 4 is a flowchart showing another charging method according to an exemplary embodiment.
  • the charging method 20 shown in FIG. 4 can be applied to the above-mentioned device to be charged 1'.
  • the charging method 20 includes:
  • step S202 the first control module of the device to be charged is used to identify whether the connection port provided by the power supply device is a dedicated charging port.
  • step S204 when the first control module recognizes that the port provided by the power supply device is a dedicated charging port, the second control module of the device to be charged recognizes the type of the power supply device.
  • step S206 when the second control module recognizes that the type of the power supply device is the third type, the second control module controls the battery unit of the device to be charged to charge the battery unit of the device to be charged through the second charging circuit of the device to be charged.
  • step S208 when the second control module recognizes that the type of the power supply device is the first type, the first control module controls the battery unit to be charged in the first charging mode through the first charging circuit.
  • FIG. 5 is a flowchart showing yet another charging method according to an exemplary embodiment. As shown in FIG. 5, FIG. 5 further provides an embodiment of how the first control module controls the battery unit to be charged in the first charging mode through the first charging circuit.
  • step S208 includes:
  • the parameter value of the charging parameter is set for the device to be charged.
  • the charging parameters correspond to different parameter values in different battery temperature intervals.
  • step S208 may further include:
  • step S2084 with the output power provided by the first type of power supply device, the battery unit is controlled to be charged in the first charging mode.
  • step S2086 when it is determined that the voltage of the battery cell reaches the voltage cut-off threshold corresponding to the current temperature of the battery cell, the communication with the second control module is cut off, and the battery cell is controlled to charge in the second charging mode.
  • controlling the battery unit to charge in the second charging mode includes: controlling the battery unit to charge with a constant voltage; and when the charging current of the battery unit is less than the cut-off current threshold within a preset time, determining that the battery unit is full.
  • controlling the battery unit to charge in the second charging mode may further include: before controlling the battery unit to charge with a constant voltage, controlling the battery unit to charge with a constant current in the second charging mode.
  • step S208 may further include:
  • step S2088 the first type of power supply device adjusts the maximum output current according to the current temperature of the battery unit.
  • enabling the first type of power supply device to adjust the maximum output current according to the current temperature of the battery unit may include: when the battery unit is charged with the maximum output current corresponding to the first battery temperature interval, and the temperature of the battery unit When the temperature of the battery unit is higher than the first battery temperature range, the battery unit is charged with the maximum output current corresponding to the second battery temperature range where the temperature of the battery unit is changed; During the battery temperature interval, the maximum output current corresponding to the third battery temperature interval is used for charging; wherein, the upper limit value of the third battery temperature interval is the upper limit value of the first battery temperature interval minus the temperature threshold, and the first battery temperature The interval corresponds to the same maximum output current as the third battery temperature interval.
  • enabling the first type of power supply device to adjust the maximum output current according to the current temperature of the battery unit may further include: when the battery unit is charged with the maximum output current corresponding to the first battery temperature interval, and the battery unit’s When the temperature is lower than the first battery temperature interval, charging is performed with the maximum output current corresponding to the fourth battery temperature interval where the temperature of the battery unit is changed; and when the temperature of the battery unit is higher than the fourth battery temperature interval again and falls within the fourth battery temperature interval In the fifth battery temperature interval, charge with the maximum output current corresponding to the fifth battery temperature interval; where the lower limit of the fifth battery temperature interval is the lower limit of the first battery temperature interval plus the temperature threshold, and the first battery The temperature interval corresponds to the same maximum output current as the fifth battery temperature interval.
  • the maximum output current has different parameter values corresponding to the same battery temperature interval when the device to be charged is performing on-screen charging and when performing off-screen charging.
  • step S210 when the second control module recognizes that the type of the power supply device is neither the third type nor the first type, the first control module controls the battery unit to perform in the second charging mode through the first charging circuit. Recharge.
  • the maximum output power of the power supply device of the third type is greater than the maximum output power of the power supply device of the first type, and the maximum output power of the power supply device of the first type is greater than the maximum output power of the power supply device of the second type ;
  • the maximum charging current of the battery unit in the first charging mode is greater than the maximum charging current in the second charging mode.
  • a software control solution compatible with the first type of power supply device is further provided.
  • the first control module implements the control of the charging logic of the fast charging in the first charging mode. Therefore, the device to be charged that supports multiple battery cells can also be charged with high power when the first type of power supply device is used for charging.
  • Fig. 6 is a flowchart showing yet another charging method according to an exemplary embodiment.
  • the charging method 40 shown in Fig. 6 can be applied to the above-mentioned device to be charged 1'.
  • the first control module when the first control module detects that a power supply device is inserted, it performs USB port identification through the BC1.2 protocol (step S402). Determine whether the identified port is a DCP (step S404); if it is identified as a DCP, go to step S406 to set the input current value in the normal charging mode. This parameter is used to limit the maximum output current of the power supply device. The charging current value in the normal charging mode is further set, and this parameter is used to limit the maximum charging current loaded to the battery cell (step S408). The input current value and the charging current value jointly determine the charging process, and the magnitude of the charging current loaded to the battery cell cannot exceed the minimum of these two values.
  • the cut-off current value is set (step S410), and the current value is used to determine whether the battery cell is fully charged.
  • the first control module receives whether the identification result of the second control module on the type of the power supply device is the first type (step S412), and if so, proceeds to step S414 to turn on the first charging mode. If not, go back to step S406, and adaptively reset the aforementioned input current value, charging current value, cut-off current value, etc. according to the detected temperature of the battery cell.
  • step S416 Reset the relevant parameters in the first charging mode.
  • the size of the input current provided by the power supply device is adaptively adjusted according to the temperature (step S418). And it is detected whether the battery unit is fully charged in the first charging mode (step S420). The specific detection method is as described above, and will not be repeated here. If it is fully charged, the constant current charging is continued for a period of time in the second charging mode (step S422). After the constant current stage can no longer be maintained, constant voltage charging in the normal charging mode is adopted until the battery is fully charged (step S424). If it is not fully charged, return to the above-mentioned step S406 again, and adaptively reset the above-mentioned current-related parameter values according to the detected current battery temperature.

