WO2021073288A1 - 一种基于纳米线的μLED显示设计方法 - Google Patents

一种基于纳米线的μLED显示设计方法 Download PDF

Info

Publication number
WO2021073288A1
WO2021073288A1 PCT/CN2020/112403 CN2020112403W WO2021073288A1 WO 2021073288 A1 WO2021073288 A1 WO 2021073288A1 CN 2020112403 W CN2020112403 W CN 2020112403W WO 2021073288 A1 WO2021073288 A1 WO 2021073288A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
μled
materials
design method
substrate
Prior art date
Application number
PCT/CN2020/112403
Other languages
English (en)
French (fr)
Inventor
郭太良
江宗钊
叶芸
严群
谢洪兴
姚剑敏
Original Assignee
福州大学
闽都创新实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学, 闽都创新实验室 filed Critical 福州大学
Priority to EP20876033.0A priority Critical patent/EP4044235A4/en
Publication of WO2021073288A1 publication Critical patent/WO2021073288A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the invention relates to the field of LED design, in particular to a ⁇ LED display design method based on nanowires.
  • ⁇ LED In the field of flat panel display technology, ⁇ LED has many advantages, the most notable is its low power consumption, high brightness, ultra-high definition, high color saturation, faster response speed, longer service life and higher It can be said that ⁇ LED is a revolutionary new display technology, which is expected to replace almost all applications of TFT liquid crystal displays in the field of flat panel displays.
  • the current production process of ⁇ LED continues the traditional LED manufacturing method, and the pn junction materials are used to make pn junction materials through various thin film growth methods to limit the size to below 100um. It is inevitable that there will be lattice mismatch in the layered thin film growth process. The problem, which makes it necessary to introduce a variety of buffer layers or functional layers to solve the problem of lattice mismatch and improve the quantum conversion efficiency in the manufacturing process of the layered ⁇ LED. Therefore, the layered junction structure becomes more complicated; the production of the ⁇ LED is completed. Later, it needs to be cut into micron-sized small LED chips, and the chips are transferred to the circuit substrate by various mechanical tools.
  • the purpose of the present invention is to propose a nanowire-based ⁇ LED display design method, which can simplify the structure and improve the industrial efficiency of the ⁇ LED.
  • the present invention adopts the following scheme to achieve: a nanowire-based ⁇ LED display design method, specifically: growing different nanowire materials capable of producing red, green, and blue primary colors on a substrate, and dissolving the different nanowire materials separately in insulation After the light-curing glue of the grid cell is separately placed in different grids of the grid cell, and cured, and finally electrodes are arranged on the upper and lower surfaces of the grid cell. When the addressing signal passes through the corresponding electrode, the corresponding pixel lighting and image display can be completed.
  • Step S1 Growing nanowire materials for generating red, green, and blue light sources (MOCVD technology can be used), and performing end positive and negative charge tendency treatment, and peeling off after the growth is completed;
  • Step S2 Incorporate the nanowire materials that produce red, green and blue light sources into the light-curing glue and stir them fully (including mechanical, magnetic, or ultrasonic stirring), and evenly disperse the nanowire materials in the light-curing glue Inside, the photocurable glue-nanowire material colloid after being fully stirred is obtained;
  • Step S3 Inject the fully stirred photocurable glue-nanowire material colloid into the grid of the grid pool corresponding to the three primary colors of red, green, and blue, respectively, and perform photocuring. After photocuring, laser cutting is used. The overflow curing colloid is cut off to obtain a sub-pixel cured ⁇ LED; among them, in the process of injecting a colloidal solution mixed with red, green, and blue nanowire materials, the green and blue grid pools, red and blue grids can be sequentially The pool, the red and green grid pools are shielded, and the overflowing cured colloid is removed by laser cutting after light curing;
  • Step S4 The upper and lower surfaces of the grid cell are attached to or grow electrodes by patch electrodes, so that the electrodes that can work under alternating current conditions are in one-to-one correspondence with the corresponding sub-pixel cured ⁇ LEDs, which are cut by laser cutting The desired display size.
  • the nanowire material is a different homojunction material that can produce red, green and blue primary colors grown from bottom to top on a silicon substrate, and is homogenous, and its upper and lower ends are respectively n , P-doped, the two ends are respectively negatively charged and positively charged, and electrons and holes can be recombined at the junction center of n and p homojunctions.
  • the inner diameter of the nanowire is between 40 nm and 60 nm, and the length is between 300 nm and 400 nm, so as to provide a suitable contact area for carrier recombination in the pn junction to perform radiation transition.
  • step S1 includes the following steps:
  • Step S11 cleaning and processing the substrate; ultrasonic cleaning the sample in deionized water, ethanol and deionized water in order to remove residual contaminants on the surface, and drying with nitrogen;
  • Step S12 Put the substrate into the reaction chamber of the physical vapor deposition device, and start the vapor deposition of the nanowire buffer layer under a certain pressure of the reaction chamber and the temperature of the metal source to solve the axial loss of the substrate and the nanowires.
  • the nanowires release the stress and strain caused by the mismatch of the substrate and the nanowire material lattice in the two directions along the side and perpendicular to the junction interface during growth, and can conveniently grow the lattice in the radial or axial series. Mismatched materials; the growth of upright nanowire materials can be carried out after the growth of the buffer layer film;
