WO2021072653A1 - 内转子组件测试系统以及可移动平台 - Google Patents

内转子组件测试系统以及可移动平台 Download PDF

Info

Publication number
WO2021072653A1
WO2021072653A1 PCT/CN2019/111309 CN2019111309W WO2021072653A1 WO 2021072653 A1 WO2021072653 A1 WO 2021072653A1 CN 2019111309 W CN2019111309 W CN 2019111309W WO 2021072653 A1 WO2021072653 A1 WO 2021072653A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor assembly
inner rotor
testing system
ring
test
Prior art date
Application number
PCT/CN2019/111309
Other languages
English (en)
French (fr)
Inventor
甘熠华
宋浩
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033202.7A priority Critical patent/CN114270163A/zh
Priority to PCT/CN2019/111309 priority patent/WO2021072653A1/zh
Publication of WO2021072653A1 publication Critical patent/WO2021072653A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the invention relates to the technical field of testing, in particular to an inner rotor assembly testing system and a movable platform.
  • the scanning prism In the application scenario of mechanical scanning lidar, in order to make the overall optical structure layout more compact, the scanning prism needs to be embedded in the inner hole of the bearing, which requires the use of a large-diameter bearing equivalent to the size of the scanning prism. Due to the characteristics of large-diameter bearings, it has become one of the main sources of power consumption of radar motors. Because the laser radar requires a large operating temperature range, in order to ensure that the total power consumption of the radar motor is still within the controllable range under extreme temperature environments, it is necessary to control the friction torque of the bearing, that is, use a certain method to monitor the bearing to ensure The friction torque of the bearing meets the requirements.
  • the indirect feedback of the friction torque of the bearing is carried out by testing the motor current to determine whether the friction torque of the bearing meets the requirements.
  • the test result is easily affected by the difference of the motor itself, and the test accuracy is poor.
  • the invention provides an inner rotor assembly testing system and a movable platform.
  • the present invention is implemented through the following technical solutions:
  • an inner rotor assembly testing system is provided, the inner rotor assembly has an inner ring and an outer ring that can rotate relatively, and the inner rotor assembly testing system includes:
  • the torque detection module is used to detect the torque applied to the fixing unit when the inner rotor assembly rotates.
  • a movable platform comprising:
  • the present invention provides real-time torque applied to the fixed unit when the inner rotor assembly rotates (that is, the friction torque of the inner rotor assembly) by setting the drive unit, the fixed unit, and the torque detection module through the torque detection module.
  • the obtained friction torque of the inner rotor assembly has high accuracy, which is helpful to accurately judge whether the friction torque of the inner rotor assembly meets the requirements and ensure the system power consumption In a safe range.
  • Figure 1 is a schematic structural diagram of an inner rotor assembly testing system in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of the inner rotor assembly test system shown in Fig. 1 in another direction;
  • FIG. 3 is a schematic cross-sectional view of the inner rotor assembly testing system shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of an inner rotor assembly testing system in another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structural relationship between the fixing unit and the torque detection module in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structural relationship between the fixing unit and the inner rotor assembly in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the force applied to the inner rotor assembly test system shown in Fig. 1;
  • Figure 8 is a schematic structural diagram of an inner rotor assembly testing system in another embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of an inner rotor assembly testing system in another embodiment of the present invention.
  • FIG. 10 is a flowchart of a test method of an inner rotor assembly test system in an embodiment of the present invention.
  • FIG. 11 is a flowchart of a test method of an inner rotor assembly test system in another embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of a movable platform in an embodiment of the present invention.
  • the embodiment of the present invention provides an inner rotor assembly testing system.
  • the inner rotor assembly has an inner ring and an outer ring that can rotate relatively.
  • the inner rotor assembly testing system 300 includes a driving unit 1, a fixing unit 2 and a torque detection module 3.
  • the driving unit 1 is used to drive the inner ring of the inner rotor assembly 210 to rotate relative to the outer ring
  • the fixing unit 2 is used to fix the outer ring of the inner rotor assembly 210
  • the torque detection module 3 is used to detect that the inner rotor assembly 210 rotates when it is applied to the outer ring.
  • the drive unit 1 drives the inner ring of the inner rotor assembly 210 to rotate relative to the outer ring
  • the inner ring of the inner rotor assembly 210 rotates
  • the outer ring is stationary
  • the fixing unit 2 is also stationary
  • the ring will apply torque to the outer ring of the inner rotor assembly 210
  • the inner ring of the inner rotor assembly 210 is applied to the outer ring of the inner rotor assembly 210 and the torque is transmitted to the torque detection module 3, which is detected by the torque detection module 3.
  • the drive unit 1, the fixed unit 2 and the torque detection module 3 are provided.
  • the torque detection module 3 monitors the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates in real time.
  • the force transmission method measures the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates (that is, the friction torque of the rotor assembly 210), and the obtained friction torque of the inner rotor assembly 210 has high accuracy, which is beneficial to accurately judge the inner rotor assembly 210. Whether the friction torque meets the requirements to ensure that the power consumption of the system is within a safe range.
  • the driving unit 1 can be designed according to needs.
  • the driving unit 1 includes a motor, and the motor includes a rotating shaft 11 fixedly connected to the inner ring of the inner rotor assembly 210. Since the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates is positively related to its rotational speed, in order to maintain the stability of the rotation of the inner rotor assembly 210, the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates is required to be maintained near a preset value .
  • a motor with closed-loop speed control can be selected to ensure that the speed of the rotating shaft 11 is always stable near the preset value, thereby ensuring that the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates is stable near the preset value.
  • the inner rotor assembly testing system 300 may also include a first elastic seal, which is provided between the rotating shaft 11 and the inner ring of the inner rotor assembly 210, and the first elastic seal in this embodiment is used to prevent The inner ring of the inner rotor assembly 210 rotates relative to the rotating shaft 11.
  • the first elastic sealing element is an O-ring. It should be understood that the first elastic sealing element may also be an elastic sealing element of other shapes.
  • the matching manner of the first elastic sealing element and the rotating shaft 11 can be designed according to requirements.
  • the rotating shaft 11 is provided with a first groove, and the first elastic sealing element is embedded in the first groove.
  • the matching manner of the first elastic sealing member and the rotating shaft 11 can also be set in other ways.
  • the inner ring of the O-ring is embedded in the first groove, and the outer ring of the O-ring is fixedly connected to the inner ring of the inner rotor assembly 210, so that the inner ring of the inner rotor assembly 210 rotates synchronously with the shaft 11 , Avoiding radial sliding of the inner ring of the inner rotor assembly 210 relative to the shaft 11 during the rotation of the inner rotor assembly 210, effectively protecting the inner rotor assembly 210; at the same time, the O-ring and the first groove can also be detachably matched It is convenient to disassemble the inner rotor assembly 210 from the rotating shaft 11 to meet the test requirements.
