WO2021070915A1 - Antibacterial sheet-like structure - Google Patents
Antibacterial sheet-like structure Download PDFInfo
- Publication number
- WO2021070915A1 WO2021070915A1 PCT/JP2020/038206 JP2020038206W WO2021070915A1 WO 2021070915 A1 WO2021070915 A1 WO 2021070915A1 JP 2020038206 W JP2020038206 W JP 2020038206W WO 2021070915 A1 WO2021070915 A1 WO 2021070915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- ethanol
- antibacterial
- cmc
- antibacterial sheet
- Prior art date
Links
- 230000000844 anti-bacterial effect Effects 0.000 title claims abstract description 110
- 239000002245 particle Substances 0.000 claims abstract description 85
- 239000000835 fiber Substances 0.000 claims abstract description 84
- 229910052709 silver Inorganic materials 0.000 claims abstract description 79
- 239000004332 silver Substances 0.000 claims abstract description 79
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 75
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 62
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 60
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 59
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 59
- 238000006467 substitution reaction Methods 0.000 claims abstract description 30
- 239000012567 medical material Substances 0.000 claims abstract description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 39
- 229920000297 Rayon Polymers 0.000 claims description 23
- 239000002964 rayon Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 8
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims description 7
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 6
- -1 silver halide Chemical class 0.000 claims description 6
- 239000002759 woven fabric Substances 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 229910001415 sodium ion Inorganic materials 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 abstract description 4
- 238000013268 sustained release Methods 0.000 abstract description 3
- 239000012730 sustained-release form Substances 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 360
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 86
- 239000007864 aqueous solution Substances 0.000 description 80
- 239000000243 solution Substances 0.000 description 70
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 63
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 56
- 239000000523 sample Substances 0.000 description 55
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 51
- 229910001961 silver nitrate Inorganic materials 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 42
- 239000000203 mixture Substances 0.000 description 35
- 125000003158 alcohol group Chemical group 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 28
- 239000011780 sodium chloride Substances 0.000 description 28
- 206010052428 Wound Diseases 0.000 description 23
- 208000027418 Wounds and injury Diseases 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 21
- FDRCDNZGSXJAFP-UHFFFAOYSA-M sodium chloroacetate Chemical compound [Na+].[O-]C(=O)CCl FDRCDNZGSXJAFP-UHFFFAOYSA-M 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- 239000004627 regenerated cellulose Substances 0.000 description 13
- 229920003043 Cellulose fiber Polymers 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 230000005588 protonation Effects 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 229910021607 Silver chloride Inorganic materials 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 150000004820 halides Chemical class 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002439 hemostatic effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- ZURAKLKIKYCUJU-UHFFFAOYSA-N copper;azane Chemical compound N.[Cu+2] ZURAKLKIKYCUJU-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000004210 Pressure Ulcer Diseases 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/013—Regenerated cellulose series
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/07—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
- D06M11/11—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
- D06M11/155—Halides of elements of Groups 2 or 12 of the Periodic Table
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/58—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
- D06M11/64—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
Definitions
- the present invention is a sheet-like structure containing natural or regenerated cellulose fibers containing carboxymethyl cellulose (hereinafter, also abbreviated as CMC) to which silver-containing antibacterial particles are attached (hereinafter, also referred to as an antibacterial gelled sheet). .). Further, carboxymethyl cellulose to which silver-containing antibacterial particles are attached is also abbreviated as CMC / Ag. More specifically, the present invention relates to an antibacterial gelled sheet containing CMC / Ag that slowly releases antibacterial particles by its own gelling ability.
- CMC carboxymethyl cellulose
- Patent Document 1 describes soluble wound healing hemostatic cellulose fibers having a CMC substitution degree of 0.5 or more and less than 1.0, and also describes that CMC has a cell adhesion promoting action. Further, Patent Document 2 below also describes that when CMC is applied to a wound, an insoluble foreign substance having a risk of causing inflammation of the wound does not remain. It is also known that CMC has bioabsorbability.
- CMC generally used for medical purposes is widely used as sodium carboxymethyl cellulose (hereinafter, also abbreviated as CMC-Na) in which sodium is bonded to a carboxymethyl group.
- CMC-Na sodium carboxymethyl cellulose
- CMC-Ag carboxymethyl cellulose silver
- an object to be solved by the present invention is to provide a wound dressing sheet capable of maintaining a high concentration of sustained-release antibacterial particles in a wound.
- the present inventors immerse a structure containing natural or regenerated cellulose fibers carboxymethylated to a predetermined degree of substitution in a solution of silver salt adjusted to a predetermined concentration, and then perform a predetermined treatment to carry out a predetermined treatment to obtain a silver amount.
- CMC / Ag can be produced by controlling the region where silver and silver are present, and by controlling the degree of substitution of CMC / Ag and the counter cation within a predetermined range, the particles are gradually released when the CMC / Ag gels when wet. It was unexpectedly found that the sex could be controlled, and the present invention was completed based on these findings.
- the present invention is as follows.
- An antibacterial sheet-like structure containing carboxymethylcellulose (CMC) fibers in which silver-containing particles are present on the fiber surface and the following (1) to (4): (1) The average degree of substitution of the CMC is 0.1 or more and 1.0 or less; (2) The amount of Ag with respect to the weight of the CMC fiber is 0.01% by weight or more and 5.0% by weight or less; (3) The average particle size of the silver-containing particles is 0.01 ⁇ m or more and 5 ⁇ m or less; and (4) the silver-containing particles are uniformly distributed in the thickness direction of the antibacterial sheet-like structure; An antibacterial sheet-like structure characterized by.
- CMC carboxymethylcellulose
- the antibacterial sheet-like structure according to any one of [1] to [8] above which is in the form of a woven fabric, a knitted fabric, or a non-woven fabric.
- the antibacterial property is maintained for a long time by maintaining the silver-containing particles, which are the sustained-release antibacterial particles, at a high concentration in the wound. , It is possible to promote wound healing.
- the antibacterial sheet-like structure according to the present invention can exhibit high antibacterial properties from an initial stage as compared with a material in which silver is directly bonded as an ion to a similar material.
- the antibacterial sheet-like structure (also referred to as an antibacterial gelled sheet) refers to a sheet-like structure having an antibacterial action and capable of forming a gel by containing water.
- the antibacterial medical material refers to a structure having an antibacterial action and promoting wound healing. Examples thereof include, but are not limited to, adhesive plasters, pressure ulcers, wound dressings used for hydrocolloid dressing such as burns, and surgical hemostatic materials.
- the antibacterial wound dressing refers to a wound dressing having an antibacterial action.
- the natural or regenerated cellulose fiber used as a raw material for the CMC fiber in the present embodiment is not particularly limited, and known cellulose fibers such as cuprammonium rayon, viscose rayon, lyocell, cotton, pulp and polynosic are preferably used. Is cuprammonium rayon, viscose rayon, and more preferably cuprammonium rayon. Some cellulose fibers use a cellulose material with a low degree of polymerization. With such a material, if the degree of substitution is high, the fibers are easily decomposed and it is necessary to suppress the degree of substitution to the lowest possible, whereas cuprammonium rayon is used. When used, it has the advantages of high degree of polymerization and resistance to disintegration even at a relatively high degree of substitution, and it is possible to select a wide range of degrees of substitution.
- the natural or regenerated cellulose fibers constituting the CMC fibers in the present embodiment may be either long fibers or short fibers.
- the long fibers continuous long fibers are preferable.
- the long fiber means a fiber having a fiber length of 10 mm or more, and the fiber length is preferably 20 mm or more, more preferably 50 mm or more, and further preferably a continuous long fiber. Since the short-fiber cellulose non-woven fabric is a short fiber, the fibers are easily separated when the degree of substitution is high, and it is necessary to suppress the degree of substitution as low as possible. It has the advantage of being resistant to disintegration, and a wide range of substitution degrees can be selected.
- the natural or regenerated cellulose fibers constituting the CMC fibers in the present embodiment preferably have a number average fiber diameter of 1 ⁇ m or more and 100 ⁇ m or less. It is more preferably 1 ⁇ m or more and 50 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less.
- the number average fiber diameter is 1 ⁇ m or more, the single yarn strength can be secured and the workability at the time of sheeting is excellent.
- the number average fiber diameter is 100 ⁇ m or less, spinning and entanglement are easy to occur and the sheet is formed. Excellent workability.
- the form of the antibacterial sheet-like structure of the present embodiment is preferably a cotton-like, woven-like, knit-like or non-woven fabric-like form.
- a more preferable form is a woven fabric or non-woven fabric of CMC-generated recycled cellulose fiber
- a more preferable form is a non-woven fabric of CMC-generated recycled cellulose fiber
- a more preferable form is a non-woven fabric of CMC-modified cuprammonium rayon.
- the fibers are entangled even in a gelled state when wet, so that appropriate flexibility can be obtained while maintaining the strength when wet, and the scratches when attached to a scratch. It is easy to attach the hemostatic material along the shape of.
- the fibers constituting such a non-woven fabric are cuprammonium rayon, the degree of crystallinity is low, so that the reactivity at the time of carboxymethylation is high and the morphological stability is also excellent. Further, in the case of a non-woven fabric, a non-binder non-woven fabric is preferable because the permeation rate of the solution is slow in the non-woven fabric to which the binder is applied and there is a concern that the binder component may elute when used on scratches.
- the antibacterial sheet-like structure of the present embodiment includes fibers other than carboxymethyl cellulose fibers, for example, synthetic fibers such as cellulose fibers, polyester fibers, polypropylene fibers, nylon fibers, and polyglycol, as long as the desired effects are not impaired.
- Bioabsorbable fibers such as acid, polylactic acid, and polyapple acid may be contained.
- such a material is preferably 50% by weight or less, and more preferably 30% by weight or less.
- Such fibers may be long fibers or short fibers.
- the CMC moiety in the present embodiment needs to have an average degree of substitution (DS) of hydroxyl groups in the glucose unit constituting cellulose with carboxymethyl groups of 0.1 or more and 1.0 or less, preferably 0. .2 or more and 0.8 or less, more preferably 0.3 or more and 0.6 or less.
- DS average degree of substitution
- the DS is less than 0.1, sufficient gelation performance cannot be exhibited, so that the amount of silver-containing particles released becomes too high, and the desired antibacterial performance cannot be maintained for a long time.
- the degree of substitution exceeds 1.0, the solubility of CMC becomes high and the amount of silver-containing particles released becomes too high, so that the desired antibacterial performance cannot be maintained for a long time.
- the silver content in the antibacterial sheet-like structure of the present embodiment is 0.01% by weight or more and 5.0% by weight or less in terms of the weight ratio with respect to the antibacterial sheet-like structure in order to obtain sufficient antibacterial properties. It is necessary that the weight is 0.5% by weight or more and 3% by weight or less, and more preferably 0.1% by weight or more and 1% by weight or less. If the silver content is less than 0.01% by weight, sufficient antibacterial properties cannot be exhibited, while if the silver content exceeds 5% by weight, the antibacterial properties are difficult to increase and the antibacterial properties are difficult to increase. May adversely affect the wound.
- the silver-containing particles of the present embodiment need to be uniformly distributed in the thickness direction of the sheet-like structure.
- the term "silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure” does not mean that the silver-containing particles are present only on the surface of the sheet-like structure. It is a state in which it exists even inside the sheet-like structure and is dispersed and distributed substantially uniformly. Specifically, as will be described later, a scanning electron microscope is used to observe a range in which the cross section of the sample is divided into five in the thickness direction of the sample, and the number of particles per 1000 ⁇ m 2 of each is measured.
- silver nitrate adjusted to a predetermined concentration using an alcohol aqueous solution when introducing the silver-containing particles into the structure. It is preferable to immerse in a solution, drain the silver nitrate solution, and then immerse in an aqueous solution of a halide-containing alcohol such as sodium chloride to precipitate silver-containing particles on the fiber surface. If the silver nitrate solution is not drained, the unreacted silver nitrate remaining in the solution reacts with the halide to form silver halide particles in the solution, which are deposited on the sheet-like structure.
- a halide-containing alcohol such as sodium chloride
- the distribution of silver-containing particles in the thickness direction becomes uneven.
- unreacted silver nitrate is removed from the reaction solution, and the silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure.
- the average particle size of the silver-containing particles of the present embodiment needs to be 0.01 ⁇ m or more and 5 ⁇ m or less, preferably 0.1 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 2 ⁇ m or less. If the average particle size is smaller than 0.01 ⁇ m, silver-containing particles are likely to be released from the sheet, and it is difficult to maintain the desired antibacterial performance for a long period of time. On the other hand, when the average particle size is 5 ⁇ m or more, the release of silver particles from the sheet is physically blocked by the fibers, and the antibacterial performance is lowered.
- the silver-containing particles of the present embodiment are not particularly limited, but are preferably particles containing at least one selected from the group consisting of metallic silver, silver nanoparticles, silver halide, and silver sulfaziazine. These particles have a track record of being used as antibacterial agents in the medical field, and when they are used, they can exhibit desired antibacterial performance when the sheet-like structure is applied to a wound. Further, the silver-containing particles may be particles in which the above compound and other compounds such as silver chloride and sodium chloride are mixed.
- the counter cation of the CMC moiety in the present embodiment is not particularly limited, but is preferably selected from sodium ion or proton.
- the CMC moiety has a sodium salt at the end of the carboxymethyl group at the time of carboxymethylation with, for example, sodium monochloroacetate, but is then treated with an acid solution to treat all or part of the carboxymethyl group.
- the counter cation of can be changed to a proton (protonation).
- the ratio is preferably 5% or more and 80% or less, more preferably 5% or more and 60% or less, and further preferably 10% or more and 40% or less.
- the solubility of the CMC fiber can be adjusted to control the amount of silver-containing particles released, and the desired antibacterial performance can be maintained for a long period of time.
- counter cations other than sodium ions and protons may be introduced in order to impart other functions, and the amount of these introduced can be adjusted according to the amount of liquid absorbed and the strength at the time of wetting.
- the antibacterial sheet-like structure of the present embodiment is in the form of a woven fabric, a knitted fabric, or a non-woven fabric
- its texture (weight of non-woven fabric (g) / non-woven fabric area (m 2 )) (g / m 2 ) is 10 g. / M 2 or more and 200 g / m 2 or less, more preferably 30 g / m 2 or more and 180 g / m 2 or less, still more preferably 40 g / m 2 or more and 170 g / m 2 or less, still more preferably 50 g. / M 2 or more and 150 g / m 2 or less.
- the basis weight is too low, it may be difficult to obtain sufficient strength even if it is partially protonated. On the other hand, if the basis weight is too high, the flexibility is lost and placement on scratches having uneven portions or the like is complicated. become.
- the thickness of the antibacterial sheet-like structure of the present embodiment in a dry state is preferably 0.03 mm or more and 5.0 mm or less, more preferably 0.03 mm in the case of a woven fabric, a knitted fabric, or a non-woven fabric. It is 3.0 mm or more, and more preferably 0.03 mm or more and 2.0 mm or less. If the thickness is too thin, sufficient strength may not be obtained even if it is partially protonated. On the other hand, if the thickness is too thick, the flexibility is lost and the arrangement on scratches becomes complicated.
- the thickness of the antibacterial sheet-like structure refers to a value obtained by measuring a load of 1.96 kPa in a thickness test conforming to JIS-L1096, for example, in the case of a non-woven fabric.
- the amount of liquid absorbed by the antibacterial sheet-like structure of the present embodiment when impregnated with the pseudo-exudate is preferably 5 g / 100 cm 2 or more and 70 g / 100 cm 2 or less, more preferably 10 g / 100 cm 2 or more. It is 60 g / 100 cm 2 or less, more preferably 10 g / 100 cm 2 or more and 50 g / 100 cm 2 or less. If the amount of liquid absorbed is less than 5 g / 100 cm 2 , the exudate cannot be efficiently retained, and the healing ability may be reduced. On the other hand, if the amount of liquid absorbed is larger than 70 g / 100 cm 2 , the antibacterial sheet-like structure swells greatly and it becomes difficult to maintain the optimum arrangement.
- a stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and is dropped in the funnel together with water. While coagulating the undiluted solution by deammonia, it is stretched and shaken onto the net to form a web. At this time, by vibrating the net in the direction perpendicular to the traveling direction while advancing the net, the fibers shaken off to the net draw a sine curve.
- the drawing during spinning can be 100 to 500 times, and the drawing ratio can be arbitrarily adjusted by changing the shape of the spinning funnel and the amount of spinning water flowing through the funnel. By changing the draw ratio, it is possible to change the single fineness and the strength of the non-woven fabric. It is also possible to control low molecular weight cellulose, so-called hemicellulose, which remains in a trace amount in the stock solution by changing the amount of spinning water and the temperature. Further, by controlling the traveling speed and the vibration width of the net, it is possible to control the fiber arrangement direction and control the strength and elongation of the non-woven fabric.
- a stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and dropped in a funnel together with water. It is possible to obtain long-fiber ammonia rayon by drawing while coagulating the stock solution by deammonizing, and further by cutting the fiber to an arbitrary length to obtain short-fiber ammonia rayon.
- the continuous long fiber cuprammonium rayon non-woven fabric it is possible to change the single fineness and the strength of the non-woven fabric by changing the draw ratio.
- These short fiber or long fiber ammonia rayon can be made into a non-woven fabric by a needle punch method or a spunlace method, but is not limited to this method.
- the non-woven fabric may be formed at any time before and after the treatment described in the following paragraphs [0026] to [0028]. Since the carboxymethyl cellulose fiber is a fiber that absorbs water and gels, the spunlace method using water is not suitable for making a non-woven fabric after the treatment in the following paragraph [0026], and a needle punch method or an organic solvent is used. It is preferable to make a non-woven fabric by the spunlace method used.
- the structure of natural or regenerated cellulose fibers is stirred at 35 ° C. for 30 minutes while maintaining an alkaline state in an alcohol-containing sodium hydroxide aqueous solution. Then, after draining the reagent in the reaction vessel, sodium monochloroacetate containing alcohol is added, and the mixture is stirred at 30 ° C. to 55 ° C. for 1 to 12 hours. At that time, the degree of substitution is controlled by the bath ratio of the reaction solution and the structure, the temperature, and the time. In addition, other reaction conditions can be appropriately changed in consideration of production cost and the like.
- the obtained structure is adjusted to pH 6.0 to 8.0 with an aqueous acetic acid-containing ethanol solution, and then alcohol substitution is performed with 70% by weight, 90% by weight, or 100% by weight of ethanol. Since it becomes hard when it contains even a small amount of water, it is possible to reliably perform alcohol substitution and maintain morphological stability by gradually increasing the alcohol concentration. Then, it is immersed in an acid-containing ethanol solution adjusted to a predetermined concentration, stirred for 1 hour, alcohol-substituted with 70% by weight, 90% by weight, and 100% by weight ethanol, and dried to obtain a protonated sheet-like structure. ..
