WO2021073326A1 - 一种用于热面点火器的控制策略 - Google Patents

一种用于热面点火器的控制策略 Download PDF

Info

Publication number
WO2021073326A1
WO2021073326A1 PCT/CN2020/114726 CN2020114726W WO2021073326A1 WO 2021073326 A1 WO2021073326 A1 WO 2021073326A1 CN 2020114726 W CN2020114726 W CN 2020114726W WO 2021073326 A1 WO2021073326 A1 WO 2021073326A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot surface
surface igniter
control
time
voltage
Prior art date
Application number
PCT/CN2020/114726
Other languages
English (en)
French (fr)
Inventor
雷彼得
Original Assignee
重庆利迈陶瓷技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆利迈陶瓷技术有限公司 filed Critical 重庆利迈陶瓷技术有限公司
Priority to KR1020227015784A priority Critical patent/KR102652853B1/ko
Priority to EP20876459.7A priority patent/EP3998426A4/en
Priority to US17/761,164 priority patent/US20230349554A1/en
Priority to JP2022518168A priority patent/JP7348392B2/ja
Priority to CA3154924A priority patent/CA3154924A1/en
Priority to MX2022003169A priority patent/MX2022003169A/es
Publication of WO2021073326A1 publication Critical patent/WO2021073326A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/22Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/006Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/008Structurally associated with fluid-fuel burners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1951Control of temperature characterised by the use of electric means with control of the working time of a temperature controlling device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/28Ignition circuits