  • Step S13 Put the substrate covered with the buffer layer film into the multi-chip HVPE growth system, start the low-temperature growth of nanowires under the substrate, control the nanowire material source, n, p doping gas, and reaction gas, Carrier gas and positive and negative charge treatment make the nanowires grow from bottom to top to become positively charged p-doped nanowire tips-p-doped nanowires-n-doped nanowires-negatively charged n-doped nanowire ends Head structure
  • Step S14 Cool down and take out the sample to obtain the nanowire material.
  • the nanowire growth materials are selected from different direct band gap semiconductor compounds from the III-V group.
  • the blue-emitting sub-pixels use GaN
  • the green-emitting sub-pixels use InGaN
  • the red-emitting sub-pixels uses GaAs, but it is not limited to this.
  • the light-curing glue adopts a transparent insulating material.
  • the light-curing adhesive is a colloid under room temperature and normal pressure. It has certain fluidity and can be cured at room temperature.
  • the light-curing adhesive chooses transparent insulating materials with a large dielectric constant to achieve Transparent display.
  • the light-curing adhesive material can be prepared from unsaturated polyester resin, acrylic resin, polythiol/polyene resin oligomer main component with suitable diluent monomer, photosensitizer and auxiliary materials at room temperature, after UV A transparent insulating light-curing adhesive that can be cured quickly by light.
  • the grid pool is made of transparent insulating material.
  • the grid cell is used as a place to cure the mixed solution of light-curing glue and nanowire material, and each grid is used as a red, green, and blue sub-pixel.
  • the grid cell selects a transparent insulating material with a large dielectric constant to achieve a transparent display. .
  • the electrodes are sequentially spaced as conductive electrodes of sub-pixel units of different primary colors, and the size and center position of the electrodes are precisely matched with the size and center position of the grid cell.
  • the grid in the grid pool is in the shape of a mouth, the length is between 16um-32um, the width is between 9-18um, and the depth is 9-18um.
  • the light transmittance between 380nm and 780nm is greater than or equal to 90%, and the material can be organic material, including: polyethylene (PE), polypropylene (PP), polyethylene naphthalate (PEN), Polycarbonate (PC), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), cellulose acetate butyrate (CAB), siloxane, polyvinyl chloride (PVC), polyvinyl alcohol (PVA) ), one of polyethylene terephthalate (PET), modified polyethylene terephthalate (PETG), polydimethylsiloxane (PDMS) or cycloolefin copolymer (COC) Or several; or inorganic materials, including: one or more of glass, quartz and transmissive ceramic materials.
  • the electrode uses materials that can work under alternating current conditions, including but not limited to graphene, PEDOT:PSS, metallic silver, platinum, or gold.
  • the electrode can be a patch electrode, or it can be a transparent electrode material that is subsequently grown on the ⁇ LED. Because the nanowires in the ⁇ LED are evenly distributed in the colloid under this design, the distribution of the p-terminal nanowires and the n-terminal nanowires is unknown, so it is The pn junction carrier recombines light to the greatest extent, and the electrode material is a material that can work under alternating current conditions.
  • the ⁇ LED display design of the present invention uses homogenous pn junction nanowire materials to complete the electron and hole recombination to generate radiation transitions.
  • the nanowire type pn junction has lower working voltage and lower internal quantum efficiency.
  • the growth process of the nanowires can release the stress and strain caused by the mismatch of the substrate and the nanowire material lattice along the side and perpendicular to the junction interface, which overcomes the limitation of the layered structure lattice mismatch
  • various micro-processing can be carried out during the growth process, which improves the working efficiency of the device.
  • the nanowires and the light-curing glue are dissolved together, and the solidification is completed in the sub-pixel grid pool after uniform stirring, which simplifies the structure of the layered ⁇ LED.
  • electrons and holes complete short-distance transitions through quantum tunneling in the insulating photocurable glue, and they are injected into the nanowires to make the pn junction generate radiation transitions.
  • the ends of the nanowires have a tendency to positive and negative electrons.
  • the guidance of carriers is completed, so the ⁇ LED under this structure can work under alternating current, and the required display size can be obtained by laser cutting, avoiding the problem of massive transfer, and shortening the production cycle of the ⁇ LED. Greatly improve the market competitiveness of ⁇ LED.
  • the present invention has the following beneficial effects:
  • the ⁇ LED display design method of the present invention mainly uses nanowire material pn junction carrier composite luminescence for sub-pixel lighting. Unlike ordinary traditional ⁇ LED planar growth, semiconductor nanowires can grow along the side and perpendicular to the junction interface. The stress and strain caused by the lattice mismatch between the substrate and the nanowire material are released in two directions. Therefore, semiconductor nanowires can not only be grown on a specific substrate to overcome the limitation of lattice mismatch, but also can be easily designed into various Kind of complex structure;
  • the current through the nanowire-shaped junction array is larger than that of the laminar junction, and this design reduces the operating voltage at the same time.