Abstract

一种待充电设备(1)及充电方法。待充电设备(1)包括:充电接口(11)、电池单元(12)、第一充电电路(15)及控制模块(13),用于识别通过充电接口(11)与待充电设备(1)连接的电源提供装置(2)的类型;当识别到电源提供装置(2)的类型为第一类型时,通过第一充电电路(15)控制电池单元(12)在第一充电模式下进行充电;当识别到电源提供装置(2)的类型为第二类型时,通过第一充电电路(15)控制电池单元(12)在第二充电模式下进行充电。

Description

待充电设备及充电方法
交叉引用
本公开要求于2019年10月16日提交的申请号为201910984920.4名称为“待充电设备及充电方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及充电技术,具体而言,涉及一种待充电设备及充电方法。
背景技术
待充电设备(例如智能手机,移动终端或智能设备)越来越受到消费者的青睐,但是这些待充电设备的耗电量大,需要经常充电。采用低功率的普通充电方案对这些待充电设备进行充电通常需要花费数小时的时间,为了应对这一挑战,在普通充电的基础上,业界陆续提出了大电流的单电池架构充电方案及采用两节电池串联的大电流充电方案。
如何在同一待充电设备中实现多种充电方案(可包括普通充电方案及各种快速充电方案),增加待充电设备的可扩展性和适应性,成为需要解决的一个技术问题。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开提供一种待充电设备及充电方法。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一方面,提供一种待充电设备,包括:充电接口;电池单元;第一充电电路,分别与充电接口和电池单元连接;以及控制模块,与充电接口连接,用于识别通过充电接口与待充电设备连接的电源提供装置的类型;当识别到电源提供装置的类型为第一类型时,通过第一充电电路控制电池单元在第一充电模式下进行充电;当识别到电源提供装置的类型为第二类型时,通过第一充电电路控制电池单元在第二充电模式下进行充电;其中,第一类型的电源提供装置的最大输出功率大于第二类型的电源提供装置的最大输出功率;其中,电池单元在第一充电模式下的最大充电电流大于在第二充电模式下的最大充 电电流。
根据本公开的另一方面,提供一种充电方法,应用于待充电设备中,包括:识别通过待充电设备的充电接口与待充电设备连接的电源提供装置的类型;当识别到电源提供装置的类型为第一类型时,通过待充电设备的第一充电电路控制电池单元在第一充电模式下进行充电;以及当识别到电源提供装置的类型为第二类型时,通过第一充电电路控制电池单元在第二充电模式下进行充电;其中,第一类型的电源提供装置的最大输出功率大于第二类型的电源提供装置的最大输出功率;其中,电池单元在第一充电模式下的最大充电电流大于在第二充电模式下的最大充电电流。
根据本公开实施方式提供的待充电设备,可以首先通过控制模块对与之连接的电源提供装置的类型进行识别,在识别出为第三类型快速充电适配器后,通过第二充电电路控制电池单元进行充电,而在识别出为第一类型快速充电适配器或普通类型适配器后,共用第一充电电路控制电池进行充电,并且通过控制模块的充电控制,实现对电池单元的快速充电。该待充电设备可以同时兼容多种充电方案,增强了待充电设备的扩展性与适应性,同时也提升了用户的充电体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例性实施方式示出的一种待充电设备的框图。
图2是根据一示例性实施方式示出的另一种待充电设备的框图。
图3是根据一示例性实施方式示出的一种充电方法的流程图。
图4是根据一示例性实施方式示出的另一种充电方法的流程图。
图5是根据一示例性实施例示出的再一种充电方法的流程图。
图6是根据一示例性实施方式示出的再一种充电方法的流程图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而, 本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。
在本公开中,除非另有明确的规定和限定,术语“相连”、“连接”、等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或还可以是成一体;可以是机械连接,也可以是电连接,或还可以是通信连接;可以是直接相连,也可以是通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在本公开的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在介绍本公开实施方式之前,先对充电系统中的“普通充电模式”、“快速充电模式”进行说明。
普通充电模式是指适配器输出相对较小的电流值(通常小于2.5A)或者以相对较小的功率(通常小于15W)来对待充电设备中的电池进行充电。在普通充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间。
快速充电模式则是指适配器能够输出相对较大的电流(通常大于2.5A,比如4.5A,5A甚至更高)或者以相对较大的功率(通常大于等于15W)来对待充电设备中的电池进行充电。
相较于普通充电模式而言,适配器在快速充电模式下的充电速度更快,完全充满相同容量电池所需要的充电时间能够明显缩短。
在充电过程中,一般将电源提供装置(如电源适配器、移动电源(Power Bank)等设备)通过线缆与待充电设备相连,通过电缆将电源提供装置提供的电能传输至待充电设备,以为待充电设备充电。
电源提供装置可以为普通类型适配器,例如为最大输出功率为10W(5V/2A)、采用上述的普通充电模式为待充电设备进行充电的电源适配器;或者,电源提供装置可以为第三类型快速充电适配器,例如为最大输出功率为50W(10V/5A)的大功率适配器,采用上述的快速充电模式为待充电设备进行充电;再或者,电源提供装置还可以为第一类型快速充电适配器,例如为20W(5V/4A)的大功率适配器,采用上述的快速充电模式为待充电设备进行充电。
在相关技术中,对于具有串联的两节电池的待充电设备,当与上述的第三类型快速充电适配器连接进行充电时,在硬件上,通过第二充电电路对待充电设备中的电池进行快速充电;而在快速充电出现问题,或者快速充电充满时,通常关闭第二充电电路,通过第一 充电电路为电池进行普通充电。或者,当待充电设备与上述的普通类型适配器连接进行充电时,直接通过第一充电电路为电池进行普通充电。而当待充电设备与上述的第一类型快速充电适配器连接时,则由于无法进行快速充电模块逻辑,而仅能作为普通充电适配器为电池进行普通模式的充电。
下面具体说明本公开实施方式提供的待充电设备。
图1是根据一示例性实施方式示出的一种待充电设备的框图。
如图1所示的所示的待充电设备1例如可以是终端或通信终端,该终端或通信终端包括但不限于被设置成经由有线线路连接,如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络和/或经由例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。此外,该终端还可以包括但不限于诸如电子书阅读器、智能穿戴设备、移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备。