Definitions

  • the invention relates to a control strategy, in particular to a temperature change control strategy of a hot surface igniter in the working process.
  • Combustion equipment in China and other regions/countries usually uses electric spark ignition.
  • electric spark ignition has problems such as unreliable ignition, deflagration, and electromagnetic interference.
  • the ignition is unreliable because electric spark ignition is easily affected by factors such as temperature, humidity, ignition gap, arc leakage, and pollution. Therefore, North American countries with many types of combustion equipment and more advanced combustion equipment application technology adopt hot surface ignition technology. After the hot surface ignition technology reaches high temperature in advance, combustible gas/fuel enters the combustion area, completely avoiding electricity. Possible problems with sparks.
  • the hot surface igniter itself is set with a rated voltage and a rated temperature.
  • the existing hot surface igniter adopts constant voltage control, so that it takes a certain time for the hot surface igniter to reach the final temperature, such as 5s, 10s or even longer. Then, when the user wants to reach the required temperature faster (usually within the rated temperature), the voltage of the hardware circuit of the hot surface igniter may be increased to enable it to heat up faster.
  • the voltage used by the user exceeds the rated voltage of the hot surface igniter not only the life of the hot surface igniter will be shortened rapidly, but it is more likely that the hot surface igniter will be damaged immediately at the moment of ignition.
  • the purpose of the present invention is to provide a control strategy that can be used for a hot surface igniter, specifically an ignition time control strategy for a hot surface igniter.
  • an ignition time control strategy for a hot surface igniter Through the ignition time control strategy of the present invention, the ignition time of the hot surface igniter can be controlled, which solves the problems that the customer wants to ignite in a short time, but the service life of the hot surface igniter is shortened or even damaged and the power supply cost increases. Meet the ignition requirements of hot surface igniters in different applications.
  • the present invention is implemented as follows: a control strategy for hot surface igniter, which is characterized in that: based on the hardware circuit and software algorithm of the hot surface igniter, the working time of the hot surface igniter is divided into t1, t2,...tn time periods, in each time period, the output voltage or output power of the hardware circuit is adjusted through the software algorithm to make the hot surface igniter reach the expected temperature.
  • a control strategy for hot surface igniter including the following steps:
  • Step 1 According to the product characteristics and application of the hot surface igniter, the required working time is obtained-
  • Step 2 Divide the working time of the hot surface igniter in Step 1 into t1, t2,...tn time periods;
  • Step 3 In each time period, the output voltage or output power of the hardware circuit is controlled by the software algorithm
  • the rate makes the hot surface igniter reach the temperature value in this time period.
  • step 3 in each time period, the output voltage is controlled to reach the temperature value in each time period.
  • step 3 in each time period, the output power is controlled to reach the temperature value in each time period.
  • step 3 in any period of time, output voltage control or output power control can be used to achieve the temperature value in the period of time.
  • step 3 using the input constant voltage to control the temperature values in the time periods t1, t2, and/or tn of the hot surface igniter includes the following processes:
  • step 3 using the output constant power to control the temperature values in the time periods t1, t2 and/or tn of the hot surface igniter includes the following processes:
  • S7 Determine whether the voltage Pr in S6 is equal to the expected voltage P0, if it is, go to S8, if not, go to S9;
  • the resistance value judgment or current judgment of S10 is performed, if it is normal, it will go to S6, if it is abnormal, it will end.
  • the working time of the hot surface igniter is divided into t1, t2,...tn time periods according to the slope of the working time-temperature variation curve, and the continuous slope of the working time-temperature variation curve is consistent or similar.
  • the corresponding time interval is set as a time period.
  • the present invention provides a control strategy for hot surface igniters. Through the control strategy of the present invention, the ignition time of the hot surface igniter can be easily controlled. To meet the needs of customers who need to ignite in a short time.
  • control strategy of the hot surface igniter of the present invention is performed within the rated voltage of the hot surface igniter, and will not affect the service life of the hot surface igniter at all. And there is no need to replace the power supply of the hot surface igniter, so that the application cost of the hot surface igniter can be controlled and it is more acceptable to customers.
  • the application range of the hot surface igniter is increased, so that the same hot surface igniter can be used in applications with different temperature and time requirements, such as stoves, water heaters, engines, and so on. And this kind of hot surface igniter is independently researched and developed by the company, and no company in the world has ever used it or made it public. Improve the competitiveness of the company, but also made a great contribution to customers.
  • Figure 1 is a flow chart of voltage control in any period of time
  • Figure 2 is a flow chart of power control in any time period
  • Figure 3 is an example of a working time-temperature curve of a hot surface igniter of a domestic or commercial gas cooker and water heater;
  • Figure 4-6 is the hardware circuit diagram.
  • Embodiment As shown in Figure 1-6, this embodiment provides a control strategy for the ignition temperature of the hot surface igniter during working hours, which is divided into constant voltage control, constant power control, variable voltage control, and variable power control. And hybrid control of variable voltage and variable power.
  • the working temperature of the hot surface igniter can be controlled in a constant power or constant voltage manner during the entire working time.
  • variable voltage control variable power control, or variable voltage and variable power hybrid control methods can be used to control the working temperature of the hot surface igniter, which specifically includes the following steps:
  • Step 1 According to the product characteristics and application of the hot surface igniter, the required working time is obtained-
  • Step 2 Divide the working time of the hot surface igniter in Step 1 into t1, t2,...tn time periods;
  • Step 3 In each time period, the output voltage or output power of the hardware circuit is controlled by the software algorithm
  • the rate makes the hot surface igniter reach the temperature value in this time period.
  • the working time-temperature curve is set according to related factors such as the product characteristics, input power, application occasions, and customer demands of the hot surface igniter itself, and is also obtained by repeated experimental verification and related calculations based on these related factors.
  • the time scale of t1, t2,...tn is obtained through experimental verification and related calculations.
  • variable voltage control is used in step three, then the working time of the hot surface igniter is divided into t1, t2,...tn time periods, so that the temperature in any one time period can be controlled by the same voltage, but different time periods
  • the temperature inside can be controlled by different voltages.
  • the hardware circuit is controlled by software algorithm to make the voltage in this time period equal to the expected voltage in this time period, so that the hot surface igniter reaches the expected temperature in this time period.
  • the voltage control process in any period of time is as follows:
  • S5 Determine whether the sampled voltage Ur is equal to the expected voltage U0, if it is, go to S6, if not, go to S7.
  • variable power control is used in step 3, then the working time of the hot surface igniter is divided into t1, t2,...tn time periods, so that the temperature in any time period can be controlled by the same power, but at different times
  • the temperature in the section can be controlled by different powers.
