WO2021071299A1 - 배기가스 후처리 시스템 제어 장치 - Google Patents

배기가스 후처리 시스템 제어 장치 Download PDF

Info

Publication number
WO2021071299A1
WO2021071299A1 PCT/KR2020/013763 KR2020013763W WO2021071299A1 WO 2021071299 A1 WO2021071299 A1 WO 2021071299A1 KR 2020013763 W KR2020013763 W KR 2020013763W WO 2021071299 A1 WO2021071299 A1 WO 2021071299A1
Authority
WO
WIPO (PCT)
Prior art keywords
post
injection
controller
exhaust gas
nox
Prior art date
Application number
PCT/KR2020/013763
Other languages
English (en)
French (fr)
Inventor
이종민
임산하
김연수
이병준
배신영
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2021071299A1 publication Critical patent/WO2021071299A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas aftertreatment system control device.
  • the present invention provides an apparatus capable of effectively controlling an exhaust gas post-treatment system.
  • the exhaust gas post-treatment system control apparatus is connected to an engine to process the exhaust gas of the engine, a Die Oxidation Catalyst (DOC) device, a Die Particulate Filter (DPF) device, and a selective SCR (Selective Filter) device.
  • DOC Die Oxidation Catalyst
  • DPF Die Particulate Filter
  • SCR Selective Filter
  • a device for controlling an exhaust gas post-treatment system including a catalytic reduction) device comprising: a post-injection controller for controlling the post-injection of the engine and a urea water injection controller for controlling the urea water injection of the SCR device.
  • the post-injection controller may include a PM controller that controls the temperature of the exhaust gas and a NOx controller that controls the NO 2 /NOx ratio of the front end of the SCR device.
  • the PM controller may calculate state variables for a combination of post-injection modes during a control period and determine a current post-injection mode that minimizes the objective function of the PM controller.
  • the NOx controller may calculate state variables for a combination of post-injection modes during a control period and determine a current post-injection mode that minimizes the objective function of the NOx controller.
  • the NOx controller may control the NO 2 /NOx ratio at the front end of the SCR device to be 0.5.
  • the post-injection controller fixes the fuel injection amount of the engine and fixes the time interval of the post-injection to 1 second, so that the post-injection mode can be set as binary variables of the lean mode and the rich mode every second. have.
  • the post-injection controller may calculate a state variable using continuous linearization-based model prediction control.
  • FIG. 1 and 2 show a system modeling method according to an embodiment of the present invention.
  • FIG 3 shows an engine post-injection map according to an embodiment of the present invention.
  • FIG 4 shows an apparatus for controlling an exhaust gas aftertreatment system according to an embodiment of the present invention.
  • the DOC-DPF-SCR system is a device to reduce various compounds that affect environmental pollution such as CO, HC (hydrocarbon), PM (fine dust), and NOx, which are exhaust gases of diesel engines.
  • DOC Diesel Oxidation Catalyst
  • DPF Diesel Particulate Filter
  • Urea-SCR Selective Catalytic Reduction
  • FIG. 1 and 2 illustrate a system modeling method according to embodiments of the present invention.
  • FIG. 1 shows flow-through monolith modeling
  • FIG. 2 shows wall-flow monolith modeling.
  • DOC, and SCR are modeled as a flow-through monolith
  • DPF is modeled as a wall-flow monolith with a filter.
  • 1-D-based modeling which can relatively well predict the state variables (concentration, temperature) of the actual reactor while reducing the computational load, allows the state variables to be predicted along the length of the reactor.
  • the governing equation for calculating the state variables of the flow-through monolith and the wall-flow monolith is as follows.
  • the constructed model is a PDE system, it is converted into an ODE system through linearization that divides the z-axis into quarters for each reactor according to the MOL (Method of Line) technique, and state variable values for a total of five positions are converted. Predict.
  • the state variables at each location include the bulk gas concentration (C g,j ) by chemical species (j), the washcoat pore gas concentration (C wc,j ), and bulk. There is the temperature of the gas (T g ) and the temperature of the solid (T s ).
  • R i of the governing equation is the number of moles of reaction for reaction i, and the chemical reaction equations for each reactor are as follows.
  • Engine post injection is a method of increasing the temperature of exhaust gas by injecting fuel with a time difference after the main injection of the engine. It changes.
  • the fuel injection amount is fixed and the interval of the post-injection timing is fixed at 1 s, so that the post-injection mode is set to a lean mode (0; post-injection is not performed).
  • rich mode (1; post-injection).
  • the concentration and temperature of C 3 H 6 , CO, H 2 , and O 2 from the engine are changed according to a series of engine post-injection mode combinations, and instead of complex engine modeling, 15s (combination of previous 11s + For all 175 possible combinations during the subsequent 4s combination), the concentration and temperature change of the chemical species are calculated in advance and the engine post-injection map can be constructed to shorten the calculation time.
  • Model Predictive Control uses the model to determine the state during the prediction horizon corresponding to possible combinations of future manipulations during the control horizon, when the current state and model are known. It is a controller that predicts and applies only the current input by finding the optimal input manipulation combination that minimizes the objective function based on this. This controller is also called Receding Horizon Control because it moves the section every time and finds the optimal current input value.
