WO2021072644A1 - 通信方法、设备及移动终端 - Google Patents

通信方法、设备及移动终端 Download PDF

Info

Publication number
WO2021072644A1
WO2021072644A1 PCT/CN2019/111273 CN2019111273W WO2021072644A1 WO 2021072644 A1 WO2021072644 A1 WO 2021072644A1 CN 2019111273 W CN2019111273 W CN 2019111273W WO 2021072644 A1 WO2021072644 A1 WO 2021072644A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
uplink channel
occupied
mobile terminal
allocation ratio
Prior art date
Application number
PCT/CN2019/111273
Other languages
English (en)
French (fr)
Inventor
饶雄斌
戴劲
但瑞
钱彬
毕明勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/111273 priority Critical patent/WO2021072644A1/zh
Priority to CN201980034380.1A priority patent/CN112205052A/zh
Publication of WO2021072644A1 publication Critical patent/WO2021072644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a communication method, equipment, and mobile terminal.
  • the unmanned aerial vehicle (UAV) and the ground remote control device (Remote Control, RC for short) communicate in a duplex communication mode.
  • the downlink channel is the wireless channel from the drone to the ground remote control device.
  • the uplink channel is the wireless channel from the ground remote control equipment to the UAV.
  • TDD Time Division Duplexing
  • the time slice is divided into a sequence of N time slots. In every N time slots, m time slots are allocated to the uplink. Communication, and the remaining Nm time slots are allocated to downlink communication.
  • TDD UAV wireless communication system uses a fixed uplink and downlink time allocation ratio. For example, SDR products use a 4:1 time allocation relationship (the cycle is 5 time slots, of which 4 are allocated to the downlink, and 1 Assigned to the upstream).
  • fixed uplink and downlink time allocation often cannot meet the application requirements of multiple scenarios.
  • the embodiments of the present application provide a communication method, equipment, and mobile terminal to overcome at least one of the above-mentioned problems.
  • an embodiment of the present application provides a communication method, including:
  • the reference terminal device is allowed to communicate with the mobile terminal.
  • an embodiment of the present application provides a communication device including a memory, a processor, and computer-executable instructions stored in the memory and executable on the processor, and the processor executes the computer-executable instructions When implementing the following steps:
  • the reference terminal device is allowed to communicate with the mobile terminal.
  • an embodiment of the present application provides a mobile terminal, including:
  • a mobile terminal body and the communication device described in the above second aspect and various possible designs of the second aspect, the communication device being installed on the mobile terminal body.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer-executable instructions.
  • the processor executes the computer-executable instructions, the first aspect and the first aspect described above are implemented.
  • the method obtains measurement parameters and adjusts the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the measurement parameters to form the adjusted time
  • the reference terminal device and the mobile terminal are allowed to communicate, so that the time slot occupied by the uplink and downlink channels between the reference terminal device and the mobile terminal changes adaptively with the measurement parameters.
  • the performance of the uplink and downlink channels is maximized to achieve the best overall state, meet the application requirements of multiple scenarios, and improve the stability of the entire uplink and downlink communication.
  • FIG. 1 is a schematic diagram of uplink and downlink channels provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of a communication system architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a mobile terminal provided by an embodiment of the application.
  • TDD is the realization of uplink and downlink duplex communication through time allocation.
  • the time slice is divided into a sequence of N time slots. In every N time slots, there are m time slots.
  • For uplink communication the remaining Nm time slots are allocated for downlink communication.
  • TDD's wireless communication system for drones uses a fixed uplink and downlink time allocation ratio.
  • SDR products use a 4:1 time allocation relationship (the cycle is 5 time slots, of which 4 One is allocated to the downlink and one is allocated to the uplink).
  • fixed uplink and downlink time allocation often cannot meet the application requirements of multiple scenarios.
  • this embodiment provides a communication method.
  • the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal is adjusted to form an adjusted The time slot allocation ratio, and then the reference terminal device and the mobile terminal are allowed to communicate with the mobile terminal according to the adjusted time slot allocation ratio.
  • the performance of the uplink and downlink channels is maximized to achieve the best overall state and meet multiple scenarios The application requirements for improving the stability of the entire uplink and downlink communication.
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application. As shown in FIG. 2, it includes: a first sensor 201, a second sensor 202 and a processor 203. Wherein, the first sensor 201 is set on the reference terminal device, and the first sensor 201 can obtain corresponding measurement parameters. The second sensor 202 is arranged on the mobile terminal, and the second sensor 202 can obtain corresponding measurement parameters. The processor 203 can combine the measurement parameters obtained by the sensor 201 and the second sensor 202 to adjust the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal to form an adjusted time slot allocation ratio, and follow the adjusted time slot allocation ratio. The time slot allocation ratio allows the reference terminal device to communicate with the mobile terminal.
  • the processor 203 may be a vehicle computing platform, an unmanned aerial vehicle processor, or the like. This embodiment does not particularly limit the implementation of the processor 203, as long as the processor 203 can perform the above-mentioned corresponding functions.
  • the foregoing architecture is only an exemplary system architecture block diagram. During specific implementation, it can be set according to application requirements.
  • the foregoing communication system may further include a receiving device, a display device, and the like.
  • the receiving device can be an input/output interface or a communication interface.
  • the receiving device may receive a user's instruction, for example, the receiving device may be an input interface connected to a mouse.
  • the display device can be used to display the adjusted time slot allocation ratio.
  • the display device may also be a touch screen, which is used to receive user instructions while displaying the adjusted time slot allocation ratio, so as to realize interaction with users and meet different application requirements.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • the execution subject of this embodiment may be the processor in the embodiment shown in FIG. 2. As shown in FIG. 3, the method includes:
  • the obtaining measurement parameters includes:
  • said obtaining measurement parameters further includes:
  • the processor may obtain the interference value of the environment in which the reference terminal device is located through the first sensor set on the reference terminal device, and the energy value of the signal sent by the mobile terminal received by the reference terminal device;
  • the second sensor obtains the interference value of the environment in which the mobile terminal is located, and the energy value of the signal sent by the reference terminal device received by the mobile terminal.
  • said obtaining measurement parameters may also include:
  • the reference terminal device obtains the reference terminal measurement parameters and transmits them to the mobile terminal.
  • the mobile terminal obtains the mobile terminal measurement parameters.
  • the reference terminal device obtains the interference value of the environment in which the reference terminal device is located through the above-mentioned first sensor, the energy value of the signal sent by the mobile terminal received by the reference terminal device, and transmits the acquired information to the mobile terminal.
  • the mobile terminal obtains the interference value of the environment in which the mobile terminal is located through the above-mentioned second sensor, and the energy value of the signal sent by the reference terminal device received by the mobile terminal.
  • the mobile terminal can quickly adjust the quality of its own transmission data, and can more timely reflect the adjustment in the transmission process of the downlink channel, and send it to the reference terminal together with the downlink data
  • the device can adjust the time slot allocation ratio in real time and maintain the integrity of the link.
  • the reference terminal device includes at least one of a remote control device, a real-time kinematic (RTK) reference station, and an upper computer
  • the mobile terminal includes: a drone, an unmanned vehicle, and At least one of the unmanned ships.
  • the types of the specific reference terminal device and mobile device can be set according to actual conditions.
  • the reference terminal device is a remote control device and the mobile terminal is a drone.
  • RTK is a carrier phase differential technology, which is a differential technology that processes the carrier phase observations of two measuring stations in real time. The carrier phase collected by the reference station is sent to the user receiver to calculate the difference and solve the coordinates.
  • the time slot allocation ratio may include N time slots as a cycle, the uplink channel is allocated 1 time slot, and the downlink channel is allocated (N-1) Time slots.
  • N is a positive number, and its value can be set according to actual conditions. With this setting, it is possible to better extend the downlink data transmission bandwidth while ensuring the integrity of the communication between the mobile terminal and the reference terminal device.
  • the time slot allocated by the uplink channel and the time slot allocated by the downlink channel can also be set according to the actual situation. For example, as shown in Figure 4, the uplink channel is allocated s time slots, and the downlink channel is allocated with s time slots.
  • Channel allocation (Ns) time slots N is a positive number greater than 0, and s is a positive number less than N.
  • the transmission data of the downlink channel includes at least one of image transmission data, audio data, measurement data, and status information of the mobile terminal, and the transmission data of the uplink channel includes flight control commands, RTK, audio data, and measurement data. At least one of them.
  • the specific uplink and downlink channel transmission data can be determined according to actual application scenarios to meet the requirements of multiple application scenarios.
  • the adjusting the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the measurement parameter includes:
  • the time slot allocation ratio is adjusted according to the time slot allocation strategy.
  • the above-mentioned time slot allocation strategy may be determined according to the above-mentioned measurement parameters.
  • the adjusting the time slot allocation ratio according to the time slot allocation strategy according to the measurement parameter includes:
  • the obtaining the first transmission rate through the measurement parameter includes:
  • the first transmission rate is obtained according to the signal-to-noise ratio, modulation and coding strategy, and channel preset occupied time slot.
  • the signal-to-noise ratio includes the signal-to-noise ratio of the uplink and downlink channels.
  • the signal-to-noise ratio of the downlink channel is determined according to the energy value of the signal sent by the mobile terminal received by the reference terminal device and the interference value of the environment in which the reference terminal device is located.
  • the signal-to-noise ratio of the uplink channel is determined according to the energy value of the signal sent by the reference terminal device received by the mobile terminal and the interference value of the environment in which the mobile terminal is located.
  • the first transmission rate includes the first transmission rate of the uplink channel and the downlink channel.
  • the modulation and coding strategy can be set according to the actual situation; exemplary, the modulation and coding strategy can be obtained offline through empirical values, or the modulation and coding strategy can be obtained through offline training.
  • the foregoing obtaining the first transmission rate according to the signal-to-noise ratio, modulation and coding strategy, and channel preset occupied time slot may include:
  • the downlink of the mobile terminal occupies N-1 time slots, and the first transmission rate of the downlink channel is determined according to the above-mentioned MCS gear and the time slots occupied by the downlink.
  • MCS Modulation and Coding Scheme
  • the adjusting the time slot allocation ratio according to the first transmission rate includes:
  • the first transmission rate of the downlink channel and the first transmission rate of the uplink channel and the maximum communication bandwidth of the downlink channel, the minimum communication bandwidth of the uplink channel, and the maximum communication of the uplink channel At least one of the bandwidths, adjusting the time slot allocation ratio.
  • the maximum communication bandwidth of the aforementioned downlink channel can be understood as including the maximum communication bandwidth required by at least one of the downlink image transmission and audio data of the drone.
  • the minimum communication bandwidth of the above uplink channel can be understood as including at least one of the various V1 command packages required to support drones including flight control command packages, RTK, audio data, and software development kit (SDK).
  • the minimum required communication bandwidth can be understood as including the maximum required communication bandwidth required to support at least one of various V1 command packets such as flight control command packets, RTK, audio data, SDK, etc. of the UAV.
  • the adjusting the time slot allocation ratio includes the first step:
  • the first communication bandwidth of the uplink channel is less than the minimum communication bandwidth of the uplink channel, increasing the time slot occupied by the uplink channel.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the first preset time slot may be set according to actual conditions, for example, the first preset time slot is 1 time slot.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the adjusted uplink channel may be the minimum value of the first occupied time slot and the second occupied time slot.
  • the uplink data transmission bandwidth cannot meet the demand due to strong external interference, it can adapt to the transmission time slot occupied by the uplink channel in the duplex communication in real time.
  • Sexual fine-tuning by adding the first preset time slot one or more times to meet the time slot required by the reference terminal device to send uplink data such as commands to the mobile terminal in advance.
  • the time slot occupied by the downlink channel is correspondingly reduced, and the downlink data of the mobile terminal to the reference terminal device will be compressed and transmitted or suspended or abandoned part of the data transmission.
  • the effect of reducing the disconnection of downlink data transmission can be correspondingly achieved, and the basic data exchange between the mobile terminal and the reference terminal device can be ensured.
  • adjusting the time slot allocation ratio may also include the second step:
  • the second communication bandwidth of the uplink channel is greater than or equal to the minimum communication bandwidth of the uplink channel, and the first communication bandwidth of the downlink channel is less than the maximum communication bandwidth of the downlink channel, reduce the amount occupied by the uplink channel Time slot.
  • the second preset time slot may be set according to actual conditions, for example, the second preset time slot is equal to the first preset time slot, specifically, the second preset time slot is 1 time slot.
  • the uplink time slot can meet the bandwidth requirement of the uplink remote control link even if the second preset time slot is reduced, and the downlink has not reached the maximum communication bandwidth, then consider increasing the proportion of the downlink (decrease The proportion of the uplink), thereby improving the quality of the downlink video and improving the user's downlink image transmission experience.