参考图1,待充电设备1包括:充电接口11、电池单元12、控制模块13、充电电路14及充电电路15。
其中,待充电设备1通过充电接口11与电源提供装置2连接,以为电池单元12充电。
充电接口11例如可以为USB 2.0接口、Micro USB接口或USB TYPE-C接口。在一些实施例中,充电接口11还可以为lightning接口,或者其他任意类型的能够用于充电的并口或串口。
电池单元12例如可以为包含两个相互串联的电芯的锂电池。或者,电池单元12也可以包括两个串联的电池单元,每个电池单元为包含单个电芯或包含多个电芯的锂电池。图1中,电池单元12以包含两个串联的电池单元为例。如图1所示,电池单元12包含:第一电池单元121和第二电池单元122为例,两个电池单元串联。
下面以电池单元12包括两个串联的电池单元,且每个电池单元包含单电芯为例,说明采用多个串联的电池单元如何在大电流充电时,即可以提升充电速度,又可以降低待充电设备的发热量:
对于包含单个电池单元的待充电设备,当使用较大的充电电流为单个电池单元充电时,待充电设备的发热现象会比较严重。为了保证待充电设备的充电速度,并缓解待充电设备在充电过程中的发热现象,可对电池结构进行改造,使用相互串联的多个电池单元,并对该多个电池单元进行直充,即直接将适配器输出的电压加载到多个电池单元的两端。与单个电池单元方案相比(即认为改进前的单个电池单元的容量与改进后串联多个电池单元的总容量相同),如果要达到相同的充电速度,多个电池单元所需的充电电流约为单个电池单元所需的充电电流的1/N(N为串联的电池单元的数目),换句话说,在保证同等充电速度的前提下,多个电池单元串联可以大幅降低充电电流的大小,从而进一步减小待充电设备在充电过程中的发热量。因此,为了提升充电速度并降低待充电设备在充电过程中的发热量,待充电设备可以采用多个串联的电池单元。
充电电路14分别与充电接口11和电池单元12连接,用于当电源提供装置2的类型为第三类型(如为上述的第三类型快速充电适配器)时,提供充电接口11与电池单元12之间的充电通路,从而将该第三类型的电源提供装置2的输出功率提供给电池单元12。
充电电路15分别与充电接口11和电池单元12连接,用于当电源提供装置2的类型为第二类型(如为上述的普通类型适配器)时,提供充电接口11与电池单元12之间的充电通路,从而将该第二类型的电源提供装置2的输出功率提供给电池单元12。
为了兼容第一类型的电源提供装置2(如上述的第一类型快速充电适配器),充电电路15还用于当电源提供装置2的类型为第一类型时,提供充电接口11与电池单元12之间的充电通路,从而将该第一类型的电源提供装置2的输出功率提供给电池单元12。
此外,充电电路15包括一个电压转换电路151(如为Boost升压电路),用于将第一类型或第二类型的电源提供装置2提供的电压进行升压处理,以为具有两个串联电芯的电池单元12或者为包括两个串联的电池单元的电池单元12充电。
控制模块13用于进行不同类型的电源提供装置2的识别。当识别到电源提供装置2的类型为第三类型时,通过充电电路14控制电池单元12进行充电;当识别到电源提供装置2的类型为第一类型时,通过充电电路15为电池单元12在第一充电模式下进行充电;当识别到电源提供装置2的类型为第二类型时,通过充电电路15为电池单元12在第二充电模式下进行充电。
其中,电池单元12在第一充电模式下的最大充电电流大于在所述第二充电模式下的最大充电电流。第一充电模式如为上述通过第一类型电源提供装置提供输入功率时的快速充电模式,而第二充电模式如为上述的普通充电模式。
控制模块13例如可以通过独立的微控制单元(Micro Control Unit,MCU)实现,或者还可以通过待充电设备1内部的应用处理器(Application Processor,AP)实现。
根据本公开实施方式提供的待充电设备,可以首先通过控制模块对与之连接的电源提供装置的类型进行识别,在识别出为第一类型快速充电适配器或普通类型适配器后,共用普通充电模式的第一充电电路控制电池进行充电,并且通过控制模块的充电控制,实现对 电池单元的快速充电。该待充电设备可以同时兼容多种充电方案,增强了待充电设备的扩展性与适应性,同时也提升了用户的充电体验。进一步地,该待充电设备还可以在识别出电源提供装置的类型为第三类型快速充电适配器后,通过第二充电电路控制电池单元进行充电。
应清楚地理解,本公开描述了如何形成和使用特定示例,但本公开的原理不限于这些示例的任何细节。相反,基于本公开公开的内容的教导,这些原理能够应用于许多其它实施方式。
图2是根据一示例性实施方式示出的另一种待充电设备的框图。与图1所示的待充电设备1的不同之处在于,图2所示的待充电设备1’中的控制模块13进一步可以包括第一控制模块131与第二控制模块132。
其中,第一控制模块131例如可以为待充电设备1’中的应用处理器。第一控制模块131用于识别电源提供装置2提供的连接端口是否为专用充电端口(Dedicated Charging Port,DCP),该端口不支持数据传输,能够提供1.5A以上的充电电流。端口的D+和D-线之间短路。这种类型的端口可以支持较高充电能力的充电器和车载充电器。具体地,当电源提供装置2通过缆线与待充电设备1’连接后,第一控制模块131通过BC2.1协议识别电源提供装置2提供的连接端口是否为DCP。BC2.1为USB充电规范,其规范了设备通过USB端口充电的检测、控制和报告机制。BC2.1协议为本领域普通技术人员所公知,为了避免模糊本公开,在此不再赘述。
第一控制模块131可以在识别到电源提供装置2提供的端口为专用充电端口时,启动用于上述的普通充电模式的充电线程,进行相应的普通充电模式的充电参数设置,包括为了进行输入电流自适应而设置的输入电流、截止电流等。此外,第一控制模块131还会通过切换D+/D-通知第二控制模块132去识别电源提供装置的类型。
第二控制模块132例如可以为用于快速充电控制的MCU,其与第一控制模块131连接,当第一控制模块131识别到电源提供装置提供的端口为专用充电端口时,第二控制模块132进一步识别电源提供装置2的类型。例如可以通过数据线D+/D-来进行识别,例如可以通过设置D+/D-上分别加载不同的预设通信电平来识别电源提供装置2的类型,如识别是否为上述的第三类型或第一类型。
当第二控制模块132识别到电源提供装置2的类型为上述的第三类型时,通过充电电路14控制电池单元12进行充电。
第一控制模块131还用于当识别到电源提供装置提供的端口为专用充电端口,并且第二控制模块132识别到电源提供装置的类型不为第三类型时,通过充电电路15控制电池单元12进行充电。
例如,当第二控制模块132识别电源提供装置2的类型为上述的第一类型时,通过与第一控制模块131之间的连接告知第一控制模块131。之后,由第一控制模块131来通过 充电电路15控制电池单元12进行充电;而当第二控制模块132识别电源提供装置2的类型即不为第三类型也不为第一类型时,也由第一控制模块131通过充电电路15控制电池单元12进行充电。