  • the light curing glue and the nanowires are mixed in the grid pool to form sub-pixels through light curing, so that the manufacturing process of the ⁇ LED is simple and easy to implement, and the structure is simpler.
  • the required display size can be obtained by cutting the grid by means of laser cutting, which avoids the huge transfer problem of traditional ⁇ LEDs used in the display industry.
  • FIG. 1 is a schematic cross-sectional view of a ⁇ LED display structure designed by the design method of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a nanowire according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a grid pool structure according to an embodiment of the present invention.
  • Fig. 4 is a diagram of a photocurable adhesive-nanowire mixed solution according to an embodiment of the present invention.
  • Fig. 5 is a schematic flowchart of a method according to an embodiment of the present invention.
  • 10 is a red ⁇ LED
  • 11 is a substrate
  • 12 is a buffer layer
  • 13 is a positively charged nanowire tip
  • 14 is a p-type doped nanowire material
  • 15 is a nanowire
  • 16 is an n-type doped nanowire.
  • Miscellaneous nanowire materials 17 is a negatively charged nanowire tip
  • 20 is a green ⁇ LED
  • 25 is a photocurable adhesive
  • 30 is a blue ⁇ LED
  • 40 is a grid cell
  • 50 is an electrode insulating part
  • 60 is an electrode.
  • this embodiment provides a nanowire-based ⁇ LED display design method, specifically: growing different nanowire materials that can produce red, green, and blue on a substrate, and combining different nanowire materials After being dissolved in the insulating light-curing glue, the different grids of the grid cell are respectively cured, and finally electrodes are arranged on the upper and lower surfaces of the grid cell. When the addressing signal passes through the corresponding electrode, the corresponding pixel lighting and image display can be completed.
  • the above method specifically includes the following steps:
  • Step S1 Growing nanowire materials for generating red, green, and blue light sources (MOCVD technology can be used), and performing end positive and negative charge tendency treatment, and peeling off after the growth is completed;
  • Step S2 Incorporate the nanowire materials that produce red, green and blue light sources into the light-curing glue and stir them fully (including mechanical, magnetic, or ultrasonic stirring), and evenly disperse the nanowire materials in the light-curing glue Inside, the photocurable glue-nanowire material colloid after being fully stirred is obtained;
  • Step S3 Inject the fully stirred photocurable glue-nanowire material colloid into the grid of the grid pool corresponding to the three primary colors of red, green, and blue, respectively, and perform photocuring. After photocuring, laser cutting is used. The overflow curing colloid is cut off to obtain a sub-pixel cured ⁇ LED; among them, in the process of injecting a colloidal solution mixed with red, green, and blue nanowire materials, the green and blue grid pools, red and blue grids can be sequentially The pool, the red and green grid pools are shielded, and the overflowing cured colloid is removed by laser cutting after light curing;
  • Step S4 The upper and lower surfaces of the grid cell are attached to or grow electrodes by patch electrodes, so that the electrodes that can work under alternating current conditions are in one-to-one correspondence with the corresponding sub-pixel cured ⁇ LEDs, which are cut by laser cutting The desired display size.
  • the nanowire material is a different homojunction material that can produce red, green and blue three primary colors grown from bottom to top on a silicon substrate, and the material is homogenous. They are n- and p-doped respectively, and the two end tips are respectively negatively charged and positively charged, and electrons and holes can be recombined at the junction center of the n and p homogenous junctions.
  • the inner diameter of the nanowire is between 40 nm and 60 nm, and the length is between 300 nm and 400 nm, so as to provide a suitable contact area for carrier recombination in the pn junction to perform radiation transition.
  • step S1 includes the following steps:
  • Step S11 cleaning and processing the substrate; ultrasonic cleaning the sample in deionized water, ethanol and deionized water in order to remove residual contaminants on the surface, and drying with nitrogen;
  • Step S12 Put the substrate into the reaction chamber of the physical vapor deposition device, and start the vapor deposition of the nanowire buffer layer under a certain pressure of the reaction chamber and the temperature of the metal source to solve the axial loss of the substrate and the nanowires.
  • the nanowires release the stress and strain caused by the mismatch of the substrate and the nanowire material lattice in the two directions along the side and perpendicular to the junction interface during growth, and can conveniently grow the lattice in the radial or axial series. Mismatched materials; the growth of upright nanowire materials can be carried out after the growth of the buffer layer film;
  • Step S13 Put the substrate covered with the buffer layer film into the multi-chip HVPE growth system, start the low-temperature growth of nanowires under the substrate, control the nanowire material source, n, p doping gas, and reaction gas, Carrier gas and positive and negative charge treatment make the nanowires grow from bottom to top to become positively charged p-doped nanowire tips-p-doped nanowires-n-doped nanowires-negatively charged n-doped nanowire ends Head structure
  • Step S14 Cool down and take out the sample to obtain the nanowire material.
  • the nanowire growth materials are selected from different direct band gap semiconductor compounds from the III-V group, such as GaN for blue-emitting sub-pixels, and InGaN and red for green-emitting sub-pixels.
