WO2021070926A1 - スイッチトリラクタンスモータおよびその制御方法 - Google Patents

スイッチトリラクタンスモータおよびその制御方法 Download PDF

Info

Publication number
WO2021070926A1
WO2021070926A1 PCT/JP2020/038264 JP2020038264W WO2021070926A1 WO 2021070926 A1 WO2021070926 A1 WO 2021070926A1 JP 2020038264 W JP2020038264 W JP 2020038264W WO 2021070926 A1 WO2021070926 A1 WO 2021070926A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
pulse current
drive
rotor
stator
Prior art date
Application number
PCT/JP2020/038264
Other languages
English (en)
French (fr)
Inventor
武恒 中村
ファット クチュク
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US17/754,511 priority Critical patent/US20230253903A1/en
Priority to CN202080070801.9A priority patent/CN114514693A/zh
Priority to JP2021551713A priority patent/JPWO2021070926A1/ja
Priority to EP20875101.6A priority patent/EP4044423A4/en
Publication of WO2021070926A1 publication Critical patent/WO2021070926A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • This disclosure relates to a switched reluctance motor and its control method.
  • the permanent magnet functions as an exciting means and applies a magnetic force to the stator salient pole via a magnetic path.
  • the switching of the stator salient pole that attracts the rotor salient pole is performed by adding and subtracting the magnetic flux due to the current of the drive winding to the magnetic flux due to the permanent magnet.
  • the magnet used for the motor is a neodymium magnet. Due to the high holding power of neodymium magnets, their magnetic force hardly changes under normal use conditions. Therefore, when a neodymium magnet is applied to a switched reluctance motor having the above configuration, the power factor and efficiency of the motor can be optimized only in a narrow operating range.
  • An object of the present disclosure is to provide a switched reluctance motor capable of operating with an optimum power factor and efficiency over a wide range of rotational speeds and a wide range of load torques.
  • the switched reluctance motor includes a motor body, a drive circuit, and a pulse current output circuit.
  • the motor body includes a rotor with a plurality of rotor salient poles, a stator having a plurality of stator salient poles and permanent magnets, and drive windings of each phase wound around the stator salient poles of each phase.
  • the drive circuit outputs a drive current to the drive windings of each phase to rotate the rotor.
  • the pulse current output circuit outputs a pulse current to the drive winding of any one phase for a shorter time than the application time of the drive current to the drive winding of each phase.
  • the residual magnetic flux density of the permanent magnet can be changed by applying a pulse current, it is possible to operate with an optimum power factor and efficiency for a wide range of rotational speeds and a wide range of load torques.
  • Switched reluctance motor can be provided.
  • FIG. 5 is a cross-sectional perspective view of the motor body of FIG. 1 cut along a symmetrical plane. It is a figure which shows the BH curve of various magnets. It is a timing diagram which shows the opening / closing timing of each semiconductor switching element and the output timing of a pulse current output circuit. It is a figure which showed the load torque, the motor speed, the applied current of each phase, and the time change of a motor torque. In the example of FIG. 5, the change in the magnetization state of the permanent magnet is shown on the BH diagram.
  • FIG. 5 is a timing diagram showing the opening / closing timing of each semiconductor switching element and the output timing of the pulse current output circuit in the switched reluctance motor of FIG. It is a figure for demonstrating the magnetism to the permanent magnet provided in the stator. It is a figure which showed the time change of the load torque, the motor torque, and the applied current of each phase in another embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the switched reluctance motor according to the first embodiment.
  • FIG. 2 is a cross-sectional perspective view of the motor body of FIG. 1 cut along a symmetrical plane.
  • a configuration example of the switched reluctance motor 10 of the present embodiment will be described with reference to FIGS. 1 and 2.
  • the switched reluctance motor 10 includes a motor body 30, a drive circuit 20, and a control circuit 50.
  • the drive circuit 20 outputs an exciting current for driving the motor body 30.
  • the control circuit 50 controls the operation of the drive circuit 20.
  • the motor body 30 includes a rotor 35 that rotates around a rotation shaft, a stator 31 that is arranged so as to surround the rotor 35, and drive windings 38 (38a, 38b, 38c). And include.
  • the rotor 35 includes four rotor salient poles 36 that project toward the stator 31 at every 90 degrees.
  • the stator 31 includes an annular stator yoke 33 and six stator salient poles 32 protruding from the stator yoke 33 toward the rotor 35 at every 60 degrees.
  • a drive winding 38 (A-phase winding 38a, B-phase winding 38b, or C-phase winding 38c) of the corresponding phase is wound around a pair of stator salient poles 32 facing each other.
  • the motor body 30 includes a pair of permanent magnets 40 and 41 provided on the stator yoke 33.
  • the permanent magnets 40 and 41 are located 90 degrees away from the stator salient pole 32 for the A phase, that is, the stator salient poles 32 for the B phase and the stator protrusions for the C phase that are adjacent to each other. It is provided at an intermediate position with the pole 32.
  • Each of the permanent magnets 40 and 41 is arranged so as to be sandwiched between the first portion and the second portion of the stator yoke 33. Therefore, the magnetic path in the stator yoke 33 passes through the permanent magnets 40 and 41.
  • magnets such as AlNiCo magnets and iron / chromium / cobalt magnets are preferably used.
  • the residual magnetic flux density of these magnets is about the same as the residual magnetic flux density of the neodymium magnet, but the holding force is about 1/10 or less of the holding force of the neodymium magnet. Therefore, the magnetic force can be easily changed by changing the external magnetic field.
  • FIG. 3 is a diagram showing BH curves of various magnets.
  • the horizontal axis of FIG. 3 indicates the external magnetic field Hc (unit: kA / m), and the vertical axis indicates the magnetic flux density Br (unit: T).
  • FIG. 3 shows an example of the BH curves of a neodymium (NdFeB) magnet, a samarium-cobalt (SmCo) magnet, and an alnico (AlNiCo) magnet.
  • NdFeB neodymium
  • SmCo samarium-cobalt
  • AlNiCo alnico
  • the alnico magnet has a strong magnetic force comparable to that of rare earth magnets such as neodymium magnets and samarium-cobalt magnets.
  • the maximum magnetic flux density of an alnico magnet is about 0.5 to 1.2 T, which is about the same as that of a neodymium magnet.
  • the holding power of the alnico magnet is about 50 to 150 KA / m, which is about 1/10 or less of the holding power of the rare earth magnet.
  • the maximum magnetic flux density of the iron / chromium / cobalt magnet is about 0.5 to 1.2 T, which is about the same as that of the alnico magnet.
  • the holding force of the iron / chromium / cobalt magnet is about 30 to 70 KA / m, which is about the same as or slightly smaller than that of the alnico magnet.
  • cast magnets such as alnico magnets and iron / chromium / cobalt magnets are used as the permanent magnets 40 and 41.
  • the magnetic force can be changed by the pulse current applied to the drive winding 38 while having a strong magnetic force similar to that of the rare earth magnet.
  • the drive circuit 20 is an asymmetric half-bridge converter.
  • the drive circuit 20 converts the DC voltage V output from the DC power supply 22 into a three-phase pulse voltage for driving the motor body 30.
  • the drive circuit 20 includes self-extinguishing semiconductor switching elements S1 to S6, diodes D1 to D6, and a switch SW1.
  • an insulated gate bipolar transistor (IGBT) is used as an example of the semiconductor switching elements S1 to S6.
  • IGBT insulated gate bipolar transistor
  • a self-extinguishing semiconductor switching element can also be used for the switch SW1.
  • the semiconductor switching element S1 is connected between the connection node N1 connected to one end of the A-phase winding 38a and the positive node NP of the DC power supply 22.
  • the semiconductor switching element S2 is connected between the connection node N2 connected to the other end of the A-phase winding 38a and the negative node NN of the DC power supply 22.
  • the diode D1 is connected between the connection node N2 and the positive node NP of the DC power supply 22 in the reverse bias direction.
  • the diode D2 is connected between the connection node N1 and the negative node NN of the DC power supply 22 in the reverse bias direction.
  • the semiconductor switching element S3 is connected between the connection node N3 connected to one end of the B-phase winding 38b and the positive node NP of the DC power supply 22.
  • the semiconductor switching element S4 is connected between the connection node N4 connected to the other end of the B-phase winding 38b and the negative node NN of the DC power supply 22.
  • the diode D3 is connected between the connection node N4 and the positive node NP of the DC power supply 22 in the reverse bias direction.
  • the diode D4 is connected between the connection node N3 and the negative node NN of the DC power supply 22 in the reverse bias direction.
  • the semiconductor switching element S5 is connected between the connection node N5 connected to one end of the C-phase winding 38c and the positive node NP of the DC power supply 22.
  • the semiconductor switching element S6 is connected between the connection node N6 connected to the other end of the C-phase winding 38c and the negative node NN of the DC power supply 22.
  • the diode D5 is connected between the connection node N6 and the positive node NP of the DC power supply 22 in the reverse bias direction.
  • the diode D6 is connected between the connection node N5 and the negative node NN of the DC power supply 22 in the reverse bias direction.
  • the drive circuit 20 further includes a pulse current output circuit 21.
  • the pulse current output circuit 21 applies a pulse current to the winding wound around the stator 31 for a short period of time so that the rotor 35 is not rotationally driven in order to change the magnetization state of the permanent magnets 40 and 41 by an external magnetic field. Apply.
  • the pulse current is applied to at least one phase of the drive winding 38, instead of providing a special winding for applying the pulse current.
  • the pulse current output circuit 21 is connected between the connection nodes N1 and N2 for the A phase.
  • the switch SW1 is connected between the connection node N1 and the cathode of the diode D2, or between the connection node N2 and the anode of the diode D1.
  • the switch SW1 is controlled to be in the ON state.
  • both the switch SW1 and the semiconductor switching elements S1 and S2 are controlled to be off.
  • the pulse current output circuit 21 has an output terminal T1 connected to the connection node N1 and an output terminal T2 connected to the connection node N2.
  • the output terminal T1 outputs a pulse current with the polarity on the positive side and the output terminal T2 on the negative side
  • a current in the same direction as the drive current for driving the rotor 35 flows through the A-phase winding 38a.
  • the output terminal T1 outputs a pulse current with the polarity on the negative side and the output terminal T2 on the positive side
  • a current in the direction opposite to the drive current flows through the A-phase winding 38a.
  • the magnitude of the magnetic force of the permanent magnets 40 and 41 can be adjusted by the magnitude and application time of the pulse current applied from the pulse current output circuit 21. The details of the time and timing of applying the pulse current will be described later.
  • the control circuit 50 outputs a gate control signal to control the open / closed state of the semiconductor switching elements S1 to S6.
  • the control circuit 50 further controls the open / closed state of the switch SW1. Further, the control circuit 50 controls the magnitude and timing of the pulse current output from the pulse current output circuit 21. Further, the control circuit 50 controls the pulse current output circuit 21 so that the output terminal T1 and the output terminal T2 are in a high impedance state or an open state when the pulse current is not output from the pulse current output circuit 21. Alternatively, when the control circuit 50 does not output the pulse current from the pulse current output circuit 21, the control circuit 50 may turn off the supply of the power supply voltage to the pulse current output circuit 21 or its output driver.