  • the hardware circuit is controlled by a software algorithm to make the power in this time period equal to the expected power in this time period, so that the hot surface igniter reaches the expected temperature in this time period.
  • the power control process in any time period is as follows:
  • the resistance value judgment or current judgment of S10 is performed, if it is normal, it will go to S6, if it is abnormal, it will end.
  • variable voltage and variable power hybrid control is adopted in step 3
  • the working time of the hot surface igniter is divided into t1, t2,...tn time periods, and different time periods are selected to use voltage control or power control respectively, among which select
  • the standard is based on high efficiency, and which method can reach the expected temperature in a shorter time is to choose which control method.
  • voltage control or power control is adopted respectively, and the control flow is as above.
  • Example 1 Application in domestic or commercial gas stoves and water heaters
  • variable voltage control variable power control
  • variable voltage plus variable power hybrid control in this embodiment can ensure the service life of the hot surface igniter and shorten the ignition time of gas cookers and water heaters.
  • Figure 3 shows the working time-temperature curve of household or commercial gas cookers and water heaters. It uses a dedicated temperature measurement laboratory, uses high-precision temperature measurement instruments, and monitors the working curve of the igniter in real time through a computer, and adjusts the technical parameters reasonably for the purpose of different application requirements to obtain the best time scale.
  • the hot surface igniter will present a temperature A curve, which will reach the highest temperature between t3 and t4 to ignite the combustible gas. If common voltage or power control is used, the hot surface igniter may show a temperature B curve, which can ignite combustible gas at t10, or it may show a temperature C curve, which is damaged due to overtemperature at t5 to t6.
  • Adopting the ignition strategy of this embodiment can not only ensure that ignition is achieved in a short time, but also can ensure the safety and service life of the hot surface igniter.
  • the application on the engine preheating system does not require high time, but requires power or temperature. At this time, you can choose to use constant voltage or constant power control according to the actual application.
  • this embodiment also provides circuit diagrams of the hardware control of the hot surface igniter.
  • these circuit diagrams are only for better explaining the present invention, and should not be understood as limiting the present invention.
  • FIG. 4 A circuit diagram is shown in FIG. 4, which includes an MCU.
  • the MCU has two outputs, one is a control signal output, and the other is a voltage acquisition output.
  • the control signal output terminal is connected to the resistor R4 and then to the base of the transistor Q1, the emitter of the transistor is grounded, the collector is connected to the resistor R2, and the resistor R5 is connected between the base of the transistor Q1 and the transmitter.
  • the other end of the resistor R2 is connected to the gate of the field effect tube S1
  • the source of the field effect tube S1 is connected to the power supply DC
  • the drain of the field effect tube is connected to the anode of the hot surface igniter
  • the hot surface The negative pole of the igniter is grounded.
  • a Zener diode D1 is also connected between the gate and the source of the field effect transistor S1.
  • the anode of the Zener diode D1 is connected to the source of the field effect transistor S1, and the cathode is connected to the gate of the field effect transistor S1.
  • a resistor R1 is also connected between the gate and the source of the field effect transistor S1.
  • the voltage acquisition output terminal is connected to the resistor R7 and then to the resistor R3, and the resistor R3 is connected to the negative electrode of the hot surface igniter.
  • a branch connection R6 is provided between R7 and R3, the R6 is grounded, and a branch connection capacitor C1 is provided between the MCU and R7, and the C1 is grounded.
  • Fig. 5 shows another circuit diagram, including a PLC.
  • the PLC has three outputs, one is a control signal output, one is a voltage acquisition output, and the other is a current acquisition output.
  • the control signal output terminal is connected to the resistor R3 and then connected to the base of the triode Q1, the emitter of the triode is grounded, and a resistor R5 is connected between the base of the triode Q1 and the transmitter.
  • the collector of the transistor is connected to the cathode of the diode D1, the anode of the D1 is connected to the power supply VCC, an electromagnetic switch K1 is connected between the anode and the cathode of the diode D1, and one end of the electromagnetic switch K1 is connected to the anode of the hot surface igniter, The other end is connected to the negative electrode of the hot surface igniter, and the negative electrode of the hot surface igniter is also grounded after passing through the constantan wire.
  • the voltage acquisition output terminal is connected to the resistor R6 and then to the resistor R1.
  • the resistor R1 is connected to the positive electrode of the hot surface igniter.
  • a branch is provided between the resistors R6 and R1 to connect to the resistor R2, and the resistor R2 is connected to the negative electrode of the hot surface igniter.
  • a branch connection capacitor C1 is provided between the PLC and R6, and the C1 is grounded.
  • the current collection output terminal is connected to the resistor R4 and then connected to the negative pole of the hot surface igniter.
  • the signal control, voltage acquisition and current acquisition of the hot surface igniter can be realized through the hardware circuit in Figure 5. Power can be collected by collecting voltage and current. Further realize the constant voltage control, constant power control, variable voltage control, variable power control or variable voltage and variable power hybrid control of the hot surface igniter.
  • Figure 6 shows another circuit diagram, including a computer, which is connected to an industrial control module.
  • the industrial control module has three outputs, one for control signal output, one for voltage acquisition output, and the other for blocking acquisition output.
  • the control signal output terminal is connected to the resistor R7 and then to the base of the transistor Q2, the emitter of the transistor is grounded, the collector is connected to the resistor R5, and the resistor R8 is connected between the base of the transistor Q2 and the transmitter.
  • the other end of the resistor R5 is connected to the base of the transistor Q1.
  • the emitter of the transistor Q1 is connected to the power supply DC, the collector is connected to the positive electrode of the hot surface igniter, and the negative electrode of the hot surface igniter is grounded.
  • a resistor R4 is also connected between the pole and the base, and the collector of the transistor Q1 is also grounded through a diode D3.
  • the voltage acquisition output terminal is connected to the resistor R10 and then to the resistor R6, and the resistor R6 is connected to the positive electrode of the hot surface igniter.
  • a branch connection resistor R9 is provided between R10 and R6, the resistor R9 is grounded, and a branch connection capacitor C2 is provided between the industrial control module and R10, and the C2 is grounded.
  • the resistance value collection output terminal is connected to the resistors R1 and R3 in sequence and then to the positive electrode of the hot surface igniter.
  • a branch is provided between the industrial control module and the resistor R1 to be connected to the capacitor C1 and then grounded, another branch is provided between the industrial control module and the resistor R1 to be connected to the diode D1 and then grounded, and a resistor R1 and R3 are provided with a After the branch is connected to the resistor R2 and the diode D2, the power supply VCC is connected.
  • the signal control, voltage acquisition and resistance value acquisition of the hot surface igniter can be realized through the hardware circuit of Figure 6. Power can be collected by collecting voltage and resistance. Further realize the constant voltage control, constant power control, variable voltage control, variable power control or variable voltage and variable power hybrid control of the hot surface igniter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

