WO2021072738A1 - 触觉反馈模组、触摸屏、键盘和电子装置 - Google Patents

触觉反馈模组、触摸屏、键盘和电子装置 Download PDF

Info

Publication number
WO2021072738A1
WO2021072738A1 PCT/CN2019/111933 CN2019111933W WO2021072738A1 WO 2021072738 A1 WO2021072738 A1 WO 2021072738A1 CN 2019111933 W CN2019111933 W CN 2019111933W WO 2021072738 A1 WO2021072738 A1 WO 2021072738A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile feedback
feedback module
porous elastic
elastic layer
layer
Prior art date
Application number
PCT/CN2019/111933
Other languages
English (en)
French (fr)
Inventor
高菁
孟锴
Original Assignee
南昌欧菲显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲显示科技有限公司 filed Critical 南昌欧菲显示科技有限公司
Priority to PCT/CN2019/111933 priority Critical patent/WO2021072738A1/zh
Publication of WO2021072738A1 publication Critical patent/WO2021072738A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • This application relates to the field of touch technology, and in particular to a tactile feedback module, a touch screen, a keyboard, and an electronic device.
  • the touch feedback effect of each key is the same, and people generally can only determine whether the input action is completed by watching the input content. If the tactile feedback effect of the keys can be increased, on the one hand, the user can judge whether the input action is completed only by the tactile feedback effect of the keys, and on the other hand, the interaction performance between the user and the keyboard can be improved. For example, if the user can obtain different tactile feedback effects when touching and pressing different keys on the touch panel, the user experience can be effectively improved.
  • the touch screen or keyboard can bring tactile feedback to the user, it is generally necessary to put in sound-related parts to produce sound, or put in a vibration motor to produce vibration.
  • the existing touch screens or keyboards are developing in the direction of lightweight, portability, and simplicity. Adding too many parts will not only increase the volume and weight of the product, but also increase the difficulty of product design and improve Product defect rate; in addition, adding energy-consuming components means increasing energy consumption, which is not conducive to the energy-saving design of electronic products.
  • a tactile feedback module a touch screen, a keyboard, and an electronic device are provided.
  • a tactile feedback module characterized in that it comprises:
  • At least two elastic force control elements superimposed on each other the elastic force control element comprising a conductive electrode layer and a porous elastic layer superimposed on each other;
  • the conductive electrode layer of one elastic force control element of the adjacent elastic force control elements is adjacent to the porous elastic layer of the other elastic force control element;
  • the porous elastic layer By applying voltage signals of different polarities to the conductive electrode layers in the adjacent elastic force control elements, when the tactile feedback module senses the touch pressure, the porous elastic layer generates vibration feedback under the action of the electric field force. .
  • a touch screen including any one of the tactile feedback modules described in the embodiments of the present application, is used to generate vibration feedback from the porous elastic layer under the action of an electric field when the touch screen senses a touch pressure.
  • a keyboard includes the tactile feedback module according to any one of the embodiments of the present application, the tactile feedback module is used for keys, and when the keys sense a touch pressure, the porous elastic layer Vibration feedback is generated under the action of
  • An electronic device including any one of the tactile feedback modules described in the embodiments of the present application, is used to generate vibration feedback by the porous elastic layer under the action of electric field force when the touch pressure is sensed by the touch screen.
  • the above-mentioned tactile feedback module is provided with a plurality of elastic force control elements superimposed on each other, and each elastic force control element includes a conductive electrode layer and a porous elastic layer superimposed on each other; wherein, between adjacent conductive electrode layers and the porous elastic layer They are superimposed on each other, and a porous elastic layer is included between adjacent conductive electrode layers.
  • the porous elastic layer Since the porous elastic layer is increased in porosity, the elastic modulus of the porous elastic layer is reduced, so that it can easily undergo elastic deformation under force, thus reducing the voltage required for the deformation of the porous elastic layer; Large deformation vibration can be generated under a small touch pressure. Different porous elastic layers vibrate at the same time, which can produce a resonance effect, which improves the sensitivity of the tactile feedback module to touch pressure sensing, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • FIG. 1 is a schematic structural diagram of a tactile feedback module provided in an embodiment of the application.
  • Fig. 2 is a schematic structural diagram of a porous elastic layer provided in an embodiment of the application.
  • FIG. 3 is a schematic diagram of a driving voltage of a tactile feedback module provided in an embodiment of the application.
  • Fig. 4 is a schematic structural diagram of a keyboard provided in an embodiment of the application.
  • a tactile feedback module which includes at least two elastic force control elements superimposed on each other, and each elastic force control element includes a conductive electrode layer and a porous elastic layer superimposed on each other; Adjacent conductive electrode layers and porous elastic layers are superimposed on each other, and adjacent conductive electrode layers include a porous elastic layer.
  • each elastic force control element includes a conductive electrode layer and a porous elastic layer that are overlapped with each other; wherein, adjacent conductive electrode layers and porous elastic layers are overlapped with each other, A porous elastic layer is included between adjacent conductive electrode layers.
  • the porous elastic layer Since the porous elastic layer is increased with porosity, the elastic modulus of the porous elastic layer is reduced, so that it can easily deform elastically under force, so the voltage required for the deformation of the porous elastic layer is reduced; Large deformation and vibration can be generated under a small touch pressure.