  • the light-emitting sub-pixels use GaAs, but it is not limited to this.
  • the photocurable adhesive is made of a transparent insulating material.
  • the light-curing adhesive is a colloid under room temperature and normal pressure. It has certain fluidity and can be cured at room temperature.
  • the light-curing adhesive chooses transparent insulating materials with a large dielectric constant to achieve Transparent display.
  • the light-curing adhesive material can be prepared from unsaturated polyester resin, acrylic resin, polythiol/polyene resin oligomer main component with suitable diluent monomer, photosensitizer and auxiliary materials at room temperature, after UV A transparent insulating light-curing adhesive that can be cured quickly by light.
  • the grid pool is made of transparent insulating material.
  • the grid cell is used as a place to cure the mixed solution of light-curing glue and nanowire material, and each grid is used as a red, green, and blue sub-pixel.
  • the grid cell selects a transparent insulating material with a large dielectric constant to achieve a transparent display. .
  • the electrodes are sequentially spaced as conductive electrodes of sub-pixel units of different primary colors, and the size and center position of the electrodes are precisely matched with the size and center position of the grid cell.
  • the grid in the grid pool is in the shape of a mouth, the length is between 16um-32um, the width is between 9-18um, and the depth is 9-18um.
  • the distance between the outer walls is between 1um and 3um.
  • the light transmittance between 380nm and 780nm is greater than or equal to 90%, and the material can be organic material, including: polyethylene (PE), polypropylene (PP), polyethylene naphthalate (PEN), Polycarbonate (PC), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), cellulose acetate butyrate (CAB), siloxane, polyvinyl chloride (PVC), polyvinyl alcohol (PVA) ), one of polyethylene terephthalate (PET), modified polyethylene terephthalate (PETG), polydimethylsiloxane (PDMS) or cycloolefin copolymer (COC) Or several; or inorganic materials, including: one or more of glass, quartz and transmissive ceramic
  • the electrode uses a material that can work under alternating current conditions, including but not limited to graphene, PEDOT:PSS, metallic silver, platinum, or gold.
  • the electrode can be a patch electrode, or it can be a transparent electrode material that is subsequently grown on the ⁇ LED. Because the nanowires in the ⁇ LED are evenly distributed in the colloid under this design, the distribution of the p-terminal nanowires and the n-terminal nanowires is unknown, so it is The pn junction carrier recombines light to the greatest extent, and the electrode material is a material that can work under alternating current conditions.
  • 10 is a red ⁇ LED
  • 20 is a green ⁇ LED
  • 30 is a blue ⁇ LED
  • 40 is a grid cell
  • 50 is an electrode insulating part
  • 60 is an electrode.
  • the nanowire materials used for the red, green and blue ⁇ LED are respectively GaN, InGaN, and GaAs
  • the electrodes are of a patch type
  • the insulating part is silicon dioxide
  • the conductive part is Ag.
  • the nanowires are grown on an 11 substrate, the material of which is elemental silicon, and 12 buffer layers (the material is AlN) are sequentially grown on the silicon substrate by the MOCVD method, and 13 positively charged nanowire ends,
  • the 14p-type doped nanowire material, the 16n-type doped nanowire material, and the 17 negatively charged nanowire tip are separated by centrifugal separation after the growth of the nanowire material is completed.
  • 40 is a grid pool with a rectangular "mouth” distribution, with a thickness of 1um, and each grid is 16um long, 9um wide, and 9um deep.
  • the material is a transparent silicon dioxide insulating material. The light transmittance is greater than 90%.
  • 15 is a nanowire
  • 25 is a light-curing adhesive, which is a ⁇ V light-curing adhesive with methacrylic epoxy resin as the main body.
  • the centrifugal separated nanowires and ⁇ V glue are mechanically stirred to make carbon
  • the nanowires are uniformly dispersed in the colloid and are cured by ultraviolet to form a single-color sub-pixel ⁇ LED.
  • the ⁇ LED display design of this embodiment uses homogenous pn junction nanowire materials to complete the electron and hole recombination to generate radiation transitions.
  • the nanowire type pn junction has a lower working voltage and internal quantum efficiency. It is also higher, and the growth process of the nanowires can release the stress and strain caused by the mismatch of the substrate and the nanowire material lattice along the side and perpendicular to the junction interface, which overcomes the lattice mismatch of the layered structure.
  • various micro-processing can be performed during the growth process, which improves the working efficiency of the device.
  • the nanowires and the light-curing glue are dissolved together, and the solidification is completed in the sub-pixel grid pool after uniform stirring, which simplifies the structure of the layered ⁇ LED.
  • electrons and holes complete short-distance transitions through quantum tunneling in the insulating photocurable glue, and they are injected into the nanowires to make the pn junction generate radiation transitions.
  • the ends of the nanowires have a tendency to positive and negative electrons.
  • the guidance of carriers is completed, so the ⁇ LED under this structure can work under alternating current, and the required display size can be obtained by laser cutting, avoiding the problem of massive transfer, and shortening the production cycle of the ⁇ LED. Greatly improve the market competitiveness of ⁇ LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种基于纳米线的μLED显示设计方法,首先在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,然后将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。本发明能够简化结构,提升μLED的产业效率。