一种用于热面点火器的控制策略,基于热面点火器的硬件电路和软件算法,将热面点火器的工作时间分隔成t1,t2,……tn个时间段,在每个时间段内通过软件算法调整硬件电路的输出电压或输出功率以使热面点火器达到预期温度。该控制策略可轻易地控制热面点火器的点火时间,满足短时间内进行点火的空户需求。

Description

一种用于热面点火器的控制策略 技术领域
本发明涉及一种控制策略,尤其是关于热面点火器在工作过程中的温度变化控制策略。
背景技术
中国等地区/国家的燃烧设备通常采用电火花点火方式。但电火花点火存在点火不可靠、爆燃、电磁干扰等问题。而点火不可靠是因为电火花点火容易受温度、湿度、点火间隙、漏弧、污染等因素影响。因此燃烧设备种类众多和燃烧设备应用技术更领先的北美国家更多地采用热面点火技术,热面点火技术在热面点火器提前达到高温后,可燃燃气/燃油再进入燃烧区域,完全避免电火花可能产生的问题。
热面点火器出厂本身设定了额定电压与额定温度。现有的热面点火器采用恒电压控制,使得热面点火器达到最终温度时需要一定的时间,比如说5s、10s甚至更长时间。那么,当用户为了更快的达到所需的温度时(通常在额定温度以内),可能会加大热面点火器硬件电路的电压,使其能够升温更快。但是这样的做法会导致热面点火器寿命缩短,并且,这样的做法需要更换电源,成本增高。以及,当用户所采用的电压超过热面点火器的额定电压时,不但热面点火器的寿命会急速减短,更有可能发生热面点火器在点火瞬间立马损坏。
发明内容
本发明的目的在于提供一种可用于热面点火器的控制策略,具体而言是一种用于热面点火器的点火时间控制策略。通过本发明的点火时间控制策略可使得热面点火器的点火时间得以控制,解决了客户想要在短时间内进行点火却容易造成热面点火器寿命缩短甚至损坏以及电源成本提高的问题。满足热面点火器在不同的应用场合的点火需求。
为了实现上述目的,本发明是这样实现的:一种用于热面点火器的控制策略,其特征在于:基于热面点火器的硬件电路和软件算法,将热面点火器的工作时间 分隔成t1、t2、…tn个时间段,在每个时间段内通过软件算法调整硬件电路的输出电压或输出功率以使热面点火器达到预期温度。
一种用于热面点火器的控制策略,包括以下步骤:
步骤一,根据热面点火器的产品特性和应用场合得到满足需求的工作时间-
温度变化曲线;
步骤二,将步骤一中的热面点火器的工作时间分割成t1、t2、…tn个时间段;
步骤三,在每一时间段内,通过软件算法控制硬件电路的输出电压或输出功
率使热面点火器达到在该时间段内的温度值。
其中,步骤三中,在每一个时间段内,均采用控制输出电压达到每一个时间段内的温度值。
其中,步骤三中,在每一个时间段内,均采用控制输出功率达到每一个时间段内的温度值。
其中,步骤三中,在任一个时间段内,可采用输出电压控制或输出功率控制以达到该时间段内的温度值。
进一步地,步骤三中采用输入恒电压控制热面点火器的t1、t2和/或tn时间段内的温度值,包括以下流程:
S1:软件算法系统初始化;
S2:输入初始PWM;
S3:调整PWM输出,控制电压;
S4:热面点火器硬件电路的输出电压采样;
S5:判断采样电压Ur是否等于预期电压U0,若是进入S6,若否进入S7;
S6:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
S7:进行PID运算,算出控制量,回到S3。
进一步地,步骤三中采用输出恒功率控制热面点火器的t1、t2和/或tn时间段内的温度值,包括以下流程:
S1:系统初始化;
S2:输入初始PWM;
S3:调整PWM输出,控制电压;
S4:热面点火器硬件电路的输出电压采样;
S5:热面点火器阻值采样或者电流采样;
S6:按照公式P=U 2/R或者P=UI计算功率;
S7:判断S6中的电压Pr是否等于预期电压P0,若是进入S8,若否则进入S9;
S8:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
S9:进行PID运算,算出控制量,回到S3。
优选的,S5中进行热面点火器的阻值采样或者电流采用后,进行S10阻值判断或者电流判断,若正常则进入S6,若异常则结束。
优选的,热面点火器的工作时间按照所述工作时间-温度变化曲线的斜率分割成t1、t2、…tn个时间段,所述工作时间-温度变化曲线的连续斜率一致或相近的一段所对应的时间区间设定为一个时间段。
有益效果:
本发明提供了一种用于热面点火器的控制策略。通过本发明的控制策略可轻易地控制热面点火器的点火时间。满足需要短时间内进行点火的客户的需求。
并且,本发明的热面点火器的控制策略是在热面点火器的额定电压之内进行的,完全不会影响热面点火器的使用寿命。并且也不需要更换热面点火器的供电电源,使得热面点火器的应用成本得以控制,客户更容易接受。