  • the vibration effects in different porous elastic layers are superimposed on each other, which can generate resonance effects and improve the sensitivity of the tactile feedback module to touch pressure sensing, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • the shape of the holes in the porous elastic layer is at least one of a spherical shape, a columnar shape, a dot shape, or a linear shape; the thickness of the porous elastic layer may be It is 10 ⁇ m-100 ⁇ m; the thickness of the conductive electrode layer may be 0.1 ⁇ m-10 ⁇ m.
  • voltage signals of different polarities are respectively applied to the conductive electrode layers in two adjacent elastic force control elements to generate electric field force on the porous elastic layer between the adjacent conductive electrode layers.
  • the tactile feedback module senses the touch
  • the porous elastic layer vibrates under the action of the electric field force, so that the user of the touch-press vibration feedback module feels the effect of the vibration feedback.
  • the tactile feedback module in the above-mentioned embodiment is formed by overlapping 40 elastic control elements, wherein adjacent conductive electrode layers and porous elastic layers are overlapped with each other, and adjacent conductive electrode layers are overlapped with each other.
  • the porous elastic layer is used for when the touch feedback module senses a touch, the porous elastic layer generates vibration under the action of the electric field force, so that the vibration is fed back to the user who touches the touch feedback module.
  • the porous elastic layer can be printed or directly coated on the surface of a large screen or steel plate.
  • the thickness of the porous elastic layer is 10 ⁇ m-100 ⁇ m, and the thickness of the porous elastic layer is printed or sprayed on the surface of the porous elastic layer. 0.1 ⁇ m-10 ⁇ m conductive electrode layer to make an elastic force control element.
  • each elastic force control element includes a conductive electrode layer and a porous elastic layer that are superimposed on each other; wherein, one of the elastic force control elements of adjacent elastic force control elements
  • the conductive electrode layer of the element is adjacent to the porous elastic layer of another elastic force control element.
  • the porous elastic layer is increased with porosity, the elastic modulus of the porous elastic layer is reduced, so that it can easily deform elastically under force, so the voltage required for the deformation of the porous elastic layer is reduced; Large deformation and vibration can be generated under a small touch pressure.
  • the sensitivity of the tactile feedback module to the touch pressure sensing is improved, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • the vibration effects in different porous elastic layers are superimposed on each other to generate a resonance effect to enhance the touch feedback effect felt by the user of the tactile feedback module.
  • the thickness of the tactile feedback module including 40 elastic control elements superimposed on each other can meet the requirements of general electronic products for the thickness of the tactile feedback module.
  • the porous elastic layer may include an elastic material layer and a substrate that are superimposed on each other, and the substrate is used to support the elastic material layer.
  • a porous elastic layer with a thickness of 10 ⁇ m-100 ⁇ m can be directly coated on the surface of the substrate, and then a conductive electrode layer with a thickness of 0.1 ⁇ m-10 ⁇ m can be printed or sprayed on the surface of the porous elastic layer to make an elasticity control element .
  • the substrate may be polyimide (PI), polyethylene terephthalate (Polyethylene Terephalate, PET), polyethylene naphthalate (Polyethylene Naphthalate, PEN) and other flexible materials.
  • the material used for the elastic material layer can be at least one of silicone rubber, acrylate elastomer, polyurethane elastomer, nitrile rubber, vinylidene fluorinated trifluoroethylene, and their corresponding organic-inorganic, organic-organic composite materials, etc. kind.
  • a touch screen device including any of the tactile feedback modules provided in the embodiments of the present application, for when the touch screen senses a touch, the porous elastic layer Vibration is generated under the action of, and the vibration is fed back to the user who touches the touch screen.
  • the conductive electrode layer may be composed of an electrode array.
  • the electrode array of the conductive electrode layer may be composed of a plurality of mutually independent strip electrodes, or a plurality of chains connected with a plurality of electrode blocks, or mutually independent block electrodes.
  • the orthographic projection of the electrode arrays of the adjacent conductive electrode layers in the horizontal two-dimensional plane has a certain area of intersection area, thereby forming several elastic control areas.
  • the elastic material layer is macroscopically optically transparent, allowing light to pass through, and on the premise that it does not interfere with the display of the content of the tactile feedback module, "transparent” can be understood in this application as “Transparent” and “Basically Transparent”.
  • transparent can be understood in this application as “Transparent” and “Basically Transparent”.
  • the deformable material layer is made of silica gel, rubber, acrylic glue, sol, etc.
  • the conductive electrode layer constituting the elasticity control element can be made of transparent conductive materials, such as ITO, ZnO, carbon nanotubes, graphene, etc.; it can also be made of non-transparent conductive materials.
  • transparent conductive materials such as ITO, ZnO, carbon nanotubes, graphene, etc.
  • non-transparent conductive materials By controlling the size of the conductive material, the human eyes can observe the display content of the tactile feedback module without being affected by these conductive electrode layers.
  • the aforementioned conductive material can be selected from conductive materials such as silver paste, carbon paste, nano silver wire, PEDOT, carbon nanotube, and graphene conductive material.
  • a keyboard including any of the tactile feedback modules described in the embodiments of the present application, the tactile feedback module is used for keys, and when the keys are touched, The porous elastic layer generates vibration under the action of the electric field force, so that the vibration is fed back to the user who touches the button.