Description

一种基于纳米线的μLED显示设计方法 技术领域
本发明涉及LED设计领域,特别是一种基于纳米线的μLED显示设计方法。
背景技术
在平板显示技术领域中,μLED具备有诸多优势,最显著的是其具备低功耗、高亮度、超高清晰度、高色彩饱和度、更快的响应速度、更长的使用寿命和更高的工作效率等,可以说μLED是一种变革型的新型显示技术,有望取代TFT液晶显示器在平板显示领域内几乎所有的应用。
技术问题
当下μLED的生产工艺延续传统LED制作的方式,将用于制作pn结材料通过各类薄膜生长的方法将尺寸局限在100um以下,层状的薄膜生长过程中难以避免的会有晶格失配的问题,这使得在层状μLED的制作过程中需要引入多种缓冲层或功能层来解决晶格失配、提高量子转换效率的问题,因此,层状结结构就变得较为复杂;μLED制作完成后需要将其切割为微米尺度的小型LED芯片,通过各类机械工具将芯片转移到电路基板上,这个过程由于拥有巨量的μLED芯片需要拾取,放置和组装,因此需要耗费大量的时间。为了解决以上问题,提升μLED产业效率,简化结构,开发、设计新型的μLED成为迫切的要求。
技术解决方案
有鉴于此,本发明的目的是提出一种基于纳米线的μLED显示设计方法,能够简化结构,提升μLED的产业效率。
本发明采用以下方案实现:一种基于纳米线的μLED显示设计方法,具体为:在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。当寻址信号通过对应电极后即可完成对应像素点亮以及图像显示。
进一步地,上述方法具体包括以下步骤:
步骤S1:生长用于产生红、绿、蓝三基色光源的纳米线材料(可以利用MOCVD的工艺手法),并进行端头正负电荷倾向性处理,生长完成后进行剥离;
步骤S2:将产生红、绿、蓝三基色光源的纳米线材料分别掺入光固化胶内并充分搅拌(包括机械、或磁力、或超声搅拌),将纳米线材料均匀地分散在光固化胶内,得到充分搅拌后的光固化胶-纳米线材料胶体;
步骤S3:将充分搅拌后的光固化胶-纳米线材料胶体分别对应注入对应红、绿、蓝三基色子像素的栅格池的栅格之内并进行光固化,光固化后利用激光切割的方式将溢出的固化胶体切除,得到子像素固化的μLED;其中,在注入红、绿、蓝纳米线材料混杂的胶体溶液的过程中,可依次将绿、蓝栅格池,红、蓝栅格池,红、绿栅格池进行遮挡,光固化后利用激光切割的方式将溢出的固化胶体切除;
步骤S4:在栅格池的上、下表面通过贴片电极贴合或生长电极的方法,使能够在交流电条件下工作的电极与对应子像素固化的μLED一一对应,利用激光切割的方式切取需要的显示尺寸。
进一步地,所述纳米线材料为在硅衬底上自下而上生长的能够产生红绿蓝三基色的不同的同质结材料,且同质结纳,其上、下两端分别为n、p掺杂,两个端顶分别呈负电倾向性和正电倾向性,在n、p同质结交界中心能够产生电子、空穴复合。
进一步地,所述纳米线的内径在40nm到60nm之间,长度在300nm到400nm之间,以提供合适的接触面积使pn结发生载流子复合进而进行辐射跃迁。
进一步地,步骤S1包括以下步骤:
步骤S11:对衬底进行清洗和处理;将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干;
步骤S12:将衬底放入物理气相沉积装置反应腔内,在一定反应腔体压力和金属源温度下,开始纳米线缓冲层的蒸镀,以解决衬底与纳米线在轴方向上的失配,纳米线在生长时沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,能够方便地在径向或轴向串接生长晶格失配的材料;经过缓冲层薄膜生长后可以进行直立纳米线材料的生长;
步骤S13:将覆有缓冲层薄膜的衬底放入多片式HVPE生长系统中,以衬底为下,开始低温生长纳米线,控制纳米线材料源、n、p掺杂气体,反应气体,载气以及正负电倾向处理使得纳米线自下而上生长成为正电倾向性p掺杂纳米线端头-p掺杂纳米线-n掺杂纳米线-负电倾向性n掺杂纳米线端头结构;
步骤S14:降温取出样品,即获得纳米线材料。
进一步地,对于不同基色的子像素,纳米线生长材料选择来自III-V族的不同直接带隙半导体化合物,如蓝光发光的子像素选用GaN、绿光发光的子像素选用InGaN、红光发光的子像素选用GaAs,但不限于此。
进一步地,所述光固化胶采用透明绝缘材料。光固化胶作为红、绿、蓝子像素不同纳米线材料的载体,室温常压下呈胶体,具有一定的流动性,能够室温固化,光固化胶选择介电常数较大的透明绝缘材料以实现透明显示。
其中,光固化胶材料可由不饱和聚酯树脂、丙烯酸系树脂、多硫醇/多烯树脂的齐聚物主成分搭配合适的稀释剂单体,光敏剂和助剂材料制备室温下,经过紫外光就可快速固化的透明绝缘光固化胶。
进一步地,所述栅格池采用透明绝缘材料。栅格池作为光固化胶、纳米线材料混合溶液固化的场所,同时每一个栅格作为一个红、绿、蓝子像素点,栅格池选择介电常数较大的透明绝缘材料以实现透明显示。
其中,所述电极依次间隔设置为不同基色的子像素单元的导电电极,电极尺寸、中心位置与栅格池尺寸、中心位置精确匹配。
进一步地,所述栅格池中的栅格为口字形,长度在16um-32um之间,宽度在9-18um之间,深度为9-18um。对波长在380nm至780nm之间的光线透过率大于等于90%,材料可以为有机材料,包括:聚乙烯(PE)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚丙烯酸甲酯(PMA)、聚甲基丙烯酸甲酯(PMMA)、醋酸丁酸纤维素(CAB)、硅氧烷、聚氯乙烯(PVC)、聚乙烯醇(PVA)、聚对苯二甲酸乙二酯(PET)、改性聚对苯二甲酸乙二酯(PETG)、聚二甲基硅氧烷(PDMS)或环烯共聚物(COC)中的一种或几种;或无机材料,包括:玻璃、石英和透射陶瓷材料中的一种或几种。
进一步地,所述电极采用能够在交流电条件下工作的材料,包括但不限于石墨烯、PEDOT:PSS、金属银、铂或金。其中,电极可以是贴片电极,也可以是在μLED上后续生长的透明电极材料,由于该设计下μLED内纳米线均匀分布在胶体内,p端纳米线和n端纳米线分布未知,故为最大程度使pn结载流子复合发光,电极材料为能够在交流电条件下工作的材料。
综上,本发明的μLED显示设计利用同质pn结纳米线材料完成电子、空穴复合产生辐射跃迁,与层状结结构相比较,纳米线型pn结的工作电压更低、内量子效率也更高,而且纳米线的生长过程可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,克服了层状结构晶格失配的限制,同时在生长过程中可以进行各种微处理,提高了器件的工作效率。将纳米线与光固化胶相溶,通过均匀搅拌后在子像素栅格池内完成固化简化了层状μLED的结构。当子像素被选中时,电子、空穴在绝缘光固化胶内通过量子隧穿完成短距离的跃迁,注入纳米线内使pn结产生辐射跃迁,纳米线端头具有正负电子倾向性,可以完成载流子的导向,因此该结构下的μLED可在交流电状态下工作,且通过激光切割的方式就可获得所需要的显示尺寸,规避了巨量转移的问题,缩短了μLED的制作周期,大大提高了μLED的市场竞争力。