- the mixture was immersed in a silver nitrate-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, then the silver nitrate-containing ethanol aqueous solution was drained, immersed in a sodium chloride-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, and 70% by weight. Alcohol substitution is carried out with%, 90% by weight and 100% by weight of ethanol, and the mixture is dried to obtain an antibacterial sheet-like structure.
- the step of dipping in the acid may be carried out at the same time as the step of neutralization.
- the neutralization step and the acid dipping step may be carried out at the same time in one step.
- the dipping step in the silver nitrate solution may be performed immediately after the dipping step in the acid and before drying or alcohol substitution.
- the method for partially protonating the structure of the present embodiment is not particularly limited, but it is preferably protonated by immersing it in acetic acid, hydrochloric acid, or nitric acid adjusted to a predetermined concentration using alcohol. , More preferably acetic acid adjusted to a predetermined concentration.
- a SUS reactor can be used for protonation with acetic acid.
- the antibacterial sheet-like structure of the present embodiment containing the protonated CMC may be used as it is after drying, but it is preferably heat-treated at a temperature of 50 ° C.
- the heat treatment method include hot air treatment, dry heat treatment, wet heat treatment, and vacuum heat treatment. Hot air treatment is preferable for efficient treatment, but the treatment is not particularly limited thereto.
- the method for introducing silver-containing particles into the structure of the present embodiment is not particularly limited, but is immersed in a silver nitrate solution adjusted to a predetermined concentration using an alcohol aqueous solution, and then the silver nitrate solution is drained and then chloride. It is preferable to precipitate silver-containing particles on the fiber surface by immersing in an aqueous solution of a halide-containing alcohol such as sodium. At this time, if the silver nitrate solution contains a large amount of water, the reaction rate of silver exchange is too fast and reaction unevenness occurs. Therefore, the water content in the silver nitrate solution is preferably 10% by weight or less. More preferably, the silver nitrate solution does not contain water.
- the solution is once removed before being immersed in the halide-containing alcohol aqueous solution.
- silver-containing particles can be precipitated on the fiber surface layer.
- the treatment with the halide-containing alcohol solution is preferably 1 hour or more at room temperature in order to completely atomize all the silver.
- the structure of the present embodiment is characterized in that it gels when wet.
- the silver-containing particles adhering to the fiber surface are buried in the gel, making it difficult for them to flow out.
- it also has high adhesion to the skin, making it easier to follow the movement of the skin.
- the gelation softens the texture and reduces the effect on the skin.
- the gelled structure gradually dissolves to diffuse the silver-containing particles on the surface of the structure into the wound, that is, the silver-containing particles can be slowly released. Antibacterial properties are exhibited as the silver-containing particles in the wound diffuse, and the wound infection can be suppressed and the wound healing can be promoted.
- the sample before protonation can be prepared by preparing an equivalent sample separately or by treating the sample with an aqueous sodium hydroxide solution.
- Antibacterial properties are evaluated based on the antibacterial activity value measured by the bacterial solution absorption method using Staphylococcus aureus in accordance with JIS L 1902. Comparative Example 1 is used as a control sample. In addition to the evaluation described in JIS L 1902 after 18 hours of culturing, the antibacterial activity value after 3 hours of culturing is also confirmed in order to evaluate the initial antibacterial property.
- test piece obtained by performing this operation 5 times is inoculated with the test inoculated bacterial solution, and the antibacterial activity value after 18 hours of culturing is confirmed according to JIS L 1902.
- Average particle size of silver-containing particles A sample was observed with a scanning electron microscope (manufactured by Hitachi High-Tech Fielding Corporation, TM4000) at a magnification of 5000 times, and 10 particles existing on the fiber surface were randomly selected to correspond to the circumscribing circles of each. Measure the diameter. Let the average value of these be the average particle size ( ⁇ m).
- Metsuke (g / m 2 ) In a mass test per unit area according to JIS-L1913, a test piece was taken from a sample using a punching blade having a diameter of 6 cm, and the basis weight was measured.
- Thickness In a thickness test conforming to JIS-L1096, the thickness was measured with a load of 1.96 kPa.
- Comparative Example 5 100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag. The various evaluation results of this sample are shown in Table 1 below.
- Comparative Example 6 100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag. The various evaluation results of this sample are shown in Table 1 below.
- an aqueous ethanol solution containing sodium monochloroacetate 300 g of water, 960 g of ethanol, 230 g of sodium monochloroacetate was added, and the mixture was stirred at 55 ° C. for 10 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution.
- an aqueous ethanol solution containing sodium monochloroacetate 300 g of water, 960 g of ethanol, 40 g of sodium monochloroacetate was added, and the mixture was stirred at 45 ° C. for 1 hour. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution.
- Comparative Example 9 100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 1 hour. Then, the reagent in the reaction vessel was not drained, an aqueous sodium chloride solution (40 g of sodium chloride, 450 g of water) was added to the reaction vessel, and the mixture was further stirred for 1 hour.
- an aqueous sodium chloride solution 40 g of sodium chloride, 450 g of water
- Example 1 100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour.
- silver nitrate-containing ethanol silver nitrate 2.5 g, water 5 g, ethanol 1495 g
- Example 2 100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour.
- silver nitrate-containing ethanol silver nitrate 2.5 g, water 5 g, ethanol 1495 g
- Example 3 100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes.
- regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred
- an aqueous ethanol solution containing sodium monochloroacetate 300 g of water, 960 g of ethanol, 80 g of sodium monochloroacetate was added, and the mixture was stirred at 45 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution.
- Example 4 100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes.
- regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred
- an aqueous ethanol solution containing sodium monochloroacetate 300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution.
- Example 5 100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes.
- regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred
- an aqueous ethanol solution containing sodium monochloroacetate 300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution.
- an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours.
- an aqueous ethanol solution containing sodium chloride sodium chloride 40 g, water 450 g, ethanol 1150 g
- Example 6 100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 0.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour.
- silver nitrate-containing ethanol silver nitrate 0.5 g, water 5 g, ethanol 1495 g
- Example 7 100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (8.0 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour.
- sodium chloride 40 g sodium chloride 40 g, water 450 g, ethanol 1150 g
- Example 8 1.5 kg of regenerated cellulose filament (cuprammonium rayon, fiber length 51 mm, fineness 2.2 T) was placed in a reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide (water: 8750 g, ethanol 8750 g, NaOH: 1625 g) was added. Then, the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate) was added, and the mixture was stirred at 50 ° C. for 3 hours.
- aqueous ethanol solution containing sodium monochloroacetate 3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate
- Example 9 Of the CMC-Na prepared in Example 8, 500 g was immersed in 7500 g (40 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, and then washed once with 7500 g of a 70 wt% ethanol aqueous solution and once with 7500 g of a 90 wt% ethanol aqueous solution. Then, alcohol was replaced twice with 7500 g of 100 wt% ethanol, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H.
- Comparative Example 3 and Comparative Example 4 in which silver chloride powder was simply sprinkled on the CMC Comparative Example 7 having a substitution degree of more than 1, and Comparative Example 8 having a substitution degree of less than 0.1, the antibacterial activity value after immersion was high. It was as small as 1 or less, suggesting that the antibacterial action after long-term application was weakened.
- Comparative Examples 5 and 6 in which silver was present as an ion inside the CMC the antibacterial activity value at 3 hours was as small as 1 or less, suggesting that the initial antibacterial action was weak.
- the silver-containing particles can be gradually released and retained in the wound at a high concentration by the arrangement of the silver-containing particles on the fiber surface layer and the gelling action of CMC. Therefore, the antibacterial property can be maintained for a long time, and the healing of the wound can be promoted by keeping the wound in a clean state.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
Provided is a wound dressing sheet capable of maintaining sustained-release antibacterial particles in a wound site at a high concentration. An antibacterial sheet-like structure according to the present invention, and an antibacterial medical material or an antibacterial wound dressing containing the same are characterized by being an antibacterial sheet-like structure containing carboxymethylcellulose (CMC) fibers in which silver-containing particles are present in a fiber surface layer, and having the following (1) to (4): (1) the average degree of substitution of the CMC is 0.1-1.0; (2) the amount of Ag with respect to the weight of the CMC fibers is 0.01-5.0 wt%; (3) the average particle size of the silver-containing particles is 0.01-5 μm; and (4) the silver-containing particles are uniformly distributed in the thickness direction of the antibacterial sheet-like structure.
Description
本発明は、銀を含有する抗菌性粒子が付着した、カルボキシメチルセルロース(以下、CMCとも略記する。)を含む天然又は再生セルロース繊維を含有するシート状構造体(以下、抗菌性ゲル化シートともいう。)に関する。また、銀を含有する抗菌性粒子が付着したカルボキシメチルセルロースをCMC・Agとも略記する。より詳しくは、本発明は、自身のゲル化能力により抗菌性粒子を徐放するCMC・Agを含む、抗菌性ゲル化シートに関する。
The present invention is a sheet-like structure containing natural or regenerated cellulose fibers containing carboxymethyl cellulose (hereinafter, also abbreviated as CMC) to which silver-containing antibacterial particles are attached (hereinafter, also referred to as an antibacterial gelled sheet). .). Further, carboxymethyl cellulose to which silver-containing antibacterial particles are attached is also abbreviated as CMC / Ag. More specifically, the present invention relates to an antibacterial gelled sheet containing CMC / Ag that slowly releases antibacterial particles by its own gelling ability.
人の皮膚等に創傷や手術創が生じた場合、創傷箇所を保護するような創傷被覆材やサージカルドレッシング等の創部保護材が用いられている。
以下の特許文献1には、CMCの置換度が0.5以上1.0未満である可溶性創傷治癒止血セルロース繊維が記載されており、CMCが細胞接着促進作用を有することも記載されている。
また、以下の特許文献2には、CMCを創部に適用した場合、創傷部の炎症等を引き起こす危険性のある不溶性の異物が残存することはないとも記載されている。また、CMCが生体吸収性を有することも知られている。 When a wound or surgical wound occurs on human skin or the like, a wound dressing or a wound protective material such as a surgical dressing is used to protect the wounded part.
The following Patent Document 1 describes soluble wound healing hemostatic cellulose fibers having a CMC substitution degree of 0.5 or more and less than 1.0, and also describes that CMC has a cell adhesion promoting action.
Further, Patent Document 2 below also describes that when CMC is applied to a wound, an insoluble foreign substance having a risk of causing inflammation of the wound does not remain. It is also known that CMC has bioabsorbability.
以下の特許文献1には、CMCの置換度が0.5以上1.0未満である可溶性創傷治癒止血セルロース繊維が記載されており、CMCが細胞接着促進作用を有することも記載されている。
また、以下の特許文献2には、CMCを創部に適用した場合、創傷部の炎症等を引き起こす危険性のある不溶性の異物が残存することはないとも記載されている。また、CMCが生体吸収性を有することも知られている。 When a wound or surgical wound occurs on human skin or the like, a wound dressing or a wound protective material such as a surgical dressing is used to protect the wounded part.
The following Patent Document 1 describes soluble wound healing hemostatic cellulose fibers having a CMC substitution degree of 0.5 or more and less than 1.0, and also describes that CMC has a cell adhesion promoting action.
Further, Patent Document 2 below also describes that when CMC is applied to a wound, an insoluble foreign substance having a risk of causing inflammation of the wound does not remain. It is also known that CMC has bioabsorbability.
一般に医療用で使用されているCMCは、カルボキシメチル基にナトリウムが結合したカルボキシメチルセルロースナトリウム(以下、CMC-Naとも略記する。)が広く使用されている。また、特に抗菌性能が必要な状況では、CMCのカルボキシメチル基に銀を結合させたカルボキシメチルセルロース銀(以下、CMC-Agとも略記する。)が使用されている。
CMC generally used for medical purposes is widely used as sodium carboxymethyl cellulose (hereinafter, also abbreviated as CMC-Na) in which sodium is bonded to a carboxymethyl group. Further, in a situation where antibacterial performance is particularly required, carboxymethyl cellulose silver (hereinafter, also abbreviated as CMC-Ag) in which silver is bonded to the carboxymethyl group of CMC is used.
銀化合物には抗菌性を有するものが多く、それらの粒子は抗菌剤として用いられることがあるが、単に抗菌性粒子を創傷被覆材表面に散布した場合には時間とともに抗菌性粒子が傷口から流出・拡散してしまうため、長期間使用を続けると十分な抗菌性を保持することができない。
Many silver compounds have antibacterial properties, and these particles are sometimes used as antibacterial agents, but when antibacterial particles are simply sprayed on the surface of the wound dressing, the antibacterial particles flow out from the wound over time. -Because it diffuses, it cannot maintain sufficient antibacterial properties if it is used for a long period of time.
抗菌性の持続性を高めるために、繊維内に抗菌性粒子を練り込む手法や、前述のCMC-Agのようにイオンとして繊維内に一様に分布させる手法もあるが、そうした場合には繊維内に取り込まれたまま患部近傍まで移動しない銀が存在するため、導入銀量に対して高い抗菌性能を発揮することができないという問題がある。
In order to enhance the sustainability of antibacterial properties, there are methods of kneading antibacterial particles into the fibers and methods of uniformly distributing them as ions in the fibers as in the case of CMC-Ag described above. Since there is silver that is taken into the inside and does not move to the vicinity of the affected area, there is a problem that high antibacterial performance cannot be exhibited against the amount of introduced silver.
前記した技術の現状に鑑み、本発明が解決しようとする課題は、徐放された抗菌性粒子を傷口で高濃度に維持することのできる創傷被覆用シートを提供することである。
In view of the current state of the art described above, an object to be solved by the present invention is to provide a wound dressing sheet capable of maintaining a high concentration of sustained-release antibacterial particles in a wound.
本発明者らは、所定の置換度にカルボキシメチル化された天然又は再生セルロース繊維を含む構造体を所定の濃度に調整した銀塩の溶液に浸漬した後に所定の処理を行なうことで、銀量や銀の存在領域を制御したCMC・Agを作製できること、更にはCMC・Agの置換度とカウンターカチオンを所定の範囲に制御することでCMC・Agが湿潤時にゲル化した際の粒子の徐放性を制御できることを予想外に見出し、これらの知見に基づき本発明を完成するに至ったものである。
The present inventors immerse a structure containing natural or regenerated cellulose fibers carboxymethylated to a predetermined degree of substitution in a solution of silver salt adjusted to a predetermined concentration, and then perform a predetermined treatment to carry out a predetermined treatment to obtain a silver amount. CMC / Ag can be produced by controlling the region where silver and silver are present, and by controlling the degree of substitution of CMC / Ag and the counter cation within a predetermined range, the particles are gradually released when the CMC / Ag gels when wet. It was unexpectedly found that the sex could be controlled, and the present invention was completed based on these findings.
すなわち、本発明は以下の通りのものである。
[1]銀含有粒子が繊維表層に存在するカルボシキメチルセルロース(CMC)繊維を含む抗菌性シート状構造体であって、下記(1)~(4):
(1)該CMCの平均置換度が0.1以上1.0以下である;
(2)該CMC繊維の重量に対するAg量が0.01重量%以上5.0重量%以下である;
(3)該銀含有粒子の平均粒子径が0.01μm以上5μm以下である;及び
(4)該銀含有粒子が該抗菌性シート状構造体の厚み方向に一様に分布している;
を特徴とする、抗菌性シート状構造体。
[2]前記銀含有粒子が、金属銀、銀ナノパーティクル、ハロゲン化銀、及び銀スルファジアジンから成る群から選ばれる少なくとも1種を含む粒子である、前記[1]に記載の抗菌性シート状構造体。
[3]擬似滲出液に含浸させた際の吸液量が、5g/100cm2以上70g/100cm2以下である、前記[1]又は[2]に記載の抗菌性シート状構造体。
[4]前記CMCのカウンターカチオンがナトリウムイオン又はプロトンから成る群から選ばれる少なくとも1種である、前記[1]~[3]のいずれかに記載の抗菌性シート状構造体。
[5]前記CMCのカルボキシメチル基の5%以上80%以下がプロトン化されている、前記[1]~[4]のいずれかに記載の抗菌性シート状構造体。
[6]前記CMC繊維が銅アンモニアレーヨン由来の繊維である、前記[1]~[5]のいずれかに記載の抗菌性シート状構造体。
[7]前記CMC繊維が連続長繊維である、前記[1]~[6]のいずれかに記載の抗菌性シート状構造体。
[8]前記CMC繊維の数平均繊維径が1μm以上100μm以下である、前記[1]~[7]のいずれかに記載の抗菌性シート状構造体。
[9]織物状、編物状又は不織布状の形態にある、前記[1]~[8]のいずれかに記載の抗菌性シート状構造体。
[10]目付が10g/m2以上200g/m2以下である、前記[1]~[9]のいずれかに記載の抗菌性シート状構造体。
[11]厚みが0.03mm以上2.0mm以下である、前記[1]~[10]のいずれかに記載の抗菌性シート状構造体。
[12]構造体中の厚み方向に5分割した範囲それぞれの1000μm2あたりの前記銀含有粒子数の変動係数が0.5以下である、前記[1]~[11]のいずれかに記載の抗菌性シート状構造体。
[13]前記[1]~[12]のいずれかに記載の抗菌性シート状構造体を含む抗菌性医療用材料。
[14]前記[1]~[12]のいずれかに記載の抗菌性シート状構造体を含む抗菌性創傷被覆材。 That is, the present invention is as follows.
[1] An antibacterial sheet-like structure containing carboxymethylcellulose (CMC) fibers in which silver-containing particles are present on the fiber surface, and the following (1) to (4):
(1) The average degree of substitution of the CMC is 0.1 or more and 1.0 or less;
(2) The amount of Ag with respect to the weight of the CMC fiber is 0.01% by weight or more and 5.0% by weight or less;
(3) The average particle size of the silver-containing particles is 0.01 μm or more and 5 μm or less; and (4) the silver-containing particles are uniformly distributed in the thickness direction of the antibacterial sheet-like structure;
An antibacterial sheet-like structure characterized by.
[2] The antibacterial sheet-like structure according to the above [1], wherein the silver-containing particles are particles containing at least one selected from the group consisting of metallic silver, silver nanoparticles, silver halide, and silver sulfaziazine. body.
[3] The antibacterial sheet-like structure according to the above [1] or [2], wherein the amount of liquid absorbed when impregnated with the pseudo-exudate is 5 g / 100 cm 2 or more and 70 g / 100 cm 2 or less.
[4] The antibacterial sheet-like structure according to any one of [1] to [3] above, wherein the counter cation of the CMC is at least one selected from the group consisting of sodium ions or protons.