  • control circuit 50 is configured based on a computer. That is, the control circuit 50 includes a CPU (Central Processing Unit) 51, a memory 52, and an interface (I / F) circuit 53.
  • the control circuit 50 may be configured based on a circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the CPU 51 controls the semiconductor switching elements S1 to S6, the pulse current output circuit 21, and the switch SW1 by executing an instruction according to a control program.
  • the memory 52 includes a RAM (Random Access Memory) and a ROM (Read Only Memory) that operate as the main memory of the CPU 51, a non-volatile memory for storing the above control program, an auxiliary storage device, and the like.
  • the interface circuit 53 includes a drive circuit and the like, and outputs a gate control signal to the gate terminals of the semiconductor switching elements S1 to S6. Further, the interface circuit 53 outputs a control signal for controlling the pulse current output circuit 21 and the switch SW1.
  • control circuit 50 controls both the semiconductor switching elements S1 and S2 for the A phase in the ON state
  • power is supplied to the A phase winding 38a, and the magnetization and demagnetization of the stator salient pole 32 for the A phase are demagnetized. It will be realized.
  • the magnetization states of the permanent magnets 40 and 41 also change.
  • the control circuit 50 controls any of the semiconductor switching elements S1 and S2 to the off state when power supply to the A-phase winding 38a is not required.
  • the semiconductor switching element S1 is controlled to be in the off state
  • a current is circulated through the semiconductor switching element S2 and the diode D2 by the magnetic energy stored in the A-phase winding 38a.
  • the semiconductor switching element S2 is controlled in the off state
  • the magnetic energy stored in the A-phase winding 38a causes a current to circulate through the semiconductor switching element S1 and the diode D1. In either case, there is no power supply from the DC power supply 22.
  • the control circuit 50 supplies electric power to the drive circuit 20 in the order of A-phase winding 38a, B-phase winding 38b, and C-phase winding 38c. Let me. As a result, an electromagnetic field whose magnetic flux direction changes every 120 degrees with an electric angle is generated.
  • the control circuit 50 causes the drive circuit 20 to supply electric power in the order of the A-phase winding 38a, the C-phase winding 38c, and the B-phase winding 38b.
  • FIG. 1 shows a case where the stator salient pole 32 for the A phase and the rotor salient pole 36 are in the aligned position.
  • the control circuit 50 When the rotor 35 is rotationally driven in the counterclockwise direction, the control circuit 50 is supplying power to the B-phase winding 38b from the state of supplying power to the A-phase winding 38a at this timing. Switch control to.
  • the control circuit 50 supplies electric power to the C-phase winding 38c from the state of supplying electric power to the A-phase winding 38a at this timing. Switch control to the current state.
  • any rotor salient pole 36 of the rotor 35 must be located between the stator salient pole 32 for the A phase and the stator salient pole 32 for the B phase as an initial position.
  • any rotor salient pole 36 of the rotor 35 is arranged at a position of 40 to 45 degrees from the stator salient pole 32 for the A phase.
  • one of the rotor salient poles 36 of the rotor 35 is initially positioned at the stator salient pole 32 for the A phase and the C phase. Must be located between the stator salient pole 32 for use.
  • the pulse current output circuit 21 has at least the stator protrusion of the specific phase when the stator protrusion 32 of the specific phase determined according to the arrangement position of the permanent magnets 40 and 41 and the rotor protrusion 36 of any of the rotor protrusions 36 are in the aligned position.
  • a pulse current is supplied to the drive winding 38 wound around the pole 32.
  • the permanent magnets 40 and 41 are intermediate between the stator salient poles 32 for the B phase and the stator salient poles 32 for the C phase, which are adjacent to each other in the stator yoke 33. It is provided at the position. That is, the pair of permanent magnets 40 and 41 are provided at symmetrical positions with respect to the stator salient pole 32 for the A phase. In this case, when the stator salient pole 32 for A phase and one of the rotor salient poles 36 are in the aligned position, the pulse current output circuit 21 to the A phase winding 38a with the semiconductor switching elements S1 and S2 turned off. Is supplied with a pulse current. As a result, as shown in FIG.
  • a magnetic circuit is formed via the stator salient pole 32 for the A phase, the rotor 35, the stator yoke 33, and the permanent magnets 40 and 41, so that the permanent magnets 40 and 41 can be efficiently used.
  • the magnetic force can be increased or decreased.
  • the pulse current when the pulse current is injected in the same direction as the drive current, the magnetic force of the permanent magnets 40 and 41 increases, and when the pulse current is injected in the direction opposite to the drive current, the magnetic force of the permanent magnets 40 and 41 decreases.
  • the output terminal T1 and the output terminal T2 of the pulse current output circuit 21 are set to the high impedance state or the open state, and the switch SW1 is turned on.
  • a drive current is applied to the A-phase winding 38a by turning on both the semiconductor switching elements S1 and S2
  • a magnetic flux MF is generated in the direction indicated by the arrow in FIG.
  • the upstream side of the magnetic flux MF is magnetized to the S pole, and the downstream side of the magnetic flux MF is magnetized to the N pole.
  • both the semiconductor switching elements S1 and S2 are turned off, and the switch SW1 is turned off.
  • the pulse current flows in the same direction as the drive current.
  • the semiconductor switching elements S1 and S2 and the switch SW1 are both turned off and the pulse current is output from the pulse current output circuit 21 with the output terminal T1 on the negative side and the output terminal T2 on the positive side, the drive current is generated.
  • the pulse current flows in the opposite direction.
  • a magnetic flux in the direction opposite to that in the case of FIG. 1 is generated, so that the amount of magnetization of the permanent magnets 40 and 41 can be reduced.
  • the rotor 35 may be vibrated due to the generation of torque ripple, and as a result, the stable operation of the motor may be hindered.
  • the current magnetic field of the driving winding 38 is superimposed on the magnetic field of the permanent magnets 40 and 41 (magnetic force improving effect).
  • the magnetic flux MF generated in the magnetic circuit can be significantly changed.
  • the output torque of the motor can be changed or adjusted to an appropriate value according to the fluctuation of the load torque.
  • the application time of the current pulse from the pulse current output circuit 21 needs to be set to a short time such that the rotor 35 does not rotate. Therefore, the pulse application time T p must be set sufficiently longer than the electrical time constant ⁇ e , but sufficiently shorter than the mechanical time constant ⁇ m. If the pulse application time T p is not sufficiently longer than the electrical time constant ⁇ e , the pulse current cannot be injected into the A-phase winding 38a. Further, if the pulse application time T p is not sufficiently shorter than the mechanical time constant ⁇ m , a large torque ripple may occur in the motor output or vibration may be caused in the rotor 35, so that the motor is stable. Interfere with operation.
  • the electrical time constant ⁇ e is determined by using the average inductance L of each phase of the motor body 30 and the resistance value R of the drive winding 38 of each phase, as shown in the following equation (1).
  • ⁇ e L / R... (1) Given in.
  • the mechanical time constant ⁇ m is determined by using the moment of inertia J of the rotor 35 and the braking coefficient B as shown in the following equation (2).
  • ⁇ m J / B... (2) Given in.
  • the pulse application time T p is ⁇ e «T p « ⁇ m ... ( 3) Must be met.
  • Table 1 shows specific design examples of the mechanical time constant ⁇ m and the electrical time constant ⁇ e.
  • the pulse application time T p is, for example, a value larger than 10 times the electrical time constant ⁇ e and smaller than 1/10 of the mechanical time constant ⁇ m (about 0.5 seconds to 2 in the example of Table 1). Seconds).
  • FIG. 4 is a timing diagram showing the opening / closing timing of each semiconductor switching element and the output timing of the pulse current output circuit.
  • the control circuit 50 switches the semiconductor switching elements S1 and S2 to the ON state. As a result, a drive current is applied to the A-phase winding 38a.
  • the control circuit 50 switches the semiconductor switching elements S1 and S2 to the off state and switches the semiconductor switching elements S3 and S4 to the on state.
  • the application of the drive current to the A-phase winding 38a is completed, and the application of the drive current to the B-phase winding 38b is started.
  • the A-phase winding 38a and the rotor salient pole 36 of the rotor 35 are substantially aligned.
  • the pulse current output circuit 21 outputs a pulse current to the A-phase winding 38a according to a command from the control circuit 50.
  • the magnetization of the permanent magnets 40 and 41 is adjusted by superimposing the residual current of the drive current on the pulse current and flowing the pulse current through the A-phase winding 38a. Specifically, when a pulse current is passed in the same direction as the residual current of the drive current, the magnetizing amount of the permanent magnets 40 and 41 increases, and when a pulse current is passed in the direction opposite to the residual current of the drive current, the permanent magnets 40 and 41 The amount of magnetization of is reduced.
  • the control circuit 50 controls the semiconductor switching elements S1 and S2 to the off state and controls the switch SW to the off state. At this time, the semiconductor switching elements S3 and S4 may be controlled to the on state or may be controlled to the off state.
  • the control circuit 50 switches the semiconductor switching elements S3 and S4 to the off state and switches the semiconductor switching elements S5 and S6 to the on state.
  • the application of the drive current to the B-phase winding 38b is completed, and the application of the drive current to the C-phase winding 38c is started.
  • the application destination of the drive current is switched from the C-phase winding 38c to the A-phase winding 38a.
  • the application destination of the drive current is switched from the A-phase winding 38a to the B-phase winding 38b.
  • the application destination of the drive current is switched from the B-phase winding 38b to the C-phase winding 38c.
  • the application destination of the drive current is switched from the C-phase winding 38c to the A-phase winding 38a.
  • the application destination of the drive current is switched from the A-phase winding 38a to the B-phase winding 38b.
  • the pulse current output circuit 21 outputs a pulse current to the A-phase winding 38a according to the command of the control circuit 50, as in the time from time t2 to time t3.
  • the magnetization of the permanent magnets 40 and 41 is adjusted by superimposing the residual current of the drive current on the pulse current and flowing the pulse current through the A-phase winding 38a.
  • the application destination of the drive current is switched from the B-phase winding 38b to the C-phase winding 38c.
  • the output increased from about 600 W to about 1200 W at a rotation speed of 1200 rpm.
  • Efficiency increased from about 80% to about 90%.
  • the power factor increased from 0.35 to 0.55 at a rotational speed of 1200 rpm. It was confirmed that the output, efficiency, and power factor were all increased by providing the permanent magnets 40 and 41.
  • FIG. 5 is a diagram showing the load torque, the motor speed, the applied current of each phase, and the time change of the motor torque.
  • FIG. 6 is a diagram showing changes in the magnetization state of the permanent magnet in the example of FIG. 5 on the BH diagram.
  • the times t1 to t11 representing the switching timings of the semiconductor switching elements S1 to S6 and the pulse current output timings of the pulse current output circuit 21 correspond to the times t1 to t11 in FIG. 4, respectively.
  • the pulse current is output from the pulse current output circuit 21 to the A-phase winding 38a between the time t2 and the time t3 and between the time t9 and the time t10. This increases the residual magnetic flux densities of the permanent magnets 40 and 41.