有益效果
与现有技术相比,本发明有以下有益效果:
1、本发明的μLED显示设计方法主要利用纳米线材料pn结载流子复合发光进行子像素点亮,与普通传统μLED平面生长不同,半导体纳米线在生长时可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,因此半导体纳米线不仅可以在特定衬底上生长出来克服晶格失配的限制,还可以很方便的设计成各种复杂的结构;
2、通过纳米线形状的结阵列的电流比层状结的电流大,该种设计同时减小了工作电压。光固化胶与纳米线混杂在栅格池内通过光固化形成子像素点使得μLED的制作工艺简单易实现、结构更为简单。
3、本发明通过激光切割的方式对栅格进行切割就可以获得所需要的显示尺寸,避免了传统μLED用于显示行业的巨量转移问题。
附图说明
图1为本发明实施例设计方法所设计的μLED显示结构截面示意图。
图2为本发明实施例的纳米线的截面结构示意图。
图3为本发明实施例的栅格池结构示意图。
图4为本发明实施例的光固化胶-纳米线混合溶液图。
图5为本发明实施例的方法流程示意图。
图中,10为红色μLED,11为衬底,12为缓冲层,13为正电倾向性纳米线端头,14是p型掺杂的纳米线材料,15为纳米线,16是n型掺杂的纳米线材料,17是负电倾向性纳米线端头,20为绿色μLED,25为光固化胶,30为蓝色μLED,40是栅格池,50电极绝缘部分,60为电极。
本发明的实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
如图5所示,本实施例提供了一种基于纳米线的μLED显示设计方法,具体为:在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。当寻址信号通过对应电极后即可完成对应像素点亮以及图像显示。
在本实施例中,上述方法具体包括以下步骤:
步骤S1:生长用于产生红、绿、蓝三基色光源的纳米线材料(可以利用MOCVD的工艺手法),并进行端头正负电荷倾向性处理,生长完成后进行剥离;
步骤S2:将产生红、绿、蓝三基色光源的纳米线材料分别掺入光固化胶内并充分搅拌(包括机械、或磁力、或超声搅拌),将纳米线材料均匀地分散在光固化胶内,得到充分搅拌后的光固化胶-纳米线材料胶体;
步骤S3:将充分搅拌后的光固化胶-纳米线材料胶体分别对应注入对应红、绿、蓝三基色子像素的栅格池的栅格之内并进行光固化,光固化后利用激光切割的方式将溢出的固化胶体切除,得到子像素固化的μLED;其中,在注入红、绿、蓝纳米线材料混杂的胶体溶液的过程中,可依次将绿、蓝栅格池,红、蓝栅格池,红、绿栅格池进行遮挡,光固化后利用激光切割的方式将溢出的固化胶体切除;
步骤S4:在栅格池的上、下表面通过贴片电极贴合或生长电极的方法,使能够在交流电条件下工作的电极与对应子像素固化的μLED一一对应,利用激光切割的方式切取需要的显示尺寸。
在本实施例中,所述纳米线材料为在硅衬底上自下而上生长的能够产生红绿蓝三基色的不同的同质结材料,且同质结纳,其上、下两端分别为n、p掺杂,两个端顶分别呈负电倾向性和正电倾向性,在n、p同质结交界中心能够产生电子、空穴复合。
在本实施例中,所述纳米线的内径在40nm到60nm之间,长度在300nm到400nm之间,以提供合适的接触面积使pn结发生载流子复合进而进行辐射跃迁。
在本实施例中,步骤S1包括以下步骤:
步骤S11:对衬底进行清洗和处理;将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干;
步骤S12:将衬底放入物理气相沉积装置反应腔内,在一定反应腔体压力和金属源温度下,开始纳米线缓冲层的蒸镀,以解决衬底与纳米线在轴方向上的失配,纳米线在生长时沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,能够方便地在径向或轴向串接生长晶格失配的材料;经过缓冲层薄膜生长后可以进行直立纳米线材料的生长;
步骤S13:将覆有缓冲层薄膜的衬底放入多片式HVPE生长系统中,以衬底为下,开始低温生长纳米线,控制纳米线材料源、n、p掺杂气体,反应气体,载气以及正负电倾向处理使得纳米线自下而上生长成为正电倾向性p掺杂纳米线端头-p掺杂纳米线-n掺杂纳米线-负电倾向性n掺杂纳米线端头结构;
步骤S14:降温取出样品,即获得纳米线材料。
在本实施例中,对于不同基色的子像素,纳米线生长材料选择来自III-V族的不同直接带隙半导体化合物,如蓝光发光的子像素选用GaN、绿光发光的子像素选用InGaN、红光发光的子像素选用GaAs,但不限于此。
在本实施例中,所述光固化胶采用透明绝缘材料。光固化胶作为红、绿、蓝子像素不同纳米线材料的载体,室温常压下呈胶体,具有一定的流动性,能够室温固化,光固化胶选择介电常数较大的透明绝缘材料以实现透明显示。
其中,光固化胶材料可由不饱和聚酯树脂、丙烯酸系树脂、多硫醇/多烯树脂的齐聚物主成分搭配合适的稀释剂单体,光敏剂和助剂材料制备室温下,经过紫外光就可快速固化的透明绝缘光固化胶。
在本实施例中,所述栅格池采用透明绝缘材料。栅格池作为光固化胶、纳米线材料混合溶液固化的场所,同时每一个栅格作为一个红、绿、蓝子像素点,栅格池选择介电常数较大的透明绝缘材料以实现透明显示。
其中,所述电极依次间隔设置为不同基色的子像素单元的导电电极,电极尺寸、中心位置与栅格池尺寸、中心位置精确匹配。
在本实施例中,所述栅格池中的栅格为口字形,长度在16um-32um之间,宽度在9-18um之间,深度为9-18um,其中栅格壁与栅格池的外壁之间的距离在1um到3um之间。对波长在380nm至780nm之间的光线透过率大于等于90%,材料可以为有机材料,包括:聚乙烯(PE)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚丙烯酸甲酯(PMA)、聚甲基丙烯酸甲酯(PMMA)、醋酸丁酸纤维素(CAB)、硅氧烷、聚氯乙烯(PVC)、聚乙烯醇(PVA)、聚对苯二甲酸乙二酯(PET)、改性聚对苯二甲酸乙二酯(PETG)、聚二甲基硅氧烷(PDMS)或环烯共聚物(COC)中的一种或几种;或无机材料,包括:玻璃、石英和透射陶瓷材料中的一种或几种。