[5] The antibacterial sheet-like structure according to any one of [1] to [4] above, wherein 5% or more and 80% or less of the carboxymethyl group of the CMC is protonated.
[6] The antibacterial sheet-like structure according to any one of [1] to [5] above, wherein the CMC fiber is a fiber derived from cuprammonium rayon.
[7] The antibacterial sheet-like structure according to any one of [1] to [6] above, wherein the CMC fiber is a continuous length fiber.
[8] The antibacterial sheet-like structure according to any one of [1] to [7], wherein the number average fiber diameter of the CMC fibers is 1 μm or more and 100 μm or less.
[9] The antibacterial sheet-like structure according to any one of [1] to [8] above, which is in the form of a woven fabric, a knitted fabric, or a non-woven fabric.
[10] The antibacterial sheet-like structure according to any one of [1] to [9] above, wherein the basis weight is 10 g / m 2 or more and 200 g / m 2 or less.
[11] The antibacterial sheet-like structure according to any one of [1] to [10], wherein the thickness is 0.03 mm or more and 2.0 mm or less.
[12] The above-mentioned [1] to [11], wherein the coefficient of variation of the number of silver-containing particles per 1000 μm 2 in each of the ranges divided into five in the thickness direction in the structure is 0.5 or less. Antibacterial sheet-like structure.
[13] An antibacterial medical material containing the antibacterial sheet-like structure according to any one of the above [1] to [12].
[14] An antibacterial wound dressing containing the antibacterial sheet-like structure according to any one of the above [1] to [12].
[1]銀含有粒子が繊維表層に存在するカルボシキメチルセルロース(CMC)繊維を含む抗菌性シート状構造体であって、下記(1)~(4):
(1)該CMCの平均置換度が0.1以上1.0以下である;
(2)該CMC繊維の重量に対するAg量が0.01重量%以上5.0重量%以下である;
(3)該銀含有粒子の平均粒子径が0.01μm以上5μm以下である;及び
(4)該銀含有粒子が該抗菌性シート状構造体の厚み方向に一様に分布している;
を特徴とする、抗菌性シート状構造体。
[2]前記銀含有粒子が、金属銀、銀ナノパーティクル、ハロゲン化銀、及び銀スルファジアジンから成る群から選ばれる少なくとも1種を含む粒子である、前記[1]に記載の抗菌性シート状構造体。
[3]擬似滲出液に含浸させた際の吸液量が、5g/100cm2以上70g/100cm2以下である、前記[1]又は[2]に記載の抗菌性シート状構造体。
[4]前記CMCのカウンターカチオンがナトリウムイオン又はプロトンから成る群から選ばれる少なくとも1種である、前記[1]~[3]のいずれかに記載の抗菌性シート状構造体。
[5]前記CMCのカルボキシメチル基の5%以上80%以下がプロトン化されている、前記[1]~[4]のいずれかに記載の抗菌性シート状構造体。
[6]前記CMC繊維が銅アンモニアレーヨン由来の繊維である、前記[1]~[5]のいずれかに記載の抗菌性シート状構造体。
[7]前記CMC繊維が連続長繊維である、前記[1]~[6]のいずれかに記載の抗菌性シート状構造体。
[8]前記CMC繊維の数平均繊維径が1μm以上100μm以下である、前記[1]~[7]のいずれかに記載の抗菌性シート状構造体。
[9]織物状、編物状又は不織布状の形態にある、前記[1]~[8]のいずれかに記載の抗菌性シート状構造体。
[10]目付が10g/m2以上200g/m2以下である、前記[1]~[9]のいずれかに記載の抗菌性シート状構造体。
[11]厚みが0.03mm以上2.0mm以下である、前記[1]~[10]のいずれかに記載の抗菌性シート状構造体。
[12]構造体中の厚み方向に5分割した範囲それぞれの1000μm2あたりの前記銀含有粒子数の変動係数が0.5以下である、前記[1]~[11]のいずれかに記載の抗菌性シート状構造体。
[13]前記[1]~[12]のいずれかに記載の抗菌性シート状構造体を含む抗菌性医療用材料。
[14]前記[1]~[12]のいずれかに記載の抗菌性シート状構造体を含む抗菌性創傷被覆材。 That is, the present invention is as follows.
[1] An antibacterial sheet-like structure containing carboxymethylcellulose (CMC) fibers in which silver-containing particles are present on the fiber surface, and the following (1) to (4):
(1) The average degree of substitution of the CMC is 0.1 or more and 1.0 or less;
(2) The amount of Ag with respect to the weight of the CMC fiber is 0.01% by weight or more and 5.0% by weight or less;
(3) The average particle size of the silver-containing particles is 0.01 μm or more and 5 μm or less; and (4) the silver-containing particles are uniformly distributed in the thickness direction of the antibacterial sheet-like structure;
An antibacterial sheet-like structure characterized by.
[2] The antibacterial sheet-like structure according to the above [1], wherein the silver-containing particles are particles containing at least one selected from the group consisting of metallic silver, silver nanoparticles, silver halide, and silver sulfaziazine. body.
[3] The antibacterial sheet-like structure according to the above [1] or [2], wherein the amount of liquid absorbed when impregnated with the pseudo-exudate is 5 g / 100 cm 2 or more and 70 g / 100 cm 2 or less.
[4] The antibacterial sheet-like structure according to any one of [1] to [3] above, wherein the counter cation of the CMC is at least one selected from the group consisting of sodium ions or protons.
[5] The antibacterial sheet-like structure according to any one of [1] to [4] above, wherein 5% or more and 80% or less of the carboxymethyl group of the CMC is protonated.
[6] The antibacterial sheet-like structure according to any one of [1] to [5] above, wherein the CMC fiber is a fiber derived from cuprammonium rayon.
[7] The antibacterial sheet-like structure according to any one of [1] to [6] above, wherein the CMC fiber is a continuous length fiber.
[8] The antibacterial sheet-like structure according to any one of [1] to [7], wherein the number average fiber diameter of the CMC fibers is 1 μm or more and 100 μm or less.
[9] The antibacterial sheet-like structure according to any one of [1] to [8] above, which is in the form of a woven fabric, a knitted fabric, or a non-woven fabric.
[10] The antibacterial sheet-like structure according to any one of [1] to [9] above, wherein the basis weight is 10 g / m 2 or more and 200 g / m 2 or less.
[11] The antibacterial sheet-like structure according to any one of [1] to [10], wherein the thickness is 0.03 mm or more and 2.0 mm or less.
[12] The above-mentioned [1] to [11], wherein the coefficient of variation of the number of silver-containing particles per 1000 μm 2 in each of the ranges divided into five in the thickness direction in the structure is 0.5 or less. Antibacterial sheet-like structure.
[13] An antibacterial medical material containing the antibacterial sheet-like structure according to any one of the above [1] to [12].
[14] An antibacterial wound dressing containing the antibacterial sheet-like structure according to any one of the above [1] to [12].
本発明に係る抗菌性シート状構造体を用いて傷の治癒を行えば、徐放された抗菌性粒子である銀含有粒子を傷口で高濃度に維持することで、抗菌性を長時間持続させ、傷の治癒の促進が可能となる。また、本発明に係る抗菌性シート状構造体は、類似の素材に銀がイオンとして直接結合している材料と比較して、初期段階から高い抗菌性を発揮することができる。
When the wound is healed by using the antibacterial sheet-like structure according to the present invention, the antibacterial property is maintained for a long time by maintaining the silver-containing particles, which are the sustained-release antibacterial particles, at a high concentration in the wound. , It is possible to promote wound healing. In addition, the antibacterial sheet-like structure according to the present invention can exhibit high antibacterial properties from an initial stage as compared with a material in which silver is directly bonded as an ion to a similar material.
以下、本発明の実施形態を詳細に説明する。
本明細書中、抗菌性シート状構造体(抗菌性ゲル化シートともいう。)とは、抗菌作用を有し、水を含んでゲルを形成することのできるシート状の構造体を指す。
本明細書中、抗菌性医療用材料とは、抗菌作用を有し、傷の治癒を促進する構造体を指す。例えば、絆創膏や褥瘡、熱傷などの湿潤療法に用いられる創傷被覆材、手術用止血材などが挙げられるが、これらに限定されるものではない。
本明細書中、抗菌性創傷被覆材とは、抗菌作用を有する創傷被覆材を指す。 Hereinafter, embodiments of the present invention will be described in detail.
In the present specification, the antibacterial sheet-like structure (also referred to as an antibacterial gelled sheet) refers to a sheet-like structure having an antibacterial action and capable of forming a gel by containing water.
In the present specification, the antibacterial medical material refers to a structure having an antibacterial action and promoting wound healing. Examples thereof include, but are not limited to, adhesive plasters, pressure ulcers, wound dressings used for hydrocolloid dressing such as burns, and surgical hemostatic materials.
In the present specification, the antibacterial wound dressing refers to a wound dressing having an antibacterial action.
本明細書中、抗菌性シート状構造体(抗菌性ゲル化シートともいう。)とは、抗菌作用を有し、水を含んでゲルを形成することのできるシート状の構造体を指す。
本明細書中、抗菌性医療用材料とは、抗菌作用を有し、傷の治癒を促進する構造体を指す。例えば、絆創膏や褥瘡、熱傷などの湿潤療法に用いられる創傷被覆材、手術用止血材などが挙げられるが、これらに限定されるものではない。
本明細書中、抗菌性創傷被覆材とは、抗菌作用を有する創傷被覆材を指す。 Hereinafter, embodiments of the present invention will be described in detail.
In the present specification, the antibacterial sheet-like structure (also referred to as an antibacterial gelled sheet) refers to a sheet-like structure having an antibacterial action and capable of forming a gel by containing water.
In the present specification, the antibacterial medical material refers to a structure having an antibacterial action and promoting wound healing. Examples thereof include, but are not limited to, adhesive plasters, pressure ulcers, wound dressings used for hydrocolloid dressing such as burns, and surgical hemostatic materials.
In the present specification, the antibacterial wound dressing refers to a wound dressing having an antibacterial action.
本実施形態中のCMC繊維の原料となる天然又は再生セルロース繊維としては、特に制限はなく、銅アンモニアレーヨン、ビスコースレーヨン、リヨセル、コットン、パルプ、ポリノジックなどの公知のセルロース繊維が用いられ、好ましくは銅アンモニアレーヨン、ビスコースレーヨンであり、より好ましくは銅アンモニアレーヨンである。セルロース繊維には、重合度の低いセルロース素材を使用したものがあり、このような素材では置換度を高くすると繊維が分解しやすく極力低い置換度に抑える必要があるのに対し、銅アンモニアレーヨンを用いると、重合度が高く、比較的高置換度においても崩壊しにくいという利点があり幅広い置換度を選択することが可能である。
The natural or regenerated cellulose fiber used as a raw material for the CMC fiber in the present embodiment is not particularly limited, and known cellulose fibers such as cuprammonium rayon, viscose rayon, lyocell, cotton, pulp and polynosic are preferably used. Is cuprammonium rayon, viscose rayon, and more preferably cuprammonium rayon. Some cellulose fibers use a cellulose material with a low degree of polymerization. With such a material, if the degree of substitution is high, the fibers are easily decomposed and it is necessary to suppress the degree of substitution to the lowest possible, whereas cuprammonium rayon is used. When used, it has the advantages of high degree of polymerization and resistance to disintegration even at a relatively high degree of substitution, and it is possible to select a wide range of degrees of substitution.
本実施形態中のCMC繊維を構成する天然又は再生セルロース繊維は長繊維又は短繊維のいずれでもよい。長繊維では連続長繊維が好ましい。本明細書中、長繊維とは、繊維長が10mm以上のものをいい、繊維長は、好ましくは20mm以上であり、より好ましくは50mm以上であり、さらに好ましくは連続長繊維である。短繊維セルロース不織布は、短繊維であることから、置換度を高くすると繊維が分離しやすく極力低い置換度に抑える必要があるのに対し、連続長繊維不織布を用いると比較的高置換度においても崩壊しにくいという利点があり幅広い置換度を選択することが可能である。
The natural or regenerated cellulose fibers constituting the CMC fibers in the present embodiment may be either long fibers or short fibers. Of the long fibers, continuous long fibers are preferable. In the present specification, the long fiber means a fiber having a fiber length of 10 mm or more, and the fiber length is preferably 20 mm or more, more preferably 50 mm or more, and further preferably a continuous long fiber. Since the short-fiber cellulose non-woven fabric is a short fiber, the fibers are easily separated when the degree of substitution is high, and it is necessary to suppress the degree of substitution as low as possible. It has the advantage of being resistant to disintegration, and a wide range of substitution degrees can be selected.
本実施形態中のCMC繊維を構成する天然又は再生セルロース繊維は数平均繊維径が1μm以上100μm以下であることが好ましい。より好ましくは1μm以上50μm以下、さらに好ましくは5μm以上30μm以下である。数平均繊維径が1μm以上であれば、単糸強度が確保できるためにシート化時の加工性に優れ、他方、数平均繊維径が100μm以下であれば、紡績や交絡がさせやすくシート化時の加工性に優れる。
The natural or regenerated cellulose fibers constituting the CMC fibers in the present embodiment preferably have a number average fiber diameter of 1 μm or more and 100 μm or less. It is more preferably 1 μm or more and 50 μm or less, and further preferably 5 μm or more and 30 μm or less. When the number average fiber diameter is 1 μm or more, the single yarn strength can be secured and the workability at the time of sheeting is excellent. On the other hand, when the number average fiber diameter is 100 μm or less, spinning and entanglement are easy to occur and the sheet is formed. Excellent workability.
本実施形態の抗菌性シート状構造体の形態としては、綿状、織物状、編物状又は不織布状の形態であることが好ましい。より好ましい形態は、CMC化再生セルロース繊維の織物又不織布であり、さらに好ましい形態はCMC化再生セルロース繊維の不織布、よりさらに好ましい形態はCMC化銅アンモニアレーヨンの不織布である。不織布状の形態であれば、湿潤時にゲル化した状態でも繊維が交絡しているため、湿潤時の強度を維持した状態で適度な柔軟性を得ることができ、傷に貼り付けた際に傷の形状に沿って止血材を貼り付けることが容易である。このような不織布を構成する繊維が銅アンモニアレーヨンであれば、結晶化度が低いためカルボキシメチル化の際の反応性が高く、かつ、形態安定性にも優れる。また、不織布の場合、バインダーを付与した不織布では溶液の浸透速度が遅く、また、傷への使用の際にバインダー成分の溶出が懸念されるためノーバインダーの不織布が好ましい。
The form of the antibacterial sheet-like structure of the present embodiment is preferably a cotton-like, woven-like, knit-like or non-woven fabric-like form. A more preferable form is a woven fabric or non-woven fabric of CMC-generated recycled cellulose fiber, a more preferable form is a non-woven fabric of CMC-generated recycled cellulose fiber, and a more preferable form is a non-woven fabric of CMC-modified cuprammonium rayon. In the non-woven fabric form, the fibers are entangled even in a gelled state when wet, so that appropriate flexibility can be obtained while maintaining the strength when wet, and the scratches when attached to a scratch. It is easy to attach the hemostatic material along the shape of. If the fibers constituting such a non-woven fabric are cuprammonium rayon, the degree of crystallinity is low, so that the reactivity at the time of carboxymethylation is high and the morphological stability is also excellent. Further, in the case of a non-woven fabric, a non-binder non-woven fabric is preferable because the permeation rate of the solution is slow in the non-woven fabric to which the binder is applied and there is a concern that the binder component may elute when used on scratches.
本実施形態の抗菌性シート状構造体には、所望の作用効果を害さない範囲でカルボキシメチルセルロース繊維以外の繊維、例えば、セルロース繊維、ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維等の合成繊維や、ポリグリコール酸、ポリ乳酸、ポリリンゴ酸等の生体吸収性繊維が含まれていてもよい。所望の効果を害さない範囲としては、このような素材が50重量%以下であることが好ましく、30重量%以下であることがより好ましい。このような繊維は長繊維でも短繊維でもよい。
The antibacterial sheet-like structure of the present embodiment includes fibers other than carboxymethyl cellulose fibers, for example, synthetic fibers such as cellulose fibers, polyester fibers, polypropylene fibers, nylon fibers, and polyglycol, as long as the desired effects are not impaired. Bioabsorbable fibers such as acid, polylactic acid, and polyapple acid may be contained. As a range that does not impair the desired effect, such a material is preferably 50% by weight or less, and more preferably 30% by weight or less. Such fibers may be long fibers or short fibers.
本実施形態中のCMC繊維部分は、その置換度を最適範囲にすることで繊維表層に存在する銀含有粒子の全部又は一部を湿潤時に繊維中に埋没させることができ、銀含有粒子を放出しにくくすることで所望の抗菌性能を長時間持続することができる。本実施形態中のCMC部分は、セルロースを構成するグルコース単位中の水酸基のカルボキシメチル基への平均置換度(DS)が0.1以上1.0以下であることが必要であり、好ましくは0.2以上0.8以下であり、より好ましくは0.3以上0.6以下である。DSが0.1未満であると、十分なゲル化性能を発揮することができないために銀含有粒子の放出量が高くなりすぎてしまい所望の抗菌性能を長時間持続することができない。他方、置換度が1.0を超えると、CMCの溶解性が高くなり銀含有粒子の放出量が高くなりすぎてしまうため所望の抗菌性能を長時間持続することができない。
By setting the degree of substitution of the CMC fiber portion in the present embodiment to the optimum range, all or part of the silver-containing particles existing on the fiber surface layer can be buried in the fiber when wet, and the silver-containing particles are released. By making it difficult, the desired antibacterial performance can be maintained for a long time. The CMC moiety in the present embodiment needs to have an average degree of substitution (DS) of hydroxyl groups in the glucose unit constituting cellulose with carboxymethyl groups of 0.1 or more and 1.0 or less, preferably 0. .2 or more and 0.8 or less, more preferably 0.3 or more and 0.6 or less. If the DS is less than 0.1, sufficient gelation performance cannot be exhibited, so that the amount of silver-containing particles released becomes too high, and the desired antibacterial performance cannot be maintained for a long time. On the other hand, if the degree of substitution exceeds 1.0, the solubility of CMC becomes high and the amount of silver-containing particles released becomes too high, so that the desired antibacterial performance cannot be maintained for a long time.