也即,如上述,在第一类型的电源提供装置2或者第二类型的电源提供装置2为待充电设备1’充电时,共享相同的硬件充电通路。
此外,第一控制模块131还进一步为通过第一类型的电源提供装置2进行充电的电池单元12提供相应的充电逻辑控制。
例如,第一控制模块131可以获知电源提供装置2的类型为第一类型时,为待充电设备1’设置充电参数的参数值。这些充电参数在不同的电池温度区间对应有不同的参数值。
充电参数如可以包括下述参数中的至少一种:用于限制电源提供装置2的最大输出电流的输入电流参数、用于限制输入到电池单元12的最大电流的充电电流参数、用于判断电池单元12是否充满的截止电流参数、用于判断电池单元12在快速充电下是否被充满的截止电压参数等。
当电源提供装置2的类型为第一类型时,第一控制模块131还可以用于提供下述的充电控制逻辑:
如第一控制模块131以第一类型的电源提供装置2提供的输出功率控制电池单元12在第一充电模式下进行充电时,如果确定电池单元12的电压达到了电池单元12的当前温度所对应的电压截止阈值(如基于上述的截止电压参数而设置),则切断与第二控制模块132之间的通信,控制电池单元12在第二充电模式下进行充电。其中,第一类型的电源提供装置2在第一充电模式下提供的输出功率大于在第二充电模式下提供的输出功率。第二充电模式例如为上述的普通充电模式,也即即使与第一类型的电源提供装置2相连接,该电源提供装置2即可以提供快速充电模式(如第一充电模式),也可以提供普充充电模式(如第二充电模式)。
此外,第一控制模块131控制电池单元12在第二充电模式下进行充电时控制电池单元进行恒定电压的充电,并当电池单元的充电电流在预设时间内小于截止电流阈值(如基于上述的截止电流参数设置)时,确定电池单元12被充满。
在普通充电模式下,电池的充电过程可以包括:涓流充电阶段(或模式)、恒流充电阶段(或模式)及恒压充电阶段(或模式)。在涓流充电阶段,先对完全放电的电池进行预充电(即恢复性充电),涓流充电电流通常是恒流充电电流的十分之一,当电池电压上升到涓流充电电压阈值以上时,提高充电电流进入恒流充电阶段;在恒流充电阶段,以恒定电流对电池进行充电,充电电压快速上升,当充电电压达到电池所预期的充电电压阈值时转入恒压充电阶段;在恒压充电阶段,以恒定电压对电池进行充电,充电电流逐渐减小,当充电电流降低至设定的电流阈值时(该电流阈值通常为恒流充电阶段充电电流数值的数十分之一或者更低,可选地,该电流阈值可为数十毫安或更低),电池被充满电。
当第一控制模块131控制电池单元12在第一充电模式下进行充电,并检测到在该第 一充电模式下被充满(即在快速充电模式下被充满)时,进入普通充电模式(第二充电模式)进行充电,此时应该进入普通充电模式中的恒压充电阶段,即以恒定的电压为电池单元12继续进行充电,直到电池单元12被充满。
在另一些实施例中,由于在进行大电流的快速充电时,充满时电压的浮压较高(也即电池电压虚高),直接利用恒压充电阶段进行充电,所需时间会比较长,为了缩短恒压充电阶段的充电时间,还可以在第二充电模式下,继续以一较大的恒定电流为电池单元12进行充电,也即继续执行普通充电模式中的恒流充电阶段。而该恒流充电阶段的充电电流无法维持时,转到前述的恒压充电阶段,直到电池单元12被充满。
此外,第一控制模块131还可以用于根据电池单元12的当前温度,使第一类型的电源提供装置2调整最大输出电流。例如,当电池单元12在以第一电池温度区间(如为35度~37度)对应的最大输出电流充电时,电池单元12的温度逐渐增高,高于第一电池温度区间。其变化后的温度例如落于第二电池温度区间(大于37度),则第一控制模块131通过与电源提供装置2之间的通信,通知电源提供装置2调整其最大输出电流为第二电池温度区间对应的最大输出电流。而当电池单元12的温度又低于第二电池温度区间时,如果仍根据电池单元12当前的温度是否落于第一电池温度区间来调整电源提供装置2的最大输出电流,则会使调整流程不断重复,对电池单元12的升温控制效果不好,为了防止这种抖动的发生,可以通过第三电池温度区间来确定是否调整上述的最大输出电流。该第三电池温度区间的上限值如为第一电池温度区间的上限值减去温度阈值(例如可以设置为1度)。也即,当电池单元12当前的电池温度落于第三电池温度区间(如35度~36度)时,通知电源提供装置2调整其最大输出电流为第三电池温度区间对应的最大输出电流。第三电池温度区间与第一电池温度区间对应有相同的最大输出电流。
类似地,当电池单元12在以第一电池温度区间(如为35度~37度)对应的最大输出电流充电时,电池单元12的温度逐渐降低,低于第一电池温度区间。其变化后的温度例如落于第四电池温度区间(如为12度~35度),则第一控制模块131通过与电源提供装置2之间的通信,通知电源提供装置2调整其最大输出电流为第四电池温度区间对应的最大输出电流。而当电池单元12的温度又高于第四电池温度区间时,如果仍根据电池单元12当前的温度是否落于第一电池温度区间来调整电源提供装置2的最大输出电流,则会使调整流程不断重复,对电池单元12的降温控制效果不好,为了防止这种抖动的发生,可以通过第五电池温度区间来确定是否调整上述的最大输出电流。该第五电池温度区间的下限值如为第一电池温度区间的下限值加上温度阈值(例如可以设置为1度)。也即,当电池单元12当前的电池温度落于第五电池温度区间(如36度~37度)时,通知电源提供装置2调整其最大输出电流为第五电池温度区间对应的最大输出电流。第五电池温度区间与第一电池温度区间对应有相同的最大输出电流。
此外,最大输出电流在待充电设备1’进行亮屏充电时和进行灭屏充电时,对应相同的电池温度区间具有不同的参数值。
此外,待充电设备1’还可以包括检测模块16,用于检测电池单元12的温度、电压及充电电流。
根据本公开实施方式提供的待充电设备,进一步提供了兼容第一类型电源提供装置的软件控制方案。在第二控制模块识别出第一类型的电源提供装置后,由第一控制模块来实现对上述第一充电模式的快速充电的充电逻辑的控制。从而可以使得支持多电芯的待充电设备在使用第一类型的电源提供装置进行充电时,也同样可以进行大功率充电。
需要注意的是,上述附图中所示的框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
下述为本公开方法实施例,可以应用于本公开装置实施例中。对于本公开方法实施例中未披露的细节,请参照本公开装置实施例。
图3是根据一示例性实施方式示出的一种充电方法的流程图。如图3所示的充电方法10如可以应用于上述的待充电设备1中。
参考图3,充电方法10包括:
在步骤S102中,识别通过待充电设备的充电接口与待充电设备连接的电源提供装置的类型。
在步骤S104中,当识别到电源提供装置的类型为第一类型时,通过第一充电电路控制电池单元在第一充电模式下进行充电。
在步骤S106中,当识别到电源提供装置的类型为第二类型时,通过第一充电电路控制电池单元在第二充电模式下进行充电。
在一些实施例中,还可以包括:在步骤S108中,当识别到电源提供装置的类型为第三类型时,通过待充电设备的第二充电电路控制待充电设备的电池单元进行充电。