  • the concentration and temperature measurement sensor has a measurement interval of 1 s, so when model predictive control is applied, the controller solves the optimization problem every second and finds the optimal current input every second.
  • the governing equation in the form of PDE is It is transformed into a nonlinear ODE system in the form of (x: state variable, u: input variable), and because the model has many transient sections, the method of integrating all possible combinations of operations during the control section to obtain the state variable x is It takes a very long time.
  • the integral F k of the complex ODE needs to be solved only once during the prediction interval, and the amount of change in the state variable according to the input change is calculated by the sensitivity matrix, A k , and B k calculated from the Jacobian matrix. It can be calculated as a simple product of the input change vector calculated from the formed matrix and the post-injection map. Therefore, it is possible to significantly reduce the computational load compared to the conventional method of integrating and solving ODEs for all combinations of operations during the prediction interval.
  • FIG 4 shows an apparatus for controlling an exhaust gas aftertreatment system according to an embodiment of the present invention.
  • an exhaust gas post-treatment system control device is connected to an engine to process exhaust gas of the engine, a Die Oxidation Catalyst (DOC) device, a Die Particulate Filter (DPF) device, and a Selective Catalytic Reduction (SCR) device. Controls the exhaust gas aftertreatment system including the device.
  • the exhaust gas post-treatment system control device includes an after injection controller and a urea water injection controller.
  • the NOx controller Normally, according to the logic of the NOx controller, it estimates the state of the DOC-DPF system for all possible lean/rich combinations during the control section and brings the NO 2 /NOx at the rear end of the DPF closer to 0.5. Determine the injection mode. If PM accumulates above the standard value in the DPF, active regeneration by O 2 is required at a high temperature, so according to the PM controller, all possible combinations of post-injection modes during the control section are taken to raise the temperature of the exhaust gas to the level where active regeneration of the DPF is possible. Set the current post-injection mode.
  • the exhaust gas post-treatment system control device can control the NO 2 /NOx ratio in front of the SCR, so that it can have a better optimality than the SCR using only the urea water injection controller alone. In addition, it is possible to reduce the computation time compared to the conventional model prediction control by using the continuous linearization-based model prediction control.
  • BCI base case inlet
  • [PM controller] Calculates the state variables for all possible combinations of post-injection modes during the control section, and determines the current post-injection mode that minimizes the objective function of the PM controller. (The temperature of the exhaust gas is the target temperature.
  • [NOx controller] Calculates the state variables for all possible combinations of post-injection modes during the control section and determines the current post-injection mode that minimizes the objective function of the NOx controller. (SCR front end NO 2 / Control to make the NOx ratio 0.5)
  • the exhaust gas post-treatment system control apparatus of the present invention was verified under a real driving scenario of a total of 4990 seconds consisting of three modes: a city mode, a highway mode, and a rural mode.
  • case 1 case 1
  • case 2 case 2
  • case 2 case 2
  • the objective function of the NOx controller minimizes the cumulative amount of NOx emission after the SCR.
  • the relative values were compared with the case of operating only the PM controller without the NOx controller in the post-injection controller as a reference.
  • Case 2 does not take advantage of the fact that the NOx reduction efficiency of SCR is maximum when the NO 2 /NOx ratio at the front of the SCR is 0.5. Therefore, the optimality is more guaranteed compared to Case 1, but it takes a lot of computation time because the FHOCP of the urea water injection controller must be solved for all possible combinations of post injection modes. Therefore, it is difficult to apply it to an actual vehicle system that needs to apply real-time calculation, and the above algorithm can be used to verify the optimality for Case 1.
  • the NO 2 /NOx ratio which was 0.1 at the beginning, is maintained around 0.5 in just a few seconds, and in the highway driving cycle where the exhaust gas temperature is relatively high, PM is accumulated a lot, and the NOx controller Instead, it can be seen that the PM controller is activated and the NO 2 /NOx ratio is not maintained.
  • the exhaust gas post-treatment system control device increased the number of rich modes due to the introduction of the NOx controller, but the cumulative NOx emission and the amount of urea water injected were much reduced, showing a better optimality in controlling the NOx reduction of SCR and significantly shortening the calculation speed. I can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명의 실시예들에 따른 배기가스 후처리 시스템 제어 장치는, 엔진에 연결되어 상기 엔진의 배기가스를 처리하고, DOC(Diesel Oxidation Catalyst) 장치, DPF(Diesel Particulate Filter) 장치, 및 SCR(Selective Catalytic Reduction) 장치를 포함하는 배기가스 후처리 시스템을 제어하는 장치로서, 상기 엔진의 후분사를 제어하는 후분사 제어기 및 상기 SCR 장치의 요소수 분사를 제어하는 요소수 분사 제어기를 포함한다.

Description

배기가스 후처리 시스템 제어 장치
본 발명은 배기가스 후처리 시스템 제어 장치에 관한 것이다.
디젤 엔진의 배기가스에서는 CO, HC (탄화수소; Hydrocarbon), PM (미세먼지), NOx 등 환경오염에 영향을 미치는 여러 화합물들이 배출되는데, DOC-DPF-SCR 시스템은 이를 저감하기 위한 장치이다. 기존 DOC-DPF-SCR 시스템은 각각의 장치가 저감하는 화합물들의 농도를 기준치 이하로 유지하기 위해 개별적으로 제어되어 NOx 저감 제어에 효과적이지 못하다.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 배기가스 후처리 시스템을 효과적으로 제어할 수 있는 장치를 제공한다.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.
본 발명의 실시예들에 따른 배기가스 후처리 시스템 제어 장치는, 엔진에 연결되어 상기 엔진의 배기가스를 처리하고, DOC(Diesel Oxidation Catalyst) 장치, DPF(Diesel Particulate Filter) 장치, 및 SCR(Selective Catalytic Reduction) 장치를 포함하는 배기가스 후처리 시스템을 제어하는 장치로서, 상기 엔진의 후분사를 제어하는 후분사 제어기 및 상기 SCR 장치의 요소수 분사를 제어하는 요소수 분사 제어기를 포함한다.
상기 후분사 제어기는, 상기 배기가스의 온도를 제어하는 PM 제어기 및 상기 SCR 장치 전단의 NO2/NOx 비율을 제어하는 NOx 제어기를 포함할 수 있다.
상기 PM 제어기는, 제어 구간 동안의 후분사 모드 조합에 대해 상태 변수들을 계산하고 상기 PM 제어기의 목적 함수를 최소화하는 현재의 후분사 모드를 정할 수 있다.
상기 NOx 제어기는, 제어 구간 동안의 후분사 모드 조합에 대해 상태 변수들을 계산하고 상기 NOx 제어기의 목적 함수를 최소화하는 현재의 후분사 모드를 정할 수 있다. 상기 NOx 제어기는, 상기 SCR 장치 전단의 NO2/NOx 비율이 0.5가 되도록 제어할 수 있다.
상기 후분사 제어기는, 상기 후분사를 단순화하기 위해 상기 엔진의 연료 주입량을 고정시키고 상기 후분사의 시간 간격을 1초로 고정시켜 매 초마다 후분사 모드를 린 모드 및 리치 모드의 이진 변수로 설정할 수 있다.
상기 후분사 제어기는, 연속적 선형화 기반 모델 예측 제어를 사용하여 상태 변수를 계산할 수 있다.
본 발명의 실시예들에 따르면, 배기가스 후처리 시스템을 효과적으로 제어할 수 있다. 엔진의 후분사를 간단하면서도 빠르게 제어하여 배기가스의 NOx를 효과적으로 저감할 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 시스템 모델링 방법을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 엔진 후분사맵을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 배기가스 후처리 시스템 제어 장치를 나타낸다.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.
[DOC-DFP-SCR 시스템]
DOC-DPF-SCR 시스템은 디젤 엔진의 배기가스인 CO, HC(탄화수소; Hydrocarbon), PM(미세먼지), NOx 등 환경오염에 영향을 미치는 여러 화합물들을 저감하기 위한 장치이다. DOC(Diesel Oxidation Catalyst)는 산소를 이용하여 CO, HC 등을 산화시키는 장치이며, 배기가스는 DOC를 통과하면서 연소열에 의해 그 온도가 상승한다. DPF(Diesel Particulate Filter)는 촉매 필터를 이용하여 PM을 걸러내는 장치로, 온도가 낮은 평상시에는 NO2에 의한 수동 재생을 하다가 PM이 기준치 이상 쌓이게 되면 높은 온도에서 O2에 의한 능동 재생을 하게 된다. Urea-SCR(Selective Catalytic Reduction)은 NOx를 N2로 환원시키는 장치로, 전단에서 분사된 요소수의 열분해에 의해 암모니아가 생성되고, 상기 생성된 암모니아는 SCR 촉매에 흡착되어 NOx를 N2로 환원시킨다.
SCR의 NOx 저감 효율에 크게 영향을 미치는 요소는 두 가지로, 요소수 분사량과 SCR 전단의 NO2/NOx 비율이다. 요소수를 소량 주입하면 NOx 저감 효율이 낮아지며, 요소수를 다량 주입하면 배기가스에 다량의 암모니아 슬립이 섞여 나오게 되고 요소수 교체 횟수도 잦아진다. 또, 금속 치환 ZSM-5 촉매를 이용하는 SCR의 경우 SCR의 전단의 NO와 NO2 농도가 같을 때 넓은 온도 범위에서 SCR의 NOx 저감 효율이 최대가 된다.