また、本実施形態の抗菌性シート状構造体中の銀含有量は、十分な抗菌性を得るために、抗菌性シート状構造体に対する重量比で0.01重量%以上5.0重量%以下であることが必要であり、好ましくは0.5重量%以上3%重量以下、より好ましくは0.1重量%以上1重量%以下である。銀含有量が0.01重量%未満であると、十分な抗菌性を発揮することができず、他方、銀含有量が5重量%を超えると、抗菌性はそれ以上には上がりにくいうえ、傷口に悪影響を及ぼすおそれがある。
Further, the silver content in the antibacterial sheet-like structure of the present embodiment is 0.01% by weight or more and 5.0% by weight or less in terms of the weight ratio with respect to the antibacterial sheet-like structure in order to obtain sufficient antibacterial properties. It is necessary that the weight is 0.5% by weight or more and 3% by weight or less, and more preferably 0.1% by weight or more and 1% by weight or less. If the silver content is less than 0.01% by weight, sufficient antibacterial properties cannot be exhibited, while if the silver content exceeds 5% by weight, the antibacterial properties are difficult to increase and the antibacterial properties are difficult to increase. May adversely affect the wound.
本実施形態の銀含有粒子は、シート状構造体の厚み方向に一様に分布していることが必要である。
本明細書中、用語「銀含有粒子がシート状構造体の厚み方向に一様に分布している」とは、銀含有粒子がシート状構造体の表面にのみ存在しているのではなく、シート状構造体の内部にまで存在し、略均一に分散し、分布している状態をいう。具体的には、後述するように、走査型電子顕微鏡により、試料断面を試料の厚み方向に5分割した範囲をそれぞれ観察し、それぞれの1000μm2あたりの粒子数を計測する。これらの粒子数の変動係数(変動係数=平均値/標準偏差)が0.5以下であった場合、該構造体中の粒子は構造体の厚み方向に一様に分布しているものとする。
シート状構造体の厚み方向に一様に銀含有粒子が分布していると、シート内部に存在する銀含有粒子は繊維がゲル化した際にゲル状のシート内部に包埋される形となるため、シート外に流出しにくくなり所望の抗菌性能を長期間持続することができる。他方、粉末の散布等により銀含有粒子がシート表面にのみ存在する場合であると、銀含有粒子が脱落・流出しやすく、所望の抗菌性能を長期間持続することができない。 The silver-containing particles of the present embodiment need to be uniformly distributed in the thickness direction of the sheet-like structure.
In the present specification, the term "silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure" does not mean that the silver-containing particles are present only on the surface of the sheet-like structure. It is a state in which it exists even inside the sheet-like structure and is dispersed and distributed substantially uniformly. Specifically, as will be described later, a scanning electron microscope is used to observe a range in which the cross section of the sample is divided into five in the thickness direction of the sample, and the number of particles per 1000 μm 2 of each is measured. When the coefficient of variation (coefficient of variation = average value / standard deviation) of the number of these particles is 0.5 or less, it is assumed that the particles in the structure are uniformly distributed in the thickness direction of the structure. ..
If the silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure, the silver-containing particles existing inside the sheet are embedded in the gel-like sheet when the fibers are gelled. Therefore, it is difficult for the sheet to flow out of the sheet, and the desired antibacterial performance can be maintained for a long period of time. On the other hand, when the silver-containing particles are present only on the sheet surface due to powder spraying or the like, the silver-containing particles are likely to fall off and flow out, and the desired antibacterial performance cannot be maintained for a long period of time.
本明細書中、用語「銀含有粒子がシート状構造体の厚み方向に一様に分布している」とは、銀含有粒子がシート状構造体の表面にのみ存在しているのではなく、シート状構造体の内部にまで存在し、略均一に分散し、分布している状態をいう。具体的には、後述するように、走査型電子顕微鏡により、試料断面を試料の厚み方向に5分割した範囲をそれぞれ観察し、それぞれの1000μm2あたりの粒子数を計測する。これらの粒子数の変動係数(変動係数=平均値/標準偏差)が0.5以下であった場合、該構造体中の粒子は構造体の厚み方向に一様に分布しているものとする。
シート状構造体の厚み方向に一様に銀含有粒子が分布していると、シート内部に存在する銀含有粒子は繊維がゲル化した際にゲル状のシート内部に包埋される形となるため、シート外に流出しにくくなり所望の抗菌性能を長期間持続することができる。他方、粉末の散布等により銀含有粒子がシート表面にのみ存在する場合であると、銀含有粒子が脱落・流出しやすく、所望の抗菌性能を長期間持続することができない。 The silver-containing particles of the present embodiment need to be uniformly distributed in the thickness direction of the sheet-like structure.
In the present specification, the term "silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure" does not mean that the silver-containing particles are present only on the surface of the sheet-like structure. It is a state in which it exists even inside the sheet-like structure and is dispersed and distributed substantially uniformly. Specifically, as will be described later, a scanning electron microscope is used to observe a range in which the cross section of the sample is divided into five in the thickness direction of the sample, and the number of particles per 1000 μm 2 of each is measured. When the coefficient of variation (coefficient of variation = average value / standard deviation) of the number of these particles is 0.5 or less, it is assumed that the particles in the structure are uniformly distributed in the thickness direction of the structure. ..
If the silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure, the silver-containing particles existing inside the sheet are embedded in the gel-like sheet when the fibers are gelled. Therefore, it is difficult for the sheet to flow out of the sheet, and the desired antibacterial performance can be maintained for a long period of time. On the other hand, when the silver-containing particles are present only on the sheet surface due to powder spraying or the like, the silver-containing particles are likely to fall off and flow out, and the desired antibacterial performance cannot be maintained for a long period of time.
銀含有粒子がシート状構造体の厚み方向に一様に分布するように調整するには、例えば、構造体に銀含有粒子を導入する際に、アルコール水溶液を用いて所定の濃度に調整した硝酸銀溶液に浸漬し、硝酸銀溶液を排液した後に、塩化ナトリウム等のハロゲン化物含有アルコール水溶液に浸漬し繊維表面に銀含有粒子を析出させることが好ましい。
仮に硝酸銀溶液を排液しない場合には、溶液中に残存した未反応の硝酸銀とハロゲン化物が反応して溶液中にハロゲン化銀の粒子を形成してしまい、それがシート状構造体上に堆積してしまうことで銀含有粒子の厚み方向の分布が一様でなくなってしまう。硝酸銀溶液を排液することで、未反応の硝酸銀が反応溶液中から除去され、銀含有粒子がシート状構造体の厚み方向に一様に分布する。 To adjust the silver-containing particles to be uniformly distributed in the thickness direction of the sheet-like structure, for example, silver nitrate adjusted to a predetermined concentration using an alcohol aqueous solution when introducing the silver-containing particles into the structure. It is preferable to immerse in a solution, drain the silver nitrate solution, and then immerse in an aqueous solution of a halide-containing alcohol such as sodium chloride to precipitate silver-containing particles on the fiber surface.
If the silver nitrate solution is not drained, the unreacted silver nitrate remaining in the solution reacts with the halide to form silver halide particles in the solution, which are deposited on the sheet-like structure. As a result, the distribution of silver-containing particles in the thickness direction becomes uneven. By draining the silver nitrate solution, unreacted silver nitrate is removed from the reaction solution, and the silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure.
仮に硝酸銀溶液を排液しない場合には、溶液中に残存した未反応の硝酸銀とハロゲン化物が反応して溶液中にハロゲン化銀の粒子を形成してしまい、それがシート状構造体上に堆積してしまうことで銀含有粒子の厚み方向の分布が一様でなくなってしまう。硝酸銀溶液を排液することで、未反応の硝酸銀が反応溶液中から除去され、銀含有粒子がシート状構造体の厚み方向に一様に分布する。 To adjust the silver-containing particles to be uniformly distributed in the thickness direction of the sheet-like structure, for example, silver nitrate adjusted to a predetermined concentration using an alcohol aqueous solution when introducing the silver-containing particles into the structure. It is preferable to immerse in a solution, drain the silver nitrate solution, and then immerse in an aqueous solution of a halide-containing alcohol such as sodium chloride to precipitate silver-containing particles on the fiber surface.
If the silver nitrate solution is not drained, the unreacted silver nitrate remaining in the solution reacts with the halide to form silver halide particles in the solution, which are deposited on the sheet-like structure. As a result, the distribution of silver-containing particles in the thickness direction becomes uneven. By draining the silver nitrate solution, unreacted silver nitrate is removed from the reaction solution, and the silver-containing particles are uniformly distributed in the thickness direction of the sheet-like structure.
本実施形態の銀含有粒子の平均粒子径は、0.01μm以上5μm以下であることが必要であり、好ましくは0.1μm以上5μm以下、より好ましくは0.5μm以上2μm以下である。平均粒子径が0.01μmよりも小さいと銀含有粒子がシートから放出されやすく、所望の抗菌性能を長期間持続することが難しい。他方、平均粒子径が5μm以上になると銀粒子のシートからの放出が繊維により物理的に阻害されてしまい、抗菌性能が低くなってしまう。
The average particle size of the silver-containing particles of the present embodiment needs to be 0.01 μm or more and 5 μm or less, preferably 0.1 μm or more and 5 μm or less, and more preferably 0.5 μm or more and 2 μm or less. If the average particle size is smaller than 0.01 μm, silver-containing particles are likely to be released from the sheet, and it is difficult to maintain the desired antibacterial performance for a long period of time. On the other hand, when the average particle size is 5 μm or more, the release of silver particles from the sheet is physically blocked by the fibers, and the antibacterial performance is lowered.
本実施形態の銀含有粒子は、特に限定されないが、金属銀、銀ナノパーティクル、ハロゲン化銀、及び銀スルファジアジンから成る群から選ばれる少なくとも1種を含む粒子であることが好ましい。これらの粒子は医療現場で抗菌剤として使用されている実績があり、これらを用いると該シート状構造体を傷口に適用した際に所望の抗菌性能を発現することができる。また、銀含有粒子は、上記の化合物とその他の化合物、例えば、塩化銀と塩化ナトリウム等が混合した粒子であってもよい。
The silver-containing particles of the present embodiment are not particularly limited, but are preferably particles containing at least one selected from the group consisting of metallic silver, silver nanoparticles, silver halide, and silver sulfaziazine. These particles have a track record of being used as antibacterial agents in the medical field, and when they are used, they can exhibit desired antibacterial performance when the sheet-like structure is applied to a wound. Further, the silver-containing particles may be particles in which the above compound and other compounds such as silver chloride and sodium chloride are mixed.
また、本実施形態におけるCMC部分のカウンターカチオンは、特に限定されることはないが、ナトリウムイオン又はプロトンから選ばれることが好ましい。CMC部分は、例えば、モノクロロ酢酸ナトリウムを使用してカルボキシメチル化した時点では、カルボキシメチル基の末端がナトリウム塩となっているが、その後、酸溶液で処理して全部又は一部のカルボキシメチル基のカウンターカチオンをプロトンに変化させる(プロトン化)ことができる。カウンターカチオンの一部をプロトンとする場合、その割合は5%以上80%以下であることが好ましく、より好ましくは5%以上60%以下であり、さらに好ましくは10%以上40%以下である。カウンターカチオンの一部をプロトン化することでCMC繊維の溶解度を調整して銀含有粒子の放出量を制御することができ、所望の抗菌性能を長期間持続させることが可能である。また、その他の機能を付与するためにナトリウムイオンやプロトン以外のカウンターカチオンを導入してもよく、吸液量と湿潤時の強度に応じてこれらの導入量は調整することができる。
The counter cation of the CMC moiety in the present embodiment is not particularly limited, but is preferably selected from sodium ion or proton. The CMC moiety has a sodium salt at the end of the carboxymethyl group at the time of carboxymethylation with, for example, sodium monochloroacetate, but is then treated with an acid solution to treat all or part of the carboxymethyl group. The counter cation of can be changed to a proton (protonation). When a part of the counter cation is a proton, the ratio is preferably 5% or more and 80% or less, more preferably 5% or more and 60% or less, and further preferably 10% or more and 40% or less. By protonating a part of the counter cation, the solubility of the CMC fiber can be adjusted to control the amount of silver-containing particles released, and the desired antibacterial performance can be maintained for a long period of time. Further, counter cations other than sodium ions and protons may be introduced in order to impart other functions, and the amount of these introduced can be adjusted according to the amount of liquid absorbed and the strength at the time of wetting.
本実施形態の抗菌性シート状構造体が織物状、編物状又は不織布状の形態にある場合、その目付(不織布重量(g)/不織布面積(m2))(g/m2)は、10g/m2以上200g/m2以下であることが好ましく、より好ましくは30g/m2以上180g/m2以下、さらに好ましくは40g/m2以上170g/m2以下であり、よりさらに好ましくは50g/m2以上150g/m2以下である。目付が低すぎると、部分的にプロトン化しても十分な強度を得ることが難しくなる場合があり、他方、目付が高すぎると、柔軟性が無くなり、凹凸部等を有する傷への配置が煩雑になる。
When the antibacterial sheet-like structure of the present embodiment is in the form of a woven fabric, a knitted fabric, or a non-woven fabric, its texture (weight of non-woven fabric (g) / non-woven fabric area (m 2 )) (g / m 2 ) is 10 g. / M 2 or more and 200 g / m 2 or less, more preferably 30 g / m 2 or more and 180 g / m 2 or less, still more preferably 40 g / m 2 or more and 170 g / m 2 or less, still more preferably 50 g. / M 2 or more and 150 g / m 2 or less. If the basis weight is too low, it may be difficult to obtain sufficient strength even if it is partially protonated. On the other hand, if the basis weight is too high, the flexibility is lost and placement on scratches having uneven portions or the like is complicated. become.
本実施形態の抗菌性シート状構造体の乾燥状態での厚みは、織物状、編物状又は不織布状である場合、0.03mm以上5.0mm以下であることが好ましく、より好ましくは0.03mm以上3.0mm以下であり、さらに好ましくは0.03mm以上2.0mm以下である。厚みが薄すぎると、部分的にプロトン化しても十分な強度を得ることができない場合があり、他方、厚みが厚すぎると、柔軟性が無くなり、傷への配置が煩雑になる。本明細書中、抗菌性シート状構造体の厚みは、例えば、不織布である場合、JIS-L1096に準拠する厚み試験にて、荷重を1.96kPaとして測定して得られた値をいう。
The thickness of the antibacterial sheet-like structure of the present embodiment in a dry state is preferably 0.03 mm or more and 5.0 mm or less, more preferably 0.03 mm in the case of a woven fabric, a knitted fabric, or a non-woven fabric. It is 3.0 mm or more, and more preferably 0.03 mm or more and 2.0 mm or less. If the thickness is too thin, sufficient strength may not be obtained even if it is partially protonated. On the other hand, if the thickness is too thick, the flexibility is lost and the arrangement on scratches becomes complicated. In the present specification, the thickness of the antibacterial sheet-like structure refers to a value obtained by measuring a load of 1.96 kPa in a thickness test conforming to JIS-L1096, for example, in the case of a non-woven fabric.
本実施形態の抗菌性シート状構造体の、擬似滲出液に含浸させた際の吸液量は、5g/100cm2以上70g/100cm2以下であることが好ましく、より好ましくは10g/100cm2以上60g/100cm2以下、さらに好ましくは10g/100cm2以上50g/100cm2以下である。吸液量が5g/100cm2未満であると、効率よく滲出液を保持することができず、治癒能力が低下してしまうおそれがある。他方、吸液量が70g/100cm2より大きいと、抗菌性シート状構造体の膨潤が大きく最適な配置を保つことが難しくなる。
The amount of liquid absorbed by the antibacterial sheet-like structure of the present embodiment when impregnated with the pseudo-exudate is preferably 5 g / 100 cm 2 or more and 70 g / 100 cm 2 or less, more preferably 10 g / 100 cm 2 or more. It is 60 g / 100 cm 2 or less, more preferably 10 g / 100 cm 2 or more and 50 g / 100 cm 2 or less. If the amount of liquid absorbed is less than 5 g / 100 cm 2 , the exudate cannot be efficiently retained, and the healing ability may be reduced. On the other hand, if the amount of liquid absorbed is larger than 70 g / 100 cm 2 , the antibacterial sheet-like structure swells greatly and it becomes difficult to maintain the optimum arrangement.
連続長繊維銅アンモニアレーヨン不織布の製造方法例を以下に示すが、この方法に限定されるものではない。
異物を除去し、重合度を調整したコットンリンターを銅アンモニウム溶液に溶解させた原液を、細孔(原液吐出孔)を有した紡糸口金(紡口)から押し出し、水と共に漏斗内を落下させ、脱アンモニアさせることにより原液を凝固させつつ、延伸を行い、ネット上へ振り落としウェブ形成させる。この際、ネットを進行させながら進行方向と垂直方向へ振動させることにより、ネットへ振り落とされる繊維はサインカーブを描くことになる。紡糸時の延伸は100~500倍が可能であり、紡糸漏斗の形状と、その中を流下させる紡糸水量を変えることにより、延伸倍率の調整が任意に可能である。延伸倍率を変えることにより、単繊度や不織布の強度を変えることが可能である。また、紡糸水量や温度を変化させることに原液内に微量残留する低分子量セルロース、いわゆるヘミセルロースをコントロールすることも可能である。また、ネットの進行速度、振動幅を制御することにより、繊維配列方向を制御し、不織布としての強度や伸度等をコントロールすることが可能である。 An example of a method for producing a continuous length fiber cuprammonium rayon nonwoven fabric is shown below, but the method is not limited to this method.
A stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and is dropped in the funnel together with water. While coagulating the undiluted solution by deammonia, it is stretched and shaken onto the net to form a web. At this time, by vibrating the net in the direction perpendicular to the traveling direction while advancing the net, the fibers shaken off to the net draw a sine curve. The drawing during spinning can be 100 to 500 times, and the drawing ratio can be arbitrarily adjusted by changing the shape of the spinning funnel and the amount of spinning water flowing through the funnel. By changing the draw ratio, it is possible to change the single fineness and the strength of the non-woven fabric. It is also possible to control low molecular weight cellulose, so-called hemicellulose, which remains in a trace amount in the stock solution by changing the amount of spinning water and the temperature. Further, by controlling the traveling speed and the vibration width of the net, it is possible to control the fiber arrangement direction and control the strength and elongation of the non-woven fabric.
異物を除去し、重合度を調整したコットンリンターを銅アンモニウム溶液に溶解させた原液を、細孔(原液吐出孔)を有した紡糸口金(紡口)から押し出し、水と共に漏斗内を落下させ、脱アンモニアさせることにより原液を凝固させつつ、延伸を行い、ネット上へ振り落としウェブ形成させる。この際、ネットを進行させながら進行方向と垂直方向へ振動させることにより、ネットへ振り落とされる繊維はサインカーブを描くことになる。紡糸時の延伸は100~500倍が可能であり、紡糸漏斗の形状と、その中を流下させる紡糸水量を変えることにより、延伸倍率の調整が任意に可能である。延伸倍率を変えることにより、単繊度や不織布の強度を変えることが可能である。また、紡糸水量や温度を変化させることに原液内に微量残留する低分子量セルロース、いわゆるヘミセルロースをコントロールすることも可能である。また、ネットの進行速度、振動幅を制御することにより、繊維配列方向を制御し、不織布としての強度や伸度等をコントロールすることが可能である。 An example of a method for producing a continuous length fiber cuprammonium rayon nonwoven fabric is shown below, but the method is not limited to this method.
A stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and is dropped in the funnel together with water. While coagulating the undiluted solution by deammonia, it is stretched and shaken onto the net to form a web. At this time, by vibrating the net in the direction perpendicular to the traveling direction while advancing the net, the fibers shaken off to the net draw a sine curve. The drawing during spinning can be 100 to 500 times, and the drawing ratio can be arbitrarily adjusted by changing the shape of the spinning funnel and the amount of spinning water flowing through the funnel. By changing the draw ratio, it is possible to change the single fineness and the strength of the non-woven fabric. It is also possible to control low molecular weight cellulose, so-called hemicellulose, which remains in a trace amount in the stock solution by changing the amount of spinning water and the temperature. Further, by controlling the traveling speed and the vibration width of the net, it is possible to control the fiber arrangement direction and control the strength and elongation of the non-woven fabric.
また、短繊維又は長繊維アンモニアレーヨンの製造方法の一例を以下に示すが、この方法に限定されるものではない。
異物を除去し、重合度を調整したコットンリンターを銅アンモニウム溶液に溶解させた原液を、細孔(原液吐出孔)を有した紡糸口金(紡口)から押し出し、水と共に漏斗内を落下させ、脱アンモニアさせることにより原液を凝固させつつ、延伸を行い、長繊維アンモニアレーヨンを、さらにこれを任意の長さに繊維を裁断することにより短繊維アンモニアレーヨンを得ることが可能である。また、連続長繊維銅アンモニアレーヨン不織布の場合と同様に、延伸倍率を変えることにより、単繊度や不織布の強度を変えることが可能である。
これらの短繊維又は長繊維アンモニアレーヨンは、この方法に限定されるものではないが、ニードルパンチ法又はスパンレース法によって不織布化させることができる。不織布化は、以下の段落[0026]~[0028]に説明する処理の前後のどの時点で行なってもよい。カルボキシメチルセルロース繊維は吸水してゲル化する繊維のため、以下の段落[0026]の処理の後で不織布化を行なう場合には水を使用したスパンレース法は適さず、ニードルパンチ法又は有機溶媒を用いたスパンレース法によって不織布化することが好ましい。 Further, an example of a method for producing short fiber or long fiber ammonia rayon is shown below, but the method is not limited to this method.
A stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and dropped in a funnel together with water. It is possible to obtain long-fiber ammonia rayon by drawing while coagulating the stock solution by deammonizing, and further by cutting the fiber to an arbitrary length to obtain short-fiber ammonia rayon. Further, as in the case of the continuous long fiber cuprammonium rayon non-woven fabric, it is possible to change the single fineness and the strength of the non-woven fabric by changing the draw ratio.
These short fiber or long fiber ammonia rayon can be made into a non-woven fabric by a needle punch method or a spunlace method, but is not limited to this method. The non-woven fabric may be formed at any time before and after the treatment described in the following paragraphs [0026] to [0028]. Since the carboxymethyl cellulose fiber is a fiber that absorbs water and gels, the spunlace method using water is not suitable for making a non-woven fabric after the treatment in the following paragraph [0026], and a needle punch method or an organic solvent is used. It is preferable to make a non-woven fabric by the spunlace method used.
異物を除去し、重合度を調整したコットンリンターを銅アンモニウム溶液に溶解させた原液を、細孔(原液吐出孔)を有した紡糸口金(紡口)から押し出し、水と共に漏斗内を落下させ、脱アンモニアさせることにより原液を凝固させつつ、延伸を行い、長繊維アンモニアレーヨンを、さらにこれを任意の長さに繊維を裁断することにより短繊維アンモニアレーヨンを得ることが可能である。また、連続長繊維銅アンモニアレーヨン不織布の場合と同様に、延伸倍率を変えることにより、単繊度や不織布の強度を変えることが可能である。
これらの短繊維又は長繊維アンモニアレーヨンは、この方法に限定されるものではないが、ニードルパンチ法又はスパンレース法によって不織布化させることができる。不織布化は、以下の段落[0026]~[0028]に説明する処理の前後のどの時点で行なってもよい。カルボキシメチルセルロース繊維は吸水してゲル化する繊維のため、以下の段落[0026]の処理の後で不織布化を行なう場合には水を使用したスパンレース法は適さず、ニードルパンチ法又は有機溶媒を用いたスパンレース法によって不織布化することが好ましい。 Further, an example of a method for producing short fiber or long fiber ammonia rayon is shown below, but the method is not limited to this method.
A stock solution obtained by dissolving a cotton linter having an adjusted degree of polymerization in a copper ammonium solution from which foreign substances have been removed is extruded from a spinneret (spinning spout) having pores (stock solution discharge holes), and dropped in a funnel together with water. It is possible to obtain long-fiber ammonia rayon by drawing while coagulating the stock solution by deammonizing, and further by cutting the fiber to an arbitrary length to obtain short-fiber ammonia rayon. Further, as in the case of the continuous long fiber cuprammonium rayon non-woven fabric, it is possible to change the single fineness and the strength of the non-woven fabric by changing the draw ratio.
These short fiber or long fiber ammonia rayon can be made into a non-woven fabric by a needle punch method or a spunlace method, but is not limited to this method. The non-woven fabric may be formed at any time before and after the treatment described in the following paragraphs [0026] to [0028]. Since the carboxymethyl cellulose fiber is a fiber that absorbs water and gels, the spunlace method using water is not suitable for making a non-woven fabric after the treatment in the following paragraph [0026], and a needle punch method or an organic solvent is used. It is preferable to make a non-woven fabric by the spunlace method used.
本実施形態の抗菌性シート状構造体の製造方法例を以下に示すが、この方法に限定されるものではない。
まず、天然又は再生セルロース繊維の構造体をアルコール含有水酸化ナトリウム水溶液中でアルカリ状態を維持しながら、35℃で30分攪拌する。その後、反応容器中の試薬を排液した後、アルコールを含むモノクロロ酢酸ナトリウムを添加し、30℃~55℃で1~12時間撹拌する。その際の、置換度の制御は、反応液と構造体の浴比、温度、及び時間により制御する。また、その他の反応条件は、生産コスト等も考慮しながら適宜変更することができる。得られた構造体を酢酸含有エタノール水溶液でpH6.0~8.0に調整した後、70重量%、90重量%、100重量%エタノールでアルコール置換を行なう。少しでも水分を含むと硬くなるので、徐々にアルコール濃度を上げていくことで、アルコール置換を確実に行い、形態安定性を維持することができる。その後所定の濃度に調整した酸含有エタノール溶液に浸漬し、1時間撹拌し、70重量%、90重量%、100重量%エタノールでアルコール置換を行ない、乾燥させ、プロトン化したシート状構造体を得る。さらに所定の濃度に調整した硝酸銀含有エタノール水溶液に浸漬し、1時間撹拌後に硝酸銀含有エタノール水溶液を排液し、所定の濃度に調整した塩化ナトリウム含有エタノール水溶液に浸漬し、1時間撹拌し、70重量%、90重量%、100重量%エタノールでアルコール置換を行ない、乾燥させ、抗菌性シート状構造体を得る。
酸への浸漬工程は、中和工程と同時に行ってもよい。すなわち、通常、中和工程後、酸浸漬工程を実施するため2工程必要であるが、中和工程と酸浸漬工程を同時に行い1工程で行ってもよい。また、硝酸銀溶液への浸漬工程は酸への浸漬工程の直後、乾燥やアルコール置換の前に行ってもよい。 An example of a method for producing the antibacterial sheet-like structure of the present embodiment is shown below, but the method is not limited to this method.
First, the structure of natural or regenerated cellulose fibers is stirred at 35 ° C. for 30 minutes while maintaining an alkaline state in an alcohol-containing sodium hydroxide aqueous solution. Then, after draining the reagent in the reaction vessel, sodium monochloroacetate containing alcohol is added, and the mixture is stirred at 30 ° C. to 55 ° C. for 1 to 12 hours. At that time, the degree of substitution is controlled by the bath ratio of the reaction solution and the structure, the temperature, and the time. In addition, other reaction conditions can be appropriately changed in consideration of production cost and the like. The obtained structure is adjusted to pH 6.0 to 8.0 with an aqueous acetic acid-containing ethanol solution, and then alcohol substitution is performed with 70% by weight, 90% by weight, or 100% by weight of ethanol. Since it becomes hard when it contains even a small amount of water, it is possible to reliably perform alcohol substitution and maintain morphological stability by gradually increasing the alcohol concentration. Then, it is immersed in an acid-containing ethanol solution adjusted to a predetermined concentration, stirred for 1 hour, alcohol-substituted with 70% by weight, 90% by weight, and 100% by weight ethanol, and dried to obtain a protonated sheet-like structure. .. Further, the mixture was immersed in a silver nitrate-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, then the silver nitrate-containing ethanol aqueous solution was drained, immersed in a sodium chloride-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, and 70% by weight. Alcohol substitution is carried out with%, 90% by weight and 100% by weight of ethanol, and the mixture is dried to obtain an antibacterial sheet-like structure.
The step of dipping in the acid may be carried out at the same time as the step of neutralization. That is, normally, two steps are required to carry out the acid dipping step after the neutralization step, but the neutralization step and the acid dipping step may be carried out at the same time in one step. Further, the dipping step in the silver nitrate solution may be performed immediately after the dipping step in the acid and before drying or alcohol substitution.
まず、天然又は再生セルロース繊維の構造体をアルコール含有水酸化ナトリウム水溶液中でアルカリ状態を維持しながら、35℃で30分攪拌する。その後、反応容器中の試薬を排液した後、アルコールを含むモノクロロ酢酸ナトリウムを添加し、30℃~55℃で1~12時間撹拌する。その際の、置換度の制御は、反応液と構造体の浴比、温度、及び時間により制御する。また、その他の反応条件は、生産コスト等も考慮しながら適宜変更することができる。得られた構造体を酢酸含有エタノール水溶液でpH6.0~8.0に調整した後、70重量%、90重量%、100重量%エタノールでアルコール置換を行なう。少しでも水分を含むと硬くなるので、徐々にアルコール濃度を上げていくことで、アルコール置換を確実に行い、形態安定性を維持することができる。その後所定の濃度に調整した酸含有エタノール溶液に浸漬し、1時間撹拌し、70重量%、90重量%、100重量%エタノールでアルコール置換を行ない、乾燥させ、プロトン化したシート状構造体を得る。さらに所定の濃度に調整した硝酸銀含有エタノール水溶液に浸漬し、1時間撹拌後に硝酸銀含有エタノール水溶液を排液し、所定の濃度に調整した塩化ナトリウム含有エタノール水溶液に浸漬し、1時間撹拌し、70重量%、90重量%、100重量%エタノールでアルコール置換を行ない、乾燥させ、抗菌性シート状構造体を得る。
酸への浸漬工程は、中和工程と同時に行ってもよい。すなわち、通常、中和工程後、酸浸漬工程を実施するため2工程必要であるが、中和工程と酸浸漬工程を同時に行い1工程で行ってもよい。また、硝酸銀溶液への浸漬工程は酸への浸漬工程の直後、乾燥やアルコール置換の前に行ってもよい。 An example of a method for producing the antibacterial sheet-like structure of the present embodiment is shown below, but the method is not limited to this method.
First, the structure of natural or regenerated cellulose fibers is stirred at 35 ° C. for 30 minutes while maintaining an alkaline state in an alcohol-containing sodium hydroxide aqueous solution. Then, after draining the reagent in the reaction vessel, sodium monochloroacetate containing alcohol is added, and the mixture is stirred at 30 ° C. to 55 ° C. for 1 to 12 hours. At that time, the degree of substitution is controlled by the bath ratio of the reaction solution and the structure, the temperature, and the time. In addition, other reaction conditions can be appropriately changed in consideration of production cost and the like. The obtained structure is adjusted to pH 6.0 to 8.0 with an aqueous acetic acid-containing ethanol solution, and then alcohol substitution is performed with 70% by weight, 90% by weight, or 100% by weight of ethanol. Since it becomes hard when it contains even a small amount of water, it is possible to reliably perform alcohol substitution and maintain morphological stability by gradually increasing the alcohol concentration. Then, it is immersed in an acid-containing ethanol solution adjusted to a predetermined concentration, stirred for 1 hour, alcohol-substituted with 70% by weight, 90% by weight, and 100% by weight ethanol, and dried to obtain a protonated sheet-like structure. .. Further, the mixture was immersed in a silver nitrate-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, then the silver nitrate-containing ethanol aqueous solution was drained, immersed in a sodium chloride-containing ethanol aqueous solution adjusted to a predetermined concentration, stirred for 1 hour, and 70% by weight. Alcohol substitution is carried out with%, 90% by weight and 100% by weight of ethanol, and the mixture is dried to obtain an antibacterial sheet-like structure.
The step of dipping in the acid may be carried out at the same time as the step of neutralization. That is, normally, two steps are required to carry out the acid dipping step after the neutralization step, but the neutralization step and the acid dipping step may be carried out at the same time in one step. Further, the dipping step in the silver nitrate solution may be performed immediately after the dipping step in the acid and before drying or alcohol substitution.
本実施形態の構造体を部分的にプロトン化する方法には、特に制限はないが、アルコールを用いて所定の濃度に調整した酢酸、塩酸、硝酸に浸漬することよりプロトン化されることが好ましく、より好ましくは所定の濃度に調整した酢酸である。酢酸を用いてのプロトン化には、SUS製の反応器を使用することができる。
プロトン化されたCMCを含む本実施形態の抗菌性シート状構造体は、乾燥後、そのまま使用してもよいが、50℃以上の温度で1h以上熱処理されることが好ましく、より好ましくは80~120℃の温度で3h以上の熱処理であり、更に好ましくは100~120℃の温度で3h以上の熱処理である。熱処理を行うことで、分子の配向が最適化され、分子内水素結合が増えることで強度を更に増すことができる。熱処理方法としては、熱風処理、乾熱処理、湿熱処理、真空加熱処理などが挙げられる。効率よく処理を行うためには熱風処理が好ましいが、特にこれらに限定されるものではない。 The method for partially protonating the structure of the present embodiment is not particularly limited, but it is preferably protonated by immersing it in acetic acid, hydrochloric acid, or nitric acid adjusted to a predetermined concentration using alcohol. , More preferably acetic acid adjusted to a predetermined concentration. A SUS reactor can be used for protonation with acetic acid.
The antibacterial sheet-like structure of the present embodiment containing the protonated CMC may be used as it is after drying, but it is preferably heat-treated at a temperature of 50 ° C. or higher for 1 hour or longer, more preferably 80 to 80 to It is a heat treatment of 3 hours or more at a temperature of 120 ° C., and more preferably a heat treatment of 3 hours or more at a temperature of 100 to 120 ° C. By performing the heat treatment, the orientation of the molecule is optimized, and the strength can be further increased by increasing the intramolecular hydrogen bond. Examples of the heat treatment method include hot air treatment, dry heat treatment, wet heat treatment, and vacuum heat treatment. Hot air treatment is preferable for efficient treatment, but the treatment is not particularly limited thereto.
プロトン化されたCMCを含む本実施形態の抗菌性シート状構造体は、乾燥後、そのまま使用してもよいが、50℃以上の温度で1h以上熱処理されることが好ましく、より好ましくは80~120℃の温度で3h以上の熱処理であり、更に好ましくは100~120℃の温度で3h以上の熱処理である。熱処理を行うことで、分子の配向が最適化され、分子内水素結合が増えることで強度を更に増すことができる。熱処理方法としては、熱風処理、乾熱処理、湿熱処理、真空加熱処理などが挙げられる。効率よく処理を行うためには熱風処理が好ましいが、特にこれらに限定されるものではない。 The method for partially protonating the structure of the present embodiment is not particularly limited, but it is preferably protonated by immersing it in acetic acid, hydrochloric acid, or nitric acid adjusted to a predetermined concentration using alcohol. , More preferably acetic acid adjusted to a predetermined concentration. A SUS reactor can be used for protonation with acetic acid.
The antibacterial sheet-like structure of the present embodiment containing the protonated CMC may be used as it is after drying, but it is preferably heat-treated at a temperature of 50 ° C. or higher for 1 hour or longer, more preferably 80 to 80 to It is a heat treatment of 3 hours or more at a temperature of 120 ° C., and more preferably a heat treatment of 3 hours or more at a temperature of 100 to 120 ° C. By performing the heat treatment, the orientation of the molecule is optimized, and the strength can be further increased by increasing the intramolecular hydrogen bond. Examples of the heat treatment method include hot air treatment, dry heat treatment, wet heat treatment, and vacuum heat treatment. Hot air treatment is preferable for efficient treatment, but the treatment is not particularly limited thereto.
本実施形態の構造体に銀含有粒子を導入する方法には、特に制限はないが、アルコール水溶液を用いて所定の濃度に調整した硝酸銀溶液に浸漬した後、硝酸銀溶液を排液してから塩化ナトリウム等のハロゲン化物含有アルコール水溶液に浸漬することより繊維表面に銀含有粒子を析出させることが好ましい。このとき、硝酸銀溶液に水が多量に含まれると銀交換の反応速度が速すぎて反応ムラが起こってしまうため、硝酸銀溶液中の水分量は10重量%以下が好ましい。より好ましくは、硝酸銀溶液中には水が含まれていない状態がよい。さらに、溶液中に未反応の硝酸銀が残っていると塩化ナトリウムと反応して系中に塩化銀の浮遊粒子を生じてしまうため、ハロゲン化物含有アルコール水溶液に浸漬する前に一度脱液を実施することが好ましい。この方法によると、繊維表層に銀含有粒子を析出させることができる。また、ハロゲン化物含有アルコール溶液での処理は、すべての銀を完全に粒子化させるために常温では1時間以上の処理が好ましい。
The method for introducing silver-containing particles into the structure of the present embodiment is not particularly limited, but is immersed in a silver nitrate solution adjusted to a predetermined concentration using an alcohol aqueous solution, and then the silver nitrate solution is drained and then chloride. It is preferable to precipitate silver-containing particles on the fiber surface by immersing in an aqueous solution of a halide-containing alcohol such as sodium. At this time, if the silver nitrate solution contains a large amount of water, the reaction rate of silver exchange is too fast and reaction unevenness occurs. Therefore, the water content in the silver nitrate solution is preferably 10% by weight or less. More preferably, the silver nitrate solution does not contain water. Furthermore, if unreacted silver nitrate remains in the solution, it reacts with sodium chloride to generate suspended particles of silver chloride in the system. Therefore, the solution is once removed before being immersed in the halide-containing alcohol aqueous solution. Is preferable. According to this method, silver-containing particles can be precipitated on the fiber surface layer. Further, the treatment with the halide-containing alcohol solution is preferably 1 hour or more at room temperature in order to completely atomize all the silver.