  • a tactile feedback module which includes a plurality of elastic force control elements superimposed on each other; each elastic force control element includes a conductive electrode layer 10 and a conductive electrode layer 10 superimposed on each other.
  • Porous elastic layer 20 wherein the conductive electrode layer 10 of one elastic force control element of the adjacent elastic force control element is adjacent to the porous elastic layer 20 of the other elastic force control element, so that between any two adjacent conductive electrode layers 10 The porous elastic layer 20 is included.
  • the porous elastic layer 20 By applying voltage signals of different polarities to adjacent conductive electrode layers 10, when the tactile feedback module senses a touch, the porous elastic layer 20 generates vibration feedback under the action of the electric field force, thereby causing the vibration to be fed back to The user of the tactile feedback module.
  • the plurality of micropores in the porous elastic layer 20 can be arranged in a uniform or non-uniform arrangement.
  • the shape of the holes in the porous elastic layer is spherical, columnar, dotted or linear.
  • the thickness of the porous elastic layer may be 10 ⁇ m-100 ⁇ m.
  • the porous structure of the porous elastic layer can be obtained by chemical foaming.
  • it can be blended by adding foaming reaction powder CH3COOH to the mixture of the superelastic matrix and the conductive phase, and stirring and foaming to obtain the porous structure.
  • the foaming reaction powder can be CaCO3 and/or NaHCO3.
  • the elastic layer is increased with porosity, the elastic modulus of the elastic layer is reduced, so that it can be easily elastically deformed under force, so the voltage required for deformation of the elastic layer is reduced; Large deformation vibration can be generated under a small touch pressure.
  • the sensitivity of the tactile feedback module to the touch pressure sensing is improved, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • the vibration effects in different porous elastic layers are superimposed on each other to generate a resonance effect to enhance the touch feedback effect felt by the user of the tactile feedback module.
  • the tactile feedback module in the above-mentioned embodiment may include 40 elastic force control elements superimposed on each other, wherein adjacent conductive electrode layers and porous elastic layers are superimposed on each other, and each elastic force control element includes The conductive electrode layer 10 and the porous elastic layer 20 are overlapped with each other; wherein, adjacent conductive electrode layers 10 and porous elastic layers 20 are overlapped with each other, and the adjacent conductive electrode layers 10 include the porous elastic layer 20 between them.
  • the porous elastic layer 20 By applying voltage signals of different polarities to adjacent conductive electrode layers 10, when the tactile feedback module senses a touch, the porous elastic layer 20 generates vibration feedback under the action of the electric field force, thereby causing the vibration to be fed back to The user of the tactile feedback module.
  • the elastic layer is increased with porosity, the elastic modulus of the elastic layer is reduced, so that it can be easily elastically deformed under force, so the voltage required for deformation of the elastic layer is reduced; Large deformation vibration can be generated under a small touch pressure.
  • the sensitivity of the tactile feedback module to the touch pressure is improved, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • the tactile feedback module includes 40 elastic control elements superimposed on each other, the vibrations between the porous elastic layers of each elastic control element can be superimposed on each other, and can even produce resonance effects, thus further improving the tactile feedback module
  • the sensitivity to touch pressure allows the user to feel a strong sense of tactile feedback vibration under a small touch pressure.
  • the thickness of the tactile feedback module including 40 elastic control elements superimposed on each other can meet the requirements of general electronic products for the thickness of the tactile feedback module.
  • the porous elastic layer 20 includes an elastic material layer 22 and a base material 23 that are superimposed on each other, and the base material 23 is used to support the elastic material layer 22.
  • an elastic material layer can be directly coated on the surface of the substrate to form a porous elastic layer with a thickness of 10 ⁇ m-100 ⁇ m, and then a conductive electrode layer with a thickness of 0.1 ⁇ m-10 ⁇ m can be printed or sprayed on the surface of the porous elastic layer.
  • an elastic control element Into an elastic control element.
  • the substrate 23 can be made of flexible materials such as polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc. Made of at least one of the materials.
  • the material used for the elastic material layer can be at least one of silicone rubber, acrylate elastomer, polyurethane elastomer, nitrile rubber, vinylidene fluorinated trifluoroethylene, and their corresponding organic-inorganic, organic-organic composite materials, etc. kind.
  • the tactile feedback module in the above embodiment inputs voltage signals of different polarities, such as voltage signals of opposite polarity, to adjacent conductive electrode layers, so as to improve the porous elasticity between the adjacent conductive electrode layers.
  • the layer generates electric field force, and when the touch pressure is sensed by the tactile feedback module, the porous elastic layer vibrates under the action of the electric field force.
  • the vibration effects in different porous elastic layers are superimposed on each other to generate a resonance effect to enhance the touch feedback effect felt by the user of the tactile feedback module.
  • the voltage driving signal input to the adjacent conductive electrode layer is a triangular wave periodic signal.
  • the driving signal shown in Fig. 3 is a unipolar triangular wave periodic signal, and the frequency can be about 20Hz-200Hz. This frequency is the frequency that simulates the use of a traditional keyboard, such as a mechanical keyboard.
  • the input signal in Fig. 3 is divided into four different control sampling points in one cycle, and the different control sampling points are used to briefly describe the working form of the touch feedback module under different driving voltages.
  • the sampling moments of the sampling points are recorded as T1, T2, T3 and T4.