[DOC-DFP-SCR 시스템 모델링]
도 1 및 도 2는 본 발명의 실시예들에 따른 시스템 모델링 방법을 나타낸다. 도 1은 플로우-스루 모놀리스(flow-through monolith) 모델링을 나타내고, 도 2는 월-플로우 모놀리스(wall-flow monolith) 모델링을 나타낸다.
도 1 및 도 2를 참조하면, DOC, 및 SCR은 플로우-스루 모놀리스로 모델링되고, DPF는 필터가 있는 월-플로우 모놀리스로 모델링된다. 또, 계산 로드를 감소시키면서 실제 반응기의 상태 변수(농도, 온도)를 비교적 잘 예측할 수 있는 1-D 기반의 모델링을 도입하여 반응기 길이 방향에 따라 상태 변수를 예측할 수 있게 하였다. DPF의 경우 필터의 윗 부분(l= 1)과 아랫 부분(l= 2)을 구분하는 1D+1D 모델링을 도입하였다.
플로우-스루 모놀리스와 월-플로우 모노릴스의 상태변수를 계산할 수 있는 지배방정식은 다음과 같다.
<플로우-스루 모놀리스의 지배방정식>
Figure PCTKR2020013763-appb-I000001
<월-플로우 모노릴스의 지배방정식>
Figure PCTKR2020013763-appb-I000002
구축된 모델은 PDE 시스템이기 때문에 MOL(Method of Line) 기법에 따라 각 반응기에 대해 길이 방향(z-axis)을 4등분하는 선형화를 통해 ODE 시스템으로 변환하고 총 5개의 위치에 대한 상태 변수 값을 예측한다. 각 위치에서의 상태 변수로는 공통적으로 화학종(j)별 벌크 가스(bulk gas)의 농도(Cg,j) 및 워시코트 포어 가스(washcoat pore gas)의 농도(Cwc,j), 벌크 가스의 온도(Tg), 고체의 온도(Ts)가 있다. SCR의 경우 NH3 커버리지(coverage)(θ: 촉매에 흡착 가능한 NH3의 최대 몰수 대비 현재 흡착된 NH3의 몰수 비율)에 대한 상태 변수가 추가된다. 플로우-스루 모놀리스의 경우 압력 강하를 무시하기 때문에 모멘텀 보존 식이 필요 없지만, 월-플로우 모놀리스의 경우에는 필요하며, 따라서 DPF의 경우 각 층(layer, l)에 따른 압력(pl) 및 벌크 가스 층의 두께(dl), 수트 질량(soot mass)(m)에 대한 상태 변수가 추가된다.
지배방정식의 ri는 반응 i에 대한 반응 몰수이며, 각 반응기별 화학반응식들은 다음과 같다.
Figure PCTKR2020013763-appb-I000003
대부분의 화학반응식들은 각 반응물들의 1차식으로 이루어진 글로벌 역학(global kinetics)으로 가정하며, 반응 속도 상수(ki)는 아레니우스 식(Arrhenius equation)(ki=Aiexp(-Ei/RT))을 따른다.
[엔진 후분사맵]
도 3은 본 발명의 일 실시예에 따른 엔진 후분사맵을 나타낸다. 엔진 후분사(post injection)는 엔진의 주분사(main injection) 이후에 시간차를 두고 연료를 주입하여 배기가스의 온도를 높이는 방식으로, 후분사 시기와 연료 주입량에 따라 배기가스의 화합물 농도와 온도가 달라진다.
도 3을 참조하면, 후분사 모델을 단순화하기 위해 연료 주입량을 고정시키고 후분사 시기의 간격을 1s로 고정시켜 매 초마다 후분사 모드를 린 모드(lean mode)(0; 후분사를 하지 않는 상태)와 리치 모드(rich mode)(1; 후분사를 하는 상태)의 이진 변수로 설정한다. 일련의 엔진 후분사 모드 조합에 따라 엔진에서 나오는 C3H6, CO, H2, O2의 농도와 온도가 변하며, 복잡한 엔진 모델링 대신 엔진의 구동 제약 조건을 고려하여 15s(이전 11s의 조합 + 이후 4s의 조합) 동안 가능한 175개의 모든 조합에 대해 화학종의 농도와 온도 변화량을 미리 계산하고 엔진 후분사맵을 구축하여 계산 시간을 단축시킬 수 있다.
[연속적 선형화 기반 모델 예측 제어]
모델 예측 제어(MPC; Model Predictive Control)는 현재의 상태와 모델을 알고 있을 때, 모델을 활용하여 제어 구간(control horizon) 동안의 가능한 미래 조작 조합에 대응되는 예측 구간(prediction horizon) 동안의 상태를 예측하고, 이를 기반으로 목적 함수를 최소로 만드는 최적의 입력 조작 조합을 찾아 현재의 입력만을 적용하는 제어기이다. 이 제어기는 매번 구간을 옮기며 최적의 현재 입력값을 찾는 방식이기 때문에 이동 구간 제어(Receding Horizon Control)라고도 불린다.