  • the reducing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is reduced.
  • the reducing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the adjusted uplink channel may be the maximum value of the third occupied time slot and the fourth occupied time slot.
  • the time slot occupied by the uplink channel can meet the minimum transmission demand of uplink data even if the second preset time slot is reduced.
  • the transmission time slot occupied by the uplink channel in duplex communication is adaptively fine-tuned in real time, and the second preset time slot is reduced one or more times to compress the reference terminal device to send to the mobile terminal.
  • the time slot required for upstream data such as commands.
  • the time slot occupied by the downlink channel increases accordingly, and the downlink data from the mobile terminal to the reference terminal device will be expanded or added accordingly, and the transmission of part of the data will be restarted.
  • the effect of reducing the disconnection of uplink data transmission can be correspondingly achieved, and the basic data exchange between the reference terminal device and the mobile terminal can be ensured.
  • adjusting the time slot allocation ratio may also include the third step:
  • the second communication bandwidth of the downlink channel is greater than or equal to the maximum communication bandwidth of the downlink channel, and the first communication bandwidth of the uplink channel is less than the maximum communication bandwidth of the uplink channel, increase the amount occupied by the uplink channel Time slot.
  • the third preset time slot can be set according to actual conditions, for example, the third preset time slot, the second preset time slot and the first preset time slot are equal, specifically, the third preset time slot is 1 time. Gap.
  • the downlink can still exceed the maximum bandwidth requirement of the downlink even when the third preset time slot is reduced; and the uplink communication link has not yet reached its maximum required bandwidth, consider increasing the uplink time slot Allocate, so as not to reduce the downlink video transmission experience, improve the user's uplink control and APP interactive command fluency.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the adjusted uplink channel may be the minimum value of the fifth occupied time slot and the sixth occupied time slot.
  • the time slot occupied by the downlink channel can be reduced even if the third preset time slot is reduced to meet the maximum transmission demand of downlink data.
  • the transmission time slot occupied by the uplink channel in duplex communication is adaptively fine-tuned in real time, and the reference terminal device is extended to the mobile terminal by adding a third preset time slot one or more times.
  • the time slot required for upstream data such as commands.
  • the time slot occupied by the uplink channel increases accordingly, and since the time slot occupied by the downlink channel can still meet the maximum transmission demand of downlink data at this time, the quality of the downlink data from the mobile terminal to the reference terminal device will not change or The drop is small.
  • the effect of reducing the disconnection of downlink data transmission can be correspondingly achieved, and the basic data exchange between the mobile terminal and the reference terminal device can be ensured.
  • adjusting the time slot allocation ratio may also include the fourth step:
  • the time slot allocation ratio of the uplink and downlink channels remains unchanged in the other cases.
  • the time slot allocation ratio of the uplink and downlink channels remains unchanged. change. That is, if the downlink can exceed the maximum bandwidth requirement of the downlink even when the third preset time slot is reduced; and the uplink communication link has reached its maximum required bandwidth, the time slots of the uplink and downlink channels are maintained The distribution ratio remains unchanged.
  • the frequency band where the uplink and downlink channels are located includes the ISM frequency band.
  • the ISM frequency band is a certain frequency band that various countries have mainly opened to industrial, scientific and medical institutions.
  • the reference terminal device can obtain the reference terminal measurement parameters and transmit them to the mobile terminal.
  • the mobile terminal adjusts the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the reference terminal measurement parameters to form an adjusted time slot Distribution ratio.
  • the mobile terminal can quickly adjust the quality of its own transmission data, and can more timely reflect the adjustment in the transmission process of the downlink channel, and send it to the reference terminal together with the downlink data
  • the device can adjust the time slot allocation ratio in real time and maintain the integrity of the link.
  • said forming the adjusted time slot allocation ratio includes:
  • the mobile terminal obtains the mobile terminal measurement parameters, and adjusts the time slot allocation ratio according to the reference terminal measurement parameters and the mobile terminal measurement parameters to form the adjusted time slot allocation ratio.
  • the method of adjusting the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal can refer to the above.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the mobile terminal notifies the reference terminal device to perform communication according to the adjusted time slot allocation ratio.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the adjusted time slot allocation ratio is notified.
  • the step of causing the reference terminal device to communicate with the mobile terminal according to the adjusted time slot allocation ratio includes:
  • the adjusted time slot allocation ratio be the time slot allocation ratio of the uplink and downlink channels in the next cycle.
  • the mobile terminal and the reference terminal device can perform uplink and downlink communication according to the adjusted time slot allocation ratio, so as to realize real-time adjustment of the time slot allocation ratio and improve the overall uplink and downlink communication stability.
  • the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal is adjusted to form an adjusted time slot allocation ratio, and then according to the adjusted time slot allocation ratio.
  • the time slot allocation ratio enables the reference end device to communicate with the mobile terminal, so that the time slot occupied by the uplink and downlink channels between the reference end device and the mobile terminal changes adaptively with the measurement parameters, thereby maximizing the balance between the uplink and downlink channels In order to achieve the best overall state, meet the application requirements of multiple scenarios, and improve the stability of the entire uplink and downlink communication.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of this application. This embodiment, on the basis of the embodiment in FIG. 3, describes in detail the specific implementation process of this embodiment. As shown in Figure 5, the method includes:
  • S503 Determine the first communication bandwidth of the uplink channel according to the first transmission rate of the uplink channel.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the time slot occupied by the uplink channel is adjusted.
  • S505 Reduce the time slot occupied by the uplink channel by a second preset time slot to obtain the reduced time slot occupied by the uplink channel.
  • S506 Determine the second transmission rate of the uplink channel according to the highest MCS gear transmitted by the uplink channel and the time slot occupied by the reduced uplink channel.
  • S507 Determine the second communication bandwidth of the uplink channel according to the second transmission rate of the uplink channel.
  • S508 Determine the first communication bandwidth of the downlink channel according to the first transmission rate of the foregoing downlink channel.
  • the reducing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is reduced.
  • the time slot occupied by the uplink channel is adjusted.
  • S510 Reduce the time slot occupied by the downlink channel by a third preset time slot to obtain the reduced time slot occupied by the downlink channel.
  • S511 Determine the second transmission rate of the downlink channel according to the highest MCS gear transmitted by the downlink channel and the time slot occupied by the reduced downlink channel.
  • S512 Determine the second communication bandwidth of the downlink channel according to the second transmission rate of the foregoing downlink channel.
  • S513 Determine the first communication bandwidth of the uplink channel according to the first transmission rate of the uplink channel.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the time slot occupied by the uplink channel is adjusted.
  • the reference terminal device is allowed to communicate with the mobile terminal according to the adjusted time slot allocation ratio.
  • the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal is adjusted to form an adjusted time slot allocation ratio, and then according to the adjusted time slot allocation ratio.
  • the time slot allocation ratio allows the reference terminal device to communicate with the mobile terminal.
  • the performance of the uplink and downlink channels is maximized to achieve the best overall state and meet multiple scenarios The application requirements for improving the stability of the entire uplink and downlink communication.
  • the uplink time slot can meet the bandwidth requirements of the uplink remote control link even when the second preset time slot is reduced, and the downlink has not reached the maximum communication bandwidth, consider increasing the proportion of the downlink (reducing the uplink The proportion of the channel), thereby improving the quality of the downlink video and improving the user’s downlink image transmission experience.
  • the downlink can still exceed the maximum bandwidth requirement of the downlink even when the third preset time slot is reduced; and the uplink communication link has not reached its maximum required bandwidth, consider increasing the uplink time slot allocation. Thereby, without reducing the downlink image transmission experience, the smoothness of user uplink control and APP interactive commands is improved.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application. For ease of description, only the parts related to the embodiments of the present application are shown. As shown in FIG. 6, the communication device 60 includes: an obtaining module 601, an adjustment module 602, and a communication module 603.
  • the obtaining module 601 is used to obtain measurement parameters.
  • the adjustment module 602 is configured to adjust the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the measurement parameters to form an adjusted time slot allocation ratio.
  • the communication module 603 is configured to enable the reference terminal device to communicate with the mobile terminal according to the adjusted time slot allocation ratio.
  • the obtaining module 601 is specifically used for:
  • the obtaining module 601 is specifically used for:
  • the adjustment module 602 is specifically used for:
  • the time slot allocation ratio is adjusted according to the time slot allocation strategy.
  • the adjusting module 602 adjusts the time slot allocation ratio according to the time slot allocation strategy according to the measurement parameters, including:
  • the first transmission rate includes the first transmission rate of the uplink channel and the downlink channel.
  • the adjusting module 602 adjusting the time slot allocation ratio according to the first transmission rate includes:
  • the first transmission rate of the downlink channel and the first transmission rate of the uplink channel and the maximum communication bandwidth of the downlink channel, the minimum communication bandwidth of the uplink channel, and the maximum communication of the uplink channel At least one of the bandwidths, adjusting the time slot allocation ratio.
  • the adjusting module 602 adjusting the time slot allocation ratio includes:
  • the first communication bandwidth of the uplink channel is lower than the minimum communication bandwidth of the uplink channel, increasing the time slot occupied by the uplink channel.
  • the adjustment module 602 increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the adjustment module 602 increasing the time slot occupied by the uplink channel includes:
  • the adjusting module 602 adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the uplink channel reaches the minimum communication bandwidth of the uplink channel, and the first communication bandwidth of the downlink channel is lower than the maximum communication bandwidth of the downlink channel, reduce the time occupied by the uplink channel Gap.
  • reducing the time slot occupied by the uplink channel by the adjustment module 602 includes:
  • the time slot occupied by the uplink channel is reduced.
  • reducing the time slot occupied by the uplink channel by the adjustment module 602 includes:
  • the adjusting module 602 adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the downlink channel reaches the maximum communication bandwidth of the downlink channel, and the first communication bandwidth of the uplink channel is lower than the maximum communication bandwidth of the uplink channel, increase the time occupied by the uplink channel Gap.
  • the adjustment module 602 increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the adjustment module 602 increasing the time slot occupied by the uplink channel includes:
  • the adjustment module 602 is also used for:
  • the time slot occupied by the uplink channel is maintained constant.
  • the adjustment module 602 is also used for:
  • the time slot occupied by the uplink channel is maintained constant.
  • the adjustment module 602 obtains the first transmission rate through the measurement parameter, including:
  • the first transmission rate is obtained according to the signal-to-noise ratio, modulation and coding strategy, and channel preset occupied time slot.
  • the signal-to-noise ratio includes the signal-to-noise ratios of uplink and downlink channels, and the signal-to-noise ratio of the downlink channel is based on the energy of the mobile terminal signal received by the reference terminal device. Value and the interference value of the environment where the reference terminal device is located; the signal-to-noise ratio of the uplink channel is determined based on the energy value of the signal sent by the reference terminal device received by the mobile terminal and the environment where the mobile terminal is located The interference value is determined.
  • the obtaining module 601 obtains the measurement parameters, including:
  • the reference terminal device obtains the reference terminal measurement parameters and transmits them to the mobile terminal.
  • the adjustment module 602 forms an adjusted time slot allocation ratio, including:
  • the mobile terminal obtains the mobile terminal measurement parameter, and adjusts the time slot allocation ratio according to the reference terminal measurement parameter and the mobile terminal measurement parameter to form the adjusted time slot allocation ratio.
  • the communication module 603 is further configured to notify the mobile terminal before the reference terminal device communicates with the mobile terminal according to the adjusted time slot allocation ratio The reference terminal device performs communication according to the adjusted time slot allocation ratio.
  • the communication module 603 is further configured to, before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, further includes:
  • the adjusted time slot allocation ratio is notified.
  • the communication module 603 allows the reference terminal device to communicate with the mobile terminal according to the adjusted time slot allocation ratio, including:
  • the adjusted time slot allocation ratio be the time slot allocation ratio of the uplink and downlink channels in the next cycle.
  • the time slot allocation ratio when the mobile terminal is initially connected to the reference terminal device, the time slot allocation ratio includes N time slots as a cycle, 1 time slot is allocated to the uplink channel, and 1 time slot is allocated to the downlink channel. (N-1) time slots.
  • the frequency band where the uplink and downlink channels are located includes the ISM frequency band.
  • the reference terminal device includes at least one of a remote control device, an RTK reference station, and an upper computer
  • the mobile terminal includes: at least one of an unmanned aerial vehicle, an unmanned vehicle, and an unmanned ship;
  • the transmission data of the downlink channel includes at least one of measurement data and state information of the mobile terminal, and the transmission data of the uplink channel includes at least one of flight control commands, RTK, voice, and measurement data.
  • the device provided in this embodiment can be used to implement the technical solutions of the foregoing method embodiments, and its implementation principles and technical effects are similar, and details are not described herein again in this embodiment.
  • FIG. 7 is a schematic diagram of the hardware structure of a communication system provided by an embodiment of the application.
  • the communication system 70 of this embodiment includes: a memory 701 and a processor 702; wherein
  • the memory 701 is used to store program instructions
  • the processor 702 is configured to execute program instructions stored in the memory. When the program instructions are executed, the processor executes the following steps:
  • the reference terminal device is allowed to communicate with the mobile terminal.
  • the obtaining measurement parameters includes:
  • said obtaining measurement parameters further includes:
  • the adjusting the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the measurement parameter includes:
  • the time slot allocation ratio is adjusted according to the time slot allocation strategy.
  • the adjusting the time slot allocation ratio according to the time slot allocation strategy according to the measurement parameter includes:
  • the first transmission rate includes the first transmission rate of the uplink channel and the downlink channel;
  • the adjusting the time slot allocation ratio according to the first transmission rate includes:
  • the first transmission rate of the downlink channel and the first transmission rate of the uplink channel and the maximum communication bandwidth of the downlink channel, the minimum communication bandwidth of the uplink channel, and the maximum communication of the uplink channel At least one of the bandwidths, adjusting the time slot allocation ratio.
  • the adjusting the time slot allocation ratio includes:
  • the first communication bandwidth of the uplink channel is lower than the minimum communication bandwidth of the uplink channel, increasing the time slot occupied by the uplink channel.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the increasing the time slot occupied by the uplink channel includes:
  • the adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the uplink channel reaches the minimum communication bandwidth of the uplink channel, and the first communication bandwidth of the downlink channel is lower than the maximum communication bandwidth of the downlink channel, reduce the time occupied by the uplink channel Gap.
  • the reducing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is reduced.
  • the reducing the time slot occupied by the uplink channel includes:
  • the adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the downlink channel reaches the maximum communication bandwidth of the downlink channel, and the first communication bandwidth of the uplink channel is lower than the maximum communication bandwidth of the uplink channel, increase the time occupied by the uplink channel Gap.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the increasing the time slot occupied by the uplink channel includes:
  • the adjusting the time slot allocation ratio further includes:
  • the time slot occupied by the uplink channel is maintained constant.
  • the adjusting the time slot allocation ratio further includes:
  • the time slot occupied by the uplink channel is maintained constant.
  • the obtaining the first transmission rate through the measurement parameter includes:
  • the first transmission rate is obtained according to the signal-to-noise ratio, modulation and coding strategy, and channel preset occupied time slot.
  • the signal-to-noise ratio includes the signal-to-noise ratios of uplink and downlink channels, and the signal-to-noise ratio of the downlink channel is based on the energy of the mobile terminal signal received by the reference terminal device. Value and the interference value of the environment where the reference terminal device is located; the signal-to-noise ratio of the uplink channel is determined based on the energy value of the signal sent by the reference terminal device received by the mobile terminal and the environment where the mobile terminal is located The interference value is determined.
  • the obtaining measurement parameters includes:
  • the reference terminal device obtains the reference terminal measurement parameters and transmits them to the mobile terminal.
  • forming the adjusted time slot allocation ratio includes:
  • the mobile terminal obtains the mobile terminal measurement parameter, and adjusts the time slot allocation ratio according to the reference terminal measurement parameter and the mobile terminal measurement parameter to form the adjusted time slot allocation ratio.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the mobile terminal notifies the reference terminal device to perform communication according to the adjusted time slot allocation ratio.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the adjusted time slot allocation ratio is notified.
  • the enabling the reference terminal device to communicate with the mobile terminal according to the adjusted time slot allocation ratio includes:
  • the adjusted time slot allocation ratio be the time slot allocation ratio of the uplink and downlink channels in the next cycle.
  • the processor further implements the following steps when executing the computer execution instruction:
  • the time slot allocation ratio includes N time slots as a cycle, one time slot is allocated to the uplink channel, and (N-1) time slots are allocated to the downlink channel. .
  • the frequency band where the uplink and downlink channels are located includes the ISM frequency band.
  • the reference terminal device includes at least one of a remote control device, an RTK reference station, and an upper computer
  • the mobile terminal includes: at least one of an unmanned aerial vehicle, an unmanned vehicle, and an unmanned ship;
  • the transmission data of the downlink channel includes at least one of measurement data and state information of the mobile terminal, and the transmission data of the uplink channel includes at least one of flight control commands, RTK, voice, and measurement data.
  • the memory 701 may be independent or integrated with the processor 702.
  • the communication system further includes a bus 703 for connecting the memory 701 and the processor 702.
  • the communication system 70 may be a single device, and the system includes a complete set of the foregoing memory 701, processor 702, and so on.
  • the components of the communication system 70 may be distributed and integrated on the vehicle, that is, the memory 701, the processor 702, etc. may be respectively arranged in different positions of the vehicle.
  • FIG. 8 is a schematic structural diagram of a mobile terminal provided by an embodiment of the application.
  • the mobile terminal 80 of this embodiment includes: a mobile terminal body 801 and a communication device 802; the communication device 802 is provided in the mobile terminal body 801, the mobile terminal body 801 and the communication device 802 wireless connection or wired connection.
  • the communication device 802 obtains measurement parameters
  • the reference terminal device is allowed to communicate with the mobile terminal.
  • the obtaining measurement parameters includes:
  • said obtaining measurement parameters further includes:
  • the adjusting the time slot allocation ratio of the uplink and downlink channels for communication between the reference terminal device and the mobile terminal according to the measurement parameter includes:
  • the time slot allocation ratio is adjusted according to the time slot allocation strategy.
  • the adjusting the time slot allocation ratio according to the time slot allocation strategy according to the measurement parameter includes:
  • the first transmission rate includes the first transmission rate of the uplink channel and the downlink channel;
  • the adjusting the time slot allocation ratio according to the first transmission rate includes:
  • the first transmission rate of the downlink channel and the first transmission rate of the uplink channel and the maximum communication bandwidth of the downlink channel, the minimum communication bandwidth of the uplink channel, and the maximum communication of the uplink channel At least one of the bandwidths, adjusting the time slot allocation ratio.
  • the adjusting the time slot allocation ratio includes:
  • the first communication bandwidth of the uplink channel is lower than the minimum communication bandwidth of the uplink channel, increasing the time slot occupied by the uplink channel.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the increasing the time slot occupied by the uplink channel includes:
  • the adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the uplink channel reaches the minimum communication bandwidth of the uplink channel, and the first communication bandwidth of the downlink channel is lower than the maximum communication bandwidth of the downlink channel, reduce the time occupied by the uplink channel Gap.
  • the reducing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is reduced.
  • the reducing the time slot occupied by the uplink channel includes:
  • the adjusting the time slot allocation ratio includes:
  • the second communication bandwidth of the downlink channel reaches the maximum communication bandwidth of the downlink channel, and the first communication bandwidth of the uplink channel is lower than the maximum communication bandwidth of the uplink channel, increase the time occupied by the uplink channel Gap.
  • the increasing the time slot occupied by the uplink channel includes:
  • the time slot occupied by the uplink channel is increased.
  • the increasing the time slot occupied by the uplink channel includes:
  • it also includes:
  • the time slot occupied by the uplink channel is maintained constant.
  • it also includes:
  • the time slot occupied by the uplink channel is maintained constant.
  • the obtaining the first transmission rate through the measurement parameter includes:
  • the first transmission rate is obtained according to the signal-to-noise ratio, modulation and coding strategy, and channel preset occupied time slot.
  • the signal-to-noise ratio includes the signal-to-noise ratios of uplink and downlink channels, and the signal-to-noise ratio of the downlink channel is based on the energy of the mobile terminal signal received by the reference terminal device. Value and the interference value of the environment where the reference terminal device is located; the signal-to-noise ratio of the uplink channel is determined based on the energy value of the signal sent by the reference terminal device received by the mobile terminal and the environment where the mobile terminal is located The interference value is determined.
  • the obtaining measurement parameters includes:
  • the reference terminal device obtains the reference terminal measurement parameters and transmits them to the mobile terminal.
  • forming the adjusted time slot allocation ratio includes:
  • the mobile terminal obtains the mobile terminal measurement parameter, and adjusts the time slot allocation ratio according to the reference terminal measurement parameter and the mobile terminal measurement parameter to form the adjusted time slot allocation ratio.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the mobile terminal notifies the reference terminal device to perform communication according to the adjusted time slot allocation ratio.
  • the method before the communication between the reference terminal device and the mobile terminal according to the adjusted time slot allocation ratio, the method further includes:
  • the adjusted time slot allocation ratio is notified.
  • the enabling the reference terminal device to communicate with the mobile terminal according to the adjusted time slot allocation ratio includes:
  • the adjusted time slot allocation ratio be the time slot allocation ratio of the uplink and downlink channels in the next cycle.
  • it also includes:
  • the time slot allocation ratio includes N time slots as a cycle, one time slot is allocated to the uplink channel, and (N-1) time slots are allocated to the downlink channel. .
  • the frequency band where the uplink and downlink channels are located includes the ISM frequency band.
  • the reference terminal device includes at least one of a remote control device, an RTK reference station, and an upper computer
  • the mobile terminal includes: at least one of an unmanned aerial vehicle, an unmanned vehicle, and an unmanned ship;
  • the transmission data of the downlink channel includes at least one of measurement data and state information of the mobile terminal, and the transmission data of the uplink channel includes at least one of flight control commands, RTK, voice, and measurement data.
  • the mobile terminal provided in this embodiment includes: a mobile terminal body and a communication device.
  • the communication device is provided in the mobile terminal body.
  • the communication device obtains measurement parameters and adjusts the reference terminal device to communicate with the mobile terminal according to the measurement parameters.
  • the time slot allocation ratio of the uplink and downlink channels forms an adjusted time slot allocation ratio, and then the reference terminal device and the mobile terminal are allowed to communicate with the mobile terminal according to the adjusted time slot allocation ratio.
  • the performance of the uplink and downlink channels is maximized to achieve the best overall state and meet multiple scenarios The application requirements for improving the stability of the entire uplink and downlink communication.
  • the uplink time slot can meet the bandwidth requirements of the uplink remote control link even when the second preset time slot is reduced, and the downlink has not reached the maximum communication bandwidth, consider increasing the proportion of the downlink (reducing the uplink The proportion of the channel), thereby improving the quality of the downlink video and improving the user’s downlink image transmission experience.
  • the downlink can still exceed the maximum bandwidth requirement of the downlink even when the third preset time slot is reduced; and the uplink communication link has not reached its maximum required bandwidth, consider increasing the uplink time slot allocation. Thereby, without reducing the downlink image transmission experience, the smoothness of user uplink control and APP interactive commands is improved.
  • the embodiment of the present application provides a computer-readable storage medium in which program instructions are stored.
  • program instructions are executed by a processor, the communication method as described above is implemented.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional modules in the various embodiments of the present invention may be integrated into one processing unit, or each module may exist alone physically, or two or more modules may be integrated into one unit.
  • the units formed by the above modules can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer readable storage medium.
  • the above-mentioned software function module is stored in a storage medium and includes a number of instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (English: processor) execute the various embodiments of this application Part of the method.
  • processor may be a central processing unit (Central Processing Unit, CPU for short), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Referred to as ASIC) and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps of the method disclosed in combination with the invention can be directly embodied as executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may include a high-speed RAM memory, or may also include a non-volatile storage NVM, such as at least one disk storage, and may also be a U disk, a mobile hard disk, a read-only memory, a magnetic disk, or an optical disk.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of this application are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • optical disk any available medium that can be accessed by a general-purpose or special-purpose computer.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist as discrete components in the electronic device or the main control device.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、设备及移动终端,该方法通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信,使得基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。

Description

通信方法、设备及移动终端 技术领域
本申请实施例涉及通信技术,尤其涉及一种通信方法、设备及移动终端。
背景技术
随着科技发展,无人通信技术逐渐成为人们关注焦点。以无人机为例,通常无人机(Unmanned Aerial Vehicle,简称UAV)与地面遥控设备(Remote Control,简称RC)采用双工通信方式进行通信。如图1所示,下行信道为从无人机到地面遥控设备的无线信道。上行信道为从地面遥控设备到无人机的无线信道。
相关技术中,实现双工通信的一种常见方式是时分双工(Time Division Duplexing,简称TDD)。具体的,TDD为通过时间上的分配来实现上下行的双工通信,比如将时间片分为以N个时隙为单位的序列,每N个时隙中,有m个时隙分给上行通信,而剩下N-m个时隙则分给下行通信。通常TDD的无人机无线通信系统采用固定的上下行时间分配比例,比如SDR类产品采用的是4:1的时间分配关系(周期为5个时隙,其中,4个分配给下行,1个分配给上行)。然而,固定的上下行时间分配往往无法满足多种场景的应用需求。
发明内容
本申请实施例提供一种通信方法、设备及移动终端,以克服上述至少一个问题。
第一方面,本申请实施例提供一种通信方法,包括:
获得测量参数;
根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端 进行通信。
第二方面,本申请实施例提供一种通信设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机执行指令,所述处理器执行所述计算机执行指令时实现如下步骤:
获得测量参数;
根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
第三方面,本申请实施例提供一种移动终端,包括:
移动终端本体;以及如上第二方面以及第二方面各种可能的设计所述的通信设备,所述通信设备安装于所述移动终端本体上。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上第一方面以及第一方面各种可能的设计所述的通信方法。
本申请实施例提供的通信方法、设备及移动终端,该方法通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信,使得基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的上下行信道的示意图;
图2为本申请实施例提供的通信系统架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的上下行信道的时隙分配比例示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为本申请实施例提供的一种通信设备的结构示意图;
图7为本申请实施例提供的通信设备的硬件结构示意图;
图8为本申请实施例提供的一种移动终端的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在相关技术中,TDD为通过时间上的分配来实现上下行的双工通信,比如将时间片分为以N个时隙为单位的序列,每N个时隙中,有m个时隙分给上行通信,而剩下N-m个时隙则分给下行通信。以无人机为例,通常TDD的无人机无线通信系统采用固定的上下行时间分配比例,比如SDR类产品采用的是4:1的时间分配关系(周期为5个时隙,其中,4个分配给下行,1个分配给上行)。然而,固定的上下行时间分配往往无法满足多种场景的应用需求。
为了解决上述至少一个技术问题,本实施例提供一种通信方法,通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信。
由于基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。
图2为本申请实施例提供的通信系统的架构示意图。如图2所示,包括:第一传感器201、第二传感器202和处理器203。其中,第一传感器 201设置在基准端设备上,第一传感器201可以获得相应的测量参数。第二传感器202设置在移动终端上,第二传感器202可以获得相应的测量参数。处理器203可以结合传感器201和第二传感器202获得的测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,并按照调整后的时隙分配比例令基准端设备与移动终端进行通信。
这里,处理器203可以为车用计算平台、无人飞行器处理器等。本实施例对处理器203的实现方式不做特别限制,只要处理器203能够上述相应功能即可。
应理解上述架构仅为一种示例性系统架构框图,具体实施时,可以根据应用需求设置,例如上述通信系统还可以包括接收装置、显示装置等。
在具体实现过程中,接收装置可以是输入/输出接口,也可以是通信接口。接收装置可以接收用户的指令,例如接收装置可以是连接鼠标的输入接口。
显示装置可以用于对上述调整后的时隙分配比例进行显示。显示装置还可以是触摸显示屏,用于在显示上述调整后的时隙分配比例的同时接收用户指令,以实现与用户的交互,满足不同应用需求。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图3为本申请实施例提供的通信方法的流程示意图,本实施例的执行主体可以为图2所示实施例中的处理器,如图3所示,该方法包括:
S301、获得测量参数。
可选地,所述获得测量参数,包括:
获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
可选地,所述获得测量参数,还包括:
获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
示例性的,处理器可以通过设置在基准端设备上的第一传感器获得基准端设备所处环境的干扰值,基准端设备接收到的移动终端发送信号的能量值;通过设置在移动终端上的第二传感器获得移动终端所处环境的干扰值,移动终端接收到的基准端设备发送信号的能量值。
另外,所述获得测量参数,还可以包括:
所述基准端设备获得基准端测量参数,传输到所述移动终端。
所述移动终端获得移动终端测量参数。
示例性的,基准端设备通过上述第一传感器获得基准端设备所处环境的干扰值,基准端设备接收到的移动终端发送信号的能量值,并将获取的信息传输到移动终端。移动终端通过上述第二传感器获得移动终端所处环境的干扰值,移动终端接收到的基准端设备发送信号的能量值。通过移动终端形成调整后的时隙分配比例,移动终端可以较快的调整自身传输数据的质量,且可以更及时将调整反映于下行信道的传输过程中,并同下行数据一同下发至基准端设备,从而实时调整时隙分配比例,保持链路的完整性。
可选地,所述基准端设备包括:遥控设备、载波相位差分技术(Real-time kinematic,简称RTK)基准站和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个。具体基准端设备和移动设备的类型可以根据实际情况设置,例如图1所示,基准端设备为遥控设备,移动终端为无人机。其中,RTK为载波相位差分技术,是实时处理两个测量站载波相位观测量的差分技术,将基准站采集的载波相位发给用户接收机,进行求差解算坐标。
S302、根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例。
这里,在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例可以包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。其中,N为正数,其取值可以根据实际情况设置。通过该设置,可以较好地在扩展下行数据传输带宽的同时,保证所述移动终端与所述基准端设备通信的完整性。另外,在移动终端与基准端设备初始连接时,上行信道分配的时隙和下行信道分配的时隙也可以根据实际情 况设置,例如,如图4所示,上行信道分配s个时隙,下行信道分配(N-s)个时隙,N为大于0的正数,s为小于N的正数。
其中,所述下行信道的传输数据包括图传数据、音频数据、测量数据和所述移动终端的状态信息中至少一个,所述上行信道的传输数据包括飞控命令、RTK、音频数据和测量数据中至少一个。具体上下行信道的传输数据可以根据实际应用场景确定,满足多种应用场景需求。
可选地,所述根据所述测量参数,调整所述基准端设备与所述移动终端进行通信的上下行信道的时隙分配比例,包括:
根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
这里,上述时隙分配策略可以根据上述测量参数确定。
可选地,所述根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
通过所述测量参数得到第一传输速率;
根据所述第一传输速率调整所述时隙分配比例。
具体地,所述通过所述测量参数得到第一传输速率,包括:
通过所述测量参数获得信噪比;
根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率。
这里,所述信噪比包括上行、下行信道的信噪比。所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定。所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。所述第一传输速率包括上行信道和下行信道的第一传输速率。
其中,调制与编码策略可以根据实际情况设置;示例性的,调制与编码策略可以通过经验值离线获得,或是,调制与编码策略可以通过离线训练得到。
示例性的,以下行信道的信噪比为例,上述根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率可以包括:
根据下行信道的信噪比,通过查表的方式找到当前可以传输的最高调 制与编码策略(Modulation and Coding Scheme,简称MCS)档位。由上述可知移动终端的下行占用N-1个时隙,根据上述MCS档位和下行占用的时隙,确定下行信道的第一传输速率。
可选地,所述根据所述第一传输速率调整所述时隙分配比例,包括:
根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
其中,以移动设备为无人机为例,上述下行信道的最大通信带宽可以理解为包括无人机下行图传、音频数据等至少之一所要求的最大通信带宽。上述上行信道的最小通信带宽可以理解为包括为了支持无人机包括飞控命令包,RTK,音频数据,软件开发工具包(Software Development Kit,简称SDK)等各种V1命令包至少之一所要求的最小所需通信带宽。上述上行信道的最大通信带宽可以理解为包括为了支持无人机包括飞控命令包,RTK,音频数据,SDK等各种V1命令包至少之一所要求的最大所需通信带宽。
可选地,所述调整所述时隙分配比例,包括第一步:
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述上行信道的第一通信带宽小于所述上行信道的最小通信带宽,则提高所述上行信道占用的时隙。
这里,如果当前上行信道分配的时隙无法满足上行链路的带宽要求,则优先考虑提高上行时隙的分配比例,以提高上行的带宽能力,保障上行遥控不断链。
示例性的,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。其中,第一预设时隙可以根据实际情况设置,例如第一预设时隙为1个时隙。
具体地,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述 上行信道的第一占用时隙;
根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
这里,调整后的上行信道占用的时隙可以为上述第一占用时隙和第二占用时隙中的最小值。
通过上述设置,可以适应移动终端和基准端设备所处环境的变化,在外界干扰较强等情况导致上行数据传输带宽不能满足需求时,实时对双工通信中上行信道所占用传输时隙进行适应性微调,通过一次或多次增加第一预设时隙先行满足基准端设备向移动终端发送命令等上行数据所需的时隙。在此前提下,下行信道所占时隙相应减少,移动终端向基准端设备的下行数据会相应进行压缩传输或暂停、放弃部分数据的传输。同时,通过为下行预留至少一个时隙,也能相应达到减少下行数据传输断链的效果,保证移动终端与基准端设备的基本数据交流。
除此之外,上述根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例,还可以包括第二步:
将所述上行信道占用的时隙减少第二预设时隙,得到减少后的上行信道占用的时隙;
根据所述上行信道传输的最高MCS档位和所述减少后的上行信道占用的时隙,确定所述上行信道的第二传输速率;
根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
若所述上行信道的第二通信带宽大于或等于所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽小于所述下行信道的最大通信带宽,则降低所述上行信道占用的时隙。
其中,第二预设时隙可以根据实际情况设置,例如第二预设时隙和第一预设时隙相等,具体地,第二预设时隙为1个时隙。
例如,如果上行时隙即便减少第二预设时隙的情况下也能满足上行遥控链路的带宽要求,且下行链路尚未达到最大的通信带宽,则考虑提高下行链路的占比(减少上行链路的占比),从而提高下行的视频质量,提高用户的下行图传体验。
示例性的,所述降低所述上行信道占用的时隙,包括:
根据所述第二预设时隙,降低所述上行信道占用的时隙。
具体地,所述降低所述上行信道占用的时隙,包括:
根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
这里,调整后的上行信道占用的时隙可以为上述第三占用时隙和第四占用时隙中的最大值。
通过上述设置,可以适应移动终端和基准端设备所处环境的变化,在外界干扰不大等情况导致上行信道所占时隙即使减少第二预设时隙也能够满足上行数据的最小传输需求,且下行信道带宽未达到其最大传输带宽时,实时对双工通信中上行信道所占用传输时隙进行适应性微调,通过一次或多次减少第二预设时隙压缩基准端设备向移动终端发送命令等上行数据所需的时隙。在此前提下,下行信道所占时隙相应增加,移动终端向基准端设备的下行数据会相应进行扩展或加入、重新开始部分数据的传输。同时,通过为上行预留至少一个时隙,也能相应达到减少上行数据传输断链的效果,保证基准端设备与移动终端的基本数据交流。
另外,上述根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例,还可以包括第三步:
将所述下行信道占用的时隙减少第三预设时隙,得到减少后的下行信 道占用的时隙;
根据所述下行信道传输的最高MCS档位和所述减少后的下行信道占用的时隙,确定所述下行信道的第二传输速率;
根据所述下行信道的第二传输速率确定所述下行信道的第二通信带宽;
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述下行信道的第二通信带宽大于或等于所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽小于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
其中,第三预设时隙可以根据实际情况设置,例如第三预设时隙、第二预设时隙和第一预设时隙相等,具体地,第三预设时隙为1个时隙。
例如,如果下行即便在减少第三预设时隙的情况下,仍然能够超过了下行链路的最大带宽要求;且上行通信链路尚未达到其最大要求的带宽,则可以考虑增加上行的时隙分配,从而在不降低下行图传体验的情况,提高用户上行操控和APP交互命令的流畅程度。
示例性的,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
具体地,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述上行信道的第五占用时隙;
根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
这里,调整后的上行信道占用的时隙可以为上述第五占用时隙和第六占用时隙中的最小值。
通过上述设置,可以适应移动终端和基准端设备所处环境的变化,在外界干扰较小等情况导致下行信道所占时隙即使减少第三预设时隙也能 够满足下行数据的最大传输需求,且上行信道带宽未达到其最大传输带宽时,实时对双工通信中上行信道所占用传输时隙进行适应性微调,通过一次或多次增加第三预设时隙扩展基准端设备向移动终端发送命令等上行数据所需的时隙。在此前提下,上行信道所占时隙相应增加,而由于此时下行信道所占时隙仍能够满足下行数据的最大传输需求,则移动终端向基准端设备的下行数据质量也不会改变或下降较小。同时,通过为下行预留至少一个时隙,也能相应达到减少下行数据传输断链的效果,保证移动终端与基准端设备的基本数据交流。
另外,上述根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例,还可以包括第四步:
除上述第一、二、三步的情况外,其余情况下上下行信道的时隙分配比例维持不变。例如,当下行信道的第二通信带宽大于或等于下行信道的最大通信带宽而上行信道的第一通信带宽大于或等于上行信道的最大通信带宽时,所述上下行信道的时隙分配比例维持不变。即如果下行即便在减少第三预设时隙的情况下,仍然能够超过了下行链路的最大带宽要求;且上行通信链路也已达到其最大要求的带宽,则维持上下行信道的时隙分配比例维持不变。
这里,所述上下行信道所在的频段包括ISM频段。其中,ISM频段是各国挪出某一段频段主要开放给工业,科学和医学机构使用。
另外,基准端设备可以获得基准端测量参数,并传输到移动终端,移动终端根据基准端测量参数调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例。通过移动终端形成调整后的时隙分配比例,移动终端可以较快的调整自身传输数据的质量,且可以更及时将调整反映于下行信道的传输过程中,并同下行数据一同下发至基准端设备,从而实时调整时隙分配比例,保持链路的完整性。
可选地,所述形成调整后的时隙分配比例,包括:
所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分 配比例。其中,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例的方式可以参照上述。
S303、按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
可选地,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
可选地,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
可选地,所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
具体地,在下一个N时隙,移动终端与基准端设备能够按照调整后的时隙分配比例进行上下行通信,实现实时对时隙分配比例的调整,提高整个上下行通信稳定性。
本实施例提供的通信方法,通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信,使得基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。
图5为本申请实施例提供的另一种通信方法的流程示意图,本实施例在图3实施例的基础上,对本实施例的具体实现过程进行了详细说明。如图5所示,该方法包括:
S501、获得测量参数。
S502、通过上述测量参数得到第一传输速率,该第一传输速率包括上 行信道和下行信道的第一传输速率。
S503、根据上述上行信道的第一传输速率确定上行信道的第一通信带宽。
S504、若上述上行信道的第一通信带宽小于上行信道的最小通信带宽,则提高上行信道占用的时隙,形成调整后的时隙分配比例。
示例性的,所述提高上行信道占用的时隙,包括:
根据移动终端和基准端设备一个时隙周期的时隙以及第一预设时隙,提高上行信道占用的时隙。
具体地,根据上述一个时隙周期的时隙与第一预设时隙的差值,确定上行信道的第一占用时隙;
根据上行信道占用的时隙与第一预设时隙的相加之和,确定上行信道的第二占用时隙;
根据上述第一占用时隙和第二占用时隙中的最小值,调整上行信道占用的时隙。
S505、将上述上行信道占用的时隙减少第二预设时隙,得到减少后的上行信道占用的时隙。
S506、根据上行信道传输的最高MCS档位和所述减少后的上行信道占用的时隙,确定上行信道的第二传输速率。
S507、根据上述上行信道的第二传输速率确定上行信道的第二通信带宽。
S508、根据上述下行信道的第一传输速率确定下行信道的第一通信带宽。
S509、若上述上行信道的第二通信带宽大于或等于上行信道的最小通信带宽,且上述下行信道的第一通信带宽小于下行信道的最大通信带宽,则降低上行信道占用的时隙,形成调整后的时隙分配比例。
示例性的,所述降低上行信道占用的时隙,包括:
根据上述第二预设时隙,降低上行信道占用的时隙。
具体地,根据上行信道占用的时隙与第二预设时隙的差值,确定上行信道的第三占用时隙;
根据第二预设时隙,确定上行信道的第四占用时隙;
根据上述第三占用时隙和第四占用时隙中的最大值,调整上行信道占用的时隙。
S510、将下行信道占用的时隙减少第三预设时隙,得到减少后的下行信道占用的时隙。
S511、根据下行信道传输的最高MCS档位和所述减少后的下行信道占用的时隙,确定下行信道的第二传输速率。
S512、根据上述下行信道的第二传输速率确定下行信道的第二通信带宽。
S513、根据上述上行信道的第一传输速率确定上行信道的第一通信带宽。
S514、若上述下行信道的第二通信带宽大于或等于下行信道的最大通信带宽,且上述上行信道的第一通信带宽小于上行信道的最大通信带宽,则提高上行信道占用的时隙,形成调整后的时隙分配比例。
示例性的,所述提高上行信道占用的时隙,包括:
根据移动终端和基准端设备一个时隙周期的时隙以及第三预设时隙,提高所述上行信道占用的时隙。
具体地,根据上述一个时隙周期的时隙与第三预设时隙的差值,确定上行信道的第五占用时隙;
根据上行信道占用的时隙与第三预设时隙的相加之和,确定上行信道的第六占用时隙;
根据上述第五占用时隙和第六占用时隙中的最小值,调整上行信道占用的时隙。
另外,除上述情况外,其余情况下维持上述时隙分配比例不变
S515、在下一个周期的开始,对上述调整后的时隙分配比例进行通知。
S516、使上述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
这里,按照上述调整后的时隙分配比例令基准端设备与移动终端进行通信。
本实施例提供的通信方法,通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调 整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信。
由于基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。
另外,如果当前上行信道分配的时隙无法满足上行链路的带宽要求,则优先考虑提高上行时隙的分配比例,以提高上行的带宽能力,保障上行遥控不断链。
如果上行时隙即便减少第二预设时隙的情况下也能满足上行遥控链路的带宽要求,且下行链路尚未达到最大的通信带宽,则考虑提高下行链路的占比(减少上行链路的占比),从而提高下行的视频质量,提高用户的下行图传体验。
如果下行即便在减少第三预设时隙的情况下,仍然能够超过了下行链路的最大带宽要求;且上行通信链路尚未达到其最大要求的带宽,则可以考虑增加上行的时隙分配,从而在不降低下行图传体验的情况,提高用户上行操控和APP交互命令的流畅程度。
图6为本申请实施例提供的一种通信设备的结构示意图。为了便于说明,仅示出了与本申请实施例相关的部分。如图6所示,该通信设备60包括:获得模块601、调整模块602和通信模块603。
其中,获得模块601,用于获得测量参数。
调整模块602,用于根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例。
通信模块603,用于按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
在一种可能的设计中,所述获得模块601,具体用于:
获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
在一种可能的设计中,所述获得模块601,具体用于:
获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
在一种可能的设计中,所述调整模块602,具体用于:
根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
在一种可能的设计中,所述调整模块602根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
通过所述测量参数得到第一传输速率;
根据所述第一传输速率调整所述时隙分配比例。
在一种可能的设计中,所述第一传输速率包括上行信道和下行信道的第一传输速率。
所述调整模块602根据所述第一传输速率调整所述时隙分配比例,包括:
根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
在一种可能的设计中,所述调整模块602调整所述时隙分配比例,包括:
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述上行信道的第一通信带宽低于所述上行信道的最小通信带宽,则提高所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述上行信道的第一占用时隙;
根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602调整所述时隙分配比例,包括:
将所述上行信道占用的时隙减少第二预设时隙;
根据所述上行信道传输的最高MCS档位和调整后上行信道占用的时隙,确定所述上行信道的第二传输速率;
根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽低于所述下行信道的最大通信带宽,则降低所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602降低所述上行信道占用的时隙,包括:
根据所述第二预设时隙,降低所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602降低所述上行信道占用的时隙,包括:
根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602调整所述时隙分配比例,包括:
将所述下行信道占用的时隙减少第三预设时隙;
根据所述下行信道传输的最高MCS档位和调整后下行信道占用的时隙,确定所述下行信道的第二传输速率;
根据所述下行信道的第二传输速率确定所述下行信道的第二通信带 宽;
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽低于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述上行信道的第五占用时隙;
根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整模块602,还用于:
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽达到所述下行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,所述调整模块602,还用于:
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽达到所述上行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,所述调整模块602通过所述测量参数得到第一传输速率,包括:
通过所述测量参数获得信噪比;
根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一 传输速率。
在一种可能的设计中,所述信噪比包括上行、下行信道的信噪比,其中,所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定;所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。
在一种可能的设计中,所述获得模块601获得测量参数,包括:
所述基准端设备获得基准端测量参数,传输到所述移动终端。
在一种可能的设计中,所述调整模块602形成调整后的时隙分配比例,包括:
所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分配比例。
在一种可能的设计中,所述通信模块603,还用于在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
在一种可能的设计中,所述通信模块603,还用于在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
在一种可能的设计中,所述通信模块603按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