其中,第三类型的电源提供装置的最大输出功率大于第一类型的电源提供装置的最大输出功率,且第一类型的电源提供装置的最大输出功率大于第二类型的电源提供装置的最大输出功率。
其中,电池单元在第一充电模式下的最大充电电流大于在第二充电模式下的最大充电电流。
根据本公开实施方式提供的充电方法,可以首先通过控制模块对与之连接的电源提供装置的类型进行识别,在识别出为第一类型快速充电适配器或普通类型适配器后,共用普通充电模式的第一充电电路控制电池进行充电,并且通过控制模块的充电控制,实现对电池单元的快速充电。该待充电设备可以同时兼容多种充电方案,增强了待充电设备的扩展性与适应性,同时也提升了用户的充电体验。进一步地,该充电方法还可以在识别出为第三类型快速充电适配器后,通过第二充电电路控制电池单元进行充电。
图4是根据一示例性实施方式示出的另一种充电方法的流程图。图4所示的充电方法20可以应用于上述的待充电设备1’中。
参考图4,充电方法20包括:
在步骤S202中,通过待充电设备的第一控制模块,识别电源提供装置提供的连接端口是否为专用充电端口。
在步骤S204中,当第一控制模块识别到电源提供装置提供的端口为专用充电端口时,通过待充电设备的第二控制模块识别电源提供装置的类型。
在步骤S206中,当第二控制模块识别到电源提供装置的类型为第三类型时,第二控制模块通过待充电设备的第二充电电路控制待充电设备的电池单元进行充电。
在步骤S208中,当第二控制模块识别到电源提供装置的类型为第一类型时,第一控制模块通过第一充电电路控制电池单元在第一充电模式下进行充电。
图5是根据一示例性实施例示出的再一种充电方法的流程图。如图5所示,图5进一步提供了第一控制模块如何通过第一充电电路控制电池单元在第一充电模式下进行充电的实施例。
参考图5,步骤S208包括:
在S2082中,为待充电设备设置充电参数的参数值。
其中,充电参数在不同的电池温度区间对应有不同的参数值。
在一些实施例中,步骤S208还可以包括:
在步骤S2084中,以第一类型的电源提供装置提供的输出功率,控制电池单元在第一充电模式下进行充电。
在步骤S2086中,当确定电池单元的电压达到电池单元的当前温度所对应的电压截止阈值时,切断与第二控制模块的通信,控制电池单元在第二充电模式下进行充电。
在一些实施例中,控制电池单元在第二充电模式下进行充电包括:控制电池单元进行恒定电压的充电;以及当电池单元的充电电流在预设时间内小于截止电流阈值时,确定电池单元被充满。
在一些实施例中,控制电池单元在第二充电模式下进行充电还可以包括:在控制电池单元进行恒定电压的充电之前,在第二充电模式下控制电池单元进行恒定电流的充电。
在一些实施例中,如图5所示,步骤S208还可以包括:
在步骤S2088中,根据电池单元的当前温度,使第一类型的电源提供装置调整最大输出电流。
在一些实施例中,根据电池单元的当前温度,使第一类型的电源提供装置调整最大输出电流可以包括:当电池单元在以第一电池温度区间对应的最大输出电流充电,且电池单元的温度高于第一电池温度区间时,以电池单元变化后的温度所在的第二电池温度区间对应的最大输出电流进行充电;以及当电池单元的温度又低于第二电池温度区间且落于第三 电池温度区间时,以第三电池温度区间对应的最大输出电流进行充电;其中,第三电池温度区间的上限值为第一电池温度区间的上限值减去温度阈值,且第一电池温度区间与第三电池温度区间对应有相同的最大输出电流。
在一些实施例中,根据电池单元的当前温度,使第一类型的电源提供装置调整最大输出电流还可以包括:当电池单元在以第一电池温度区间对应的最大输出电流充电,且电池单元的温度低于第一电池温度区间时,以电池单元变化后的温度所在的第四电池温度区间对应的最大输出电流进行充电;以及当电池单元的温度又高于第四电池温度区间且落于第五电池温度区间时,以第五电池温度区间对应的最大输出电流进行充电;其中,第五电池温度区间的下限值为第一电池温度区间的下限值加上温度阈值,且第一电池温度区间与第五电池温度区间对应有相同的最大输出电流。
在一些实施例中,最大输出电流在待充电设备进行亮屏充电时和进行灭屏充电时,对应相同的电池温度区间具有不同的参数值。
在步骤S210中,当第二控制模块识别到电源提供装置的类型既不为第三类型也不为第一类型时,第一控制模块通过第一充电电路控制电池单元在第二充电模式下进行充电。
其中,第三类型的电源提供装置的最大输出功率大于第一类型的电源提供装置的最大输出功率,且第一类型的电源提供装置的最大输出功率大于第二类型的电源提供装置的最大输出功率;
其中,电池单元在第一充电模式下的最大充电电流大于在第二充电模式下的最大充电电流。
根据本公开实施方式提供的充电方法,进一步提供了兼容第一类型电源提供装置的软件控制方案。在第二控制模块识别出第一类型的电源提供装置后,由第一控制模块来实现对上述第一充电模式的快速充电的充电逻辑的控制。从而可以使得支持多电芯的待充电设备在使用第一类型的电源提供装置进行充电时,也同样可以进行大功率充电。
图6是根据一示例性实施方式示出的再一种充电方法的流程图。如图6所示的充电方法40可以应用于上述的待充电设备1’中。
参考图6,当第一控制模块检测到有电源提供装置插入时,通过BC1.2协议进行USB端口识别(步骤S402)。判断识别到的端口是否为DCP(步骤S404);如果识别到是DCP,则进入步骤S406,设置普通充电模式下的输入电流值,该参数用于限制电源提供装置的最大输出电流。进一步设置普通充电模式下的充电电流值,该参数用于限制加载到电池单元的最大充电电流(步骤S408)。输入电流值和充电电流值共同决定充电过程,加载给电池单元的充电电流的大小不能超过这两个值的最小值。之后,在设置截止电流值(步骤S410),该电流值用于判断电池单元是否充满。当电池单元的电压高于判断充满的电压阈值同时进入电池单元的电流小于该截止电流值一段预设时间,则判断电池单元充电被充满。之后,第一控制模块接收第二控制模块对电源提供装置的类型的识别结果是否 为第一类型(步骤S412),如果是,则进入步骤S414,开启第一充电模式。如果否,则重新回到步骤S406,根据检测到的电池单元的温度自适应的重新设置上述的输入电流值、充电电流值、截止电流值等。重新设置第一充电模式下的相关参数(步骤S416)。在第一充电模式下,根据温度自适应调整电源提供装置提供的输入电流的大小(步骤S418)。并检测在第一充电模式下,电池单元是否被充满(步骤S420),具体的检测方法如上述,在此不再赘述。如果被充满,在第二充电模式下继续一段时间的恒流充电(步骤S422)。再无法维持恒流阶段后,采用普通充电模式下的恒压充电,直至电池被充满(步骤S424)。如果没有被充满,则重新回到上述的步骤S406,自适应地根据检测到的当前电池的温度重新设置上述的电流相关参数值。
需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。也即,并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。另外,这些处理还可以是在多个模块中同步或异步执行的。
以上具体地示出和描述了本公开的示例性实施方式。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (23)