  • the working principle of the tactile feedback module is briefly described below in conjunction with Figure 3:
  • T1-T2 state In the process of T1-T2 state: T1, the input voltage is 0, the porous elastic layer is not deformed, and it is the original state; T1-T2, the input voltage gradually increases, and the electric field force between adjacent conductive electrode layers is gradually Increases, the electrostatic adsorption force between adjacent conductive electrode layers gradually increases, and a gradually increasing electric field force is generated on the porous elastic layer between the two; at T2, the input voltage reaches the amplitude, and the adjacent conductive electrode layers The electric field force between the electrode layers is the largest, and the adsorption force between the adjacent conductive electrode layers is also the largest. At this time, the deformation of the porous elastic layer between the adjacent conductive electrode layers is also the largest.
  • the input voltage gradually decreases, the electric field force between adjacent conductive electrode layers gradually decreases, and the adsorption force between adjacent conductive electrode layers also gradually decreases.
  • the porous elastic layer between adjacent conductive electrode layers slowly rebounds according to its own rebound force; at time T3, the input voltage is 0, and the porous elastic layer between adjacent conductive electrode layers rebounds to the original state.
  • the driving input signal is basically 0, and there is basically no electric field force between adjacent conductive electrode layers, so there is no electrostatic adsorption force.
  • the porous elastic layer maintains its original state.
  • the driving signal includes a periodically changing signal shown between T1-T4.
  • the frequency of the driving signal shown in FIG. 3 is preferably 50 Hz.
  • the frequency of the input signal may be 20 Hz-200 Hz, or
  • input driving voltage signals of different frequencies or different amplitudes For example, if users want to experience a stronger vibration, they can increase the signal frequency.
  • the input signal changes periodically, and the porous elastic layer always vibrates periodically from 0 to the maximum deformation, so that the user of the tactile feedback module provided in the present application can feel the effect of touch feedback.
  • a touch screen device including any touch feedback module provided in the embodiments of the present invention, for when the touch screen senses a touch, the elastic layer is under the action of electric field force. Vibration is generated, and the vibration is fed back to the user of the touch screen.
  • a touch feedback module can be used for a touch screen device, by providing an electrode array of a conductive electrode layer, for example, the conductive electrode layer can be provided with a plurality of independent strip electrodes, or a plurality of strips connected with a plurality of The chain of electrode blocks, or independent block electrodes, and the orthographic projection of the electrode arrays of adjacent conductive electrode layers in the horizontal two-dimensional plane have a certain area of intersection area, thereby forming several elastic control areas. When the user touches When the elasticity control area is reached, the effect of vibration feedback can be felt.
  • a keyboard including any of the tactile feedback modules provided in the embodiments of the present application, the tactile feedback module is used for keys, and when the keys are touched, The porous elastic layer generates vibration under the action of the electric field force, so that the vibration is fed back to the user who touches the button.
  • a tactile feedback module can be used as a key in the keyboard, and different keys can be applied with different driving voltages, so that different vibration feedback effects can be obtained when different keys are pressed.
  • each button can use a tactile feedback module as shown in Fig. 1 respectively. For example, if you want to improve the user's touch feedback effect on the "Enter” key, you can increase the frequency and/or amplitude of the driving voltage signal applied to the tactile feedback module 30 in the key, so that the user touches the "Enter" key. When you press the key, you can feel a stronger touch feedback effect.
  • the conductive electrode layer can be fabricated on the substrate by sputtering, evaporation, printing, etc., such as polyethylene terephthalate (PET), polycarbonate (Polycarbonate, etc.). PC), glass and other thin film materials.
  • the electrode pattern of the conductive electrode layer can be obtained by etching of indium tin oxide conductive film (ITO film), screen printing conductive paste on PET, or by using a metal wire mesh (Metal wire mesh) process.
  • the tactile feedback module provided by the present application is provided with a plurality of elastic force control elements superimposed on each other, and each elastic force control element includes a conductive electrode layer and a porous elastic layer superimposed on each other; wherein, adjacent conductive electrode layers and porous elastic The layers are superimposed on each other, and adjacent conductive electrode layers include a porous elastic layer.
  • the porous elastic layer is increased with porosity, the elastic modulus of the porous elastic layer is reduced, so that it can easily deform elastically under force, so the voltage required for the deformation of the porous elastic layer is reduced; Large deformation and vibration can be generated under a small touch pressure.
  • the sensitivity of the tactile feedback module to the touch pressure sensing is improved, so that the user can feel a stronger tactile feedback vibration under a small touch pressure.
  • the tactile feedback module provided in this application can be applied to smart watches, tablet computers, car navigation, smart wearable products, membrane keyboards, and even future black technology products.
  • the driving voltage of the tactile feedback module can be changed according to the requirements of the specific application scenarios of the tactile feedback module to meet the different needs of users for the effect of touch feedback.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触觉反馈模组,包括至少两个相互叠合的弹力控制元件,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻弹力控制元件的其中一弹力控制元件的导电电极层与另一弹力控制元件的多孔弹性层相邻,通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得触觉反馈模组在感测到触控吋,多孔弹性层在电场力的作用下产生振动反馈。由于在多孔弹性层中增加了多孔,减小了多孔弹性层的弹性模量,使多孔弹性层在较小的触摸压力下可产生较大变形振动。不同多孔弹性层的振动叠加,可以产生共振效果,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。