提高了热面点火器的应用范围,使得同一热面点火器可以应用在不同温度和时间需求的应用场合,比如说灶具、热水器、发动机等等的应用场合。且此种热面点火器是企业自主研发,目前世界上没有任何一家企业使用或公开过。提高了企业的竞争力,同时也为客户做出了极大的贡献。
附图说明
图1为任一时间段内的电压控制流程图;
图2为任一时间段内的功率控制流程图;
图3为实例一种的家用或商用燃气灶具、热水器的热面点火器的工作时间-温度变化曲线;
图4-图6为硬件电路图。
具体实施方式
下面将通过附图中所示的实施例来介绍本发明,但本发明并不局限于所介绍 的实施方式,任何在本实施例基本精神上的改进或替代,仍属于本发明权利要求所要求保护的范围:
实施例:如图1-6所示,本实施例提供了一种热面点火器在工作时间时的点火温度的控制策略,分为恒定电压控制、恒定功率控制、变电压控制、变功率控制以及变电压加变功率混合控制。
其中,对于需要工作时间内温度呈线性变化的应用场合,可在整个工作时间内采用在恒功率的方式或者恒电压的方式控制热面点火器的工作温度。
而对于在工作时间内温度呈非线性变化的应用场合,可采用变电压控制方式、变功率控制方式或者变电压变功率混合控制方式来控制热面点火器的工作温度,具体包括以下步骤:
步骤一,根据热面点火器的产品特性和应用场合得到满足需求的工作时间-
温度变化曲线;
步骤二,将步骤一中的热面点火器的工作时间分割成t1、t2、…tn个时间段;
步骤三,在每一时间段内,通过软件算法控制硬件电路的输出电压或输出功
率使热面点火器达到在该时间段内的温度值。
其中所述工作时间-温度变化曲线是根据热面点火器本身的产品特性、输入功率、应用场合、客户诉求等相关因素设定的,也是根据这些相关因素进行反复实验验证和相关计算得到的。而t1、t2、…tn的时间刻度大小是通过实验验证和相关计算得出的。
若步骤三中采用变电压控制,那么,将热面点火器的工作时间分割成t1、t2、…tn个时间段,使得任意一个时间段内的温度可采用同一电压进行控制,而不同时间段内的温度可通过不同的电压进行控制。根据热面点火器的每一工作时间段的温度曲线得到该时间段内的预期电压U0,通过软件算法控制硬件电路使得该时间段内的电压Ur=U0,进而使得热面点火器达到预期温度。而进入到另一个工作时间段内,再通过软件算法控制硬件电路使得此时间段内的电压等于此时间段内的预期电压,以使热面点火器达到此时间段内的预期温度。
如图1,在任意一个时间段内的电压控制流程如下:
S1:软件算法系统初始化;
S2:输入初始PWM;
S3:调整PWM输出,控制电压;
S4:热面点火器硬件电路的输出电压采样;
S5:判断采样电压Ur是否等于预期电压U0,若是进入S6,若否进入S7。
S6:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
S7:进行PID运算,算出控制量,回到S3。
而若步骤三中采用变功率控制,那么,将热面点火器的工作时间分割成t1、t2、…tn个时间段,使得任意一个时间段内的温度可采用同一功率进行控制,而不同时间段内的温度可通过不同的功率进行控制。根据热面点火器的每一工作时间段的温度曲线得到该时间段内的预期功率P0,通过软件算法控制硬件电路使得该时间段内的功率Pr=P0,进而使得热面点火器达到预期温度。而进入到另一个工作时间段内,再通过软件算法控制硬件电路使得此时间段内的功率等于此时间段内的预期功率,以使热面点火器达到此时间段内的预期温度。
如图2,在任意一个时间段内的功率控制流程如下:
S1:系统初始化;
S2:输入初始PWM;
S3:调整PWM输出,控制电压;
S4:热面点火器硬件电路的输出电压采样;
S5:热面点火器阻值采样或者电流采样;
S6:按照公式P=U 2/R或者P=UI计算功率;
S7:判断S6中的电压Pr是否等于预期电压P0,若是进入S8,若否则进入
S9;
S8:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
S9:进行PID运算,算出控制量,回到S3。
作为本实施例的另一实施方式,S5中进行热面点火器的阻值采样或者电流采用后,进行S10阻值判断或者电流判断,若正常则进入S6,若异常则结束。
而若步骤三中采用变电压变功率混合控制,那么,将热面点火器的工作时间分割成t1、t2、…tn个时间段,选取不同的时间段分别采用电压控制或功率控制,其中选择的标准以效率高为准,哪一种方式能在更短的时间内达到预期温度则选择哪一种控制方式。而在相应的每一段工作时间段内,则分别采用电压控制或者 功率控制,控制流程如上。
作为其中一种选择方式,可以根据工作时间-温度变化曲线的斜率进行工作时间段的分隔,如连续斜率一致或变化不大的一段曲线,其所对应的时间区间设定为一个工作时间段tn。
下面提供一个将本实施例中的控制策略运用到热面点火器的实际使用过程中的实例。下述两个领域的应用实例仅供阐述本发明的实现过程,并不局限于只应用在这两个领域。
实例一:在家用或商用燃气灶具、热水器上的应用