在本实施例中,所述电极采用能够在交流电条件下工作的材料,包括但不限于石墨烯、PEDOT:PSS、金属银、铂或金。其中,电极可以是贴片电极,也可以是在μLED上后续生长的透明电极材料,由于该设计下μLED内纳米线均匀分布在胶体内,p端纳米线和n端纳米线分布未知,故为最大程度使pn结载流子复合发光,电极材料为能够在交流电条件下工作的材料。
如图1所示,10为红色μLED,20为绿色μLED,30为蓝色μLED,40是栅格池,50电极绝缘部分,60为电极。用于红绿蓝三色的μLED的纳米线材料分别为GaN、InGaN、GaAs,电极采用贴片式,绝缘部分为二氧化硅,导电部分为Ag。如图2,纳米线的生长在11衬底上,其材质为单质硅,在硅衬底上利用MOCVD方法依次生长12缓冲层(其材料为AlN),13正电倾向性纳米线端头,14p型掺杂的纳米线材料,16n型掺杂的纳米线材料,17负电倾向性纳米线端头,在纳米线材料生长完成后通过离心剥离。如图3所示,40是栅格池,呈矩形“口”字分布,厚度为1um,且每个栅格长16um,宽9um,深度也为9um,材料为透明的二氧化硅绝缘材料,光线透过率大于90%。如图4所示,15是纳米线,25为光固化胶,其为甲基丙烯酸环氧树脂为主体的μV光固化胶粘剂,将离心分离的的纳米线与μV胶通过机械搅拌的方式使得碳纳米线均匀的分散在胶体内,通过紫外固化形成单基色的子像素μLED。
综上,本实施例的μLED显示设计利用同质pn结纳米线材料完成电子、空穴复合产生辐射跃迁,与层状结结构相比较,纳米线型pn结的工作电压更低、内量子效率也更高,而且纳米线的生长过程可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,克服了层状结构晶格失配的限制,同时在生长过程中可以进行各种微处理,提高了器件的工作效率。将纳米线与光固化胶相溶,通过均匀搅拌后在子像素栅格池内完成固化简化了层状μLED的结构。当子像素被选中时,电子、空穴在绝缘光固化胶内通过量子隧穿完成短距离的跃迁,注入纳米线内使pn结产生辐射跃迁,纳米线端头具有正负电子倾向性,可以完成载流子的导向,因此该结构下的μLED可在交流电状态下工作,且通过激光切割的方式就可获得所需要的显示尺寸,规避了巨量转移的问题,缩短了μLED的制作周期,大大提高了μLED的市场竞争力。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种基于纳米线的μLED显示设计方法,其特征在于,在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。
  2. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,具体包括以下步骤:
    步骤S1:生长用于产生红、绿、蓝三基色光源的纳米线材料;
    步骤S2:将产生红、绿、蓝三基色光源的纳米线材料分别掺入光固化胶内并充分搅拌,将纳米线材料均匀地分散在光固化胶内,得到充分搅拌后的光固化胶-纳米线材料胶体;
    步骤S3:将充分搅拌后的光固化胶-纳米线材料胶体分别对应注入对应红、绿、蓝三基色子像素的栅格池的栅格之内并进行光固化,光固化后利用激光切割的方式将溢出的固化胶体切除,得到子像素固化的μLED;
    步骤S4:在栅格池的上、下表面通过贴片电极贴合或生长电极的方法,使能够在交流电条件下工作的电极与对应子像素固化的μLED一一对应,利用激光切割的方式切取需要的显示尺寸。
  3. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述纳米线材料为同质结纳,其上、下两端分别为n、p掺杂,两个端顶分别呈负电倾向性和正电倾向性,在n、p同质结交界中心能够产生电子、空穴复合。
  4. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述纳米线的内径在40nm到60nm之间,长度在300nm到400nm之间。
  5. 根据权利要求2所述的一种基于纳米线的μLED显示设计方法,其特征在于,步骤S1包括以下步骤:
    步骤S11:对衬底进行清洗和处理;
    步骤S12:将衬底放入物理气相沉积装置反应腔内,并开始纳米线缓冲层的蒸镀,以解决衬底与纳米线在轴方向上的失配,纳米线在生长时沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,能够方便地在径向或轴向串接生长晶格失配的材料;
    步骤S13:将覆有缓冲层薄膜的衬底放入多片式HVPE生长系统中,以衬底为下,开始低温生长纳米线,使得纳米线自下而上生长成为正电倾向性p掺杂纳米线端头-p掺杂纳米线-n掺杂纳米线-负电倾向性n掺杂纳米线端头结构;
    步骤S14:降温取出样品,即获得纳米线材料。
  6. 根据权利要求5所述的一种基于纳米线的μLED显示设计方法,其特征在于,对于不同基色的子像素,纳米线生长材料选择来自III-V族的不同直接带隙半导体化合物。
  7. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述光固化胶采用透明绝缘材料。
  8. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述栅格池采用透明绝缘材料。
  9. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述栅格池中的栅格为口字形,长度在16um-32um之间,宽度在9-18um之间,深度为9-18um。
  10. 根据权利要求1所述的一种基于纳米线的μLED显示设计方法,其特征在于,所述电极采用能够在交流电条件下工作的材料,包括但不限于石墨烯、PEDOT:PSS、金属银、铂或金。
PCT/CN2020/112403 2019-10-16 2020-08-31 一种基于纳米线的μLED显示设计方法 WO2021073288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20876033.0A EP4044235A4 (en) 2019-10-16 2020-08-31 NANOWIRE-BASED LED DISPLAY DESIGN METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910984749.7A CN110676283B (zh) 2019-10-16 2019-10-16 一种基于纳米线的μLED显示设计方法
CN201910984749.7 2019-10-16