  • a pulse current is applied to the B-phase winding 38b from another pulse current output circuit (not shown in FIG. 1) at the same timing.
  • the stator salient pole 32 for the A phase and one of the rotor salient poles 36 are aligned, the change in the magnetic force of the permanent magnets 40 and 41 is mainly caused by the injection of the pulse current into the A phase winding 38a. ..
  • the current injection into the B-phase winding 38b is merely a support for changes in the magnetic force of the permanent magnets 40 and 41.
  • the magnetization state of the permanent magnet changes in the order of the states ST1, ST2, and ST3 by the injection of the first pulse current from the time t2 to the time t3.
  • the magnetization state of the permanent magnet is further changed in the order of states ST4, ST5, ST6.
  • the magnetic force of the permanent magnets 40 and 41 can be changed by injecting the pulse current into the A-phase winding 38a and the B-phase winding 38b.
  • the average torque of the motor is larger than the load torque.
  • the load torque increases to 2, 5, 8 [Nm], while the average torque of the motor changes to 2,11, 6.31, 8.43 [Nm]. From this result, it is the performance of the motor whether or not the motor torque can be increased when the load torque is increased. Therefore, by applying the pulse current this time, the motor torque is increased by about 10 according to the increase in the load torque. It can be seen that there is an increase of ⁇ 20%. Therefore, by applying a pulse width of a predetermined value or more, the motor torque can be improved and the efficiency can be further improved.
  • the motor speed is increasing due to the energy difference between the load torque and the average torque of the motor.
  • FIG. 7 is a diagram showing the time change of the applied current of each phase, the magnetic flux density of the permanent magnet, and the motor torque in another simulation example.
  • a pulse current is output from the pulse current output circuit 21 near each time of time t20, t21, t22, and t23.
  • the pulse current output circuit 21 applies a pulse current to the A-phase winding 38a in the same direction as the drive current.
  • the average value of the magnetic flux densities of the permanent magnets 40 and 41 increases in order, and the average value of the motor torque also increases in order.
  • the pulse current output circuit 21 applies a pulse current to the A-phase winding 38a in the same direction as the drive current, and at the same time, another pulse current output circuit (not shown in FIG. 1) is in the C phase.
  • a pulse current is applied to the winding 38c in the same direction as the drive current.
  • the pulse current output circuit 21 applies a pulse current to the A-phase winding 38a in the direction opposite to the direction of the drive current.
  • the average value of the magnetic flux densities of the permanent magnets 40 and 41 decreases, and the average value of the motor torque also decreases.
  • the pulse current from the pulse current output circuit 21 to the drive winding 38 in the direction opposite to the direction of the drive current, the magnetic flux densities of the permanent magnets 40 and 41 can be reduced, and as a result, the motor The torque can be reduced.
  • a permanent magnet having a small holding force such as an alnico magnet or an iron / chromium / cobalt magnet is provided on the stator yoke.
  • at least the pulse current is applied to the drive winding 38 of the specific phase at the timing when the stator salient pole 32 of the specific phase and one of the rotor salient poles 36, which are determined according to the arrangement position of the permanent magnet, are in the aligned position.
  • the application time of this pulse current is shorter than the application time of the drive current of each phase, and is limited to a time during which the rotor 35 does not rotate.
  • the magnitude of the pulse current is larger than the magnitude of the drive current.
  • the switched reluctance motor 10 of the second embodiment has the same arrangement of the permanent magnets 40 and 41 as that of the first embodiment, but applies a pulse current to the drive winding 38 of a phase other than the A phase. It differs from the case of the first embodiment in that.
  • a detailed description will be given with reference to FIGS. 8 to 10.
  • FIG. 8 is a block diagram showing an example of the configuration of the switched reluctance motor according to the second embodiment.
  • the drive circuit 20B of the switch reluctance motor 10 shown in FIG. 8 is replaced with the pulse current output circuit 21 and the switch SW1 for the A phase, the pulse current output circuit 21B and the switch SW2 for the B phase, and the pulse for the C phase. It differs from the switch reluctance motor 10 of FIG. 1 in that the current output circuit 21C and the switch SW3 are provided. The output destination of the common pulse current output circuit 21 may be switched.
  • the B-phase pulse current output circuit 21B has an output terminal T1B connected to the connection node N3 and an output terminal T2B connected to the connection node N4.
  • the switch SW2 is connected between the connection node N3 and the cathode of the diode D4, or between the connection node N4 and the anode of the diode D3.
  • the pulse current output circuit 21B outputs a pulse current to the B-phase winding 38b in a state where both the switch SW2 and the semiconductor switching elements S3 and S4 are controlled to be off.
  • a pulse current is applied to the B-phase winding 38b in the same direction as the drive current. ..
  • the output terminal T1B has a negative polarity and the output terminal T2B has a positive polarity and a pulse current is output from the pulse current output circuit 21B
  • a pulse current is applied to the B-phase winding 38b in the direction opposite to the drive current. Will be done.
  • the C-phase pulse current output circuit 21C has an output terminal T1C connected to the connection node N5 and an output terminal T2C connected to the connection node N6.
  • the switch SW3 is connected between the connection node N5 and the cathode of the diode D6, or between the connection node N6 and the anode of the diode D5.
  • the pulse current output circuit 21C outputs a pulse current to the C-phase winding 38c in a state where both the switch SW3 and the semiconductor switching elements S5 and S6 are controlled to be off.
  • a pulse current is applied to the C-phase winding 38c in the same direction as the drive current. ..
  • the output terminal T1C has a negative polarity and the output terminal T2C has a positive polarity and a pulse current is output from the pulse current output circuit 21C
  • a pulse current is applied to the C-phase winding 38c in the direction opposite to the drive current. Will be done.
  • the control circuit 50 outputs control signals for controlling the semiconductor switching elements S1 to S6, the above switches SW2 and SW3, and the pulse current output circuits 21B and 21C. Since the other points of FIG. 8 are the same as those of FIG. 1, the same or corresponding parts are designated by the same reference numerals and the description is not repeated.
  • the magnetic flux MF shown on the motor body 30 will be described later with reference to FIG.
  • FIG. 9 is a timing diagram showing the opening / closing timing of each semiconductor switching element and the output timing of the pulse current output circuit in the switched reluctance motor of FIG.
  • the timing of applying the drive current in the timing diagram of FIG. 9 is the same as that of the timing diagram of FIG. That is, the driving current is applied to the A-phase winding 38a by controlling the semiconductor switching elements S1 and S2 in the ON state between the time t30 and the time t31. By controlling the semiconductor switching elements S3 and S4 in the ON state between the next time t31 and time t32, a drive current is applied to the B-phase winding 38b. By controlling the semiconductor switching elements S5 and S6 in the ON state between the next time t32 and time t34, a drive current is applied to the C-phase winding 38c. Similarly, the phases of the drive winding 38 to which the drive current is applied between the time t34 and the time t40 are sequentially switched in the order of A phase, B phase, and C phase.
  • the pulse current output circuit 21B applies a pulse current between time t32 and time t33 and between time t40 and t41 when the B-phase winding 38b and the rotor salient pole 36 of any of the rotors 35 are substantially aligned. It is applied to the B-phase winding 38b.
  • a pulse current is applied to the B-phase winding 38b, both the switch SW2 and the semiconductor switching elements S3 and S4 are controlled to be in the off state.
  • a pulse current is applied to the B-phase winding 38b in the same direction as the drive current.
  • the pulse current output circuit 21C applies a pulse current to the C-phase winding 38c between the time 34 and the time t35 when the C-phase winding 38c and the rotor salient pole 36 of any of the rotors 35 are substantially aligned. ..
  • both the switch SW3 and the semiconductor switching elements S5 and S6 are controlled to be in the off state.
  • a pulse current is output to the C-phase winding 38c in the same direction as the drive current.
  • the C-phase winding 38c is continuously subjected to the same current value. It is desirable to apply a pulsed current.
  • any pulse current is applied, the direction of the magnetic flux MF generated in the permanent magnets 40 and 41 is the same.
  • the drive current is applied in the order of A phase, C phase, and B phase, after the pulse current is applied to the C phase winding 38c, the pulse current is continuously applied to the B phase winding 38b with the same current value. It is applied.
  • FIG. 10 is a diagram for explaining magnetism on a permanent magnet provided on the stator.
  • FIG. 10A shows the magnetic flux distribution in the case of the first embodiment as a reference diagram
  • FIG. 10B shows the magnetic flux distribution in the case of time t32 to time t33 in FIG. C) shows the magnetic flux distribution from the time t34 to the time t35 in FIG.
  • the A-phase winding 38a and the rotor salient pole of any of the rotors 35 are substantially aligned, the A-phase winding A pulse current is applied to 38a.
  • a detour path of the magnetic flux MF passing through the stator salient pole for the B phase, the rotor salient pole, and the stator salient pole for the C phase may occur in parallel with the path of the magnetic flux MF passing through the permanent magnets 40 and 41.
  • the rotor salient pole is designed to be wide, there is a problem that the magnetizing efficiency to the permanent magnets 40 and 41 is lowered because the ratio of the magnetic flux MF passing through the detour path is large.
  • a pulse current is applied to the B-phase winding 38b.
  • the path of the magnetic flux MF passing through the permanent magnets 40 and 41 and the detour path of the magnetic flux MF passing through the rotor salient pole are not in parallel.
  • a pulse current is applied to the C-phase winding 38c when the rotor salient pole of either the C-phase winding 38c and the rotor 35 is substantially aligned.
  • the path of the magnetic flux MF passing through the permanent magnets 40 and 41 and the detour path of the magnetic flux MF passing through the rotor salient pole are not in parallel.
  • a pulse is applied to either the B-phase winding 38b or the C-phase winding 38c. Even if a current is applied, the magnetizing efficiency does not decrease due to the bypass of the magnetic flux MF.
  • a pulse current may be applied to only one of the B-phase winding 38b and the C-phase winding 38c, but in order to improve the uniformity of magnetization, one of the B-phase winding 38b and the C-phase winding 38c may be applied.
  • FIG. 11 is a diagram showing changes over time in load torque, motor torque, and applied current of each phase in other embodiments.
  • the load torque is constant at 10 [Nm].
  • the current of each phase shown in FIG. 11C is controlled by the torque control method so that the load torque matches the motor torque shown in FIG. 11B. As shown in FIG. 11B, no large torque ripple is generated in the motor output.
  • each permanent magnet is provided on the stator yoke 33 at a position intermediate between the stator salient pole 32 for the B phase and the stator salient pole 32 for the C phase, which are adjacent to each other. In this case, a total of four permanent magnets will be provided.
  • the output timing of the pulse current from the pulse current output circuit 21 is the same as in the case of the 6-4 structure described in the first and second embodiments.
  • the permanent magnets should be placed in the stator yoke where unidirectional magnetic flux flow is available, in positions facing the diameter of the annular stator yoke. If it is arranged and the total number is an even number, it can be arranged at any position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