  • the driving unit 1 includes a fixed shaft 12, a magnet 14 sleeved on the fixed shaft 12, and a coil 13 matched with the magnet 14.
  • the magnet 14 is fixed to the inner ring of the inner rotor assembly 210 connection.
  • the coil 13 is powered on to drive the magnet 14 to rotate, so as to drive the inner ring of the inner rotor assembly 210 to rotate.
  • the fixed shaft 12 is stationary.
  • Driving the magnet 14 to rotate through the coil 13 is a prior art, which is not described in detail in the present invention.
  • any structure capable of driving the inner ring of the inner rotor assembly 210 to rotate relative to the outer ring belongs to the protection scope of the drive unit 1 of the present invention, and is not limited to the structural design of the drive unit 1 exemplified above.
  • the fixing unit 2 includes a fixing frame, the fixing frame is provided with mounting holes, and the mounting holes are used to install the outer ring of the inner rotor assembly 210.
  • the shape, size, and material of the fixing frame are designed so that on the basis that the structure meets the transmission pressure, it can avoid the modal resonance point of the entire system under the high-speed operation of the inner rotor assembly 210, so that the torque detection module 3 The detected torque is more stable.
  • the fixing frame has a circular ring structure.
  • the inner rotor assembly testing system 300 may further include a second elastic seal 4, which is provided between the fixing frame and the outer ring of the inner rotor assembly 210, and the second elastic seal The piece 4 is used to prevent the outer ring of the inner rotor assembly 210 from rotating relative to the fixing frame.
  • the second elastic sealing element 4 may be an O-ring or an elastic sealing element of other shapes.
  • the matching manner of the second elastic sealing element 4 and the fixing frame can be designed according to requirements.
  • the fixing frame is provided with a second groove, and the second elastic sealing element 4 is embedded in the second groove.
  • the matching manner of the second elastic sealing member 4 and the fixing frame can also be set in other ways.
  • the outer ring of the O-ring is embedded in the second groove, and the inner ring of the O-ring is sleeved with the outer ring of the inner rotor assembly 210, so as to prevent the inner rotor assembly 210 from rotating during the rotation of the inner rotor assembly 210.
  • the outer ring slides radially relative to the fixing frame, which effectively protects the inner rotor assembly 210; at the same time, the detachable fit of the O-ring and the second groove can also facilitate the separation of the inner rotor assembly 210 from the fixing frame to meet the test requirements.
  • the torque detection module 3 may include a force transmitting member 31 provided on the fixing unit 2 and a force sensor 32 that cooperates with the force transmitting member 31.
  • the torque is determined based on the electrical signal obtained by the force sensor 32 when the inner rotor assembly 210 rotates.
  • the design of the shape, size and material of the fixing frame and the force transmission component 31 makes it possible to avoid the modal resonance point of the entire system under the high-speed operation of the inner rotor assembly 210 on the basis of the structure that satisfies the transmission pressure, so that the force sensor 32 The detected pressure is more stable.
  • the fixing frame and the force transmitting member 31 are made of stainless steel, and the total weight of the fixing frame and the force transmitting member 31 is three times the weight of the inner rotor assembly 210.
  • a shock absorption structure is provided between the force transmission component 31 and the force sensor 32. The force transmission component 31 and the force sensor 32 are switched through the shock absorption structure, thereby reducing the vibration between the force transmission component 31 and the force sensor 32.
  • the shock absorption structure may include a device provided on the force transmission component 31 in contact with the force sensor 32.
  • the shock-absorbing structure of this embodiment can be designed as a shock-absorbing pad, or it can be designed as other structures that can realize shock-absorbing.
  • the force transmission component 31 includes a force transmission block, and the bottom of the force transmission block contacts and cooperates with the force sensor 32.
  • the inner rotor assembly testing system 300 may further include a base 5 and a connecting member 6, and the driving unit 1 is fixedly connected to the base 5.
  • One end of the connecting piece 6 is fixed on the base body 5, and the other end of the connecting piece 6 is connected with the force sensor 32. Fixing the force sensor 32 on the base 5 makes the pressure detected by the force sensor 32 more stable during the rotation of the inner rotor assembly 210.
  • a driving unit 1, a fixing unit 2 and a torque detection module 3 constitute a test module 310
  • the inner rotor assembly test system 300 may include one or more test modules 310 to satisfy different tests. demand.
  • the inner rotor assembly test system 300 includes a plurality of test modules 310.
  • the inner rotor assembly testing system 300 can detect the torque applied to the corresponding fixing unit 2 when the plurality of inner rotor assemblies 210 rotate through the plurality of test modules 310.
  • the system power consumption is within a safe range; otherwise, the system power consumption does not meet the requirements.
  • the inner rotor assembly testing system 300 further includes a controller 7, and the controller 7 is electrically coupled to the driving unit 1 of each test module 310, that is, In this embodiment, one controller 7 controls multiple drive units 1, which saves hardware costs.
  • the controller 7 is used to control the operation of the driving unit 1 of each test module 310 according to the control signal sent by the external device, so as to control the inner ring of the corresponding inner rotor assembly 210 to rotate relative to the outer ring.
  • the drive unit 1 includes a motor, and the controller 7 can convert the control signal corresponding to each drive unit 1 into a PWM signal, and control the rotation of the corresponding motor through the PWM signal to drive the inner ring of the corresponding inner rotor assembly 210 relative to the outer ring.
  • the control signal may be sent by an external device, for example, the user operates the external device to send the control signal to the controller 7.
  • the external device can communicate with the controller 7 through a network port, and can also communicate with the controller 7 through other types of interfaces.
  • the inner rotor assembly testing system 300 may further include a signal amplifier 8, a signal acquisition module 9 and a communication interface 10.
  • the input end of the signal amplifier 8 is electrically coupled to the force sensor 32
  • the input end of the signal acquisition module 9 is electrically coupled to the output end of the signal amplifier 8
  • the output end of the acquisition module is electrically coupled to the communication interface 10.
  • the communication interface 10 Able to communicate with external devices.
  • the electrical signal acquired by the force sensor 32 is amplified by the signal amplifier 8 and then transmitted to the signal acquisition module 9.
  • the signal acquisition module 9 sends the amplified electrical signal to the external device through the communication interface 10, so that the external device is based on the amplified signal.
  • the electrical signal determines the torque applied to the fixed unit 2 when the inner rotor assembly 210 rotates.
  • the electrical signal detected by the force sensor 32 in this embodiment is a voltage signal
  • the signal amplifier 8 is a voltage amplifier.
  • the signal acquisition module 9 may be used to acquire signals of multiple channels.
  • the communication interface 10 may be an RS232 serial port or other communication interfaces 10.