Publications (1)

Publication Number Publication Date
WO2021073288A1 true WO2021073288A1 (zh) 2021-04-22

Family

ID=69082731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112403 WO2021073288A1 (zh) 2019-10-16 2020-08-31 一种基于纳米线的μLED显示设计方法

Country Status (3)

Country Link
EP (1) EP4044235A4 (zh)
CN (1) CN110676283B (zh)
WO (1) WO2021073288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676283B (zh) * 2019-10-16 2022-03-25 福州大学 一种基于纳米线的μLED显示设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453884A (zh) * 2002-04-25 2003-11-05 诠兴开发科技股份有限公司 纳米线发光元件及显示装置
US20080001161A1 (en) * 2006-06-28 2008-01-03 Kobayashi Nobuhiko P Utilizing nanowire for generating white light
CN102081194A (zh) * 2010-11-05 2011-06-01 中山大学 一种实现微纳全光彩色的方法
CN103168360A (zh) * 2010-10-22 2013-06-19 立那工业股份有限公司 垂直定向的半导体纳米线的光吸收和过滤特性
CN104916746A (zh) * 2014-03-13 2015-09-16 勒克斯维科技公司 具有嵌入纳米线led的led器件
CN108630717A (zh) * 2017-03-15 2018-10-09 格罗方德半导体股份有限公司 微led显示组件
CN110676283A (zh) * 2019-10-16 2020-01-10 福州大学 一种基于纳米线的μLED显示设计方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772249B1 (en) * 1995-11-06 2006-05-03 Nichia Corporation Nitride semiconductor device
JP4279738B2 (ja) * 2004-07-22 2009-06-17 リンテック株式会社 紫外線照射装置
KR100647288B1 (ko) * 2004-09-13 2006-11-23 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
CN102324462B (zh) * 2006-10-12 2015-07-01 凯博瑞奥斯技术公司 基于纳米线的透明导体及其应用
WO2010062644A2 (en) * 2008-10-28 2010-06-03 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
US8367462B2 (en) * 2010-04-21 2013-02-05 Georgia Tech Research Corporation Large-scale fabrication of vertically aligned ZnO nanowire arrays
JP5981426B2 (ja) * 2010-06-24 2016-08-31 グロ アーベーGlo Ab 配向されたナノワイヤー成長用のバッファ層を有する基板
CN104576903A (zh) * 2013-10-10 2015-04-29 展晶科技(深圳)有限公司 发光二极管封装结构的制造方法
JP2016152398A (ja) * 2015-02-19 2016-08-22 株式会社エルム 発光装置およびそれに用いられる蛍光体層の作成方法
US10347798B2 (en) * 2015-06-01 2019-07-09 Intematix Corporation Photoluminescence material coating of LED chips
KR102524805B1 (ko) * 2016-02-12 2023-04-25 삼성전자주식회사 광원 모듈, 디스플레이 패널 및 이를 구비한 디스플레이 장치
US10439101B2 (en) * 2017-08-18 2019-10-08 Intel Corporation Micro light-emitting diode (LED) elements and display
CN108878602B (zh) * 2018-06-29 2020-05-19 武汉大学 一种三基色垂直结构微型led芯片制造与转印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1453884A (zh) * 2002-04-25 2003-11-05 诠兴开发科技股份有限公司 纳米线发光元件及显示装置
US20080001161A1 (en) * 2006-06-28 2008-01-03 Kobayashi Nobuhiko P Utilizing nanowire for generating white light
CN103168360A (zh) * 2010-10-22 2013-06-19 立那工业股份有限公司 垂直定向的半导体纳米线的光吸收和过滤特性
CN102081194A (zh) * 2010-11-05 2011-06-01 中山大学 一种实现微纳全光彩色的方法
CN104916746A (zh) * 2014-03-13 2015-09-16 勒克斯维科技公司 具有嵌入纳米线led的led器件
CN108630717A (zh) * 2017-03-15 2018-10-09 格罗方德半导体股份有限公司 微led显示组件
CN110676283A (zh) * 2019-10-16 2020-01-10 福州大学 一种基于纳米线的μLED显示设计方法

Also Published As

Publication number Publication date
CN110676283B (zh) 2022-03-25
CN110676283A (zh) 2020-01-10
EP4044235A4 (en) 2022-11-30
EP4044235A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
Zhou et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display
Kishino et al. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display
Wang et al. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display
Ma et al. Progress in Color Conversion Technology for Micro‐LED
Horng et al. Fabrication and study on red light micro-LED displays
Zhao et al. 2000 PPI silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off
US20240297282A1 (en) uLED LIGHT-EMITTING AND DISPLAY DEVICE WITHOUT ELECTRICAL CONTACT, EXTERNAL CARRIER INJECTION AND MASS TRANSFER AND PREPARATION METHOD THEREOF
CN110112148A (zh) 发光二极管模组及其制造方法、显示装置
TWI523267B (zh) 發光二極體陣列的製作方法以及發光二極體顯示裝置的製作方法
CN110311053A (zh) 显示面板及其制造方法
WO2021073288A1 (zh) 一种基于纳米线的μLED显示设计方法
CN106992232A (zh) 无衬底GaN基LED单颗晶粒及其制备方法
CN110265587A (zh) 显示面板及其制造方法
CN113629095A (zh) 发光显示装置以及发光显示装置的制作方法
Xu et al. ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low work voltage and high light extraction
EP4044263A1 (en) SINGLE-END ELECTRICAL CONTACTING AND SINGLE-END CHARGE CARRIER INJECTING µLED LIGHT-EMITTING AND DISPLAY DEVICE AND PREPARATION METHOD THEREFOR
Lee et al. Micro-LED Technology for Display Applications
CN103296046B (zh) 一种led发光器件
Tang et al. The flexible LED fabrication by transferring epitaxial film onto PET
CN110323312B (zh) 一种无机柔性光电子器件结构及其制备方法
CN105047783B (zh) 一种氮化物半导体发光器件及其制备方法
CN101916817B (zh) 发光二极管芯片的制备方法
CN110931520B (zh) 一种Micro-LED制备方法
CN202111149U (zh) 氮化物发光二极管结构
CN102738315A (zh) 一种氮化物发光二极管结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768490

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020876033

Country of ref document: EP

Effective date: 20220513