Description

触觉反馈模组、触摸屏、键盘和电子装置 技术领域
本申请涉及触控技术领域,尤其是涉及一种触觉反馈模组、触摸屏、键盘和电子装置。
背景技术
传统技术中的触摸屏或键盘,各个按键的触压反馈效果一样,而且人们一般只能通过观看输入的内容才能确定输入的动作是否完成。如果能够增加按键的触觉反馈效果,一方面使得用户仅通过按键的触觉反馈效果即可判断输入动作是否完成,另一方面还能够提高用户与键盘的交互性能。例如,如果用户在触压触控面板的不同按键时能够获取不同的触觉反馈效果,可以有效提升用户体验。
然而,如果使得触摸屏或键盘能够给用户带来触觉反馈的效果,一般需要放入声音相关零件来发出声音,或者放入震动马达来产生震动。然而,现有触摸屏或键盘都在朝着轻量化、便携化、简易化的方向发展,加入过多的零件,不仅会使产品的体积、重量都增加;还会增加产品设计的困难度,提高产品不良率;另外,增加耗能元件意味着增加能量消耗,不利于电子产品的节能化设计。
发明内容
根据本申请的各种实施例,提供一种触觉反馈模组、触摸屏、键盘和电子装置。
一种触觉反馈模组,其特征在于,包括:
至少两个相互叠合的弹力控制元件,所述弹力控制元件包括相互叠合的导电电极层和多孔弹性层;
其中,相邻弹力控制元件的其中一弹力控制元件的导电电极层与另一弹力控制元件的多孔弹性层相邻;
通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
一种触摸屏,包括任一项本申请实施例中所述的触觉反馈模组,用于在所述触摸屏感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
一种键盘,包括根据任一个本申请实施例中所述的触觉反馈模组,所述触觉反馈模组用于按键,在所述按键感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
一种电子装置,包括任一项本申请实施例中所述的触觉反馈模组,用于在所述触摸屏感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
上述触觉反馈模组,通过设置多个相互叠合的弹力控制元件,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻的导电电极层和多孔弹性层之间相互叠合,相邻的导电电极层之间包括多孔弹性层。通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。由于在多孔弹性层中增加了多孔,减小了多孔弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小了多孔弹性层变形所需要的电压;使多孔弹性层在较小的触摸压力下可产生较大变形振动。不同多孔弹性层同时振动,可以产生共振效果,提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请一个实施例中提供的一种触觉反馈模组的结构示意图。
图2为本申请一个实施例中提供的一种多孔弹性层的结构示意图。
图3为本申请一个实施例中提供的一种触觉反馈模组的驱动电压示意图。
图4为本申请一个实施例中提供的一种键盘的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在描述位置关系时,除非另有规定,否则当一个元件例如层、膜或基板被指为在另一膜层“上”时,其能直接在其他膜层上或亦可存在中间膜层。进一步说,当层被指为在另一层“下”时,其可直接在下方,亦可存在一个或多个中间层。亦可以理解的是,当层被指为在两层“之间”时,其可为两层之间的唯一层,或亦可存在一个或多个中间层。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用 了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
本申请的一个实施例中,提供的一种触觉反馈模组,包括至少两个相互叠合的弹力控制元件,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻的导电电极层和多孔弹性层之间相互叠合,相邻的导电电极层之间包括多孔弹性层,通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得触觉反馈模组在感测到触控吋,多孔弹性层在电场力的作用下产生振动反馈。
本申请通过设置多个相互叠合的弹力控制元件,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻的导电电极层和多孔弹性层之间相互叠合,相邻的导电电极层之间包括多孔弹性层。通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。由于在多孔弹性层中增加了多孔,减小了多孔弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小多孔弹性层变形所需要的电压;使多孔弹性层在较小的触摸压力下可产生较大变形振动。不同多孔弹性层中的振动效应相互叠加,可以产生共振效应,提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。
具体地,上述实施例中提供的一种触觉反馈模组,所述多孔弹性层中的孔的形状为球状、柱状、点状或线状中的至少一种;所述多孔弹性层的厚度可以为10μm-100μm;所述导电电极层的厚度可以为0.1μm-10μm。
进一步地,上述实施例中,向相邻的两个弹力控制元件中的导电电极层,分别施加不同极性的电压信号,以对相邻的导电电极层之间的多孔弹性层产生电场力,在触觉反馈模组感测到触控吋,多孔弹性层在电场力的作用下产生振动,使触压振动反馈模组的使用者感受到振动反馈的效果。
进一步地,上述实施例中的触觉反馈模组,由40个弹力控制元件相互叠 合形成,其中,相邻的导电电极层和多孔弹性层之间相互叠合,相邻的导电电极层之间包括多孔弹性层,用于在触控反馈模感测到触控吋,多孔弹性层在电场力的作用下产生振动,进而使振动反馈到触控所述触控反馈模的使用者。在本实施例中,多孔弹性层可以是在大张网版或者钢板表面印刷或直接涂布的方式制成,多孔弹性层的厚度为10μm-100μm,再在多孔弹性层表面印刷或喷涂厚度为0.1μm-10μm的导电电极层,以制成一个弹力控制元件。
上述实施例中,用40个弹力控制元件相互叠合形成触觉反馈模组,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻弹力控制元件的其中一弹力控制元件的导电电极层与另一弹力控制元件的多孔弹性层相邻。通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。由于在多孔弹性层中增加了多孔,减小了多孔弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小多孔弹性层变形所需要的电压;使多孔弹性层在较小的触摸压力下可产生较大变形振动。提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。不同多孔弹性层中的振动效应相互叠加,可以产生共振效应,以增强触觉反馈模组的用户感受到的触控回馈效果。并且,包括相互叠合的40个弹力控制元件的触觉反馈模组的厚度,能够满足一般电子产品对触觉反馈模组厚度的需求。