  • the external device may be independent of the inner rotor assembly testing system 300 or a part of the inner rotor assembly testing system 300.
  • the external device may be a control module of the inner rotor assembly testing system 300.
  • FIG. 10 is a flowchart of a test method of the inner rotor assembly test system 300 in an embodiment of the present invention; please refer to FIG. 10, the test method of the inner rotor assembly test system 300 in an embodiment of the present invention may include steps S1001 to S1004.
  • the driving unit 1 is controlled to drive the inner ring of the inner rotor assembly 210 to rotate relative to the outer ring.
  • the external device through the user operating the external device, the external device sends a control instruction to the controller 7 according to the user's operation to control the operation of the corresponding driving unit 1 so as to drive the inner ring of the inner rotor assembly 210 to rotate relative to the outer ring.
  • the electrical signal transmission link includes: force sensor 32->signal amplifier 8->signal acquisition card->processor.
  • the torque of 2 can include the following steps (1) to (3).
  • step (1) according to the electrical signals at different moments, the pressure transmitted by the fixing frame to the force transmission member 31 at the corresponding moment is determined.
  • step (2) the torque at the corresponding time is determined according to the pressure of the force transmission member 31 and the distance from the inner ring axis of the inner rotor assembly 210 to the pressure.
  • the torque calculation formula can refer to the above-mentioned embodiment, which will not be repeated here.
  • step (3) the average value of the torque is determined according to the torque at different moments.
  • the qualified torque of the inner rotor assembly 210 indicates that the friction torque of the inner rotor assembly 210 meets the power consumption requirements of the system.
  • the torque applied to the corresponding fixed unit 2 when each inner rotor assembly 210 rotates is less than the preset torque threshold, indicating that the system power consumption is within a safe range; otherwise, , Indicating that the system power consumption does not meet the demand.
  • a stop signal is sent to the controller 7 to shut down the inner rotor assembly testing system 300, and the user can be further reminded to adjust the torque greater than or equal to the preset torque threshold.
  • the inner rotor assembly testing system 300 can be restarted.
  • the foregoing embodiment of acquiring electrical signals at different moments detected by the force sensor 32 within a preset time period is used.
  • the torque of the inner rotor assembly 210 is determined. Passed; when the average torque is greater than or equal to the preset torque threshold, it is determined that the torque of the inner rotor assembly 210 is unqualified.
  • the size of the preset torque threshold and the size of N can be set as required.
  • a stop signal is sent to the controller 7 to turn off the inner rotor assembly testing system 300.
  • the inner rotor assembly testing system 300 further includes a light source 20 and a light receiver 30, and each test module 310 also includes a prism 40 fixed on the inner ring of the inner rotor assembly 210.
  • the driving unit 1 includes a hollow rotating part.
  • the rotating part includes the shaft 11 of the motor; when the driving unit 1 includes a fixed shaft 12, a coil 13 and a magnet 14, the rotating part includes a magnet 14, and the magnet 14
  • the axis of the rotating shaft coincides with the axis of the fixed shaft 12, and the fixed shaft 12 is hollow.
  • the inner ring of the inner rotor assembly 210 is sleeved on the rotating part, and the prism 40 covers one end of the rotating part.
  • the rotating shafts of the rotating parts of the multiple test modules 310 are coaxial. As shown in FIG. 8, the rotating shafts of the rotating parts of the multiple test modules 310 coincide with R.
  • the light source 20 is arranged at one end outside the rotating part of the plurality of test modules 310, the light receiver 30 is arranged at the other end outside the rotating part of the plurality of test modules 310, and the rotation axis of the rotating part of the plurality of test modules 310 Pass through the light source 20 and the light receiver 30.
  • the light emitted by the light source 20 sequentially passes through a plurality of rotating parts and is received by the light receiver 30 to determine the light trajectory according to the detection signal of the light receiver 30.
  • the cooperation of the light receiver 30 and the light source 20 can reflect whether the final light trajectory meets the test requirements.
  • each prism 40 rotates with the rotation of the inner ring of the inner rotor assembly 210, when the light emitted by the light source 20 passes through each prism 40, the trajectory of the light will change.
  • the rotation speed and/or the rotation direction of each prism 40 can be set so that the motion trajectory of the light after passing through each prism 40 meets the requirement, so that the shape of the final light trajectory meets the test requirement.
  • the prisms 40 of the multiple test modules 310 are all arranged toward the light receiver 30, and the prisms 40 may be wedge-shaped prisms or prisms of other shapes.
  • the light source 20 and the light receiver 30 are both fixed on the base body 5, and the base body 5 further includes a light-transmitting hole, the light-transmitting hole is aligned with the light source 20, and the light emitted by the light source 20 enters the nearest through the light-transmitting hole
  • the light source 20 is arranged in the hollow space of the test module 310 and is transmitted backward in turn.
  • the light source 20 may be a laser light source or other types of light sources.
  • the type of the optical receiver 30 only needs to match the type of the light source 3, and the present invention does not specifically limit the type of the optical receiver 30.
  • the test module 310 includes three.
  • the arrangement direction from the light source 20 to the light receiver 30 refers to the three test modules 310 as test module A, test module B, and test module C in sequence.
  • the movement path of the light emitted by the light source 20 includes :The rotating part of test module A -> the prism 40 of test module A -> the rotating part of test module B -> the prism 40 of test module B -> the rotating part of test module C -> test module C ⁇ prism 40->light receiver 30.
  • the rotating components of the two test modules 310 arranged close to the light source 20 rotate in opposite directions at the same speed, and the rotation speed of the rotating components of the test modules 310 arranged far away from the light source 20 is equal to
  • the rotation speeds of the rotating components of the two test modules 310 arranged close to the light source 20 are not equal, so that the shape of the light trajectory is a circular spot.
  • the test module 310 further includes a speed sensor 50 installed on the rotating part, and the speed sensor 50 detects the rotation speed and/or the direction of rotation of the rotating part.
  • the speed measurement sensor 50 includes a photoelectric code disk sleeved and fixed on the rotating part, and a transmitting light source and a receiver matched with the photoelectric code disk, and the transmitting light source and the receiver are located on both sides of the photoelectric code disk.
  • the speed sensor 50 can also choose other types, not limited to code discs.
  • the movable platform may include a platform main body 100, a radar 200 installed on the platform main body 100, and the inner rotor assembly test system 300 of the foregoing embodiment.
  • the radar 200 includes an inner rotor assembly 210, and the inner rotor assembly 210 has an inner ring and an outer ring that can rotate relatively.
  • the inner rotor assembly 210 includes a bearing, the inner ring of the inner rotor assembly 210 is the inner ring of the bearing, and the outer ring of the inner rotor assembly 210 is the outer ring of the bearing.
  • the movable platform of this embodiment may be an unmanned vehicle, an unmanned aerial vehicle, an unmanned ship, and the like. Taking the movable platform as an unmanned aerial vehicle such as an unmanned aerial vehicle as an example, the platform main body 100 is the body of the unmanned aerial vehicle.

Abstract

一种内转子组件测试系统以及可移动平台,内转子组件(210)具有能够相对转动的内圈和外圈,内转子组件测试系统(300)包括驱动单元(1)、固定单元(2)和力矩检测模块(3),驱动单元(1)用于驱动所述内转子组件(210)的内圈相对于外圈转动;固定单元(2)用于固定所述内转子组件(210)的外圈;力矩检测模块(3)用于检测所述内转子组件(210)转动时施加于所述固定单元(2)的力矩,通过力矩检测模块(3)对内转子组件(210)转动时施加于固定单元(2)的力矩实时监测,通过力传递方式测量内转子组件(210)转动时施加于固定单元(2)的力矩,获得的内转子组件(210)的摩擦力矩精确度高,有利于精确地判断内转子组件(210)的摩擦力矩是否符合要求,确保系统功耗处于安全范围内。

Description

内转子组件测试系统以及可移动平台 技术领域
本发明涉及测试技术领域,尤其涉及一种内转子组件测试系统以及可移动平台。
背景技术
在机械扫描式激光雷达的应用场景中,为了让整体光学结构布局更为紧凑,需要将扫描棱镜嵌入轴承的内孔中,这就需要使用与扫描棱镜尺寸相当的大直径轴承。由于大直径轴承自身的特性,使其成为雷达电机功耗的主要来源之一。因激光雷达要求的工作温度范围较大,为保证在极端温度环境下雷达电机总功耗仍处于可控范围内,需要对轴承的摩擦力矩加以管控,即使用一定的方法对轴承进行监测以保证轴承的摩擦力矩符合要求。
目前,通过测试电机电流对轴承摩擦力矩进行间接反馈,判定轴承的摩擦力矩是否满足要求。而使用电机电流对轴承的摩擦力矩进行间接反馈,测试结果容易受电机自身差异的影响,测试精度较差。
发明内容
本发明提供一种内转子组件测试系统以及可移动平台。
具体地,本发明是通过如下技术方案实现的:
根据本发明的第一方面,提供一种内转子组件测试系统,所述内转子组件具有能够相对转动的内圈和外圈,所述内转子组件测试系统包括:
驱动单元,用于驱动所述内转子组件的内圈相对于外圈转动;
固定单元,用于固定所述内转子组件的外圈;
力矩检测模块,用于检测所述内转子组件转动时施加于所述固定单元的力矩。
根据本发明的第二方面,提供一种可移动平台,所述可移动平台包括:
平台主体;
安装在所述平台主体上的雷达,所述雷达包括内转子组件,所述内转子组件具有能够相对转动的内圈和外圈;以及
本发明的第一方面所述的内转子组件测试系统。
根据本发明实施例提供的技术方案,本发明通过设置驱动单元、固定单元和力矩检测模块,通过力矩检测模块对内转子组件转动时施加于固定单元的力矩(即内转子组件的摩擦力矩)实时监测,通过力传递方式测量内转子组件转动时施加于固定单元 的力矩,获得的内转子组件的摩擦力矩精确度高,有利于精确地判断内转子组件的摩擦力矩是否符合要求,确保系统功耗处于安全范围内。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的内转子组件测试系统的结构示意图;
图2是图1所示的内转子组件测试系统在另一方向上的结构示意图;
图3是图1所示的内转子组件测试系统的剖面示意图;
图4是本发明另一实施例中的内转子组件测试系统的结构示意图;
图5是本发明一实施例中的固定单元和力矩检测模块的结构关系示意图;
图6是本发明一实施例中的固定单元和内转子组件的结构关系示意图;
图7是图1所示的内转子组件测试系统的受力示意图;
图8是本发明另一实施例中的内转子组件测试系统的结构示意图;
图9是本发明另一实施例中的内转子组件测试系统的结构示意图;
图10是本发明一实施例中的内转子组件测试系统的测试方法流程图;
图11是本发明另一实施例中的内转子组件测试系统的测试方法流程图;
图12是本发明一实施例中的可移动平台的结构示意图。
附图标记:
100:平台主体;200:雷达;210:内转子组件;300:内转子组件测试系统;310:测试模组;1:驱动单元;11:转轴;12:固定轴;13:线圈;14:磁铁;2:固定单元2;3:力矩检测模块;31:传力部件;32:力传感器;4:第二弹性密封件;5:座体;6:连接件;7:控制器;8:信号放大器;9:信号采集模块;10:通信接口;20:光源;30:光接收器;40:棱镜;50:测速传感器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本发明实施例提供一种内转子组件测试系统,该内转子组件具有能够相对转动的内圈和外圈。结合图1和图2,内转子组件测试系统300包括驱动单元1、固定单元2和力矩检测模块3。其中,驱动单元1用于驱动内转子组件210的内圈相对于外圈转动,固定单元2用于固定内转子组件210的外圈,力矩检测模块3用于检测内转子组件210转动时施加于固定单元2的力矩。在本实施例中,在驱动单元1驱动内转子组件210的内圈相对于外圈转动时,内转子组件210的内圈转动,外圈静止,固定单元2也静止,内转子组件210的内圈会施加力矩给内转子组件210的外圈,再通过固定单元2将内转子组件210的内圈施加于内转子组件210的外圈力矩传递给力矩检测模块3,通过力矩检测模块3检测得到内转子组件210转动时施加于固定单元2的力矩。
本发明实施例的内转子组件测试系统300,通过设置驱动单元1、固定单元2和力矩检测模块3,通过力矩检测模块3对内转子组件210转动时施加于固定单元2的力矩实时监测,通过力传递方式测量内转子组件210转动时施加于固定单元2的力矩(即转子组件210的摩擦力矩),获得的内转子组件210的摩擦力矩精确度高,有利于精确地判断内转子组件210的摩擦力矩是否符合要求,确保系统功耗处于安全范围内。
可以根据需要设计驱动单元1,例如,在其中一个实施例中,请结合图1至图3,驱动单元1包括电机,电机包括转轴11,转轴11与内转子组件210的内圈固定连接。由于内转子组件210转动时施加于固定单元2的力矩与其转速正相关,为保持内转子组件210转动的稳定性,需要内转子组件210转动时施加于固定单元2的力矩维持在预设值附近。对此,可以选择转速闭环控制的电机,保证转轴11的转速始终稳定在预设值附近,从而保证内转子组件210转动时施加于固定单元2的力矩稳定在预设值附近。进一步地,内转子组件测试系统300还可以包括第一弹性密封件,第一弹性密封件设于转轴11和内转子组件210的内圈之间,本实施例的第一弹性密封件用于防止内转子组件210的内圈相对转轴11转动。可选地,第一弹性密封件为O型圈。应当理解地,第一弹性密封件也可以为其他形状的弹性密封件。第一弹性密封件与转轴11的配合方式可以根据需要设计,可选地,转轴11设有第一凹槽,第一弹性密封件嵌设在第一凹槽中。当然,第一弹性密封件与转轴11的配合方式也可以设置为其他。本实施例中,O型圈的内圈嵌设在第一凹槽中,O型圈的外圈与内转子组件210的内圈固定连接,使得内转子组件210的内圈跟随转轴11同步转动,避免了在内转子组件210转动过程中,内转子组件210的内圈相对转轴11产生径向滑动,有效保护内转子组件210;同时,O型圈与第一凹槽的可拆卸配合亦可方便将内转子组件210从转轴11拆卸下来,满足测试所需。
在另外一个实施例中,请参见图4,驱动单元1包括固定轴12、套设在固定轴12上的磁铁14和与磁铁14配合的线圈13,磁铁14与内转子组件210的内圈固定连接。 本实施例中,线圈13上电,带动磁铁14转动,以带动内转子组件210的内圈转动。线圈13上电时,固定轴12静止。通过线圈13驱动磁铁14旋转为现有技术,本发明对此不作详细说明。
应当理解的是,任何能够驱动内转子组件210的内圈相对于外圈转动的结构均属于本发明的驱动单元1的保护范围,不限于上述例举的驱动单元1的结构设计方式。
结合图1至图3以及图5,固定单元2包括固定架,固定架设有安装孔,安装孔用于安装内转子组件210的外圈。本实施例中,固定架的形状、大小和材料的设计,使得其在结构满足在传导压力的基础上,能够避开内转子组件210高速运转下整个系统的模态共振点,使力矩检测模块3检测得到的力矩更为稳定。对此,可选地,固定架为圆环结构。可选地,请参见图6,内转子组件测试系统300还可以包括第二弹性密封件4,第二弹性密封件4设于固定架和内转子组件210的外圈之间,第二弹性密封件4用于防止内转子组件210的外圈相对固定架转动。第二弹性密封件4可以为O型圈,也可以为其他形状的弹性密封件。第二弹性密封件4与固定架的配合方式可以根据需要设计,可选地,固定架设有第二凹槽,第二弹性密封件4嵌设在第二凹槽中。当然,第二弹性密封件4与固定架的配合方式也可以设置为其他。本实施例中,O型圈的外圈嵌设在第二凹槽中,O型圈的内圈套设内转子组件210的外圈,从而避免在内转子组件210转动过程中,内转子组件210的外圈相对固定架产生径向滑动,有效保护内转子组件210;同时,O型圈与第二凹槽的可拆卸配合亦可方便将内转子组件210与固定架分开,满足测试所需。
请结合图1和图2,以及图5,力矩检测模块3可以包括设于固定单元2上的传力部件31和与传力部件31配合的力传感器32。本实施例中,力矩根据内转子组件210转动时,力传感器32获取的电信号确定。
固定架、传力部件31的形状、大小和材料的设计,使得其在结构满足在传导压力的基础上,能够避开内转子组件210高速运转下整个系统的模态共振点,使力传感器32检测得到的压力更为稳定。对此,可选地,固定架、传力部件31为不锈钢材质,且固定架和传力部件31的总重量为内转子组件210的重量的三倍。可选地,传力部件31和力传感器32之间设有减震结构。通过减震结构转接传力部件31和力传感器32,从而减轻传力部件31和力传感器32之间的振动,例如,减震结构可以包括设于传力部件31上与力传感器32接触的表面的第一减震结构和/或设于力传感器32上与传力部件31接触的表面的第二减震结构。本实施例的减震结构可以设计为减震垫,也可以设计为其他能够实现减震的结构。可选地,传力部件31包括传力块,传力块的底部与力传感器32接触配合。
进一步可选地,在一些实施例中,内转子组件测试系统300还可以包括座体5和连接件6,驱动单元1固定连接在座体5上。连接件6的一端固定在座体5上,连接 件6的另一端连接力传感器32。将力传感器32固定在座体5上,使得内转子组件210转动过程中,力传感器32检测到的压力更加稳定。
如图7所示,力传感器32检测的电信号为F(即内转子组件210转动时施加于固定架的压力,该压力不包括传力部件31的重力),力臂为L(内转子组件210的内圈轴心至F的距离),则内转子组件210转动时施加于固定单元2的力矩M=F*L。
本发明实施例中,一个驱动单元1、一个固定单元2和一个力矩检测模块3组成一个测试模组310,内转子组件测试系统300可以包括一个或多个测试模组310,从而满足不同的测试需求。
在一些实施例中,为满足多个内转子组件210的测试,请参见图8,内转子组件测试系统300包括多个测试模组310。其中,同一时刻,内转子组件测试系统300能够通过多个测试模组310对应检测多个内转子组件210转动时施加于对应的固定单元2的力矩。本实施例中,当所有被测试的内转子组件210转动时施加在对应的固定单元2的力矩均小于预设力矩阈值时,系统功耗在安全范围内;否则,系统功耗不满足需求。
进一步可选地,在一些实施例中,请参见图9,内转子组件测试系统300还包括控制器7,控制器7与每个测试模组310的驱动单元1分别电耦合连接,也即,本实施例通过一个控制器7控制多个驱动单元1,节省了硬件成本。
本实施例中,控制器7用于根据外部设备发送的控制信号,控制每个测试模组310的驱动单元1工作,以控制对应的内转子组件210的内圈相对于外圈转动。例如,驱动单元1包括电机,控制器7可以将各驱动单元1对应的控制信号转换成PWM信号,通过PWM信号控制对应的电机转动,以驱动对应的内转子组件210的内圈相对于外圈转动。控制信号可以由外部设备发送,如由用户操作外部设备,以发送控制信号至控制器7。外部设备可以通过网口与控制器7通信,也可以通过其他类型的接口与控制器7通信。
请再次参见图9,内转子组件测试系统300还可以包括信号放大器8、信号采集模块9以及通信接口10。其中,信号放大器8的输入端与力传感器32电耦合连接,信号采集模块9的输入端与信号放大器8的输出端电耦合连接,采集模块的输出端与通信接口10电耦合连接,通信接口10能够与外部设备通信。力传感器32获取的电信号经信号放大器8进行放大后,传输至信号采集模块9,由信号采集模块9通过通信接口10将放大后的电信号发送至外部设备,以使得外部设备根据放大后的电信号确定内转子组件210转动时施加于固定单元2的力矩。本实施例的力传感器32检测的电信号为电压信号,信号放大器8为电压放大器。为满足多个内转子组件210的力矩的同时采集,信号采集模块9可用于采集多个通道的信号。通信接口10可以为RS232串口,也可以为其他通信接口10。
应当理解的是,若力传感器32检测的电信号的大小在外部设备的采集能力范围内,且外部设备自带数据采集能量,力传感器32检测的电信号则无需经过信号放大和信号采集等处理后再发送给外部设备,而是由力传感器32将其检测的电信号直接传输给外部设备。外部设备可以独立于内转子组件测试系统300,也可以为内转子组件测试系统300的一部分,例如,外部设备为内转子组件测试系统300的控制模块。
图10是本发明一实施例中的内转子组件测试系统300的测试方法流程图;请参见图10,本发明实施例的内转子组件测试系统300的测试方法可以包括步骤S1001~S1004。
其中,在S1001中,控制驱动单元1,驱动内转子组件210的内圈相对于外圈转动。
本实施例中,通过用户操作外部设备,外部设备根据用户操作发送控制指令至控制器7,以控制对应的驱动单元1工作,从而驱动内转子组件210的内圈相对于外圈转动。
在S1002中,获取力传感器32检测的电信号。
在一实施例中,电信号的传输链路包括:力传感器32->信号放大器8->信号采集卡->处理器。
由于力传感器32的检测精度等影响,若仅以内转子组件210在某一时间点的摩擦力矩来判断内转子组件210的力矩是否合格,可能会存在误判。对于此,可以通过监测内转子组件210在一段时间内的力矩的情况,以确保判断的准确性。例如,在一些实施例中,获取力传感器32在预设时间段内检测的不同时刻的电信号。比如,可以获取力传感器32在t0时长内检测的不同时刻的电信号。
在S1003中,根据电信号,确定内转子组件210转动时施加于固定单元2的力矩。
为了提高判断力矩是否满足需求的准确性,沿用上述获取力传感器32在预设时间段内检测的不同时刻的电信号的实施例,在根据电信号,确定内转子组件210转动时施加于固定单元2的力矩,可以包括如下步骤(1)~(3)。
其中,在步骤(1)中,根据不同时刻的电信号,确定在对应时刻固定架传递给传力部件31的压力。
也即,根据不同时刻的电信号,确定在对应时刻的F。
在步骤(2)中,根据传力部件31的压力以及内转子组件210的内圈轴心至该压力的距离,确定对应时刻的力矩。
力矩计算公式可以参见上述实施例,此处不再赘述。
在步骤(3)中,根据不同时刻的力矩,确定力矩平均值。
例如,t0时长内,在t1时刻,力传感器32检测的电信号为F1;在t2时刻,力传感器32检测的电信号为F2;在t3时刻,力传感器32检测的电信号为F3。力矩平均值=(F1*L+F2*L+F3*L)/3。
在S1004中,当力矩小于预设力矩阈值时,确定内转子组件210的力矩合格。
内转子组件210的力矩合格表明内转子组件210的摩擦力矩满足系统功耗需求。
当通过多个测试模组310测试多个内转子组件210时,每个内转子组件210转动时施加于对应固定单元2的力矩均小于预设力矩阈值,表明系统功耗在安全范围内;否则,表明系统功耗不满足需求。
进一步地,当任一内转子组件210的力矩大于或等于预设力矩阈值时,发送停止信号至控制器7,以关闭内转子组件测试系统300,并可以进一步提醒用户调整力矩大于或等于预设力矩阈值的内转子组件210的安装位置等,在调整完后,可重新开启内转子组件测试系统300。
为了确保预处理结果的准确性,沿用上述获取力传感器32在预设时间段内检测的不同时刻的电信号的实施例,当力矩平均值小于预设力矩阈值时,确定内转子组件210的力矩合格;当力矩平均值大于或等于预设力矩阈值时,确定内转子组件210的力矩不合格。
进一步地,请参见图11,当连续多次(N次)确定的力矩平均值均小于预设力矩阈值(A1)时,确定内转子组件210的力矩合格。其中,预设力矩阈值的大小、N的大小可以根据需要设置。本实施例中,连续多次(N次)确定的力矩平均值均小于预设力矩阈值(A1)时,发送停止信号至控制器7,关闭内转子组件测试系统300。
请再次参见图8,在一些实施例中,内转子组件测试系统300还包括光源20和光接收器30,每个测试模组310还包括固定在内转子组件210的内圈上的棱镜40。驱动单元1包括中空的旋转部件,如驱动单元1包括电机时,旋转部件包括电机的转轴11;驱动单元1包括固定轴12、线圈13和磁铁14时,旋转部件包括磁铁14,并且磁铁14的旋转轴与固定轴12的轴线重合,固定轴12中空。本实施例中,内转子组件210的内圈套设在旋转部件上,棱镜40盖设旋转部件的一端。多个测试模组310的旋转部件的旋转轴共轴,如图8所示,多个测试模组310的旋转部件的旋转轴与R重合。
光源20设于多个测试模组310的旋转部件外侧的一端,光接收器30设于多个测试模组310的旋转部件外侧的另一端,且多个测试模组310的旋转部件的旋转轴穿过光源20和光接收器30。在本实施例中,光源20发射的光线依次穿过多个旋转部件后,由光接收器30接收,以根据光接收器30的检测信号确定光线轨迹。光接收器30与光源20的配合,能够反映最终的光线轨迹是否满足测试要求。
其中,由于棱镜40是随内转子组件210的内圈的转动而转动,故光源20发射的 光线在穿过每个棱镜40时,光线的运动轨迹会发生改变。可以通过设置各棱镜40的转速和/或转动方向,使得光线经过各棱镜40后的运动轨迹满足需求,使得最终的光线轨迹的形状满足测试需求。
本实施例中,多个测试模组310的棱镜40均朝向光接收器30设置,棱镜40可以为楔形棱镜,也可以为其他形状的棱镜。
可选地,光源20和光接收器30均固定在座体5上,并且,座体5还包括一透光孔,透光孔与光源20对准,光源20发射的光线经透光孔进入最靠近光源20排布的测试模组310的中空空间并依次向后传输。光源20可以为激光光源,也可以为其他类型的光源。光接收器30的类型与光源3的类型相匹配即可,本发明对光接收器30的类型不作具体限定。
例如,如图8所示,测试模组310包括三个。为方便表述,由光源20至光接收器30的排布方向将三个测试模组310依次称作测试模组A、测试模组B、测试模组C,光源20发射的光线的运动路径包括:测试模组A的旋转部件->测试模组A的棱镜40->测试模组B的旋转部件->测试模组B的棱镜40->测试模组C的旋转部件->测试模组C的棱镜40->光接收器30。
可选地,内转子组件测试系统300工作时,靠近光源20排布的两个测试模组310的旋转组件等速反向旋转,远离光源20排布的测试模组310的旋转组件的转速与靠近光源20排布的两个测试模组310的旋转组件的转速不相等,以使得光线轨迹的形状呈一圆环形光斑。
进一步可选地,测试模组310还包括安装在旋转部件上的测速传感器50,通过测速传感器50检测旋转部件的转速和/或转向。可选地,测速传感器50包括套设固定在旋转部件上的光电码盘以及与该光电码盘配合的发射光源和接收器,发射光源和接收器位于光电码盘的两侧。测速传感器50也可以选择其他类型,不限于码盘。
本发明实施例还提供一种可移动平台,请参见图12,所述可移动平台可以包括平台主体100、安装在平台主体100上的雷达200和上述实施例的内转子组件测试系统300。其中,雷达200包括内转子组件210,内转子组件210具有能够相对转动的内圈和外圈。
可选地,内转子组件210包括轴承,内转子组件210的内圈为轴承的内圈,内转子组件210的外圈为轴承的外圈。
本实施例的可移动平台可以为无人车、无人飞行器、无人船等。以可移动平台为无人飞行器如无人机为例,平台主体100为无人机的机身。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之 间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的雷达测试系统和具有该雷达测试系统的可移动平台进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (27)

  1. 一种内转子组件测试系统,所述内转子组件具有能够相对转动的内圈和外圈,其特征在于,所述内转子组件测试系统包括:
    驱动单元,用于驱动所述内转子组件的内圈相对于外圈转动;
    固定单元,用于固定所述内转子组件的外圈;
    力矩检测模块,用于检测所述内转子组件转动时施加于所述固定单元的力矩。
  2. 根据权利要求1所述的内转子组件测试系统,其特征在于,所述驱动单元包括电机,所述电机包括转轴,所述转轴与所述内转子组件的内圈固定连接。
  3. 根据权利要求2所述的内转子组件测试系统,其特征在于,所述电机为转速闭环控制的电机。
  4. 根据权利要求2所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括第一弹性密封件,所述第一弹性密封件设于所述转轴和所述内转子组件的内圈之间,用于防止所述内转子组件的内圈相对所述转轴转动。
  5. 根据权利要求4所述的内转子组件测试系统,其特征在于,所述第一弹性密封件为O型圈。
  6. 根据权利要求4所述的内转子组件测试系统,其特征在于,所述转轴设有第一凹槽,所述第一弹性密封件嵌设在所述第一凹槽中。
  7. 根据权利要求1所述的内转子组件测试系统,其特征在于,所述驱动单元包括固定轴、套设在所述固定轴上的磁铁和与所述磁铁配合的线圈,所述磁铁与所述内转子组件的内圈固定连接;
    所述线圈上电,带动所述磁铁转动,以带动所述内转子组件的内圈转动。
  8. 根据权利要求1所述的内转子组件测试系统,其特征在于,所述固定单元包括固定架,所述固定架设有安装孔,所述安装孔用于安装所述内转子组件的外圈。
  9. 根据权利要求8所述的内转子组件测试系统,其特征在于,所述固定架为圆环结构。
  10. 根据权利要求8所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括第二弹性密封件,所述第二弹性密封件设于所述固定架和所述内转子组件的外圈之间,用于防止所述内转子组件的外圈相对所述固定架转动。
  11. 根据权利要求10所述的内转子组件测试系统,其特征在于,所述第二弹性密封件为O型圈。
  12. 根据权利要求10所述的内转子组件测试系统,其特征在于,所述固定架设有第二凹槽,所述第二弹性密封件嵌设在所述第二凹槽中。
  13. 根据权利要求1或7所述的内转子组件测试系统,其特征在于,所述力矩检测模块包括设于所述固定单元上的传力部件和与所述传力部件配合的力传感器;
    所述力矩根据所述内转子组件转动时,所述力传感器获取的电信号确定。
  14. 根据权利要求13所述的内转子组件测试系统,其特征在于,所述固定单元、 所述传力部件为不锈钢材质,且所述固定单元和所述传力部件的总重量为所述内转子组件的重量的三倍。
  15. 根据权利要求13所述的内转子组件测试系统,其特征在于,所述传力部件和所述力传感器之间设有减震结构。
  16. 根据权利要求13所述的内转子组件测试系统,其特征在于,所述传力部件包括传力块,所述传力块的底部与所述力传感器接触配合。
  17. 根据权利要求13所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括座体和连接件,所述驱动单元固定连接在所述座体上;
    所述连接件的一端固定在所述座体上,另一端连接所述力传感器。
  18. 根据权利要求1所述的内转子组件测试系统,其特征在于,一个所述驱动单元、一个所述固定单元和一个所述力矩检测模块组成一个测试模组;
    所述内转子组件测试系统包括多个所述测试模组;
    同一时刻,所述内转子组件测试系统能够通过多个所述测试模组对应检测多个内转子组件转动时施加于对应的固定单元的力矩。
  19. 根据权利要求18所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括控制器,所述控制器与每个所述述测试模组的驱动单元分别电耦合连接;
    所述控制器用于根据外部设备发送的控制信号,控制每个所述述测试模组的驱动单元工作,以控制对应的内转子组件的内圈相对于外圈转动。
  20. 根据权利要求1或18所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括信号放大器、信号采集模块以及通信接口;
    其中,所述信号放大器的输入端与所述力矩检测模块电耦合连接,所述信号采集模块的输入端与所述信号放大器的输出端电耦合连接,所述采集模块的输出端与所述通信接口电耦合连接,所述通信接口能够与外部设备通信;
    所述力矩检测模块获取的电信号经所述信号放大器进行放大后,传输至所述信号采集模块,由所述信号采集模块通过所述通信接口将放大后的电信号发送至外部设备,以使得所述外部设备根据所述放大后的电信号确定所述内转子组件转动时施加于所述固定单元的力矩。
  21. 根据权利要求18所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统还包括光源和光接收器;
    每个所述测试模组还包括固定在所述内转子组件的内圈上的棱镜;
    所述驱动单元包括中空的旋转部件,所述内转子组件的内圈套设在所述旋转部件上,所述棱镜盖设所述旋转部件的一端;
    多个所述测试模组的旋转部件的旋转轴共轴,所述光源设于多个所述测试模组的旋转部件外侧的一端,所述光接收器设于多个所述测试模组的旋转部件外侧的另一端,且多个所述测试模组的旋转部件的旋转轴穿过所述光源和所述光接收器;
    所述光源发射的光线依次穿过多个所述旋转部件后,由所述光接收器接收,以根据所述光接收器的检测信号确定光线轨迹。
  22. 根据权利要求21所述的内转子组件测试系统,其特征在于,所述测试模组包括三个。
  23. 根据权利要求22所述的内转子组件测试系统,其特征在于,所述内转子组件测试系统工作时,靠近所述光源排布的两个测试模组的旋转组件等速反向旋转,远离所述光源排布的测试模组的旋转组件的转速与靠近所述光源排布的两个测试模组的旋转组件的转速不相等。
  24. 根据权利要求23所述的内转子组件测试系统,其特征在于,所述测试模组还包括安装在旋转部件上的测速传感器。
  25. 根据权利要求21所述的内转子组件测试系统,其特征在于,所述棱镜为楔形棱镜;和/或,所述光源为激光光源。
  26. 一种可移动平台,其特征在于,所述可移动平台包括:
    平台主体;
    安装在所述平台主体上的雷达,所述雷达包括内转子组件,所述内转子组件具有能够相对转动的内圈和外圈;以及
    权利要求1至25任一项所述的内转子组件测试系统。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述内转子组件包括轴承,所述内转子组件的内圈为所述轴承的内圈,所述内转子组件的外圈为所述轴承的外圈。
PCT/CN2019/111309 2019-10-15 2019-10-15 内转子组件测试系统以及可移动平台 WO2021072653A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980033202.7A CN114270163A (zh) 2019-10-15 2019-10-15 内转子组件测试系统以及可移动平台
PCT/CN2019/111309 WO2021072653A1 (zh) 2019-10-15 2019-10-15 内转子组件测试系统以及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111309 WO2021072653A1 (zh) 2019-10-15 2019-10-15 内转子组件测试系统以及可移动平台

Publications (1)

Publication Number Publication Date
WO2021072653A1 true WO2021072653A1 (zh) 2021-04-22

Family

ID=75538180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111309 WO2021072653A1 (zh) 2019-10-15 2019-10-15 内转子组件测试系统以及可移动平台

Country Status (2)

Country Link
CN (1) CN114270163A (zh)
WO (1) WO2021072653A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532859A (zh) * 2021-08-27 2021-10-22 中浙高铁轴承有限公司 一种发动机输入端轴系轴承试验机及试验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884483A (zh) * 2014-03-26 2014-06-25 东北大学 一种薄壁圆柱壳体构件振动测试系统及测试方法
WO2018210512A1 (de) * 2017-05-17 2018-11-22 Zf Friedrichshafen Ag Prüfstandanordnung zur prüfung einer lamellenkupplung
CN109632161A (zh) * 2018-12-04 2019-04-16 上海大学 一种滚动轴承摩擦力矩测试机
CN110031223A (zh) * 2019-04-15 2019-07-19 浙江省机电产品质量检测所 一种轴承摩擦力矩测量装置
CN110095218A (zh) * 2019-04-26 2019-08-06 杭州电子科技大学 测量滚动轴承摩擦力矩的电磁驱动装置及其测量方法
CN110261106A (zh) * 2019-06-06 2019-09-20 重庆长江轴承股份有限公司 一种轮毂轴承的扭矩检测装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162668A (ja) * 2005-12-17 2007-06-28 Hitachi Ltd ポンプ装置およびパワーステアリング装置
CN100478663C (zh) * 2007-05-14 2009-04-15 中国科学院上海技术物理研究所 一种测量轴承摩擦力矩的测试装置
CN100529699C (zh) * 2007-06-14 2009-08-19 上海交通大学 微型轴承摩擦力矩测量仪
JP2009223133A (ja) * 2008-03-18 2009-10-01 Fujitsu Ltd プリズム駆動機構
DE102009051310A1 (de) * 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Befestigungsanordnung eines Nockenwellenverstellers
WO2011104163A2 (de) * 2010-02-26 2011-09-01 Mahle International Gmbh Pendelschiebermaschine
US11353084B2 (en) * 2013-03-15 2022-06-07 Clearmotion Acquisition I Llc Rotary actuator driven vibration isolation
DE102015000192B4 (de) * 2015-01-15 2023-07-20 Aventics Gmbh Brems-Rasteinheit für Kommandogeber
CN106405828B (zh) * 2016-11-21 2018-12-04 同济大学 复合型光束粗精耦合扫描装置
CN108344534B (zh) * 2018-02-07 2020-04-14 哈尔滨工业大学 一种复合载荷下轴承摩擦力矩测试装置和方法
CN110095217B (zh) * 2019-04-26 2020-09-22 杭州电子科技大学 一种测量滚动轴承摩擦力矩的装置及方法
CN110131150B (zh) * 2019-05-09 2020-11-10 杭州电子科技大学 一种机油泵瞬时摩擦力矩的试验系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884483A (zh) * 2014-03-26 2014-06-25 东北大学 一种薄壁圆柱壳体构件振动测试系统及测试方法
WO2018210512A1 (de) * 2017-05-17 2018-11-22 Zf Friedrichshafen Ag Prüfstandanordnung zur prüfung einer lamellenkupplung
CN109632161A (zh) * 2018-12-04 2019-04-16 上海大学 一种滚动轴承摩擦力矩测试机
CN110031223A (zh) * 2019-04-15 2019-07-19 浙江省机电产品质量检测所 一种轴承摩擦力矩测量装置
CN110095218A (zh) * 2019-04-26 2019-08-06 杭州电子科技大学 测量滚动轴承摩擦力矩的电磁驱动装置及其测量方法
CN110261106A (zh) * 2019-06-06 2019-09-20 重庆长江轴承股份有限公司 一种轮毂轴承的扭矩检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532859A (zh) * 2021-08-27 2021-10-22 中浙高铁轴承有限公司 一种发动机输入端轴系轴承试验机及试验方法

Also Published As

Publication number Publication date
CN114270163A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN107664549B (zh) 机械密封端面摩擦扭矩精确测量装置
CN101762353B (zh) Cvt轴向力测试装置
CN108760631B (zh) 一种具有温度自适应功能的光学窗口
WO2021072653A1 (zh) 内转子组件测试系统以及可移动平台
JP2014153297A (ja) レーダー装置の空中線ユニット、及び摩擦体の磨耗量検出方法
CN102967446B (zh) 一种led性能测试箱、标定方法及性能测试方法
CN106918756B (zh) 导电滑环专用跑合测试装置
CN104006153B (zh) 一种自动变速器离合控制装置
CN107144427B (zh) 蜗轮蜗杆驱动器寿命测试装置
CN110562481A (zh) 一种飞行器动力测试装置
KR20220037249A (ko) 자가발전하는 롤러 회전 감지 장치가 구비된 롤러 및 이를 포함하는 롤러 회전 감지 시스템
JP7348914B2 (ja) 枢動体を備え、枢動体上のアクセサリーに電力を提供することができる硬度試験機
CN102297636B (zh) 一种用于火炮身管膛线缠度测量的装置
US8171805B2 (en) Non-contact torque determination system and method for a non-mechanically coupled rotating system
WO2020034338A1 (zh) 轴承动态特性试验机
CN104020315A (zh) 一种转速传感器信号检验装置
CN105300639A (zh) 一种主桨叶疲劳试验台激振力施加装置
CN208353115U (zh) 一种气动隔膜泵电机
CN210664550U (zh) 一种磁浮轴承传感器动态调试装置
KR101229449B1 (ko) 로터리 엔코더
CN110954163B (zh) 基于内置式温湿度传感器机器人巡检电缆温湿度测量系统
CN209373108U (zh) 一种测距装置
CN106404183A (zh) 一种测试红外传感器的设备
Frankenstein et al. Lightning safe rotor blade monitoring using an optical power supply for ultrasonic techniques
CN108502530B (zh) 一种搬运机械手用光电定位器及其定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948968

Country of ref document: EP

Kind code of ref document: A1