本実施形態の構造体は、湿潤時にゲル化することを特徴とする。湿潤時にゲル化することで繊維表面に付着していた銀含有粒子がゲルに埋没し、流出しにくくなる。また、高い吸液量を持つ他、肌への密着性が高くなり、肌の動きに追従しやすくなる。さらに、ゲル化することで風合いが柔らかくなり、肌への影響が少なくなる。
他方、ゲル化した構造体が徐々に溶解していくことによって構造体表面の銀含有粒子を傷の中へと拡散させる、すなわち、銀含有粒子を徐放することができる。傷中の銀含有粒子の拡散に伴い抗菌性が発揮され、傷の感染を抑制し創傷治癒を促進することができる。 The structure of the present embodiment is characterized in that it gels when wet. By gelling when wet, the silver-containing particles adhering to the fiber surface are buried in the gel, making it difficult for them to flow out. In addition to having a high amount of liquid absorption, it also has high adhesion to the skin, making it easier to follow the movement of the skin. Furthermore, the gelation softens the texture and reduces the effect on the skin.
On the other hand, the gelled structure gradually dissolves to diffuse the silver-containing particles on the surface of the structure into the wound, that is, the silver-containing particles can be slowly released. Antibacterial properties are exhibited as the silver-containing particles in the wound diffuse, and the wound infection can be suppressed and the wound healing can be promoted.
他方、ゲル化した構造体が徐々に溶解していくことによって構造体表面の銀含有粒子を傷の中へと拡散させる、すなわち、銀含有粒子を徐放することができる。傷中の銀含有粒子の拡散に伴い抗菌性が発揮され、傷の感染を抑制し創傷治癒を促進することができる。 The structure of the present embodiment is characterized in that it gels when wet. By gelling when wet, the silver-containing particles adhering to the fiber surface are buried in the gel, making it difficult for them to flow out. In addition to having a high amount of liquid absorption, it also has high adhesion to the skin, making it easier to follow the movement of the skin. Furthermore, the gelation softens the texture and reduces the effect on the skin.
On the other hand, the gelled structure gradually dissolves to diffuse the silver-containing particles on the surface of the structure into the wound, that is, the silver-containing particles can be slowly released. Antibacterial properties are exhibited as the silver-containing particles in the wound diffuse, and the wound infection can be suppressed and the wound healing can be promoted.
以下、実施例、比較例で用いた抗菌性シート状構造体の物性値の測定方法を説明する。
1.平均置換度(DS)の測定
(i)酸度、アルカリ度
試料(無水物)約1gを300mL三角フラスコに精密に秤量し、水を約200mL加えて溶解する。これに0.05モル/L硫酸5mLをピペットで加え、10分間煮沸した後冷却して、フェノールフタレイン指示薬を加え、0.1モル/L水酸化カリウムで滴定する(SmL)。同時に空試験を行い(XmL)、下記式(1):
アルカリ度={(X-S)×f}/試料無水物重量(g) ...式(1)
{式中、f:0.1モル/L水酸化カリウム力価}によって算出する。
ここで、{(X-S)×f}の値が(-)の時にはアルカリ度を酸度と読み代える。 Hereinafter, a method for measuring the physical property values of the antibacterial sheet-like structure used in Examples and Comparative Examples will be described.
1. 1. Measurement of average degree of substitution (DS) (i) Acidity, alkalinity About 1 g of the sample (anhydride) is precisely weighed in a 300 mL Erlenmeyer flask, and about 200 mL of water is added to dissolve it. Add 5 mL of 0.05 mol / L sulfuric acid with a pipette, boil for 10 minutes, cool, add a phenolphthalein indicator, and titrate with 0.1 mol / L potassium hydroxide (SmL). At the same time, a blank test was performed (XmL), and the following formula (1):
Alkaliity = {(XS) x f} / weight of sample anhydride (g). .. .. Equation (1)
Calculated by {in the formula, f: 0.1 mol / L potassium hydroxide titer}.
Here, when the value of {(XS) × f} is (−), the alkalinity is read as the acidity.
1.平均置換度(DS)の測定
(i)酸度、アルカリ度
試料(無水物)約1gを300mL三角フラスコに精密に秤量し、水を約200mL加えて溶解する。これに0.05モル/L硫酸5mLをピペットで加え、10分間煮沸した後冷却して、フェノールフタレイン指示薬を加え、0.1モル/L水酸化カリウムで滴定する(SmL)。同時に空試験を行い(XmL)、下記式(1):
アルカリ度={(X-S)×f}/試料無水物重量(g) ...式(1)
{式中、f:0.1モル/L水酸化カリウム力価}によって算出する。
ここで、{(X-S)×f}の値が(-)の時にはアルカリ度を酸度と読み代える。 Hereinafter, a method for measuring the physical property values of the antibacterial sheet-like structure used in Examples and Comparative Examples will be described.
1. 1. Measurement of average degree of substitution (DS) (i) Acidity, alkalinity About 1 g of the sample (anhydride) is precisely weighed in a 300 mL Erlenmeyer flask, and about 200 mL of water is added to dissolve it. Add 5 mL of 0.05 mol / L sulfuric acid with a pipette, boil for 10 minutes, cool, add a phenolphthalein indicator, and titrate with 0.1 mol / L potassium hydroxide (SmL). At the same time, a blank test was performed (XmL), and the following formula (1):
Alkaliity = {(XS) x f} / weight of sample anhydride (g). .. .. Equation (1)
Calculated by {in the formula, f: 0.1 mol / L potassium hydroxide titer}.
Here, when the value of {(XS) × f} is (−), the alkalinity is read as the acidity.
(ii)平均置換度(DS)
試料(無水物)0.5~0.7gを精密に秤量し、ろ紙に包んで磁製ルツボ中で灰化する。冷却した後、これを500mLビーカーに移し、水を約250mL、さらにピペットで0.05モル/Lの硫酸35mLを加えて30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸を0.1モル/Lの水酸化カリウムで逆滴定して、下記式(2):
Y=(a×f-b×f1)/試料無水物重量(g)-アルカリ度(又は+酸度) ...式(2)
{式中、Y:試料1g中の結合アルカリに消費された0.05モル/L硫酸の量(mL)、a:0.05モル/L硫酸の使用量(mL)、f:0.05モル/L硫酸の力価、b:0.1モル/L水酸化カリウムの滴定量(mL)、f1:0.1モル/L水酸化カリウムの力価}、及び下記式(3):
置換度=(162×Y)/(10000-80×Y) ...式(3)
{式中、Yは式(2)に定義したものと同じである。}により、置換度を算出し、その平均値(N=3以上)を平均置換度とする。 (Ii) Average degree of substitution (DS)
A sample (anhydride) of 0.5 to 0.7 g is precisely weighed, wrapped in filter paper, and incinerated in a porcelain crucible. After cooling, transfer this to a 500 mL beaker, add about 250 mL of water and 35 mL of 0.05 mol / L sulfuric acid with a pipette, and simmer for 30 minutes. This is cooled, a phenolphthalein indicator is added, and the excess acid is back titrated with 0.1 mol / L potassium hydroxide to formulate the following formula (2):
Y = (a × f-b × f1) / sample anhydride weight (g) -alkali (or + acidity). .. .. Equation (2)
{In the formula, Y: amount of 0.05 mol / L sulfuric acid consumed in 1 g of sample (mL), a: amount of 0.05 mol / L sulfuric acid used (mL), f: 0.05 Molar / L sulfuric acid titer, b: 0.1 molar / L potassium hydroxide titration (mL), f1: 0.1 molar / L potassium hydroxide titer}, and the following formula (3):
Substitution = (162 × Y) / (10000-80 × Y). .. .. Equation (3)
{In the equation, Y is the same as that defined in equation (2). }, The degree of substitution is calculated, and the average value (N = 3 or more) is used as the average degree of substitution.
試料(無水物)0.5~0.7gを精密に秤量し、ろ紙に包んで磁製ルツボ中で灰化する。冷却した後、これを500mLビーカーに移し、水を約250mL、さらにピペットで0.05モル/Lの硫酸35mLを加えて30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸を0.1モル/Lの水酸化カリウムで逆滴定して、下記式(2):
Y=(a×f-b×f1)/試料無水物重量(g)-アルカリ度(又は+酸度) ...式(2)
{式中、Y:試料1g中の結合アルカリに消費された0.05モル/L硫酸の量(mL)、a:0.05モル/L硫酸の使用量(mL)、f:0.05モル/L硫酸の力価、b:0.1モル/L水酸化カリウムの滴定量(mL)、f1:0.1モル/L水酸化カリウムの力価}、及び下記式(3):
置換度=(162×Y)/(10000-80×Y) ...式(3)
{式中、Yは式(2)に定義したものと同じである。}により、置換度を算出し、その平均値(N=3以上)を平均置換度とする。 (Ii) Average degree of substitution (DS)
A sample (anhydride) of 0.5 to 0.7 g is precisely weighed, wrapped in filter paper, and incinerated in a porcelain crucible. After cooling, transfer this to a 500 mL beaker, add about 250 mL of water and 35 mL of 0.05 mol / L sulfuric acid with a pipette, and simmer for 30 minutes. This is cooled, a phenolphthalein indicator is added, and the excess acid is back titrated with 0.1 mol / L potassium hydroxide to formulate the following formula (2):
Y = (a × f-b × f1) / sample anhydride weight (g) -alkali (or + acidity). .. .. Equation (2)
{In the formula, Y: amount of 0.05 mol / L sulfuric acid consumed in 1 g of sample (mL), a: amount of 0.05 mol / L sulfuric acid used (mL), f: 0.05 Molar / L sulfuric acid titer, b: 0.1 molar / L potassium hydroxide titration (mL), f1: 0.1 molar / L potassium hydroxide titer}, and the following formula (3):
Substitution = (162 × Y) / (10000-80 × Y). .. .. Equation (3)
{In the equation, Y is the same as that defined in equation (2). }, The degree of substitution is calculated, and the average value (N = 3 or more) is used as the average degree of substitution.
2.プロトン化度
CMC構造体を1cm2以上の面積に切断する。その後FT-IR(ATR)装置にセットし表面分析を行う。その後ATR補正、ベースライン補正、規格化を行い、1590cm-1の波長でのピーク高さを測定し、プロトン化前後でのピーク高さの比から下記式(4):
プロトン化度(%)=(A-B)/A×100 ...式(4)
{式中、A:(プロトン化前のサンプルの1590cm-1のピーク高さ)、B:(プロトン化後のサンプルの1590cm-1のピーク高さ)。}により、プロトン化度を算出する。プロトン化前のサンプルは、同等のサンプルを別途用意するか、サンプルを水酸化ナトリウム水溶液で処理することにより準備することができる。 2. Degree of Protonation Cut the CMC structure into areas of 1 cm 2 or larger. After that, it is set in an FT-IR (ATR) device and surface analysis is performed. After that, ATR correction, baseline correction, and standardization are performed, the peak height at a wavelength of 1590 cm -1 is measured, and the ratio of the peak height before and after protonation is calculated from the following equation (4):
Degree of protonation (%) = (AB) / A × 100. .. .. Equation (4)
{In the formula, A: ( peak height of 1590 cm -1 of the sample before protonation), B: (peak height of 1590 cm -1 of the sample after protonation). } To calculate the degree of protonation. The sample before protonation can be prepared by preparing an equivalent sample separately or by treating the sample with an aqueous sodium hydroxide solution.
CMC構造体を1cm2以上の面積に切断する。その後FT-IR(ATR)装置にセットし表面分析を行う。その後ATR補正、ベースライン補正、規格化を行い、1590cm-1の波長でのピーク高さを測定し、プロトン化前後でのピーク高さの比から下記式(4):
プロトン化度(%)=(A-B)/A×100 ...式(4)
{式中、A:(プロトン化前のサンプルの1590cm-1のピーク高さ)、B:(プロトン化後のサンプルの1590cm-1のピーク高さ)。}により、プロトン化度を算出する。プロトン化前のサンプルは、同等のサンプルを別途用意するか、サンプルを水酸化ナトリウム水溶液で処理することにより準備することができる。 2. Degree of Protonation Cut the CMC structure into areas of 1 cm 2 or larger. After that, it is set in an FT-IR (ATR) device and surface analysis is performed. After that, ATR correction, baseline correction, and standardization are performed, the peak height at a wavelength of 1590 cm -1 is measured, and the ratio of the peak height before and after protonation is calculated from the following equation (4):
Degree of protonation (%) = (AB) / A × 100. .. .. Equation (4)
{In the formula, A: ( peak height of 1590 cm -1 of the sample before protonation), B: (peak height of 1590 cm -1 of the sample after protonation). } To calculate the degree of protonation. The sample before protonation can be prepared by preparing an equivalent sample separately or by treating the sample with an aqueous sodium hydroxide solution.
3.銀含有量(重量%)
試料(無水物)0.2~0.3gを精密にはかり、0.1モル/Lの水酸化ナトリウム水溶液20mL、23%アンモニア水溶液10mL、水50mLを添加し溶解させる。これを水で100mLにメスアップし、さらに水で100倍希釈したものを試料溶液とし、ISO17025認定のJIS K0101及びJIS K0102試験に準じて、試料中の銀イオン濃度の同定を行なう。試料重量と、試料溶液中の銀イオン濃度とを用いて、試料中の銀含有量を下記式(5):
銀含有量(重量%)=D/(C×10) ...式(5)
{式中、C:試料重量(g)、D:銀イオン濃度(ppm)}により、算出する。 3. 3. Silver content (% by weight)
Weigh 0.2 to 0.3 g of the sample (anhydrous) precisely, and add 20 mL of 0.1 mol / L sodium hydroxide aqueous solution, 10 mL of 23% ammonia aqueous solution, and 50 mL of water to dissolve. This is made up to 100 mL with water, and the solution diluted 100 times with water is used as a sample solution, and the silver ion concentration in the sample is identified according to the JIS K0101 and JIS K0102 tests certified by ISO17025. Using the sample weight and the silver ion concentration in the sample solution, the silver content in the sample is determined by the following formula (5):
Silver content (% by weight) = D / (C × 10). .. .. Equation (5)
{In the formula, C: sample weight (g), D: silver ion concentration (ppm)}.
試料(無水物)0.2~0.3gを精密にはかり、0.1モル/Lの水酸化ナトリウム水溶液20mL、23%アンモニア水溶液10mL、水50mLを添加し溶解させる。これを水で100mLにメスアップし、さらに水で100倍希釈したものを試料溶液とし、ISO17025認定のJIS K0101及びJIS K0102試験に準じて、試料中の銀イオン濃度の同定を行なう。試料重量と、試料溶液中の銀イオン濃度とを用いて、試料中の銀含有量を下記式(5):
銀含有量(重量%)=D/(C×10) ...式(5)
{式中、C:試料重量(g)、D:銀イオン濃度(ppm)}により、算出する。 3. 3. Silver content (% by weight)
Weigh 0.2 to 0.3 g of the sample (anhydrous) precisely, and add 20 mL of 0.1 mol / L sodium hydroxide aqueous solution, 10 mL of 23% ammonia aqueous solution, and 50 mL of water to dissolve. This is made up to 100 mL with water, and the solution diluted 100 times with water is used as a sample solution, and the silver ion concentration in the sample is identified according to the JIS K0101 and JIS K0102 tests certified by ISO17025. Using the sample weight and the silver ion concentration in the sample solution, the silver content in the sample is determined by the following formula (5):
Silver content (% by weight) = D / (C × 10). .. .. Equation (5)
{In the formula, C: sample weight (g), D: silver ion concentration (ppm)}.
4.吸液量(g/100cm2)
吸液量は、EN13726-1に準拠して、自由に膨張させた時の吸収能力について測定する。具体的には試料を5cm×5cmに切断し、シャーレに配置する。その後、サンプル重量の40倍量の疑似滲出液(EN13726-1記載)を37℃に加温した後、添加し、37℃の恒温機内で30分間静置する。その後インキュベート前後の重量から、下記式(7):
吸液量(g/100cm2)=(F-E)×4 ...式(7)
{式中、E:吸液前の質量(g)、F:30分間インキュベート後の重量(g)}により、算出する。 4. Liquid absorption (g / 100 cm 2 )
The amount of liquid absorbed is measured according to EN13726-1 regarding the absorption capacity when freely expanded. Specifically, the sample is cut into 5 cm × 5 cm and placed in a petri dish. Then, 40 times the weight of the sample, the pseudo-exudate (described in EN13726-1) is heated to 37 ° C., added, and allowed to stand in a thermostat at 37 ° C. for 30 minutes. After that, from the weight before and after incubation, the following formula (7):
Liquid absorption (g / 100 cm 2 ) = (FE) x 4. .. .. Equation (7)
{In the formula, E: mass before liquid absorption (g), F: weight after incubation for 30 minutes (g)}.
吸液量は、EN13726-1に準拠して、自由に膨張させた時の吸収能力について測定する。具体的には試料を5cm×5cmに切断し、シャーレに配置する。その後、サンプル重量の40倍量の疑似滲出液(EN13726-1記載)を37℃に加温した後、添加し、37℃の恒温機内で30分間静置する。その後インキュベート前後の重量から、下記式(7):
吸液量(g/100cm2)=(F-E)×4 ...式(7)
{式中、E:吸液前の質量(g)、F:30分間インキュベート後の重量(g)}により、算出する。 4. Liquid absorption (g / 100 cm 2 )
The amount of liquid absorbed is measured according to EN13726-1 regarding the absorption capacity when freely expanded. Specifically, the sample is cut into 5 cm × 5 cm and placed in a petri dish. Then, 40 times the weight of the sample, the pseudo-exudate (described in EN13726-1) is heated to 37 ° C., added, and allowed to stand in a thermostat at 37 ° C. for 30 minutes. After that, from the weight before and after incubation, the following formula (7):
Liquid absorption (g / 100 cm 2 ) = (FE) x 4. .. .. Equation (7)
{In the formula, E: mass before liquid absorption (g), F: weight after incubation for 30 minutes (g)}.
5.強度
試料を5cm×5cmに切断し、シャーレに配置する。その後、サンプル重量の40倍量の疑似滲出液(EN13726-1記載)を添加し、37℃で30分間静置する。サンプルを取り出し、ピンセットでつまみ、以下の評価基準で強度を評価する。
×:形態を保つことができない
△:形態を保つことができるが、つかむことが難しい
〇:形態を保持しており、つかむことができるが、強く引っ張ると崩れる
◎:ある程度の強さの引張にも耐えることができる 5. Strength The sample is cut into 5 cm x 5 cm pieces and placed in a petri dish. Then, 40 times the weight of the sample, a pseudo-exudate (described in EN13726-1) is added, and the mixture is allowed to stand at 37 ° C. for 30 minutes. Take out the sample, pinch it with tweezers, and evaluate the strength according to the following evaluation criteria.