在一种可能的设计中,在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。
在一种可能的设计中,所述上下行信道所在的频段包括ISM频段。
在一种可能的设计中,所述基准端设备包括:遥控设备、RTK基准站 和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个;
所述下行信道的传输数据包括测量数据和所述移动终端的状态信息中至少一个,所述上行信道的传输数据包括飞控命令、RTK、语音和测量数据中至少一个。
本实施例提供的设备,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图7为本申请实施例提供的通信系统的硬件结构示意图。如图7所示,本实施例的通信系统70包括:存储器701和处理器702;其中
存储器701,用于存储程序指令;
处理器702,用于执行存储器存储的程序指令,当所述程序指令被执行时,处理器执行如下步骤:
获得测量参数;
根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
在一种可能的设计中,所述获得测量参数,包括:
获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
在一种可能的设计中,所述获得测量参数,还包括:
获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
在一种可能的设计中,所述根据所述测量参数,调整所述基准端设备与所述移动终端进行通信的上下行信道的时隙分配比例,包括:
根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
在一种可能的设计中,所述根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
通过所述测量参数得到第一传输速率;
根据所述第一传输速率调整所述时隙分配比例。
在一种可能的设计中,所述第一传输速率包括上行信道和下行信道的第一传输速率;
所述根据所述第一传输速率调整所述时隙分配比例,包括:
根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述上行信道的第一通信带宽低于所述上行信道的最小通信带宽,则提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述上行信道的第一占用时隙;
根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
将所述上行信道占用的时隙减少第二预设时隙;
根据所述上行信道传输的最高MCS档位和调整后上行信道占用的时隙,确定所述上行信道的第二传输速率;
根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽低于所述下行信道的最大通信带宽,则降低所述上行信道占用的时隙。
在一种可能的设计中,所述降低所述上行信道占用的时隙,包括:
根据所述第二预设时隙,降低所述上行信道占用的时隙。
在一种可能的设计中,所述降低所述上行信道占用的时隙,包括:
根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
将所述下行信道占用的时隙减少第三预设时隙;
根据所述下行信道传输的最高MCS档位和调整后下行信道占用的时隙,确定所述下行信道的第二传输速率;
根据所述下行信道的第二传输速率确定所述下行信道的第二通信带宽;
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽低于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述上行信道的第五占用时隙;
根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整所述时隙分配比例,还包括:
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽达到所述下行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,所述调整所述时隙分配比例,还包括:
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽达到所述上行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,所述通过所述测量参数得到第一传输速率,包括:
通过所述测量参数获得信噪比;
根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率。
在一种可能的设计中,所述信噪比包括上行、下行信道的信噪比,其中,所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定;所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。
在一种可能的设计中,所述获得测量参数,包括:
所述基准端设备获得基准端测量参数,传输到所述移动终端。
在一种可能的设计中,所述形成调整后的时隙分配比例,包括:
所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分配比例。
在一种可能的设计中,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
在一种可能的设计中,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
在一种可能的设计中,所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
在一种可能的设计中,所述处理器执行所述计算机执行指令时还实现如下步骤:
在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。
在一种可能的设计中,所述上下行信道所在的频段包括ISM频段。
在一种可能的设计中,所述基准端设备包括:遥控设备、RTK基准站和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个;
所述下行信道的传输数据包括测量数据和所述移动终端的状态信息中至少一个,所述上行信道的传输数据包括飞控命令、RTK、语音和测量数据中至少一个。
在一种可能的设计中,存储器701既可以是独立的,也可以跟处理器702集成在一起。
当存储器701独立设置时,该通信系统还包括总线703,用于连接所述存储器701和处理器702。
在一种可能的设计中,通信系统70可以是一个单独的设备,该系统包括上述存储器701、处理器702等一整套。另外,以车辆为例,通信系统70的各组成部分可以分布式地集成在车辆上,即存储器701、处理器702等可以分别设置在车辆的不同位置。
图8为本申请实施例提供的一种移动终端的结构示意图。如图8所示,本实施例的移动终端80包括:移动终端本体801,以及通信设备802;所述通信设备802设置在所述移动终端本体801,所述移动终端本体801和 所述通信设备802无线连接或有线连接。
所述通信设备802获得测量参数;
根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
在一种可能的设计中,所述获得测量参数,包括:
获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
在一种可能的设计中,所述获得测量参数,还包括:
获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
在一种可能的设计中,所述根据所述测量参数,调整所述基准端设备与所述移动终端进行通信的上下行信道的时隙分配比例,包括:
根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
在一种可能的设计中,所述根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
通过所述测量参数得到第一传输速率;
根据所述第一传输速率调整所述时隙分配比例。
在一种可能的设计中,所述第一传输速率包括上行信道和下行信道的第一传输速率;
所述根据所述第一传输速率调整所述时隙分配比例,包括:
根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述上行信道的第一通信带宽低于所述上行信道的最小通信带宽, 则提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述上行信道的第一占用时隙;
根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
将所述上行信道占用的时隙减少第二预设时隙;
根据所述上行信道传输的最高MCS档位和调整后上行信道占用的时隙,确定所述上行信道的第二传输速率;
根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽低于所述下行信道的最大通信带宽,则降低所述上行信道占用的时隙。
在一种可能的设计中,所述降低所述上行信道占用的时隙,包括:
根据所述第二预设时隙,降低所述上行信道占用的时隙。
在一种可能的设计中,所述降低所述上行信道占用的时隙,包括:
根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
在一种可能的设计中,所述调整所述时隙分配比例,包括:
将所述下行信道占用的时隙减少第三预设时隙;
根据所述下行信道传输的最高MCS档位和调整后下行信道占用的时隙,确定所述下行信道的第二传输速率;
根据所述下行信道的第二传输速率确定所述下行信道的第二通信带宽;
根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽低于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
在一种可能的设计中,所述提高所述上行信道占用的时隙,包括:
根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述上行信道的第五占用时隙;
根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
在一种可能的设计中,还包括:
若所述上行信道的第二通信带宽达到所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽达到所述下行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,还包括:
若所述下行信道的第二通信带宽达到所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽达到所述上行信道的最大通信带宽,则维持所述上行信道占用的时隙不变。
在一种可能的设计中,所述通过所述测量参数得到第一传输速率,包 括:
通过所述测量参数获得信噪比;
根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率。
在一种可能的设计中,所述信噪比包括上行、下行信道的信噪比,其中,所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定;所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。
在一种可能的设计中,所述获得测量参数,包括:
所述基准端设备获得基准端测量参数,传输到所述移动终端。
在一种可能的设计中,所述形成调整后的时隙分配比例,包括:
所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分配比例。
在一种可能的设计中,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
在一种可能的设计中,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
在一种可能的设计中,所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
在一种可能的设计中,还包括:
在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。
在一种可能的设计中,所述上下行信道所在的频段包括ISM频段。
在一种可能的设计中,所述基准端设备包括:遥控设备、RTK基准站和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个;
所述下行信道的传输数据包括测量数据和所述移动终端的状态信息中至少一个,所述上行信道的传输数据包括飞控命令、RTK、语音和测量数据中至少一个。
本实施例提供的移动终端,包括:移动终端本体,以及通信设备,通信设备设置在移动终端本体,其中,通信设备通过获得测量参数,根据该测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例,再按照调整后的时隙分配比例令基准端设备与移动终端进行通信。
由于基准端设备与移动终端之间的上下行信道占用的时隙随着测量参数自适应的变化,从而最大化的平衡了上下行信道的性能,以达到最佳的整体状态,满足多种场景的应用需求,提高整个上下行通信稳定性。
另外,如果当前上行信道分配的时隙无法满足上行链路的带宽要求,则优先考虑提高上行时隙的分配比例,以提高上行的带宽能力,保障上行遥控不断链。
如果上行时隙即便减少第二预设时隙的情况下也能满足上行遥控链路的带宽要求,且下行链路尚未达到最大的通信带宽,则考虑提高下行链路的占比(减少上行链路的占比),从而提高下行的视频质量,提高用户的下行图传体验。
如果下行即便在减少第三预设时隙的情况下,仍然能够超过了下行链路的最大带宽要求;且上行通信链路尚未达到其最大要求的带宽,则可以考虑增加上行的时隙分配,从而在不降低下行图传体验的情况,提高用户上行操控和APP交互命令的流畅程度。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,当处理器执行所述程序指令时,实现如上所述的通信方法。
在本发明所提供的几个实施例中,应该理解到,所揭露的设备和方法, 可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外部设备互连(Peripheral Component,简称PCI)总线或扩 展工业标准体系结构(Extended Industry Standard Architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (56)