농도와 온도 측정 센서는 측정 간격이 1s이므로 모델 예측 제어를 적용할 경우 제어기는 최적화 문제를 매초 풀며 매초 마다 최적의 현재 입력을 찾는다. PDE 형태의 지배방정식은 MOL에 의해
Figure PCTKR2020013763-appb-I000004
(x: 상태변수, u: 입력변수) 형태의 비선형 ODE 시스템으로 변형되며, 상기 모델은 과도(transient) 구간이 많기 때문에 제어 구간 동안 가능한 모든 조작 조합에 대해 그대로 적분하여 상태변수 x를 구하는 방식은 시간이 굉장히 오래 걸린다.
따라서 비선형 시스템을 연속적으로 선형화시켜 간단한 행렬 연산으로 바꾸는 연속적 선형화 기반의 모델 예측 제어를 사용하여 계산 로드를 줄일 수 있다. 여기서,
Figure PCTKR2020013763-appb-I000005
,
Figure PCTKR2020013763-appb-I000006
는 t=k 시점에 xk 상태에서 일정한 uk-1의 입력이 들어오는 비선형 시스템을 선형화한 야코비 행렬(Jacobian Matrix)
Figure PCTKR2020013763-appb-I000007
,
Figure PCTKR2020013763-appb-I000008
를 이산시스템(discrete time system)으로 변환한 행렬이다. 이때
Figure PCTKR2020013763-appb-I000009
은 xk 상태에서 일정한 uk-1의 입력이 들어온다고 할 때 ts의 시간 동안
Figure PCTKR2020013763-appb-I000010
를 적분해서 얻는 상태 벡터를 의미한다. 즉 모델을 알고 있다면 t=k 시점의 정보
Figure PCTKR2020013763-appb-I000011
를 기반으로 예측 구간 동안의 상태 변수
Figure PCTKR2020013763-appb-I000012
,
Figure PCTKR2020013763-appb-I000013
, …,
Figure PCTKR2020013763-appb-I000014
들을 계산할 수 있다.
Figure PCTKR2020013763-appb-I000015
이와 같이 연속적 선형화를 진행하면 복잡한 ODE의 적분 Fk는 예측 구간 동안 단 한 번만 풀면 되고 입력 변화에 따른 상태 변수의 변화량은 야코비 행렬로부터 계산한 감도 행렬(sensitivity matrix), Ak, Bk로 이루어진 행렬과 후분사맵으로부터 계산된 입력 변화 벡터의 단순 곱으로 계산할 수 있다. 따라서 예측 구간 동안의 모든 조작 조합에 대해 ODE를 적분하여 푸는 기존의 방식에 비해 계산 로드를 훨씬 줄일 수 있다.
[배기가스 후처리 시스템 제어 장치]
도 4는 본 발명의 일 실시예에 따른 배기가스 후처리 시스템 제어 장치를 나타낸다.
도 4를 참조하면, 배기가스 후처리 시스템 제어 장치는 엔진에 연결되어 상기 엔진의 배기가스를 처리하고, DOC(Diesel Oxidation Catalyst) 장치, DPF(Diesel Particulate Filter) 장치, 및 SCR(Selective Catalytic Reduction) 장치를 포함하는 배기가스 후처리 시스템을 제어한다. 상기 배기가스 후처리 시스템 제어 장치는 후분사 제어기 및 요소수 분사 제어기를 포함한다.
<후분사 제어기>
평소에는 NOx 제어기의 로직에 따라 제어 구간 동안의 가능한 모든 후분사 모드(lean/rich) 조합에 대해 DOC-DPF 시스템의 상태를 추정하여 DPF 후단의 NO2/NOx를 0.5에 근접하게 하는 현재의 후분사 모드를 정한다. DPF에 PM이 기준치 이상 쌓이면 높은 온도에서 O2에 의한 능동 재생이 필요하므로 PM 제어기에 따라 배기가스의 온도를 DPF의 능동 재생이 가능한 수준까지 올리도록 제어 구간 동안의 가능한 모든 후분사 모드 조합을 따져 현재의 후분사 모드를 정한다.
<요소수 분사 제어기>
후분사 제어기를 통해 결정된 SCR 유입구(inlet)의 농도 및 온도를 기반으로 예측 구간 동안 요소수 분사량과 누적 NOx 방출량의 가중치 합으로 이루어지는 목적 함수를 최소화하는 FHOCP(Finite Horizon Optimal Control Problem)를 풀어 매초 마다 최적의 요소수 분사량을 결정한다.
상기 배기가스 후처리 시스템 제어 장치는 SCR 전단의 NO2/NOx 비율을 제어할 수 있어, 요소수 분사 제어기만 단독으로 사용하는 SCR에 비해 더 좋은 최적성을 가질 수 있다. 또, 연속적 선형화 기반의 모델 예측 제어를 사용해 기존의 모델 예측 제어에 비해 계산 시간을 줄일 수 있다.
<배기가스 후처리 시스템 제어 알고리즘>