×: Cannot keep shape △: Can keep shape but difficult to grasp 〇: Holds shape and can be grasped, but collapses when pulled strongly ◎: For tension with some strength Can withstand
試料を5cm×5cmに切断し、シャーレに配置する。その後、サンプル重量の40倍量の疑似滲出液(EN13726-1記載)を添加し、37℃で30分間静置する。サンプルを取り出し、ピンセットでつまみ、以下の評価基準で強度を評価する。
×:形態を保つことができない
△:形態を保つことができるが、つかむことが難しい
〇:形態を保持しており、つかむことができるが、強く引っ張ると崩れる
◎:ある程度の強さの引張にも耐えることができる 5. Strength The sample is cut into 5 cm x 5 cm pieces and placed in a petri dish. Then, 40 times the weight of the sample, a pseudo-exudate (described in EN13726-1) is added, and the mixture is allowed to stand at 37 ° C. for 30 minutes. Take out the sample, pinch it with tweezers, and evaluate the strength according to the following evaluation criteria.
×: Cannot keep shape △: Can keep shape but difficult to grasp 〇: Holds shape and can be grasped, but collapses when pulled strongly ◎: For tension with some strength Can withstand
6.抗菌性
抗菌性は、JIS L 1902に準拠して、黄色ブドウ球菌を用いた菌液吸収法により測定した抗菌活性値により評価する。対照試料としては比較例1を用いる。JIS L 1902に記載の培養18時間後の評価に加え、初期の抗菌性を評価するため培養3時間後の抗菌活性値も確認する。 6. Antibacterial properties Antibacterial properties are evaluated based on the antibacterial activity value measured by the bacterial solution absorption method using Staphylococcus aureus in accordance with JIS L 1902. Comparative Example 1 is used as a control sample. In addition to the evaluation described in JIS L 1902 after 18 hours of culturing, the antibacterial activity value after 3 hours of culturing is also confirmed in order to evaluate the initial antibacterial property.
抗菌性は、JIS L 1902に準拠して、黄色ブドウ球菌を用いた菌液吸収法により測定した抗菌活性値により評価する。対照試料としては比較例1を用いる。JIS L 1902に記載の培養18時間後の評価に加え、初期の抗菌性を評価するため培養3時間後の抗菌活性値も確認する。 6. Antibacterial properties Antibacterial properties are evaluated based on the antibacterial activity value measured by the bacterial solution absorption method using Staphylococcus aureus in accordance with JIS L 1902. Comparative Example 1 is used as a control sample. In addition to the evaluation described in JIS L 1902 after 18 hours of culturing, the antibacterial activity value after 3 hours of culturing is also confirmed in order to evaluate the initial antibacterial property.
7.長期間液浸後の抗菌性
JIS L 1902に準拠して、黄色ブドウ球菌を用いた菌液吸収法により測定した抗菌活性値により評価する。対照試料としては比較例1を用いる。JIS L 1902に準拠して試験片を準備した後、試験片をシャーレに配置する。その後、試験片重量の40倍量の疑似滲出液(EN13726-1記載)を37℃に加温した後、添加し、37℃の恒温機内で24時間静置する。その後膨潤した試験片を取り出して別のシャーレへと移し、再度同量の疑似滲出液を添加し、37℃の恒温機内で24時間静置する。この操作を5回実施した試験片に試験接種菌液を接種し、JIS L 1902に準拠して培養18時間後の抗菌活性値を確認する。 7. Antibacterial property after long-term immersion The evaluation is based on the antibacterial activity value measured by the bacterial solution absorption method using Staphylococcus aureus in accordance with JIS L 1902. Comparative Example 1 is used as a control sample. After preparing the test piece according to JIS L 1902, the test piece is placed in a petri dish. Then, 40 times the weight of the test piece is added to the pseudo-exudate (described in EN13726-1) after heating to 37 ° C., and the mixture is allowed to stand in a thermostat at 37 ° C. for 24 hours. Then, the swollen test piece is taken out, transferred to another petri dish, the same amount of pseudo-exudate is added again, and the mixture is allowed to stand in a thermostat at 37 ° C. for 24 hours. The test piece obtained by performing this operation 5 times is inoculated with the test inoculated bacterial solution, and the antibacterial activity value after 18 hours of culturing is confirmed according to JIS L 1902.
JIS L 1902に準拠して、黄色ブドウ球菌を用いた菌液吸収法により測定した抗菌活性値により評価する。対照試料としては比較例1を用いる。JIS L 1902に準拠して試験片を準備した後、試験片をシャーレに配置する。その後、試験片重量の40倍量の疑似滲出液(EN13726-1記載)を37℃に加温した後、添加し、37℃の恒温機内で24時間静置する。その後膨潤した試験片を取り出して別のシャーレへと移し、再度同量の疑似滲出液を添加し、37℃の恒温機内で24時間静置する。この操作を5回実施した試験片に試験接種菌液を接種し、JIS L 1902に準拠して培養18時間後の抗菌活性値を確認する。 7. Antibacterial property after long-term immersion The evaluation is based on the antibacterial activity value measured by the bacterial solution absorption method using Staphylococcus aureus in accordance with JIS L 1902. Comparative Example 1 is used as a control sample. After preparing the test piece according to JIS L 1902, the test piece is placed in a petri dish. Then, 40 times the weight of the test piece is added to the pseudo-exudate (described in EN13726-1) after heating to 37 ° C., and the mixture is allowed to stand in a thermostat at 37 ° C. for 24 hours. Then, the swollen test piece is taken out, transferred to another petri dish, the same amount of pseudo-exudate is added again, and the mixture is allowed to stand in a thermostat at 37 ° C. for 24 hours. The test piece obtained by performing this operation 5 times is inoculated with the test inoculated bacterial solution, and the antibacterial activity value after 18 hours of culturing is confirmed according to JIS L 1902.
8.銀含有粒子の平均粒子径
試料を走査型電子顕微鏡(日立ハイテクフィールディング社製、TM4000)により倍率5000倍で観察し、繊維表層に存在する粒子10個を無作為に選出してそれぞれの外接円相当径を計測する。これらの平均値を平均粒子径(μm)とする。 8. Average particle size of silver-containing particles A sample was observed with a scanning electron microscope (manufactured by Hitachi High-Tech Fielding Corporation, TM4000) at a magnification of 5000 times, and 10 particles existing on the fiber surface were randomly selected to correspond to the circumscribing circles of each. Measure the diameter. Let the average value of these be the average particle size (μm).
試料を走査型電子顕微鏡(日立ハイテクフィールディング社製、TM4000)により倍率5000倍で観察し、繊維表層に存在する粒子10個を無作為に選出してそれぞれの外接円相当径を計測する。これらの平均値を平均粒子径(μm)とする。 8. Average particle size of silver-containing particles A sample was observed with a scanning electron microscope (manufactured by Hitachi High-Tech Fielding Corporation, TM4000) at a magnification of 5000 times, and 10 particles existing on the fiber surface were randomly selected to correspond to the circumscribing circles of each. Measure the diameter. Let the average value of these be the average particle size (μm).
9.銀含有粒子の粒子分布(一様分布)
走査型電子顕微鏡(日立ハイテクフィールディング社製、TM4000)により、試料断面を試料の厚み方向に5分割した範囲をそれぞれ倍率1000倍で観察し、それぞれの1000μm2あたりの粒子数を計測する。これらの粒子数の変動係数が0.5以下であった場合、該構造体中の粒子は構造体中の厚み方向に一様に分布しているものとする。 9. Particle distribution of silver-containing particles (uniform distribution)
With a scanning electron microscope (TM4000, manufactured by Hitachi High-Tech Fielding Corporation), the range in which the sample cross section is divided into 5 parts in the thickness direction of the sample is observed at a magnification of 1000 times, and the number of particles per 1000 μm 2 is measured. When the coefficient of variation of the number of these particles is 0.5 or less, it is assumed that the particles in the structure are uniformly distributed in the thickness direction in the structure.
走査型電子顕微鏡(日立ハイテクフィールディング社製、TM4000)により、試料断面を試料の厚み方向に5分割した範囲をそれぞれ倍率1000倍で観察し、それぞれの1000μm2あたりの粒子数を計測する。これらの粒子数の変動係数が0.5以下であった場合、該構造体中の粒子は構造体中の厚み方向に一様に分布しているものとする。 9. Particle distribution of silver-containing particles (uniform distribution)
With a scanning electron microscope (TM4000, manufactured by Hitachi High-Tech Fielding Corporation), the range in which the sample cross section is divided into 5 parts in the thickness direction of the sample is observed at a magnification of 1000 times, and the number of particles per 1000 μm 2 is measured. When the coefficient of variation of the number of these particles is 0.5 or less, it is assumed that the particles in the structure are uniformly distributed in the thickness direction in the structure.
10.目付(g/m2)
JIS-L1913に準拠する単位面積当たりの質量試験にて、直径6cmの打ち抜き刃を使用して試料から試験片を採取し、目付を測定した。 10. Metsuke (g / m 2 )
In a mass test per unit area according to JIS-L1913, a test piece was taken from a sample using a punching blade having a diameter of 6 cm, and the basis weight was measured.
JIS-L1913に準拠する単位面積当たりの質量試験にて、直径6cmの打ち抜き刃を使用して試料から試験片を採取し、目付を測定した。 10. Metsuke (g / m 2 )
In a mass test per unit area according to JIS-L1913, a test piece was taken from a sample using a punching blade having a diameter of 6 cm, and the basis weight was measured.
11.厚み(mm)
JIS-L1096に準拠する厚み試験にて、荷重を1.96kPaとして、厚みを測定した。 11. Thickness (mm)
In a thickness test conforming to JIS-L1096, the thickness was measured with a load of 1.96 kPa.
JIS-L1096に準拠する厚み試験にて、荷重を1.96kPaとして、厚みを測定した。 11. Thickness (mm)
In a thickness test conforming to JIS-L1096, the thickness was measured with a load of 1.96 kPa.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[比較例1]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)1kgを反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:8750g、エタノール8750g、NaOH:1625g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水3000g、エタノール9600g、モノクロロ酢酸ナトリウム1225g)を添加し、50℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:375g、蒸留水:3750g、エタノール:8750g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液13750gで1回、90wt%エタノール水溶液12500gで1回洗浄し、100wt%エタノール12500gで2回アルコール置換を行なった。これを乾燥し、CMC-Naを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 1]
1 kg of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 8750 g, ethanol 8750 g, NaOH: 1625 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate) was added, and the mixture was stirred at 50 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 375 g, distilled water: 3750 g, ethanol: 8750 g), once with a 70 wt% ethanol aqueous solution of 13750 g and once with a 90 wt% ethanol aqueous solution of 12500 g. It was washed and subjected to alcohol substitution twice with 12500 g of 100 wt% ethanol. This was dried to obtain CMC-Na.
The various evaluation results of this sample are shown in Table 1 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)1kgを反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:8750g、エタノール8750g、NaOH:1625g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水3000g、エタノール9600g、モノクロロ酢酸ナトリウム1225g)を添加し、50℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:375g、蒸留水:3750g、エタノール:8750g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液13750gで1回、90wt%エタノール水溶液12500gで1回洗浄し、100wt%エタノール12500gで2回アルコール置換を行なった。これを乾燥し、CMC-Naを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 1]
1 kg of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 8750 g, ethanol 8750 g, NaOH: 1625 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate) was added, and the mixture was stirred at 50 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 375 g, distilled water: 3750 g, ethanol: 8750 g), once with a 70 wt% ethanol aqueous solution of 13750 g and once with a 90 wt% ethanol aqueous solution of 12500 g. It was washed and subjected to alcohol substitution twice with 12500 g of 100 wt% ethanol. This was dried to obtain CMC-Na.
The various evaluation results of this sample are shown in Table 1 below.
[比較例2]
比較例1で作製したCMC-Naのうち500gを酢酸含有エタノール溶液7500g(40wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液7500gで1回、90wt%エタノール水溶液7500gで1回洗浄し、100wt%エタノール7500gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 2]
Of the CMC-Na prepared in Comparative Example 1, 500 g was immersed in 7500 g (40 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, and then washed once with 7500 g of a 70 wt% ethanol aqueous solution and once with 7500 g of a 90 wt% ethanol aqueous solution. Then, alcohol was replaced twice with 7500 g of 100 wt% ethanol, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H.
The various evaluation results of this sample are shown in Table 1 below.
比較例1で作製したCMC-Naのうち500gを酢酸含有エタノール溶液7500g(40wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液7500gで1回、90wt%エタノール水溶液7500gで1回洗浄し、100wt%エタノール7500gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 2]
Of the CMC-Na prepared in Comparative Example 1, 500 g was immersed in 7500 g (40 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, and then washed once with 7500 g of a 70 wt% ethanol aqueous solution and once with 7500 g of a 90 wt% ethanol aqueous solution. Then, alcohol was replaced twice with 7500 g of 100 wt% ethanol, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H.
The various evaluation results of this sample are shown in Table 1 below.
[比較例3]
各種評価前に比較例1で作製した試料の表面に塩化銀粉末を試料重量の0.02倍振りかけることでサンプル中の銀含有量を1.5%としたもの(CMC-Na+AgCl粉末)の各種評価結果を以下の表1に示す。 [Comparative Example 3]
Various types of silver chloride powder (CMC-Na + AgCl powder) in which the silver content in the sample is 1.5% by sprinkling silver chloride powder 0.02 times the sample weight on the surface of the sample prepared in Comparative Example 1 before various evaluations. The evaluation results are shown in Table 1 below.
各種評価前に比較例1で作製した試料の表面に塩化銀粉末を試料重量の0.02倍振りかけることでサンプル中の銀含有量を1.5%としたもの(CMC-Na+AgCl粉末)の各種評価結果を以下の表1に示す。 [Comparative Example 3]
Various types of silver chloride powder (CMC-Na + AgCl powder) in which the silver content in the sample is 1.5% by sprinkling silver chloride powder 0.02 times the sample weight on the surface of the sample prepared in Comparative Example 1 before various evaluations. The evaluation results are shown in Table 1 below.
[比較例4]
各種評価前に比較例2で作製した試料の表面に塩化銀粉末を試料重量の0.02倍振りかけることでサンプル中の銀含有量を1.5%としたもの(CMC-Na+CMC-H+AgCl粉末)の各種評価結果を以下の表1に示す。 [Comparative Example 4]
Silver chloride powder was sprinkled 0.02 times the sample weight on the surface of the sample prepared in Comparative Example 2 before various evaluations to make the silver content in the sample 1.5% (CMC-Na + CMC-H + AgCl powder). The various evaluation results of are shown in Table 1 below.
各種評価前に比較例2で作製した試料の表面に塩化銀粉末を試料重量の0.02倍振りかけることでサンプル中の銀含有量を1.5%としたもの(CMC-Na+CMC-H+AgCl粉末)の各種評価結果を以下の表1に示す。 [Comparative Example 4]
Silver chloride powder was sprinkled 0.02 times the sample weight on the surface of the sample prepared in Comparative Example 2 before various evaluations to make the silver content in the sample 1.5% (CMC-Na + CMC-H + AgCl powder). The various evaluation results of are shown in Table 1 below.
[比較例5]
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC-Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 5]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag.
The various evaluation results of this sample are shown in Table 1 below.
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC-Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 5]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag.
The various evaluation results of this sample are shown in Table 1 below.
[比較例6]
比較例2で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC-Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 6]
100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag.
The various evaluation results of this sample are shown in Table 1 below.
比較例2で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC-Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 6]
100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC-Ag.
The various evaluation results of this sample are shown in Table 1 below.
[比較例7]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム230g)を添加し、55℃で10時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 7]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 230 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 10 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム230g)を添加し、55℃で10時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 7]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 230 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 10 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
[比較例8]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム40g)を添加し、45℃で1時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 8]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 40 g of sodium monochloroacetate) was added, and the mixture was stirred at 45 ° C. for 1 hour. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム40g)を添加し、45℃で1時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。 [Comparative Example 8]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 40 g of sodium monochloroacetate) was added, and the mixture was stirred at 45 ° C. for 1 hour. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
[比較例9]
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で1時間撹拌した。その後、反応容器中の試薬を排液せず、反応容器に塩化ナトリウム水溶液(塩化ナトリウム40g、水450g)を添加し、さらに1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。
尚、比較例9において、銀含有粒子の粒子分布は、粒子数の変動係数が0.5以下であり、構造体中の粒子が構造体中の厚み方向に一様に分布していなかった。 [Comparative Example 9]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 1 hour. Then, the reagent in the reaction vessel was not drained, an aqueous sodium chloride solution (40 g of sodium chloride, 450 g of water) was added to the reaction vessel, and the mixture was further stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
In Comparative Example 9, in the particle distribution of the silver-containing particles, the coefficient of variation of the number of particles was 0.5 or less, and the particles in the structure were not uniformly distributed in the thickness direction in the structure.
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で1時間撹拌した。その後、反応容器中の試薬を排液せず、反応容器に塩化ナトリウム水溶液(塩化ナトリウム40g、水450g)を添加し、さらに1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表1に示す。
尚、比較例9において、銀含有粒子の粒子分布は、粒子数の変動係数が0.5以下であり、構造体中の粒子が構造体中の厚み方向に一様に分布していなかった。 [Comparative Example 9]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 1 hour. Then, the reagent in the reaction vessel was not drained, an aqueous sodium chloride solution (40 g of sodium chloride, 450 g of water) was added to the reaction vessel, and the mixture was further stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 1 below.
In Comparative Example 9, in the particle distribution of the silver-containing particles, the coefficient of variation of the number of particles was 0.5 or less, and the particles in the structure were not uniformly distributed in the thickness direction in the structure.