  1. 一种待充电设备,其特征在于,包括:
    充电接口;
    电池单元;
    第一充电电路,分别与所述充电接口和所述电池单元连接;以及
    控制模块,与所述充电接口连接,用于识别通过所述充电接口与所述待充电设备连接的电源提供装置的类型;当识别到所述电源提供装置的类型为第一类型时,通过所述第一充电电路控制所述电池单元在第一充电模式下进行充电;当识别到所述电源提供装置的类型为第二类型时,通过所述第一充电电路控制所述电池单元在第二充电模式下进行充电;
    其中,所述第一类型的电源提供装置的最大输出功率大于所述第二类型的电源提供装置的最大输出功率;
    其中,所述电池单元在所述第一充电模式下的最大充电电流大于在所述第二充电模式下的最大充电电流。
  2. 根据权利要求1所述的待充电设备,其特征在于,还包括:第二充电电路,分别与所述充电接口和所述电池单元连接;其中,所述控制模块还用于当识别到所述电源提供装置的类型为第三类型时,通过所述第二充电电路控制所述电池单元进行充电;所述第三类型的电源提供装置的最大输出功率大于所述第一类型的电源提供装置的最大输出功率。
  3. 根据权利要求2所述的待充电设备,其特征在于,所述控制模块包括:
    第一控制模块,与所述充电接口连接,用于识别所述电源提供装置提供的连接端口是否为专用充电端口;及
    第二控制模块,与所述充电接口和所述第一控制模块连接,用于当所述第一控制模块识别到所述电源提供装置提供的端口为所述专用充电端口时,识别所述电源提供装置的类型;及当识别到所述电源提供装置的类型为所述第三类型时,通过所述第二充电电路控制所述电池单元进行充电;
    其中,所述第一控制模块还用于当所述第二控制模块识别到所述电源提供装置的类型为所述第一类型时,通过所述第一充电电路控制所述电池单元在所述第一充电模式下进行充电;及当所述第二控制模块识别到所述电源提供装置的类型不为所述第三类型或所述第一类型时,通过所述第一充电电路控制所述电池单元在所述第二充电模式下进行充电。
  4. 根据权利要求3所述的待充电设备,其特征在于,所述第一控制模块用于当所述第二控制模块识别到所述电源提供装置的类型为所述第一类型时,为所述待充电设备设置充电参数的参数值;其中,所述充电参数在不同的电池温度区间对应有不同的参数值。
  5. 根据权利要求4所述的待充电设备,其特征在于,所述第一控制模块还用于在控制所述电池单元在所述第一充电模式下进行充电时,当确定所述电池单元的电压达到所述电池单元的当前温度所对应的电压截止阈值时,切断与所述第二控制模块的通信,控制所 述电池单元在所述第二充电模式下进行充电。
  6. 根据权利要求5所述的待充电设备,其特征在于,所述第一控制模块还用于控制所述电池单元在所述第二充电模式下进行充电时,控制所述电池单元进行恒定电压的充电,并当所述电池单元的充电电流在预设时间内小于截止电流阈值时,确定所述电池单元被充满。
  7. 根据权利要求6所述的待充电设备,其特征在于,所述第一控制模块还用于在控制所述电池单元进行所述恒定电压的充电之前,在所述第二充电模式下控制所述电池单元进行恒定电流的充电。
  8. 根据权利要求4所述的待充电设备,其特征在于,所述第一控制模块还用于根据所述电池单元的当前温度,使所述第一类型的电源提供装置调整最大输出电流。
  9. 根据权利要求8所述的待充电设备,其特征在于,所述第一控制模块用于当所述电池单元在以第一电池温度区间对应的所述最大输出电流充电,且所述电池单元的温度高于所述第一电池温度区间时,以所述电池单元变化后的温度所在的第二电池温度区间对应的所述最大输出电流进行充电;当所述电池单元的温度又低于所述第二电池温度区间且落于第三电池温度区间时,以所述第三电池温度区间对应的所述最大输出电流进行充电;其中,所述第三电池温度区间的上限值为所述第一电池温度区间的上限值减去温度阈值,且所述第一电池温度区间与所述第三电池温度区间对应有相同的所述最大输出电流。
  10. 根据权利要求8所述的待充电设备,其特征在于,所述第一控制模块用于当所述电池单元在以第一电池温度区间对应的所述最大输出电流充电,且所述电池单元的温度低于所述第一电池温度区间时,以所述电池单元变化后的温度所在的第四电池温度区间对应的所述最大输出电流进行充电;当所述电池单元的温度又高于所述第四电池温度区间且落于第五电池温度区间时,以所述第五电池温度区间对应的所述最大输出电流进行充电;其中,所述第五电池温度区间的下限值为所述第一电池温度区间的下限值加上温度阈值,且所述第一电池温度区间与所述第五电池温度区间对应有相同的所述最大输出电流。
  11. 根据权利要求8-10任一项所述的待充电设备,其特征在于,所述最大输出电流在所述待充电设备进行亮屏充电时和进行灭屏充电时,对应相同的电池温度区间具有不同的参数值。
  12. 一种充电方法,应用于待充电设备中,其特征在于,包括:
    识别通过所述待充电设备的充电接口与所述待充电设备连接的电源提供装置的类型;
    当识别到所述电源提供装置的类型为第一类型时,通过所述待充电设备的第一充电电路控制所述电池单元在第一充电模式下进行充电;以及
    当识别到所述电源提供装置的类型为第二类型时,通过所述第一充电电路控制所述电池单元在第二充电模式下进行充电;
    其中,所述第一类型的电源提供装置的最大输出功率大于所述第二类型的电源提供装置的最大输出功率;
    其中,所述电池单元在所述第一充电模式下的最大充电电流大于在所述第二充电模式下的最大充电电流。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    当识别到所述电源提供装置的类型为第三类型时,通过所述待充电设备的第二充电电路控制所述待充电设备的电池单元进行充电;
    其中,所述第三类型的电源提供装置的最大输出功率大于所述第一类型的电源提供装置的最大输出功率。
  14. 根据权利要求13所述的方法,其特征在于,识别通过所述待充电设备的充电接口与所述待充电设备连接的电源提供装置的类型包括:
    通过所述待充电设备的第一控制模块,识别所述电源提供装置提供的连接端口是否为专用充电端口;
    当所述第一控制模块识别到所述电源提供装置提供的端口为所述专用充电端口时,通过所述待充电设备的第二控制模块识别所述电源提供装置的类型是否为所述第三类型或所述第一类型;以及
    当所述第二控制模块识别到所述电源提供装置的类型既不为所述第三类型也不为所述第一类型时,确定所述电源提供装置的类型为所述第二类型。
  15. 根据权利要求14所述的方法,其特征在于,通过所述待充电设备的第二充电电路控制所述待充电设备的电池单元进行充电包括:所述第二控制模块通过所述待充电设备的第二充电电路控制所述待充电设备的电池单元进行充电;
    通过所述第一充电电路控制所述电池单元在第一充电模式下进行充电包括:所述第一控制模块通过所述第一充电电路控制所述电池单元在所述第一充电模式下进行充电;
    通过所述第一充电电路控制所述电池单元在第二充电模式下进行充电包括:所述第一控制模块通过所述第一充电电路控制所述电池单元在所述第二充电模式下进行充电。
  16. 根据权利要求15所述的方法,其特征在于,当所述第二控制模块识别到所述电源提供装置的类型为所述第一类型时,所述第一控制模块通过所述第一充电电路控制所述电池单元在所述第一充电模式下进行充电包括:
    为所述待充电设备设置充电参数的参数值;
    其中,所述充电参数在不同的电池温度区间对应有不同的参数值。
  17. 根据权利要求16所述的方法,其特征在于,当所述第二控制模块识别到所述电源提供装置的类型为所述第一类型时,所述第一控制模块通过所述第一充电电路控制所述电池单元在所述第一充电模式下进行充电还包括:
    以所述第一类型的电源提供装置提供的输出功率,控制所述电池单元在所述第一充电模式下进行充电;以及
    当确定所述电池单元的电压达到所述电池单元的当前温度所对应的电压截止阈值时,切断与所述第二控制模块的通信,控制所述电池单元在所述第二充电模式下进行充电。
  18. 根据权利要求17所述的方法,其特征在于,控制所述电池单元在所述第二充电模式下进行充电包括:
    控制所述电池单元进行恒定电压的充电;以及
    当所述电池单元的充电电流在预设时间内小于截止电流阈值时,确定所述电池单元被充满。
  19. 根据权利要求18所述的方法,其特征在于,控制所述电池单元在所述第二充电模式下进行充电还包括:
    在控制所述电池单元进行所述恒定电压的充电之前,在所述第二充电模式下控制所述电池单元进行恒定电流的充电。
  20. 根据权利要求16所述的方法,其特征在于,当所述第二控制模块识别到所述电源提供装置的类型为所述第一类型时,所述第一控制模块通过所述第一充电电路控制所述电池单元在所述第一充电模式下进行充电还包括:
    根据所述电池单元的当前温度,使所述第一类型的电源提供装置调整最大输出电流。
  21. 根据权利要求20所述的方法,其特征在于,根据所述电池单元的当前温度,使所述第一类型的电源提供装置调整最大输出电流包括:
    当所述电池单元在以第一电池温度区间对应的所述最大输出电流充电,且所述电池单元的温度高于所述第一电池温度区间时,以所述电池单元变化后的温度所在的第二电池温度区间对应的所述最大输出电流进行充电;以及
    当所述电池单元的温度又低于所述第二电池温度区间且落于第三电池温度区间时,以所述第三电池温度区间对应的所述最大输出电流进行充电;
    其中,所述第三电池温度区间的上限值为所述第一电池温度区间的上限值减去温度阈值,且所述第一电池温度区间与所述第三电池温度区间对应有相同的所述最大输出电流。
  22. 根据权利要求20所述的方法,其特征在于,根据所述电池单元的当前温度,使所述第一类型的电源提供装置调整最大输出电流包括:
    当所述电池单元在以第一电池温度区间对应的所述最大输出电流充电,且所述电池单元的温度低于所述第一电池温度区间时,以所述电池单元变化后的温度所在的第四电池温度区间对应的所述最大输出电流进行充电;以及
    当所述电池单元的温度又高于所述第四电池温度区间且落于第五电池温度区间时,以所述第五电池温度区间对应的所述最大输出电流进行充电;
    其中,所述第五电池温度区间的下限值为所述第一电池温度区间的下限值加上温度阈值,且所述第一电池温度区间与所述第五电池温度区间对应有相同的所述最大输出电流。
  23. 根据权利要求20-22任一项所述的方法,其特征在于,所述最大输出电流在所述待充电设备进行亮屏充电时和进行灭屏充电时,对应相同的电池温度区间具有不同的参数值。
PCT/CN2020/120932 2019-10-16 2020-10-14 待充电设备及充电方法 WO2021073537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20875911.8A EP3993218A4 (en) 2019-10-16 2020-10-14 Device to be charged and charging method
US17/575,484 US20220140640A1 (en) 2019-10-16 2022-01-13 Device to be Charged and Charging Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910984920.4A CN112671052A (zh) 2019-10-16 2019-10-16 待充电设备及充电方法
CN201910984920.4 2019-10-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/575,484 Continuation US20220140640A1 (en) 2019-10-16 2022-01-13 Device to be Charged and Charging Method