  1. 一种通信方法,其特征在于,包括:
    获得测量参数;
    根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
    按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述获得测量参数,包括:
    获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
  3. 根据权利要求2所述的方法,其特征在于,所述获得测量参数,还包括:
    获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述测量参数,调整所述基准端设备与所述移动终端进行通信的上下行信道的时隙分配比例,包括:
    根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
    通过所述测量参数得到第一传输速率;
    根据所述第一传输速率调整所述时隙分配比例。
  6. 根据权利要求5所述的方法,其特征在于,所述第一传输速率包括上行信道和下行信道的第一传输速率;
    所述根据所述第一传输速率调整所述时隙分配比例,包括:
    根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
  7. 根据权利要求6所述的方法,其特征在于,所述调整所述时隙分配比例,包括第一步:
    根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
    若所述上行信道的第一通信带宽小于所述上行信道的最小通信带宽,则提高所述上行信道占用的时隙。
  8. 根据权利要求7所述的方法,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。
  9. 根据权利要求8所述的方法,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述上行信道的第一占用时隙;
    根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
    根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
  10. 根据权利要求7所述的方法,其特征在于,所述调整所述时隙分配比例,包括第二步:
    将所述上行信道占用的时隙减少第二预设时隙,得到减少后的上行信道占用的时隙;
    根据所述上行信道传输的最高调制与编码策略MCS档位和所述减少后的上行信道占用的时隙,确定所述上行信道的第二传输速率;
    根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
    根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
    若所述上行信道的第二通信带宽大于或等于所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽小于所述下行信道的最大通信带 宽,则降低所述上行信道占用的时隙。
  11. 根据权利要求10所述的方法,其特征在于,所述降低所述上行信道占用的时隙,包括:
    根据所述第二预设时隙,降低所述上行信道占用的时隙。
  12. 根据权利要求11所述的方法,其特征在于,所述降低所述上行信道占用的时隙,包括:
    根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
    根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
    根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
  13. 根据权利要求10所述的方法,其特征在于,所述调整所述时隙分配比例,包括第三步:
    将所述下行信道占用的时隙减少第三预设时隙,得到减少后的下行信道占用的时隙;
    根据所述下行信道传输的最高MCS档位和所述减少后的下行信道占用的时隙,确定所述下行信道的第二传输速率;
    根据所述下行信道的第二传输速率确定所述下行信道的第二通信带宽;
    根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
    若所述下行信道的第二通信带宽大于或等于所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽小于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
  14. 根据权利要求13所述的方法,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
  15. 根据权利要求14所述的方法,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述上行信道的第五占用时隙;
    根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
    根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
  16. 根据权利要求13所述的方法,其特征在于,所述调整所述时隙分配比例,包括第四步:
    除所述第一步、所述第二步和所述第三步的情况外,其余情况下维持所述时隙分配比例不变。
  17. 根据权利要求16所述的方法,其特征在于,所述其余情况下维持所述时隙分配比例不变,包括:
    若所述下行信道的第二通信带宽大于或等于所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽大于或等于所述上行信道的最大通信带宽,则维持所述时隙分配比例不变。
  18. 根据权利要求5所述的方法,其特征在于,所述通过所述测量参数得到第一传输速率,包括:
    通过所述测量参数获得信噪比;
    根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率。
  19. 根据权利要求18所述的方法,其特征在于,所述信噪比包括上行、下行信道的信噪比,其中,所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定;所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。
  20. 根据权利要求1所述的方法,其特征在于,所述获得测量参数,包括:
    所述基准端设备获得基准端测量参数,传输到所述移动终端。
  21. 根据权利要求20所述的方法,其特征在于,所述形成调整后的时隙分配比例,包括:
    所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分配比例。
  22. 根据权利要求21所述的方法,其特征在于,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
    所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
  23. 根据权利要求1所述的方法,其特征在于,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
    在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
  24. 根据权利要求23所述的方法,其特征在于,所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
    使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
  25. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。
  26. 根据权利要求1所述的方法,其特征在于,所述上下行信道所在的频段包括ISM频段。
  27. 根据权利要求1所述的方法,其特征在于,所述基准端设备包括:遥控设备、载波相位差分技术RTK基准站和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个;
    所述下行信道的传输数据包括图传数据、音频数据、测量数据和所述移动终端的状态信息中至少一个,上行信道的传输数据包括飞控命令、RTK、音频数据和测量数据中至少一个。
  28. 一种通信设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机执行指令,所述处理器执行 所述计算机执行指令时实现如下步骤:
    获得测量参数;
    根据所述测量参数,调整基准端设备与移动终端进行通信的上下行信道的时隙分配比例,形成调整后的时隙分配比例;
    按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信。
  29. 根据权利要求28所述的设备,其特征在于,所述获得测量参数,包括:
    获得所述基准端设备所处环境的干扰值,和/或所述移动终端所处环境的干扰值。
  30. 根据权利要求29所述的设备,其特征在于,所述获得测量参数,还包括:
    获得所述基准端设备接收到的所述移动终端发送信号的能量值,和/或所述移动终端接收到的所述基准端设备发送信号的能量值。
  31. 根据权利要求28至30中任一项所述的设备,其特征在于,所述根据所述测量参数,调整所述基准端设备与所述移动终端进行通信的上下行信道的时隙分配比例,包括:
    根据所述测量参数,按照时隙分配策略调整所述时隙分配比例。
  32. 根据权利要求31所述的设备,其特征在于,所述根据所述测量参数,按照时隙分配策略调整所述时隙分配比例,包括:
    通过所述测量参数得到第一传输速率;
    根据所述第一传输速率调整所述时隙分配比例。
  33. 根据权利要求32所述的设备,其特征在于,所述第一传输速率包括上行信道和下行信道的第一传输速率;
    所述根据所述第一传输速率调整所述时隙分配比例,包括:
    根据所述下行信道的第一传输速率和所述上行信道的第一传输速率中至少一个,以及所述下行信道的最大通信带宽、所述上行信道的最小通信带宽和所述上行信道的最大通信带宽中至少一个,调整所述时隙分配比例。
  34. 根据权利要求33所述的设备,其特征在于,所述调整所述时隙 分配比例,包括第一步:
    根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
    若所述上行信道的第一通信带宽小于所述上行信道的最小通信带宽,则提高所述上行信道占用的时隙。
  35. 根据权利要求34所述的设备,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述移动终端和所述基准端设备一个时隙周期的时隙以及第一预设时隙,提高所述上行信道占用的时隙。
  36. 根据权利要求35所述的设备,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述一个时隙周期的时隙与所述第一预设时隙的差值,确定所述上行信道的第一占用时隙;
    根据所述上行信道占用的时隙与所述第一预设时隙的相加之和,确定所述上行信道的第二占用时隙;
    根据所述第一占用时隙和所述第二占用时隙中的最小值,调整所述上行信道占用的时隙。
  37. 根据权利要求34所述的设备,其特征在于,所述调整所述时隙分配比例,包括第二步:
    将所述上行信道占用的时隙减少第二预设时隙,得到减少后的上行信道占用的时隙;
    根据所述上行信道传输的最高MCS档位和所述减少后的上行信道占用的时隙,确定所述上行信道的第二传输速率;
    根据所述上行信道的第二传输速率确定所述上行信道的第二通信带宽;
    根据所述下行信道的第一传输速率确定所述下行信道的第一通信带宽;
    若所述上行信道的第二通信带宽大于或等于所述上行信道的最小通信带宽,且所述下行信道的第一通信带宽小于所述下行信道的最大通信带宽,则降低所述上行信道占用的时隙。
  38. 根据权利要求37所述的设备,其特征在于,所述降低所述上行信道占用的时隙,包括:
    根据所述第二预设时隙,降低所述上行信道占用的时隙。
  39. 根据权利要求38所述的设备,其特征在于,所述降低所述上行信道占用的时隙,包括:
    根据所述上行信道占用的时隙与所述第二预设时隙的差值,确定所述上行信道的第三占用时隙;
    根据所述第二预设时隙,确定所述上行信道的第四占用时隙;
    根据所述第三占用时隙和所述第四占用时隙中的最大值,调整所述上行信道占用的时隙。
  40. 根据权利要求37所述的设备,其特征在于,所述调整所述时隙分配比例,包括第三步:
    将所述下行信道占用的时隙减少第三预设时隙,得到减少后的下行信道占用的时隙;
    根据所述下行信道传输的最高MCS档位和所述减少后的下行信道占用的时隙,确定所述下行信道的第二传输速率;
    根据所述下行信道的第二传输速率确定所述下行信道的第二通信带宽;
    根据所述上行信道的第一传输速率确定所述上行信道的第一通信带宽;
    若所述下行信道的第二通信带宽大于或等于所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽小于所述上行信道的最大通信带宽,则提高所述上行信道占用的时隙。
  41. 根据权利要求40所述的设备,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述移动终端和所述基准端设备一个时隙周期的时隙以及所述第三预设时隙,提高所述上行信道占用的时隙。
  42. 根据权利要求41所述的设备,其特征在于,所述提高所述上行信道占用的时隙,包括:
    根据所述一个时隙周期的时隙与所述第三预设时隙的差值,确定所述 上行信道的第五占用时隙;
    根据所述上行信道占用的时隙与所述第三预设时隙的相加之和,确定所述上行信道的第六占用时隙;
    根据所述第五占用时隙和所述第六占用时隙中的最小值,调整所述上行信道占用的时隙。
  43. 根据权利要求40所述的设备,其特征在于,所述调整所述时隙分配比例,包括第四步:
    除所述第一步、所述第二步和所述第三步的情况外,其余情况下维持所述时隙分配比例不变。
  44. 根据权利要求43所述的设备,其特征在于,所述其余情况下维持所述时隙分配比例不变,包括:
    若所述下行信道的第二通信带宽大于或等于所述下行信道的最大通信带宽,且所述上行信道的第一通信带宽大于或等于所述上行信道的最大通信带宽,则维持所述时隙分配比例不变。
  45. 根据权利要求32所述的设备,其特征在于,所述通过所述测量参数得到第一传输速率,包括:
    通过所述测量参数获得信噪比;
    根据所述信噪比、调制与编码策略和信道预设占用时隙得到所述第一传输速率。
  46. 根据权利要求45所述的设备,其特征在于,所述信噪比包括上行、下行信道的信噪比,其中,所述下行信道的信噪比根据所述基准端设备接收到的所述移动终端发送信号的能量值以及所述基准端设备所处环境的干扰值确定;所述上行信道的信噪比根据所述移动终端接收到的所述基准端设备发送信号的能量值以及所述移动终端所处环境的干扰值确定。
  47. 根据权利要求28所述的设备,其特征在于,所述获得测量参数,包括:
    所述基准端设备获得基准端测量参数,传输到所述移动终端。
  48. 根据权利要求47所述的设备,其特征在于,所述形成调整后的时隙分配比例,包括:
    所述移动终端获得移动终端测量参数,根据所述基准端测量参数和所 述移动终端测量参数,调整所述时隙分配比例,形成所述调整后的时隙分配比例。
  49. 根据权利要求48所述的设备,其特征在于,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
    所述移动终端通知所述基准端设备按照所述调整后的时隙分配比例进行通信。
  50. 根据权利要求28所述的设备,其特征在于,在所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信之前,还包括:
    在下一个周期的开始,对所述调整后的时隙分配比例进行通知。
  51. 根据权利要求50所述的设备,其特征在于,所述按照所述调整后的时隙分配比例令所述基准端设备与所述移动终端进行通信,包括:
    使所述调整后的时隙分配比例作为下一个周期的上下行信道的时隙分配比例。
  52. 根据权利要求28所述的设备,其特征在于,所述处理器执行所述计算机执行指令时还实现如下步骤:
    在所述移动终端与所述基准端设备初始连接时,所述时隙分配比例包括以N个时隙为一个周期,上行信道分配1个时隙,下行信道分配(N-1)个时隙。
  53. 根据权利要求28所述的设备,其特征在于,所述上下行信道所在的频段包括ISM频段。
  54. 根据权利要求28所述的设备,其特征在于,所述基准端设备包括:遥控设备、RTK基准站和上位机中至少一个,所述移动终端包括:无人机、无人车和无人船中至少一个;
    所述下行信道的传输数据包括图传数据、音频数据、测量数据和所述移动终端的状态信息中至少一个,上行信道的传输数据包括飞控命令、RTK、音频数据和测量数据中至少一个。
  55. 一种移动终端,其特征在于,包括:
    移动终端本体;以及如权利要求28至54任一项所述的通信设备,所 述通信设备安装于所述移动终端本体上。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1至27任一项所述的通信方法。
PCT/CN2019/111273 2019-10-15 2019-10-15 通信方法、设备及移动终端 WO2021072644A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/111273 WO2021072644A1 (zh) 2019-10-15 2019-10-15 通信方法、设备及移动终端
CN201980034380.1A CN112205052A (zh) 2019-10-15 2019-10-15 通信方法、设备及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111273 WO2021072644A1 (zh) 2019-10-15 2019-10-15 通信方法、设备及移动终端

Publications (1)

Publication Number Publication Date
WO2021072644A1 true WO2021072644A1 (zh) 2021-04-22

Family

ID=74004612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111273 WO2021072644A1 (zh) 2019-10-15 2019-10-15 通信方法、设备及移动终端

Country Status (2)

Country Link
CN (1) CN112205052A (zh)
WO (1) WO2021072644A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037524A (zh) * 2013-01-18 2013-04-10 东莞宇龙通信科技有限公司 Tdd上下行子帧比例的双周期动态配置方法、基站、系统和通信设备
CN105025576A (zh) * 2014-04-19 2015-11-04 上海朗帛通信技术有限公司 一种 d2d 通信中的资源分配方法和装置
CN105706484A (zh) * 2013-11-04 2016-06-22 德克萨斯仪器股份有限公司 针对具有动态ul/dl的lte tdd的用于配置、测量和报告信道状态信息的方法和装置
WO2016130960A1 (en) * 2015-02-13 2016-08-18 Qualcomm Incorporated Eimta in enhanced carrier aggregation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888699B (zh) * 2009-05-13 2013-04-03 电信科学技术研究院 一种调整时隙配置的方法
CN102036295B (zh) * 2010-12-02 2014-04-16 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN103188797A (zh) * 2011-12-28 2013-07-03 北京三星通信技术研究有限公司 一种改变tdd上下行配置的方法
CN106535220B (zh) * 2015-09-14 2019-08-23 大唐移动通信设备有限公司 动态tdd子帧配比调整方法及基站、网络管理设备
CN108111811A (zh) * 2017-12-16 2018-06-01 广东容祺智能科技有限公司 一种基于5g网络数据通信的无人机通信系统及通信方法
CN108495371B (zh) * 2018-03-28 2022-08-16 广州极飞科技股份有限公司 通信方法及系统、应用其的主设备和从设备以及无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037524A (zh) * 2013-01-18 2013-04-10 东莞宇龙通信科技有限公司 Tdd上下行子帧比例的双周期动态配置方法、基站、系统和通信设备
CN105706484A (zh) * 2013-11-04 2016-06-22 德克萨斯仪器股份有限公司 针对具有动态ul/dl的lte tdd的用于配置、测量和报告信道状态信息的方法和装置
CN105025576A (zh) * 2014-04-19 2015-11-04 上海朗帛通信技术有限公司 一种 d2d 通信中的资源分配方法和装置
WO2016130960A1 (en) * 2015-02-13 2016-08-18 Qualcomm Incorporated Eimta in enhanced carrier aggregation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Study of TDD NPRACH and RA-RNTI impacts due to TDD", 3GPP DRAFT; R2-1709421, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051319149 *

Also Published As

Publication number Publication date
CN112205052A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US10256870B2 (en) System and method for radio access virtualization
CN109981753B (zh) 一种面向物联网的软件定义的边缘计算的系统及资源分配方法
US20200153712A1 (en) Method for obtaining qoe information, terminal, and network device
US11832272B2 (en) Method and device for determining resources and storage medium
WO2021209034A1 (zh) 一种数据传输的方法及通信装置
US10523574B2 (en) Apparatus and method for controlling data transmission speed in wireless communication system
CN103281509B (zh) 一种视频会议中优化显示方法和装置
CN108702766A (zh) 通信方法、网络设备和终端设备
WO2021072644A1 (zh) 通信方法、设备及移动终端
CN104424141B (zh) 用于io和入站av的拓扑和带宽管理
EP3298760A1 (en) Quality of service for a universal serial bus
WO2024060723A1 (zh) 通信方法、通信装置、通信设备、计算机设备及存储介质
WO2024000541A1 (zh) 资源确定、多载波调度方法及装置、存储介质
Wu et al. Augmented reality multi-view video scheduling under vehicle-pedestrian situations
WO2022188143A1 (zh) 数据传输方法及装置
JP2013197653A (ja) 無線伝送システム
WO2022062799A1 (zh) 数据传输方法及相关装置
US11611970B2 (en) Adaptive resource allocation for media streams over wireless
WO2021249280A1 (zh) 一种通信方法及装置
CN106330494B (zh) 一种SoC资源仲裁方法和装置
DE102014111457B4 (de) Topologie und bandbreiten-management für i/0 und eingehende av
WO2021159841A1 (zh) 一种控制信息传输方法及装置
JP7030190B2 (ja) バンドリングサイズ決定方法、ユーザ端末およびネットワーク側機器
KR20160139822A (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
CN112272108A (zh) 一种调度方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949533

Country of ref document: EP

Kind code of ref document: A1