1. 엔진 배기가스(Engine raw emission)의 NOx 센서가 유의미한 값을 측정할 때 시작한다.(k ← 1)
2. k ← k+1
3. 엔진 배기가스(Engine raw emission)의 농도 및 온도와 과거 후분사 모드의 순서를 기반으로 후분사가 전혀 들어가지 않을 때의 BCI(base case inlet) 데이터를 생성한다.
4. BCI(Base case inlet)일 때 DOC-DPF 모델을 기반으로 상태 변수들을 계산하고, DPF 내 PM 질량이 기준치 이상일 경우 '5 (1)'의 [PM 제어기]를 작동시키며 그렇지 않을 경우 '5 (2)'의 NOx 제어기를 작동시킨다.
5. (1) [PM 제어기] 제어 구간 동안의 가능한 모든 후분사 모드 조합에 대해 상태 변수들을 계산하고 PM 제어기의 목적함수를 최소화하는 현재의 후분사 모드를 정한다.(배기가스의 온도를 타겟 온도까지 올리는 제어) (2) [NOx 제어기] 제어 구간 동안의 가능한 모든 후분사 모드 조합에 대해 상태 변수들을 계산하고 NOx 제어기의 목적함수를 최소화하는 현재의 후분사 모드를 정한다.(SCR 전단 NO2/NOx 비율을 0.5로 만드는 제어)
6. [요소수 분사 제어기] 후분사 제어기를 통해 결정된 SCR inlet과 SCR 모델을 기반으로 해당 제어기의 FHOCP(Finite Horizon Optimal Control Problem)를 풀고, 최적의 요소수 분사량을 결정한다.
7. 주행이 끝나기 전까지 2 ~ 6의 과정을 반복한다.
[시뮬레이션 적용예]
도시 모드(City mode), 고속도로 모드(highway mode), 시골 모드(rural mode)의 3가지 모드로 구성된 총 4990초의 실주행 시나리오 하에서 본 발명의 배기가스 후처리 시스템 제어 장치를 검증하였다.
사례 1(case 1)은 NOx 제어기의 목적 함수가 SCR 전단의 NO2/NOx 비를 0.5로 유지시키도록 하고, 사례 2(case 2)는 NOx 제어기의 목적 함수가 SCR 후단의 NOx 누적 방출량을 최소화하도록 하였으며, 후분사 제어기에 NOx 제어기 없이 PM 제어기만 작동할 때를 기준(reference)으로 하여 상대적인 수치를 비교하였다.
사례 2는 SCR 전단의 NO2/NOx 비가 0.5일 때 SCR의 NOx 저감 효율이 최대라는 사실을 이용하지 않는다. 따라서 사례 1에 비해 최적성이 더 보장되지만 모든 가능한 후분사 모드 조합에 대해 요소수 분사 제어기의 FHOCP를 풀어야 하므로 계산 시간이 많이 소요된다. 따라서 실시간 계산을 적용해야 하는 실제 차량 시스템에는 적용하기 어려우며, 상기 알고리즘은 사례 1에 대한 최적성 검증용으로 사용할 수 있다.
<사례 1(case 1) - 목적함수>
Figure PCTKR2020013763-appb-I000016
<사례 2(case 2) - 목적함수>
Figure PCTKR2020013763-appb-I000017
<NO2/NOx 비율 그래프>
Figure PCTKR2020013763-appb-I000018
[표 1]
Figure PCTKR2020013763-appb-I000019
사례 1에 대해서는 (wa,wb)의 조합을 두 가지로 하여 표 1에 나타내었고, 비교를 용이하게 하기 위해 NO2/NOx 비율 그래프에는 사례 1 중에서 wa=1, wb=1일 때만 도시하였다.
NO2/NOx 비율 그래프를 보면 초반에 0.1이던 NO2/NOx ratio가 불과 몇 초 만에 0.5 근처에서 유지가 되며, 배기가스 온도가 상대적으로 높은 고속도로 주행 사이클에서는 PM이 많이 쌓인 상태로, NOx 제어기 대신 PM 제어기가 작동하여 NO2/NOx 비율이 유지되지 않음을 확인할 수 있다.
표 1을 보면 NOx 제어기의 도입으로 인해 리치(rich) 모드 횟수가 증가하였음을 알 수 있고, 오히려 PM 제어기가 작동할 때는 리치 모드 횟수가 줄었음을 확인할 수 있다. 이는 NOx 제어기로 인한 후분사 모드 횟수 증가로 인해 평소에도 배기가스의 온도가 NOx 제어기를 사용하지 않을 때에 비해 높게 유지되기 때문이다.
배기가스 후처리 시스템 제어 장치는 NOx 제어기의 도입으로 리치 모드 횟수가 증가했지만 누적 NOx 방출량과 요소수 주입량은 훨씬 줄어들어 SCR의 NOx 저감 제어에 있어 좀 더 좋은 최적성을 보이며, 계산 속도를 크게 단축시킬 수 있다.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 실시예들에 따르면, 배기가스 후처리 시스템을 효과적으로 제어할 수 있다. 엔진의 후분사를 간단하면서도 빠르게 제어하여 배기가스의 NOx를 효과적으로 저감할 수 있다.

Claims (7)

  1. 엔진에 연결되어 상기 엔진의 배기가스를 처리하고, DOC(Diesel Oxidation Catalyst) 장치, DPF(Diesel Particulate Filter) 장치, 및 SCR(Selective Catalytic Reduction) 장치를 포함하는 배기가스 후처리 시스템을 제어하는 장치로서,
    상기 엔진의 후분사를 제어하는 후분사 제어기; 및
    상기 SCR 장치의 요소수 분사를 제어하는 요소수 분사 제어기를 포함하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  2. 제 1 항에 있어서,
    상기 후분사 제어기는,
    상기 배기가스의 온도를 제어하는 PM 제어기 및
    상기 SCR 장치 전단의 NO2/NOx 비율을 제어하는 NOx 제어기를 포함하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  3. 제 2 항에 있어서,
    상기 PM 제어기는, 제어 구간 동안의 후분사 모드 조합에 대해 상태 변수들을 계산하고 상기 PM 제어기의 목적 함수를 최소화하는 현재의 후분사 모드를 정하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  4. 제 2 항에 있어서,
    상기 NOx 제어기는, 제어 구간 동안의 후분사 모드 조합에 대해 상태 변수들을 계산하고 상기 NOx 제어기의 목적 함수를 최소화하는 현재의 후분사 모드를 정하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  5. 제 2 항에 있어서,
    상기 NOx 제어기는, 상기 SCR 장치 전단의 NO2/NOx 비율이 0.5가 되도록 제어하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  6. 제 2 항에 있어서,
    상기 후분사 제어기는,
    상기 후분사를 단순화하기 위해 상기 엔진의 연료 주입량을 고정시키고 상기 후분사의 시간 간격을 1초로 고정시켜 매 초마다 후분사 모드를 린 모드 및 리치 모드의 이진 변수로 설정하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
  7. 제 2 항에 있어서,
    상기 후분사 제어기는, 연속적 선형화 기반 모델 예측 제어를 사용하여 상태 변수를 계산하는 것을 특징으로 하는 배기가스 후처리 시스템 제어 장치.
PCT/KR2020/013763 2019-10-11 2020-10-08 배기가스 후처리 시스템 제어 장치 WO2021071299A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190125758A KR102257395B1 (ko) 2019-10-11 2019-10-11 배기가스 후처리 시스템 제어 장치
KR10-2019-0125758 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021071299A1 true WO2021071299A1 (ko) 2021-04-15