Publications (1)

Publication Number Publication Date
WO2021073537A1 true WO2021073537A1 (zh) 2021-04-22

Family

ID=75400404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120932 WO2021073537A1 (zh) 2019-10-16 2020-10-14 待充电设备及充电方法

Country Status (4)

Country Link
US (1) US20220140640A1 (zh)
EP (1) EP3993218A4 (zh)
CN (1) CN112671052A (zh)
WO (1) WO2021073537A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
CN107231013A (zh) * 2016-05-24 2017-10-03 华为技术有限公司 一种充电的方法、终端、充电器和系统
CN107947252A (zh) * 2016-10-12 2018-04-20 广东欧珀移动通信有限公司 终端和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970024434A (ko) * 1995-10-12 1997-05-30 김광호 겸용 배터리 충전기와 그 제어 방법
JP3506916B2 (ja) * 1998-07-03 2004-03-15 株式会社マキタ 充電装置
KR102280579B1 (ko) * 2013-12-19 2021-07-22 삼성전자주식회사 충전 회로, 이를 포함하는 충전 시스템 및 무선전력 수신기
CN106329654A (zh) * 2016-09-26 2017-01-11 宇龙计算机通信科技(深圳)有限公司 电子装置及其充电方法
KR20180074971A (ko) * 2016-12-26 2018-07-04 삼성전자주식회사 시간 기반 적응적 배터리 충전 제어 방법 및 장치
EP3462564A4 (en) * 2017-04-07 2019-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS LOADING SYSTEM, DEVICE AND METHOD AND DEVICE TO BE LOADED
CN109412240A (zh) * 2018-12-20 2019-03-01 青岛海信移动通信技术股份有限公司 一种调节充电电流的方法及设备
SG11202000653XA (en) * 2018-12-21 2020-07-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Battery supply circuits, devices to be charged, and charging control methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231013A (zh) * 2016-05-24 2017-10-03 华为技术有限公司 一种充电的方法、终端、充电器和系统
CN106537719A (zh) * 2016-08-15 2017-03-22 北京小米移动软件有限公司 电子设备、充电器、充电系统及充电方法
CN107947252A (zh) * 2016-10-12 2018-04-20 广东欧珀移动通信有限公司 终端和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993218A4 *

Also Published As

Publication number Publication date
CN112671052A (zh) 2021-04-16
EP3993218A4 (en) 2023-06-28
EP3993218A1 (en) 2022-05-04
US20220140640A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
KR102362972B1 (ko) 배터리 전기공급 회로, 충전 대상 기기 및 충전 제어 방법
JP7092885B2 (ja) 無線充電受信装置及び移動端末
US20220006303A1 (en) Charging and discharging control method, and device
US11722062B2 (en) Power supply device, electronic device and power supply method
WO2020172868A1 (zh) 充电方法和充电装置
US20220006312A1 (en) Device to be charged, and charging and discharging control method
WO2021013258A1 (zh) 待充电设备、无线充电方法及系统
WO2020223880A1 (zh) 充电方法和充电装置
US11881737B2 (en) Battery module, charging control method, and storage medium
CA3061923C (en) Charging method and charging apparatus
WO2021077933A1 (zh) 充电控制方法、充电控制设备和电子设备
WO2020191583A1 (zh) 电池充电方法、装置、设备及可读存储介质
CN107492936B (zh) 电子设备及其充电控制方法
WO2020253520A1 (zh) 待充电设备及充电方法
WO2021073537A1 (zh) 待充电设备及充电方法
CN105226754A (zh) 电池充放电控制电路及其控制方法
WO2021012951A1 (zh) 无线充电装置、方法及系统
CN101958572A (zh) 电源电路和其电源管理方法
WO2021013259A1 (zh) 待充电设备、无线充电方法及系统
WO2021052346A1 (zh) 充电方法、充电设备和电子设备
US20220123575A1 (en) Rechargeable Device and Charging Method
US20220037706A1 (en) Power supply circuit, charging-discharging circuit and intelligent terminal
CN112448428A (zh) 电子设备及充放电控制方法
CN112448427A (zh) 电子设备及充放电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20 875 911.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020875911

Country of ref document: EP

Effective date: 20220128

NENP Non-entry into the national phase

Ref country code: DE