进一步地,上述实施例中的触觉反馈模组,多孔弹性层可以包括相互叠合的弹性材料层和基材,基材用于承载所述弹性材料层。本实施例中,可以在基材表面直接涂布厚度为10μm-100μm的多孔弹性层,再在多孔弹性层表面印刷或喷涂厚度为0.1μm-10μm的导电电极层,以制成一个弹力控制元件。
进一步地,上述实施例中,基材可以采用聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene Terephalate,PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)等柔性材料中的至少一种制成。弹性材料层采用的材料可以为硅橡胶、丙烯酸酯弹性体、聚氨酯弹性体、丁腈橡 胶、亚乙烯基氟化三氟乙烯以及它们相应的有机-无机、有机-有机复合材料等中的至少一种。
本申请的一个实施例中,提供一种触摸屏装置,包括任一本申请实施例中提供的触觉反馈模组,用于在所述触摸屏感测到触控吋,所述多孔弹性层在电场力的作用下产生振动,进而使振动反馈到触控所述触摸屏的使用者。
具体地,导电电极层可由电极阵列构成。导电电极层的电极阵列可以由多条相互独立的条状电极、或由多条连接有多个电极块的链条、或相互独立的块状电极构成。相邻的导电电极层的电极阵列在水平二维平面内的正投影存在一定面积的交叉区域,从而形成若干弹力控制区域。
进一步地,上述实施例中,弹性材料层在宏观上呈光学透明特性,可使光线透过,以不妨碍所述触觉反馈模组的内容显示为前提,“透明”在本申请中可理解为“透明”和“基本透明”。当变形材料层由硅胶、橡胶、丙烯酸系胶、溶胶等制作而成时。
进一步地,上述实施例中,构成弹力控制元件的导电电极层可以为透明的导电材料构成,如ITO、ZnO、碳纳米管、石墨烯等;也可以由非透明的导电材料构成,此时需通过控制导电材料的尺寸以实现人眼观察触觉反馈模组的显示内容时不受这些导电电极层的影响。上述导电材料可以选自银浆、碳浆、纳米银丝、PEDOT、碳纳米管和石墨烯导等导电材料。
本申请的一个实施例中,提供一种键盘,包括任一本申请实施例中所述的触觉反馈模组,所述触觉反馈模组用于按键,在所述按键感测到触控吋,所述多孔弹性层在电场力的作用下产生振动,进而使振动反馈到触控所述按键的使用者。
以下结合附图再对本申请的一些实施例作进一步说明。
在本申请的一个实施例中,如图1所示,提供的一种触觉反馈模组,包括多个相互叠合的弹力控制元件;每一个弹力控制元件包括相互叠合的导电电极层10和多孔弹性层20;其中,相邻弹力控制元件的其中一弹力控制元件的导电电极层10与另一弹力控制元件的多孔弹性层20相邻,使得任意相 邻的两个导电电极层10之间包括多孔弹性层20。通过向相邻的导电电极层10分别施加不同极性的电压信号,使得触觉反馈模组在感测到触控吋,多孔弹性层20在电场力的作用下产生振动反馈,进而使振动反馈给该触觉反馈模组的使用者。
具体的,多孔弹性层20中多个微孔可以设置成均匀排列的形式,也可以设置成非均匀排列的形式,多孔弹性层中的孔的形状为球状、柱状、点状或线状中的至少一种,多孔弹性层的厚度可以为10μm-100μm。
在本申请的一个实施例中,多孔弹性层的多孔结构可以是通过化学发泡得到,例如可以是在超弹性基体与导电相的混合物中加入发泡反应粉末CH3COOH共混,搅拌发泡获得多孔结构;发泡反应粉末可以是CaCO3和/或NaHCO3。
上述实施例中,由于在弹性层中增加了多孔,减小了弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小弹性层变形所需要的电压;使弹性层在较小的触摸压力下可产生较大变形振动。提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。不同多孔弹性层中的振动效应相互叠加,可以产生共振效应,以增强触觉反馈模组的用户感受到的触控回馈效果。
具体地,上述实施例中的触觉反馈模组中,可以包括相互叠合的40个弹力控制元件,其中,相邻的导电电极层和多孔弹性层之间相互叠合,每一个弹力控制元件包括相互叠合的导电电极层10和多孔弹性层20;其中,相邻的导电电极层10和多孔弹性层20之间相互叠合,相邻的导电电极层10之间包括多孔弹性层20。通过向相邻的导电电极层10分别施加不同极性的电压信号,使得触觉反馈模组在感测到触控吋,多孔弹性层20在电场力的作用下产生振动反馈,进而使振动反馈给该触觉反馈模组的使用者。
上述实施例中,由于在弹性层中增加了多孔,减小了弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小弹性层变形所需要的电压;使弹性层在较小的触摸压力下可产生较大变形振动。提高了触觉反馈模组对 触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。由于触觉反馈模组中包括相互叠合的40个弹力控制元件,每个弹力控制元件的多孔弹性层之间的振动可以相互叠加,甚至可以产生共振的效果,因而,进一步提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。并且,包括相互叠合的40个弹力控制元件的触觉反馈模组的厚度,能够满足一般电子产品对触觉反馈模组厚度的需求。
进一步地,上述实施例中,如图2所示,多孔弹性层20包括相互叠合的弹性材料层22和基材23,基材23用于承载弹性材料层22。本实施例中,可以在基材表面直接涂布弹性材料层,形成厚度为10μm-100μm的多孔弹性层,再在多孔弹性层表面印刷或喷涂厚度为0.1μm-10μm的导电电极层,以制成一个弹力控制元件。
具体地,基材23可以采用聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene Terephalate,PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)等柔性材料中的至少一种制成。弹性材料层采用的材料可以为硅橡胶、丙烯酸酯弹性体、聚氨酯弹性体、丁腈橡胶、亚乙烯基氟化三氟乙烯以及它们相应的有机-无机、有机-有机复合材料等中的至少一种。
进一步地,上述实施例中的触觉反馈模组,向相邻的导电电极层输入不同极性的电压信号,例如是相反极性的电压信号,以对相邻的导电电极层之间的多孔弹性层产生电场力,在触觉反馈模组感测到触压吋,多孔弹性层在电场力的作用下产生振动。不同多孔弹性层中的振动效应相互叠加,可以产生共振效应,以增强触觉反馈模组的用户感受到的触控回馈效果。
进一步地,上述实施例中的触觉反馈模组,向相邻的导电电极层输入电压驱动信号为三角波周期信号。图3中示意的驱动信号为单极性的三角波周期信号,频率可以使用20Hz-200Hz左右,此频率为模拟使用传统键盘,如机械键盘的频率。将图3中输入信号按照一个周期内划分为四个不同控制采样 点,分别在不同的控制采样点来简述触控反馈模在不同驱动电压下的工作形态,采样点的采样时刻分别记录为T1、T2、T3和T4。下面结合图3简述触觉反馈模组的工作原理:
于T1-T2状态过程中:T1时刻,输入电压为0,多孔弹性层没有形变,为原始状态;T1-T2时刻,输入电压逐渐增大,相邻的导电电极层之间的电场力在逐渐增大,相邻的导电电极层之间的静电吸附力逐渐增大,对二者之间的多孔弹性层产生逐渐增大的电场作用力;T2时刻,输入电压达到幅值,相邻的导电电极层之间的电场力最大,相邻的导电电极层之间的吸附力也最大,此时相邻的导电电极层之间的多孔弹性层的形变量也最大。
于T2-T3状态过程中:T2到T3时刻,输入电压逐渐减小,相邻的导电电极层之间的电场力逐渐减小,相邻的导电电极层之间的吸附力也逐渐减小,相邻的导电电极层之间的多孔弹性层根据自身的反弹力慢慢做回弹的动作;T3时刻,输入电压为0,相邻的导电电极层之间的多孔弹性层弹回原始状态。
于T3-T4状态过程中:T3到T4时刻,驱动输入信号基本为0,相邻的导电电极层之间基本没有电场力作用,故没有静电吸附力存在,相邻的导电电极层之间的多孔弹性层保持原始状态。
驱动信号包括周期性变化的如T1-T4时刻之间所示的信号,图3所示的驱动信号的频率优选为50Hz,在一些实施例中,输入信号的频率可以为20Hz-200Hz,也可根据不同用户需求,输入不同频率或不同幅值的驱动电压信号。例如,如果用户想体验更加强烈的振感,可以增加信号频率。输入信号如此周期性的变化,多孔弹性层一直在0形变量到最大形变量之间周期性振动变化,使本申请提供的触觉反馈模组的用户感受到触控反馈的效果。
在本申请的一个实施例中,提供一种触摸屏装置,包括任一本发明实施例中提供的触控反馈模组,用于在触摸屏感测到触控吋,弹性层在电场力的作用下产生振动,进而使振动反馈到触控触摸屏的使用者。
具体地,可以将一个触控反馈模组用于一个触摸屏装置,通过设置导电电极层的电极阵列,例如,可以设置导电电极层包括多条相互独立的条状电 极、或多条连接有多个电极块的链条、或相互独立的块状电极,并且相邻的导电电极层的电极阵列在水平二维平面内的正投影存在一定面积的交叉区域,从而形成若干弹力控制区域,当用户触压到所述弹力控制区域时,可以感受到振动反馈的效果。
在本申请的一个实施例中,提供一种键盘,包括任一本申请实施例中提供的触觉反馈模组,所述触觉反馈模组用于按键,在所述按键感测到触控吋,所述多孔弹性层在电场力的作用下产生振动,进而使振动反馈到触控所述按键的使用者。
具体地,可以用一个触觉反馈模组作为键盘中的一个按键,不同按键可以施加不同的驱动电压,进而使得在触压不同按键时可以获得不同的振动反馈效果。如图4中所示,每个按键可以分别采用如图1中所示的一个触觉反馈模组。例如,如果想提高用户对“Enter”键的触控回馈效果,可以提高对该按键中的触觉反馈模组30施加的驱动电压信号的频率和/或幅值,使得用户触压到“Enter”键时,可以感受到更强的触控反馈效果。
在本申请的一个实施例中,导电电极层可以通过溅射、蒸镀、印刷等方式制作在基材上,如聚对苯二甲酸类塑料(Polyethylene terephthalate,PET)、聚碳酸酯(Polycarbonate,PC)、玻璃等薄膜材料上。导电电极层的电极图案可以通过铟锡氧化物导电薄膜(Indium tin oxide film,ITO film)蚀刻、PET上丝印导电浆料获得,或采用金属丝编织网(Metal wire mesh)的工艺获得。
本申请提供的触觉反馈模组,通过设置多个相互叠合的弹力控制元件,每个弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻的导电电极层和多孔弹性层之间相互叠合,相邻的导电电极层之间包括多孔弹性层。通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。由于在多孔弹性层中增加了多孔,减小了多孔弹性层的弹性模量,使其在受力下能够轻易发生弹性变形,因此减小多孔弹性层变形所需 要的电压;使多孔弹性层在较小的触摸压力下可产生较大变形振动。提高了触觉反馈模组对触摸压力感应的灵敏度,使用户在较小的触摸压力下可以感受到较强的触觉反馈振感。
本申请提供的触觉反馈模组可以应用于智能手表、平板电脑、车载导航、智能穿戴产品、薄膜键盘、甚至未来的黑科技产品中。可以根据触觉反馈模组具体应用场景的需求,改变触觉反馈模组的驱动电压,以满足用户对触控反馈效果的不同需求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种触觉反馈模组,其特征在于,包括至少两个相互叠合的弹力控制元件,所述弹力控制元件包括相互叠合的导电电极层和多孔弹性层;其中,相邻弹力控制元件的其中一弹力控制元件的导电电极层与另一弹力控制元件的多孔弹性层相邻;通过向相邻的弹力控制元件中的导电电极层施加不同极性的电压信号,使得所述触觉反馈模组在感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
  2. 根据权利要求1所述的触觉反馈模组,其特征在于,所述多孔弹性层中的孔的形状为球状、柱状、点状或线状中的至少一种。
  3. 根据权利要求1所述的触觉反馈模组,其特征在于,所述多孔弹性层的厚度为10μm-100μm。
  4. 根据权利要求1所述的触觉反馈模组,其特征在于,所述导电电极层的厚度为0.1μm-10μm。
  5. 根据权利要求1所述的触觉反馈模组,其特征在于,所述多孔弹性层的多孔结构为通过化学发泡制成。
  6. 根据权利要求1-5中任意一项所述的触觉反馈模组,其特征在于,所述弹力控制元件的数量为40个。
  7. 根据权利要求1-5中任意一项所述的触觉反馈模组,其特征在于,所述电压信号为三角波电压。
  8. 根据权利要求1-5中任一项所述的触觉反馈模组,其特征在于,所述多孔弹性层包括弹性材料层及与所述弹性材料层相互叠合基材。
  9. 一种触摸屏,其特征在于,包括根据权利要求1-8中任意一项所述的触觉反馈模组,用于在所述触摸屏感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
  10. 一种键盘,其特征在于,包括根据权利要求1-8中任意一项所述的触觉反馈模组,所述触觉反馈模组用于按键,在所述按键感测到触压时,所述多孔弹性层在电场力的作用下产生振动反馈。
  11. 一种电子装置,其特征在于,包括根据权利要求1-8中任意一项所述的触觉反馈模组。
PCT/CN2019/111933 2019-10-18 2019-10-18 触觉反馈模组、触摸屏、键盘和电子装置 WO2021072738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111933 WO2021072738A1 (zh) 2019-10-18 2019-10-18 触觉反馈模组、触摸屏、键盘和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111933 WO2021072738A1 (zh) 2019-10-18 2019-10-18 触觉反馈模组、触摸屏、键盘和电子装置