燃气灶具或者热水器在使用时,点火到点火成功的时间过长会激起人们的焦急情绪,一般控制在5秒钟以内最佳。
但在没有时间要求的应用场合,为了保证热面点火器不过温和使用寿命,我们一般采用恒电压或恒功率的控制方式使点火器缓慢升温。
结合以上,如果想要热面点火器在燃气灶具或热水器上得到很好应用,就必须平衡两矛盾面。于是采用本实施例中的变电压控制、变功率控制、变电压加变功率混合控制三大类控制策略,可实现即保证热面点火器的使用寿命,又能缩短燃气灶具、热水器的点火时间。
图3为家用或商用燃气灶具、热水器的工作时间-温度变化曲线。是通过专用的测温实验室,使用高精密的测温仪器,并通过计算机实时监测点火器的工作曲线,以不同应用场合的要求为目的合理调整技术参数,得到最佳的时间刻度。
以图3热面点火器的工作曲线为例,若采用本实施例的控制策略,热面点火器将呈现温度A曲线,会在t3~t4之间达到最高温把可燃气体点燃。若采用普通的电压或功率控制,热面点火器可能呈现温度B曲线,在t10时刻才能点燃可燃气体,也可能呈现温度C曲线,在t5~t6时刻由于过温损坏。
采用本实施例的点火策略既能够保证在短时间内实现点火,还能够保证热面点火器的使用安全性以及使用寿命。
而发动机预热系统上的应用,对时间要求不高,但对功率或温度有所要求,这时可根据实际应用,选择使用恒电压或恒功率控制。
另外,在图4-图6中本实施例还提供热面点火器的硬件控制的电路图,当然这些电路图只是为了更好的解释本发明,并不能理解为对本发明的限制。
其中图4中示出了一种电路图,包括MCU,所述MCU具有两路输出,一路为控制信号输出,另一路为电压采集输出。
控制信号输出端连接电阻R4后连接三极管Q1的基极,所述三极管发射极接地,集电极接电阻R2,在三极管Q1的基极与发射机之间连接有电阻R5。电阻R2另一端与一场效应管S1的栅极连接,所述场效应管S1的源极与电源DC连接,所述场效应管的漏极与热面点火器的正极连接,所述热面点火器的负极接地。在所述场效应管S1的栅极与源极之间还连接有一稳压二极管D1,所述稳压二极管D1正极与场效应管S1源极连接,负极与场效应管S1栅极连接,在所述场效应管S1的栅极和源极之间还连接有一电阻R1。电压采集输出端连接电阻R7后连接电阻R3,所述电阻R3连接热面点火器负极。且在R7和R3之间设置有一支路连接R6,所述R6接地,在所述MCU与R7之间设置有一支路连接电容C1,所述C1接地。通过图4的硬件电路可实现热面点火器的电压采集与信号控制。可实现变电压或恒电压的控制。
图5示出了另一种电路图,包括PLC,所述PLC具有三路输出,一路为控制信号输出,一路为电压采集输出、另一路为电流采集输出。
控制信号输出端接电阻R3后连接三极管Q1的基极,所述三极管发射极接地,在三极管Q1的基极与发射机之间连接有电阻R5。所述三极管集电极接二极管D1负极,所述D1正极接电源VCC,在所述二极管D1正负极之间连接有一电磁开关K1的电磁,所述电磁开关K1的一端接热面点火器正极,另一端接热面点火器负极,所述热面点火器负极还经康铜丝后接地。电压采集输出端连接电阻R6后连接电阻R1,电阻R1接热面点火器正极,所述电阻R6和R1之间设一支路接电阻R2,电阻R2与热面点火器负极连接。在所述PLC与R6之间设置有一支路连接电容C1,所述C1接地。电流采集输出端连接电阻R4后连接热面点火器负极。通过图5的硬件电路可实现热面点火器的信号控制、电压采集和电流采集。通过电压和电流的采集可实现功率的采集。进一步实现对热面点火器的恒电压控制、恒功率控制、变电压控制、变功率控制或变电压变功率混合控制。
图6示出了另一种电路图,包括计算机,计算机与工控模块连接,所述工控模块具有三路输出,一路为控制信号输出,一路为电压采集输出、另一路为阻止采集输出。
控制信号输出端连接电阻R7后连接三极管Q2的基极,所述三极管发射极接地, 集电极接电阻R5,在三极管Q2的基极与发射机之间连接有电阻R8。电阻R5另一端与三极管Q1的基极连接,所述三极管Q1的发射极与电源DC连接、集电极与热面点火器的正极连接,热面点火器的负极接地,在所述三极管Q1的发射极和基极之间还连接有一电阻R4,所述三极管Q1的集电极还通过一个二极管D3接地。电压采集输出端连接电阻R10后连接电阻R6,所述电阻R6连接热面点火器正极。且在R10和R6之间设置有一支路连接电阻R9,所述电阻R9接地,在所述工控模块与R10之间设置有一支路连接电容C2,所述C2接地。阻值采集输出端顺序连接电阻R1、R3后连接热面点火器的正极。所述工控模块与电阻R1之间设置有一支路连接电容C1后接地,所述工控模块与电阻R1之间设置有另一支路连接二极管D1后接地,所述电阻R1和R3之间设置有一支路连接电阻R2和二极管D2之后连接电源VCC。通过图6的硬件电路可实现热面点火器的信号控制、电压采集和阻值采集。通过电压和阻值的采集可实现功率的采集。进一步实现对热面点火器的恒电压控制、恒功率控制、变电压控制、变功率控制或变电压变功率混合控制。