スイッチトリラクタンスモータ(10)において、モータ本体(30)は、複数のロータ突極を有するロータ(35)、複数のステータ突極を有するステータ(31)、各相のステータ突極に巻回された各相の駆動巻線、およびステータヨークに配置された永久磁石(40,41)を含む。駆動回路(20)は、ロータ(35)を回転駆動させるために各相の駆動巻線に駆動電流を出力する。パルス電流出力回路(21)は、各相の駆動巻線への駆動電流の印加時間よりも短時間のパルス電流を、駆動電流に重畳して出力する。

Description

スイッチトリラクタンスモータおよびその制御方法
 この開示は、スイッチトリラクタンスモータおよびその制御方法に関する。
 スイッチトリラクタンスモータの力率および効率の改善を図るために、ステータ突極に設けられた駆動巻線の他に、ステータヨークに永久磁石を設ける手法が知られている。
 たとえば、特許文献1(特開2018-174649号公報)に開示された手法によれば、永久磁石は、励磁手段としての機能し、ステータ突極に磁路を介して磁力を印加する。ロータ突極を吸引するステータ突極の切り替えは、永久磁石による磁束に駆動巻線の電流による磁束を加算および減算することによって行われる。
特開2018-174649号公報
 上記文献のスイッチトリラクタンスモータでは、回転速度および負荷トルクがそれぞれある決められた値の場合には、その値に応じた磁力の永久磁石を選択することで力率および効率を向上させることが可能と考えられる。しかしながら、回転速度および負荷トルクの値がそれぞれ広い範囲で変化する場合にどのように力率および効率を最適化すべきかについて、明らかにされていない。
 通常、モータに用いられる磁石はネオジウム磁石である。ネオジウム磁石の保持力は高いために、通常の使用状態ではその磁力はほとんど変化しない。したがって、上記の構成のスイッチトリラクタンスモータにネオジウム磁石を適用した場合には、狭い動作範囲でしかモータの力率および効率を最適化できない。
 本開示は上記の問題点を考慮してなされたものである。本開示の目的は、広い回転速度の範囲および広い負荷トルクの範囲に対して最適な力率および効率で運転可能なスイッチトリラクタンスモータを提供することである。
 一実施形態によるスイッチトリラクタンスモータは、モータ本体と、駆動回路と、パルス電流出力回路とを備える。モータ本体は、複数のロータ突極を有するロータ、複数のステータ突極と永久磁石とを有するステータ、および各相のステータ突極に巻回された各相の駆動巻線を含む。駆動回路は、ロータを回転駆動させるために各相の駆動巻線に駆動電流を出力する。パルス電流出力回路は、いずれか1つの相の駆動巻線に、各相の駆動巻線への駆動電流の印加時間よりも短時間のパルス電流を出力する。
 上記の実施形態によれば、パルス電流の印加によって永久磁石の残留磁束密度を変化させることができるので、広い回転速度の範囲および広い負荷トルクの範囲に対して最適な力率および効率で運転可能なスイッチトリラクタンスモータを提供できる。
第1の実施形態によるスイッチトリラクタンスモータの構成の一例を示すブロック図である。 図1のモータ本体を対称面で切断した場合の断面斜視図である。 各種磁石のB-H曲線を示す図である。 各半導体スイッチング素子の開閉タイミングおよびパルス電流出力回路の出力タイミングを示すタイミング図である。 負荷トルク、モータ速度、各相の印加電流、およびモータトルクの時間変化を示した図である。 図5の例において、永久磁石の磁化状態の変化をB-H図上に示した図である。 他のシミュレーション例において、各相の印加電流、永久磁石の磁束密度、モータトルクの時間変化を示す図である。 第2の実施形態によるスイッチトリラクタンスモータの構成の一例を示すブロック図である。 図1のスイッチトリラクタンスモータにおいて、各半導体スイッチング素子の開閉タイミングおよびパルス電流出力回路の出力タイミングを示すタイミング図である。 ステータに設けられた永久磁石への着磁について説明するための図である。 他の実施形態における負荷トルク、モータトルク、および各相の印加電流の時間変化を示した図である。
 以下、各実施形態について図面を参照して詳しく説明する。以下では、6極のステータと4極のロータとを有する、いわゆる6-4構造のスイッチトリラクタンスモータを例に挙げて説明する。しかし、本開示の技術はこの構造以外のスイッチトリラクタンスモータにも適用可能である。なお、以下の説明において、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない場合がある。
 <第1の実施形態>
 [装置構成]
 図1は、第1の実施形態によるスイッチトリラクタンスモータの構成の一例を示すブロック図である。図2は、図1のモータ本体を対称面で切断した場合の断面斜視図である。以下、図1および図2を参照して、本実施形態のスイッチトリラクタンスモータ10の構成例について説明する。
 スイッチトリラクタンスモータ10は、モータ本体30と、駆動回路20と、制御回路50とを備える。駆動回路20は、モータ本体30を駆動するための励磁電流を出力する。制御回路50は、駆動回路20の動作を制御する。
 (モータ本体)
 図1および図2に示すように、モータ本体30は、回転軸の回りを回転するロータ35と、ロータ35を囲むように配置されたステータ31と、駆動巻線38(38a,38b,38c)とを含む。
 いわゆる6-4構造の場合、ロータ35は、90度ごとにステータ31に向かって突出する4個のロータ突極36を備える。ステータ31は、環状のステータヨーク33と、60度ごとにステータヨーク33からロータ35に向かって突出する6個のステータ突極32とを備える。対向する1対のステータ突極32に、対応する相の駆動巻線38(A相巻線38a、B相巻線38b、またはC相巻線38c)が巻回される。
 さらに、モータ本体30は、ステータヨーク33に設けられた1対の永久磁石40,41を備える。図1および図2の場合、永久磁石40,41は、A相用のステータ突極32から90度離れた位置、すなわち、互いに隣接するB相用のステータ突極32とC相用のステータ突極32との中間位置に設けられる。永久磁石40,41の各々は、ステータヨーク33の第1部分と第2部分との間に挟まれるように配置される。したがって、ステータヨーク33内の磁路は、永久磁石40,41を通過する。
 永久磁石40,41として、アルニコ(AlNiCo)磁石および鉄・クロム・コバルト磁石などの磁石が好適に用いられる。これらの磁石の残留磁束密度はネオジウム磁石の残留磁束密度と同程度であるが、保持力がネオジウム磁石の保持力の1/10程度以下である。したがって、外部磁界を変化させることによって磁力を容易に変化させることができる。
 図3は、各種磁石のB-H曲線を示す図である。図3の横軸は外部磁界Hc(単位:kA/m)を示し、縦軸は磁束密度Br(単位:T)を示す。図3では、ネオジウム(NdFeB)磁石、サマリウムコバルト(SmCo)磁石、およびアルニコ(AlNiCo)磁石のB-H曲線の一例が示されている。
 図3に示すように、アルニコ磁石は、ネオジウム磁石およびサマリウムコバルト磁石のような希土類磁石と同程度の強い磁力を有する。アルニコ磁石の最大磁束密度は、0.5~1.2T程度であり、ネオジウム磁石と同程度である。一方、アルニコ磁石の保持力は、50~150KA/m程度であり、希土類磁石の保持力の1/10程度以下である。
 図3には示していないが、鉄・クロム・コバルト磁石の最大磁束密度は、0.5~1.2T程度であり、アルニコ磁石と同程度である。また、鉄・クロム・コバルト磁石の保持力は、30~70KA/m程度であり、アルニコ磁石と同程度であるか若干小さい。
 本実施形態のスイッチトリラクタンスモータ10のモータ本体30では、永久磁石40,41として、アルニコ磁石および鉄・クロム・コバルト磁石のような鋳造磁石が用いられる。これによって、希土類磁石と同程度の強い磁力を有しながらも、駆動巻線38に印加したパルス電流によってその磁力を変化させることができる。
 (駆動回路)
 再び図1および図2を参照して、駆動回路20は、非対称ハーフブリッジコンバータである。駆動回路20は、直流電源22から出力された直流電圧Vを、モータ本体30を駆動するための三相のパルス電圧に変換する。
 駆動回路20は、自己消弧型の半導体スイッチング素子S1~S6と、ダイオードD1~D6と、スイッチSW1とを含む。図1では、半導体スイッチング素子S1~S6の一例として、絶縁ゲートバイポーラトランジスタ(IGBT)が用いられる。以下、これらの接続関係について説明する。スイッチSW1についても、自己消弧型の半導体スイッチング素子を用いることができる。
 半導体スイッチング素子S1は、A相巻線38aの一端に接続された接続ノード(node)N1と直流電源22の正側ノードNPとの間に接続される。半導体スイッチング素子S2は、A相巻線38aの他端に接続された接続ノードN2と直流電源22の負側ノードNNとの間に接続される。ダイオードD1は、接続ノードN2と直流電源22の正側ノードNPとの間に逆バイアス方向に接続される。ダイオードD2は、接続ノードN1と直流電源22の負側ノードNNとの間に逆バイアス方向に接続される。
 同様に、半導体スイッチング素子S3は、B相巻線38bの一端に接続された接続ノードN3と直流電源22の正側ノードNPとの間に接続される。半導体スイッチング素子S4は、B相巻線38bの他端に接続された接続ノードN4と直流電源22の負側ノードNNとの間に接続される。ダイオードD3は、接続ノードN4と直流電源22の正側ノードNPとの間に逆バイアス方向に接続される。ダイオードD4は、接続ノードN3と直流電源22の負側ノードNNとの間に逆バイアス方向に接続される。
 同様に、半導体スイッチング素子S5は、C相巻線38cの一端に接続された接続ノードN5と直流電源22の正側ノードNPとの間に接続される。半導体スイッチング素子S6は、C相巻線38cの他端に接続された接続ノードN6と直流電源22の負側ノードNNとの間に接続される。ダイオードD5は、接続ノードN6と直流電源22の正側ノードNPとの間に逆バイアス方向に接続される。ダイオードD6は、接続ノードN5と直流電源22の負側ノードNNとの間に逆バイアス方向に接続される。