Publications (1)

Publication Number Publication Date
WO2021072738A1 true WO2021072738A1 (zh) 2021-04-22

Family

ID=75537331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111933 WO2021072738A1 (zh) 2019-10-18 2019-10-18 触觉反馈模组、触摸屏、键盘和电子装置

Country Status (1)

Country Link
WO (1) WO2021072738A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073616A (ko) * 2008-12-23 2010-07-01 한국과학기술원 햅틱피드백 제공장치와 그 제어방법
CN108021274A (zh) * 2016-10-31 2018-05-11 乐金显示有限公司 触摸敏感元件和包括该触摸敏感元件的显示装置
CN109992099A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 电子设备、触摸显示模组及其压力感应触觉反馈模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073616A (ko) * 2008-12-23 2010-07-01 한국과학기술원 햅틱피드백 제공장치와 그 제어방법
CN108021274A (zh) * 2016-10-31 2018-05-11 乐金显示有限公司 触摸敏感元件和包括该触摸敏感元件的显示装置
CN109992099A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 电子设备、触摸显示模组及其压力感应触觉反馈模组

Similar Documents

Publication Publication Date Title
CN105718106B (zh) 触敏装置以及包括该触敏装置的显示装置
US9996199B2 (en) Film haptic system having multiple operation points
CN101714026B (zh) 用户接口反馈装置、用户接口反馈方法和程序
CN1678978A (zh) 输入设备以及使用输入设备的电子设备
JP6401695B2 (ja) 接触感応素子、接触感応素子の駆動方法、及び接触感応素子を含む表示装置
JP2011044126A (ja) タッチフィードバックパネル、これを含むタッチスクリーン装置及び電子装置
JP2007034991A (ja) タッチパネルディスプレイ装置、タッチパネルディスプレイ装置を備えた電子機器、及びタッチパネルディスプレイ装置を備えたカメラ
US20150086046A1 (en) Feedback providing module, feedback providing appratus, and feedback providing method
WO2018197894A1 (en) Touchscreen panel haptics
JP2015079475A (ja) フィルム状ハプティックデバイス、ハプティックフィードバック電子装置及びハプティックキーボード
CN1319020C (zh) 具有振动功能的坐标输入装置
JP6891971B2 (ja) 駆動制御装置、電子機器、及び、駆動制御方法
KR101416722B1 (ko) 정전기력을 이용한 촉각 피드백 생성 장치, 그 제어방법 및 상기 촉각 피드백 생성 장치의 제조방법
KR20140008229A (ko) 다중 동작부를 갖는 필름형 촉각 전달 장치
CN213814598U (zh) 触觉反馈模组、触摸屏、键盘和电子装置
TWI397845B (zh) 具有振動功能的觸控顯示裝置及振動式觸控板
WO2021072738A1 (zh) 触觉反馈模组、触摸屏、键盘和电子装置
KR102322078B1 (ko) 햅틱 표시 장치 및 이의 구동 방법
KR20160080955A (ko) 햅틱 표시 장치 및 이의 제조 방법
CN112799501A (zh) 触觉反馈模组、触摸屏、键盘及电子装置
CN112799500A (zh) 触觉反馈模组、触摸屏及电子装置
CN112684880A (zh) 触觉反馈模组、触摸屏、键盘和电子装置
KR20160075019A (ko) 표시 장치
WO2021077352A1 (zh) 触觉反馈模组、触摸屏、键盘及电子装置
CN210721366U (zh) 触觉反馈模组、触摸屏、键盘及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19949125

Country of ref document: EP

Kind code of ref document: A1