Claims (9)

  1. 一种用于热面点火器的控制策略,其特征在于:基于热面点火器的硬件电路和软件算法,将热面点火器的工作时间分隔成t1、t2、…tn个时间段,在每个时间段内通过软件算法调整硬件电路的输出电压或输出功率以使热面点火器达到预期温度。
  2. 如权利要求1所述的用于热面点火器的控制策略,其特征在于:包括以下步骤:
    步骤一,根据热面点火器的产品特性和应用场合得到满足需求的工作时间-温度变化曲线;
    步骤二,将步骤一中的热面点火器的工作时间分割成t1、t2、…tn个时间段;
    步骤三,在每一时间段内,通过软件算法控制硬件电路的输出电压或输出功率使热面点火器达到在该时间段内的温度值。
  3. 如权利要求2所述的用于热面点火器的控制策略,其特征在于:步骤三中,在每一个时间段内,均采用控制输出电压使点火器达到每一个时间段内的温度值。
  4. 如权利要求2所述的用于热面点火器的控制策略,其特征在于:步骤三中,在每一个时间段内,均采用控制输出功率使点火器达到每一个时间段内的温度值。
  5. 如权利要求2所述的用于热面点火器的控制策略,其特征在于:步骤三中,在任一个时间段内,可采用输出电压控制或输出功率控制以使点火器达到该时间段内的温度值。
  6. 如权利要求2、3或5所述的用于热面点火器的控制策略,其特征在于:步骤三中采用输入恒电压控制热面点火器的t1、t2和/或tn时间段内的温度值,包括以下流程:
    S1:软件算法系统初始化;
    S2:输入初始PWM;
    S3:调整PWM输出,控制电压;
    S4:热面点火器硬件电路的输出电压采样;
    S5:判断采样电压Ur是否等于预期电压U0,若是进入S6,若否进入S7;
    S6:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
    S7:进行PID运算,算出控制量,回到S3。
  7. 如权利要求2、4或5所述的用于热面点火器的控制策略,其特征在于:步骤三中采用输出恒功率控制热面点火器的t1、t2和/或tn时间段内的温度值,包括以下流程:
    S1:系统初始化;
    S2:输入初始PWM;
    S3:调整PWM输出,控制电压;
    S4:热面点火器硬件电路的输出电压采样;
    S5:热面点火器阻值采样或者电流采样;
    S6:按照公式P=U 2/R或者P=UI计算功率;
    S7:判断S6中的电压Pr是否等于预期电压P0,若是进入S8,若否则进入S9;
    S8:MCU的PWM控制信号是否发出,若是则回到S3,若否则结束;
    S9:进行PID运算,算出控制量,回到S3。
  8. 如权利要求7所述的热面点火器的控制策略,其特征在于:S5中进行热面点火器的阻值采样或者电流采用后,进行S10阻值判断或者电流判断,若正常则进入S6,若异常则结束。
  9. 如权利要求2、3、4、5、6、7或8所述的热面点火器的控制策略,其特征在于:热面点火器的工作时间按照所述工作时间-温度变化曲线的斜率分割成t1、t2、…tn个时间段,所述工作时间-温度变化曲线的连续斜率一致或相近的一段所对应的时间区间设定为一个时间段。
PCT/CN2020/114726 2019-10-15 2020-09-11 一种用于热面点火器的控制策略 WO2021073326A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227015784A KR102652853B1 (ko) 2019-10-15 2020-09-11 고온표면 점화기에 대한 제어전략
EP20876459.7A EP3998426A4 (en) 2019-10-15 2020-09-11 ADJUSTMENT STRATEGY FOR HOT SURFACE IGNITER
US17/761,164 US20230349554A1 (en) 2019-10-15 2020-09-11 Control strategy for hot surface igniter
JP2022518168A JP7348392B2 (ja) 2019-10-15 2020-09-11 熱面点火装置の制御方法
CA3154924A CA3154924A1 (en) 2019-10-15 2020-09-11 Control strategy for hot surface igniter
MX2022003169A MX2022003169A (es) 2019-10-15 2020-09-11 Estrategia de control para encendedor de superficie caliente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910977529.1A CN110594783B (zh) 2019-10-15 2019-10-15 一种用于热面点火器的控制策略
CN201910977529.1 2019-10-15

Publications (1)

Publication Number Publication Date
WO2021073326A1 true WO2021073326A1 (zh) 2021-04-22

Family

ID=68867350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114726 WO2021073326A1 (zh) 2019-10-15 2020-09-11 一种用于热面点火器的控制策略

Country Status (8)

Country Link
US (1) US20230349554A1 (zh)
EP (1) EP3998426A4 (zh)
JP (1) JP7348392B2 (zh)
KR (1) KR102652853B1 (zh)
CN (1) CN110594783B (zh)
CA (1) CA3154924A1 (zh)
MX (1) MX2022003169A (zh)
WO (1) WO2021073326A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594783B (zh) * 2019-10-15 2021-04-06 重庆利迈陶瓷技术有限公司 一种用于热面点火器的控制策略
CN117850507A (zh) * 2022-09-30 2024-04-09 重庆利迈科技有限公司 用于热面点火器的温度控制系统
CN117850492A (zh) * 2022-09-30 2024-04-09 重庆利迈科技有限公司 热面点火器温度控制系统及方法
CN118362217A (zh) * 2023-01-17 2024-07-19 重庆利迈科技有限公司 用于热面点火器温度控制的温度测量系统及方法
CN118363414A (zh) * 2023-01-17 2024-07-19 重庆利迈科技有限公司 基于热电阻测量的热面点火器温度控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401930A (en) * 2003-03-19 2004-11-24 Danfoss As A method and device for igniting an oil burner
CN102403928A (zh) * 2010-12-27 2012-04-04 董密 一种光伏电能优化的最大功率点跟踪控制方法及其系统
CN204346194U (zh) * 2014-11-29 2015-05-20 大同新成新材料股份有限公司 一种预设温控曲线自动控制预热炉
CN207922283U (zh) * 2017-11-03 2018-09-28 杭州老板电器股份有限公司 热面点火装置及燃气灶
CN208735665U (zh) * 2018-06-12 2019-04-12 重庆利迈陶瓷技术有限公司 一种燃烧设备的热面点火控制系统
CN110594783A (zh) * 2019-10-15 2019-12-20 重庆利迈陶瓷技术有限公司 一种用于热面点火器的控制策略