 駆動回路20は、さらに、パルス電流出力回路21を含む。パルス電流出力回路21は、外部磁界によって永久磁石40,41の磁化状態を変化させるために、ロータ35が回転駆動しない程度の短時間の間、ステータ31に巻回された巻線にパルス電流を印加する。本実施形態では、パルス電流を印加するための特別な巻線を設けるのではなく、駆動巻線38のうち少なくとも1相の巻線にパルス電流が印加される。
 パルス電流出力回路21は、図1の場合には、A相用の接続ノードN1,N2の間に接続される。この場合、スイッチSW1は、接続ノードN1とダイオードD2のカソードとの間、または接続ノードN2とダイオードD1のアノードとの間に接続される。ロータ35を駆動するための駆動電流をA相巻線38aに流す場合、スイッチSW1はオン状態に制御される。一方、パルス電流出力回路21からパルス電流をA相巻線38aに流す場合、スイッチSW1および半導体スイッチング素子S1,S2はいずれもオフ状態に制御される。
 具体的に、パルス電流出力回路21は、接続ノードN1に接続された出力端子T1と、接続ノードN2に接続された出力端子T2とを有する。出力端子T1が正側かつ出力端子T2が負側の極性でパルス電流を出力する場合、A相巻線38aには、ロータ35を駆動する駆動電流と同方向の電流が流れる。一方、出力端子T1が負側かつ出力端子T2が正側の極性でパルス電流を出力する場合、A相巻線38aには駆動電流と逆方向の電流が流れる。
 永久磁石40,41の磁力の大きさは、パルス電流出力回路21から印加されるパルス電流の大きさ及び印加時間によって調整できる。パルス電流を印加する時間及びそのタイミングの詳細については後述する。
 (制御回路)
 制御回路50は、半導体スイッチング素子S1~S6の開閉状態を制御するためにゲート制御信号を出力する。制御回路50は、さらにスイッチSW1の開閉状態を制御する。さらに、制御回路50は、パルス電流出力回路21から出力されるパルス電流の大きさ及びタイミングを制御する。また、制御回路50は、パルス電流出力回路21からパルス電流を出力しないときには、出力端子T1および出力端子T2をハイインピーダンス状態または開放状態にするように、パルス電流出力回路21を制御する。もしくは、制御回路50は、パルス電流出力回路21からパルス電流を出力しないときには、パルス電流出力回路21またはその出力ドライバへの電源電圧の供給をオフにしてもよい。
 図1の例では、制御回路50は、コンピュータをベースに構成される。すなわち、制御回路50は、CPU(Central Processing Unit)51、メモリ52、およびインタフェース(I/F)回路53を含む。制御回路50は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などの回路をベースに構成されていてもよい。
 具体的に図1の場合、CPU51は、制御プログラムに従って命令を実行することにより、半導体スイッチング素子S1~S6、パルス電流出力回路21、およびスイッチSW1を制御する。メモリ52は、CPU51の主記憶として動作するRAM(Random Access Memory)およびROM(Read Only Memory)、ならびに上記の制御ブログラムを格納するための不揮発性メモリおよび補助記憶装置などを含む。インタフェース回路53は、ドライブ回路などを含み、ゲート制御信号を半導体スイッチング素子S1~S6のゲート端子に出力する。さらに、インタフェース回路53は、パルス電流出力回路21およびスイッチSW1を制御するための制御信号を出力する。
 [動作方法]
 次に、上記の構成のスイッチトリラクタンスモータ10の動作について説明する。まず、ロータ35の回転駆動自体は、従来と同様の方法を用いて行われる。
 たとえば、制御回路50がA相用の半導体スイッチング素子S1,S2を両方ともオン状態に制御した場合、A相巻線38aに電力が供給され、A相用のステータ突極32の磁化および消磁が実現される。同時に、永久磁石40,41の磁化状態も変化する。
 制御回路50は、A相巻線38aに電力供給が不要なときは、半導体スイッチング素子S1,S2のいずれかをオフ状態に制御する。たとえば、半導体スイッチング素子S1をオフ状態に制御した場合、A相巻線38aに蓄えられた磁気エネルギーによって、半導体スイッチング素子S2とダイオードD2とを介して電流が環流する。逆に、半導体スイッチング素子S2をオフ状態に制御した場合、A相巻線38aに蓄えられた磁気エネルギーによって、半導体スイッチング素子S1とダイオードD1と介して電流が環流する。いずれの場合も、直流電源22からの電力供給はない。
 制御回路50が半導体スイッチング素子S1,S2を両方ともオフ状態に制御した場合、ダイオードD1,D2を介して電流が流れる。これにより、A相巻線38aに蓄えられた磁気エネルギーが直流電源22に戻される。A相巻線38aの両端には電力供給時と逆極性の電圧が印加され、巻線電流は次第に減少する。
 図1において、ロータ35を反時計回り方向に回転駆動させる場合には、制御回路50は駆動回路20に、A相巻線38a、B相巻線38b、C相巻線38cの順に電力を供給させる。これによって、電気角で120度ごとに磁束方向が変化する電磁界が生成される。ロータ35を時計回り方向に回転駆動させる場合には、制御回路50は駆動回路20に、A相巻線38a、C相巻線38c、B相巻線38bの順に電力を供給させる。
 具体的に図1では、A相用のステータ突極32とロータ突極36とが整列位置にある場合が示されている。ロータ35を反時計回り方向に回転駆動させる場合には、制御回路50は、このタイミングでA相巻線38aに電力を供給している状態からB相巻線38bに電力を供給している状態に制御を切り替える。逆に、ロータ35を時計回り方向に回転駆動させる場合には、制御回路50は、このタイミングでA相巻線38aに電力を供給している状態からC相巻線38cに電力を供給している状態に制御を切り替える。
 なお、図1の例において、ロータ35を反時計回りに回転させ、最初にA相巻線38aに駆動電流を印加する場合のロータ35の初期位置について説明する。この場合、ロータ35のいずれかのロータ突極36は、初期位置としてA相用のステータ突極32とB相用のステータ突極32との間に位置しなければならない。たとえば、ロータ35のいずれかのロータ突極36は、A相用のステータ突極32から40~45度の位置に配置される。ロータ35を時計回りに回転させ、最初にA相巻線38aに駆動電流を印加する場合、ロータ35のいずれかのロータ突極36は、初期位置としてA相用のステータ突極32とC相用のステータ突極32との間に位置しなければならない。
 次に、パルス電流出力回路21の動作について説明する。パルス電流出力回路21は、永久磁石40,41の配置位置に応じて定まる特定相のステータ突極32といずれかのロータ突極36とが整列位置にあるときに、少なくとも当該特定相のステータ突極32に巻回された駆動巻線38にパルス電流を供給する。
 具体的に、図1および図2に示す例では、永久磁石40,41は、ステータヨーク33のうち、互いに隣接するB相用のステータ突極32とC相用のステータ突極32との中間位置に設けられている。すなわち、一対の永久磁石40,41は、A相用のステータ突極32に対して対称位置に設けられている。この場合、A相用のステータ突極32といずれかのロータ突極36とが整列位置にあるとき、半導体スイッチング素子S1,S2をオフにした状態でパルス電流出力回路21からA相巻線38aにパルス電流を供給する。この結果、図1に示すようにA相用のステータ突極32、ロータ35、ステータヨーク33、および永久磁石40,41を介した磁気回路が形成されるので、効率良く永久磁石40,41の磁力を増加または減少させることができる。
 ここで、駆動電流と同方向にパルス電流を注入すると永久磁石40,41の磁力は増加し、駆動電流と逆方向にパルス電流を注入すると永久磁石40,41の磁力は減少する。具体的に図1に示す例において、パルス電流出力回路21の出力端子T1および出力端子T2をハイインピーダンス状態または開放状態にし、スイッチSW1をオン状態にする。この状態で、半導体スイッチング素子S1,S2を両方ともオン状態にすることによってA相巻線38aに駆動電流を印加すると、図1の矢印で示す方向に磁束MFが生じる。この場合、図1に示すように永久磁石40,41の各々において磁束MFの上流側がS極に磁化され、磁束MFの下流側がN極に磁化される。
 次に、半導体スイッチング素子S1,S2を両方ともオフ状態にして、スイッチSW1をオフ状態にする。この状態で、出力端子T1を正側かつ出力端子T2を負側の極性でパルス電流出力回路21からパルス電流を出力すると、駆動電流と同方向にパルス電流が流れる。この結果、図1の場合と同方向の磁束が生じるので、永久磁石40,41の着磁量を増加させることができる。逆に、半導体スイッチング素子S1,S2およびスイッチSW1をいずれもオフ状態にして、出力端子T1を負側かつ出力端子T2を正側の極性でパルス電流出力回路21からパルス電流を出力すると、駆動電流と逆方向にパルス電流が流れる。この結果、図1の場合と逆方向の磁束が生じるので、永久磁石40,41の着磁量を減少させることができる。
 なお、パルス電流を印加するタイミングが上記と異なると、トルクリップルの発生によってロータ35に振動を引き起こす可能性があり、結果としてモータの安定した動作を妨げる可能性がある。
 ロータ35の通常の駆動状態では、永久磁石40,41による磁界に駆動巻線38の電流磁界が重畳される(磁力向上効果)。上記のようにパルス電流を利用して永久磁石40,41の磁力を変化させることにより、磁気回路に生成された磁束MFを大きく変化させることができる。この結果、モータの出力トルクを負荷トルクの変動に応じた適切な値に変更または調整可能になる。
 パルス電流出力回路21からの電流パルスの印加時間は、ロータ35が回転しない程度の短い時間に設定する必要がある。したがって、パルス印加時間Tは、電気的時定数τよりも十分に長いが、機械的時定数τよりも十分に短く設定する必要がある。パルス印加時間Tが電気的時定数τよりも十分に長くないと、A相巻線38aにパルス電流を注入することができない。また、パルス印加時間Tが機械的時定数τよりも十分に短くないと、モータ出力に大きなトルクリップルが発生したり、ロータ35に振動を引き起こしたりする可能性があり、モータの安定した動作を妨げる。
 ここで、電気的時定数τは、次式(1)に示すように、モータ本体30の各相の平均インダクタンスLと各相の駆動巻線38の抵抗値Rとを用いて、
 τ=L/R  …(1)
で与えられる。
 機械的時定数τは、次式(2)に示すように、ロータ35の慣性モーメントJと制動係数Bとを用いて、
 τ=J/B  …(2)
で与えられる。
 したがって、パルス印加時間Tは、
 τ≪T≪τ  …(3)
を満たす必要がある。
 表1は、機械的時定数τおよび電気的時定数τの具体的設計例を示す。パルス印加時間Tは、例えば、電気的時定数τの10倍よりも大きくかつ機械的時定数τの10分の1よりも小さい値(表1の例では約0.5秒~2秒)に設定される。
Figure JPOXMLDOC01-appb-T000001
 [スイッチングタイミングの具体例]
 以下、図1および図4を参照して、駆動回路20を構成する各半導体スイッチング素子S1~S6およびパルス電流出力回路21の制御の具体例について説明する。パルス電流出力回路21の出力端子T1の極性を正とし、出力端子T2の極性を負とする。この場合、スイッチSW1は常時オン状態でよい。
 図4は、各半導体スイッチング素子の開閉タイミングおよびパルス電流出力回路の出力タイミングを示すタイミング図である。図4の時刻t1において、制御回路50は、半導体スイッチング素子S1,S2をオン状態に切り替える。これよって、A相巻線38aに駆動電流が印加される。
 次の時刻t2において、制御回路50は、半導体スイッチング素子S1,S2をオフ状態に切り替えるとともに、半導体スイッチング素子S3,S4をオン状態に切り替える。これによって、A相巻線38aへの駆動電流の印加が終了し、B相巻線38bへの駆動電流の印加が開始される。時刻t2において、A相巻線38aとロータ35のいずれかロータ突極36とがほぼ整列位置にある。この整列位置にある時刻t2から時刻t3までの間、制御回路50からの指令に従って、パルス電流出力回路21はA相巻線38aにパルス電流を出力する。この結果、駆動電流の残留電流に重畳されてパルス電流がA相巻線38aに流れることにより、永久磁石40,41の磁化が調整される。具体的に、駆動電流の残留電流と同方向にパルス電流を流すと永久磁石40,41の着磁量が増加し、駆動電流の残留電流と逆方向にパルス電流を流すと永久磁石40,41の着磁量が減少する。なお、A相巻線38aへのパルス電流の注入時には、制御回路50は、半導体スイッチング素子S1,S2をオフ状態に制御し、かつスイッチSWをオフ状態に制御する。このとき、半導体スイッチング素子S3,S4をオン状態に制御してもよいし、オフ状態に制御してもよい。
 次の時刻t4において、制御回路50は、半導体スイッチング素子S3,S4をオフ状態に切り替えるとともに、半導体スイッチング素子S5,S6をオン状態に切り替える。これによって、B相巻線38bへの駆動電流の印加が終了し、C相巻線38cへの駆動電流の印加が開始される。
 その後、同様に、時刻t5においてC相巻線38cからA相巻線38aに駆動電流の印加先が切り替えられる。時刻6において、A相巻線38aからB相巻線38bに駆動電流の印加先が切り替えられる。時刻t7において、B相巻線38bからC相巻線38cに駆動電流の印加先が切り替えられる。時刻t8において、C相巻線38cからA相巻線38aに駆動電流の印加先が切り替えられる。時刻t9において、A相巻線38aからB相巻線38bに駆動電流の印加先が切り替えられる。
 時刻t9から時刻t10の間において、時刻t2から時刻t3までの間と同様に、制御回路50の指令に従って、パルス電流出力回路21はA相巻線38aにパルス電流を出力する。この結果、駆動電流の残留電流に重畳されてパルス電流がA相巻線38aに流れることにより、永久磁石40,41の磁化が調整される。その後、時刻t11において、B相巻線38bからC相巻線38cに駆動電流の印加先が切り替えられる。
 [シミュレーション例1]
 以下、数値シミュレーションによる結果について説明する。まず、図1の永久磁石40,41を十分に磁化した状態で、パルス電流出力回路21を動作させない場合の結果について説明する。永久磁石40,41としてアルニコ磁石を用いた。
 永久磁石40,41を設けない場合と比較すると、出力は、1200rpmの回転速度の場合において約600Wから約1200Wに増加した。効率は、約80%から約90%に増加した。力率は、1200rpmの回転速度の場合において0.35から0.55に増加した。永久磁石40,41を設けることによって、出力、効率、および力率のいずれも増加することが確認できた。
 [シミュレーション例2]
 次に、パルス電流出力回路21からパルス電流を駆動巻線38に印加した場合の数値シミュレーションの結果について、図5および図6を参照して説明する。永久磁石40,41としてアルニコ磁石を用いた。アルニコ磁石の残留磁束密度は初期状態では0としている。
 図5は、負荷トルク、モータ速度、各相の印加電流、およびモータトルクの時間変化を示した図である。図6は、図5の例において、永久磁石の磁化状態の変化をB-H図上に示した図である。図5において、半導体スイッチング素子S1~S6の切り替えタイミングおよびパルス電流出力回路21のパルス電流の出力タイミングをそれぞれ表す時刻t1~t11は、図4の時刻t1~t11にそれぞれ対応している。
 図5に示すように、時刻t2および時刻t9で負荷トルクが増加するために、それに応じてモータの出力トルクの平均値を増加させる。このために、時刻t2から時刻t3までの間と時刻t9から時刻t10までの間とにおいて、パルス電流出力回路21からパルス電流がA相巻線38aに出力される。これによって、永久磁石40,41の残留磁束密度を増加させる。
 なお、図5および図6の例では、別のパルス電流出力回路(図1に不図示)からB相巻線38bにも、同じタイミングでパルス電流が印加される。ただし、A相用のステータ突極32といずれかのロータ突極36とが整列状態にあるので、永久磁石40,41の磁力の変化は主としてA相巻線38aへのパルス電流の注入によって生じる。B相巻線38bへの電流注入は、永久磁石40,41の磁力変化に対するサポートにすぎない。
 図6に示すように、時刻t2から時刻t3までの最初のパルス電流の注入によって、永久磁石の磁化状態は、状態ST1,ST2,ST3の順に変化する。時刻t9から時刻t10までの次のパルス電流の注入によって、永久磁石の磁化状態は、さらに、状態ST4,ST5,ST6の順に変化する。このように、A相巻線38aおよびB相巻線38bへのパルス電流の注入によって、永久磁石40,41の磁力を変化させることができる。
 上記の例では、負荷トルクに比べて、モータの平均トルクが大きくなっている。具体的に、負荷トルクが2、5、8[Nm]と増加するのに対して、モータの平均トルクは2.11、6.31、8.43[Nm]のように変化する。この結果から、負荷トルクを増加させるときにモータトルクが増加できるか否かがモータの性能である点から、今回、パルス電流を印加することで、負荷トルクの増加に応じてモータトルクが約10~20%増加しているのがわかる。よって、パルス幅を所定値以上印加することで、モータトルクが向上し、更に効率向上が図れる。
 なお、上記の場合、負荷トルクとモータの平均トルクとのエネルギー差によってモータ速度が増加している。パルス電流出力回路21から出力されるパルス電流の大きさを調整することによってモータトルクの平均値を負荷トルクに一致するようにすれば、モータ速度がほとんど変化しないように制御することも可能である。
 [シミュレーション例3]
 次に、シミュレーション例2の場合と同様に、パルス電流出力回路21からパルス電流を駆動巻線38に印加した場合の数値シミュレーションの結果について、図7を参照して説明する。各相の駆動電流の大きさを10Aとし、モータの回転速度を500[rpm]とした。また、永久磁石40,41としてアルニコ磁石を用いた。
 図7は、他のシミュレーション例において、各相の印加電流、永久磁石の磁束密度、モータトルクの時間変化を示す図である。図7において、時刻t20,t21,t22,t23の各々の時刻付近においてパルス電流出力回路21からパルス電流が出力される。
 具体的に、時刻t20付近および時刻t21付近において、パルス電流出力回路21は、A相巻線38aに駆動電流の方向と同方向にパルス電流を印加する。これによって、永久磁石40,41の磁束密度の平均値が順に増加し、モータトルクの平均値も順に増加する。
 次の時刻t22付近において、パルス電流出力回路21はA相巻線38aに駆動電流の方向と同方向にパルス電流を印加し、同時に別のパルス電流出力回路(図1に不図示)がC相巻線38cに駆動電流の方向と同方向にパルス電流を印加する。これにより、永久磁石の40,41の磁束密度の平均値がさらに増加し、モータトルクの平均値もさらに増加する。
 その次の時刻t23付近において、パルス電流出力回路21はA相巻線38aに駆動電流の方向と逆方向にパルス電流を印加する。これにより、永久磁石40,41の磁束密度の平均値は減少し、モータトルクの平均値も減少する。このように、パルス電流出力回路21から駆動電流の方向と逆方向にパルス電流を駆動巻線38に印加することによって、永久磁石40,41の磁束密度を減少させることができ、その結果、モータトルクを減少させることができる。
 [第1の実施形態の効果]
 以上のとおり、第1の実施形態のスイッチトリラクタンスモータによれば、アルニコ磁石または鉄・クロム・コバルト磁石など、保持力の小さい永久磁石がステータヨークに設けられる。そして、永久磁石の配置位置に応じて定まる特定相のステータ突極32といずれかのロータ突極36とが整列位置にあるタイミングで、少なくとも当該特定相の駆動巻線38にパルス電流が印加される。このパルス電流の印加時間は、各相の駆動電流の印加時間よりも短く、ロータ35が回転しない程度の時間に制限される。パルス電流の大きさは駆動電流の大きさよりも大きい。このパルス電流の印加によって、永久磁石の残留磁束密度を変化させることができるので、モータの出力および効率の向上が可能になる。
 <第2の実施形態>
 第2の実施形態のスイッチトリラクタンスモータ10は、第1の実施形態と同じ永久磁石40,41の配置を有しているが、パルス電流をA相以外の相の駆動巻線38に印加する点で第1の実施形態の場合と異なる。以下、図8~図10を参照して詳しく説明する。
 [装置構成]
 図8は、第2の実施形態によるスイッチトリラクタンスモータの構成の一例を示すブロック図である。
 図8に示すスイッチトリラクタンスモータ10の駆動回路20Bは、A相用のパルス電流出力回路21およびスイッチSW1に代えて、B相用のパルス電流出力回路21BおよびスイッチSW2と、C相用のパルス電流出力回路21CおよびスイッチSW3とが設けられている点で、図1のスイッチトリラクタンスモータ10と異なる。なお、共通のパルス電流出力回路21の出力先が切り替えられるように構成されていてもよい。
 具体的に、B相用のパルス電流出力回路21Bは、接続ノードN3に接続された出力端子T1Bと、接続ノードN4に接続された出力端子T2Bとを有する。スイッチSW2は、接続ノードN3とダイオードD4のカソードとの間、または接続ノードN4とダイオードD3のアノードとの間に接続される。
 パルス電流出力回路21Bは、スイッチSW2および半導体スイッチング素子S3,S4がいずれもオフ状態に制御された状態で、B相巻線38bにパルス電流を出力する。出力端子T1Bが正側かつ出力端子T2Bが負側の極性でパルス電流出力回路21Bからパルス電流が出力された場合には、B相巻線38bに駆動電流と同方向にパルス電流が印加される。一方、出力端子T1Bが負側かつ出力端子T2Bが正側の極性でパルス電流出力回路21Bからパルス電流が出力された場合には、B相巻線38bに駆動電流と逆方向にパルス電流が印加される。
 C相用のパルス電流出力回路21Cは、接続ノードN5に接続された出力端子T1Cと、接続ノードN6に接続された出力端子T2Cとを有する。スイッチSW3は、接続ノードN5とダイオードD6のカソードとの間、または接続ノードN6とダイオードD5のアノードとの間に接続される。
 パルス電流出力回路21Cは、スイッチSW3および半導体スイッチング素子S5,S6がいずれもオフ状態に制御された状態で、C相巻線38cにパルス電流を出力する。出力端子T1Cが正側かつ出力端子T2Cが負側の極性でパルス電流出力回路21Cからパルス電流が出力された場合には、C相巻線38cに駆動電流と同方向にパルス電流が印加される。一方、出力端子T1Cが負側かつ出力端子T2Cが正側の極性でパルス電流出力回路21Cからパルス電流が出力された場合には、C相巻線38cに駆動電流と逆方向にパルス電流が印加される。
 制御回路50は、半導体スイッチング素子S1~S6、ならびに上記のスイッチSW2,SW3およびパルス電流出力回路21B,21Cを制御するための制御信号を出力する。図8のその他の点は図1の場合と同様であるので、同一または相当する部分には同一の参照符号を付して説明を繰り返さない。なお、モータ本体30に示されている磁束MFに関しては、図10を参照して後述する。
 [各半導体スイッチング素子の開閉タイミングおよびパルス電流の出力タイミング]
 図9は、図1のスイッチトリラクタンスモータにおいて、各半導体スイッチング素子の開閉タイミングおよびパルス電流出力回路の出力タイミングを示すタイミング図である。
 図9のタイミング図において駆動電流の印加タイミングは、図4のタイミング図の場合と同様である。すなわち、時刻t30から時刻t31の間で半導体スイッチング素子S1,S2がオン状態に制御されることにより、A相巻線38aに駆動電流が印加される。その次の時刻t31から時刻t32の間で半導体スイッチング素子S3,S4がオン状態に制御されることにより、B相巻線38bに駆動電流が印加される。その次の時刻t32から時刻t34の間で半導体スイッチング素子S5,S6がオン状態に制御されることにより、C相巻線38cに駆動電流が印加される。以下同様に、時刻t34から時刻t40の間で駆動電流が印加される駆動巻線38の相は、A相、B相、C相の順に順次切り替わる。
 パルス電流出力回路21Bは、B相巻線38bとロータ35のいずれかのロータ突極36とがほぼ整列位置にある時刻t32から時刻t33の間、および時刻t40からt41の間に、パルス電流をB相巻線38bに印加する。B相巻線38bへのパルス電流の印加時には、スイッチSW2および半導体スイッチング素子S3,S4いずれもオフ状態に制御される。図9では、駆動電流と同方向にパルス電流がB相巻線38bに印加されている。
 パルス電流出力回路21Cは、C相巻線38cとロータ35のいずれかのロータ突極36とがほぼ整列位置にある時刻34から時刻t35の間に、パルス電流をC相巻線38cに印加する。C相巻線38cへのパルス電流の印加時には、スイッチSW3および半導体スイッチング素子S5,S6はいずれもオフ状態に制御される。図9では、駆動電流と同方向にパルス電流がC相巻線38cに出力されている。
 図9に示すように、永久磁石40,41の着磁の均一性を向上させるために、B相巻線38bへのパルス電流の印加後、続けて同一の電流値でC相巻線38cにパルス電流を印加するのが望ましい。いずれのパルス電流の印加の場合も永久磁石40,41に生じる磁束MFの方向は同一である。なお、駆動電流をA相、C相、B相の順に印加する場合には、C相巻線38cへのパルス電流の印加後、続けて同一の電流値でB相巻線38bにパルス電流が印加される。
 [永久磁石への着磁について]
 図10は、ステータに設けられた永久磁石への着磁について説明するための図である。図10の(A)は参考図として第1の実施形態の場合の磁束分布を示し、図10の(B)は図9の時刻t32から時刻t33の場合の磁束分布を示し、図10の(C)は図9の時刻t34から時刻t35の場合の磁束分布を示す。
 図10の(A)に示すように、第1の実施形態の場合には、A相巻線38aとロータ35のいずれかのロータ突極とがほぼ整列位置にあるときに、A相巻線38aにパルス電流が印加される。この場合、永久磁石40,41を通る磁束MFの経路と並列に、B相用のステータ突極、ロータ突極、およびC相用のステータ突極を通る磁束MFの迂回経路が生じ得る。ロータ突極が幅広に設計されている場合には、迂回経路を通る磁束MFの割合が大きくなるために、永久磁石40,41への着磁効率が低くなってしまうという問題がある。
 図10の(B)に示すように、B相巻線38bとロータ35のいずれかのロータ突極とがほぼ整列位置にあるときに、B相巻線38bにパルス電流が印加される。この場合、永久磁石40,41を通る磁束MFの経路と、ロータ突極を通る磁束MFの迂回経路とは並列にならない。同様に、図10の(C)に示すように、C相巻線38cとロータ35のいずれかのロータ突極とがほぼ整列位置にあるときに、C相巻線38cにパルス電流が印加される。この場合、永久磁石40,41を通る磁束MFの経路と、ロータ突極を通る磁束MFの迂回経路とは並列にならない。
 したがって、B相用のステータ突極とC相用のステータ突極との間に永久磁石40,41が設けられている場合には、B相巻線38bおよびC相巻線38cのいずれにパルス電流を印加しても、磁束MFの迂回に起因した着磁効率の低下は生じない。B相巻線38bおよびC相巻線38cの一方のみにパルス電流を印加してもよいが、着磁の均一性を改善するためには、B相巻線38bおよびC相巻線38cの一方にパルス電流を印加した場合には、続けて同じ電流値でかつ永久磁石40,41に同一方向の磁束MFが生じるような極性で他方の駆動巻線38にパルス電流を印加した方が望ましい。
 [第2の実施形態の効果]
 以上のとおり、第2の実施形態のスイッチトリラクタンスモータによれば、第1の実施形態の効果に加えて、磁束の迂回経路に起因した永久磁石の着磁効率の低下を防止できる。
 <その他の実施形態>
 以下、図11を参照して、スイッチトリラクタンスモータの他の制御例について説明する。図11は、他の実施形態における負荷トルク、モータトルク、および各相の印加電流の時間変化を示した図である。
 図11(A)に示すように負荷トルクは10[Nm]で一定である。この負荷トルクと図11(B)に示すモータトルクとが一致するように、トルク制御方式によって図11(C)に示す各相の電流が制御される。図11(B)に示すようにモータ出力には大きなトルクリップルが発生していない。
 <各実施形態の変形例>
 上記の6-4構造のモータ本体に代えて、12極のステータと8極のロータとから構成される、いわゆる12-8構造のモータ本体を用いて構わない。この場合も、各永久磁石は、互いに隣接するB相用のステータ突極32とC相用のステータ突極32との中間の位置のステータヨーク33に設けられる。この場合には、合計4個の永久磁石が設けられることになる。パルス電流出力回路21からのパルス電流の出力タイミングは、第1および第2の実施形態で説明した6-4構造の場合と同様である。より一般的に、ステータ突極およびロータ突極の数を増やす場合には、永久磁石は、一方向の磁束流が利用可能なステータヨーク内で、環状のステータヨークの直径方向に対向する位置に配置され、合計の個数が偶数個であれば、任意の位置に配置可能である。
 今回開示された実施形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 スイッチトリラクタンスモータ、20 駆動回路、21 パルス電流出力回路、22 直流電源、30 モータ本体、31 ステータ、32 ステータ突極、33 ステータヨーク、35 ロータ、36 ロータ突極、38 駆動巻線、38a A相巻線、38b B相巻線、38c C相巻線、40,41 永久磁石、50 制御回路、D1~D6 ダイオード、Hc 外部磁界、N1~N6 接続ノード、NN 負側ノード、NP 正側ノード、S1~S6 半導体スイッチング素子、SW1 スイッチ。