Family

ID=75437985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013763 WO2021071299A1 (ko) 2019-10-11 2020-10-08 배기가스 후처리 시스템 제어 장치

Country Status (2)

Country Link
KR (1) KR102257395B1 (ko)
WO (1) WO2021071299A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060131A (zh) * 2021-11-30 2022-02-18 潍柴动力股份有限公司 一种柴油机排放控制方法、装置、柴油机车辆及介质
WO2023221446A1 (zh) * 2022-10-11 2023-11-23 华电电力科学研究院有限公司 一种scr脱硝效能自动寻优调控方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907067B1 (ko) * 2008-03-21 2009-07-09 현대자동차주식회사 디젤차량의 후처리계 시스템 및 그것의 진단방법
US20100005787A1 (en) * 2006-09-21 2010-01-14 Hino Motors, Ltd. Exhaust gas purification apparatus for engine
KR20140074770A (ko) * 2012-12-10 2014-06-18 현대자동차주식회사 배기가스 처리 방법
JP2016169608A (ja) * 2015-03-11 2016-09-23 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法
KR101858685B1 (ko) * 2014-02-28 2018-06-27 스카니아 씨브이 악티에볼라그 연소 엔진으로부터의 질소 산화물 배출물을 제어하기 위한 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100005787A1 (en) * 2006-09-21 2010-01-14 Hino Motors, Ltd. Exhaust gas purification apparatus for engine
KR100907067B1 (ko) * 2008-03-21 2009-07-09 현대자동차주식회사 디젤차량의 후처리계 시스템 및 그것의 진단방법
KR20140074770A (ko) * 2012-12-10 2014-06-18 현대자동차주식회사 배기가스 처리 방법
KR101858685B1 (ko) * 2014-02-28 2018-06-27 스카니아 씨브이 악티에볼라그 연소 엔진으로부터의 질소 산화물 배출물을 제어하기 위한 방법 및 시스템
JP2016169608A (ja) * 2015-03-11 2016-09-23 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060131A (zh) * 2021-11-30 2022-02-18 潍柴动力股份有限公司 一种柴油机排放控制方法、装置、柴油机车辆及介质
WO2023221446A1 (zh) * 2022-10-11 2023-11-23 华电电力科学研究院有限公司 一种scr脱硝效能自动寻优调控方法和系统

Also Published As

Publication number Publication date
KR102257395B1 (ko) 2021-05-26
KR20210043070A (ko) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2021071299A1 (ko) 배기가스 후처리 시스템 제어 장치
EP1965048B1 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
KR101091627B1 (ko) 배기 시스템
KR101251505B1 (ko) 질소산화물 저감 촉매에 저장되는 질소산화물의 양을 예측하는 방법 및 이를 이용한 배기 장치
KR101048144B1 (ko) 배기 시스템
EP2460994B1 (en) Method for predicting regeneration of DeNOx catalyst and exhaust system using the same
KR101886088B1 (ko) 배기 가스 정화 장치 및 배기 가스 정화 방법
AU6111799A (en) Process and apparatus for treating combustion exhaust gas
CN106285856B (zh) 稀燃NOx捕集器的再生方法以及废气净化系统
KR101684531B1 (ko) 배기 가스 정화 장치의 린 녹스 트랩에 흡장되는 질소산화물의 양을 계산하는 방법 및 배기 가스 정화 장치
CN100422530C (zh) 催化剂温度控制方法及配有λ可分离的废气净化系统的多缸发动机
CN103046984A (zh) 用于汽油颗粒过滤器的再生系统和再生方法
KR20120060642A (ko) 질소산화물 저감 촉매에 저장되는 황산화물의 양을 예측하는 방법 및 이를 이용한 배기 장치
KR20100064888A (ko) 배기 가스 정화 장치
CN102889108A (zh) 压燃点火发动机的废气后处理系统
KR101683512B1 (ko) 린 녹스 트랩의 재생 시 환원되는 질소산화물의 양을 계산하는 방법 및 배기 가스 정화 장치
WO2015099458A1 (ko) 배기가스 후처리 장치 및 그 제어 방법
CN116146316B (zh) 一种dpf的控制方法、装置及ecu
CN110872965B (zh) 内燃机的排气净化装置
KR20190134943A (ko) SDPF의 NOx 정화 효율 보정 방법
WO2012018186A2 (ko) 엔진의 후처리 장치
KR102394582B1 (ko) 배기 시스템, 및 이의 제어방법
EP2913493A1 (en) Emissions control in diesel engines
US20090155153A1 (en) Method for calculating loading amount of ammonia in selective catalytic reduction apparatus
KR20220006310A (ko) 배출 가스 정화 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874866

Country of ref document: EP

Kind code of ref document: A1