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615282A (en) * 1985-12-04 1986-10-07 Emerson Electric Co. Hot surface ignition system control module with accelerated igniter warm-up test program
US4858576A (en) * 1986-11-28 1989-08-22 Caterpillar Inc. Glow plug alternator control
US5865612A (en) * 1996-02-16 1999-02-02 Honeywell Inc. Hot surface ignitor
US5951276A (en) * 1997-05-30 1999-09-14 Jaeschke; James R. Electrically enhanced hot surface igniter
US7148454B2 (en) * 2002-03-04 2006-12-12 Saint-Gobain Ceramics & Plastics, Inc. Systems for regulating voltage to an electrical resistance igniter
US6777653B2 (en) * 2002-09-26 2004-08-17 Emerson Electric Co. Igniter controller
AU2003901309A0 (en) * 2003-03-21 2003-04-03 Technical Components Pty Ltd Hot surface re-igniter control
JP4941391B2 (ja) * 2008-04-09 2012-05-30 株式会社デンソー 発熱体制御装置
US8992211B2 (en) * 2008-06-24 2015-03-31 Robertshaw Us Holding Corp. Hot surface igniter adaptive control method
EP2454527A4 (en) * 2009-07-15 2017-12-20 Saint-Gobain Ceramics&Plastics, Inc. Fuel gas ignition system for gas burners including devices and methods related thereto
US9500386B1 (en) * 2010-04-14 2016-11-22 John Walsh Fan controller
US10281938B2 (en) * 2010-04-14 2019-05-07 Robert J. Mowris Method for a variable differential variable delay thermostat
WO2011133930A2 (en) * 2010-04-23 2011-10-27 Coorstek, Inc. Ignition system having control circut with learning capabilities and devices and methods related thereto
US8634179B2 (en) * 2010-10-16 2014-01-21 Peter Rubinshtein Hot surface re-ignition controller
CN103597292B (zh) * 2011-02-28 2016-05-18 艾默生电气公司 用于建筑物的供暖、通风和空调hvac系统的监视系统和监视方法
JP5571797B2 (ja) * 2011-04-18 2014-08-13 日本特殊陶業株式会社 グロープラグの通電制御装置
WO2011144014A1 (zh) * 2011-05-17 2011-11-24 华为技术有限公司 一种电子加热器及其控制方法
DE102012101999B4 (de) * 2012-03-09 2016-01-28 Borgwarner Ludwigsburg Gmbh Verfahren zum Betreiben einer keramischen Glühkerze
US20160348901A1 (en) * 2013-02-14 2016-12-01 Clearsign Combustion Corporation Electrically heated burner
WO2014144446A1 (en) * 2013-03-15 2014-09-18 Emerson Electric Co. Hvac system remote monitoring and diagnosis
CA3095044A1 (en) * 2018-03-27 2019-10-03 Scp Holdings, An Assumed Business Name Of Nitride Igniters, Llc. Hot surface igniters for cooktops
CN108652089A (zh) * 2018-08-07 2018-10-16 深圳市合元科技有限公司 一种电子烟控制方法及电子烟具
CN110279149B (zh) * 2019-06-11 2024-07-16 深圳市长盈精密技术股份有限公司 一种电子烟雾化器温度补偿电路及控制方法
CN110285586A (zh) * 2019-07-24 2019-09-27 深圳市享往科技有限公司 高压点火控制电路和燃气热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401930A (en) * 2003-03-19 2004-11-24 Danfoss As A method and device for igniting an oil burner
CN102403928A (zh) * 2010-12-27 2012-04-04 董密 一种光伏电能优化的最大功率点跟踪控制方法及其系统
CN204346194U (zh) * 2014-11-29 2015-05-20 大同新成新材料股份有限公司 一种预设温控曲线自动控制预热炉
CN207922283U (zh) * 2017-11-03 2018-09-28 杭州老板电器股份有限公司 热面点火装置及燃气灶
CN208735665U (zh) * 2018-06-12 2019-04-12 重庆利迈陶瓷技术有限公司 一种燃烧设备的热面点火控制系统
CN110594783A (zh) * 2019-10-15 2019-12-20 重庆利迈陶瓷技术有限公司 一种用于热面点火器的控制策略

Also Published As

Publication number Publication date
JP7348392B2 (ja) 2023-09-20
US20230349554A1 (en) 2023-11-02
EP3998426A1 (en) 2022-05-18
CN110594783A (zh) 2019-12-20
JP2022553127A (ja) 2022-12-22
KR20220079955A (ko) 2022-06-14
CA3154924A1 (en) 2021-04-22
MX2022003169A (es) 2022-05-25
CN110594783B (zh) 2021-04-06
KR102652853B1 (ko) 2024-03-28
EP3998426A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2021073326A1 (zh) 一种用于热面点火器的控制策略
CN104950953A (zh) 一种电子烟及其温度控制方法
CN112146263A (zh) 热水设备及其控制方法、电子设备
CN106658767A (zh) 孵化器恒温控制电路
CN208735665U (zh) 一种燃烧设备的热面点火控制系统
CN101520229A (zh) 中频、变频感应加热金属管产生热水、开水、蒸汽装置
CN104345749A (zh) 恒温箱自动调节控制电路
CN107656130B (zh) 一种利用交流信号检测弱直流导电特性的检测电路
CN207006358U (zh) 具有火焰检测功能的壁挂炉点火装置
CN202692156U (zh) 人工智能比例调节燃气灶
CN108398972A (zh) 基于可控硅的温度控制器
CN112146262B (zh) 热水设备及热水设备的控制方法、电子设备
CN206648314U (zh) 热水炉燃烧功率控制系统
CN204519127U (zh) 一种自恒温炒茶机
CN207069896U (zh) 火焰离子检测的供电电路及其燃气热水炉
CN207100196U (zh) 鱼缸加热器
CN203072180U (zh) 高温太阳能真空集热管排气电加热结构
CN204329336U (zh) 一种带交直流互换电源的燃气自动控温系统
CN2891566Y (zh) 一种柔性电加热器用的实时温度显示型控制器
CN203882214U (zh) 一种冬季节电控制器
CN203535513U (zh) 家用电器过度加热控制电路
CN209979079U (zh) 一种基于ntc温度传感器的过温保护模块
CN105276579A (zh) 重油燃烧器升压滤波式保护控制系统
CN110230828A (zh) 家用储能电烹炉
CN218103567U (zh) 一种电磁炉功率调节电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020876459

Country of ref document: EP

Effective date: 20220214

ENP Entry into the national phase

Ref document number: 3154924

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022518168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227015784

Country of ref document: KR

Kind code of ref document: A