Claims (7)

  1.  複数のロータ突極を有するロータ、複数のステータ突極を有するステータ、各相の前記ステータ突極に巻回された各相の駆動巻線、およびステータヨークに配置された永久磁石を含むモータ本体と、
     前記ロータを回転駆動させるために前記各相の駆動巻線に駆動電流を出力する駆動回路と、
     前記各相の駆動巻線への前記駆動電流の印加時間よりも短時間のパルス電流を、前記駆動電流に重畳して出力するパルス電流出力回路とを備える、スイッチトリラクタンスモータ。
  2.  前記永久磁石は、互いに隣接する第1相用のステータ突極と第2相用のステータ突極との中間位置に設けられ、
     前記パルス電流出力回路は、第3相用のステータ突極といずれかのロータ突極とが整列位置にあるときに、前記第3相用の駆動巻線に前記パルス電流を出力する、請求項1に記載のスイッチトリラクタンスモータ。
  3.  前記永久磁石は、互いに隣接する第1相用のステータ突極と第2相用のステータ突極との中間位置に設けられ、
     前記パルス電流出力回路は、前記第1相用のステータ突極といずれかのロータ突極とが整列位置にあるときに、前記第1相用の駆動巻線に前記パルス電流を出力する、請求項1に記載のスイッチトリラクタンスモータ。
  4.  前記駆動回路は、前記第1相用の駆動巻線、前記第2相用の駆動巻線、第3相用の駆動巻線の順に前記駆動電流を出力し、
     前記パルス電流出力回路は、前記第1相用の駆動巻線に前記パルス電流を出力した直後で、前記第2相用のスタータ突極といずれかのロータ突極とが整列位置になったときに、前記第2相用の駆動巻線に前記パルス電流を出力する、請求項3に記載のスイッチトリラクタンスモータ。
  5.  前記パルス電流の印加時間は、電気的時定数よりも大きく機械的時定数よりも小さく、
     前記電気的時定数は、前記モータ本体の各相の平均インダクタンスを前記各相の駆動巻線の抵抗値で除算することによって得られ、
     前記機械的時定数は、前記ロータの慣性モーメントを前記ロータの制動係数で除算することによって得られる、請求項1~4のいずれか1項に記載のスイッチトリラクタンスモータ。
  6.  前記永久磁石は、アルニコ磁石または鉄・クロム・コバルト磁石である、請求項1~5のいずれか1項に記載のスイッチトリラクタンスモータ。
  7.  スイッチトリラクタンスモータの制御方法であって、
     前記スイッチトリラクタンスモータは、複数のロータ突極を有するロータ、複数のステータ突極を有するステータ、各相の前記ステータ突極に巻回された各相の駆動巻線、およびステータヨークに配置された永久磁石を含み、
     前記制御方法は、
     前記ロータを回転駆動させるために前記各相の駆動巻線に駆動電流を出力するステップと、
     第1相用のステータ突極といずれかのロータ突極とが整列位置にあるときに、前記第1相用の駆動巻線に、前記各相の駆動巻線への前記駆動電流の印加時間よりも短時間のパルス電流を出力するステップとを備える、スイッチトリラクタンスモータの制御方法。
PCT/JP2020/038264 2019-10-11 2020-10-09 スイッチトリラクタンスモータおよびその制御方法 WO2021070926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/754,511 US20230253903A1 (en) 2019-10-11 2020-10-09 Switched reluctance motor and control method therefor
CN202080070801.9A CN114514693A (zh) 2019-10-11 2020-10-09 开关磁阻马达及其控制方法
JP2021551713A JPWO2021070926A1 (ja) 2019-10-11 2020-10-09
EP20875101.6A EP4044423A4 (en) 2019-10-11 2020-10-09 SWITCHED RELUCTANCE MOTOR AND ASSOCIATED CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-187814 2019-10-11
JP2019187814 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021070926A1 true WO2021070926A1 (ja) 2021-04-15

Family

ID=75438200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038264 WO2021070926A1 (ja) 2019-10-11 2020-10-09 スイッチトリラクタンスモータおよびその制御方法

Country Status (5)

Country Link
US (1) US20230253903A1 (ja)
EP (1) EP4044423A4 (ja)
JP (1) JPWO2021070926A1 (ja)
CN (1) CN114514693A (ja)
WO (1) WO2021070926A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205307A (ja) * 1989-02-03 1990-08-15 Matsushita Electric Ind Co Ltd 永久磁石
JP2007282323A (ja) * 2006-04-04 2007-10-25 Toyota Motor Corp モータおよびそのモータの通電制御装置
JP2011172481A (ja) * 2011-04-25 2011-09-01 Denso Corp モータ
JP2016163514A (ja) * 2015-03-05 2016-09-05 スズキ株式会社 回転電機および回転電機の電流入力制御方法
JP2018093109A (ja) * 2016-12-06 2018-06-14 株式会社トーキン 希土類コバルト系永久磁石及びその製造方法
JP2018174649A (ja) 2017-03-31 2018-11-08 隆裕 原 スイッチドリラクタンスモータ
JP2019097379A (ja) * 2017-11-20 2019-06-20 梨木 政行 リラクタンスモータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718668B2 (ja) * 2011-02-15 2015-05-13 トヨタ自動車株式会社 回転電機駆動システム
US10541593B2 (en) * 2013-11-20 2020-01-21 Shanshan Dai AC permanent-magnet switched reluctance motor
CN103973062B (zh) * 2014-05-30 2016-06-08 东南大学 一种高功率密度的磁通切换型混合永磁记忆电机
CN106100272B (zh) * 2016-06-20 2018-06-01 江苏大学 一种少稀土齿轭互补的双凸极磁通可控电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205307A (ja) * 1989-02-03 1990-08-15 Matsushita Electric Ind Co Ltd 永久磁石
JP2007282323A (ja) * 2006-04-04 2007-10-25 Toyota Motor Corp モータおよびそのモータの通電制御装置
JP2011172481A (ja) * 2011-04-25 2011-09-01 Denso Corp モータ
JP2016163514A (ja) * 2015-03-05 2016-09-05 スズキ株式会社 回転電機および回転電機の電流入力制御方法
JP2018093109A (ja) * 2016-12-06 2018-06-14 株式会社トーキン 希土類コバルト系永久磁石及びその製造方法
JP2018174649A (ja) 2017-03-31 2018-11-08 隆裕 原 スイッチドリラクタンスモータ
JP2019097379A (ja) * 2017-11-20 2019-06-20 梨木 政行 リラクタンスモータ

Also Published As

Publication number Publication date
CN114514693A (zh) 2022-05-17
JPWO2021070926A1 (ja) 2021-04-15
US20230253903A1 (en) 2023-08-10
EP4044423A4 (en) 2023-09-20
EP4044423A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP5161612B2 (ja) 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法
JP3212310B2 (ja) 多相切換型リラクタンスモータ
JP5134846B2 (ja) 永久磁石電動機ドライブシステム
WO2009104553A1 (ja) 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
Nakamura et al. Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model
JP5812476B2 (ja) 永久磁石回転電機及びその運転方法
Lee et al. Design of spoke type BLDC motors with high power density for traction applications
JPH11514195A (ja) 界磁弱化(又は増強)機能を備えた二重突極永久磁石機械
KR20080035559A (ko) 전동기
Wang et al. A multi-tooth fault-tolerant flux-switching permanent-magnet machine with twisted-rotor
US20130069453A1 (en) Mechanically commutated switched reluctance motor
JP2012175738A (ja) 永久磁石式回転電機
Zhu et al. Performance of Halbach magnetized brushless AC motors
Sakai et al. Principle of hybrid variable-magnetic-force motors
JP2000201461A (ja) 磁石式ブラシレス電動機
Zhu et al. Design and analysis of a new hybrid excited doubly salient machine capable of field control
EP2568577A2 (en) Brushless DC electric motor
WO2011049980A1 (en) Parallel magnetic circuit motor
Yang et al. A winding-switching concept for flux weakening in consequent magnet pole switched flux memory machine
JP2000166292A (ja) スイッチ式リラクタンスモータ及びその駆動回路
US6194804B1 (en) Switched reluctance motor having substantially continuous torque and reduced torque ripple
WO2021070926A1 (ja) スイッチトリラクタンスモータおよびその制御方法
JP2013042574A (ja) 永久磁石式回転電機
CN112787476B (zh) 基于交替极转子的集成式直流感应混合励磁无刷电机
Liu et al. Comparative study of electromagnetic performance of multi-tooth switching flux permanent magnet memory machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875101

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021551713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020875101

Country of ref document: EP

Effective date: 20220511