[実施例1]
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 1]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 1]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例2]
比較例2で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 2]
100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
比較例2で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 2]
100 g of the sample prepared in Comparative Example 2 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 2.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例3]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム80g)を添加し、45℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 3]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 80 g of sodium monochloroacetate) was added, and the mixture was stirred at 45 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム80g)を添加し、45℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 3]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 80 g of sodium monochloroacetate) was added, and the mixture was stirred at 45 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例4]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム180g)を添加し、55℃で5時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 4]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム180g)を添加し、55℃で5時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 4]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例5]
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム180g)を添加し、55℃で5時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、酢酸含有エタノール溶液1250g(90wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 5]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, it is immersed in 1250 g (90 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and with 1250 g of 100 wt% ethanol. Alcohol was replaced twice, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
再生セルロース連続長繊維不織布(銅アンモニアレーヨン不織布)(幅20cm、目付80g/m2、厚み0.5mm、密度0.154g/m3)を100g反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:875g、エタノール875g、NaOH:163g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水300g、エタノール960g、モノクロロ酢酸ナトリウム180g)を添加し、55℃で5時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:37.5g、蒸留水:375g、エタノール:875g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥した後、酢酸含有エタノール溶液1250g(90wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。これを乾燥した後、硝酸銀含有エタノール水溶液(硝酸銀5g、水10g、エタノール1490g)を加え、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 5]
100 g of regenerated cellulose continuous long fiber non-woven fabric (cuprammonium rayon non-woven fabric) (width 20 cm, grain 80 g / m 2 , thickness 0.5 mm, density 0.154 g / m 3 ) is placed in a 100 g reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide is placed. After adding (water: 875 g, ethanol 875 g, NaOH: 163 g), the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (300 g of water, 960 g of ethanol, 180 g of sodium monochloroacetate) was added, and the mixture was stirred at 55 ° C. for 5 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 37.5 g, distilled water: 375 g, ethanol: 875 g), once with 1375 g of a 70 wt% ethanol aqueous solution, with 1250 g of a 90 wt% ethanol aqueous solution. It was washed once and replaced with alcohol twice with 1250 g of 100 wt% ethanol. After drying this, it is immersed in 1250 g (90 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and with 1250 g of 100 wt% ethanol. Alcohol was replaced twice, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H. After drying this, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 5 g, water 10 g, ethanol 1490 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例6]
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀0.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 6]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 0.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀0.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 6]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (silver nitrate 0.5 g, water 5 g, ethanol 1495 g) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例7]
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀8.0g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 7]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (8.0 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
比較例1で作製したサンプルのうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀8.0g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
このサンプルの各種評価結果を以下の表2に示す。 [Example 7]
100 g of the sample prepared in Comparative Example 1 was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (8.0 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
The various evaluation results of this sample are shown in Table 2 below.
[実施例8]
再生セルロース長繊維(銅アンモニアレーヨン、繊維長51mm、繊度2.2T)1.5kgを反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:8750g、エタノール8750g、NaOH:1625g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水3000g、エタノール9600g、モノクロロ酢酸ナトリウム1225g)を添加し、50℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:375g、蒸留水:3750g、エタノール:8750g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液13750gで1回、90wt%エタノール水溶液12500gで1回洗浄し、100wt%エタノール12500gで2回アルコール置換を行なった。これを乾燥し、CMC-Naを得た。
このうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
これをニードルパンチにより不織布化したサンプルの各種評価結果を以下の表2に示す。 [Example 8]
1.5 kg of regenerated cellulose filament (cuprammonium rayon, fiber length 51 mm, fineness 2.2 T) was placed in a reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide (water: 8750 g, ethanol 8750 g, NaOH: 1625 g) was added. Then, the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate) was added, and the mixture was stirred at 50 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 375 g, distilled water: 3750 g, ethanol: 8750 g), once with a 70 wt% ethanol aqueous solution of 13750 g and once with a 90 wt% ethanol aqueous solution of 12500 g. It was washed and subjected to alcohol substitution twice with 12500 g of 100 wt% ethanol. This was dried to obtain CMC-Na.
Of these, 100 g was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
Table 2 below shows various evaluation results of the sample made into a non-woven fabric by needle punching.
再生セルロース長繊維(銅アンモニアレーヨン、繊維長51mm、繊度2.2T)1.5kgを反応容器に入れ、その後、水酸化ナトリウム含有エタノール水溶液(水:8750g、エタノール8750g、NaOH:1625g)を加えた後、35℃で30分撹拌した。次に、反応容器中の試薬を排液した後、モノクロロ酢酸ナトリウム含有エタノール水溶液(水3000g、エタノール9600g、モノクロロ酢酸ナトリウム1225g)を添加し、50℃で3時間攪拌した。その後、酢酸含有エタノール水溶液(酢酸:375g、蒸留水:3750g、エタノール:8750g)でpH6.0~8.0に調整した後、70wt%エタノール水溶液13750gで1回、90wt%エタノール水溶液12500gで1回洗浄し、100wt%エタノール12500gで2回アルコール置換を行なった。これを乾燥し、CMC-Naを得た。
このうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
これをニードルパンチにより不織布化したサンプルの各種評価結果を以下の表2に示す。 [Example 8]
1.5 kg of regenerated cellulose filament (cuprammonium rayon, fiber length 51 mm, fineness 2.2 T) was placed in a reaction vessel, and then an aqueous ethanol solution containing sodium hydroxide (water: 8750 g, ethanol 8750 g, NaOH: 1625 g) was added. Then, the mixture was stirred at 35 ° C. for 30 minutes. Next, after draining the reagent in the reaction vessel, an aqueous ethanol solution containing sodium monochloroacetate (3000 g of water, 9600 g of ethanol, 1225 g of sodium monochloroacetate) was added, and the mixture was stirred at 50 ° C. for 3 hours. Then, after adjusting the pH to 6.0 to 8.0 with an acetic acid-containing ethanol aqueous solution (acetic acid: 375 g, distilled water: 3750 g, ethanol: 8750 g), once with a 70 wt% ethanol aqueous solution of 13750 g and once with a 90 wt% ethanol aqueous solution of 12500 g. It was washed and subjected to alcohol substitution twice with 12500 g of 100 wt% ethanol. This was dried to obtain CMC-Na.
Of these, 100 g was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
Table 2 below shows various evaluation results of the sample made into a non-woven fabric by needle punching.
[実施例9]
実施例8で作製したCMC-Naのうち500gを酢酸含有エタノール溶液7500g(40wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液7500gで1回、90wt%エタノール水溶液7500gで1回洗浄し、100wt%エタノール7500gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。
このうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
これをニードルパンチにより不織布化したサンプルの各種評価結果を以下の表2に示す。 [Example 9]
Of the CMC-Na prepared in Example 8, 500 g was immersed in 7500 g (40 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, and then washed once with 7500 g of a 70 wt% ethanol aqueous solution and once with 7500 g of a 90 wt% ethanol aqueous solution. Then, alcohol was replaced twice with 7500 g of 100 wt% ethanol, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H.
Of these, 100 g was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
Table 2 below shows various evaluation results of the sample made into a non-woven fabric by needle punching.
実施例8で作製したCMC-Naのうち500gを酢酸含有エタノール溶液7500g(40wt%)に浸漬し、1時間撹拌した後、70wt%エタノール水溶液7500gで1回、90wt%エタノール水溶液7500gで1回洗浄し、100wt%エタノール7500gで2回アルコール置換を行ない、乾燥させ、更に熱風乾燥機により105℃、6hの熱処理を行いCMC-Na+CMC-Hを得た。
このうち100gを反応容器に入れ、硝酸銀含有エタノール水溶液(硝酸銀2.5g、水5g、エタノール1495g)を加えた後、35℃で2時間撹拌した。次に、反応容器中の溶液を排液した後、塩化ナトリウム含有エタノール水溶液(塩化ナトリウム40g、水450g、エタノール1150g)に浸漬し、1時間撹拌した。その後、70wt%エタノール水溶液1375gで1回、90wt%エタノール水溶液1250gで1回洗浄し、100wt%エタノール1250gで2回アルコール置換を行なった。これを乾燥しCMC・Agを得た。
これをニードルパンチにより不織布化したサンプルの各種評価結果を以下の表2に示す。 [Example 9]
Of the CMC-Na prepared in Example 8, 500 g was immersed in 7500 g (40 wt%) of an acetic acid-containing ethanol solution, stirred for 1 hour, and then washed once with 7500 g of a 70 wt% ethanol aqueous solution and once with 7500 g of a 90 wt% ethanol aqueous solution. Then, alcohol was replaced twice with 7500 g of 100 wt% ethanol, dried, and further heat-treated at 105 ° C. for 6 hours with a hot air dryer to obtain CMC-Na + CMC-H.
Of these, 100 g was placed in a reaction vessel, an aqueous solution of silver nitrate-containing ethanol (2.5 g of silver nitrate, 5 g of water, 1495 g of ethanol) was added, and the mixture was stirred at 35 ° C. for 2 hours. Next, after draining the solution in the reaction vessel, it was immersed in an aqueous ethanol solution containing sodium chloride (sodium chloride 40 g, water 450 g, ethanol 1150 g) and stirred for 1 hour. Then, it was washed once with 1375 g of a 70 wt% ethanol aqueous solution and once with 1250 g of a 90 wt% ethanol aqueous solution, and alcohol was replaced twice with 1250 g of 100 wt% ethanol. This was dried to obtain CMC / Ag.
Table 2 below shows various evaluation results of the sample made into a non-woven fabric by needle punching.
CMCに塩化銀粉末を振りかけただけの比較例3・比較例4や、置換度が1を超える比較例7、置換度が0.1を下回る比較例8では、液浸後の抗菌活性値が1以下と小さく、長期間貼付け後の抗菌作用が弱くなることが示唆された。
銀がイオンとしてCMC内部に存在する比較例5・比較例6では、3時間時点での抗菌活性値が1以下と小さく、初期の抗菌作用が弱いことが示唆された。 In Comparative Example 3 and Comparative Example 4 in which silver chloride powder was simply sprinkled on the CMC, Comparative Example 7 having a substitution degree of more than 1, and Comparative Example 8 having a substitution degree of less than 0.1, the antibacterial activity value after immersion was high. It was as small as 1 or less, suggesting that the antibacterial action after long-term application was weakened.
In Comparative Examples 5 and 6 in which silver was present as an ion inside the CMC, the antibacterial activity value at 3 hours was as small as 1 or less, suggesting that the initial antibacterial action was weak.
銀がイオンとしてCMC内部に存在する比較例5・比較例6では、3時間時点での抗菌活性値が1以下と小さく、初期の抗菌作用が弱いことが示唆された。 In Comparative Example 3 and Comparative Example 4 in which silver chloride powder was simply sprinkled on the CMC, Comparative Example 7 having a substitution degree of more than 1, and Comparative Example 8 having a substitution degree of less than 0.1, the antibacterial activity value after immersion was high. It was as small as 1 or less, suggesting that the antibacterial action after long-term application was weakened.
In Comparative Examples 5 and 6 in which silver was present as an ion inside the CMC, the antibacterial activity value at 3 hours was as small as 1 or less, suggesting that the initial antibacterial action was weak.
本発明の抗菌性シート状構造体はそれを創傷被覆材として用いると、銀含有粒子の繊維表層への配置とCMCのゲル化作用によって、銀含有粒子を徐放し高濃度で創部に留めておけることで、抗菌性を長時間持続させることができ、傷口を清浄な状態に保つことで傷の治癒の促進が可能である。
When the antibacterial sheet-like structure of the present invention is used as a wound dressing, the silver-containing particles can be gradually released and retained in the wound at a high concentration by the arrangement of the silver-containing particles on the fiber surface layer and the gelling action of CMC. Therefore, the antibacterial property can be maintained for a long time, and the healing of the wound can be promoted by keeping the wound in a clean state.
Claims (14)
- 銀含有粒子が繊維表層に存在するカルボシキメチルセルロース(CMC)繊維を含む抗菌性シート状構造体であって、下記(1)~(4):
(1)該CMCの平均置換度が0.1以上1.0以下である;
(2)該CMC繊維の重量に対するAg量が0.01重量%以上5.0重量%以下である;
(3)該銀含有粒子の平均粒子径が0.01μm以上5μm以下である;及び
(4)該銀含有粒子が該抗菌性シート状構造体の厚み方向に一様に分布している;
を特徴とする、抗菌性シート状構造体。 An antibacterial sheet-like structure containing carboxymethyl cellulose (CMC) fibers in which silver-containing particles are present on the fiber surface, and the following (1) to (4):
(1) The average degree of substitution of the CMC is 0.1 or more and 1.0 or less;
(2) The amount of Ag with respect to the weight of the CMC fiber is 0.01% by weight or more and 5.0% by weight or less;
(3) The average particle size of the silver-containing particles is 0.01 μm or more and 5 μm or less; and (4) the silver-containing particles are uniformly distributed in the thickness direction of the antibacterial sheet-like structure;
An antibacterial sheet-like structure characterized by. - 前記銀含有粒子が、金属銀、銀ナノパーティクル、ハロゲン化銀、及び銀スルファジアジンから成る群から選ばれる少なくとも1種を含む粒子である、請求項1に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to claim 1, wherein the silver-containing particles are particles containing at least one selected from the group consisting of metallic silver, silver nanoparticles, silver halide, and silver sulfaziazine.
- 擬似滲出液に含浸させた際の吸液量が、5g/100cm2以上70g/100cm2以下である、請求項1又は2に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to claim 1 or 2, wherein the amount of liquid absorbed when impregnated with the pseudo-exudate is 5 g / 100 cm 2 or more and 70 g / 100 cm 2 or less.
- 前記CMCのカウンターカチオンがナトリウムイオン又はプロトンから成る群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 3, wherein the counter cation of the CMC is at least one selected from the group consisting of sodium ions or protons.
- 前記CMCのカルボキシメチル基の5%以上80%以下がプロトン化されている、請求項1~4のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 4, wherein 5% or more and 80% or less of the carboxymethyl group of the CMC is protonated.
- 前記CMC繊維が銅アンモニアレーヨン由来の繊維である、請求項1~5のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 5, wherein the CMC fiber is a fiber derived from cuprammonium rayon.
- 前記CMC繊維が連続長繊維である、請求項1~6のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 6, wherein the CMC fiber is a continuous length fiber.
- 前記CMC繊維の数平均繊維径が1μm以上100μm以下である、請求項1~7のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 7, wherein the number average fiber diameter of the CMC fibers is 1 μm or more and 100 μm or less.
- 織物状、編物状又は不織布状の形態にある、請求項1~8のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 8, which is in the form of a woven fabric, a knitted fabric, or a non-woven fabric.
- 目付が10g/m2以上200g/m2以下である、請求項1~9のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 9, which has a basis weight of 10 g / m 2 or more and 200 g / m 2 or less.
- 厚みが0.03mm以上2.0mm以下である、請求項1~10のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet-like structure according to any one of claims 1 to 10, which has a thickness of 0.03 mm or more and 2.0 mm or less.
- 構造体中の厚み方向に5分割した範囲それぞれの1000μm2あたりの前記銀含有粒子数の変動係数が0.5以下である、請求項1~11のいずれか1項に記載の抗菌性シート状構造体。 The antibacterial sheet shape according to any one of claims 1 to 11, wherein the coefficient of variation of the number of silver-containing particles per 1000 μm 2 in each of the ranges divided into five in the thickness direction in the structure is 0.5 or less. Structure.
- 請求項1~12のいずれか1項に記載の抗菌性シート状構造体を含む抗菌性医療用材料。 An antibacterial medical material containing the antibacterial sheet-like structure according to any one of claims 1 to 12.
- 請求項1~12のいずれか1項に記載の抗菌性シート状構造体を含む抗菌性創傷被覆材。 An antibacterial wound dressing containing the antibacterial sheet-like structure according to any one of claims 1 to 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-186903 | 2019-10-10 | ||
JP2019186903 | 2019-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021070915A1 true WO2021070915A1 (en) | 2021-04-15 |
Family
ID=75437275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038206 WO2021070915A1 (en) | 2019-10-10 | 2020-10-08 | Antibacterial sheet-like structure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021070915A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06248549A (en) * | 1993-02-23 | 1994-09-06 | New Oji Paper Co Ltd | Nonwoven fabric |
JP2004508895A (en) * | 2000-09-21 | 2004-03-25 | アコーディス スペシャリティー ファイバーズ リミティド | Wound dressing |
US20150147410A1 (en) * | 2012-05-21 | 2015-05-28 | Novatec Healthcare Company Limited | Wound Dressing Comprising Bio-Cellulose and Silver Nanoparticles |
JP2018524121A (en) * | 2015-07-24 | 2018-08-30 | メンリッケ・ヘルス・ケア・アーベー | Absorbable antibacterial wound dressing |
-
2020
- 2020-10-08 WO PCT/JP2020/038206 patent/WO2021070915A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06248549A (en) * | 1993-02-23 | 1994-09-06 | New Oji Paper Co Ltd | Nonwoven fabric |
JP2004508895A (en) * | 2000-09-21 | 2004-03-25 | アコーディス スペシャリティー ファイバーズ リミティド | Wound dressing |
US20150147410A1 (en) * | 2012-05-21 | 2015-05-28 | Novatec Healthcare Company Limited | Wound Dressing Comprising Bio-Cellulose and Silver Nanoparticles |
JP2018524121A (en) * | 2015-07-24 | 2018-08-30 | メンリッケ・ヘルス・ケア・アーベー | Absorbable antibacterial wound dressing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160114074A1 (en) | Absorbent material | |
CN104958779B (en) | A kind of wound dressing containing chelating silver fiber | |
WO2015165400A1 (en) | Hygroscopic silver-containing product containing silver thiosulfate complex or silver-ammonia complex, and preparation method thereof | |
EP2636775A1 (en) | Antimicrobial fiber, fabric and wound dressing containing nano metal and preparation method thereof | |
WO2012136082A1 (en) | A chitosan wound dressing and its method of manufacturing | |
SK92695A3 (en) | Material for covering of closure and use of absorbent carboxymethylcelulose fibers | |
WO2013159668A1 (en) | Silvery antibacterial fibre, texture, and wound dressing, and preparation method thereof | |
WO2012106983A1 (en) | Antibacterial fibrous dressing containing nano-sized metal and preparation method thereof | |
EP2515955B1 (en) | Absorbent material comprising carboxymethyl chitosan, chitosan and an antimicrobial agent | |
US9555149B2 (en) | Medical material employing carboxymethyl cellulose | |
WO2012142879A1 (en) | Wound dressing with bacteriostasis and hygroscopicity | |
AU2017218300B2 (en) | Sheet for covering wound | |
US20110238025A1 (en) | Cellulose Ethylsulfonate-Based Absorbent Material | |
WO2018223743A1 (en) | Silver-containing antibacterial product, and preparation method thereof | |
WO2021070915A1 (en) | Antibacterial sheet-like structure | |
KR101936879B1 (en) | Medical fibrous structure comprising chitosan and Manufacturing method of medical fibrous structure thereby | |
JP7021878B2 (en) | Base material for wet beauty sheet | |
JP2020018764A (en) | Hemostatic material | |
JP2022071532A (en) | Mixed fiber structure | |
GB2591088A (en) | Antimicrobial fibres | |
CN112546285A (en) | Preparation method of alginate dressing based on chemical modification and physical needling technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20873836 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20873836 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |